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Abstract

In recent years researchers have started to implement various ma-
chine learning approaches to achieve models that can predict species
distributions with greater accuracy. To facilitate the use of machine
learning techniques in the field of ecology; Beery, Cole, Parker, Perona,
and Winner (2021) plea for the involvement of computer scientists in
future research. In this study, an effort was made to investigate the
extent to which different machine learning algorithms can predict the
existence of wolves in Natura 2000 sites; natural areas that are part of
a European Union-wide conservation strategy. Instead of collecting
and combining multiple sources of data, this study made use of a
pre-existing dataset, constituting information on Natura 2000 sites as
reported by all Member States of the European Union. To achieve this,
two previously established (Random Forests & Support Vector Machines),
and one novel (eXtreme Gradient Boosting) algorithm were trained to
correctly classify sites based on the presence or absence of wolves.
To account for class imbalance, a combination of oversampling and
undersampling methods was applied to the data. The results showed
that eXtreme Gradient Boosting and Random Forest classifiers were
able to make predictions at a low error rate, returning Matthews
Correlation Coefficients (MCC) of .78 and .77 respectively. Besides,
these models showed little to no change in performances after the
class balancing methods were applied (+ 0.78% and - 1.54% on the
MCC respectively).

1 introduction

According to the Living Planet Index (WWF, 2020), global wildlife popula-
tions have decreased by 68% over the last 50 years. While Europe’s biodi-
versity has seen the least decline, caution is still needed. Reintroduction
projects have started for those species that were on the brink of extinction,
such as the European bison (Lord, Wirebach, Tompkins, Bradshaw-Wilson,
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1 introduction 2

& Shaffer, 2020). Other species such as the grey wolf have been able to
expand their range naturally, thanks to European legislation for species
protection and improved environmental laws.

At the centre of the European Union’s (EU) biodiversity strategy for
2030 lie expansion plans for the Natura 2000 network (European Com-
mission, 2020). The main objectives of this network of protected natural
sites are an increase in biodiversity and the conservation of vulnerable
protected species. The 27,031 Natura 2000 sites currently cover 18% of
the EU’s landmass and 9% of its marine territory (European Commission,
n.d.). In 2015 the grey wolf, scientifically known as Canis lupus, made its
reappearance in the Netherlands after a 150 year absence. Since then the
wolf has officially settled, reproduced and spread to multiple locations
in the Netherlands. The return of the largest living canine species has
sparked a fierce public debate about its suitability in a country that is as
densely populated as the Netherlands.

Ecologists and conservationists are delighted by the presence of wolves
in Dutch nature, as the species plays an important role in the health of
ecosystems (Linnell et al., 2005; Ritchie et al., 2012). On the other hand,
those who oppose the wolf’s westbound territorial expansion fear that the
shortage of sizeable natural sites in the Netherlands will inevitably lead to
the animal wandering into urbanized areas and threaten livestock. Hence,
observing species distributions and understanding habitat preferences
are vital not only for biodiversity protection, but also to ensure minimal
conflict between protected species and humans.

Wildlife monitoring is challenging, especially for rare species. Current
methods often include the placement of camera traps to observe wildlife
or the use of GPS collars to track movements. These methods are not
only expensive in resources and time, but can also interfere with wildlife
(Berger-Wolf et al., 2017). Data collection has become a standard practice
in most aspects of the world, and the field of ecology is no different. As
national and international (governmental) organizations continue to collect
data on natural sites, there is an ever-growing database that can be used for
predictive modelling (Tuia et al., 2022). Making use of this readily available
data to predict wildlife occurrences in new places is inexpensive and quick
in comparison to traditional methods.

Ecological systems are difficult to model, due to the complex nature
of interactions that take place in such a system (Beery et al., 2021). While
a range of machine learning techniques have risen in popularity for this
reason, collecting and combining data to account for all possible interacting
variables remains challenging. Therefore, this study set out to predict
the presence of grey wolves in a Natura 2000 site, based on the yearly-
reported descriptive features of that specific natural area. As each Natura
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2000 site has a sizeable amount of features, ranging from habitat type
to possible pollutants to endangered species present on a Natura 2000

site, there lie possibilities to establish relationships between such variables
and the presence of protected species such as the wolf. If accurate, these
predictions could help conservation efforts and serve as an inexpensive
and convenient tool to check the suitability of a natural site to host certain
threatened animal species. Linear regression, Support Vector Machines,
Random Forests, and eXtreme Gradient Boosting classifiers have been
trained, tested, and compared on their performance. This resulted in the
following research questions:

RQ1 To what extent can a machine learning algorithm predict the existence of
grey wolves in a Natura 2000 site, based on site-specific features?

RQ2 Which algorithm can best predict the existence of grey wolves in a Natura
2000 site?

RQ3 Which features best predict the existence of grey wolves in a Natura 2000
site?

2 related work

This section briefly reviews previous research on the topic of predicting
the presence of animal species, and the associated use of different machine
learning techniques. In addition, the use of such methods in the context of
wolves is explored.

Species distribution models
The methods that combine data of species occurrences and environmental
factors to predict spatial distributions are called species distribution models
(SDMs). SDMs can be used to determine the places where an animal
species currently exists (Jiménez-Valverde, Lobo, & Hortal, 2008) or where
the conditions are right for potential existence (Soberón, 2010). SDMs can
work as a presence-only model where only the presence of certain species
are recorded, or as a presence-absence model, where the absence of said
species in an area is also recorded (Beery et al., 2021). The latter are highly
dependent on the quality of the available data and have to deal with some
degree of uncertainty, as it is difficult to accurately claim the total absence
of a species (Rocchini et al., 2011).

SDMs can be used for explanatory purposes such as finding drivers for
species distribution, and for predictive purposes such as predicting species
presence in a ‘new’ natural site (Elith & Leathwick, 2009). Historically
SDMs are based on statistical methods such as generalized linear models
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and logistic regression, where predictors are selected based on their per-
ceived importance (Elith & Leathwick, 2009). While this methodology has
served its purpose for many years, it is prone to biased predictor variables
due to researchers over- or underestimating the importance of a variable or
certain relationships (Rocchini et al., 2011), which are difficult to account
for in complex ecological systems. To deal with these drawbacks, a number
of machine learning algorithms have been introduced to the domain over
the last two decades.

SDMs & machine learning techniques
Machine learning approaches are well suited to account for the complex
relationship between species and environmental factors (Beery et al., 2021).
While a multitude of models has been used in recent years, only some
seem to be able to consistently outperform generalized linear models. One
group of well-performing algorithms are support vector machines (SVM).
Drake, Randin, and Guisan (2006) were one of the first to propose their
use for SDMs when they found that they outperformed generalized linear
models in predicting the presence of plant species in the Alps. Since then,
SVM have regularly been successfully applied in SDMs (Pouteau, Meyer, &
Stoll, 2011; Pouteau, Meyer, Taputuarai, & Stoll, 2012; Sadeghi, Zarkami,
Sabetraftar, & Van Damme, 2012).

Another highly successful group of algorithms that are frequently used
as SDMs are tree-based models. Their ability to handle different data types,
deal with multicollinearity, and model complex nonlinear relations are
some of reasons why they lend themselves well for ecological modelling.
While there is a large variety of tree-based models, ensemble methods
such as Random Forests (RF) seem to be the favourite among ecologists
as their built-in bagging method results in models with stronger predic-
tive performances (Elith, Leathwick, & Hastie, 2008). Fukuda, De Baets,
Waegeman, Verwaeren, and Mouton (2013) conclude that both SVM and RF
show superior performances compared to generalized linear models and
other statistical methods, with RF performing marginally better than SVM.
Furthermore, Sabat-Tomala, Raczko, and Zagajewski (2020) found that
RF outperformed SVM when there is high homogeneity between classes,
while SVM performed best on data where there is little uniformity between
individual cases in a class. Though the majority of SDMs are still not based
on RF, the ensemble model’s popularity among ecologists is on the rise
as multiple researchers advocate for making RF the gold standard among
SDMs (Mi, Huettmann, Guo, Han, & Wen, 2017).

An ensemble algorithm that is similar to RF and rapidly gaining traction
in the non-scientific community is eXtreme Gradient Boosting (XGBoost).
Although there has been no implementation of XGBoost in SDM, other
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scientific domains such as economics (Chang, Chang, & Wu, 2018) and
medicine (Shi et al., 2019) have seen encouraging results with the use of
XGBoost as a predictive model. This novel algorithm often performs better
than more well-known ensemble models, opening the door to a successful
implementation in SDM.

Grey wolf
While there is a lack of previous work on presence-absence SDMs for
wolves in Europe, there are some studies that touch upon the subject.
Linnell et al. (2005) claim that large predators such as the wolf are able
to cope with changes in both habitat quality and the use of land in and
around protected natural sites. This is reiterated by Cimatti et al. (2021)
who suggest that - like brown bears and lynxes - wolves are highly adaptive
in their habitat selection. On the other hand, Morales-González, Fernández-
Gil, Quevedo, and Revilla (2022) found that individual wolves looking for
new territories (i.e. dispersal) seem to avoid areas with high agricultural
activity. Moreover, dispersal studies suggest that wolves prefer habitats that
are similar to those where the individual previously resided (Sanz-Pérez et
al., 2018).

3 method

The following section outlines the methodological procedure of the study.
Starting with a brief description of the dataset and explaining the prepro-
cessing steps that were taken. Subsequently, the ML models are clarified
and lastly, argumentation for the chosen evaluation metrics is given.

3.1 Dataset

This research made use of the Natura 2000 data — the European network
of protected sites dataset, which was retrieved from the European Environ-
ment Agency (2022). The dataset is a compilation of the national databases
that are submitted by the relevant authorities of each EU Member State
for the year 2021. Each Member State submits their data yearly through
a standardized data form. The dataset consists of 11 separate CSV files.
The majority of files contain descriptive features of a Natura 2000 site itself,
though the files SPECIES and OTHERSPECIES provide information on
the protected species that are present on a site. SPECIES lists the species
for which the corresponding Natura 2000 site is specifically designated,
while OTHERSPECIES lists other protected or remarkable species that
occur on a site. The files DESIGNATIONSTATUS, DIRECTIVESPECIES,
MANAGEMENT and METADATA contain no information that was useful
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for this project and were thus discarded. The remaining files consist of
multiple descriptive features such as habitat type, biogeographic region,
area size, geographical coordinates, and possible human-caused threats
and pressures.

3.2 Data cleaning

The initial preprocessing steps have been conducted in R (R Core Team,
2022); version 4.1.3 by using the dplyr (Wickham, François, Henry, &
Müller, 2022), SuperML (Saraswat, 2022), stringr (Wickham, 2022), & MICE
(van Buuren & Groothuis-Oudshoorn, 2011) packages. In these first stages
of data preparation, the aforementioned CSV files needed to be cleaned and
combined to one cohesive dataset. In doing so, certain columns containing
irrelevant information were removed.

As the BIOREGION and HABITATCLASS files contained multiple
observations of the same unique sitecode – all the bioregions and habitat
classes present in a single Natura 2000 site – only the observations with
the highest percentage of coverage for a certain site were kept so that each
unique site is referred to by their dominant bioregion and habitat class.
This was done to avoid the negative impact including a large number of
features can have on model performances (i.e. curse of dimensionality).
Moreover, training on a limited number of features greatly reduces the
runtime of ML algorithms.

For the IMPACT file, the information was again too fine-grained. To
counter this, the impact codes were grouped according to their ‘parent
code’ (e.g. A04 becomes A, where A stands for agriculture), as defined by
Salafsky et al. (2008). This reduced the number of categories from 506 to
13. These were subsequently one-hot encoded to display the presence or
absence of certain threats and pressures in or around a Natura 2000 site.
To prevent the loss of possibly valuable information, the missing values in
this file were mode-imputed.

After merging these files based on the key that is present in all files
(i.e. the unique site code corresponding with a Natura 2000 site), a dummy
encoded column to account for the presence / absence of wolves in a site
was added. This is subsequently a means of ground truth labeling. As the
SPECIES and OTHERSPECIES files contain information on the presence
of all protected or noteworthy animal and plant species in a site, one-hot
encoding all would not suffice (i.e. curse of dimensionality). Only the
animal species that are reasonably expected to influence wolf presence were
included in the final dataset. These species include the prey species that
make up the diet of wolves in Europe (Newsome et al., 2016; Sin, Gazzola,
Chiriac, & Rîs, noveanu, 2019), species known to interact with wolves (Gable,
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Windels, Romanski, & Rosell, 2018), and the competing large predators that
roam in parts of Europe; brown bear and lynx (concatenation of European
and Iberian subspecies). As a means to limit information loss, a new
column containing the number of distinct mammal species present in a
site was constructed. The variables present in the final dataset are listed in
Appendix A (page 27).

After merging the cleaned files into one final dataset, all sites that
consist of > 90% marine territory were removed as wolves need land to live
on. The remaining sites contained a total of 3391 missing values (distributed
over the AREAHA, LONGITUDE, and LATITUDE variables), of which 161

occurred in sites with wolf presence. To avoid losing sites from the minority
class the 161 missing values were imputed by predictive mean matching
(PMM), making use of the Multivariate Imputation by Chained Equations
(MICE) implementation by van Buuren and Groothuis-Oudshoorn (2011).
The advantage of using PMM as a multiple imputation method is its
robustness in dealing with non-linear data with many outliers (Kleinke,
2018). Moreover, compared to other imputation methods PMM introduces
little bias in a model, especially when there are many features present to fit
the prediction to (Landerman, Land, & Pieper, 1997; van der Palm, van der
Ark, & Vermunt, 2016)

The sites that are located in countries with no wolf-presence whatsoever
were removed from the dataset. As these sites can only default to 0 they
offer little predictive value and can be seen as noise in the data that would
limit model performances (e.g. a certain habitat type happens to occur
often in wolf-less countries, leading to a model that unjustifiably sees
that habitat type as a strong predictor for wolf presence). Moreover, the
COUNTRY_CODE variable was removed as it could lead to biased models,
where assumptions are made based on information that cannot be classed
as a true feature of a natural site.

3.3 Preprocessing

Python (version 3.7.3) was used to build the ML models and evaluate
their performance (packages/modules: Pandas, NumPy, imbalanced-learn,
scikit-learn, Matplotlib, XGBoost, seaborn). After performing a 75:25 train-
test split on the data, some further preprocessing steps were taken. These
were deliberately implemented after the train-test split, as some of the
chosen preprocessing methods could have lead to data leaking from the
test set to the model. These methods were fitted solely to the training set,
and thereafter both the training and test set were transformed. As the cate-
gorical variable SITETYPE consists of only three levels, dummy-encoding
was possible without extending the dataset much further. In contrast,
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BIOGEOGRAPHICREG and HABITATCODE are categorical variables with
high cardinality, meaning that a different encoder was required. A target
encoder (McGinnis, 2016) was used to encode the features to values in the
0-1 range. This is achieved by replacing the categorical values with the
probability that a given category occurs for the target label (Micci-Barreca,
2001).

For the AREAHA variable a log transformation was applied to reduce
the skewness. While log transform and transformations in general can
lead to a degradation in model performance, and problems in interpreting
feature importances (Feng, Wang, Lu, & Tu, 2013), it performed well on
this particular data in practice.

Thereafter the continuous variables in the dataset were scaled to ensure
all values would lie in the 0-1 range, as a large variability in range can
lead to overfitting (Belkin, Hsu, Ma, & Mandal, 2019). This was achieved
through an implementation of the MinMaxScaler, since this scaling method
performs well for all chosen ML algorithms, as reported by Ahsan, Mah-
mud, Saha, Gupta, and Siddique (2021).

Subsequently, the models were trained on a semi-balanced dataset.
This was done via a combination of oversampling and undersampling
techniques, as this leads to less information loss than the use of a singular
over- or undersampling technique (Batista, Prati, & Monard, 2004). Syn-
thetic Minority Oversampling TEchnique (SMOTE) was used as it generally
performs better than other oversampling techniques (Batista et al., 2004).
Contrary to other oversampling methods that simply create duplicates of
the minority class, SMOTE creates new minority-class data points based
on characteristics of its K-nearest neighbors, thus creating plausible ‘new’
data (Chawla, Bowyer, Hall, & Kegelmeyer, 2002). Here, K was set to 5

as proposed by Elreedy and Atiya (2019). Complementary to SMOTE,
random undersampling was applied; resulting in the removal of a specified
amount of randomly picked samples from the majority class.

After application of both methods, the class imbalance was reduced
from 92:8 to 75:25, as seen in Table 1. While truly balanced classes would be
preferable, it would come at the expense of either losing many informing
instances from the majority class or generating a large number of synthetic
minority class instances. Both approaches would be at risk of training
models that do not translate well to authentic data (Sáez, Krawczyk, &
Woźniak, 2016). Following the same reasoning, the test data has remained
unaltered as the goal is to test model performances on data of existing
Natura 2000 sites.



3 method 9

Table 1: Target label distribution for the training data

n Positive class n Negative class

Unbalanced 1,155 11,922

Balanced 2,384 7,224

3.4 Models

The following section outlines the four different classification algorithms
used in this study and will give a general description of their workings.
The algorithms were selected based on their performances in previous
research, or their suitability and interpretability. A dummy classifier
(often referred to as no-skill classifier) was chosen as the baseline model.
Dummy classifiers consistently opt for the majority class without taking
any other information into account, thus returning a score that is equal
to the score one would achieve by guessing. This gives a fair impression
on the performance of other models, as a classifier with true predictive
powers should comfortably beat a model that blindly predicts the majority
class.

Logistic Regression
Logistic regression classifiers are simple, robust and computationally

efficient models. A logistic regression calculates the probability a certain
feature belongs to the target class. By summing the probabilities for all
features in the dataset, a decision boundary is defined. For each data point
the model returns an output label (i.e. target class prediction), depending
on which side of the decision boundary the data point falls.

While logistic regression has been a mainstay model since it was first
proposed by Cox (1958), there are some drawbacks to take into considera-
tion. It assumes a certain degree of linearity and has difficulty in dealing
with outliers (Healy, 2006). As generalized linear models such as logistic
regression classifiers have long been the standard in SDM, it is interesting
to compare its performance to those of more novel approaches. As such,
the logistic regression classifier will act as a baseline, complementary to
the dummy classifier.

Support Vector Machines
SVM classifiers can model both linear and complex non-linear relation-

ships. Contrary to generalized linear models such as the logistic regression,
it does not fit all data points to create a decision boundary. Instead, SVM
focus solely on the data points that can explain the largest proportion of
variance. At the basis of SVM lies a decision function f (x), where x is
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Figure 1: Linear SVM example

some data point. This decision function calculates the probability that x
belongs to the positive (1) or negative (-1) class (Hearst, Dumais, Osuna,
Platt, & Scholkopf, 1998).

The algorithm then tries to determine and maximize a buffer that seg-
regates the two classes (i.e. the margin), with the decision boundary lying
in the centre where ( f = 0). The subset of data points (which are repre-
sented as vectors) that are used to determine the decision boundary are
dubbed support vectors. In tandem, these support vectors are positioned
on the plane such that f = ±1. All data points whose position lie at a
greater distance are classified as a positive or negative class, while points
that fall in the margin are treated as outliers (Hearst et al., 1998). This
results in less data points ‘crossing’ the decision boundary and thus less
misclassifications. For each feature in the data, support vectors are created
and subsequently transformed to a N-dimensional space, where N is the
number of features in the data. A simplified example of a linear SVM
classifier is shown in Figure 1; where the dotted line represents the decision
boundary, and the parallel lines indicate the edges of the margin. The
points that fall on the coloured lines are the support vectors.

For linear SVM the decision boundary is represented as a straight line,
but seeing as SVM can also be used for non-linear classifications the deci-
sion boundaries can be fitted as curved lines. The mathematical approach
used to transform the support vectors to a N-dimensional representation
and consequently determine the visual representation of the corresponding
decision boundary is called the kernel function (Patle & Chouhan, 2013).
This can either be a linear-, radial bias-, sigmoid-, or polynomial function.
A grid search (as detailed in section 3.5) confirmed radial bias function
(RBF) to be the most appropriate kernel.
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Figure 2: Decision tree example

Random Forests
RF are ensemble models: models that implement methods such that

many weak learners unite to form a single strong learner. One such
ensemble method is bagging, a contraction of the words bootstrap and
aggregating (Bühlmann, 2012). A bootstrap sample is a subset of the
original data, so to arrive from many weak learners to a single strong
learner, bagging methods average the outcomes of multiple bootstraps.

In RF, the weak learners are decision trees: straightforward algorithms
that evaluate a number of binary conditions to arrive at some conclusion.
This is accomplished by randomly selecting features from the data, and
testing whether the chosen instance meets the binary condition for said
feature. Subsequently the root splits in two nodes, those nodes split and
form new nodes, and so on. Figure 2 shows a simplified representation of
a decision tree, where the orange path symbolizes the conditional checks
that lead to a correct classification.

One major advantage of decision trees is their interpretability, as it is
easy to understand why a decision tree returns a certain output. Conversely,
a decision tree’s simplicity is what makes them weak learners. Since the
decision tree uses the same conditional checks on unseen data as were used
during training, the accuracy score drops when this unseen data differs
slightly from the training data. This proneness to overfitting can be avoided
by combining the outcomes of many trees, each of which have been trained
on different bootstraps (Oshiro, Perez, & Baranauskas, 2012). Consequently,
this results in a strong learner that is robust enough to perform well on
new data. While the risk of overfitting is already reduced through RF’s
built-in approach to bagging, it might be necessary to prune the trees to
further improve the accuracy on the test set. Pruning means limiting the
depth (and likewise the complexity) of the decision trees in the model,
which can be achieved by tuning various hyperparameters.
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eXtreme Gradient Boosting
XGBoost is an ensemble model founded on decision trees, similar to RF.

However, they differ in the ensemble method that is used. Gradient boosted
trees are highly effective models that, as the name suggests, incorporate a
boosting method in their algorithm. Boosting lets a model run repeatedly
on the full training data, where the training data is reweighted (hence
gradient) after each run. The model focuses on the instances that were
the most difficult to classify correctly, leading to a model that delivers
even greater accuracy due to the shrinking misclassification rate (Schapire
& Freund, 2013). Gradient boosted trees in itself are no novelty, but
XGBoost differentiates in two ways primarily: only a portion of columns
(i.e. the features) in the data are used per tree, and the algorithm allows for
parallelization (Chen & Guestrin, 2016). This results in an accurate model
that can handle large amounts of data at a relatively low time complexity
O.

3.5 Model Optimization

To reduce the chance of overfitting the models, stratified 5-fold cross-
validation was included in a grid search for hyperparameter tuning. The
extensive grids included a wide range of parameters and corresponding
values to find the optimal hyperparameter configurations for each model,
yet remained in ranges that were within reason to limit computational
complexity. This procedure was applied in the same manner to all four
models, with the addition of a preliminary randomized grid search for
the RF and XGBoost models. Ensemble models have a wide range of
hyperparameters that can be tuned, resulting in an exhaustive grid search
with enormous computational complexity (22,000 possible hyperparameter
combinations).

Hence, a randomized search running 100 random hyperparameter
combinations was implemented to establish a suitable but limited grid for
the subsequent grid search. A complete overview of the grids and selected
hyperparameters can be found in Appendix B (page 28).

3.6 Evaluation Metrics

To answer research questions 1 and 2, the models’ performances had to be
evaluated in ways that were most reflective of their true predictive capa-
bilities. By default, classification models are evaluated on their accuracy
to predict the correct target value. However, when evaluating model per-
formance on imbalance data, accuracy scores can be misleading. Dummy
classifiers would return 90 percent accuracy on 9 : 1 imbalanced data,



4 results 13

without making any useful prediction whatsoever. Obtaining meaningful
insights into model performance - irrespective of class imbalance - can be
done by using a confusion matrix. A confusion matrix displays the number
of correct predictions for each of the target labels as true positive (TP), false
positive (FP) true negative (TN), and false negative (FN). Where true means a
correct prediction, and positive or negative corresponds with the target label
(i.e. positive for sites that are ground truth labeled as having wolf presence
in this study).

During cross validation and hyperparameter tuning, the scoring metric
used to find the best performing model was the AUC score, which is the
area that falls under the receiver operating characteristic (ROC) curve. ROC
plots the true positive rate (i.e. sensitivity (1)) against the false positive
rate for a range of decision thresholds. The false positive rate equals 1−
the true negative rate (i.e. specificity (2)). The AUC score is the mean of
all values on the ROC curve, meaning that an AUC score of 1.0 would
indicate that the model is perfectly sensitive and specific (Fan, Upadhye, &
Worster, 2006).

Sensitivity =
TP

TP + FN
(1)

Specificity =
TN

TN + FP
(2)

To compare the different models the ROC curves were plotted. Ad-
ditionally, the Matthews Correlation Coefficient (Equation 3) was used as a
scoring metric, which Chicco and Jurman (2020) proposed as the most
truthful scoring metric for unbalanced binary classification problems.

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)
(3)

RF and XGBoost have an integrated attribute that enables the assess-
ment of the contribution each feature had in the construction of a decision
tree. The built-in function computes the Mean Decrease in Impurity (MDI)
over all trees in the model, which can be understood as the increase in a
model’s accuracy that is caused by some feature in the data. This compre-
hensible, albeit somewhat limited, method was used to answer RQ3.

4 results

In this section, classification performances of the different models will be
presented. Subsequently, the results after the application of data balancing
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Figure 3: ROC curves on the original data.

methods will be put forward and compared to the results of the original
data. Finally, the feature importances that were derived from the tree-based
models will be presented.

Model evaluation
As specified in section 3.6, both a dummy classifier and a logistic re-

gression classifier were used as baseline models since they serve different
purposes. As seen in the ROC curves in Figure 3, all models were able
to return higher AUC scores than a dummy classifier. Irrespective of
class distribution, a dummy classifier’s AUC score defaults to .50, as its
sensitivity = 0 and speci f icity = 1. XGBoost and RF were the best perform-
ing models, and while their ROC curves are highly similar, XGBoost seems
to perform slightly better. Besides, all classifiers show a better performance
than the logistic regression, though the SVM is briefly surpassed by the
baseline classifier at the .25 decision threshold.

Table 2 shows the results of the confusion matrices. This further clarifies
classification performances, as they can be reviewed per target class. While
overall the tree-based models performed best, they score lower than the
SVM classifier in predicting the positive class. When reviewing the positive
class results in isolation, RF is the only classifier that was not able to beat
the logistic regression classifier. In contrast, RF was best able to predict the
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Table 2: Confusion matrices for the original data.

True False

Dummy
Positive 0 0

Negative 3,974 385

Logistic Regression
Positive 319 575

Negative 3,399 66

SVM
Positive 337 520

Negative 3,454 48

RF
Positive 306 85

Negative 3,889 79

XGBoost
Positive 320 95

Negative 3,879 65

true negative instances, closely followed by the XGBoost classifier. SVM
and logistic regression classifiers were not able to correctly predict the
negative class at a similar rate to the tree-based models, which explains
the better overall performances of the tree-based models. Moreover, SVM
did not beat the baseline classifier in predicting the negative class.

By default MCC = 0 for a dummy classifier, hence looking solely at the
baseline score of the logistic regression classifier allows for a more intuitive
and meaningful interpretation. Herein, the reported differences between
the model performances become clearer, as the tree-based classifiers score
significantly higher than the SVM classifier. All models returned higher
scores than the baseline on MCC and specificity, while RF is the only
classifier to record a lower sensitivity than the baseline classifier (.795 for
RF, and .829 for logistic regression).

Model evaluation on balanced data
The application of SMOTE and random undersampling on the training

data had some small effects on classification performances, as can be seen
in Table 4. Interestingly, only the SVM classifier returns an AUC score that
differs from the score on the original data, seeing a minor .01 decrease.
When looking at Figure 4, the ROC curves seem to reflect something
similar. Although the curves have slightly changed, XGBoost and RF lie at
similar positions as before. Albeit marginal, the ROC curves of the logistic
regression and SVM classifiers have noticeably changed shape to more
rounded and flatter lines in the upper-left corner respectively.

This difference is explained in the confusion matrices (Table 3) as the
number of TP predictions has decreased by 36 for the SVM. However, the
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Table 3: Confusion matrices for the balanced data.

True False

Dummy
Positive 0 0

Negative 3,974 385

Logistic Regression
Positive 318 571

Negative 3,403 67

SVM
Positive 301 352

Negative 3,622 84

RF
Positive 325 135

Negative 3,839 60

XGBoost
Positive 335 112

Negative 3,862 50

Figure 4: ROC curves on the balanced data.



4 results 17

classifier has drastically improved its TN predictions by 168. Moreover, the
tree-based models have a higher number of TP predictions, yet slightly less
TN predictions.

As shown in table 4 the logistic regression and SVM classifiers seem to
be less sensitive, but more specific. Conversely, RF and XGBoost classifiers
return higher sensitivity scores, and lower specificity scores on the balanced
data than on the original data. This is in line with the contrasting effects
seen in the confusion matrices, where the tree-based models act inverted
to the SVM and baseline. Overall, none of the classifiers improves in both
TP and TN by balancing the training data.

The MCC shows that the tree-based models have the strongest classi-
fication performance, as it takes class proportions best into account. In
addition, the performance of the RF classifier seems to suffer from the data
balancing methods, while SVM and XGBoost have benefited from it. All
things considered, XGBoost returned the best scores, as it is both sensitive
and specific, in addition to having high AUC and MCC scores.

Table 4: Model comparisons on original and balanced data, scored on AUC,
sensitivity, specificity, and MCC.

Data AUC Sensitivity Specificity MCC

Logistic Regression
Original .93 .83 .86 .48

Balanced .93 .83 .86 .48

SVM
Original .94 .88 .87 .53

Balanced .93 .78 .91 .55

RF
Original .98 .80 .98 .77
Balanced .98 .84 .97 .75

XGBoost
Original .98 .83 .98 .78

Balanced .98 .87 .97 .79

Feature importances
On the original data, RF returned mammal biodiversity, latitude, longi-

tude, and area size as the most important features in building the decision
trees respectively. XGBoost made use of different features, with the pres-
ence of brown bears being the most important, followed by mammal
biodiversity, lynx presence, and chamois presence.

The RF classifier that was trained on the balanced data had similar
feature importances, but this time area size carried more weight than
longitude. XGBoost saw a rise in importance for the SITETYPE_A variable,
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while the presence of chamois had little impact on the decision trees when
trained on balanced data.

A complete overview of feature importances can be found in Appendix
C (page 29).

5 discussion

This study set out to predict the presence of wolves in Natura 2000 sites.
The models used to make predictions on the spatial distribution of animal
species are referred to as SDMs (Jiménez-Valverde et al., 2008). While
most SDMs are built by collecting and combining multiple sources of data,
this study aimed at making predictions from a readily available extensive
dataset that is updated yearly. In the last decade or so researchers have
successfully implemented machine learning algorithms in SDMs, most
notably SVM and RF models (Fukuda et al., 2013; Mi et al., 2017; Sabat-
Tomala et al., 2020). The goal of this study was to utilize these two
machine learning techniques, with the addition of a XGBoost classifier,
and compare their performance as SDMs for wolves in Natura 2000 sites.
More specifically, the study aimed to gain insight on the extent to which
the specific features of a Natura 2000 site can be used by ML algorithms
to predict the presence of wolves (RQ1). In addition, it sought to find the
best-performing algorithm (RQ2), and the features that were most telling
in making these predictions (RQ3).

To account for the class imbalance in the dataset, the machine learning
models were trained once on the original data, and once more on data that
was partially balanced.

The results show that all models, including the logistic regression that
was used as a baseline model, could predict the presence of wolves to some
extent. The AUC scores were comfortably higher than that of a dummy
classifier that blindly predicts the negative class (i.e. the majority class), so
it can be assumed that the models have a certain degree of predictive power.
Moreover, the tree-based models were the best performing models by some
margin. This becomes most apparent in the MCC scoring metric, which
demonstrates that using the Matthews correlation coefficient is well suited
for the evaluation of classifiers on data suffering from class imbalance, as
suggested by Chicco and Jurman (2020).

It is noteworthy that the model that best predicted the positive class
was the SVM classifier, as overall its performance was evidently worse
than RF and XGBoost. This could be an indication that SVM is well able to
classify the data, but struggles with variance in the data. In other words,
its relatively poor performance in predicting the negative class might be
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attributed to overfitting, if data in the test set somewhat varies from the
data that was used to train the model.

While sensitivity and specificity scores for the SVM classifier are almost
identical when trained on the original data, the tree-based models are
clearly more specific than sensitive. Hence it could be argued that the
ensemble methods that are incorporated in these models are the reason
they perform better than SVM and logistic regression, as bagging and
boosting are means to reduce overfitting. It could be that a number of
features in the data are strong predictors for the absence of wolves, and
due to their ensemble approaches RF and XGBoost are more likely to notice
these features.

The data balancing methods had less impact on the classification per-
formance of the models than anticipated. RF performed better on the
original dataset, while SVM and XGBoost saw minor improvements after
the application of balancing methods. Moreover, the impact differed per
model, as an increase in sensitivity was accompanied by a decrease in
specificity (or vice versa). The variability that is common in ecological
data might be a reason for this, since the addition of new instances to the
minority class could lead to the classifiers associating certain features with
sites that have wolf presence, while there are no sites with such features in
the test data. Conversely, removing features from the majority class might
have led to information loss.

When the classification performances on both the original and balanced
data are taken into consideration, it can be concluded that XGBoost was the
best performing algorithm. This is in line with results from the small body
of previous research on the models, as reported by Chang et al. (2018),
and Shi et al. (2019). Nevertheless, RF performed only marginally worse
than XGBoost, and was clearly able to beat both the baseline and the SVM
classifier. Once more, this is in agreement with related works (Fukuda et
al., 2013; Mi et al., 2017; Sabat-Tomala et al., 2020).

Features that seemed to benefit predictive performances were the pres-
ence of rivaling large predators, the number of distinct mammal species,
and the presence of chamois. As brown bears and lynxes are often present
in the same regions as wolves (e.g. dense forests in rural Romania) the
inclusion of these features might have a disproportionate impact on the
models performances. Moreover, it has to be noted that the data for most
of the prey species is incomplete. The wolf’s favorite prey species - wild
boar and roe deer - are so common and widespread all over the European
continent that only a small fraction of Natura 2000 sites opted to list their
presence. Hence, prey species such as the chamois (a rare species only
present in certain mountain regions) might carry more weight due to a
lack of information on other prey species. Another important factor that
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might have influenced model performances is the incompleteness of data
on wolf presence. Since Member States could opt to withhold certain
sensitive information to protect vulnerable species, countries such as the
Netherlands are not listed as having any sites with wolves presence in the
dataset. The inclusion of sites in countries where only a few Natura 2000

sites are ground truth labeled for wolf presence could have had some effect
on classification performances.

Surprisingly, threats and pressures around a Natura 2000 site (impact
codes), seem to have little importance. This is in agreement with the notion
that large predators have little preferences in picking their habitats (Cimatti
et al., 2021; Linnell et al., 2005), while not aligning with Morales-González
et al. (2022) finding that wolves avoid regions with high amounts of agri-
cultural activity. This could be accredited the preprocessing steps that were
taken, as missing values imputation and simplification of numerous high
cardinality features have inevitably led to information loss.

The impact that the area size of a Natura 2000 site has on model perfor-
mances seems reasonable, as it can be expected that large predators need a
relatively spacious territory. Mind that interpreting feature importances
has to be done with some restraint. Features with high cardinality can
be used for more tree splits than a feature with binary categories, and
co-occurrence of certain features might impact their perceived importance
(Ghorbani, Berenbaum, Ivgi, Dafna, & Zou, 2021).

Perhaps the most important limitations to this study is the lack of ex-
pert knowledge in the ecological domain, as Beery et al. (2021) suggest the
cooperation between expert ecologists and computer scientists to model
meaningful SDMs with machine learning techniques. Hence, certain im-
portant features might not have been missing in the data, or should not
have been part of the model in the first place.

6 conclusion

As this study’s main research question aimed to explore the extent to
which ML algorithms could predict the existence of wolves in Natura
2000 sites, the results can be seen as promising. Though assumptions
about the way these results translate to practical uses have to be made
with great care, it can be concluded that ML techniques are well suited to
handle similar classification problems. XGBoost and RF were most able to
correctly predict the existence of wolves in a Natura 2000 site, with the best
performing classifiers obtaining Matthews correlation coefficients of .79
and .77 respectively. This provides supplementary evidence in support of
using ensemble models as SDMs, as proposed by Elith et al. (2008); Mi et
al. (2017). Concurring with results from previous studies, SVM was able to
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make predictions more accurately than generalized linear models such as
a logistic regression classifier (Drake et al., 2006; Fukuda et al., 2013), but
was outperformed by RF and XGBoost (Sabat-Tomala et al., 2020). These
outcomes simultaneously answer the second research question, which
focused on finding the best performing ML algorithm.

Though the third research question could not be definitively answered,
the tree-based models did provide some insight on the features that best
predict the existence of wolves in Natura 2000 sites. These features can be
categorized into two groups; one consisting of coarse descriptive features
such as geolocation and area size of a site, and the other consisting of
presence-absence data of certain (mainly large predator) species for a site.

The particularly encouraging results obtained by the XGBoost classifier
suggest that this novel model can be successfully implemented as a SDM,
and exploring the use of different ensemble methods in the ecological
domain could benefit performances of future SDMs. Similar to XGBoost,
there are a number of ensemble models that have not been used in SDMs to
this date. These models have shown their potential in practical applications,
as well as scientific research in a variety of domains. Combining sophisti-
cated classifiers such as SVM with an ensemble model (i.e. stacking) could
lead to better classification performances on both classes. Seeing as SVM
displayed a specific ability to correctly predict the positive class, the model
warrants a more in-depth analysis in the future.
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a dataset variables

TPA in Table 5 stands for Threats, Pressures and Activities’ near a Natura
2000 site. SPA stands for Special Protection Area (for bird species protec-
tion). Sites of Community Importance, SAC stands for Special Area of
Conservation (for habitat protection).

Table 5: Overview of independent variables in the final dataset (post-cleaning)

Variable name Description Type

AREAHA Area size in ha contin. num.
MARINE_AREA_PERC. percentage covered by marine territory discrete num.
LATITUDE geographical coordinate discrete num.
LONGITUDE geographical coordinate discrete num.
BIOGEOGRAPHICREG biogeographic region in which site falls categorical
HABITATCODE most prominent habitat type categorical
IC_A agriculture TPA cat. (dummy)
IC_B sylviculture, forestry TPA cat. (dummy)
IC_C mining, extraction TPA cat. (dummy)
IC_D transportation TPA cat. (dummy)
IC_E urbanisation TPA cat. (dummy)
IC_F hunting, fishing TPA cat. (dummy)
IC_G human intrusions TPA cat. (dummy)
IC_H pollution TPA cat. (dummy)
IC_I invasive species TPA cat. (dummy)
IC_J natural system modifications TPA cat. (dummy)
IC_K natural (a)biotic processes TPA cat. (dummy)
IC_L geological events TPA cat. (dummy)
IC_M climate change TPA cat. (dummy)
hare presence/absence of hare cat. (dummy)
roe_deer presence/absence of roe deer cat. (dummy)
red_deer presence/absence of red deer cat. (dummy)
chamois presence/absence of chamois cat. (dummy)
boar presence/absence of wild boar cat. (dummy)
beaver presence/absence of beaver cat. (dummy)
reindeer presence/absence of reindeer cat. (dummy)
ibex presence/absence of ibex cat. (dummy)
brown_bear presence/absence of brown bear cat. (dummy)
lynx presence/absence of lynx cat. (dummy)
mam_biodiv distinct number of mammal species contin. num.
SITETYPE_A SPA cat. (one-hot)
SITETYPE_B SCI, SAC cat. (one-hot)
SITETYPE_C both SPA & SCI, SAC cat. (one-hot)
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Table 6: Complete selection of hyperparameters that were included in the grid
search, and the resulting optimal hyperparameters

Hyperparameters

Models Grid Optimal

Logistic
solvers[newton-cg, lbfgs, liblinear, saga] saga
penalty[L2, L1, None] L1
C[100, 10, 1.0, 0.1, 0.01] 1.0

SVM
C[100, 10, 1.0, 0.1, 0.01] 10
kernel[rbf, auto] rbf
gamma[scale, auto] auto

RF

n estimators[100, 200, 300, ..., 1000] 1000
max features[auto, sqrt, 0.2, 0.5] 0.2
max depth[None, 10, 20, 30, ..., 100] 60
min samples split[2, 5, 10, 25] 5
min samples leaf [2, 5, 10, 25] 2
bootstrap[True, False] False

XGBoost

booster[gbtree, gblinear, dart] gbtree
eta[0.1, 0.2, 0.3] 0.1
max depth[None, 3, 4, 5, ..., 10] 7
min child weight[1, 2, 5] 2
scale pos weight[1, 5, 10 ] 5
objective[binary:logistic, binary:hinge] binary:logistic
subsample[0.5, 1] 1
colsample bytree[0.5, 1] 1
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Figure 5: Feature importances RF on the original data.

Figure 6: Feature importances XGBoost on the original data.
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Figure 7: Feature importances RF on the balanced data.

Figure 8: Feature importances XGBoost on the balanced data.
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