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Abstract

This thesis studies the effect of limiting training data on emotion
embedding models for Text-to-Speech (TTS) systems. In order to
reproduce natural human prosody, TTS models use emotion embed-
ding layers. The datasets used to TTS models are large and require
parallel samples, which makes them costly to obtain. This study
investigated the effect of using smaller datasets and lower quality
datasets when training these models. In this case, lexical diversity was
taken as a proxy for quality. Two model architectures were used: one
SVM-based machine learning model (Zhu, Yang, Yang, & Xie, 2019),
and a deep learning model (Liu, Sisman, & Li, 2021b), both of which
are trained of pairs of <emotional, neutral> speech utterances and its
transcriptions. To determine the effect of limited lexical diversity, two
models with high lexical diveristy and two models with low lexical
diversity were trained using the SVM model architecture.

The SVM models were evaluated on two tasks: the emotional
vs neutral text classification task that they were trained on, and an
emotion classification task with four emotion categories. The deep
learning model was evaluated using only the latter method. The SVM
models show high accuracy on the emotional vs. neutral task, but
only reach chance performance on the other emotion classification
task. The level of lexical diversity of the training data does not
affect the accuracy. The deep learning model performs slightly better
than chance level as the amount of training data increases, but there
appears to be a lower bound where the model does not learn to
generalize anything.

Word count: 8026
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1 introduction

Text to speech (TTS) models are systems that produce an audio signal
from a text input. The aim of these models is to synthesize speech that
is indistinguishable from human speech, replicating every aspect of the
prosody of human speech. TTS models as we know them now have
existed since the 1960s in the form of Linear Predictive Coding (Ding &
O’Shaugnhnessy, 2003), with a large variety in models following it until
present day. The current state of the art models are based on deep learning,
and are able to imitate human speech to large degree. However, one of the
aspects of TTS models that has not been perfected yet is the emotionality of
the output speech. The audio signal has dimensions such as pitch, prosody
and tempo which are not reflected in the text, but are to be replicated
in order for the output to sound natural. The challenge of emotional
TTS is to devise a methodology that allows a model to transform the low
information text signal into a high information speech signal (Wang et al.,
2018). Another issue with large TTS models is that suitable training data is
limited. Successful TTS models such as TacoTron2 (Shen et al., 2018) can
only be trained on large speech corpus datasets and their transcriptions.
However, such datasets are costly to obtain and the publicly available ones
are limited in number and in context. This is why recent trends in deep
learning models have looked at the effect of lower volumes of training
data. This is known as a form of domain adaptation (Farahani, Voghoei,
Rasheed, & Arabnia, 2021), which aims to obtain a small, high quality
source dataset for training that will generalize well to a different dataset.
Moreover, emotion data is generally not labeled, so it cannot be used in a
supervised learning problem as is. One solution to both the problem of
poor emotionality and unlabeled data is the addition of so-called emotion
embeddings. These are extra layers in deep learning models that capture
the emotion from unlabeled-training data and use them to improve the
output speech of the model.

1.1 Social Relevance

TTS models in general have a large number of applications, ranging from
assistance for the visually impaired to the generation of automatic reading
of websites, to social media such as TikTok. High quality emotional TTS
models have been suggested to be particularly important in applications
that require interactivity between the user and the system, or when involv-
ing interactions that take place over longer periods of time, such as virtual
assistants, call centers, online education (Liu, Sisman, & Li, 2021a). Another
example is assistance for people with visual impairments. Contrary to
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other systems, in which speech is an addition to what happens on a screen,
these systems are required to operate using only audio. A TTS model with
better emotional expression will be able to convey the its message to the
impaired user more clearly Edward (2018). Emotional TTS is also found in
the field of speech-to-speech translation. Current translation algorithms
can provide high quality translations quickly, but TTS models using only
text as input are not able to express all the information in the input speech
(Akagi, Han, Elbarougy, Hamada, & Li, 2014). Szekely, Steiner, Ahmed,
and Carson-Berndsen (2013) argues that speech-to-speech translation sys-
tems would benefit from better emotional TTS, as it captures the intention
of the source speaker better than a non-emotional equivalent. Examples
that brings several of these fields together can be found in robotics. One
example is ORLANoid, which is a robot alter-ego for the French artist
ORLAN. ORLANoid consists of a torso, two movable arms and a head. It
is also able show some facial emotions and to speak using the artist’s voice.
One part of this robot is an end-to-end machine translation system that
translates French speech input directly to English speech output using a
TTS module. This makes ORLANoid a system with two separate require-
ments for emotions modeling: the facial emotions and vocal emotions must
be in line with each other, so the system should have an overall emotion
module.

1.2 Problem statement

Currently, for many TTS models the quality of the output speech is lacking
in both intonation and prosody; the artificial speech is unable to replicate
variations in human speech accurately and sounds unnatural. According
to Wang et al. (2018), this is due to speech being a rich signal that contains
information about style an prosody, while text includes only the literal
meaning. Recent literature suggests that training a TTS model using inputs
that quantify the level and nature of emotion in the training audio can lead
to improvements in emotional expression (Wang et al., 2018; Zhu et al.,
2019). Another challenge challenge with deep learning models is their low
sample efficiency. For a model to perform well, it requires a large training
set of labeled data. If no such values are available, developing such a data
set would require manual grading by native speakers.

This thesis will address both problems by training two emotional
embedding models using limited training data, similar to what a real
world situation could look like. The two models that will be compared
both include emotion labels into the training of a TTS model and will be
compared on their accuracy. In the context of this thesis, limited data
refers to both quantity as well as quality. The amount of data is sometimes
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referred to as its volume, note that this has nothing to do with any of the
sound characteristics or loudness of the data.

When trained on smaller subsets of the original data, the performance
for both models is likely to go down, as the models have fewer examples to
learn from. However, the magnitude of this effect is not clear in advance,
and may differ between the two models. The first methodology is based
on Zhu et al. (2019), who use a Support Vector Machine (SVM) to train a
ranking function which quantifies the degree of emotionality for different
audio inputs. The second methodology is StrengthNet (Liu et al., 2021b),
which is a neural network based on a Convolutional Neural Network
(CNN) and a Bidirectional LSTM (BiLSTM) architecture to quantify a
probability distribution over the emotion categories, but also an overall
emotional intensity score.

The ultimate goal for these models is to be included in a full TTS model
as part of the emotional embedding system. Evaluating a TTS model is
generally done through human scoring on the speech output. However
as the aim of this thesis is to replicate a real life situation with restricted
data, the speech output of the TTS system would be affected by the limited
data not only in its emotionality, but also in the overall performance. This
would make it difficult to evaluate only the effect of limited data on the
emotional models. As a result, the trained will be evaluated objectively on
their accuracy of emotion predictions without human judgement.

1.3 Research Questions

How well do emotion embedding models learn when training data is lim-
ited? To ding out, Strengthnet (Liu et al., 2021b) and Zhu et al. (2019) based
models will be trained using varying amounts of input data. Moreover, the
effect of data quality will be investigated using lexical diversity as a proxy,
by training models based on (Zhu et al., 2019).

To what extent can emotional embeddings be trained accurately with
limited training data?

RQ 1 To what extent does the accuracy for both models decrease as the volume of
input data decreases?

RQ 2 To what extent does the accuracy for the Zhu et al. (2019) model decrease as
the lexical diversity of input data decreases?
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2 literature review

This section starts with a general overview of neural speech synthesis
models to provide a general background of work in the field. This is
followed by a more detailed explanation of the methodologies that we
will implement: the Zhu et al. (2019) methodology and the StrengthNet
methodology.

2.1 TTS models

Historically, TTS models consist of three parts: text analysis, an acoustic
model and a vocoder. The text analysis models extract linguistic features
from a given text. The acoustic model transforms the linguistic features
into acoustic features, which are then turned into audio wave forms by
the vocoder (Tan, Qin, Soong, & Liu, 2021). Prior to the advent of neural
networks and deep learning, TTS models made use of concatenation based
models.These models produced speech by concatenating combinations of
phones into new sentences. Variations of concatenative models include
formant synthesis, which used artificially generated phones (Burkhardt
& Sendlmeier, 2000), and diphone and triphone speech synthesis , which
used combinations of phones from existing speech corpora (O’Shaughnessy,
Barbeau, Bernardi, & Archambault, 1988). Other models took this further
and used entire words from existing corpora (Campbell & Black, 1997).
The main drawback of these models were that the phones themselves were
fixed, and could not represent the dynamic changes often seen in emotional
speech. These were partly solved by increasing the number of emotional
utterances, such as in Turk, Schröder, Bozkurt, and Arslan (2005), but the
parametrization of emotional speech was limited to a small number of
discrete states. This was solved better through Hidden Markov Models
(HMM) (Tokuda et al., 2013), also known as statistical parametric speech
synthesis (SPSS). These models consist of a series of subsequent internal
states that are connected by way of probability distributions. For a given
input sequence of acoustic vectors, the HMM will try to find the most
likely output sequence of based on maximum likelihood estimation. As a
result, the level of expression became parameterized; prosody generated by
the model could be tweaked by changing the parameters of the probability
distributions.

Contrary to of data science problems, the evaluation of TTS systems is
not straightforward. The TTS system is only as good as it is perceived to be
by its users. The most used evaluation method for TTS systems is the Mean
Opinion Score. MOS is a human evaluated metric used to determine the
subjective quality of audiovisual systems, including TTS systems. It asks
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participants to rate TTS generated speech a 5-point scale which is usually
expressed as bad, poor, fair, good and excellent. These scores are then
averaged over the number of participants to give the MOS (?). Separate
from the subjective MOS, there are also objective measures that can be
calculated without getting costly human judgement. Commonly used ones
are statistics based models such as peak-signal-to-noise ratio, and there
is an entire field of perceptual modeling (Brunnstrom, Hands, Speranza,
& Webster, 2009). However, since MOS represents the user experience
directly, it has become the most used quality metric (Streijl, Winkler, &
Hands, 2016).

In neural TTS, at least one of the main three modules is a neural network.
Common applications include models that replace the acoustic model with
a CNN which can directly interpret the audio input as a spectrogram,
replacing the need for a separate text analysis module (Tan et al., 2021).
Generally, the input and output speech in TTS models are shown as mel
spectrograms. These are audio spectrograms that are logarithmically-scaled
using measurements of human hearing and to emphasize lower frequencies.
These frequencies are essential to human comprehension of speech, making
mel spectrograms a more realistic representation of human hearing (Davis
& Mermelstein, 1980). The alternative to the mel spectrogram would be a
linear-scale spectrogram, such as the Short-Term Fourier Transform (STFT).
The aim of TTS models is to generate speech that sounds natural to humans,
which is the mel spectrogram. For deep learning, there is the additional
advantage of mel spectrograms discarding more information than STFTs,
but retaining most of the important features. This effectively makes the
mel spectrogram a lower feature representation of the sound, lowering the
variance of the signal. This makes them the preferred choice over the STFT
when used in deep learning (Choi, Fazekas, Cho, & Sandler, 2018).

2.2 Defining Style

Before describing methods for style modeling, we first look at what kind
of information is actually learned by the models. Tan et al. (2021) define
style as "any aspect of the speech utterance that is not determined by its
linguistic content and the speaker’s inherent voice characteristics". Wang et
al. (2018) emphasizes that style contains "rich information, such as intention
and emotion". This is quite vague. In order to make the distinction
between and information more clear, there is a framework by Fujisaki
(2004). This framework which divides the information found in speech
into three separate categories: linguistic, para-linguistic and non-linguistic
information. Linguistic information is the meaning of the sentence uttered,
similar to how meaning would be conveyed in writing. He defines para-
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linguistic information as the information that is added by the speaker
to change or supplement the linguistic information, such as emotion.
Lastly, non-linguistic information contains all the other information that is
contained by the sentence, such as information about the gender, age or
emotional state of the speaker. Clearly, emotional TTS is concerned with the
connection between linguistic and para-linguistic information.Emotional
speech is one way to express the connection between these two kinds of
information, which makes it necessary for a good TTS model to replicate
this. Other models that use this framework explicitly are (Kano et al.,
2012), who modeled phoneme duration and power in their TTS module,
and (Székely, Henter, & Gustafson, 2019), who explicitly model the breaths
taken between utterances to make a TTS model sound more natural.

2.3 Modeling Emotion

In order for a TTS model to generate emotional speech, the model must be
able to make generalizations between the emotionality of its input data and
the test data. This requires a classification model for emotions. The field of
emotion classification contains a variety of models, which can generally be
subdivided in dimensional models and discrete models. Examples are the
circumplex model, which considers emotion as a two dimensional system
of valence and arousal (Russell, 1980). Discrete models include Plutchik’s
model, which describes emotions as a 3-dimensional cone which places
emotion categories on the base circle of the cone and the intensity on the
vertical axis (Plutchik, 1984). These types of simple models are used for
a variety of other fields, such as in modeling the effect of emotions on
the economy (Tilly, Ebner, & Livan, 2021), or the . There are also more
complicated models, such as Velsquez (1997), who developed an emotion
model for artificial agents. This model, which is called Cathexis, provides
artificial agents with an internalized state of emotions and motivations
which affect their interaction with their environment. More recent develop-
ments in the field of affective computing include the use of deep learning
methods such as such as CNNs (Khatua, Khatua, & Cambria, 2020) and
RNNs (J, Trueman, & Cambria, 2021). Another set of models that may be
interesting in the context of TTS are multi-modal models, that take into
account several types of input data. Neural TTS models are by definition
trained on both audio and speech and, although there are a variety of TTS
models that take multi-modal input (Effendi, Tjandra, Sakti, & Nakamura,
2020; Shen et al., 2018), none of these seem to make any explicit references
to existing multi-modal emotion models.
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2.4 Emotional TTS Models

Despite this large variety of emotion classification models, modeling emo-
tionality in a TTS setting is done mostly through trained embeddings. This
works by adding extra layers to the deep learning model that can capture
the relationship and express them as an embedding. The emotion modeling
in these embeddings is generally kept simple, and consist of n-dimensional
vectors for each discrete emotion. TacoTron2 (Shen et al., 2018) is a popu-
lar model to train using (external) emotion embeddings. It consists of a
combination of a sequence-to-sequence model (seq2seq) combined with a
vocoder model which are then trained simultaneously. TacoTron2 maps a
text input sequence to a MEL spectrum output sequence using an encoder-
decoder structure. These mel spectra are then transformed into an audio
signal using the associated Wavenet (Oord et al., 2016) vocoder model. The
prosody and emotion in TacoTron2 are found in the latent space between
the encoder and decoder. By inserting a (pretrained) embedding vector in
this space, the emotionality of the output speech can be altered. At infer-
ence, the model either uses its predicted embedding for the input sentence,
or the user is able to specify an embedding and influence the emotion
of the speech output directly. This process is known as conditioning the
TacoTron2 model on the emotional embedding. It is also possible to use
external embeddings that were trained by a separate model, such as in
Hayashi et al. (2019). The authors develop an encoder-decoder methodol-
ogy based on (Shen et al., 2018), but rather than only using text as training
data, word embeddings are extracted using a BERT model (Devlin, Chang,
Lee, & Toutanova, 2018).

The advantage of using an end-to-end model is that does not require
data with explicit emotion labels. Training TTS models requires fairly large
speech corpora. For reference, existing TacoTron2 implementations have
been trained on the LJ speech dataset ( 24 hours of speech) (Ito & Johnson,
2017) and the JSUT corpus (Sonobe, Takamichi, & Saruwatari, 2017) ( 10

hours of speech). Generating emotion scores for such volumes of data
using human judgement would be very costly. As we saw in the section on
emotion classification models, it would also be unclear what methodology
to use to label the data. End-to-end modeling takes these problems away
by learning emotion embeddings in the latent space of the model.

The idea to use an embedding to represent differences between input
speech was first used in multi-speaker modeling.
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2.5 Data Volume and Data Quality

One requirement for neural TTS models is a high volume of input data;
Prajwal and Jawahar (2021) estimates this to be 20 hours per speaker per
language. Getting such data is costly, and is not available in many lan-
guages. To overcome this problem, there are a variety of data augmentation
applications specific to TTS, such as models that diversify their training set
using data generated by other TTS models. These models are all trained
on the same input data, but generate new speech themselves which is then
used to further train the models (Hwang, Yamamoto, Song, & Kim, 2021;
Laptev et al., 2020). The same idea has been applied using voice conversion
models, which take audio input from a target speaker and aim to transfer it
to output that resembles a source speaker (Huybrechts et al., 2021). (Latorre
et al., 2019) investigated the effect of restricting training data by comparing
TacoTron2 models trained on a large one-speaker dataset to a TacoTron2

model trained using smaller samples from multiple speakers. They find
that, despite using less overall data, the latter model outperforms the first
one, possibly due to the extra diversity in its input data.

This diversity is an aspect of overall data quality. It is also a known
metric in linguistics, where it is known as lexical diversity. The goal
is to capture the overall diversity of a text corpus through a variety of
metrics, most of which are based on frequency analysis of words in the
total vocabulary (Tweedie & Baayen, 1998). In the field of Automatic
Speech Recognition, lexical diversity has been used as a measure of quality
for input data. An example is Rosenberg et al. (2019), who apply data
augmentation using the lexical diversity metric of maximum entropy to
sample its training data from a corpus. By training on this more diverse
data, the quality of the output speech of the model is improved.

2.6 Two Embedding Methodologies

To answer the research question, this thesis will train two emotional em-
bedding models using various volumes of training. These two models are
StrengthNet (Liu et al., 2021b), and the model described in (Zhu et al.,
2019), which will hereafter be referred to as "the Zhu model".

Both of these methodologies are extensions of the Global Style Token
(GST) (Wang et al., 2018) methodology. GST generates emotion embeddings
by comparing mel spectrum input of audio input to randomized embed-
dings in the latent space. At training, the model receives mel spectrograms
of unlabeled audio data as input. Using a combination of convolutional
layers and an RNN, the mel spectrograms of the input audio is turned
into a 3 dimensional embedding. This embedding is then fed through
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an attention layer and into the latent space, where the model learns the
similarity between the embedding of the input and a set of randomly
initialized embeddings known style tokens. As a result, the model learns
which style tokens contribute to each training utterance, and the style
tokens can be used to fine-tune a TacoTron2 model on. At inference, the
model can be conditioned on a particular style token, allowing the user
to directly change the prosody of the output. In the GST methodology,
the entire embedding of the input sequence is compared against the style
tokens in the latent space. This leaves out differences in emotions between
words in the input sentence and results in an output with averaged emo-
tions across the output sequence. Zhu et al. (2019) use a machine learning
methodology that works as an extension of GST, but includes a more fine-
grained control over the emotion in the output sentence. The novelty in
this model is the application of the relative attributes methodology (Parikh
& Grauman, 2011). This replaces binary feature vectors with a learned
ranking function, which allows the binary representation to be replaced
with a continuous one. The original model applies this methodology to
the relative attributes found in images, but (Zhu et al., 2019) extend this
to emotions. The ranking function is based on a constrained optimization
problem that tries to fit a hyperplane between two categories in the form of
a weight matrix. This weight matrix can then be used as a ranking function
for that category. The mathematics behind this optimization problem are
similar to the rank support vector machine (Joachims, 2002). In practice,
the Zhu model trains one SVM model for each emotion category on pairs
of <neutral, emotional> utterances. Figure 2 shows an overview of the
model pipeline. Rather than comparing the different emotional utterances
to each other, the model compares them all against a neutral utterance
and gives a score for each category, effectively solving the problem using
transfer learning (Pan & Yang, 2010). The mathematical details will be dis-
cussed further the methods section. By training a ranking function for four
discrete emotion categories, this allows each utterance to be represented
by 4-dimensional vector with scores for each emotion. Unlike GST, which
provides an emotion embedding that is averaged over the output sequence,
every time step in the sequence has an associated emotion score vector,
which leads to the increase in fine-grainedness.

The other methodology is StrengthNet (Liu et al., 2021b). This two-part
neural TTS model is based on a combination of convolutional neural layers
and a bidirectional LSTM layer. It takes the same <neutral, emotional>
pairs found in Zhu et al. (2019) but transforms them into mel-spectrograms
before using them as input. It uses the output from an external ranking
function, which could be taken from the Zhu model, as its ground-truth
and outputs a probability distribution over four emotion categories, as well
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as a scalar that represents emotional intensity. These outputs can then be
used as an emotion embedding in a TTS model.

2.7 Other Embedding Models

The success of GST has led to a large variety in TacoTron2 based model
architectures that are conditioned on some implementation of emotion
scores. To provide a comparison between the two methodologies chosen in
this thesis, this section will describe several alternative models, and why
they were not included in the model comparison. (Cai et al., 2020) note
that using a supervised learning model to improve emotional TTS requires
large amounts of labeled data, which is not always available. To solve
this, they developed a TTS model that contains an explicit Speech Emotion
Recognition module and train both of these together. Although this idea
seems like a better form of StrengthNet, it still explicitly uses a GST based
embedding, which does not allow for fine-grained emotionality.. (Kwon,
Jang, Ahn, & Kang, 2019) developed a different methodology to achieve
fine-grained emotionality. This is done by comparing the distribution of
different emotion vectors in the latent space of a Tacotron2 model, and
taking the center of this distribution to be a weighting value for that
emotion, leading to a better MOS than the original TacoTron2. Another
is Chen et al. (2019) who take inspiration from multi-speaker models and
create a specific embedding for each language. They use a CNN based
encoder which creates an embedding for each speaker in the training set.
Using a triplet loss function, the distance between speaker embeddings is
then maximized. The main strength of this model is its ability to synthesize
the text with a new voice using only three minutes of audio. The reasons
for choosing StrengthNet and the Zhu et al. (2019) methodology over these
other models is the fine-grainedness of the emotion. Human evaluators
found that the emotions and emotional strength in the audio generated by
Zhu et al. (2019) were more clear than those of the Tacotron2 model for all
categories of emotions. The reason to choose the StrengthNet methodology
is that it is similar to Zhu et al. (2019), but provides and end-to-end model,
which will make it a good comparison. One last note on the embedding
model literature is that many do not elaborate on the methodology of how
the model is to be inserted in to a TTS model. Neither the (Zhu et al., 2019)
or (Liu et al., 2021b) provide a detailed methodology for conditioning the
TacoTron2 model on the externally learned embeddings. (Zhu et al., 2019)
discusses that the embedding is appended to the latent space between
the encoder and the attention layer. However, there are a variety of ways
that the embedding could be implemented into the TTS model. Elyasi
and Bharaj (2021) explore this by inserting the embedding in TacoTron2
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at different locations, and find that conditioning the model on multiple
embeddings can lead to better pitch accent and syllable stress.

3 methodology

Figure 1: Overview of a completed emotional TTS model pipeline.

To answer the research question, this thesis will compare the Zhu model
and Strengthnet in two experiments. The first experiment investigates the
effect of low volumes of training on accuracy for both models by training
both models on increasingly small subsets of input data. The second
experiment is inspired by Rosenberg et al. (2019), and investigates the
effect of different qualities of training data, which is operationalized as the
difference in lexical diversity. The first section describes the two models in
detail, followed by a description of the experiment and the data involved.
In the last subsection, some of the implementation details are elaborated
on, including some practical adaptations to the Zhu methodology.

3.1 Architectures of Embedding Methodologies

As the Zhu model is trained using a method that uses pairwise comparison,
it has to be trained on a dataset with parallel utterances. To extract
the feature vectors for the input data, this corpus is put through the
emotional feature extraction toolkit OpenSMILE to extract the statistical
properties of the speech pairs into 384-dimensional feature vectors (Eyben,
Wöllmer, & Schuller, 2010). This toolkit takes the mel spectrograms of
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the audio input and calculates a range of statistics such as fundamental
frequency or number of zero-crossing. OpenSMILE provides a large variety
of configurations that determine the exact composition of these statistical
properties. The configuration used in this thesis is the Interspeech 2009

Emotion Challenge configuration (Schuller, Steidl, & Batliner, 2009), an
exact overview of its statistical properties can be found in Appendix A
(page 30).

Figure 2: Overview of a the model trained in Zhu et al. (2019).

The model then learns a ranking function for each emotion based on
two separate training sets containing the feature-vectors. The set O contains
pairs consisting of a neutral utterance and an emotional utterance. The set
S contains pairs of neutral utterances. The underlying reasoning is that for
each pair in O, the emotional strength of the emotional speech has to be
higher than the emotional strength of the neutral speech. Mathematically,
learning the ranking function corresponds to minimizing the following
optimization problem in a pairwise fashion, taking the assumptions as
constraints that the model cannot violate. This optimization problem can
be shown as follows, taking into account a quadratic loss function given
here by C:

minimize
(

1
2
||wT

m||22 + C(∑ ξ2
ij + ∑ γ2

ij)

)
(1)

s.t. wT
mxi ≥ wT

mxj + 1 − ξij; ∀(i, j) ∈ Om (2)

|wT
mxi − wT

mxj| ≤ γij; ∀(i, j) ∈ Sm (3)

ξij ≥ 0; γij ≥ 0 (4)

With xi and xj representing the pairs of input data, w representing the
learned weights for the ranking function and m representing the different
emotion categories. ξ and γ are slack variables, and C is a constant deter-
mining the trade-off between the minimizing the objective function and
keeping the two constraints. O and S are the two training sets described
in the previous paragraph. ||wTm ||22 stands for the Euclidean norm of the
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weights matrix squared, the intuition behind this, along with an example
can be found in section 4 of Joachims (2002)

In practice, it may be time consuming to find the exact solution to
the optimization problem, so to make this problem more computationally
efficient, the solution is approximated. This is done by adding two slack
variables that represent the extent to which the model is allowed to violate
the constraints while training. This approximate solution will give a func-
tion that explicitly ranks the speech pairs based on the level of emotionality
for each emotion.

Figure 3: StrengthNet Model Architecture, adapted from Fig. 1 in Liu et al.
(2021b).

StrengthNet is a deep learning model that takes pairs <neutral, emo-
tional> of mel spectrum frames as input. Its architecture can be seen in
Figure 3. Given that the sampling rate of native audio signal is unneces-
sarily high and training on individual samples would be computationally
expensive, 256 audio samples are concatenated into one frame. These
frames are input into an acoustic encoder which consists of twelve ReLu ac-
tivated Convolutional CNN layers with an increasing number of channels.
The idea of using a large number of convolutional layers was Mosnet (Lo
et al., 2019). As the input to StrengthNet is in frames of mel spectra, the
higher number of filters per convolutional layer allows the model to keep
increasingly long periods of time into account per neuron. The output of
the acoustic encoder is used to simultaneously train two output heads: the
Strength Predictor and the Emotion Predictor. The purpose of the Strength
Predictor is to use the so called “high level features” taken from the Acous-
tic Encoder to predict how strong the emotion presented in the utterances
is. The first layer of the strength predictor is a Bidirectional LSTM (BiL-
STM). This which extends the LSTM architecture to have both forward and
backward dependencies in time. Each unit consists of a forward and a
backwards layer, who take the sequential data in its regular order and re-
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verse order, respectively. The outputs for both layers are then concatenated
at each time step, providing every time step with information on both the
future as well as the past (Cui, Ke, Pu, & Wang, 2018), making it possible
for StrengthNet to predict emotional strength more accurately.The strength
predictor is followed by two fully connected layers and an average pooling
layer, after which it outputs a scalar that indicates the emotional strength
of the input utterance. The Emotion Predictor classifies the emotion into
one of four categories: happy, sad, angry and surprised. This output head
also starts with a BiLSTM layer, followed by a single fully connected layer
with four output units.

The model is trained using three different loss functions. In the Strength
Predictor, there is an Mean Average Error (MAE) loss function that min-
imizes the loss before the second fully connected layer and the average
pooling layer, and a second MAE loss function that minimizes the loss of
the strength score against the strength of the ground-truth. The authors
suggest that this extra loss function will make the model converge faster.
The third loss function is a categorical cross-entropy loss function in the
emotion category predictor, between the category found in the training
sample and the category of the ground-truth.

The original StrengthNet was trained on three datasets, ESD (Zhou,
Sisman, Liu, & Li, 2022), RAVDESS (Livingstone & Russo, 2018), and
SAVEE (Ul-haq & Jackson, 2010). All three datasets contain parallel samples
of the utterances spoken in several emotion categories. These samples are
then used to create the <neutral, emotional> pairs for the training data.
RAVDESS and SAVEE were only used for data augmentation purposes,
and as this is outside the research niche of this thesis, they were not
used. The ground truth for StrengthNet is determined by a separately
trained ranking function, similar to (Zhu et al., 2019). The final output of
StrengthNet predicts both the kind of emotion expressed in the utterance,
as well as the strength of the emotion in a 5-dimensional vector. This
is the difference in the embedding size between StrengthNet and the
Zhu methodology: StrengthNet provides a score for each emotion for
categorization and a separate overall emotion strength score. The Zhu
model provides individual strength scores for each emotion, but no overall
score.

3.2 Data

The dataset used in this thesis is the ESD dataset used in the original
StrengthNet methodology. The EDS is a bilingual speech dataset that
includes 10 native English speakers and 10 native Chinese speakers provid-
ing utterance samples. It consists of 350 parallel utterances that are each
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Training Set Size
Number of
Sample Sentences

4000 100

2000 50

1000 25

200 5

120 3

40 1

Table 1: Description of training set sizes for the first experiment

spoken in a neutral, happy, angry, sad and surprised tone, along with a
text transcription which is labeled with the emotion of the utterance. Since
every participant reads every sentence in all 5 emotions, the labels of the
dataset are balanced exactly, with no missing data. This thesis uses the
English data for the all five emotions, which adds up to a total of 17500

utterances for a length of approximately 14.5 hours.

3.3 Experimental setup

To answer the first research question, both models were trained on increas-
ingly smaller data sets. The models were trained on the four emotion
categories found in the ESD: happy, angry, sad and surprised. A random
sample of 2500 sentences was taken from the 10 English speakers in the
ESD dataset, and the associated audio files were taken as separate training
sets all four emotion categories and the neutral categories. Sampling the
sentences instead of individual utterances ensures that the sample is bal-
anced across all emotion categories. As the Zhu model is trained on pairs
of <neutral, emotional> data, this four separate training sets, each with
feature vector representations of 2500 neutral sentences and 2500 sentences
of the respective emotion category. Six models were trained, with the
volume of training data decreasing as is visible in Figure 1. The data
restriction was done by keeping the first N in the sample and removing
the unrelated utterances. By training all models on the same subset of
data , the results can be seen as a function of only the model. The same
sentence sampling was used to create test and validation sets for the four
emotional speech categories, but these were kept the same for all models
and not restricted in size. There are no ground truth for the distribution
of the emotion scores, but there are binary ground truths for the emotion
label. Both models were evaluated on an emotion classification task, while
the Zhu model was also evaluated on the emotional vs. neutral speech task
that it was trained on. More on this in the Evaluation subsection.
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As StrengthNet is a supervised deep learning model, it requires a
ground truth for emotion scores. ESD does not provide this, so it was
taken by using the ranking function trained using the Zhu et al. (2019)
methodology, just like in the original paper. This could be seen as a
methodological weakness: the ground truth for the second model depends
on the accuracy of the first model, so if the latter performs poorly, the
former may perform poorly as well. However, this is akin to what a real-life
situation would look like when training these models for new or limited
data.

The second experiment consists of a methodology similar to Rosenberg
et al. (2019), and investigate the performance of models of trained on
datasets with different levels of lexical diversity. To obtain text samples
with varying degrees of lexical diversity, 100,000 random samples of 20

sentences out were taken from the ESD corpus. The measure of lexical
diversity chosen is the Token Type Ratio (TTR) which is defined as the
number of words in the vocabulary divided by the total number of words
in the text (Tweedie & Baayen, 1998). The TTR of these samples was
calculated, and the top 2 and bottom 2 samples were selected as training
data for a total of four Zhu models. The sample with the average TTR
score was taken as test data to evaluate the models. The choice for TTR
was a practical one, as it is easier to calculate than the maximum entropy
described in Rosenberg et al. (2019).

3.4 Evaluation

Evaluation for the Zhu model is not straightforward, since the task that
they are trained on is not the task that they would perform in a TTS model.
Regarding the Zhu model, the difficulty is that the model consists of four
separate SVMs that have been trained on a neutral vs. emotion task, but
the task that the model performs as the embedding in a TTS model is an
emotion vs. emotion task. Arguably, the second task is the most important
one, but to capture the overall performance, the models were evaluated
for both tasks. The output of the models is a 4-dimensional vector with
scores for each emotion, but the test data available only has binary emotion
categories. To compare them, each model prediction was assigned the
emotion category for which its emotion score was highest. As per the
original methodology, the scores for each emotion were normalized on the
[0,1] interval, eliminating any scale difference between the four emotion
SVMs. As the StrengthNet model is not trained using neutral data, it will
only be evaluated on the emotion category prediction task.

Evaluation for the second experiment was done on a separate test
dataset, which consisted of ta , The evaluation was done using the same
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methodology as in the first experiment, so both evaluating the emotion vs
neutral task, as well as overall emotion prediction. The measure chosen for
lexical diversity was TTR, as it is simple to calculate, but this experiment
could be repeated with any measure for lexical diversity.

3.5 Implementations

The implementation of the StrengthNet model was taken directly from
its GitHub repository 1 and is implemented using Tensorflow. Since was
trained on the same dataset as the original paper, the default hyper pa-
rameters for StrengthNet were kept. The exception to this is the batch size.
For the larger models, the batch size was kept at 64, for the models with
2000 and fewer samples, the batch size was set at 32 and for the smallest
model the batchsize was set to 16. This implementation also generated
the StrengthNet mel spectra input from the audio files. There are a vari-
ety of hyper parameters associated with the mel spectrum creation such
as frame length and the distance between frames. Since the model was
originally designed to be trained on the ESD dataset, the hyper parameters
were not changed. All random sampling and text processing was done
in Python, scripts for this are available on the GitHub page of this thesis
2. The optimization problem was approximated using a pairwise Rank
SVM as described in (Herbrich, Graepel, & Obermayer, 2000). An existing
Python implementation was taken from 3. This model creates the two
pairwise matrices O and S to indicate whether two feature vectors belong
to emotional speech or neutral speech. It then fits a linear support vector
classifier using the sklearn implementation, taking the paired samples
as input. It must be noted that this method of solving the optimization
problem is quite memory intensive. This is inherent to the problem, as
the model is required to keep both the O and S matrices in memory at all
times. The hyper parameters for this model were kept at the default values
of the sklearn model.

4 results

We trained two models with varying amounts of training data: a Zhu
model and a StrengthNet model. Both of these models were evaluated
on an emotional classification task. Moreover, the Zhu model was also
evaluated on the emotion vs. neutral speech task. Lastly there is also the

1 https://github.com/ttslr/StrengthNet
2 https://github.com/haza97/Thesis-Project-Emotion-Embeddings
3 https://gist.github.com/agramfort/2071994
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Figure 4: Mean accuracy of the Zhu
model on the Emotion-Neutral Task

Figure 5: Per category accuracy
of the Zhu model on the Emotion-
Neutral Task

Number of training samples 40 120 200 1000 2000 4000

Happy Accuracy 0.807 0.769 0.714 0.903 0.942 0.969

Angry Accuracy 0.453 0.547 0.591 0.904 0.946 0.911

Sad Accuracy 0.553 0.627 0.668 0.867 0.821 0.903

Surprised Accuracy 0.841 0.822 0.823 0.947 0.983 0.988

Mean Accuracy 0.663 0.691 0.699 0.906 0.922 0.943

Table 2: Accuracy of the zhu model for the emotional vs. neutral task

lexical diversity model, which will also be evaluated on both an emotional
vs. neutral task as well as an emotional classification task.

First the results for the Zhu model will be presented. Both table 3 and
2 clearly show that the model performs well on the emotion vs neutral
task, with but only perform up to chance level at the emotion classification
task. As the size of the training set increases, so does the performance on
the emotional vs. neutral task. The same is not necessarily true for the
emotional classification task; the performance shows no improvement with
a larger training set; the mean performance is very constant. The per cate-
gory accuracy shown in 6, where the red line stands for the performance
of a random guess, is approximately the same, but shows higher variance.

Number of training samples 40 120 200 1000 2000 4000

Happy Accuracy 0.426 0.226 0.065 0.211 0.119 0.305

Angry Accuracy 0.045 0.304 0.136 0.213 0.042 0.197

Sad Accuracy 0.218 0.220 0.425 0.309 0.447 0.382

Surprised Accuracy 0.200 0.110 0.307 0.212 0.216 0.059

Mean Accuracy 0.222 0.215 0.233 0.236 0.206 0.237

Table 3: Accuracy of the zhu model for the emotional classification task
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Figure 6: Per emotion accuracy on the emotion classification task

Number of training samples 40 80 200 1000 2000 4000

StrengthNet Accuracy 0.25 0.25 0.25 0.25 0.351 0.351

Table 4: StrengthNet Accuracy on emotion prediction task

The StrengthNet model was evaluated on an emotion prediction task,
the results of which are visible in Figure 4 The results look strange, since
all values for the smaller training sets are the same, and so are the values
for the two biggest training sets. Upon closer inspection, it appears that for
the smaller training sets, all the four weights for the emotion categories are
very close to 0.25, more on this in the discussion section. The performance
of the large training set models are slightly higher than chance, but still
not as high as initially expected.

After taking the sentence samples and sorting by lexical diversity, the
two most diverse samples had a TTR value of 0.658 and 0.654, while the
least diverse samples had TTR values of 0.518 and 0.511 respectively.In the
neutral-emotional task, the overall mean accuracy of the lexical diversity
model shows no difference between high and low diversity models and
both seem to perform the same across the different emotion categories. In
the emotional classification task, both score around chance performance as
is visible in table ??

A simple error analysis was performed on the Zhu model emotional-
neutral task. All confusion matrices show an approximately equal division
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Figure 7: StrengthNet emotional
strength prediction with a training
set of 1000

Figure 8: StrengthNet emotional
strength prediction with a training
set of 4000

Figure 9: Mean accuracy of the
high lexical diversity models on the
Emotion-Neutral Task

Figure 10: Mean accuracy of the
low lexical diversity models on the
Emotion-Neutral Task

Model Name High div. 1 High div. 2 Low div. 1 Low div. 2

Happy Accuracy 0.284 0.067 0.378 0.135

Angry Accuracy 0.129 0.454 0.353 0.274

Sad Accuracy 0.351 0.242 0.250 0.238

Surprised Accuracy 0.103 0.217 0.077 0.170

Mean Accuracy 0.216 0.245 0.2644 0.204

Table 5: Accuracy of the lexical diversity models on the emotion classification task
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Figure 11: Strengthnet emotion
scores for smaller training set models

Figure 12: Strengthnet emotion
scores for larger training set models

between True Positives and True negatives and between False Positives and
False negatives. The confusion matrices can be found in appendix B .

5 discussion

The aim of this thesis was to determine the effect of training data limitations
on the accuracy of two TTS embedding model architectures. The surprising
finding in the results was the Zhu model and the linguistic diversity model
performing poorly the emotion classification task while the performance
on the emotional vs neutral speech was significantly better. This could
indicates that learning the emotion vs. neutral speech task does not transfer
well to the ranking problem. However there are a variety of other successful
uses of the relative attributes methodology, so that does not seem likely
(Singh & Lee, 2016; Souri, Noury, & Adeli, 2016). Regarding limiting
the volume of training data, performance on the neutral vs. emotional
speech task increased as the amount of input data increase. It appears
that, for the low sample models (200 and fewer) the performance does not
change as much as the number of samples increases, but once it reaches
a certain threshold between 200 and 1000 samples, the model hits a high
performance plateau, as is visible in Figure 4.

The results for StrenghtNet were also quite unexpected, that the result
for the lower models were the exact same. Figure 11 shows all emotion
scores for the StrengthNet model with 120 samples. It is clear that the
variance in this signal is very small, especially when compared to 12. It
may be that a training size this small is not close enough to any reasonable
performance and that the model does not have enough data to learn
to generalize anything. While training, all of the StrengthNet methods
reached early stopping due to the validation error not shrinking past a
certain point, indicating that run time was not a problem. One other
problem here is that the performance of the Zhu model is directly related
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to that of StrengthNet. StrengthNet uses the predictions from the Zhu
model as its ground-truth, which will have negatively affected performance
in this case. What is also of interest are figures 8 and 7. They compare the
distribution of the predicted emotion intensity score for two different sizes
of the training set. On the model with little training data, it overfits on one
value, which is consistent with the poor accuracy results we saw for that
model in the emotion classification task. However, the other model shows
a larger variance in the predicted emotion strength, which is not reflected
in the performance on the emotion classification task.

In the case of lexical diversity, there were no results that show that
lexical diversity provides for higher quality training data. Reasons for this
may be that the difference in lexical diversity between the samples was not
high enough. This would be a hard problem to solve in this case, since
the models trained here depend on parallel samples datasets, which are
rare. Another possible explanation is that the model is unable to solve the
problem for the reasons mentioned previously for the Zhu model, and that
the quality of input data does not make a difference at such low levels of
performance.

Coming back to the research questions, it is hard to answer the first
question, due to the low overall performance of the models. It has at least
been shown that there is a lower bound to the size of the training set in
order for the model to achieve more than chance performance. At datasets
of this size the lexical diversity does not affect the accuracy at all, although
this also may be related to the poor overall performance.

5.1 Limitations

One could argue that StrengthNet and the Zhu et al. (2019) methodology
could have been explored using more samples from the ESD. It is true
that the ESD contains more samples that were not used, however this
would lead to a large increase in required memory. As the dataset gets
larger, the number of pairwise comparisons between the O and S, increases
quadratically. When applying Newton’s method to the entire ESD, the
total size in memory went up to 113 Gb of RAM, which was unavailable
to me. It was attempted to move these computations to GPU memory
using the Cupy package for Python, but time restrictions did not allow
this to be completed. As noted in Parikh and Grauman (2011), the Relative
Attributes optimization problem can be seen as a variation on ranking
Support Vector Machines, but trained on pairwise data (Joachims, 2002).
To solve the RAM problem, it could have been worthwhile to look into
SVM literature to find a similar methodology with a more straightforward
solution to batch learning.
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5.2 Future Research

The current experiment leaves several directions unexplored. One is the
effect of training time on the (Zhu et al., 2019) methodology. The op-
timization algorithm iterates over its samples in Newton’s method, but
while solving this also iterates over its samples to solve the non-linear
least squares problem. As a result, the total algorithm is of O2 complexity.
This raises the question of how well this model could perform with tighter
hyper parameters and more time. Empirically, the StrengthNet method-
ology does not appear to have a need for longer training time, as it never
reached its maximum number of training epochs but always ended on
early stopping. Previously, we described how using end-to-end models
removes the requirement for explicitly labeled data. This is an advantage,
but it does not take into account that the input data used in StrengthNet
and the Zhu model are now restricted to datasets with parallel samples
only, which are also rare. This seems like a restriction that future TTS
models should take on.

6 conclusion

This thesis investigated the performance of two emotional embedding
models for TTS systems under limited training data. Training data was
both limited in amount, as well as in quality, with lexical diversity being
a proxy for quality. The two models trained were StrengthNet (Liu et al.,
2021b) and a model based on Zhu et al. (2019). The Zhu model is trained
using both a low amount of training data and low quality training data
data, while the StrengthNet model is trained only on a low amount of
training data. Both Zhu models perform well on their training task of
classifying emotional and neutral speech, but perform at chance levels
when classifying all four emotions. The StrengthNet model performs
poorly, the low amount of training data is most likely too low to reach any
good performance on.
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The OpenSMILE INTERSPEECH 2009 Emotion challenge feature set con-
tains 16 low level descriptors, both in absolute values as well as their rate of
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Functionals (12) Low Level Descriptors (16)
Mean Zero-crossing-rate

Standard Deviation
Root mean square of
frame energy

Kurtosis Pitch frequency
Skewness Harmonics to noise ratio

Minimum
Mel Frequency Coefficient
(MFC) 1 through 16

Maximum
Relative position
Range
Linear Regression
Offset
Linear Regression
Slope
Linear Regression
Mean Squared
Error

Table 6: OpenSMILE INTERSPEECH 2009 Emotion challenge features
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