
Hierarchical Segment Classification on Search Queries
using Machine Learning

by

Nicole Schrieks (ANR: 595868)

A thesis submitted in partial fulfillment of the requirements for the degree of

Master in Econometrics and Mathematical Economics

Tilburg School of Economics and Management

Tilburg University

Supervised by: . . .

prof. Dr. T. (Tobias) Klein Tilburg University

Dr. C. (Christoph) Walsh Second reader, Tilburg University

T. (Tim) Butterbrod, MSc. Greenhouse Group

P. (Peer) van Kemenade, MSc. Greenhouse Group

Date: March 30, 2023



Abstract

Hierarchical text classification is used to classify text into hierarchical categories.

In search queries, hierarchical classification is useful to give organizations more helpful

insight into interesting categories to focus on and where the potential is present. In

recent years neural networks have been used often to hierarchically classify text data,

which led to good results. This problem is challenging because of the hierarchy, but also

because in this problem, the text contains little information, and the amount of data

is limited. Two new loss functions are proposed to solve the problem in this context.

The first loss function ensures that the model considers the hierarchy during training.

The second loss function aims to minimize the mean absolute percentage error of search

volume per segment; this function works as an addition to the first one. In addition,

BERT -like models are used to improve the model’s context understanding. Overall,

the usage of hierarchical text classification in combination with these loss functions can

help improve the average F1-score, and the models classify small keywords well, thus

providing more valuable insights into search behavior.

1



Contents

Abstract 1

1 Introduction 4

2 Background 7

2.1 Search Engine Marketing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Search Engine Advertising . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Search Engine Optimization . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Google Ads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Keyword Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Data 16

3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Training, Validation, and Test set . . . . . . . . . . . . . . . . . . . . 19

3.3 Data Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Keywords and Segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.1 Tokenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.2 Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Empirical Approach 24

4.1 Hierarchical Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Classification Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.2 Types Hierarchical Classification . . . . . . . . . . . . . . . . . . . . 26

4.2 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.2 Multi-Output Neural Network . . . . . . . . . . . . . . . . . . . . . . 31

2



4.2.3 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.4 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.5 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.6 BERT-like Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Precision, Recall and F1-score . . . . . . . . . . . . . . . . . . . . . . 43

4.3.2 Hierarchical Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . 44

4.4 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.1 Baseline and Benchmark models . . . . . . . . . . . . . . . . . . . . . 45

4.4.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Results 48

5.1 Results per Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Costs and Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Misclassifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Discussion 55

7 Conclusion 57

7.1 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2 Recommendations and Further Research . . . . . . . . . . . . . . . . . . . . 58

References 61

A Appendix 66

3



1 Introduction

In the last few years, internet users have increased yearly. In 2022, internet users rose to

5.07 billion, which equals 63.5 percent of the world population (Kemp, 2022). These internet

users are most of the time not directly searching for information and getting to an internet

site instantly. According to Yang et al. (2015), approximately 80 percent of internet users

searched for information using a search engine in 2015.

At the moment, Google is by far the most used search engine (Statcounter, 2022). More

than 8.5 billion searches are done on Google daily (Stats, 2022). As the usage of Google

and e-commerce, in general, is this prominent, online advertising is becoming increasingly

important. Hence, a crucial part of online advertising is marketing on search engines, which

shows advertisements on search engine result pages (Yang et al., 2015). From the revenue

of Google follows this rise in search engine usage continues. The revenue of Google in 2021

was equal to 256.74 billion US dollars, an increase of 41 percent compared to 2020 (Bianchi,

2022b). Eighty-two percent of the total revenue comes from advertising, 43 percent more

than the previous year (Bianchi, 2022a). Hence, the revenue from advertising is increasing

together with the total revenue and the number of users.

These high search engine numbers cannot be separated from the fact that e-commerce is

still increasing rapidly. The amount of e-commerce has been increasing rapidly and during

COVID-19 even more. Moreover, it is predicted that from 2022 onwards, e-commerce sales in

Europe will increase by 47 percent in three years (Statista, 2022). In addition, it is predicted

that in 2040 about 95 percent of all purchases will be made through e-commerce (Deniz et al.,

2022).

The high number of searches on search engines highlights the importance of search engine

optimization (SEO) for organizations that want to increase their visibility and audience. By

improving the content used by search engines and the organization’s website, the ranking

of the websites can be improved, which will increase the organization’s visibility. Part of

4



SEO involves keyword research; this includes investigating which keywords and segments

are being searched for on search engines like Google. Doing this can help an organization

find interesting keywords and segments for their advertising campaigns. Keyword research

consists of approximately 70 percent of classifying the keywords into segments, subsegments,

and sometimes subsubsegments. These segments help organizations find their smallest and

largest segments, which may not have been noted before but are relevant due to a high

search volume. Furthermore, the segments help to reduce many keywords to a few relevant

categories for the organization. At the moment, a marketeer is performing this classification

manually, and afterward, the classification is checked by several other specialists to avoid

mistakes. However, as classifications are performed on files with thousands of keywords, it

takes much time to accomplish this classification manually. Automating this process will

save time resulting in more keyword research in the same amount of time.

The aim of this paper is thus to design a segment classifier that predicts the segments cor-

responding to the keywords as accurately as possible, such that time is saved. Nevertheless,

there can be many segments and subsegments with only a few corresponding keywords, and

the model should select those segments and subsegments correctly with a corresponding hier-

archy. Furthermore, the amount of data is limited, as a keyword consists of only four words

on average. Hence, there is a minimal amount of context to a keyword. In addition, it should

be able to work with English and Dutch data.

The innovation of this paper lies in several points. One point is that the models used to

perform the classification were never used on this type of data. Usually, longer keywords or

whole sentences are present for classification methods considering hierarchy. In contrast, in

this paper, short keywords are used with an average length of four and contain little informa-

tion per keyword and, thus, are less straightforward to classify correctly. In addition, most

of the existing models are trained in English or other common languages, but in this paper,

the models are trained in Dutch or sometimes English. Furthermore, during this paper, a

new loss function considering hierarchy is designed, and so-called BERT-like models are used

for hierarchical classification, which has not been done before, as far as aware. Considering

5



the hierarchy, these models are combined with a newly designed custom loss function. The

F1-score is used to determine if a model works well. Still, a new metric is also designed based

on how close the predicted search volumes are to the actual values in combination with a

newly designed corresponding loss function to perform better on this new metric.

The previous paragraph explained that two new loss functions are designed in this paper.

One is to learn the model hierarchy, and the other is an addition to the first new loss function

designed to reduce the difference between the search volume per segment and the predicted

search volume per segment. These loss functions are used within BERT -like models. The

tests in this paper show that the newly designed custom loss functions perform better on

F1-score than the hierarchical text classification model designed by Gao et al. (2020).

The following sections provide more information about the problem. First, more background

on the problem is given. Second, the data and tasks that should be performed on the data

before using a model are explained. Thirdly, the approach used to find a good performing

classification model and more on the models is explained together with how it will be evalu-

ated. Afterward, the results are displayed and further explained. Lastly, the discussion and

conclusion are given.

6



2 Background

In this section, more information on the central question of this paper is provided to enhance

the knowledge of the problem. This information will lead to a better understanding of the

problem and what influence a classification model could have. The background information

can be split into two sections. First, how search engine marketing works and different types

of marketing in search engines. Second, the recent developments in text classification and

hierarchical text classification.

2.1 Search Engine Marketing

Digital marketing focuses on every kind of marketing on electronic devices and objects con-

nected to the internet. One part of digital marketing is Search Engine Marketing, also

known as SEM. SEM is about increasing a business’s visibility on a Search Engine Results

Page (SERP) using digital marketing strategies (Sen, 2005). The ability to put their busi-

ness in front of likely interested customers, and filter the non-interested customers out, is

an uncommon ability for other advertising options. SEM consists of two methods, SEO and

SEA; both will be discussed in the following sections.

Moreover, the worldwide search engine market share has been dominated by Google during

the last year, as displayed in figure 1 (Statcounter, 2022). Hence, the main focus in de-

scriptions during this paper will be on Google, but the idea is the same for the other search

engines as Bing and YAHOO!.

2.1.1 Search Engine Advertising

When searching on Google, most of the time, at the top or bottom of the SERP, ”Sponsored

links” are displayed. The top SERP of ”smartphone” is shown in figure 2, where the blue

boxes represent the ”Sponsored links”. These advertisements are based on the keywords

entered in the search bar, also known as the search query, which in this case was ”smartphone”.

These ”Sponsored links” are used as advertising options in Search Engine Advertising (SEA).

7



Figure 1: Market share search engines in percentages (Statcounter, 2022)

Some advertisements can be for free, but in Google, the advertisements on SERP are paid, and

the prices for the advertisements are dependent on bidding and thus not stable. Additional

information on the bidding part and the allocation of advertisements is discussed in the

Google Ads section 2.1.3 (Decarolis et al., 2020). The price depends on three main factors

(Van Looy, 2022).

First, the location of the advertisement on the SERP. Most of the time, advertisements are on

the top and bottom of a SERP. Since most searchers look with more attention at the top of

the page, these locations have a higher price than the advertising spaces on the bottom of the

pages. Second, whether the demand for advertisement space is high. When more businesses

like to show an advertisement at the same time and place, the price will increase due to

high demand. Third, the keyword where the advertisement should be shown on. The price

will increase if the keyword has high competition, meaning more organizations are willing to

advertise on that specific keyword.

8



2.1.2 Search Engine Optimization

When searching with a search engine, the first links on the SERP are the ones looked at

most, and the lower on the SERP, the lower the chance of a customer clicking on the link.

Hence, using search engines, one of the main goals is to ensure the page is ranked high on

the SERP such that the probability of visiting the advertisers’ page increases. This process

is done using Search Engine Optimization (SEO). This includes optimizing the landing page,

which is the page of arrival when clicking on a link from a search engine. The goal is to make

sure the landing page is as relevant as possible to the search query of the user, such that the

probability of the search engine algorithm ranking the page higher is increased. The organic

results are displayed below the paid ads at the top most of the time, as in figure 2. The

result within the green box is the organic result that SEO can improve. SEO was defined as

”the art and the science of getting a website to appear prominently in organic search engine

results when a search submits a query relevant to that website” (Lieb, 2009).

As the most significant number of clicks is not on the sponsored links but on the organic

links, it is recommended to focus on the organic ranking of a website and not only on the

”Sponsored links” using SEA (Van Looy, 2022). Through proper application of SEO, it can

be made sure that the landing page is ranked high on specific keywords, as a result of which

budget can be saved on these particular keywords with SEA.

9



Figure 2: Google SERP ”smartphone”. Blue: paid results SEA. Green: organic results SEO.

2.1.3 Google Ads

Google has an advertising program based on keywords names, Google Ads (before Google

AdWords). Inside Google Ads, most of the time, a budget is set such that no more is spent on

bidding each time window. In addition, a bidding system is used to show the advertisement

on one of the spots on the SERP (Tricahyadinata and Za, 2017). With the bidding system,

there is no payment until a customer clicks on the advertisement, also known as pay-per-

click (PPC). A bid, in this case, is thus equal to the amount the organization is willing to

spend on one click of a customer searching for a particular keyword. Hence for a specific

advertisement, the organization has to determine the keywords it wants to advertise on and

the corresponding height of the bid on them. The height of the bid is generally determined by

the expected ROI (Return On Investment) or ROAS (Return On Advertising Spend), where

ROI focuses on whether the campaign is profitable, and ROAS looks at the effectiveness of

10



the campaign by investigating if it generates clicks (Gilfoil et al., 2015). The equations of

ROI and ROAS are stated below (Gilfoil et al., 2015):

ROI = Net Profit
Net Spend ∗100

ROAS = Total Campaign Revenue
Total Campaign Cost (1)

On the SERP, it is not the case that the displayed advertisement is the organization that

placed the highest bid; it depends on more factors. Otherwise, it might be the case that a

high bid is placed, but the site is not relevant to the searcher. Hence, a ranking is made

which considers the relevance of the advertisement, the user experience, and the expected

click-through rate. Moreover, together with the bid, this decides which ads are shown on the

SERP (Abou Nabout and Skiera, 2012).

Which keywords or segments to focus the campaign on has yet to be clarified based on the

information above. This decision could be made based on values related to specific keywords.

The keyword-related values are the search volume, CPC (Cost Per Click), and Mediavalue.

Search Volume

Search volume is the total number of searches on a keyword over a specific time; this paper

uses a year as the period. It indicates if a keyword is well visited; thus, the customer’s interest

is reflected in search volume. From the search volume, a few things can be concluded. First,

if the search volume is high, the keyword is used much by search engine users. These high

search volumes can result in two different conclusions. On one side, the given keyword is

interesting to focus on since many users have that keyword in their search query. However,

on the other side, the high search volume means the competition on ranking for that given

keyword is probably high, and thus more effort would be needed to be ranked in the highest

places. Second, if the search volume is small, the search engine user is less interested in the

keyword, meaning the price and competition are probably low.

Most of the time, the keywords with a small search volume are long. Because these queries

are more specific, it is less likely that a user will use the exact query and thus has less

11



competition. With a short-tail query, the chance of being used is more significant as these

queries are usually more general and thus have more competition.

Cost Per Click

Another indication is the cost per click (CPC). The CPC equals the approximate amount

needed to pay for a click on the advertisement. For example, if the amount spent on an

advertisement is €150 and 164 people click on it, the CPC would be 150
164 , so approximately

€0.91. CPC indicates the price corresponding to specific keywords. Focusing on this keyword

could be a good idea if the CPC is low. However, it could be the case that there is a minimal

amount of clicks, so focusing on this keyword could bring a low additional value as the total

amount of clicks on the advertisement could increase by only a few. The CPC is always an

estimation beforehand, as the number of clicks on an advertisement is unknown.

Mediavalue

The mediavalue is an estimated cost of buying organic traffic through Google Ads. Often the

value is close to the search volume multiplied by the CPC. It indicates the required marketing

budget when advertising on a particular keyword. For example, in figure 3, when focussing

on the segments ”laundry” and ”waste bins”, it can be seen that the search volume of ”waste

bins” is lower than the search volume of ”laundry”. Moreover, the mediavalue of ”waste bins”

is larger than the mediavalue of ”laundry”. Thus there is more competition in the ”waste

bins” segment as the ”laundry” search volume is larger. From this, it can be concluded that

it would be better to focus on the ”laundry” segment because the price would be lower, and

the interest from the search engine user is higher in the ”laundry” segment. This choice is

made when a choice should be made between these two segments. It should be taken into

account that if all segments are compared, it could be that both segments are not the best

choice to focus on. Moreover, the choices about which segments to focus on depends on the

advertising budget and the expected ROAS, equation 1. If ROAS is high on a more expensive

segment, it can still be of interest to focus on this segment instead of the cheaper segments,

but for the remaining part of the paper, these options are not considered.

12



Figure 3: Summed search volume and mediavalue for all main segments (dataset 1)

2.1.4 Keyword Research

Keyword research is essential to choose which keywords improve visibility and find customers

interested in the organization’s advertisements. An organization can have various reasons to

select a particular keyword, which could be related to a product they sell or, for example, to

the organization’s vision. The goal of keyword research is to map the organization’s market

and give insights into which areas search engine users are searching and where the possible

potential is present but where the organization has yet to focus.

Using keyword research, a file is constructed consisting of a list of useful search queries. An

online (paid) tool is often used where one or more keywords are inserted, and the output is a

list of many related search queries. Afterward, data corresponding to the keywords in the list

are added, for example, CPC, search volume, and mediavalue. Furthermore, it is preferred to

13



have segments added to each keyword because the segments of the keywords in the file would

be used to indicate which segments of an organization are the largest and smallest based

on the sum of search volumes per segment. They can lead to new exciting segments that

were initially not noted but are relevant due to the large search volume or low mediavalue.

Segments also help to reduce a large number of keywords to several relevant categories for

the advertiser.

As the created list of keywords may consist of keywords the organization does not want to

be related to, for example, war, these keywords are removed or added to the list of negative

keywords, which are not added to the list in the first place. The removal is done before

segmenting the keywords.

2.2 Recent Developments

The amount of publications about text classification is increasing fast. In 2000, there were

only 31 publications; in 2019, there were 292, which increased to 463 publications in a year

(Zhu and Lei, 2022). On the other hand, the number of text classification publications about

hierarchical classification has decreased in frequency. In the last two decades, more atten-

tion has been drawn to topic models, which are models to find the themes and topics of

documents, word embedding that find the meaning and relation between words using vector

representation, and convolutional neural networks, which are deep neural networks using fil-

ters to get features from the input (Zhu and Lei, 2022). Less attention was given to k-nearest

neighbors, an algorithm classifying data based on similarity to the other data points, and

naive Bayes (Zhu and Lei, 2022). Naive Bayes uses the probability of labels based on the

input features to predict labels.

In 2013, Google started by designing series trained on a large amount of data to use in Nat-

ural Language Processing (NLP) tasks. The first popular word embedding tool is word2vec.

This led to other parties developing better embedding models, such as the Long Term Short

Term Model (LSTM), which was trained on much more data. In 2018, embedding models

were developed by OpenAI using transformers (Vaswani et al., 2017), a new neural network

14



structure developed by Google. Due to these developments, specific new models are designed,

such as GPT and BERT , which again use more training data than the previous models. The

trend of using more training data for improvements started in 2018 and is continuing. These

models were just the beginning of the developments on this topic. Many variations were

made to these models, which should lead to even better performances on NLP tasks. These

pre-trained models addressed new state-of-the-art methods in many NLP problems, including

text classification.

As the models mentioned before still need some data to fine-tune the model, more recent

research has been done on zero and few-shot models. However, these models are made for

less data, so they are bigger. To indicate, BERT has 340M parameters, GPT − 3 (Brown

et al., 2020), which is a few-shot model, has 175B parameters, and PaLM (Chowdhery et

al., 2022) has even more parameters, 540B. GPT − 3 showed such a large model could be

effective for a few-shot model. Hence, other models continued this, as PaLM , which uses

pathways (Barham et al., 2022). However, using few-shot models results in an accuracy of

approximately 60 percent, but fine-tuning these models gives more than 10 percent extra

accuracy (Chowdhery et al., 2022).

Concluding, the few-shot models are preferred as they need less data, but few-shot models are

not performing better than fine-tuned BERT models. In addition, fine-tuning the BERT

models is lightweight. Hence, BERT -like models will achieve better results easier. As in this

paper, the performance is most important; the other models are not considered. This paper

uses hierarchical text classification instead of regular text classification. However, since text

classification is in many ways identical, the developments in text classification can also be an

option for hierarchical text classification when specific changes are made. From the recent

developments stated before, the transformer-based BERT -like models are used during this

paper; more on these methods is explained in section 4.2.

15



3 Data

The data used in this paper is collected from the performed keyword research, as explained in

section 2.1.4. In this section, the data format will be shown with some insights and changes

that should be performed before the models explained in the remaining part of this paper

can be used.

3.1 Example

This section explains an example used to increase the understanding and application of the

problem. A small amount of keywords is selected from the dataset. Hence the conclusions

drawn are only based on the reduced dataset and have no real meaning. The reduced dataset

used during this example is displayed in table 1.

Keyword Search Volume Mediavalue Segment 1 Segment 2

Bathroom mirror with shelf 12,100 € 6,776.00 Bathroom Mirror

Vanity mirror 22,200 € 9,768.00 Bathroom Mirror

Plastic shower caddy 2,900 € 754.00 Bathroom Bathroom accessories

Bathroom sets 9,900 € 7623.00 Bathroom Bathroom accessories

Basket for toiletries 480 € 146.40 Bathroom Storage container

Toothbrush holder 18,100 € 7,421.00 Bathroom Toothbrush holder

Wooden spoon for baking 50 € 27.50 Kitchen utensils Spatulas

Spatula 27,100 € 11,111,00 Kitchen utensils Spatulas

Chopping board 33,100 € 13,240.00 Kitchen utensils Cutting board

Ladle 12,100 € 3,025.00 Kitchen utensils Spoons

Table 1: Example dataset

The paper aims to design a model that predicts the segments corresponding to the keywords.

In this example, using the data displayed in table 1, the first three columns, keyword, search

volume, and mediavalue, would be given. The last two columns, segment 1 and segment 2,

are the columns to predict using one of the models explained in this paper. The hierarchy

16



needed for the model is extracted from the data; thus, all possible combinations of segments

are assumed to be in the data. Figure 4 shows the hierarchy extracted from the data in table

1. As this paper focuses on supervised learning, some labels should be known to train the

model properly.

From the data follows that this example consists of two levels: the first layer consists of

two different segments, and the second layer has seven different segments. The hierarchy is

extracted from the data and is displayed as a hierarchical tree in figure 4. This hierarchy is

assumed to be given before knowing the segments corresponding to the keywords. Knowing

this hierarchy and the keywords, a model can be used to predict the segments. More is

explained on the possible models in section 4. The results are displayed in figure 13 of the

appendix. The only incorrectly predicted keyword is ”Wooden spoon for baking”; the actual

segment is ”Spatulas”, but it was predicted as ”Spoons”. As spoon is present in the keyword,

this is a logical prediction of the model. However, spoons are meant to eat; in this keyword,

it is a baking spoon, and thus spatulas is the correct subsegment. In addition, in some cases,

it can be the case that more than one segment could be a good match, but in the model, only

one segment can be predicted, and the others would thus be seen as incorrect; real examples

of this problem are discussed in section 5 with the results. The exact predicted and actual

values per segment are displayed in tables 9 and 10 of the appendix. Since the mediavalue and

search volume of the incorrectly predicted keyword is small, the change in total mediavalue

and search volume is also small compared to total values per segment and would thus not

significantly affect the conclusion. In addition, from the results can be seen that in this case,

the main topics are almost equal, and from the sub-topics, the mirror segment is the largest

for this organization. However, no conclusion can be drawn from this since only a small part

of the data is used. Furthermore, to evaluate these results, the evaluation metrics discussed

in section 4.3 are typically used for model performance and comparison.

17



Figure 4: Hierarchical tree of example data table 1

3.2 Datasets

This paper uses several datasets to test the model’s performance on datasets with different

segments. All the datasets are in various fields and lengths, as displayed in section 3.3. Table

1 in the previous section shows part of dataset 1. The columns with the actual segments

are labeled based on a classification structure delivered by the organization. A specialist

labels the keywords, and several other specialists verify them such that the segments are not

dependent on personal opinion. An assumption based on the labeling is that the labeling

done by the specialists is true. Hence from this point onward, the manually classified model

will be referred to as the ”True model”.

Before the dataset can be input into the classification model, a few steps should be executed

on the whole dataset and some only on the items in the keyword and segment columns. These

steps will be described in the following sections.

3.2.1 Data Preparation

First, all of the unnecessary columns are removed from the dataset. Only the columns about

the keyword, segments, search volume, and mediavalue stay in the dataset. Some of the

18



datasets have hierarchical layers with a large number of unknowns. If this amount is larger

than ten percent of the total length, the layer is not included in the classification, and else

the blank values are regarded as a different segment. Second, the segments in the segment

columns are converted to lowercase since they would be recognized as the same segments.

Lastly, as seen in the data statistics, some layers have segments with only one keyword al-

located to that segment. When splitting into different sets, these observations would lead

to no keyword of the segment in the training, test, or validation set. Thus the choice was

made to remove the segments with the corresponding observations, which have less than six

observations per segment.

After these preparations, a hierarchy dictionary is created based on the combinations of the

different segments. Every node, not an end node, would have the possible children followed

in the dictionary. This establishes the hierarchy needed for the model explained in the next

section. During the creation of the hierarchy dictionary, it is assumed that every possible

combination of segments is present in the dataset. Furthermore, suppose a segment is present

beneath several different parent nodes. In that case, the child node is included beneath all the

parent nodes separately to ensure the structure is a tree instead of a DAG. This assumption

is made because a DAG would lead to models that cannot be used anymore or are more

challenging, for example, a classifier per parent node, as explained in section 4.1.2. The data

used in this paper only has a few child nodes that have multiple parent nodes. For the models

different from the classifier per parent node, it does not have an effect changing from a DAG

to a tree.

3.2.2 Training, Validation, and Test set

The Neural Network and the other used models need training, testing, and validation data.

The methods used are supervised, where the training, testing, and validation observations

cannot overlap. Hence, the dataset is split into three sets, the training, validation, and test

set. Let the training set consist of eighty percent of the observations and the validation and

test set of ten percent. The training set is used to train the model, the test set tests the

model, and the validation set is used to check if the trained model performs better than

19



before on data it was not trained on. Furthermore, as follows from figure 14 of the appendix,

the dataset is unbalanced, which is the case for all datasets used in this paper. Hence, to

reduce this problem during the splitting process, stratification is used on the last layer of

used segments.

3.3 Data Statistics

This paper will test the models on three different datasets, as they could perform differently

on datasets from another field. The datasets used, and some statistics from the datasets are

displayed in table 2. The number of unique segments per layer is stated within the ”Hierar-

chical layers” brackets. Dataset 1 initially had three hierarchical layers. However, figure 15

of the appendix shows a large percentage of unknowns in the third segment of dataset 1. As

explained in section 3.2.1, this segment is removed because the percentage of unknowns is

too high.

Dataset Field Language
Hierarchical
Layers

Number of
Observations

Training
Set

Test/Validation
Set

1
Domestic
products English 2 (16/108) 11,932 8,352 1,790

2
Funerals and
Insurances Dutch 2 (33/129) 8,791 6,153 1,319

3
Perfume, Cosmetics
and Skin care Dutch 2 (6/31) 5,860 4,102 879

Table 2: Details on used datasets

Furthermore, figure 5 displays how the lengths of the keywords are distributed for each

dataset, and the average is displayed with a red dotted line. The keywords’ lengths are sim-

ilar in the different datasets from these plots.

20



Figure 5: Distributions k dataset

In addition, it is essential to know how many keywords are in each segment. This is only

displayed for dataset 1, the only English dataset, but it is the same idea for the other datasets.

The result of the first segment of dataset 1 is displayed in figure 14 of the appendix. As

discussed in section 3.2.1, the segments with less than six keywords are already removed from

this dataset. From this figure, the dataset is unbalanced because the number of keywords in

the segments is far from the red-dotted average line for specific segments.

3.4 Keywords and Segments

Given the prepared data, the words should be converted to numbers, so the model under-

stands the terms and, later, the sentence’s meaning.

21



Figure 6: Tokenization and vectorization process

3.4.1 Tokenization

Every sentence in the keywords column should be split into words and punctuations. Tok-

enization is having all words and punctuation separate in a list. An example of a tokenized

sentence is displayed in figure 6. For the multi-output neural network, the standard tok-

enization is enough. However, BERT or one of the BERT -like models requires a different

tokenization. The first step of BERT tokenization is the same as the standard tokeniza-

tion. The upcoming steps are different. At the beginning of every sentence, the [CLS] token

should be added, and at the end, the [SEP ] token should be added (Devlin et al., 2018).

Furthermore, all tokenizations of BERT should have an equal length. Hence, if the size of

the current tokenization is shorter than the maximum size, the current tokenization should

be supplemented with [PAD] tokens (Devlin et al., 2018). The steps specific to a BERT -like

model are included in figure 6 in the ”BERT tokenization” step.

22



3.4.2 Vectorization

The process of converting the tokenized sequence to numbers to be fed into a machine-

learning model is called vectorization. There are multiple methods to vectorize the data. In

this paper, the segments for the multi-output model are vectorized using one-hot encoding;

since the segments are categorical variables, every possible segment gets a different number

assigned. The assigned number shows which place in the vector a one is placed instead of

a zero. The keywords need another method because every keyword is unique. For this,

the LabelEncoder of the sklearn python package is used, which assigns a number to every

unique token in the training data and sets the number at the place of the token in the

vector. Suppose the vector is smaller than the maximum length encoding. In that case, the

vector is complemented with zeros till all the encoded vectors have an equal length, just as

padding in this BERT tokenization. LabelEncoder is simple and has good results, but it

has the disadvantage that the integer values do not have any intrinsic meaning. The BERT

model uses a different vectorization method; it uses WordPiece embedding with a vocabulary

of 32,000 tokens designed by Wu et al. (2016). This vectorization is included inside the

pre-trained ”BertTokenizer”. The other BERT -like models use a similar method.

23



4 Empirical Approach

This section explains the approach used to find the most suitable model to hierarchically

classify the keywords based on the metrics F1-score and the predicted search volume and

mediavalue per segment. The empirical approach can be split into two categories. First,

the model used to obtain a hierarchical classification of keywords is explained. Second, the

metrics used to evaluate and compare the model’s performances. These topics are further

discussed in the following subsections.

4.1 Hierarchical Classification

A standard text classification attaches the text to one of the provided labels. It is called hi-

erarchical classification when the given text can have multiple labels, and these labels should

follow a specific order. The structure of the labels can be described as a tree. Hence, hierar-

chical classification can be seen as an organized classification. Figure 7 shows a hierarchical

tree with two levels. The positions in a tree are defined with specific terms. The top node

is always called the root node, and the nodes at the end of a path are called the leaf nodes.

Furthermore, the tree has some family relations. The parent nodes are defined as the nodes

which have nodes beneath. In figure 7 the Root, 1 and 2 are parent nodes (Gopal et al.,

2012). The nodes beneath a parent node are defined as child nodes. In figure 7, 1 and 2

are child nodes of Root, and 1.1 and 1.2 of 1, and lastly, 2.1 and 2.2 are child nodes of 2

(Gopal et al., 2012). In the following sections, the existing classification types and the types

of hierarchical classification are described.

24



Figure 7: Basic hierarchical tree

4.1.1 Classification Types

As Borges et al.(2013) explains, classification has three different main characteristics, namely:

Tree (T) or Directed Acyclic Graph (DAG), Single Path of Labels (SPL) or Multiple Path

of Labels (MPL) and Full Depth (FD) or Partial Depth (PD).

Tree or Direct Acyclic Graph

In both cases, the root node has no parent node. The difference between labels of a hierar-

chical classification problem following a DAG and a Tree is that with a Tree, every node has

only one parent node. Hence, with labels following a DAG, a node can have more than one

parent node. (Borges et al., 2013)

Single Path of Labels or Multi Path of Labels

Single Path of Labels is used when the result for every text should be only one path. Other-

wise, Multi Path of Labels is used when more than one path could result from a text. (Borges

et al., 2013)

25



Full Depth or Partial Depth

If the classification is Full Depth, every path should lead toward a leaf node. Otherwise, the

length of the classification output is not equal to the number of layers in the hierarchy. In

this case, the classification is Partial Depth. (Borges et al., 2013)

Furthermore, three different kinds of problems could be present. First, a multi-class problem.

In a multi-class problem, the label of a text classification model is chosen out of more than

two different classes. Second, multi-label classification matches one or more labels to every

input. This differs from the multi-class problem because it can have multiple labels, whereas

a multi-class can only have one. Lastly, multi-output differs from multi-class and multi-label

since it can occur simultaneously with one of the two cases mentioned before. Multi-output

occurs when the model has multiple branches and, thus, multiple outputs per observation.

During this paper, it is assumed that nodes can have only one parent node (tree), the result

should be a single path (Single Path of Labels), and the path should end with a leaf node (Full

Depth). In addition, every dataset has more than two different labels per layer, multi-class,

and every layer in the hierarchy has a different output. Hence, this paper combines a multi-

output model with a multi-class model. In addition, hierarchy is added to this combination.

Which types of hierarchical classification can be used are explained in the next section.

4.1.2 Types Hierarchical Classification

Hierarchical classification is known to have different approaches to solving the problem, but

all have some pros and cons. The three main types of approaches are explained in the

following paragraphs: flat, global, and local.

Flat Hierarchical Classification

Until the mid-1990s, the hierarchy was ignored, and hierarchical classifications were per-

formed similarly to standard text classifications (Kiritchenko et al., 2005). All layers in the

hierarchical tree, except the layer including the leaf nodes, are removed. In figure 7, only the

26



leaf nodes 1.1, 1.2, 2.1, 2.2, and the Root node are left in the classification problem. This

approach is known as flat classification. The flat classification does not consider meaningful

information about the hierarchy.

Local Hierarchical Classification

A local hierarchical classification method builds several different classifiers. This method is

also known as top-down level-based because it takes the most relevant categories first, which

are displayed in the first layers (Borges et al., 2013). Hence, the model works from top to

bottom. This local approach can be split into three different methods based on the choice of

classifiers.

First, the local classifier per node. In this case, a binary classifier is trained for every node in

the hierarchical network (Pereira et al., 2021). For example, in figure 7, this would result in

six classifiers, two for the first level and four for the second level. However, a disadvantage

of the local classifier per node is that if the hierarchy gets larger, the number of classifiers

needed to train will increase rapidly. Furthermore, it is still being determined if the hierarchy

is respected using this approach. The local classification method per node is the most used

local classification method. It was, for example, used by Xue et al.(2008), Valentini (2009),

Barutcuoglu et al. (2006), and Guan et al. (2008). This method is preferred to the other

local methods when the sub-categories of the child nodes of a parent node are very different.

Second, the local classifier per parent node. As the name indicates, one multi-class classifier

is trained per parent node (Pereira et al., 2021). One disadvantage of this method is that it

cannot be used on problems with a DAG structure (Borges et al., 2013). Referring to figure

7, this would mean two classifiers are trained, one for node 1 and one for node 2. Hence, the

amount of classifiers to train is reduced compared to the local classifier per node method.

This approach was used by Silla and Freitas (2011). This method is preferred to the other

local methods when the child nodes of a parent are more similar.

Lastly, the local classifier per level approach. This approach trains one multi-class classifier

27



per level in the hierarchy (Freitas and Carvalho, 2007). This method can be used for trees

and DAGs’, but applying it to a DAG may be more difficult as there can be more than one

possible path (Borges et al., 2013). Applying the local classifier per level approach to figure

7 would lead to training two multi-class classifiers, as these two layers are present in this

example. This method is preferred to the other local methods when the different categories

at every level in the hierarchy are similar. Still, the categories at a different level can be very

different from another level.

Global Hierarchical Classification

The local classifiers mentioned in the previous paragraph need more than one trained clas-

sifier. Hence, if the number of levels or nodes in the hierarchical structure increases, the

number of trained classifiers also increases. Hence, considering the hierarchy, having one

classifier for the whole model would be preferred. This is defined as a global hierarchical

classification. There has been limited research on the global methods compared to the local

methods. However, in the last few years, research on global methods increased.

Global hierarchical text classification methods organize text data into a hierarchy of categories

or classes. Here are some papers that discuss existing global hierarchical text classification

methods: Zhou et al. (2020), Deng et al. (2021), Meng et al. (2019), Wang et al. (2021).

Zhou et al. (2020) used a ”novel end-to-end hierarchy-aware global model” where the hier-

archy is a directed graph, and the model is implemented as a hierarchy encoder. However,

this model has two limitations which are resolved in HTCInfoMax (Deng et al., 2021) by

using information maximization, including the following two modules: ”text-label mutual in-

formation maximization” (Deng et al., 2021) and ”label prior matching” (Deng et al., 2021).

Furthermore, WeSHClass uses a weakly-supervised neural method for hierarchical text clas-

sification with a hierarchical neural structure (Meng et al., 2019). Lastly, Wang et al. (2021)

imitated the cognitive structure learning for the hierarchical multi-label text classification;

the model is called Hierarchical Cognitive Structure Learning Model (HCSM). HCSM exists

of an Attentional Ordered Recurrent Neural Network (AORNN) part and a Hierarchical Bi-

Directional Capsule (HBiCaps) part (Wang et al., 2021).

28



This paper uses a flat classification method, a local classification with a classifier per parent

node, and global methods. The flat classifier is selected to have a baseline, and the local

classifier is selected to compare to the global hierarchical classifiers. Specifically, the local

classifier per parent node is selected, instead of the other local classifiers, because the child

nodes are similar. However, this is an interpretation that may differ per person. Furthermore,

the global methods are selected because they are preferred as it is trained ones. However,

the models mentioned in the previous paragraph are used on long keywords in English. This

paper uses a hierarchical classification method for shorter keywords and also in Dutch. Hence,

the models mentioned before are not used in this paper. Global methods will be combined

with neural networks for a new model, as neural networks were shown to be efficient to

use with hierarchical classification by Wang et al. (2021) and Meng et al. (2019), which are

explained in the next section.

4.2 Neural Network

A neural network (NN) can be compared to the working of a human brain, the biological

neuron. Biological neurons have a cell body consisting of a nucleus, synapses, and axons

(Livshin, 2019). Synapses get input/impulses and process them towards the cell body. The

cell body then processes it towards the axon and the axon to the output synapses (Livshin,

2019). Converting it towards an artificial neuron is done by simplifying and changing it

slightly. Each input to a neuron has a specific weight indicating the influence an input has

on predicting the output. The neuron itself most often consists of two parts. First, the

calculations performed on the input layers are explained in the next section. Second, the

activation function is explained below.

There are several different activation functions. The choice of function depends on the

range, how fast the function changes, and personal preferences. The most popular activation

function is the Softmax (2) which is defined below (Schmidt-Hieber, 2020). The Softmax

function rescales the values, so all are in the [0,1] range. However, there are many more

options to use as an activation function.

29



Softmax(xi) = exi∑
j exj

(2)

4.2.1 Layers

The layers used during this paper for the structure of a NN are explained in this section.

1. Embedding Layer: a layer that converts categorical variables into dense vectors

representing complex relationships between the categorical and target variables. It is

often used as the first layer of a neural network. It takes a list of integers as input, each

integer representing a different vocabulary word, and the output is the embedding. The

embedding layer searches for the embedding vector for each integer in a weight matrix

and returns a dense vector for each integer.

2. Linear Layer: a fully connected or dense layer, is often used in neural network ar-

chitectures. It consists of a set of neurons, which receive input from the neurons of

the previous layer and produce an output passed to the next layer. The output of a

neuron is then a linear combination of the inputs, y = xAT + b, weighted by a set of

parameters called weights and biases. These weights and biases are learned during the

training process of the neural network by using an optimization algorithm that adjusts

them to minimize the error between the network’s predictions and the actual labels

of the training data. Linear layers are used to learn complex nonlinear relationships

between the input and output of a neural network, and they are an essential part of

many neural networks. The input of the layer is equal to the size of every input sample,

and the output is equal to the size of every output sample.

3. BERT Layer: as this layer is more complex, it will be explained separately in section

4.2.5.

To find the best-performing model for our hierarchical data. First, a multi-output neural

network is tested to determine how a model which does not contain hierarchy performs.

Afterward, a custom loss function is added to learn the model hierarchical understanding.

30



Lastly, BERT or a BERT -like model is implemented because it has more knowledge of the

context of sentences. These possible models are further explained in the upcoming sections.

4.2.2 Multi-Output Neural Network

A multi-output neural network is a model which gives two or more outputs. In a hierarchical

classification model, the number of outputs would equal the number of hierarchical levels.

Hence, the model’s input would be a list of keywords, and each output would correspond to

the segments of a different layer in the hierarchy. For the model to classify the keywords

correctly in multiple classes, it should know how many unique hierarchical classes are present

where the keywords could be classified into for each hierarchical layer. The layout of the

model, including layers, would then be as follows:

Figure 8: Model architecture of multi-output neural network

Within the brackets of the linear and output layers, the input size is stated, and the output

size is displayed. In this figure, two outputs are displayed. When more than two layers are

present in the hierarchy, more outputs should be added to outputs. In section 4.2.1, the

function of each different layer is explained, including the input and output.

In this model, Categorical Cross-Entropy loss, displayed in equation 3, is used, which is

frequently used for multi-class classification problems and explained further in the next sec-

31



tion. It is applied separately to each output with a Softmax function and summed afterward.

Other settings of the model are displayed in table 11 of the appendix.

4.2.3 Loss Functions

A Neural Network is trained using back-propagation by adjusting the network weights to

minimize the error between the desired and actual outputs (Goh, 1995). It uses gradient

descent to take small steps in the direction that reduces the error and a user-defined learning

rate to control the size of these steps. The process involves feeding the input data through

the network to get the output, calculating the error, and propagating it back through the

network to adjust the weights (Goh, 1995).

One of the most common optimizers used to train using back-propagation is Adam (Huang

et al., 2019). Adam uses gradient-based stochastic optimization; it uses a small amount

of memory and needs first-order gradients. The algorithm used with Adam was designed

by Kingma and Ba (2014). In addition, a new, improved version of Adam is designed by

Loshchilov and Hutter (2017) called AdamW. AdamW is Adam with decoupled weight de-

cay, with a better performance on most tasks than the regular Adam. The pseudo-code of

AdamW designed by Loshchilov and Hutter (2017) is stated in algorithm 1. AdamW only

has one small change compared to the Adam algorithm, and this change is displayed with a

green box in the algorithm. In the algorithm, λ is the weight decay value, and ηt is a scaling

factor defined using SetScheduleMultiplier(t). To clarify, g2
t is an element-wise square and

βt
1 and βt

2 are the betas defined in the algorithm to the power t. In addition, all operations

applied to vectors are done element-wise.

In algorithm 1, the pseudo-code of the AdamW algorithm is displayed. In this paragraph,

the steps are explained more extensively. Starting in lines 4 and 5, f(θ) is a stochastic scalar

function with parameter θ (Kingma and Ba, 2014). In this algorithm, ∇ft(θt) represents

the gradients with respect to θ at t because the goal is to minimize the expected value of

f(θ). Continuing at line 6 up to and including 9, mt and vt are updated, which are the

exponential moving averages and the squared gradient. The betas in these lines take care

32



Algorithm 1 Adam and Adam with decoupled weight decay ( AdamW ) taken from:

Loshchilov and Hutter (2017) and Kingma and Ba (2014). The default settings used are

t = 0, α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8, λ ∈ R.
1: initialize parameter vector θt=0 ∈ Rn, first moment vector mt=0← 0. second moment

vector vt=0← 0, schedule multiplier ηt=0 ∈ R

2: while θt is not converged do

3: t← t + 1

4: ∇ft(θt−1)← SelectBatch(θt−1) ▷ select batch and return the gradient

5: gt←∇ft(θt−1) ▷ get gradients with respect to stochastic objective at t

6: mt← β1mt−1 + (1−β1)gt ▷ update biased first moment estimate

7: vt← β2vt−1 + (1−β2)g2
t ▷ update biased second raw moment estimate

8: m̂t← mt
1−βt

1
▷ compute bias-corrected first moment estimate

9: v̂t← vt
1−βt

2
▷ compute bias-corrected second raw moment estimate

10: ηt← SetScheduleMultiplier(t) ▷ can be fixed, decay, or be used for warm restarts

11: θt← θt−1−ηt( αm̂t√
v̂t+ε

+ λθt−1 ) ▷ update parameters

12: end while

13: return optimized parameters θt

of the exponential decay rate of the moving averages. Since mt and vt are initialized as

zero vectors, they can be biased towards zero in the first steps or if the decay rates are low

(Kingma and Ba, 2014). To solve this problem, bias-corrected first and second moments

estimates are computed in lines 8 and 9. Afterward, the parameters can be updated, and

start the loop again till the stopping criterion is met.

The optimizer is trying to reduce the error of the next round by changing the weights. This

error is also known as the loss function. Every problem prefers a different loss function. Most

loss functions require a Softmax layer before applying the loss function. The application of

Softmax is explained in equation 2. For multi-class classification, the most popular loss

33



function is cross-entropy loss. Below the cross entropy loss is stated (Teahan, 2000):

Llossl =−
n∑

j=0
yljlog(ỹlj) (3)

where n is the number of different classes and l means the lth hierarchical layer. Hence, ylj

corresponds to the expected output of layer l and class j. Furthermore, ỹli corresponds to

the probability of the Softmax layer of class i and layer l of the hierarchical layers.

ylj =


1 if class j of the lth layer is expected

0 if class j of the lth layer is not expected
(4)

However, the cross entropy loss does not consider the hierarchy between the layers. To include

this, a hierarchical loss is designed by Gao et al. (2020):

Hlossl =−cIlQl
l c

Il−1Ql
l−1 (5)

where Ql and Il−1 are defined below and c can be a constant or an error in prediction.

Ql =



1 if predicted label in the lth layer is not a child class of the predicted class

in the (l−1)th layer

0 else

(6)

Il−1 =


1 if ŷl ̸= yl

0 else
(7)

In equation 7, ŷl = maxl ỹli is the predicted class for layer l. Furthermore, yl represents the

label of the lth layer. The indicator function mentioned in equation 6 is 1 when the hierarchy

is wrong; the predicted parent and child nodes do not correspond to the hierarchy given in

this case. Moreover, the indicator in equation 7 shows when the prediction is incorrect. Over-

all, the hierarchical loss function penalizes when the hierarchy of the predictions is incorrect

and the prediction of one of the labels in the layer is incorrect.

Combining the loss per layer and the custom hierarchical loss leads to the total loss function:

34



Loss(θ) =
L∑

i=1
αiLlossi +

L∑
i=2

βiHlossi (8)

where αi and βi can be chosen to determine the weights between layer loss and hierarchical

loss. In this paper, the choice is made to use αi = 0.8 ∀ i = 1, . . . ,L and βi = 1 ∀ i = 2, . . . ,L.

Furthermore, the θ displayed in the loss function is the parameter. According to Gao et al.

(2020), this loss function is working effectively on text data.

Custom Loss Function

The loss function of a NN determines where the model should optimize on. When using the

categorical cross-entropy loss, mentioned in equation 3, the models’ only importance is to

have the correct segment to the keyword, and the different hierarchies in the segments are

not taken into account. To account for the hierarchy in the classification model, the loss

function of Gao et al.(2020), mentioned in the previous paragraph, is implemented. Using

this loss function, the model is optimized on the correctness of the hierarchy.

As explained before, the loss function of Gao et al.(2020) consists of a standard, cross-entropy

part, and a hierarchical part. Penalization of the hierarchical part in the loss function only

occurs if the hierarchy is wrong. Hence, only the standard cross-entropy loss function is

present when the hierarchy is correct, but both predictions are wrong. An extra penalty is

included in the loss function as this case is worse because the model should not get less loss

because of ”accidentally” having a correct hierarchy while all predictions are wrong. The

following part would be added to the hierarchical loss defined in equation 5:

(1−Ql)(cIl·Il−1−1) (9)

where c is a constant and Ql and Il are defined in equations 6 and 7. The first part of

equation 9, (1−Ql), filters out the observation that already has a hierarchical loss, where

Ql = 1. Furthermore, cIl·Il−1 , is included such that the extra penalty is not added if one of

the previous or current observations is predicted correctly. Lastly, the −1 is added to let the

penalty start from 0 instead of 1. The total hierarchical loss will then change toward the

following equation:

35



Hlossl =−cIlQl
l c

Il−1Ql
l−1 + (1−Ql)(cIl·Il−1−1) (10)

Custom Loss Function based on Search Volume

The previous paragraph showed a custom loss function designed to minimize the amount of

incorrectly predicted segments. However, as explained in section 2.1.3, some keywords are

searched for often, and some are not used frequently. In the custom loss function mentioned

before, these cases are weighted equally. However, if a keyword with a small search volume is

incorrectly predicted, this will not have an enormous influence on the sum of search volumes

which conclusions are drawn from. Although, if a keyword with an extensive search volume

is incorrectly classified, it has a much more considerable influence on the conclusion. Hence,

a different loss function can be designed to consider the difference in importance based on

the height of the search volume. In addition, the mediavalue could be added, but as the

relationship is usually close together, only the search volume is used in this paper.

The custom loss function, considering the importance of a keyword, is added to an existing

loss function in this paper on the newly designed loss function mentioned in the previous

paragraph. The search volume part is displayed in the equation below. A natural logarithm is

used to scale the search volumes, and a plus one is added to exclude zero values. Furthermore,

it is multiplied by the indicator function, indicating correct classification.

SV lossl = ln(svl + 1) · Il (11)

Including the function in the new custom loss function mentioned in the previous paragraph

leads to the loss function below. Where the search volume loss is an addition to the previous

custom loss. This loss function is meant to ensure the model creates correct predictions and

reduces the deviation from the sum of search volumes per segment, as explained in section

4.4.2, the MAPE metric.

Loss(θ) =
L∑

i=1
(αi ·Llossi + γi ·SV lossi) +

L∑
i=2

βi ·Hlossi (12)

36



4.2.4 Transformers

The previous sections provide the options in a NN when a model is designed. Hence, the

focus is on the design of a model from this point. A part of the used model will consist of

BERT , which was stated in the layers section, but to explain the BERT model better, the

transformers should be introduced. Transformers are a network architecture introduced in

the paper ”Attention is All You Need” (Vaswani et al., 2017) based on self-attention mecha-

nisms, which make the model better at considering the relationship between different parts

of the input sentence, and it processes the sentences sequentially. This allows the model to

weigh some input parts more than others (Vaswani et al., 2017).

In figure 9, the structure of a transformer model is displayed. In this paper, a transformer

takes a sequence of tokens extracted from a sentence and produces an output. To get to the

output, the transformer first embeds the input tokens and then processes the embedded input

tokens through a series of self-attention layers (Vaswani et al., 2017). In each self-attention

layer, the model computes attention weights for each input vector relative to all the other

input vectors (Lin et al., 2022). The attention weights represent the importance of each input

vector in relation to the others and are used to compute a weighted sum of the values, which

is then used as input to the next layer in the model. The self-attention layers are interleaved

with feedforward layers, which process the input using standard neural network techniques

such as convolution and pooling layers (Lin et al., 2022). The transformer’s output is com-

puted by applying a final feedforward layer to the output of the self-attention layers. Lastly,

the outputs of the decoders are inserted into a linear layer and afterward in a softmax layer.

To conclude, transformers can process the input sequence in parallel instead of sequentially,

like many other models (Vaswani et al., 2017). This makes transformers faster to train and

evaluate and handle long input sequences more easily.

37



Figure 9: Transformer model architecture (Vaswani et al., 2017)

4.2.5 BERT

BERT , which stands for ”Bidirectional Encoder Representations from Transformers”, is a

type of neural network architecture based on the transformers of Vaswani et al. (2017) ex-

plained in the previous section. It has been used for several natural language processing

tasks, including text classification (Devlin et al., 2018). BERT is designed to process the

input self-supervised by predicting missing or randomly permuted words in a sentence (De-

vlin et al., 2018). This allows BERT to learn relations between words in a sentence and to

understand the meaning of words in the context of a sentence instead of only the particular

meaning of a word.

In text classification, BERT can be used to encode the input text into a fixed-length vector

representation that represents the meaning of the text and the relationships between the

words. This vector representation can then be fed into a classifier, for example, a linear

layer, to make predictions about the input class. BERT is helpful for text classification tasks

38



because it can represent relationships between words and their meanings and generalize well

to unseen data (Devlin et al., 2018).

Figure 10: Word embeddings (GoogleDevelopers, 2022)

One key advantage of BERT is that it is a pre-trained model, meaning it has already been

trained on a large dataset. A pre-trained model is preferred since the model already knows

the syntax and semantics. During pre-training, a sentence embedding is created of the key-

word, which captures the meaning of a whole sentence. Figure 10 shows an example of word

embeddings, similar to sentence embeddings. In the figure, similar words are closer to each

other than more different words. The similarity of words, or sentences, can be seen as the

distance between the words or sentences. Thus, if words or sentences are similar, it knows

that they can be represented in the same way, and thus the model should only be fine-tuned

to the type of data used and the corresponding wanted output, thus saving much training

time. The model can be fine-tuned for specific tasks by adding specific layers on top of the

BERT layers, and fine-tuning learns the model which kind of data is used and what output is

expected. The pre-trained base model can be used for a wide range of NLP tasks and achieve

substantial results with minimal labeled training data, as it already knows the syntax and

semantics of sentences. During the remaining part of the paper, the pre-trained BERTbase

model, trained by Devlin et al. (2018), is used, which consists of 12 layers, a hidden size

of 768, 12 self-attention heads, and 110M parameters. The architecture of the BERTbase

model is displayed in figure 11, where the second box is a transformer layer. In figure 9,

the used transformer structure, the encoder, is displayed on the left while the right side, the

39



decoder, is not used in a BERT model. Because of the transformer layers, BERT is called a

transformer model. It can process input sequences in parallel and takes care of dependencies

between words in long sentences more effectively than other models, for example, recurrent

neural networks (RNNs) (Devlin et al., 2018). This makes BERT suitable for tasks that

need an understanding of the context and structure of sentences or documents, such as text

classification.

Figure 11: BERTbase model architecture (Khatoon et al., 2021)

To adjust the BERT model to the kind of data used, the model is fine-tuned. When willing

to fine-tune for a specific task the available data, including the correct labeling, can be in-

serted into the model as the in and output of the task. This labeled data is used to adjust

the model to the corresponding NLP task.

However, since BERT was designed, many models have been produced to improve the per-

formance of BERT . For example, RoBERTa (Liu et al., 2019) was designed. RoBERTa,

”Robustly Optimized BERT Pretraining Approach”, is a variant of the BERT model re-

searchers at Facebook AI developed. It is based on the BERT architecture and shares many

of its characteristics, but it was specifically designed to improve upon the pre-training proce-

dure of BERT . RoBERTa was trained on a larger dataset and for a more extended period

of time than BERT . It was also designed to be more robust to various forms of data disrup-

tion, such as word masking and sentence shuffling (Liu et al., 2019). The model is trained

using dynamic masking where the masking pattern is generated every time a sequence is

inputted to the model, full-sentences without NSP (Next Sentence Prediction) loss, larger

40



mini-batches, step sizes, and learning rates and a different kind of masking (Liu et al., 2019).

Sequentially, the fine-tuning of RoBERTa can be done by adding task-specific layers on

top of the pre-trained RoBERTa layers as with BERT. It has achieved state-of-the-art re-

sults on various natural language processing tasks, including text classification (Liu et al.,

2019). RoBERTa is outperforming BERT , XLNet, and DistilBERT , while XLNET is

performing better than BERT , DistilBERT is performing worse on accuracy but is faster

(Liu et al., 2019). In addition to the strong performance, RoBERTa has the advantage of

being relatively fast to train compared to BERT , making it a popular choice for many NLP

applications.

All the models mentioned before are pre-trained in the English language and thus would not

perform as well in different languages as it does in English. Due to the lack of performance in

different languages, these models are also designed for other languages, for example, Dutch.

The Dutch version of BERT is called BERTje (de Vries et al., 2019) and is pre-trained

on books, TwNC (news corpus), SoNaR-500, Web news, and Wikipedia. Furthermore, the

Dutch version of RoBERTa is called RobBERT (Delobelle et al., 2020). The model has a

different tokenizer and was trained on the OSCAR corpus, which is much larger than the

data used for pre-training BERTje, 12 GB versus 39 GB.

Nevertheless, as language usage keeps evolving, a new model of RobBERT was designed to

take care of the changes in the Dutch language over the last three years (Delobelle et al.,

2022). The model is pre-trained on a new version of OSCAR with language up until January

2022. This new model is called RobBERT −2022, designed by Delobelle et al. (2022). The

results of this model are better on more recent datasets and have a similar performance on

the older datasets (Delobelle et al., 2022).

Concluding, a selection is made to use in this paper. For English datasets as a comparison,

the original BERT (Devlin et al., 2018) model is used, and the RoBERT (Liu et al., 2019)

model because it performs better than BERT . For the Dutch datasets, models similar to

41



the English models are used, which are BERTje (de Vries et al., 2019), and the renewed

RobBERT (Delobelle et al., 2020) named RobBERT −2022 (Delobelle et al., 2022).

4.2.6 BERT-like Models

Multi-output Neural Networks using one of the custom loss functions, with the hierarchical

part given in equation 10 and 12, could be improved by learning more about the context of

the sentences. Since BERT is a bidirectional encoder, it has a better sense of the meaning of

the whole sentence and not just word by word (Devlin et al., 2018), as stated in section 4.2.5.

The classic BERT model is trained in the English language. However, not all data sets are

in English. As most of the data sets available for classification are in English or Dutch, this

paper will focus on those two languages.

The Dutch version of BERT (Devlin et al., 2018) is called BERTje (de Vries et al.,

2019). As explained in section 4.2.5 RoBERTa (Liu et al., 2019) is performing better than

BERT in most cases. Hence, the performance of RoBERT , and the Dutch renewed version

RobBERT −2022 (Delobelle et al., 2022), are compared to the BERT models.

The implementation of the BERT -like models is approximately equal to the model archi-

tecture displayed in figure 8. Different from the multi-output classification architecture, the

embedding layer is replaced by one of the BERT -like models. The new architecture is dis-

played in figure 12. Furthermore, the settings of the model are displayed in table 12 of the

appendix. The steps performed for a BERT -like model are only fine-tuning steps as a pre-

trained model is used, the BERTbase model. Further information on BERT -like models and

the other layers was explained in sections 4.2.5 and 4.2.1.

42



Figure 12: Model Architecture of BERT multi-output neural network

4.3 Evaluation Metrics

There are several options to measure how a model performs; some options are explained in

this section. The metrics can be divided into two groups. On the one hand, the metrics

designed for a flat model. On the other hand, metrics designed for hierarchical classification.

4.3.1 Precision, Recall and F1-score

Predictions can be classified into four groups for binary classification, as displayed in table

3. Based on these results, the goodness of the model is determined. A perfect model would

have no false positive (FP) predictions and false negative (FN) predictions.

Actual Positive Actual Negative

Predicted Positive True positive (TP) False negative (FN)

Predicted Negative False positive (FP) True negative (TN)

Table 3: Confusion Matrix

Text classification most often uses the following metrics: F1-score, accuracy(acc), precision(P ),

and recall(R). In binary classification, this could be calculated in the following way (Opitz

43



and Burst, 2019):

acc = TP + TN

TP + TN + FP + FN

P = TP

TP + FP

R = TP

TP + FN

F1 = 2 P ·R
P + R

Accuracy measures the ratio of correct predictions over the total amount of predictions.

Precision shows how many of the actual positives are positively predicted (TP). Recall counts

how many of the positively predicted are indeed positive. Lastly, the F1-score uses precision

and recall to calculate a harmonic mean(Lipton et al., 2014). Accuracy measures all classes

equally important, while F1-score better measures the incorrectly classified classes. Moreover,

accuracy can be used when the dataset is balanced, and F1-score is a better choice when the

dataset is imbalanced.

4.3.2 Hierarchical Evaluation Metrics

Different metrics are designed to analyze the performance of a hierarchical multi-label clas-

sification model than the metrics specified in the previous section. Accuracy, Precision, and

Recall can be applied to a hierarchical classification using a flat model. In hierarchical clas-

sification, the functions would be applied separately to the different layers of the hierarchical

tree. However, they do not consider how far the prediction is from the actual label in the

hierarchical tree. Kiritchenko et al. (2005) designed a precision and recall function applicable

to hierarchical classification. Displayed below are hP (Hierarchical Precision) and hR (Hi-

erarchical Recall), which lead to hF , giving precision and recall the same weight (Silla and

Freitas, 2011)

hP =
∑

i |Ĉi∩ Ĉ ′
i|∑

i |Ĉ ′
i|

44



hR =
∑

i |Ĉi∩ Ĉ ′
i|∑

i |Ĉi|

hF = 2 ·hP ·hR

hP + hR

where Ci is the actual class and C ′
i the predicted class. Taking into account the hierarchy,

the ancestors are added to the classes. This leads to Ĉi being the actual path and Ĉ ′
i the

predicted path.

These hierarchical evaluation metrics are based on three requirements (Kiritchenko et al.,

2005). First, if a prediction is partially correct, it should be penalized less (Kiritchenko

et al., 2005). This means that if part of the path with segments in the hierarchical tree

corresponds to the correct path of segments, it should be penalized less. Second, suppose the

prediction is further away from the actual leaf node. In that case, it should be penalized more

(Kiritchenko et al., 2005) because a segment almost equal to the predicted segment is not

as bad as a completely different one. Lastly, an incorrect prediction at a higher level in the

hierarchy should be penalized more than an incorrect prediction at a lower level (Kiritchenko

et al., 2005).

4.4 Model Evaluation

The model performance can be evaluated using some of the metrics stated in the previous

section in combination with improved methods specific to this paper’s problem. First, the

baseline models to compare the new models with are stated. Lastly, the evaluation metrics

used in this paper are chosen and explained.

4.4.1 Baseline and Benchmark models

Are the newly designed models performing better than the existing methods? The models

stated in this paper should be compared to the results of the current methods. Hence, the

existing techniques are tested using the same data used in this paper. The existing methods

can be split into two groups. First, the methods that do not account for the model’s hierarchy

45



are flat models, just classifying all levels in the hierarchy together. Second, existing methods

that consider the hierarchy, using global or local methods, as explained in section 4.1.2.

First is the model group that does not consider the hierarchy. For this group, three models are

selected, the multi-branch neural network, a BERT or BERTje model, and the RoBERTa

or RobBERT − 2022. The choice in the BERT and RoBERT models depends on the

dataset’s language. The second group consists of models that take the hierarchical structure

into account. Two existing models are used as comparisons, one using local classifiers per

parent node, HiClass (Miranda et al., 2021), and the other using the existing loss functions

of equations 3 and 8 in combination with RoBERTa or RobBERT − 2022. These models

are compared to each other and to the models designed during this paper using RoBERTa

or RobBERT −2022 in combination with the two new loss functions.

4.4.2 Evaluation Metrics

Determining which model performs better should be based on a metric. The most popular

metric in text classification is F1-score, explained in section 4.3.1 because most text classi-

fication datasets are imbalanced. The datasets used in this paper are also imbalanced, as

explained in section 3.2.2, F1-score is thus the best metric for this data. The requirements

for a hierarchical evaluation metric, stated in section 4.3.2, do not add value to the problem

in this paper. Because, for the data used in this paper, the evaluation metrics per layer are

equally important, and the depth of the hierarchical trees is low, mainly two and a maximum

of three hierarchical layers are present. Thus, the standard F1-score is used as the evaluation

metric.

Another metric used in this paper is based on the mediavalue and search volume, and these

values help decide about segments to focus on during advertising. As explained in section

2.1.3, the decision depends on the size of the search volume and mediavalue. Suppose the

search volumes are approximately equal and the mediavalue of one segment is smaller than

another. In that case, focusing on the one with the lower mediavalue for paid advertising is

better. Hence, the classification can be evaluated by investigating the difference in search

volume and mediavalue per segment compared to the values in the ”true” model. From the

46



difference in search volume, it can be concluded that the number of searchers on a segment

where predicted to be lower or higher than the actual number of searchers. If one segment

was predicted too low, more searchers saw the link than predicted. On the other hand, if

the predicted value was too high, fewer searchers saw the link than predicted. Thus, if the

classification is incorrect, a different amount of searchers is targeted at each segment than

expected. If the classification was incorrect, the advertiser could also focus on the wrong

segment based on the supposed search volume. The difference between the true model and

the predicted model in mediavalue may lead to a wrong indication of the required budget for

advertising on a specific segment. Hence, it could be focussing on a segment that, in reality,

is more expensive than predicted while another segment is predicted to be expensive but is

cheaper. Thus, the model performs better if the difference between the predicted and actual

search volume and mediavalue is smaller.

In addition, the metric based on search volume and mediavalue compare the different models

based on how close the predicted mediavalue and search volume are to the actual values

per segment. The Mean Squared Error (MSE) is one option to measure how close the

predicted values are. However, MSE does not consider the total value of the search volume

or mediavalue. Hence, if a segment with a search volume of ten is predicted as zero, the

MSE is equal to the MSE of a segment with a search volume of 10,000 and was predicted as

10,010. Therefore, as a difference is preferred between the two cases mentioned before, Mean

Absolute Percentage Error (MAPE) is selected, which is displayed in equation 13 below.

MAPE = 1
N

N∑
i=1

∣∣∣∣ ŷi−yi

yi

∣∣∣∣ (13)

47



5 Results

In this section, the models explained in section 4 are applied to the datasets mentioned

in section 3. All results in this section are based on running the models on an ”Intel(R)

Core(TM) i7-8650U CPU @ 1.90GHz 2.11 GHz” using the settings explained in section 4.

First, the results per model are stated and explained. Second, it is shown what improvements

the model has compared to manually classifying. Lastly, the possibility of misclassifications

is shown.

5.1 Results per Model

In table 4, the used models are stated together with the abbreviations used in the successive

tables. More information on these models is explained in the previous section. Running

these models on the different datasets gave the results displayed in table 5. In this table, S1

and S2 refer to segment 1 and segment 2. Furthermore, ”Hierarchy” shows the number of

keywords where the predicted first segment is not a parent of the predicted second segment.

The ”Incorrect” column indicates the number of incorrectly classified segments. Lastly, the

time column shows the number of seconds needed to classify the test set.

Model Type Abbreviation

Multi-output neural network Flat classification MONN

HiClass Local Classifier per Parent Node HiClass

BERT/BERTje model BERT(je)

RoBERTa/RobBERT-2022 model Ro(b)BERT

RoBERTa/RobBERT-2022 + custom loss Loss function equation (8) Ro(b)BERTcl

RoBERTa/RobBERT-2022 + custom loss Loss function equation (10) Ro(b)BERTclNew

RoBERTa/RobBERT-2022 + custom loss Loss function equation (11+12) Ro(b)BERTclNewSV

Table 4: Comparison models with further used abbreviations

48



F1 MAPE SV MAPE MV MAPE SV and MV

Model S1 S2 Mean S1 S2 S1 S2 Mean Hierarchy Incorrect Time (s)
D

at
as

et
1

HiClass 0.9703 0.8549 0.9126 0.0978 0.2886 0.0611 0.6318 0.2699 0 186 0.049

MONN 0.9727 0.8968 0.9348 0.0112 0.1024 0.0079 0.1460 0.0669 28 181 0.001

BERT 0.9922 0.9274 0.9598 0.0037 0.5506 0.0036 0.2539 0.2030 8 115 196.363

Ro(b)BERT 0.9906 0.9492 0.9699 0.0057 0.1141 0.0073 0.2567 0.0959 8 88 177.969

Ro(b)BERTcl 0.9896 0.9512 0.9704 0.0051 0.0689 0.0060 0.0687 0.0372 6 84 174.783

Ro(b)BERTclNew 0.9923 0.9633 0.9778 0.0121 0.1780 0.0304 0.5113 0.1829 8 74 174.219

Ro(b)BERTclNewSV 0.9853 0.9553 0.9703 0.0130 0.0317 0.2347 0.4846 0.1910 8 90 177.448

D
at

as
et

2

HiClass 0.7186 0.5465 0.6326 0.1756 0.3743 0.1166 0.5085 0.2938 0 410 0.037

MONN 0.7682 0.5805 0.6743 0.2440 0.4995 0.1891 0.3288 0.3154 46 418 0.001

BERT 0.8791 0.7666 0.8228 0.1112 0.3199 0.0734 0.4304 0.2337 14 186 102.230

Ro(b)BERT 0.8675 0.7820 0.8247 0.2200 0.8933 0.0939 1.0642 0.5679 6 164 101.131

Ro(b)BERTcl 0.8770 0.7838 0.8304 0.1335 0.3426 0.0675 0.3456 0.2223 15 169 99.978

Ro(b)BERTclNew 0.8827 0.7732 0.8280 0.1014 1.8823 0.0873 2.1527 1.0559 11 161 101.283

Ro(b)BERTclNewSV 0.8630 0.8388 0.8509 0.1151 0.0984 0.3459 0.2894 0.2122 20 160 100.285

D
at

as
et

3

HiClass 0.9367 0.8142 0.8755 0.1128 0.1198 0.1154 0.1198 0.1169 0 124 0.027

MONN 0.9168 0.8013 0.8590 0.0873 0.1451 0.0593 0.1666 0.1145 21 145 0.001

BERT 0.9716 0.8576 0.9146 0.0816 0.5551 0.0683 0.6401 0.3363 5 78 68.427

Ro(b)BERT 0.9781 0.9351 0.9566 0.0633 0.2156 0.0646 0.2248 0.1421 2 61 69.159

Ro(b)BERTcl 0.9712 0.9058 0.9385 0.0830 0.1131 0.0810 0.1297 0.1017 9 71 69.103

Ro(b)BERTclNew 0.9794 0.9549 0.9672 0.0629 0.1376 0.0640 0.1815 0.1115 0 50 69.010

Ro(b)BERTsclNewSV 0.9797 0.8985 0.9526 0.0425 0.0445 0.0820 0.0644 0.0584 6 56 72.770

Table
5:

R
esults

per
dataset

and
m

odel

49



Several things can be observed in this table when comparing the different models and datasets.

Beginning at the left-hand side of the table, the F1-score. From these scores, all BERT -like

models perform better than the multi-output neural network and the local classification

method, HiClass. Afterward, BERT is compared to the Ro(b)BERT model. In all three

datasets, the Ro(b)BERT model outperforms the BERT model. Lastly, it can be examined

if the models considering the hierarchy perform better than the basic model. All three hier-

archical models outperform the standard Ro(b)BERT model based on the F1-score. Hence,

it does improve when taking the hierarchy into account.

Choosing between the existing and new loss functions is less straightforward because, in

datasets 1 and 3, the model with the new custom loss function performs better. However,

datasets 2’s model with the existing custom loss function performs better. Table 6 displays

the averages of the F1-scores and MAPEs’. From this can be seen over the three different

datasets, based on the F1-scores, the Ro(b)BERT ’s with the new custom loss functions are

performing better than the other tested models. Moreover, the Ro(b)BERTclNew model

has the least incorrectly classified keywords in two out of three datasets, and in the other

dataset, Ro(b)BERTclNewSV has the least incorrectly classified keywords.

Model Average F1 Average MAPE

HiClass 0.8069 0.2269

MONN 0.8227 0.1656

BERT 0.8991 0.2577

Ro(b)BERT 0.9171 0.2686

Ro(b)BERTcl 0.9131 0.1204

Ro(b)BERTclNew 0.9243 0.4501

Ro(b)BERTclNewSV 0.9246 0.1538

Table 6: Averaged results

50



Next, the focus is on the MAPE displayed in the table. The best values, shown in bold,

are present in almost all models. Thus, they are more distributed over the models than

with the F1-scores. Nevertheless, the mean MAPE over dataset 2 and 3 is the least for

Ro(b)BERTclNewSV , but not in the first dataset where the Rob(b)BERTcl model is per-

forming best based on average MAPE. Focusing on the averages over the dataset in table

6, the Ro(b)BERTcl model outperforms the new model made to minimize the MAPE.

This happens due to the worse performance of the Ro(b)BERTclNewSV model on the first

dataset. The newly designed Ro(b)BERTclNewSV is performing better than the model it

is an extension to, Ro(b)BERTclNew.

Lastly, the inference time of the different models. The less-performing models, HiClass and

MONN , need the least time and are almost constant while the number of keywords increases,

and the remaining models need approximately equal time. Figure 16 of the appendix shows

the time evolution, dependent on the number of keywords. This figure points to the lengths

of the test sets of the different datasets. Meaning there are points at 879, 1,790, and 1,319.

From the figure, HiClass and MONN have an approximately horizontal line, and the other

models are linearly increasing until the 1,319 keywords checkpoint. After this point, the time

increases more rapidly for the BERT -like models.

Furthermore, one of the challenges of the model is to perform well on short keywords contain-

ing little information. In figure 17, the distribution of the incorrectly classified keywords of

Ro(b)BERTclNew is displayed, and the incorrectly classified keywords of Ro(b)BERTclNew

as part of the distribution of all keywords. From the top row of this figure, the distribution of

incorrectly classified keywords of Ro(b)BERTclNew does not differ much from the distribu-

tion of all keywords, but comparing it is performing slightly worse on the keywords with only

one or two words and better on the longer keywords. From the lower row of the figure can

be seen it is still performing well in classifying shorter keywords as well as longer keywords.

The figures of the other designed model, Ro(b)BERTclNewSV , are similar.

51



5.2 Costs and Benefits

Performing the classification with a model instead of manually has specific costs and benefits

explained in this section. Using a model to classify the keywords leads to decreased time

spent on keyword research and, thus, a cost reduction. A specialist’s classification time

can be spent on different tasks. Keyword research takes approximately 15 hours for 5,000

keywords. At the same time, the time needed for keyword research is roughly 70 percent of

classification. Hence, the classification time corresponding to these numbers is approximately

7.56 seconds per keyword; the calculation is below. However, the time needed for keyword

research typically also depends on the number of segments and the list and length of possible

segments. The other dependencies are beyond the scope of this paper.
15∗3600∗0.7

5000 = 7.56

As the results in section 5.1 never make a perfect classification, it is still essential to check

whether the model did a good job classifying and correct possible mistakes. For this, assume

approximately one hour is needed to check part of the classification. The cost of performing

the classification by a model is the running time, assuming the model is already trained on

similar data. However, as displayed in table 5, this is negligibly small compared to the time

needed for manual classification. Furthermore, the specialist can perform other tasks while

the model is running; hence this is not a real cost to consider. What still should be done by

the specialist when the classification is done is the classification check, as explained before.

Compared to manual classification, it is advantageous that the classification is faster than

the manual classification.

Focusing on manual classification, it costs the number of hours needed for the classification

times the price. However, an advantage of manually classifying is that the results are more

accurate than those reproduced by the model. Hence, the checking time is, in this case, not

needed.

Comparing the costs and benefits using dataset 1, containing 11,932 keywords, as a compar-

ison model. The time needed to perform classification on this dataset manually would take

52



approximately 25 hours. Hence, the time benefit of performing it with a model is 24 hours.

Let us assume the rate of a specialist is 125 euro per hour; this would equal an extra earning

of 3,000 euro. So, an earning of 3,000 euro would, in this case, equal a reduction in the

F1-score of approximately two percent.

5.3 Misclassifications

From the incorrectly classified keywords, there can be doubt about the correctness of the true

classification or that different classifications could be correct as well. This section will focus

on the type of misclassifications using the output first dataset because this is the only English

dataset used. The following paragraphs show some of the different pitfalls the classifications

can have.

Some keywords need to be longer to find clear corresponding segments. For example, the

true segments of ”kitchen brush” are ”kitchen utensils” and ”baking utensils”. However, these

segments refer to what is also called a pastry/basting brush, but could also be meant as a

dish brush. If it was meant as a dish brush, the segments should be ”dishwashing” and ”dish

brush”; thus, the classification would be incorrect due to an unclear formulation.

Table 7 displays several incorrectly classified keywords. Multiple segments could be correct

for those keywords, true and predicted. Most of these multiple options arise from multi-

ple segments called inside the keywords. For example, the last keywords in the table state

”white” and ”metal” inside the keyword, but it is unknown which of the two segments is

most important, and the keyword should thus be classified into.

53



Keyword True segment 1 Predicted segment 1 True segment 2 Predicted segment 2

refrigerator wipes cleaning up cleaning up kitchen cleaning wipes

white metal trash can with lid waste bins waste bins material bins with lid

wall mounted waste bins with lid waste bins waste bins bins with lid wall mounted bins

bathroom scale memory bathroom scale bathroom scale general additional features

white metal trash can waste bins waste bins material colour

Table 7: Incorrectly classified classifications which have multiple correct classes in a layer

Some classifications are incorrect. Two incorrect classifications are displayed in table 8. The

first keyword is predicted as displayed in the predicted columns in the table by five models,

and one time ”correct”. However, the true segment is incorrect, as a clothes rack is not

used for laundry or drying. Furthermore, the second keyword is translated from dataset 2.

The second segment was, in this example, predicted four times, as displayed in ”Predicted

segment 2”. The true segment, in this case, is not incorrect, but the predicted segment is

more accurate.

Keyword True segment 1 Predicted segment 1 True segment 2 Predicted segment 2

clothes rack stainless steel laundry clothing storage drying rack clothing rack

necklace for ash remembrance products remembrance products jewellery necklace

Table 8: Incorrect true classifications

Nevertheless, most incorrectly classified keywords are ”really” incorrect. For example, an

electric brush holder should be classified as ”bathroom” and ”toothbrush holder”, but it was

classified as ”laundry” and ”toiletbrush”. A large amount of incorrect classified keywords

are keywords containing the word of a segment but which is not the correct segment. For

example, the ”perforated spoon” subsegment is ”spatulas” but is predicted as ”spoon”. This

is a more common problem as search engine users often exchange these terms with different

meanings.

54



6 Discussion

Following the results stated in the previous section in tables 5 and 6, the newly designed mod-

els are performing well on the datasets. However, there are several remarkable observations.

These observations can be split into two parts: the observations related to the evaluation met-

rics and some observations related to the hierarchy and incorrect classifications in the results.

First, the observations of the F1-scores in tables 5 and 6 are evaluated. From these F1-

scores, the Ro(b)BERTclNew and Ro(b)BERTclNewSV perform better than the other

tested models based on the F1-score. However, there are two remarkable observations in

these scores. First, while comparing Ro(b)BERTcl with Ro(b)BERTclNew, the new cus-

tom loss function results in a better F1-score, but not in dataset 2. Second, concerning the

previous observation, the Ro(b)BERTclNewSV results in a better F1-score in dataset 2. At

the same time, this is not the case for the other datasets, but it does result in a better average

F1-score in table 6. This could have several explanations, for example, the composition of

the dataset as this dataset consists of many rarely used and complex words. However, the

actual reason behind this cannot be investigated due to a lack of datasets where this occurs.

Furthermore, the best F1-score of the second dataset is much lower than the F1-scores of the

other datasets. This can come due to the structure of the data, but as mentioned before,

this cannot be investigated with certainty because it is only seen in the results of one dataset.

Continuing on dataset 2, comparing the Ro(b)BERTcl with the Ro(b)BERTclNew. It can

be observed that the F1-score of the new loss is worse, but the amount of keywords with

an incorrect hierarchy and the amount of incorrectly classified keywords is better. The dif-

ference in the number of keywords with incorrect hierarchy can be because the F1-score is

not dependent on hierarchy. The lower amount of incorrectly classified keywords can be

explained by how the number of incorrectly classified keywords and the F1-score are defined.

Referring to section 4.3.1, the number of incorrectly classified keywords is the sum of the

false positive and false negative predictions. However, the F1-score also depends on the true

positive predictions, which causes the difference in best, based on F1-score, and best, in

55



the lowest number of incorrectly classified keywords. Hence, this value cannot conclude if

the model performs better than another but does indicate the number of incorrect predictions.

Looking at the MAPE results, it can be observed that the MAPE is minimal in different

models every time. For this reason, the new loss function was used on the Ro(b)BERTclNew

model. This change in loss function positively influenced the average MAPE. Although

it was not performing better than all tested models, it performed much better than the

Ro(b)BERTclNew model it applied to. However, as the other models are not learning on

MAPE, it is ”fortunate” to incorrectly classify the keywords with a lower search volume

and mediavalue instead of the high search volumes and mediavalues. This also applies to the

other MAPE columns, where the lowest values are divided over different models.

Generally, it can be observed from the data that if the F1-score is high, the number of wrong

hierarchies and incorrectly predicted observations is low. However, this does not correspond

to the lowest MAPE. The definition of MAPE can explain this. MAPE considers how

far the predicted search volume and mediavalue are away from the original, while this is not

used in the other metrics. Hence, it can be the case that one keyword with an extensive

search volume or mediavalue is incorrectly predicted. However, the model did perform well

for the other keywords. The F1-score and the number of keywords with a correct hierar-

chy and amount of incorrectly predicted can still be good. Similarly, in all three datasets,

the Ro(b)BERTclNew has fewer incorrectly classified keywords than Ro(b)BERTcl and the

MAPE is only smaller in the third dataset.

Furthermore, some points may cause varying results. For example, the small amount of data

to train on. Another point to consider is the data quality, which includes misclassifications,

rare words, and words out of different languages than trained on, which influence the evalu-

ation metrics in the results.

56



7 Conclusion

7.1 Summary and Conclusion

This paper aimed to design a good model for hierarchical keyword classification such that

this process would no longer have to be performed manually. The models should classify each

keyword in the corresponding main segment, subsegment, and if preferred, subsubsegment.

This should be done as well as possible, depending on the evaluation metrics. This paper uses

the often-used F1-score and the MAPE, which provides an evaluation metric considering the

importance of search volume and mediavalue corresponding to keywords.

First, an elaborate explanation was given of the background of the problem. Starting with

a general explanation of search engine marketing and the options within search engine mar-

keting, leading toward search engine advertising and optimization. With these two parts,

Google Ads can perform the best task when using Google as a search engine. To achieve

this, a business should focus on the right keywords. This decision can be made based on the

search volume and mediavalue corresponding to specific keywords; keyword research helps

with this task. Keyword research looks at which keywords could improve visibility and find

possibly interested customers for the business based on the values mentioned before.

Afterward, when the background of the problem was known, the focus was on recent de-

velopments in the field of text classification. As most researchers focus on standard text

classification, the biggest and more developments are in this field, and less is hierarchical text

classification as this is more specific. Furthermore, text classification has much in common

with hierarchical text classification. Hence, the biggest developments in text classification

can be changed to apply to hierarchical text classification. From these developments in text

classification, it could be concluded that there is an increase in the usage of transformer-based

language models such as BERT . In addition, these models were also performing better on

NLP tasks than the methods used before.

57



Hence, models were designed using BERT -like models. However, as these models would

work for classic classification and not for hierarchical text classification, a newly designed

loss function considering the hierarchy was used to fine-tune the model hierarchy in the data.

Besides, an addition to this loss function is designed in this paper to consider the difference

in search volume between the different keywords. These models with new loss functions were

tested against several different models.

From the results given in this paper, two different conclusions can be drawn, one based on the

F1-score as an evaluation metric and the other where the MAPE is seen as a vital evaluation

metric. First, using F1-score as the evaluation metric. From this metric, both newly designed

models perform better than the other model, where the average F1-score over these models

is almost equal. Hence, both models would have an additional value for a hierarchical text

classification problem using F1-score as the evaluation metric and, second, using MAPE as

the evaluation metric. The model with the loss function made to minimize the MAPE is

performing better on two out of three datasets. Hence, when willing to reduce the MAPE,

the new loss function is a good option as it performs significantly better on two out of three

datasets. Further recommendations to improve the average MAPE are given in the next

section. Moreover, one of the challenges in this paper was for the model to perform well on

short keywords, which thus contain less context to classify with certainty. The results show

that both models perform well on all used datasets’ shorter and longer keywords.

7.2 Recommendations and Further Research

The research conducted in this paper had several limitations which could be changed in fur-

ther research. There is also possible future research related to the assumptions made during

this paper. These are stated and further explained in the upcoming paragraphs.

Focussing on the changes connected to limitations in this research. For the results, the mod-

els were tested on three different datasets. However, to achieve more reliable decisions, the

models should be tested on more datasets because from this small number of datasets cannot

be concluded why it is performing better on one dataset than on another with certainty. The

58



models in this paper are fine-tuned on the existing data, but if the classification is performed

for a business in a different market, it should first be fine-tuned on part of the data. This is

not ideal, as some provided data should still be classified. Hence, it would be a good idea

to perform further research on models which require less training data or unsupervised mod-

els. Two possible unsupervised options would be hierarchical clustering and Latent Dirichlet

Allocation (LDA). This would reduce or remove the problem of fine-tuning specific markets

and needing data in cases the model was not trained on. Not having enough data could

also be resolved using methods to generate more data, such as making minor changes to

the data and adding it as new data or using a generative adversarial network (GAN) to

generate similar data. Furthermore, the clustering methods help track down where possible

misclassification can occur with a higher probability because they are more likely located at

the boundary of clusters when visualized. It would also make the model less dependent on

manually classified data. Another case is when a new business would like a classification,

but the business is in the same market as a business where classification was known. In this

case, it is recommended to use a similar fine-tuned model for the new business. Moreover,

a different choice on the model could be made since, in this paper, a BERT -like model is

used, which should be trained and fine-tuned on much data. Nevertheless, as explained in

section 2.2, new models were designed using few-shot or zero-shot learning, requiring much

less data. In further research, there could be new models with better performance, or these

models might be improved.

Furthermore, there were several assumptions made to be able to have enough training sam-

ples and to avoid overfitting. If too many empty values were in a hierarchical layer, they

were removed to prevent overfitting. Segments with too few keywords were also removed

because they would not be suitable for creating the training and test set. In further research,

a solution for this should be found, different than removing the cases, to keep the dataset

as large as possible and keep performance high on the small segments. However, these small

segments often have a small search volume, so the effect would be negligible small when

looking at the MAPE metric.

59



In addition, when doing further research, it is essential to consider that keywords can have

more than one possible segment. Hence, it could be an option to look at multi-label models,

where keywords can be allocated to multiple segments instead of only one. However, most

of the keywords only have one appropriate segment, and thus it is important to contemplate

that it only has to change for a few keywords.

Moreover, further research could be done on the BERT -like models used in this paper.

Because in this paper, pre-trained versions of the BERT -like models are used. However,

training these models self can also bring additional value instead of using the pre-trained

model. There are two main options to change this. First, the data used to train the model

can be altered to data more applicable to the problems the model is used for. Second, the ar-

chitecture of the model can be changed. In the pre-trained model, a specific order of layers is

used after the encoder layers, and these layers could be changed to improve the model further.

Lastly, from the results, the loss function made to minimize the MAPE is not resulting in the

lowest MAPE. Hence, further research could add it in another way to the loss function or

include it in the model’s training. Alternatively, the search volume and mediavalue could be

taken into account, training the model differently from adding the hierarchy through the loss

function to make the model more aware of the importance of different keywords compared

to other keywords.

Concluding, there are several ways to continue and improve this research. Shortly, consider

models which require less data, improve model assumptions such that some of these do not

have to be made anymore, think about models taking care of multiple possible segments,

change model structure for further improvements, and lastly, design new methods to improve

models based on the MAPE metric.

60



References

Abou Nabout, N., & Skiera, B. (2012). Return on quality improvements in search engine

marketing. Journal of Interactive Marketing, 26 (3), 141–154.

Barham, P., Chowdhery, A., Dean, J., Ghemawat, S., Hand, S., Hurt, D., Isard, M., Lim, H.,

Pang, R., Roy, S., et al. (2022). Pathways: Asynchronous distributed dataflow for ml.

Proceedings of Machine Learning and Systems, 4, 430–449.

Barutcuoglu, Z., Schapire, R. E., & Troyanskaya, O. G. (2006). Hierarchical multi-label

prediction of gene function. Bioinformatics, 22 (7), 830–836.

Bianchi, T. (2022a). Google: Annual advertising revenue 2001-2021. https://www.statista.

com/statistics/266249/advertising-revenue-of-google/

Bianchi, T. (2022b). Google: Global annual revenue 2002-2021. https://www.statista.com/

statistics/266206/googles-annual-global-revenue/

Borges, H. B., Silla Jr, C. N., & Nievola, J. C. (2013). An evaluation of global-model hi-

erarchical classification algorithms for hierarchical classification problems with single

path of labels. Computers & Mathematics with Applications, 66 (10), 1991–2002.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,

Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners.

Advances in neural information processing systems, 33, 1877–1901.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P.,

Chung, H. W., Sutton, C., Gehrmann, S., et al. (2022). Palm: Scaling language mod-

eling with pathways. arXiv preprint arXiv:2204.02311.

Decarolis, F., Goldmanis, M., & Penta, A. (2020). Marketing agencies and collusive bidding

in online ad auctions. Management Science, 66 (10), 4433–4454.

Delobelle, P., Winters, T., & Berendt, B. (2020). Robbert: A dutch roberta-based language

model. arXiv preprint arXiv:2001.06286.

Delobelle, P., Winters, T., & Berendt, B. (2022). Robbert-2022: Updating a dutch language

model to account for evolving language use. arXiv preprint arXiv:2211.08192.

Deng, Z., Peng, H., He, D., Li, J., & Yu, P. S. (2021). Htcinfomax: A global model for hierar-

chical text classification via information maximization. arXiv preprint arXiv:2104.05220.

61



Deniz, E., Erbay, H., & Coşar, M. (2022). Multi-label classification of e-commerce customer

reviews via machine learning. Axioms, 11 (9), 436.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidi-

rectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

de Vries, W., van Cranenburgh, A., Bisazza, A., Caselli, T., van Noord, G., & Nissim, M.

(2019). Bertje: A dutch bert model. arXiv preprint arXiv:1912.09582.

Freitas, A., & Carvalho, A. (2007). A tutorial on hierarchical classification with applications

in bioinformatics. Research and trends in data mining technologies and applications,

175–208.

Gao, D., Yang, W., Zhou, H., Wei, Y., Hu, Y., & Wang, H. (2020). Deep hierarchical classifica-

tion for category prediction in e-commerce system. arXiv preprint arXiv:2005.06692.

Gilfoil, D. M., Aukers, S. M., Jobs, C. G., et al. (2015). Developing and implementing a social

media program while optimizing return on investment-an mba program case study.

American Journal of Business Education (Ajbe), 8 (1), 31–48.

Goh, A. T. (1995). Back-propagation neural networks for modeling complex systems. Artifi-

cial intelligence in engineering, 9 (3), 143–151.

GoogleDevelopers. (2022). Embeddings: Translating to a lower-dimensional space. https://

developers.google.com/machine-learning/crash-course/embeddings/translating-to-a-

lower-dimensional-space

Gopal, S., Yang, Y., Bai, B., & Niculescu-Mizil, A. (2012). Bayesian models for large-scale

hierarchical classification. Advances in Neural Information Processing Systems, 25.

Guan, Y., Myers, C. L., Hess, D. C., Barutcuoglu, Z., Caudy, A. A., & Troyanskaya, O. G.

(2008). Predicting gene function in a hierarchical context with an ensemble of classi-

fiers. Genome biology, 9 (1), 1–18.

Huang, C.-L., Shih, Y.-C., Lai, C.-M., Chung, V. Y. Y., Zhu, W.-B., Yeh, W.-C., & He, X.

(2019). Optimization of a convolutional neural network using a hybrid algorithm. 2019

International Joint Conference on Neural Networks (IJCNN), 1–8.

Kemp, S. (2022). Digital 2022: October global statshot report. https://datareportal .com/

reports/digital-2022-october-global-statshot

62



Khatoon, S., Alshamari, M. A., Asif, A., Hasan, M. M., Abdou, S., Elsayed, K. M., & Rash-

wan, M. (2021). Development of social media analytics system for emergency event

detection and crisismanagement. Computers, Materials and Continua, 3079–3100.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Kiritchenko, S., Matwin, S., Famili, A. F., et al. (2005). Functional annotation of genes using

hierarchical text categorization. Proc. of the ACL Workshop on Linking Biological

Literature, Ontologies and Databases: Mining Biological Semantics.

Lieb, R. (2009). The truth about search engine optimization. Que Publishing.

Lin, T., Wang, Y., Liu, X., & Qiu, X. (2022). A survey of transformers. AI Open.

Lipton, Z. C., Elkan, C., & Narayanaswamy, B. (2014). Thresholding classifiers to maximize

f1 score. arXiv preprint arXiv:1402.1892.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer,

L., & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach.

arXiv preprint arXiv:1907.11692.

Livshin, I. (2019). Artificial neural networks with java. Springer.

Loshchilov, I., & Hutter, F. (2017). Decoupled weight decay regularization. arXiv preprint

arXiv:1711.05101.

Meng, Y., Shen, J., Zhang, C., & Han, J. (2019). Weakly-supervised hierarchical text classi-

fication. Proceedings of the AAAI conference on artificial intelligence, 33 (01), 6826–

6833.

Miranda, F. M., Köehnecke, N., & Renard, B. Y. (2021). Hiclass: A python library for local hi-

erarchical classification compatible with scikit-learn. arXiv preprint arXiv:2112.06560.

Opitz, J., & Burst, S. (2019). Macro f1 and macro f1. arXiv preprint arXiv:1911.03347.

Pereira, R. M., Costa, Y. M., & Silla, C. N. (2021). Handling imbalance in hierarchical

classification problems using local classifiers approaches. Data Mining and Knowledge

Discovery, 35 (4), 1564–1621.

Schmidt-Hieber, J. (2020). Nonparametric regression using deep neural networks with relu

activation function. The Annals of Statistics, 48 (4), 1875–1897.

63



Sen, R. (2005). Optimal search engine marketing strategy. International Journal of Electronic

Commerce, 10 (1), 9–25.

Silla, C. N., & Freitas, A. A. (2011). A survey of hierarchical classification across different

application domains. Data Mining and Knowledge Discovery, 22 (1), 31–72.

Statcounter. (2022). Search engine market share. https://gs.statcounter.com/search-engine-

market-share

Statista. (2022). China’s e-commerce growth trails the rest of the world. https://www.statista.

com/chart/22729/e-commerce-sales-growth-by-region/

Stats, I. L. (2022). Internet live stats google. https : / / www . internetlivestats . com / one -

second/#google-band

Teahan, W. J. (2000). Text classification and segmentation using minimum cross-entropy. In

Content-based multimedia information access-volume 2 (pp. 943–961).

Tricahyadinata, I., & Za, S. Z. (2017). An analysis on the use of google adwords to increase

e-commerce sales. SZ Za and I. Tricahyadinata (2017) Int. J. Soc. Sc. Manage, 4,

60–67.

Valentini, G. (2009). True path rule hierarchical ensembles. International Workshop on Mul-

tiple Classifier Systems, 232–241.

Van Looy, A. (2022). Search engine optimization. In Social media management (pp. 125–

146). Springer.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,  L.,

& Polosukhin, I. (2017). Attention is all you need. Advances in neural information

processing systems, 30.

Wang, B., Hu, X., Li, P., & Philip, S. Y. (2021). Cognitive structure learning model for

hierarchical multi-label text classification. Knowledge-Based Systems, 218, 106876.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao,

Y., Gao, Q., Macherey, K., et al. (2016). Google’s neural machine translation system:

Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144.

Xue, G.-R., Xing, D., Yang, Q., & Yu, Y. (2008). Deep classification in large-scale text

hierarchies. Proceedings of the 31st annual international ACM SIGIR conference on

Research and development in information retrieval, 619–626.

64



Yang, Z., Shi, Y., & Wang, B. (2015). Search engine marketing, financing ability and firm

performance in e-commerce. Procedia Computer Science, 55, 1106–1112.

Zhou, J., Ma, C., Long, D., Xu, G., Ding, N., Zhang, H., Xie, P., & Liu, G. (2020). Hierarchy-

aware global model for hierarchical text classification. Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics, 1106–1117.

Zhu, H., & Lei, L. (2022). The research trends of text classification studies (2000–2020): A

bibliometric analysis. SAGE Open, 12 (2), 21582440221089963.

65



A Appendix

Keyword Segment 1
Predicted
Segment 1 Segment 2

Predicted
Segment 2

Bathroom mirror with shelf Bathroom Bathroom Mirror Mirror

Vanity mirror Bathroom Bathroom Mirror Mirror

Plastic shower caddy Bathroom Bathroom Bathroom accessories Bathroom accessories

Bathroom sets Bathroom Bathroom Bathroom accessories Bathroom accessories

Basket for toiletries Bathroom Bathroom Storage container Storage container

Toothbrush holder Bathroom Bathroom Toothbrush holder Toothbrush holder

Wooden spoon for baking Kitchen utensils Kitchen utensils Spatulas Spoons

Spatula Kitchen utensils Kitchen utensils Spatulas Spatulas

Chopping board Kitchen utensils Kitchen utensils Cutting board Cutting board

Ladle Kitchen utensils Kitchen utensils Spoons Spoons

Table 9: Results example dataset table 1

Segment 2 Search volume Mediavalue
Predicted
Search volume

Predicted
Mediavalue

bathroom accessories 12800 € 8,377.00 12800 € 8,377.00

cutting board 33100 € 13240.00 33100 € 13240.00

mirror 34300 € 16,544.00 34300 € 16,544.00

spatulas 27150 € 11,138.50 27100 ↓ € 11,111.00 ↓

spoons 12100 € 3,025.00 12150 ↑ € 3,052.50 ↑

storage container 480 € 146.40 480 € 146.40

toothbrush holder 18100 € 7,421.00 18100 € 7,421.00

Table 10: Example total search volume and mediavalue for segment 2

66



Figure 13: Results example dataset table 1

67



Figure 14: Amount of keywords classified per segment for segment 1 with the red line as

average over segment 1

Figure 15: Percentage of unknowns

68



value/type

Learning rate 1e−3

Learning rate type Linear

Batch size 32

Epochs 75

Table 11: Settings multi-output neural network

value/type

Learning rate 1e−4

Learning rate type Linear

Batch size 32

Epochs 10

Table 12: Settings multi-output BERT-like neural network

Figure 16: Test time needed for a certain number of keywords

69



Figure 17: Top row: Distribution incorrectly classified keywords in combination with distri-

bution of all keywords. Bottom row: incorrectly classified keywords displayed as part of the

distribution of all keywords.

70


