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Abstract

This thesis addresses the tactical production-inventory planning problem in serial multi-echelon sup-

ply chains with finite production capacity, lead times, and uncertain demand. As this is a complex

sequential decision-making problem under uncertainty, Deep Reinforcement Learning (DRL) is pro-

posed as a solution method. The objective of this thesis is to assess the suitability and performance

of DRL to solve this problem. A Markov Decision Process is formulated where the multi-dimensional

action space is effectively handled by decomposing the decisions into sub-decisions. Furthermore,

the model is extended to allow for non-stationary demand. To tackle the problem, the Deep Con-

trolled Learning (DCL) algorithm is applied. A numerical case study is conducted on a variety of

supply chain settings to better assess the suitability. Experimental results demonstrate that DRL is

a promising general-purpose solution technique to solve the addressed problem. The DCL algorithm

obtains (near-)optimal policies in all supply chain settings in which the optimal solution can be

computed. Moreover, the DCL algorithm significantly outperforms base-stock policies, specifically

designed for this problem, in all considered supply chains with non-stationary demand. Analyzing

the neural network policy obtained by the DCL algorithm revealed that this policy yields lower

costs and higher service levels, by holding more safety stock compared to the base-stock policies.

This study provides evidence that neural networks can effectively be used to represent good policies

in inventory problems.

Keywords: Tactical production-inventory planning; Multi-echelon supply chain; Deep reinforcement

learning; Non-stationary demand; Markov decision processes
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1 Introduction

A new crisis has emerged in recent years, the global chip shortage. Demand for chips has sky-

rocketed and the semiconductor industry is not close to keeping up with the supply. With the

development of technologies, chips are now found in more products than ever, from cars and com-

puters to refrigerators and smart light bulbs. Moreover, the number of chips in a single product

has also increased rapidly: a typical car, for example, has around 50−150 chips, while modern cars

have up to 3000 chips. During the pandemic, the demand for chips continued to grow faster than

ever, with one of the main reasons being that people who worked from home all needed technology

such as a computer and a screen. A comprehensive elaboration of the underlying factors for the

semiconductor shortage is given by Voas et al. (2021). Chip shortages are a crisis that has become

truly problematic in many industries. CNBC reported in the summer of 2021 that “Chip shortage

expected to cost the auto industry $210 billion in revenue in 2021” and Sky News reported recently

that “PS5 shortages set to continue due to global chip shortage, warns Sony”. The shortage has

even become a priority for policymakers worldwide (Voas et al., 2021). In the summer of 2022,

president Biden announced the 50 billion fund to boost domestic semiconductor research and de-

velopment while at the same time countering China (Swanson, 2022). Moreover, the global chip

shortage is not expected to be over yet, as CNBC reported in April 2022 “Intel CEO now expects

chip shortage to last into 2024”. Clearly, it is ever more important for the semiconductor industry

and the suppliers of the semiconductor industry to have optimal production planning.

Production planning is one of the most important aspects affecting the performance of a supply

chain. Mainly due to demand uncertainty, companies do not know how much inventory to stock

to meet customer demand. To hedge against these uncertainties, firms can build up inventory, also

referred to as safety stock. One can imagine that a large safety stock leads to unnecessarily high

holding costs. On the other hand, a relatively small amount of build-up inventory may result in

dissatisfied customers finding the product out-of-stock. Finding inventory management that satis-

fies a significantly large part of the customers while minimizing the holding costs is a problem that

arises in almost all companies and industries. In the high-tech manufacturing industry, production

planning is very challenging but even more critical. This industry is characterized by high pro-

curement costs, very long lead times, short product life cycles, and significant demand and supply

uncertainty. Because of the long lead times, decisions must be made well in advance while demand

and supply are still highly uncertain.

This thesis sets out to optimize tactical production-inventory planning at ASML, the world’s lead-

ing supplier of lithography systems for the semiconductor industry. The lithography industry is

one of the most outstanding examples of the high-tech manufacturing industry. ASML operates in

a high-tech low-volume industry with extremely expensive products having very long lead times.

Its latest systems cost up to 250 million dollars with supply chain-wide lead times ranging from
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a few months to more than a year. ASML faces demand that is low in volume and extremely

volatile with a total of 345 machines sold in 2022 (ASML, 2022a). The combination of very high

procurement costs, volatile low-volume demand, and long lead times make production planning a

highly complex task, yet all the more critical. Imagine the impact of selling one additional system,

with the same capacities, as a result of different production planning. On the other hand, imagine

the costs associated with unused overcapacity due to non-optimal production planning. In addition

to the effect on revenue, production planning becomes even more important when considering the

impact of customer service performance on market share potential.

Traditionally, optimization problems in inventory management are solved with exact methods and

heuristics. Exact methods provide global optimal inventory policies after evaluating all possible

options. Considering all possible options is very time-consuming and computationally inefficient

in many real-world settings where there are simply too many possibilities to evaluate them all.

Heuristics provide solutions in an acceptable time, but these solutions may not have any theoretical

guarantee. To arrive at a (near-)optimal solution, these methods often make high-level assumptions

oversimplifying the problem. Much emphasis in the literature has been put on deriving optimiza-

tion strategies with provable optimality, often at the expense of simplifying reality (Kosasih &

Brintrup, 2021). However, companies are typically more interested in models that reflect reality. A

2011 report from Chief Supply Chain Officer revealed that many companies still tend to use rather

simplistic models for inventory management (CSCO, 2011). This indicates a great need for models

that not only find optimal policies but also reflect reality.

Thanks to the development in technologies, computer equipment, and data science techniques, re-

inforcement learning (RL) methods are finding ever more success in deriving optimal solutions to

complex real-world problems. RL is designed to solve sequential decision-making problems under

uncertainty, that is, to obtain optimal behavior in a situation that maximizes reward. The learner

is not told what to do but learns which actions yield the most reward by trying them out. This

has the advantage that no problem-specific rules need to be designed. While training the agent

might be computationally expensive and time-consuming, the agent is then able to make repeated

decisions within seconds. Motivated by this success of RL, the method has rapidly gained interest

over the last couple of years and has gradually become one of the most active research areas in

machine learning, artificial intelligence, and neural network research (Sutton & Barto, 2018). The

inclusion of neural networks to approximate functions within RL, known as deep reinforcement

learning (DRL), has led to significant performance improvements. DRL has been successfully ap-

plied in many different fields, such as gaming (Mnih et al., 2015), robotics (Kober et al., 2013),

chemistry (Zhou et al., 2017), and inventory control (Boute et al., 2021). One of the breakthroughs

of DRL is AlphaGo, developed by Silver et al. (2016). AlphaGo beat the human Go champion

by five games to zero in the game of Go, which is considered the most challenging of the classic
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games for artificial intelligence because of the absurdly large number of possible sequences of moves.

An excellent example of sequential decision-making under uncertainty is production planning. At

each time step, e.g., day, week, or month, the same decision under supply and demand uncertainty

must be made on how much to produce at each production step. DRL methods can be applied to this

type of problem, as they might help develop near-optimal policies when other methods fail because

DRL is not guided in the solution search. Despite decades of extensive research, the optimal policy

for many inventory problems remains unknown. No optimal inventory policies have been found in

the literature for multi-echelon inventory problems with finite capacities across the entire supply

chain. Moreover, non-stationary demand distributions complicate the problem and the optimal

policy also remains unknown for most problems under non-stationary uncertain demand. Therefore,

this thesis applies a DRL technique to optimize the tactical production-inventory planning in multi-

echelon supply chain settings focused on the situation of ASML. ASML is the centralized decision

maker that minimizes the total supply chain-wide costs. Most supply chain networks can be modeled

as multi-echelon including ASML’s network. It is clear that ASML’s supply chain has capacities and

so a finite capacity is introduced at each node for the production quantity. Furthermore, lead times

are assumed for production at each node. Both stationary and non-stationary uncertain demands

are considered with all excess demands backlogged. The main objective of this thesis is to assess

the suitability of DRL in these problems and compare the performance against other optimization

techniques.

1.1 Introduction to ASML

ASML is the world’s leading supplier of lithography systems for the semiconductor industry. It

develops and manufactures these extremely complex and advanced systems. Lithography systems

can be distinguished into extreme ultraviolet (EUV) and deep ultraviolet (DUV). ASML is the only

company in the world that manufactures EUV systems for chip production which is operating at

the cutting edge of technology. The company leads global innovation within the chip industry by

continuously improving accuracy and speed, where speed can be thought of as wafers processed per

hour. Moore’s law states that the number of transistors on a chip, and thus the performance of a

chip, doubles approximately every 18 to 24 months. To keep up with this law, new techniques and

products are constantly being developed. The perfect example of this is the EUV technology in

which more than six billion euros in R&D is invested over 17 years (ASML, 2022b).

ASML was founded in 1984 as a joint venture between Philips and Advanced Semiconductor Ma-

terials International (ASMI) in a leaky shed next to a Philips office in Eindhoven, the Netherlands.

Over the past decades, ASML has grown tremendously with today more than 39.000 employees of

143 different nationalities in more than 60 locations worldwide. Last year, the company reported

net sales of 21.2 billion euros and sold 345 systems (ASML, 2022a). Furthermore, R&D costs of
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3.25 billion euros in 2022 show the importance of innovation. ASML expects to continue growing

and believes it has a chance to reach annual net sales between approximately 30 billion and 40

billion euros by 2025 based on various market scenarios (ASML, 2022a).

The industry in which ASML operates can be characterized as high-tech low-volume. The company

works with the newest and most advanced technologies to create the latest generation of lithography

systems. Characteristics of the high-tech industry such as high procurement costs, long lead times,

complex supply chains, and short product life cycles are all familiar to ASML. The demand ASML

faces can be regarded as very low, considering that a total 345 systems are sold in 2022 with sales

of only a few systems per quarter for some products. The low demand is highly volatile, mainly

because of the direct dependence on investments from chip manufacturers in combination with

the well-known bullwhip effect. Semiconductor firms are located upstream in the supply chain of

electronic goods. ASML is located even further upstream in this supply chain, making the bullwhip

effect even stronger and thus demand extremely volatile.

1.2 Production Planning

Production planning is the planning of the availability of resources and materials needed to trans-

form materials into finished products. These planning decisions include both order size and timing.

Depending on the planning level, different decisions, objectives, and uncertainties are considered

and thus different methods and models are applied. Production planning can be distinguished into

three different levels: strategic, tactical, and operational. At the strategic level, long-term plan-

nings are made in which decisions mainly involve capacity decisions. In strategic-level planning,

time is aggregated into quartiles or months, and products and resources are aggregated into groups.

Strategic production plans typically cover a horizon of several years. Mid-term plannings are made

at the tactical level, where tactical decisions involve the size and timing of material flow through

the supply chain. The horizon of tactical production planning is usually several months. At the op-

erational level, short-term plans are created that form a detailed daily schedule. This plan includes

detailed planning for every production step with available information on both supply and demand.

This thesis focuses on tactical production planning also referred to as tactical production-inventory

planning.

Most of the literature on production planning studies high-volume industries, while the low-volume

industries are not adequately represented (see e.g. (Stadtler, 2005)). One of the core differences in

production planning between high-volume and low-volume industries is the need for discrete integer

production quantities. In high-volume industries, continuous production quantities can be rounded

without many issues. In contrast, rounding in low-volume industries can cause serious problems.

Specifically, rounding up is likely to lead to capacity issues while rounding down is likely to result

in significant supply shortages and thus unsatisfied customers. Therefore, models in low-volume
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industries must output integer production quantities. This difference between high-volume and

low-volume is significant because integer variables make solving mathematical models much more

difficult.

The two main mathematical models currently used at ASML to support tactical production-

inventory planning are RampFlex and CFO. RampFlex is primarily used to evaluate and compare

the outcomes of a proposed buffer policy under multiple demand scenarios. It incorporates capacity

constraints but is slow in computation. The general multi-stage stochastic programming model that

forms the basis of RampFlex together with the rolling horizon framework are introduced in Fleuren

et al. (2022). On the other hand, the CFO algorithm is used to rapidly achieve production planning

but it does not efficiently handles the capacity restrictions. This illustrates the need for a decision

support tool for tactical production-inventory planning that incorporates the capacities and is not

very time-consuming.

1.3 Research Objective

This thesis applies a DRL algorithm to optimize the tactical production-inventory planning in serial

multi-echelon supply chain networks to assess the suitability of the algorithm. The decisions of the

entire supply chain are based on the customer demand to minimize the total cost of the supply

chain, and thus, there is a central decision-maker which is ASML. The demand that ASML faces is

low in volume which requires integer production quantities that complicate the problem. The de-

mand is first modeled as stationary demand which is later extended to non-stationary demand. As

ASML cannot keep up with the demand, capacities are introduced on the number of products that

can be processed at each node in one time step. Moreover, deterministic lead times are assumed

for production at each node. All excess demands are backlogged which comes with a costly backlog

penalty. Due to the extremely volatile demand, the DRL algorithm applied is the Deep Controlled

Learning (DCL) algorithm proposed by van Jaarsveld (2021).

For applying DRL, it is crucial to formulate the complex sequential decision-making problem as a

Markov decision process. This includes determining the state vector, action space, reward structure,

and transition dynamics. The agent observes the environment, takes an action, receives a random

reward, and then the environment randomly transitions to a new state. The state vector represents

the environment that includes everything outside the decision-maker. Thus, all the information the

agent would need to know to make a decision must be included in the state vector. For the transition

dynamics, we are mainly interested in the demand uncertainty. First, stationary uncertain demand

is implemented. Later, this will be extended to non-stationary demand, which is more similar to

the real world but for which limited research has been done. Multi-echelon inventory problems

generally have a large state space. Furthermore, ASML takes multiple actions simultaneously re-

sulting in a multi-dimensional action space. This is a concern since DRL algorithms become less

5



suitable for inventory problems with a large action space (Boute et al., 2021). Therefore, efficient

modeling is required. Multiple supply chains are considered to demonstrate the applicability of the

algorithm. For evaluating the performance of the DCL algorithm, several base-stock policies are

specifically designed for this problem. Furthermore, under certain conditions, the optimal solution

can be computed and is used as a benchmark policy. The policies are mainly evaluated in terms

of costs, but also in terms of other key performance indicators. Lastly, the actions prescribed by

the algorithm are looked into to try and give an intuition behind them. Namely, neural network

policies are extremely difficult to interpret which complicates adopting these in practice.

This thesis sets out to answer the following research question by considering the thereafter formu-

lated research sub-questions:

Research Question

To what extent is deep reinforcement learning suitable to solve the tactical production-inventory

problem in serial multi-echelon supply chains with finite production capcity, lead times, and uncer-

tain low-volume demand?

Research Sub-Questions

1. How should the Markov decision process be defined? That is, defining the state and action

space, the environment’s dynamics, and the reward structure. In particular, how can demand

uncertainty be modeled?

2. How can the Markov decision process be efficiently modeled?

3. How can the Markov decision process be extended to model the non-stationary demand uncer-

tainty?

4. How does the solution of the DRL algorithm compare to other well-known heuristics and, if

possible, the optimal solution in terms of expected costs and other key performance indicators?

5. Does the DRL algorithm prescribe other actions than the heuristics and if so, in which situa-

tions?

1.4 Outline

In addition to this introductory section, this thesis contains seven other sections. The next section

contains a review of the existing literature on inventory optimization in multi-echelon supply chain

systems, followed by works that have applied reinforcement learning methods to inventory opti-

mization problems. Section 3 introduces the preliminaries for a detailed description of the essential
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concepts. Section 4 elaborates on the problem setting, including the supply chain under considera-

tion and the formulation of the Markov decision process. The general deep reinforcement learning

algorithm is presented in Section 5. Section 6 introduces additional methodology for solving the

tactical production-inventory planning problem using the DRL algorithm. An extensive numerical

study is provided in Section 7 to evaluate the performance of the DRL algorithm in several supply

chains against other optimization techniques. Lastly, conclusions and recommendations for future

research directions, along with a discussion of the limitations of this study are provided in Section

8.
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2 Literature Review

This section provides an overview of the relevant literature. This study aims to solve the production

planning in a multi-echelon supply chain and therefore, Section 2.1 discusses multi-echelon inventory

optimization. Section 2.2 zooms in on inventory management in multi-echelon supply chain settings

that assume finite capacity across the supply chain. Then the literature on inventory problems

under non-stationary demand uncertainty is considered in Section 2.3. Next, we discuss works that

have applied reinforcement learning in inventory optimization. Lastly, we formulate our intended

contribution by reviewing the relevant literature.

2.1 Multi-Echelon Inventory Optimization

Inventory management is concerned with determining the amount of additional inventory that must

be held to meet target service levels so that a large part of the customer demand can be met while

minimizing the costs. The safety stock is used to hedge against uncertainties. Inventory manage-

ment is critical to the performance of a supply chain network and is therefore studied extensively.

Many real-world supply chain networks can be modeled as multi-echelon systems consisting of

multiple stages. Therefore, much research has been devoted to multi-echelon inventory models.

Multi-echelon inventory management involves determining how safety stocks can be appropriately

allocated across all echelons to achieve target service levels at the lowest inventory holding costs. In

reality, there are many uncertainties with customer demand usually the main uncertainty. Stochas-

tic models with uncertain parameters are considered complex models to solve. A comprehensive

literature review of multi-echelon inventory optimization under demand uncertainty, classified by

model assumptions, research goals, and applied methodologies is provided by (de Kok et al., 2018).

Two main approaches to inventory optimization problems for the stochastic multi-echelon system

exist in the literature: the stochastic-service model (SSM) and the guaranteed service model (GSM),

which were introduced by Clark and Scarf (1960) and Simpson Jr (1958), respectively. In SSM,

each stage in the supply chain determines a base-stock inventory level and meets the demand from

downstream stages whenever possible using this base-stock level. Any excess unsatisfied demands

are backordered. The literature on SSM is extensive. We refer the reader to Simchi-Levi and

Zhao (2012) for a literature review. The SSM approach is generally seen as cumbersome to im-

plement. This is mainly because the actual lead times seen by downstream stages are stochastic

due to possible stock-outs in the upstream stages that must be backordered (Graves & Willems,

2003). Stochastic lead times lead to stochastic replenishment time for the stage, which is challeng-

ing to characterize and implement. In the GSM approach, each stage sets a committed service time

(CST) within which it guarantees to meet each demand. In this method, demand is assumed to

be bounded from above. These guaranteed service times ensure that the replenishment time for

downstream stages is deterministic. Many models have been proposed in the literature that extends
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the GSM to include more realistic characteristics such as non-stationary demand, stochastic lead

times, capacity constraints, and continuous review. We refer the reader to Eruguz et al. (2016) for

a comprehensive survey of the GSM. The underlying assumptions of these models are not suitable

for solving the capacitated complex problems considered in this thesis and therefore, we do not

discuss these models further.

For the classical multi-stage serial supply chain systems with linear costs, deterministic lead times,

no capacities, and stationary random demand where unsatisfied demands are backlogged, Clark and

Scarf (1960) show that an echelon base-stock policy is the optimal policy. The optimal base stock

levels can be computed by recursively minimizing N nested convex functions, where N equals the

number of nodes. Since the implementation and computation of this can still be difficult, heuristics

are proposed in the literature to approximate the base-stock levels. A well-known heuristic to solve

the inventory problem in such settings is the Shang and Song heuristic introduced by Shang and

Song (2003). The heuristic provides bounds on the optimal base-stock levels and approximates the

optimal base-stock level by a simple average of the two bounds. This approximation is proven to

perform quite well with a maximum error of less than 1.5% on their test instances compared to the

exact solution.

2.2 Capacitated Multi-Echelon Inventory Problem

As discussed in the introduction, the semiconductor industry and the suppliers of the semiconductor

industry do not keep up with the demand, which invalidates the assumption of infinite capacity in

the above-reviewed models. In our setting, the supply chain is a multi-echelon inventory problem

where finite capacity is considered across the entire supply chain. This significantly increases the

complexity of the system (see, e.g., Simchi-Levi and Zhao, 2012). de Kok et al. (2018) state: “To

date, there are no analytical results that enable calculation of (close-to-)optimal policies under fi-

nite capacity across a multi-echelon system”. When capacities are introduced on the amount that

can be processed in a single period, the result of Clark and Scarf (1960) no longer holds. Conse-

quently, the optimal policy is unknown in these systems. Except for single-stage problems where a

base-stock policy remains optimal, which is shown by Federgruen and Zipkin (1986). When assum-

ing a base-stock policy, Glasserman and Tayur (1995) developed a simulation-based optimization

algorithm for estimating the gradients of the cost function with respect to policy parameters in

a capacitated multi-echelon inventory system. They use the Infinitesimal Perturbation Analysis

(IPA) method to estimate these gradients. Since this method is still computationally intensive

when a large number of scenarios are considered, Glasserman and Tayur (1996) present a simple

approximation for identifying near-optimal base-stock levels. They have simplicity explicitly as one

of the objectives of the approximation. The average relative error in 72 test instances, where each

instance is a 5-echelon serial system, was 1.9% for their proposed approximation base-stock levels.

Janakiraman and Muckstadt (2009) provide the state-of-the-art regarding serial multi-echelon in-
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ventory models with finite capacity. They identify the high-dimensional structure of the optimal

policy. For practical purposes, this policy is intractable because of its high-dimensional structure.

2.3 Non-Stationary Demand

Most inventory management problems occur in situations where demand is non-stationary and un-

certain. Neale and Willems (2009) argue that non-stationary demand is the rule rather than the

exception in most industries today. Non-stationary demand means that the demand probability

distribution changes over time. This might arise due to many different reasons, e.g., technologi-

cal innovation, different phases in the product life-cycle, or economic fluctuations. It is inevitable

that future demand distribution will come from a distribution that differs from what governs his-

torical demand (Li et al., 2011). As practical demand patterns are typically non-stationary one

would expect that a lot of research has been devoted to inventory management in non-stationary

demand situations. However, relative to the literature pertaining to stationary demand inventory

management, the literature on non-stationary demand is limited. This is mainly due to the lack of

theoretical structure or the high computational complexity of non-stationary models. Kurawarwala

and Matsuo (1996) state that the unique characteristics of non-stationary demand preclude the use

of traditional forecasting methods which are not designed for these environments.

Under non-stationary demand, the result of Clark and Scarf (1960), that is, a fixed echelon base

stock level is optimal in all periods, does no longer hold as the demand distribution might change

over time. Therefore, many studies propose dynamic base stock levels under non-stationary demand.

Dynamics base stock levels are proposed to solve the single-stage probabilistic lot-sizing problem

(see, e.g., Bookbinder and Tan (1988), Tarim and Kingsman (2004), and Tarim and Kingsman

(2006)). Based on the GSM framework, a periodic review base-stock replenishment policy is pro-

posed under the CST policy where for each period a dynamic base stock level is calculated such

that the 100% of the demand can be satisfied within the CST (see, e.g., Graves and Willems (2008),

Neale and Willems (2009)).

2.4 Reinforcement Leaning for Inventory Optimization

Reinforcement learning has been successfully applied to solve various problems in inventory man-

agement. Many of the works in the literature use tabular-based RL techniques. However, these

algorithms are only suitable for limited state spaces and therefore, cannot deal with problems like

that addressed in this work. Recently, RL has been combined with deep neural networks to approx-

imate the value and policy functions, resulting in deep reinforcement learning (DRL). Motivated

by the great success of DRL, several DRL-based methods are proposed to solve inventory, ordering,

and production problems. Yan et al. (2022) provide a review of the development and applications of

RL techniques in supply chain management. For a clear overview of RL in inventory management,
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we first present works that deal with tabular RL techniques and then works that use DRL.

Giannoccaro and Pontrandolfo (2002) and Pontrandolfo et al. (2002) are among the first to apply

RL for inventory optimization. They proposed a semi-Markov average reward technique (SMART).

In a three-tier linear supply chain with only one agent per echelon minimizing the costs of the entire

supply chain, the integrated inventory policy proposed by the SMART algorithm leads to better

results than the periodic up-to-order-level policy (Giannoccaro & Pontrandolfo, 2002). Pontran-

dolfo et al. (2002) show that the SMART algorithm outperforms a local heuristic and a balanced

heuristic in a distributed multi-country production system in the context of global supply chain

management. Later, Chaharsooghi et al. (2008) used a tabular Q-learning algorithm to handle

an ordering management problem in a four-tier supply chain. They tested their algorithm on the

well-known beer game which can be modeled as a serial supply chain where decentralized agents

cooperatively attempt to minimize the total supply chain costs. They demonstrated the effective-

ness of the Q-learning algorithm in complex scenarios where analytical solutions are not available.

In a similar setting, Mortazavi et al. (2015) proposed a simulated-based optimization framework

using Q-learning.

More recent studies use DRL to solve similar problems in larger complex settings where tabular

methods are computationally inefficient. For a review of DRL for inventory control, we refer the

reader to Boute et al. (2021).

Peng et al. (2019) use two Vanilla Policy Gradient methods in a capacitated supply chain setting

with one plant warehouse and three retailers where customer demand is stochastic and seasonal.

Capacity involves both production and storage for the warehouse and the retailers. The two meth-

ods differ in the use of the neural network output. One method directly uses the output as policy

and the other uses a new activation function to enforce actions in the feasible region. The two

DRL-based methods are shown to achieve a better policy in terms of total rewards incurred than

the reorder-point/order-quantity policy, (r,Q)-policy, in all experimented settings.

Oroojlooyjadid et al. (2022) propose a transfer-learning Shaped Reward Deep Q-Network (SRDQN)

algorithm to play the well-known beer game. The SRDQN algorithm is based on the classical deep

Q-network algorithm proposed by Mnih et al. (2015). One agent is the learning agent and follows

the SRDQN algorithm, while the other agents follow a base-stock policy or a more realistic model of

ordering behavior and act irrationally (Sterman policy, Sterman (1989)). When the SRDQN agent

plays alongside teammates who follow a base-stock policy, the algorithm obtains near-optimal so-

lutions. Moreover, it performs significantly better than a base-stock policy when other agents act

more realistically and thus irrationally. In addition to the cost comparison, they also evaluated the

inventory levels, order quantities, and order up to levels over time of the three agents.
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Gijsbrechts et al. (2021) study the performance of the Asynchronous Advantage Actor Critic (A3C)

DRL algorithm on lost sales, dual-sourcing, and multi-echelon inventory models. In the multi-

echelon setup, they apply the A3C algorithm on two different scenarios with one warehouse and ten

retailers where all locations have limited capacity on both the inventory position and the production

rate. They consider stochastic demands and deterministic lead times. The states are the inven-

tory positions and the outstanding orders for the warehouse and the retailers. The action space

is two-dimensional, consisting of a state-dependent base-stock level for the warehouse and one for

the retailers. They showed that the proposed A3C algorithm outperforms a base-stock policy with

constant base-stock levels.

Vanvuchelen et al. (2020) solve the joint replenishment problem of two shippers using the prox-

imal policy optimization (PPO, Schulman et al. (2017)) in sizeable problems where dynamic-

programming algorithms suffer. The PPO outperforms the periodic minimum order quantity and

the periodic review dynamic order-up-to heuristics. By looking at the inventory levels of the differ-

ent shippers, they conclude that the PPO algorithm resembles the optimal policy.

Alves and Mateus (2020) use the PPO algorithm in a centralized 4-echelon supply chain with two

nodes per echelon and uncertain stochastic demands, deterministic lead times, capacities, and lost

sales. Capacities are regarding the local stock for each node, production for the suppliers, and pro-

cessing capacities for the factories. A state and an action are respectively a 27-dimensional and a

14-dimensional continuous vector whose values are the quantity to be produced at each supplier and

the number of materials to be sent by each node to the successor nodes. In minimizing the total cost

of the entire supply chain within a planning horizon of 360 time steps, the PPO agent showed great

performance and achieved slightly better results than an LP agent. Furthermore, they demonstrate

that the PPO agent showed better performance in terms of unmet demands. Later, Alves et al.

(2021) applied and compared five state-of-the-art policy gradient algorithms in the same supply

chain settings as Alves and Mateus (2020). They conclude that PPO has the best performance of

the five and may be a good choice to use in practice for the problem addressed. Recently, Alves

and Mateus (2022) extend their previous work of 2020 by taking into account uncertain seasonal

demands, stochastic lead times, and processing capacities. The PPO agent performed well in all

scenarios with better or roughly the same performance as an LP agent. The greater the uncertainty

in customer demand and lead times, the better the performance of the PPO agent compared to

the LP agent. Moreover, the number of unmet demands is lower for the PPO agent in both the

constant and stochastic lead times settings.

Perez et al. (2021) propose and compare a deterministic linear programming model, a multi-stage

stochastic program, and a reinforcement learning model for solving an inventory management prob-
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lem in a four-echelon supply chain with 2−3−2−1 nodes per echelon. Furthermore, they consider

stochastic demands, deterministic lead times, and production capacity, but no capacitated stocks.

In a planning horizon of 30 periods, the reinforcement learning model shows promise in using RL

for supply chain applications. While their work is interesting in the way they compare the three

different models, their experimental methodology lacks hyperparameter tuning and is therefore less

suitable from an RL perspective.

These papers show the great success of DRL in multiple MDPs. However, in these benchmarks, the

impact of any randomness is usually limited. Real-world supply chain and logistics problems are

highly stochastic with the result that algorithms like A3C and PPO may not be the best choice (van

Jaarsveld, 2021). To overcome these limitations of the algorithms that are commonly used in the

literature to learn neural network policies, van Jaarsveld (2021) proposes a deep controlled learn-

ing (DCL) algorithm that is based on roll-outs and incorporates model-based variance reduction

techniques. This algorithm is shown to be the first generic machine learning algorithm to obtain

near-optimal results in terms of costs for the lost-sales problem, being superior to the model-free

algorithm A3C proposed by Gijsbrechts et al. (2021) and the best heuristic benchmarks. The ideas

of this algorithm are generic, making DCL a suitable candidate to apply to other stochastic dynamic

problems in supply chain and logistics.

2.5 Contribution of the Current Study

For our research, we mainly build on the work of (van Jaarsveld, 2021) and apply his algorithm to

a serial multi-echelon supply chain with unsatisfied demands backlogged, deterministic production

lead times, and capacities at all nodes of the supply chain. This study focuses on the situation

at ASML with low-volume but all the more stochastic demand making this algorithm the obvious

choice for solving the tactical production-inventory planning problem at ASML.

Multi-echelon inventory optimization problems have been studied extensively for more than 60

years. Over the years, researchers have proposed a wide range of models, broadening the field of

applications, allowing for many different assumptions, and expanding the scope. Despite decades of

research, the optimal inventory policy remains unknown to many inventory problems with more re-

alistic supply chain characteristics such as finite capacities and non-stationary demands. Therefore,

this thesis applies a newly emerging method from the field of Artificial Intelligence (AI), DRL, to

solve the tactical production-inventory planning problem in serial multi-echelon supply chain net-

works that include these characteristics. This model can support decision-making and help develop

near-optimal policies.

The application of DRL methods for inventory optimization has received increasing research inter-

est in recent years. However, this remains a relatively unexplored direction within both DRL and
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inventory management. Results are promising, as several studies have shown great performance

in finding near-optimal inventory policies using DRL methods. Studies that assume coordinated

decisions optimizing the entire supply chain network typically investigate relatively small networks.

To our best knowledge, applying DRL techniques for coordinated decision optimization in multi-

echelon supply chain networks with more than two echelons has only been studied by Alves and

Mateus (2020), Alves and Mateus (2022), and Perez et al. (2021). Therefore, our work is among

the four studies in this area. Moreover, we extend the model to incorporate non-stationary uncer-

tain demand. This is a limited research area of inventory management, and to our best knowledge,

our work is the first to apply a DRL method for an inventory problem under non-stationary demand.

In summary, our contribution is the following:

1. Effectively applying the DCL algorithm to optimize the tactical production-inventory planning

problem in serial multi-echelon supply chain networks with finite production capacity, lead

time, and uncertain demand.

2. Extending this to solve the tactical production-inventory planning problem under non-stationary

uncertain demand.
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3 Preliminaries

This section introduces the essential concepts so that the reader can fully understand this thesis.

First, the concepts of RL are explained in Section 3.1. To solve the problem using RL techniques,

the sequential decision-making problem is modeled as a Markov Decision Process. Markov Decision

Processes are introduced in Section 3.2. The DCL algorithm builds on the well-known method of

policy improvement. Policies and policy improvement are discussed in Sections 3.3 and 3.4, respec-

tively. Neural networks are used to represent policies and therefore, neural networks are explained

in Section 3.5, and their use to represent policies is discussed in Section 3.6. All introductions can

be safely skipped by readers familiar with the topic.

3.1 Reinforcement Learning; the core-idea

RL is a sub-area of machine learning, in which a decision maker, also referred to as an agent,

interacts with its environment to learn which actions yield the highest cumulative reward within

the environment. The environment comprises everything outside the agent. At each discrete time

step, the agent observes the current representation of the environment, chooses an action, receives

a random reward, and then the environment randomly transitions to a new state. This framework

is mathematically known as a Markov Decision Process which is illustrated in Figure 3.1. With

the obtained results from trying different actions in states, the agent learns which action yields the

highest reward in the states. When repeating this process many times, the agent has learned which

actions to take in which states. This is the learned policy that prescribes in each state an action.

The goal of RL can be formulated as maximizing the expected discounted sum of rewards over an

infinite horizon, that is, finding a policy that maximizes the expected discounted sum of rewards.

To solve the large complex problems considered in this thesis, policies can not be represented by

tables because there are too many options. Therefore, policies are represented as neural networks.

A common method to find the optimal policy is policy improvement and iteration.

Figure 3.1: The agent–environment interaction in a Markov decision process (Sutton & Barto, 2018)

To find actions that maximize the expected discounted sum of rewards, the trade-off between ex-

ploration and exploitation is utterly important. Agents must exploit actions that they have already
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experienced to get a reliable estimate of the expected reward, but must also explore new actions

that may yield better rewards. Too much focus on exploitation may cause agents to get stuck in a

local optimum where good but not optimal actions are chosen. On the other hand, too much focus

on exploration leads to both “good” and “bad” actions being continuously explored, resulting in a

much longer time to converge to optimality. The ϵ-Greedy method is a common method for balanc-

ing exploration and exploitation. In this method, the agent takes a random action with probability

ϵ (exploration) and takes an action based on previous choices with probability 1− ϵ (exploitation).

The choice of ϵ is one of the parameters of the algorithm.

RL differs from supervised learning which learns from a training data set that specifies the correct

action in a given situation. Furthermore, RL differs from unsupervised learning, this type of learning

attempts to find a structure hidden in unlabeled data.

3.2 Markov Decision Process

The algorithm proposed in this thesis makes extensive use of a Markov Decision Process (MDP)

(cf. Puterman, 2014) with a finite action space A = {1, . . . ,m} and a discrete state space S, which
can be finite or infinite. While observing the systems state s ∈ S, the agent chooses an action a

from the set of allowable actions in state s, As. As a result of this action, the agent receives a

random reward R(s, a), where r(s, a) = E[R(s, a)] is the corresponding expected reward of taking

action a in state s. The agent’s goal is to maximize the expected cumulative discounted reward

over an infinite horizon. After taking action a in state s the agent finds itself in a new state s’. The

transition to state s’ from state s upon taking action a occurs with a random transition probability,

denoted by P(s’|s, a). This random transition is influenced by some random exogenous information

that arrives after taking an action. Typically, in inventory management, the reward is defined as

costs and the exogenous information is the demand.

3.3 Policy

A policy is a solution to the Markov Decision Process. It is a mapping from states to actions, which

can be probabilistic. The goal of a Markov Decision Process is to find the policy that maximizes

the expected reward. The probability of selecting a possible action a ∈ As when being in state

s ∈ S following policy π is equal to π(a|s). Starting in state s following policy π results in a

random trajectory which is a sequence of states and actions visited over time. The discounted sum

of rewards (Gπ(s)) obtained for such a trajectory is

Gπ(s) =

∞∑
t=0

γtrt with s0 = s, a0 = π(·|s0), rt ∼ R(st, at), st+1 ∼ P(·|st, at), at+1 ∼ π(·|st+1) ∀t

(1)
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with 0 < γ < 1 as discount factor. The value function of a state s for policy π is the expected

sum of discounted rewards incurred over an infinite time horizon when starting in s and following

π thereafter. This is denoted by vπ(s). These state-value functions satisfy recursive relationships

with the value functions of the possible successor states s′:

vπ(s) = E[Gπ(s)|s] =
∑
a

π(a|s)

(
r(s, a) + γ

∑
s′

P(s′|s, a)vπ(s′)

)
, ∀s ∈ S (2)

Similarly, the value of taking action a in state s under policy π, denoted by qπ(s, a), is the expected

cumulative discounted reward when starting in s, taking action a, and following π thereafter. These

functions are defined as action-value functions:

qπ(s, a) = E[Gπ|s, a] = r(s, a) + γ
∑
s′

P(s′|s, a)vπ(s′), ∀s ∈ S, ∀a ∈ A (3)

The state-value and action-value functions only differ in the first action. The optimal reward-

maximizing state-value functions v∗(s) and action-value functions q∗(s, a) can be obtained by solving

the well-known Bellman equations (Bellman, 1954):

v∗(s) = max
a∈As

{
r(s, a) + γ

∑
s′

P(s′|s, a)v∗(s′)
}
∀s ∈ S (4)

q∗(s, a) = max
a′

{
r(s, a) + γ

∑
s′

P(s′|s, a)q∗(s′, a′)
}
∀s ∈ S,∀a ∈ A (5)

The optimal policy follows directly from v∗(s) and q∗(s, a). Explicitly solving the Bellman equations

provides one route to finding the optimal policy. However, in practice one is generally not able to

implement this solution exactly mainly because the environment is rarely exactly known or it is

computationally intractable due to large state, action, or outcome spaces. Hence, the proposed

algorithm approximately solves the Bellman equations by policy improvement and iteration.

3.4 Policy Improvement and Iteration

To improve any (initial) policy, the algorithm used in this thesis makes use of policy improvement

steps. By iterating the policy improvement algorithm, an optimal policy is found under certain

assumptions (Puterman, 2014). To improve a policy π that prescribes action a in state s, one

would want to know whether the policy needs to be changed to take a different action a′ ̸= π(s) in

state s and thereafter, follow π. Therefore, the rewards received over a trajectory starting in state s

taking action a′ ̸= π(s) and following π after this initial action is considered. The expected reward

of this trajectory equals qπ(s, a
′). The new policy π′, which takes action a′ and then follows π, is

as good as, or better than π when qπ(s, a
′) ≥ vπ(s). Extend this to all states and select for each
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state the action that appears best according to state-action functions. Define the improved policy

π′(·) by π′(s) = argmaxa∈As qπ(s, a). The algorithm proposed in this paper enables approximate

policy improvement without solving (2) (van Jaarsveld, 2021). These approximations rely on neural

networks, which are discussed next.

3.5 Neural Networks

In DRL, neural networks are used to represent policies for Markov decision processes. Neural net-

works can be seen as parameterized functions that map an input vector x ∈ Ru to an output vector

y ∈ Rv, for some u, v ∈ N. Denote the parameterized function by Nθ(·) with θ as neural network

parameters. The elements of the input vector are also referred to as features. For each x ∈ Ru

and set of parameters θ, y = Nθ(x) ∈ Rv. The algorithms in this paper utilize the multi-layer

perceptron (MLP) (Feed-Forward Neural Networks, Kroese et al., 2019). The MLP consists of

multiple (hidden) layers including an input and output layer where each layer consists of a certain

number of nodes. Each layer combines an affine transformation of the variables in the preceding

layer with a non-linear activation function.

A neural network with L + 1 layers has the input layer (l = 0), the output layer (l = L), and

the hidden layers (l = {1, . . . , L − 1} where each layer l has pl number of nodes and parameters

given by some weight matrix Wl and a bias vector bl. Thus, the parameters of the entire neural

network are θ = {W1,b1, . . . ,WL,bL}. Let xl ∈ Rpl be the variables of layer l. Furthermore, let

fl(·) : Rpl → Rpl be the activation function which is fl(·) = max(xl, 0) for l < L and fL(x) = x.

Here, the maximum is taken element-wise. Layer operations in the neural network relate these

variables by the following formula:

xl = fl(Wlxl−1 + bl) ∀l ∈ {1, . . . , L} (6)

The number of columns in Wl equals the number of rows in Wl−1 and the dimension of bl equals

pl for all l ∈ {2, . . . , L} to ensure (6). The MLP sets y = Nθ(x) := xL, where x0 = x and xl

follows (6) for l ∈ {1, . . . , L}. The number of hidden layers and the number of nodes per layer are

hyperparameters of the algorithm.

3.6 Neural Network Policies

A state s can be represented by a vector in RN for some N ∈ N and the actions space is A =

{1, . . . ,M} which can be seen as a vector in RM . Hence, any neural network Nθ(·) : RN → RM

with as input the state vector and as output the action-value functions can be used as a policy.

This is depicted in Figure 3.2 which also clearly visualizes the use of the hidden layer and the neural

network parameters.
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Figure 3.2: DRL makes use of neural networks to represent the action-value functions (Boute et al.,
2021)

A policy based on the neural network prescribes in state s the allowable action a ∈ As which

corresponds to the highest neural network output Nθ(·)a. xa denotes the ath element of the vector

x. The policy is based on the neural network parameters θ and is therefore denoted as πθ(·):

πθ(s) = arg max
a∈As

[(Nθ(s))a] (7)

This policy is a deterministic policy since it prescribes a single action. This differs from a stochastic

policy which prescribes for each state a probability distribution over all actions. In stochastic

policies, the action with the highest neural network output receives the highest probability of being

chosen while the action with the lowest neural network output gets the lowest probability. Model-

free algorithms like A3C (e.g. Gijsbrechts et al. (2021)) or PPO (e.g. Vanvuchelen et al. (2020))

optimize stochastic policies. The existence of optimal deterministic policies for MDPs (see e.g.

Puterman (2014)) has been the motivation for using deterministic instead of stochastic policies.

The DRL algorithm aims to find parameters θ for a neural network with a given structure such

that the neural network policy is a well-performing policy.
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4 The Problem

This section presents the problem. Section 4.1 presents the supply chain characteristics. To make

a production planning for the supply chain addressed using DRL, the problem is formulated as a

Markov Decision Process in Section 4.2.

4.1 The Supply Chain

This section formalizes the supply chain networks under consideration. This thesis optimizes tacti-

cal production-inventory planning problems in multi-echelon serial supply chain settings, focusing

on the situation at ASML. ASML is the central decision-maker for the entire supply chain and

makes decisions based on customer demand. The goal is to minimize supply chain-wide costs where

a unit cost penalty is incurred for each unsatisfied demand. At each time step, decisions are made

on how much to produce in each node. The transport of materials from a node to its successor is

assumed to occur with a lead time of zero when the agent decides to produce in the successor node.

Furthermore, local inventory levels follow directly from the flow of materials in the supply chain.

Several multi-echelon serial supply chain networks are considered in this thesis. Figure 4.1 shows a

4-echelon supply chain for visualization. Suppliers supply components that are processed into other

components by the nodes that eventually become finished products in the most downstream node

of the supply chain network. Here, infinite supply availability is assumed and the most downstream

node (node 1) faces stochastic customer demand. This demand is an integer in value due to the

low-volume industry. Each node can hold local stock to hedge against uncertain future customer

demand. This is also referred to as on-hand inventory. ASML has a production capacity at each

node in the supply chain network that limits the number of components that can start to be

produced at the node in one time period. Furthermore, each node has a deterministic lead time

for the production of the component. The objective is to operate the entire supply chain in such

a way that customer demand is met at minimum total costs. These costs are related to holding

and backlog costs. Specifically, holding costs arise when the component is processed by a node but

must wait for production at the successor’s node or when finished end-products are held in stock

to meet future demand. Holding costs are equal to the sum of on-hand inventory multiplied by

the unit holding cost in that node. In addition, backlog costs arise when demands can not be met

immediately from the finished products in stock, assuming complete backorder. There is a unit

penalty cost associated with each period during which demand is not met.
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Figure 4.1: A 4-echelon serial supply chain with central decision-maker

Next, the dynamics of the supply chain are stated. At the beginning of the planning horizon (t = 0),

there is an initial amount of inventory in stock and production for each node. Steps 1 through 4

all happen at the start of the time period. The following steps are repeated at each time step until

the end of the planning horizon:

1. Material inflow takes place. That is, products whose production lead time has expired become

available and are stored as inventory in stock. All other inventories in production have one

less period to become available as stock.

2. Material outflow takes place. Uncertain customer demands are realized and met from the

finished end-products in stock, i.e., the inventory in stock at the most downstream node. All

excess demands are backordered.

3. The agent decides the production quantity at each node. This quantity is produced and

removed from the inventory in stock of the predecessor’s node.

4. Costs are incurred. The costs are the holding costs and any backlog costs.

5. A new time step is considered, t = t+ 1.

4.2 MDP Formulation

One of the main tasks to solve the problem using RL techniques is to model the complex sequential

decision-making problem as a Markov decision process. An MDP is formulated by defining the

states, actions, rewards, and transition dynamics which are all presented in this section.

Production planning is a sequential decision-making problem because at each time step a decision

must be made on the production quantity at each node. The planning follows a policy that prescribes

production quantities at each production step while observing the current environment. To optimize

production planning, one looks at the planning that minimizes the total expected discounted costs

over the entire planning horizon, which might be infinite, while meeting customer demands:

inf
π

E
[ T∑
t=0

γtC(st,X
π
t )|s0

]
(8)
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Before defining the MDP, the sets, parameters, and variables needed to model the MDP are intro-

duced.

Sets

T : time slots, with index t (T = {0, 1, . . . , T})
N : nodes, with index n

Ln : time slots for inventory in production at node n, with index i (Ln = {1, . . . , ln − 1})

Parameters

ln ∈ N0 : production lead time at node n

p ∈ R+ : unit backlog penalty

hn ∈ R+ : unit inventory holding cost at node n

c ∈ N0 : production capacity

dt ∈ N0 : demand for final product in time t

T ∈ N0 : length of the planning horizon, which can be infinite

Variables

Xt,n ∈ N0 : production quantity at node n in time t

ILt,n ∈ N0 : inventory in stock at node n ∈ N \ {1} in time t

ILt,1 ∈ Z : inventory in stock at node 1 in time t, where negative inventory is backlog

Pt,n,i ∈ N0 : inventory in production at node n in time t that becomes available as stock in i time

periods

4.2.1 State Space

The state includes everything from the environment. In our model, this is a multi-dimensional

vector consisting of the inventory in stock and production of each node. The agent is a central

decision maker who observes the entire supply chain and therefore, observes this inventory vector

for each node. Due to the production lead times, products that are decided to be produced in this

time step are not available immediately, but only after the lead time amount of time. The agent

knows exactly when the products become available as stock since the production lead times are

deterministic.

st = [ILt,n, Pt,n,1, . . . , Pt,n,ln−1]∀n∈N (9)

Demand is not included in the state vector in models where the customer demand is stationary

and independent and identically distributed. Here, the current observed demand does not provide

information about future demand. Therefore, the current demand does not determine the state

of the process. On the other hand, when the current demand provides information about future
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demands, it must be included in the state vector.

4.2.2 Action Space

The agent is a centralized decision-maker, deciding how much to produce at each node while ob-

serving the state vector. In a supply chain with N -echelons, the action space is an N -dimensional

vector in which each element refers to a production quantity at a node in that period. Production

quantities must be integers because of the low-volume industry. Moreover, they are constrained by

the production capacity.

For production at a node, the agent can only decide to produce if the materials are available. The

available materials are the inventory in stock at the predecessor’s node. As mentioned earlier, an

infinite availability of supply is assumed for the most upstream node. After observing the current

state, a set of all possible production quantities is defined. This set is the set of allowable actions

As described in the MDP explanation in Section 3.2.

[Xt] = [Xt,n]∀n∈N

s.t. Xt,n ≤ c ∀n ∈ N (10a)

Xt,n ≤ ILt,n+1,0 ∀n ∈ N \ {N} (10b)

Xt,n ∈ N0 ∀n ∈ N (10c)

Constraints (10a) ensure that the production capacity is not exceeded, whereas constraints (10b)

ensure that the materials are available. Constraints (10c) pose integrality requirements on the

production quantities.

4.2.3 Reward Function

Taking an action in a state produces a random reward through which the agent learns the best

action. Thus, a crucial part of solving the problem using RL methods is the design of the reward

function. Since the supply chain problem is a cost minimization problem, it seems logical to set

the reward equal to the negative value of the total cost. Thus, the reward is the negative value

of the sum of the holding and backlog costs at that time step. As mentioned earlier, backlog cost

is demand backlogged multiplied by the unit backlog penalty. Holding costs are the sum of the

holding costs per node, that is, the inventory in stock in that node multiplied by the unit holding

costs for that node. The costs are incurred after ASML decides on the production quantities for

this period. Thus, no holding costs are incurred during this period for products that are put into

production. Furthermore, the demand is already subtracted from the inventory in stock at the most
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downstream node before the cost is computed. This results in the following cost function:

C(st,Xt) =
∑

n∈N\{1}

hn(ILt,n −Xt,n−1) + h1(ILt,1)
+ − p(ILt,1)

− (11)

4.2.4 Transition Dynamics

Taking an action while being in a state with some realized demand results in a transition to a new

state. Therefore, the random transition to a new state depends on the current state, the actions

taken, and the random demand realized. The new state is considered to be the state after the

material outflow step in the dynamics of the supply chain. Denote the function of this random

transition st by f(st−1,Xt−1, dt), f : S ×A×D → S. The transition dynamics are as follows:

[st] = f(st−1,Xt−1, dt)

s.t. Pt,n,i = Pt−1,n,i+1 ∀i ∈ Ln \ {ln − 1}, ∀n ∈ N (12a)

Pt,n,ln−1 = Xt−1,n ∀n ∈ N (12b)

ILt,n = ILt−1,n + Pt−1,n,1 −Xt−1,n−1 ∀n ∈ N \ {1} (12c)

ILt,1 = ILt−1,1 + Pt−1,1,1 − dt (12d)

Constraints (12a) ensure that all inventories in production require one period less to become avail-

able as stock. Constraints (12b) put the decided production quantities at each node in the previous

time step in production for the upcoming production lead time minus one periods. Constraints

(12c) are the recursive equations for the inventory in stock levels in each node that does not meet

customer demand, while constraint (12d) is the recursive equation for the inventory in stock level

in the most downstream node. Negative inventory in stock at the most downstream node is the

backlog in this period.
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5 The Deep Controlled Learning Algorithm

This section presents the DRL algorithm used to solve the tactical production-inventory planning

problem for the considered supply chain networks and MDP formulations. The DRL algorithm

used is the Deep Controlled Learning (DCL) algorithm proposed by van Jaarsveld (2021). Section

5.1 gives an overview of the algorithm and the subsequent sections detail the steps of the algorithm.

Section 5.2 describes the subset of states selection. Section 5.3 explains the approach for obtaining

the action that yields the lowest simulation-based costs while being a state and following the policy.

Lastly, Section 5.4 discusses the training of the neural network. For a more detailed explanation of

the algorithm, we refer the reader to van Jaarsveld (2021).

5.1 Overview of Approximate Policy Improvement Steps

The DCL algorithm makes approximate policy improvement steps, each of which involves both

Monte Carlo simulation and the training of a neural network (van Jaarsveld, 2021). In most multi-

echelon supply chains, the MDP introduced in the previous section cannot be solved numerically

due to the large state or action space. Therefore, exact policy improvement is intractable and DRL

methods are used to make approximate policy improvement steps where neural networks represent

the policy. The DCL algorithm obtains policy πi+1 from policy πi using the following approximate

policy improvement steps proposed by van Jaarsveld (2021):

1. Select a subset of states {sk|k ∈ {1, . . . ,K}} (Section 5.2).

2. Use the simulation-based policy π̂+
i (·) to obtain Ki = {(sk, π̂+

i (sk))|k ∈ {1, . . . ,K}} (Section

5.3).

3. Obtain the neural network parameters θ(Ki) by training the neural network on the data Ki

through supervised learning (Section 5.4).

4. Set πi+1 = πθ(Ki)

The DCL algorithm obtains π1, π2, π3, . . . by repeatedly doing the abovementioned steps starting

from an initial policy π0. It is well known that the exact policy iteration typically converges to

near-optimal solutions in a few iterations. Therefore, the policy obtained after a few approximate

policy improvements can already yield near-optimal performance. As a neural network is used to

represent the policy, the objective of the algorithm is to find the parameters θ(Ki) such that the

neural network policy is a well-performing policy. A neural network is trained and a neural network

policy is obtained in each iteration of the policy improvement step. The following sections elaborate

on the steps of the approximate policy improvement algorithm.
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5.2 Subset of States Selection

To obtain the policy πi+1 from policy πi, a subset of states are selected for which by simulations

the best actions is determined. Then, this is added to a dataset containing the states with the

corresponding simulations-based prescribed actions. This happens in Step 2 of the algorithm and

is discussed in Section 5.3.

For the selection of states, it is assumed that some initial state s ∈ S, which might be random, is

available. The states selected and added to the dataset are the states that the agent encounters

when taking the prescribed simulation-based action with probability 1 − β, and a random action

with probability β in each time step. β a is parameter of the algorithm, where β ∈ [0, 1]. This

method is the same as the ϵ-Greedy method explained in Section 3.1 with β replaced by ϵ.

5.3 Simulation-Based Policy

This section presents the method for estimating the action that yields the lowest expected dis-

counted costs for each state. This involves assessing whether action a or a′ is preferred, that is,

whether qπ(s, a)− qπ(s, a
′) is greater than or less than zero. The state-action values for all allowed

actions are estimated by simulating many trajectories where only the first action is changed and

the policy is followed thereafter. The simulation-based prescribed action is the allowed action that

yields the lowest simulation-based discounted costs in that state. This gives the simulation-based

policy for that state π̂+(s) = argmina qπ(s, a).

The remainder of this section first discusses the method to determine the simulation-based costs,

followed by the approach to find the simulation-based policy. In this section, the state s and the

policy π are fixed.

5.3.1 Simulation-Based Costs

The state-action value of taking action a in state s is estimated by simulating the cost accumulated

over an infinite horizon, when starting in state s, taking action a, and following π thereafter.

Recall that this is Qπ(s, a) with qπ(s, a) as the corresponding expectation, E[Qπ(s, a)]. This can be

calculated using the following equation:

E
∞∑
t=0

γtct = E
T∑

t=0

ct (13)

where T is geometrically distributed with the discount parameter γ (T ∼ Geo(γ)). This implies

that the expected sum of discounted costs over an infinite time horizon is equal to the expected

sum of costs obtained in a trajectory of length T where T ∼ Geo(γ). Thus, unbiased estimators of
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qπ(s, a) are obtained by summing the total costs over a trajectory of T periods, starting from state

s, taking action a, and then following π.

Deep controlled learning departs from the assumption that the randomness in transitions and costs

are caused by uncertain factors or events that influence the trajectory, and that exist independently

of the trajectory (van Jaarsveld, 2021). These uncertain factors are contained in a composite random

variable ξ. In the model addressed in this thesis, these factors are the per-period demand D and the

trajectory length T . Hence, ξ = (T (ξ),∀t ∈ {1, . . . , T (ξ)} : Dt(ξ)), where, for every period, Dt(ξ)

is an independent replication of D. Taking action a in state s with some realized demand d ∼ D

yields random costs and results in a transition to a new random state s’. There exist functions for

the random costs and the random transition to a new state. In the MDP formulation of the problem

addressed, these are the reward function (11) and the transition dynamics (12), respectively. In

general, denote the random costs function g(s, a, d), g : S ×A×D → R and the random transition

to a new state function f(s, a, d), f : S × A ×D → S. The accumulated discounted costs over an

infinite horizon, when starting in state s = s1, taking action a1, and following π thereafter, can be

formulated as follows:

Qπ(s1, a1|ξ) :=
T (ξ)∑
t=1

ct

∀t ∈ {1, . . . , T (ξ)} : ct = g(st, at, Dt(ξ)), st+1 = f(st, at, Dt(ξ)), at+1 = π(st+1). (14)

By (13) - (14), E[Qπ(s, a|ξ)] = qπ(s, a) which is in line with the formulas of the MDP.

5.3.2 Simulation-Based Policy Approach

The algorithm determines the action that yields the lowest cost in state s using estimates of the

costs based on replications of (14). Many replications are required to determine with reasonable

accuracy whether action a or a’ is preferred in state s. Therefore, the algorithm uses the common

random number approach, that is, the uncertainty is fixed while comparing the costs of different

actions.

The algorithm draws random independent samples ξi and, from each sample, estimates of qπ(s, a)

and qπ(s, a)–qπ(s, a
′) are obtained using (14). The latter estimate uses variance control and thus, a

covariance term appears in the variance of this estimate. This covariance term is typically positive

in inventory problems. Namely, a sequence with consecutively high demands will lead to stockouts

with high backlog costs, regardless of the initial action being a or a’. This positive covariance term

may significantly reduce the number of replications r required to have an acceptable variance of the

estimator of qπ(s, a)–qπ(s, a
′).
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To further reduce the number of replications, computational resources are allocated so that mini-

mum resources are wasted for actions for which it is already clear that they do not yield the lowest

costs. After estimating Qπ(s, a|ξi) for all allowed actions a ∈ As for several samples ξi, it may

already be clear that some actions will not yield the lowest costs, even if it is still unclear which

action does. Then, for these actions, the algorithm does not compute Qπ(s, a|ξi) for new samples

of ξi. Each sample is referred to as a roll-out and this procedure is governed by the number of

initial roll-outs
¯
n and the maximum number of roll-outs n̄ with 1 <

¯
n ≤ n̄. For the initial roll-outs,

Qπ(s, a|ξi) is calculated for each allowed action. Thereafter, Qπ(s, a|ξi) is computed only for ac-

tions that are not dominated by other actions using a simple criterion with 1− ϵ confidence. This

approach terminates when only one action remains that dominates all other actions, or when the

maximum number of roll-outs is reached. This action is the prescribed simulation-based action in

state s which together are included in the dataset Ki.

5.4 Training the Neural Network

A neural network with a given structure is trained in each approximate policy improvement step.

The structure of the neural network consists of the number of hidden layers and the number of

nodes per layer, which are hyperparameters of the algorithm. The algorithm obtains the neural

network parameters θ(Ki) via supervised learning on the data set Ki obtained in Step 2 of the

algorithm. This data set is first randomly split into a training set and test set with 95% of the

samples assigned to the training set. For each sample, the loss is defined as the cross-entropy loss

between 1) the softmax/softargmax of the output of the neural network for state sk, where the

actions that are not applicable for the state are masked out and 2) the prescribed simulation-based

action a (van Jaarsveld, 2021). This loss decreases when the neural network better prescribes the

best action in each state, that is when the output to the best action increases or when the output

of the other actions decreases. The parameters of the neural network are updated to minimize the

average loss over the training set using stochastic gradient descent.

Each epoch, the training set is divided into mini-batches and while iterating over the mini-batches,

the neural network parameters are updated in the opposite direction of the gradient of the average

loss with respect to the neural network parameters. The size of the mini-batches is a hyperparam-

eter. After every five epochs, the loss is computed on the test set. When the best-obtained test

loss does not decrease for 20 consecutive epochs, the algorithm terminates and the best-performing

neural network at that time is the neural network policy of this generation.
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6 Methodology

This section provides the complementary methodology to the generic problems description and

algorithm. Section 6.1 discusses how the large action space is effectively handled by decomposing

the decision into sub-decisions. Section 6.2 presents the model with stationary uncertain demand.

In Section 6.3, this problem is extended to model the non-stationary uncertain demand. In addition,

both sections introduce the benchmarks to evaluate the performance of the DRL algorithm for their

corresponding demand uncertainty. Section 6.4 discusses the key performance indicators used to

evaluate the performance of the neural network policies. Lastly, an additional agent is proposed in

Section 6.5 that has different features of the neural network.

6.1 Decompose into Sub-Decisions

This section explains how the large action space is effectively handled by decomposing the decision

into sub-decisions. Production planning can be seen as a sequential decision-making problem that is

modeled as a Markov Decision Process in Section 4.2. Each period, the same decision is made about

the production quantity at each node. The decisions at all nodes are made simultaneously. ASML

simultaneously decides how many products to produce at each node in that period. The resulting

action space is N -dimensional, see (10). Consider a supply chain with four nodes and a production

capacity of four. Here, the total number of possible actions is 54 = 625 since a production capacity

of four results in five possible actions where not producing is also a possibility. This number

increases heavily with expansions in the number of nodes or the production capacity, which can

become problematic if DRL is applied to supply chain problems of realistic size. As Vanvuchelen

and Boute (2022) state, “Although DRL algorithms are able to handle problems with large state

spaces well, current applications of DRL in- and outside inventory control remain limited to rather

small and stylized problems due to scalability issues in the action space”. Therefore, the decision

in a period is cut up as N sub-decisions, one for each node. First, the generic idea and reduction of

the action space are discussed. Then, the extended MDP is presented and the advantages for the

algorithm are explained.

6.1.1 Action Space Reduction

The decision on the production quantities at each node is solved by breaking it down into sub-

decisions, namely the production quantity decision at a single node. This results in sequential

decision-making within one time period. First, the production quantity at the most upstream node

is determined, then the algorithm iterates to the successor nodes until the most downstream node

is reached. This greatly reduces the action space since each sub-decision is one-dimensional. The

action space of the supply chain with four nodes and a production capacity of four is reduced

to 5 × 4 = 20 since there are five possible actions times the four nodes. The idea of splitting the

decision into sub-decisions comes from the principle of dynamic programming. Specifically, dynamic
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programming solves complex MDPs by breaking them into smaller subproblems, where the optimal

policy for the MDP provides the optimal solution to all subproblems of the MDP (Bellman, 1966).

This is true when computing the exact solution is possible. In general, however, the exact solution

can not be computed due to the curse of dimensionality. This may be encountered when the

state, action, or outcome space is too large. For these systems, there is no theoretical guarantee

that this relationship holds since the optimal solution is simply not available. On the other hand,

the reasoning remains that if the algorithm finds the optimal solution to all subproblems, this

should lead to good or near-optimal policies or even the optimal policy. Moreover, decomposing

the decision into sub-decisions has a great advantage for obtaining the simulation-based policy and

training the neural network which will be discussed below. First, the resulting extensions to the

MDP formulation are presented.

6.1.2 Markov Decision Process for the Sub-Decision

The model explained in this section is an extension to the MDP as explained in Section 4.2. First,

the additional variables are introduced and then the extended MDP is presented in which only the

reward function remains the same. Appendix A.1 presents the entire MDP formulation.

Variables

Pt,n,ln ∈ N0 : inventory in production at node n in time t that becomes available as stock in ln

time units

K ∈ N : the current sub-decision

When observing the environment the agent must know the current sub-decision, that is, the current

node in which the action is being taken. Therefore, a number corresponding to the current node is

included in the state vector. Furthermore, all previously made sub-decisions in this period must be

included in the state vector. For instance, when the agent decides the production quantity at the

most downstream node, the agent must observe the prescribed production quantities at all other

nodes. The inventory vectors of all upstream nodes of the current node contain the prescribed

production quantity in this period. The state vector is the feature of the neural network that must

always have the same dimension. Therefore, only adding an extra variable to nodes in which a sub-

decision is already made is not possible. Accordingly, an extra variable is added to the inventory

vector of each node. This variable is equal to the prescribed production quantity of nodes upstream

of the current node, and zero otherwise. All prescribed production quantities in this period will

become available as stock after production lead time periods and hence, the number is Pt,n,ln . The

new state vector is as follows:

st = [[ILt,n, Pt,n,1, . . . , Pt,n,ln−1, Pt,n,ln ]∀n∈N ,K] (15a)

Next to the action space being one-dimensional, the sub-decisions update the set of allowable
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actions. The set of allowable actions (10a) - (10c) is replaced by (16a) - (16c), where the constraints

apply to the corresponding node instead of to every node.

Xt,n

s.t. Xt,n ≤ c (16a)

Xt,n ≤ ILt,n+1,0 if n ̸= N (16b)

Xt,n ∈ N0 (16c)

Taking a sub-decision while being in a state results in a transition to a new state, which can

be distinguished into a random and deterministic transition. The transition to states in between

sub-decisions is the deterministic transition since no random exogenous information, the demand,

becomes available in between sub-decisions. The demand is realized after taking all sub-decisions

and, therefore, the transition to a new state after all sub-decisions are taken is random. It is assumed

that after the final sub-decision is taken, first the deterministic occurs. Subsequently, in the next

time step after the material outflow takes place, the random transition occurs. The deterministic

transition dynamics are as follows:

[st] = f(st, Xt,K)

s.t. Pt,K,lK = Xt,K (17a)

ILt,K+1 = ILt,K+1 −Xt,K if K ̸= N (17b)

K = K − 1 (17c)

The taken sub-decision is in production at the current node for the next production lead time

periods by constraint (17a). Constraint (17b) subtracts the production quantity from the inventory

in stock at the predecessor’s node. The next sub-decision is for the successor’s node which is ensured

by constraint (17c). Here, the current time period remains the same. Next, the updated random

transition dynamics are presented.

[st] = f(st−1,Xt−1,0, dt)

s.t. Pt,n,i = Pt−1,n,i+1 ∀i ∈ Ln, ∀n ∈ N (18a)

Pt,n,ln = 0 ∀n ∈ N (18b)

ILt,n = ILt−1,n + Pt−1,n,1 ∀n ∈ N \ {1} (18c)

ILt,1 = ILt−1,1 + Pt−1,1,1 − dt (18d)

K = N (18e)

Constraints (18a) together with constraint (17a) replace constraints (12a) and (12b) of the transition

dynamics in Section 4.2.4. These constraints ensure that the decided production quantities are in
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production and that all products that were in production need one time period less before becoming

available as stock. Constraints (18b) set all sub-decisions in this period equal to zero periods since

no decisions are taken yet. Constraints (12c) defining the inventory in stock levels at every node

that does not satisfy customer demands are substituted by constraints (18c) and (17b). Constraint

(18d) remains the same. Lastly, constraint (18e) forces that the current sub-decision is for the most

upstream node.

6.1.3 Advantages for the DRL Algorithm

Section 5 introduces the DCL algorithm to obtain the neural network policy. The algorithm obtains

this policy by approximate policy improvement steps, where a neural network is trained on a data

set of states with the corresponding simulation-based prescribed action. Simulations are used to

determine the action that yields the lowest costs in a state. It takes many simulations to determine

with reasonable accuracy which action is preferable among all possible actions. Cutting up the

decision into sub-decisions greatly reduces the number of possible actions in a state. This results in

a large reduction in the number of simulations required. Considering the example with four nodes

and a production capacity of four, cutting up the decision into sub-decisions results in finding the

preferred action out of five actions in each state, whereas previously the best action had to be found

out of 625. The algorithm obtains the simulation-based policy for a great number of states, thus

cutting up the decision extremely decreases the number of simulations needed. This results in a

reduction of computational time. On the other hand, cutting up the decision increases the number

of states (see (15)). This results in an increase in the number of states to be selected in Step 1

of the approximate policy improvement steps. However, the overall computational time decreases

since the reduction in computational time for finding the simulation-based prescribed action for

each state is greater than the increase due to the larger number of states selected.

Besides reducing the number of simulations needed to find the simulation-based policy, cutting up

the decision into sub-decisions has a major advantage in training the neural network. As mentioned

earlier, in each state s, the neural network policy prescribes the action corresponding to the highest

neural network output of all actions in the allowable action set a ∈ As. By training the neural

network, the neural network parameters are found such that the output for the action that yields

the lowest costs is the highest for each input state s.

Decomposing the decision into sub-decisions results in a significantly lower dimension of the output

layer. Moreover, the neural network was required to train all its parameters for each state. Here,

the action was a multi-dimensional vector consisting of the production quantities at each node, and

one action is prescribed for each state from a large number of possible actions. Accordingly, the

output of the neural network for the simulation-based prescribed action must be the highest out of

all possible output nodes. In the example of the supply chain setting described in this section, the
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neural network is trained to give the highest output to the corresponding action of 625 for each state.

The number of possible actions in each state is extremely reduced when cutting up the decision.

Furthermore, only part of the output layer is relevant, since a state corresponds to an action

for a specific node. As a result of including a number for the current node, the neural network

understands the current node and therefore also recognizes the current part of the output layer

corresponding to this state. This enables specific training of these parameters. In other words,

the neural network can specifically train the part of the neural network relevant to the input state.

Consider the same supply chain settings, but with the decisions cut up into sub-decisions, the neural

network is trained to give the corresponding best action out of five actions for each state. One can

imagine the training advantage when a neural network must give the highest output to one of five

actions compared to one of 625 possible actions, for each state. To illustrate this, Figure 6.1 shows

that only part of the output layer is relevant in a supply chain with four nodes and a production

capacity of two. When the input state corresponds to the most upstream node, only the top three

output elements are relevant.

Figure 6.1: The neural network with node number included as feature

6.2 Stationary Demand

Two different scenarios of demand uncertainty are considered: stationary and non-stationary de-

mand. In addition, the considered supply chain settings are distinguished into “exact” and “large”

cases which respectively refer to problems for which the optimal solution can be computed and for

which it is computationally infeasible. This section discusses the stationary demand uncertainty in

more detail. First, Section 6.2.1 presents the stationary demand distribution. Then, Section 6.2.2

introduces additional constraints and the method to obtain the optimal solution for the exact cases.

Lastly, Section 6.2.3 proposes a benchmark to evaluate the performance of the DCL algorithm in

large cases.
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6.2.1 Stationary Demand Distribution

Stationary demand uncertainty means that the demand has a constant distribution over time. That

is, the demand is sampled from the same demand distribution in all time steps. Most of the lit-

erature on inventory management considers stationary demand uncertainty mainly because of the

theoretical structure. Accordingly, benchmarks from the literature are considered in cases with

stationary demand.

ASML faces low-volume demand which requires the demand to be an integer in value. Hence, the

demand is sampled from a discrete distribution with values being non-negative integers. Further-

more, the number of possible demand realizations must both be finite and not extremely large to be

able to compute the optimal solution. This enables iterating over all possible demand realizations.

Section 6.2.2 will detail obtaining the optimal solution. In summary, the demand distribution is

required to have a finite number of non-negative integer values.

In the stationary demand case, the objective function is to minimize the total supply chain-wide

expected discounted costs over an infinite time horizon. The objective function directly follows from

equation (8) with T infinite and equation (13). Here, T is geometrically distributed with discount

parameter γ.

inf
π

E
[ T∑
t=0

C(st,X
π
t )|s0

]
(19)

where the costs function is equal to equation 11.

6.2.2 Exact Cases - Stationary Demand

This section considers problems for which the exact optimal solution can be computed. However,

this can only be found in settings where the number of possible state-action pairs is finite yet

not extremely large. This requires incorporating additional assumptions in the model, which are

discussed below. Subsequently, a method for finding the optimal solution is presented.

Additional Constraints

The state vector explained in Section 6.1 has an infinite number of possibilities for two reasons.

First, the inventory in stock for the most downstream node can take any integer value. Second, the

inventory in stock for the other nodes can take any non-negative integer value. The other variables

in the state vector already have a finite number of possibilities. Furthermore, the action space is

also finite. To obtain a finite number of state possibilities and thus state-action pairs, additional

constraints are introduced into the model. An inventory capacity is introduced to constrain the

inventory at each node. That is, the sum of inventory in stock and production can not exceed the

inventory capacity. Consequently, the inventory in stock for each node is bounded from above by
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the inventory capacity. A second constraint is a maximum backlog. Each unit of unmet demand

that exceeds the maximum backlog is considered a lost sale, which is associated with a very costly

lost sales penalty. This bounds the inventory in stock for the most downstream node from below.

These additional constraints not only ensure that the number of state-action possibilities is finite

but also extend the MDP explained in Section 6.1. First, an additional variable and some additional

parameters are introduced. Here, the extensions of the MDP are discussed whereas Appendix A.2

presents the entire MDP formulation.

Variables

Lt ∈ N0 : Units of lost sales in time t

Parameters

b ∈ Z− : Maximum units of backlog demand

v ∈ R+ : unit lost sales penalty

in ∈ R+ : inventory capacity at node n

The lost sales variable must be observed by the agent when deciding on the production quantities

and thus, it is included in the state vector. This results in the following state vector.

st = [[ILt,n, Pt,n,1, . . . , Pt,n,ln−1, Pt,n,ln ]∀n∈N ,K, Lt] (20a)

The inventory capacity modifies the set of allowable actions because the agent can decide to produce

a quantity only as long as the total inventory for that node, including the decided produced quantity,

is less than or equal to the inventory capacity. In addition to the inventory capacity, the production

quantity is still constrained by the production capacity and material availability and must be an

integer. Therefore, the set of allowable actions while being in state s is the same as (16) with the

following constraint included to ensure that the inventory capacity is not exceeded.

ILt,n +
∑
i∈Ln

Pt,n,i +Xt,n ≤ in (21)

The reward function is updated to incorporate the lost sales penalty, if necessary.

C(st,Xt) =
∑

n∈N\{1}

[hn · (ILt,n −Xt,n−1)] + zt (22)

s.t. zt =


h1t,1 if demand satisfied

p · −ILt,1 if backlog

v · Lt + p · b if backlog + lost sales

The random transition dynamics (18) also need to be updated. Constraint (23a) is included and
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constraint (18d) is replaced by (23b).

Lt =

{
−ILt−1,1 − Pt−1,1,1 + dt − b

0

if lost sales (ILt−1,1 + Pt−1,1,1 − dt ≤ b)

otherwise
(23a)

ILt,1 =

{
b

ILt−1,1 + Pt−1,1,1 − dt

if lost sales (ILt−1,1 + Pt−1,1,1 − dt ≤ b)

otherwise
(23b)

Constraint (23a) ensures that the lost sales variable is set to the number of lost sales demand if there

are lost sales otherwise this variable is set to zero. Constraint (23b) defines the recursive equation

for the inventory level at the most downstream node if there are no lost sales and otherwise sets

the inventory level to the maximum units of backlog.

Optimal Policy

In these settings with the additional assumptions, the number of possible state-action pairs is finite

and with certain supply chain settings small enough to perform a tabular method. The exact opti-

mal solution is found by explicitly solving the Bellman equations (4). This requires iterating over

all possible state-action pairs with the probabilities to transition to new states. These transition

probabilities are completely known due to the demand distribution that is known. Solving the

Bellman equations is done with a hybrid between policy and value iteration where in the latter the

actions are kept fixed. The optimal policy is found if, after one policy iteration step, the state-value

functions have converged. That is, after one iteration the maximum change in state-value function

of every state is smaller than a threshold.

Each value iteration updates for every state the expected cost when starting in state s and following

policy π thereafter. In other words, updates the value function of a state s for a fixed policy π.

Each updated state-value function is obtained by using the Bellman equation (4) as an update rule

where the actions are determined by the policy which is kept fixed. The notation is related to the

standard notation of Section 3.3.

vk+1(s) = r(s, aπ) + γ
∑
s′

P(s′|s, aπ)vk(s′) (24)

After 100 value iterations, the policy is updated to prescribe in each state the action corresponding

to the lowest costs. Then, the algorithm performs one additional value iteration where the actions

are prescribed by the new policy. This process is repeated until the state-value functions, after the

one value iteration when the policy is updated, have converged. The optimal cost is the state-value

function of the initial state of the MDP.
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6.2.3 Large Case - Stationary Demand

In supply chains with more nodes and longer production lead times, the number of possible state vec-

tors is too large to numerically solve the MDP and find the optimal policy. Therefore, a benchmark

policy is introduced to evaluate the performance of the algorithm. For uncapacitated multi-echelon

serial supply chain systems with linear costs, stationary demands, deterministic lead times between

nodes, and unsatisfied demands backlogged, it is known that the optimal policy is a base-stock

policy. The optimal base stock levels can be computed by recursively minimizing N nested convex

functions, where N equals the number of nodes. Since the implementation and computation of

this can still be difficult, heuristics are proposed in the literature to compute the base-stock lev-

els. A well-known heuristic that is proven to have near-optimal performance when applied to solve

inventory management in these supply chain settings is the Shang and Song heuristic introduced

by Shang and Song (2003). A brief explanation of the heuristic is given below, followed by two

modifications to make this heuristic applicable to the problem considered in this thesis. These large

cases do not have the additional constraints explained in the previous section.

The Capacitated Shang and Song Heuristic

The Shang and Song heuristic determines echelon base stock levels for the base-stock policy. This

policy places an order to raise the echelon inventory position to the echelon base stock level when it

falls below the base stock level. Denote Sj as the echelon base stock level for echelon j = 1, . . . , N

where N is the most upstream node. For node j, truncate the supply chain at node j, that is,

remove all upstream nodes. Replace the truncated system with a Newsvendor system with as

demand the demand over lead-time Lj =
∑j

i=1 Li, as stockout penalty p′ = p +
∑N

i=j+1 hi, and

with two different values for the holding cost. The values are h′
u = hj and h′

l =
∑j

i=1 hi. Here, hi

is the echelon holding costs, that is, the additional holding cost in node i due to the value added.

The echelon base-stock level is a simple average of the two optimal Newsvendor solutions where

F−1 is the inverse of the demand over lead time function:

Sj =
1

2

[
F−1

( p′

p′ + h′
u

)
+ F−1

( p′

p′ + h′
l

)]
,∀j = {1, . . . , N} (25)

The actions when following the base-stock policy with the base stock levels calculated by (25) is the

production quantity that brings the echelon inventory position up to Sj . However, these actions

are not always possible due to capacity constraints or unavailable materials. Therefore, all actions

prescribed by the base stock policy are checked to satisfy the set of allowable actions (16), with

constraint (21) included in small cases. If the materials are not available or the capacity constraints

are exceeded, the action prescribed by the base-stock policy is not allowed. In other words, this

prescribed production quantity is too high. Therefore, this value is reduced by one until it is al-

lowed, where not producing is always a feasible action.
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The other modification is the order in which the algorithm considers the echelons. The Shang and

Song heuristic considers the most downstream echelon (j = 1) first and then iterates to the most

upstream echelon (j = N). However, our algorithm first considers the most upstream echelon and

then moves to the most downstream echelon. The heuristic is adapted accordingly to match our

algorithm and considers the most upstream echelon first. The production quantities are not affected

by this since considering the most upstream echelon first prescribes the same production quantities

as considering the most downstream node first. This benchmark is referred to as BS-SS.

The problem addressed is a periodic-review system with independent and identically distributed

demands. Applying the Shang and Song heuristic in this system requires careful thinking about

the lead time matching the dynamics of the supply chain. In our case, the costs are assessed at

the beginning of the period during which the material inflows, outflows, and decisions also occur.

Consequently, the lead time per node is equal to the number of production periods before the

product is available as stock in that node. On the other hand, an additional period must be added

to the lead time when the demand and decisions are realized at the beginning of the period, while

costs are incurred at the end of the period. Moreover, the simple average of the two optimal

Newsvendor solutions may be a decimal number that contradicts the assumption of low-volume

demand. In our setting, the demand can only take discrete integer values, and therefore, the

average of two integer values is an integer or has a decimal number of 0.5. Shang and Song (2003)

argue that when p is small, say smaller than 39, truncation provides a slightly better approximation,

for large p round-up. The backlog penalty is small for all cases considered, so the average base-stock

level is rounded down to the nearest integer.

6.3 Non-Stationary Demand

This section considers problems where the demand distribution may change over time. This demand

is called non-stationary uncertain demand. This type of demand uncertainty is typically observed

in inventory problems since most practical demand patterns change over time. The demand in this

section is sampled from a demand tree which is discussed in Section 6.3.1. The optimal policy

can be computed when the demand is sampled in this way which is discussed in Section 6.3.2. In

large cases with this non-stationary demand, no policies are known to be optimal or near-optimal.

Therefore, three dynamic base-stock policies are introduced as benchmarks in Section 6.3.3.

6.3.1 Demand Tree

In the non-stationary setting, demand is sampled from a demand tree and a random noise distri-

bution. Each period, the agent is at a position in the demand tree that corresponds to a certain

average demand for that period. The realized demand is equal to the average demand of the posi-

tion in the demand tree plus the realized random noise. The mean demand changes over time due

to the demand tree and thus this covers the non-stationarity. The considered demand tree only
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has integer mean demand values due to the low-volume industry. For the next period, the agent

may be in the same horizontal position corresponding to keeping the same mean demand or moving

upwards increasing the mean demand. This increase should be the same throughout the demand

tree. Moreover, the probability of an upwards movement is the same throughout the entire time

horizon and in every position. Figure 6.2 shows an example of a demand tree.

Given a forecast for the next period, there is always some uncertainty, which is captured by random

noise. The random noise is sampled from a discrete distribution with a finite number of integer

values. The noise can be negative when the lower bound of the noise distribution is set to a negative

number, as long as the minimum of the noise plus the mean demand is greater than or equal to zero.

Furthermore, the noise is identically distributed for the entire time horizon and is independent of

the position in the tree.

Figure 6.2: Example of the demand tree

The exogenous information is not the realized demand but consists of the realized random noise

and the move in the demand tree for that period. The realized customer demand follows directly

from the current state and the exogenous information. In other words, it is state dependent. The

demand is equal to the mean demand corresponding to the current position in the tree after the

move plus the realized noise. On the other hand, the exogenous information is identically dis-

tributed and independent of the state since both the probability of an upwards move and the noise

is independent and identically distributed in the entire demand tree.

In non-stationary demand settings, the length of the planning horizon is finite and an input param-

eter. Subsequently, the demand tree is constructed for T periods. The objective of the algorithm

is to minimize the total supply chain-wide expected cumulative discounted costs over the entire

planning horizon.

inf
π

E
[ T∑
t=0

γtC(st,X
π
t )|s0

]
(26)
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The MDP in supply chain settings where demand is non-stationary is an extension of the MDP

given in Section 6.1. This section presents the resulting changes in the MDP, while Appendix A.3

presents the full MDP formulation. First, an additional set and some additional parameters are

introduced.

Sets

Y : vertical positions in the tree, with index y

Parameters

at,y : mean demand of demand tree in position t, y

idt : current vertical position in the tree in time t

t ∈ T : current time period

kt ∈ Z : noise in time t

mt ∈ {0, 1} : move upwards in tree in time t

mt =

{
1 if moved upwards in the demand tree in time t

0 keeping the same horizontal position in the demand tree in time t

The state vector is updated to include the current vertical position in the demand tree and the

current time period. Both variables determine the current position in the tree, which provides

information about possible future positions and thus, future demand. Thus, the agent must observe

them when making a decision. This results in the following state vector at time t.

st = [[ILt,n, Pt,n,1, . . . , Pt,n,ln−1]∀n∈N ,K, t, idt] (27)

The exogenous information of the MDP is updated and consists of the move in the demand tree and

realized noise and is not the demand. Therefore, the MDP is updated accordingly. The demand in

constraint (18d) of the transition dynamics is replaced by (28). Furthermore, constraints (29) and

(30) are included in the random transition dynamics to update the vertical position in the tree and

time period, respectively.

dt = at,idt
+ kt (28)

idt = idt−1 +mt (29)

t = t+ 1 (30)

6.3.2 Exact Cases - Non-Stationary Demand

The optimal solution can be obtained when the demand is sampled from a demand tree plus noise

distribution. First, the extended MDP in small cases is presented. Then, it is explained why the

optimal solution can be obtained when the demand is sampled in this way.
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The MDP of the exact case with stationary demand must be updated to incorporate the demand

tree and noise. This MDP is an extension of the MDP explained in Section 6.2.2 with the same

extensions as discussed in the previous section. Therefore, the current vertical position in the de-

mand tree idt and the current time period t are included in the state vector (20), and the transition

dynamics are updated accordingly. That is, the demand equals (28) and the constraints (29) - (30)

are included. The full MDP formulation can be found in Appendix A.4.

The main reason for modeling the non-stationary demand with a demand tree plus random noise

is that the optimal solution can still be computed. Moreover, this nicely models the changing

average demand over time. The optimal solution can be computed because the number of demand

realizations is finite and not extremely large. Here, it is assumed that the realized demand does not

deviate much from the forecast by the demand tree. Therefore, the noise distribution should only

have a low number of values. The same method as described in Section 6.2.2 can be applied to find

the optimal solution when there are finite and not extremely large number of possible state and

demand realizations. However, the optimal solution can only be computed in supply chain settings

with a smaller number of nodes or shorter production lead time than in stationary cases. This

is because of the two extra variables that are included in the state vector while the limit on the

total number of possible state-action pairs for which the optimal solution is available is the same.

Furthermore, this implies that the length of the planning horizon can not be too large.

6.3.3 Large Case - Non-Stationary Demand

In settings where the optimal solution is computationally intractable, other benchmarks are intro-

duced to evaluate the performance of the DRL algorithm. In non-stationary settings, there is no

benchmark in the literature that is known to perform well. Therefore, three dynamic echelon base-

stock policies are introduced that are specifically designed for this problem. Base-stock policies

are considered since in the literature these policies are shown to be optimal in the uncapacitated

setting with stationary demand. Furthermore, many studies propose dynamic base-stock policies

for inventory problems with non-stationary demand. Dynamic base-stock policies are policies where

the base stock levels can change over time. This seems reasonable in the non-stationary demand

settings since the demand distribution can also change over time. The proposed base-stock policies

all use the Shang and Song heuristic to determine the base stock levels. Therefore, the base stock

levels are calculated using (25). The differences between the three benchmarks are the assumptions

on the demand over lead time.

Non-Stationary Benchmark Policies

The first benchmark policy is an echelon base-stock policy which assumes that the demand per pe-

riod is always distributed as in the root node. That is, the noise distribution plus the mean demand

corresponding to the root node of the demand tree. This per period demand distribution is used
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to calculate the demand over lead time. The first benchmark assumes that demand distribution

does not change over time and therefore, the base stock levels are the same throughout the time

horizon. This benchmark is referred to as Base Stock - Root Node (BS-RN) policy.

In non-stationary settings, the assumption that the demand distribution does not change over time

is not valid. Therefore, the second benchmark policy assumes that the demand per period is dis-

tributed as the current position in the demand tree. That is, the noise distribution plus the mean

demand corresponding to the current position in the tree. This results in a dynamic base-stock

policy where the echelon base stock levels can change when the vertical position in the tree changes.

The demand over lead time distribution is calculated for lead time periods with per period demand

distribution being the demand of the current node plus the random noise distribution. Here it is

assumed that the demand distribution does not change within the lead time. This benchmark is

referred to as Base Stock - Current Node (BS-CN) policy.

The third benchmark policy relaxes the assumption that within lead time periods, the demand

distribution does not change. In the next period, the system can move vertically in the tree and

then the assumption that the demand distribution does not change within lead time is invalid.

The third benchmark policy assumes that the mean of the demand distribution within lead time

follows the demand tree from the current position in the tree and lead time periods ahead. This

results in a probability function of the cumulative mean demand over lead time. In the end, the

noise distribution is added to each cumulative mean demand value. From the resulting distribution,

the echelon base stock levels are determined. These base stock levels can change when the system

moves upwards. This benchmark is referred to as Base Stock - Tree (BS-T) policy.

Due to the increase in mean demand being equal for each move upwards and the equal probability of

moving upwards in the demand tree, the dynamic base stock levels in the BS-CN and BS-T policies

do not need to be recalculated after each move upwards. They follow directly from the echelon base

stock levels calculated for the root node and the current position. At the start of the trajectory

when the position is the root node, the echelon base stock levels are calculated for all three dynamic

base-stock policy benchmarks. When the system moves upwards, the base stock levels can change

in the BS-CN and BS-T policies. Instead of recalculating the echelon base stock levels, the echelon

base stock levels will be equal to the root node echelon base stock levels plus echelon production

lead time multiplied by the difference in the mean demand of the current position and the mean

demand in the root node. This is because the demand over lead time distribution in the root node

is the same as in the current position but then all values are increased by the echelon production

lead time multiplied by the difference in the mean demand of the current position and the mean

demand in the root node.
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6.4 Key Performance Indicators

The DCL algorithm obtains the neural network parameters for the neural network policy by per-

forming multiple approximate policy improvement steps, each following the procedure explained

in Section 5. In Step 2 of the approximate policy improvement steps, a simulation-based policy is

obtained for each state in the selected subset of states from Step 1. Here, (14) is used to determine

the simulation-based prescribed action. For each approximate policy improvement step, the algo-

rithm obtains a neural network policy. To determine the best-performing neural network policy,

the policies are evaluated by their policy costs. These neural networks are also analyzed in terms

of three other KPIs to gain additional insights into the performance. It should be noted that these

KPIs are not included in the objective function. First, the method for obtaining the policy costs is

discussed and then, the other three KPIs are presented.

Policy Costs

The cost of the neural network policy is computed for each neural network after all generations of

the neural network have been trained. Clearly, the best-performing neural network is the one with

the lowest cost. The costs are computed using different methods for exact and large instances with

additional differences in the computation for the large instances with stationary and non-stationary

demand. The latter difference is caused by the infinite time horizon in the stationary case, while

the non-stationary case has a finite time horizon of length T . The costs in exact instances are

computed as expected cumulative discounted costs when starting in the initial state s and following

the policy thereafter. This is equal to the state-value function of state s to relate this to the MDP

formulation in Section 3.2. In large instances with stationary demand, the cost of the policy is

computed as the average cost per time unit, which seems most logical with an infinite time horizon.

For large instances with non-stationary demand, the cost of the policy is computed as the average

cumulative cost over the entire trajectory. First, the method for obtaining the expected policy cost

in exact instances is discussed, and then the costs in large instances.

The expected cumulative policy cost in exact instances is the converged state-value function of the

initial state. This is computed by performing value iterations with the actions determined by the

policy until the state-values functions have converged. That is, iterate over (24) until the maximum

change in the state-value function of each state is smaller than a small threshold. The expected

cumulative policy cost of starting in the initial state s is the converged state-value function of this

state. The only difference between this method and that for obtaining the optimal policy is that

here all actions are fixed by the policy, whereas in the latter, policy iterations are performed to

optimize the policy.

The average cost per time unit in large instances with stationary demand is calculated by simulating

many trajectories. First, the average cost per time unit per trajectory is computed as the cumula-
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tive cost over the trajectory divided by the number of periods in that trajectory. Then, the average

cost per time unit of the policy is the average of all average cost per time unit per trajectory. The

infinite horizon in instances with stationary demand allows obtaining long trajectories with many

actions taken and demands realized. To eliminate the bias of starting in the same initial state, each

trajectory has a different starting state. These initial states must be reasonable states that have a

positive probability of occurring in practice. Therefore, a reasonable deterministic initial state is

available, after which a warm-up period is simulated in which actions are determined by the policy.

In this warm-up period, a trajectory is simulated for a warm-up number of periods starting from

the initial state. The first trajectory from which the average cost per time unit is calculated begins

in the final state of the warm-up period. Subsequent trajectories start in the final state of the

previous trajectory. This eliminates the bias of starting in the same initial states and ensures that

the states are realistic as they are visited by the agent. This method is governed by the following

parameters: the warm-up period (W ), the length of the trajectory for obtaining the average costs

(LC), and the number of trajectories (NCs). Here, a large number of trajectories with very long

time horizons are simulated.

The average cumulative policy cost of large instances with non-stationary demand is calculated as

the average of the costs obtained when simulating many trajectories of T periods. Each trajectory

must start from a state with the root node in the demand tree as the current position. In addition,

all initial inventories in stock and production must be values that reflect practice. Therefore, each

trajectory starts from the same initial state, and due to the different demand realizations, each

trajectory will result in a different sequence of states and actions. The parameter for this procedure

is the number of trajectories (NCns). Here, a very large number of trajectories of length T is

simulated. Policy costs in large instances have a standard deviation since the costs are computed

as the average over many numbers. On the other hand, the policy costs in the exact cases are the

converged expected cumulative policy costs and thus, have no standard deviation.

KPIs of Best-Performing Network

The best-performing neural network policy is further analyzed in terms of the following three KPIs:

• Requested Line Item Performance (RLIP): the percentage of requested demand that is im-

mediately satisfied

• Average Lateness (AL): the average number of periods that the demand is delivered too late,

that is, the periods between delivery and requested demand.

• Average Inventory Value (AIV): the average value of on-hand inventory in all nodes of the

supply chain over the full horizon

These three KPIs are commonly used within ASML where the combination of RLIP and AL can

offer good insight into the service level of the prescribed production planning and the AIV provides
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insight into the cost components. Typically, a high RLIP indicates a high service level because much

demand is met immediately, whereas a low RLIP percentage indicates the opposite. However, the

RLIP can not provide any insight into demand delay. In the RLIP, a demand met one period late

has the same value as a demand not met for many periods. Therefore, the RLIP is usually con-

sidered together with the AL, with the AL providing additional insight into the delay of the demand.

Calculating these KPIs requires the simulation of a large number of trajectories and tracking the

states, actions, and costs for each period in each trajectory. From an initial state, the steps of the

dynamics of the supply chain, as explained in Section 4.1, are repeated until the end of the planning

horizon. The initial state is the same for each trajectory of a given test instance. In the stationary

case, the length of the planning horizon is equal to some input parameter (NHs). From all visited

states in the trajectory, the RLIP, AL, and AIV are calculated for this trajectory. For the AIV,

also the unit holding costs per node must be known. This process is repeated for NK number of

trajectories.

The KPI values of the best-performing neural network policy are compared with the values of the

benchmark policies. The same method described above is used to compute the KPI values of the

benchmark policies. For reliable comparison, the realized exogenous variable is kept the same for

each policy That is, the realized exogenous variable is the same for the best-performing neural

network and all benchmark policies in each period of each trajectory. Furthermore, the trajectories

of the benchmark policies start in the same initial state as the best-performing neural network

policy. As each policy may take different actions in a state, the trajectory of the policies and thus,

the KPI values may be different for the policies.

6.5 Explorative Additional Neural Network Agent

The policy obtained by the DCL algorithm is represented by a neural network where the state

vector is given as an input and the elements of the output vector are the actions. The prescribed

action is the action corresponding to the highest neural network output of all allowed actions. The

policy is contained in the neural network parameters. The goal of the DCL algorithm is to obtain

the neural network parameters such that the neural network policy is a well-performing policy.

This section presents an additional agent that also obtains a neural network policy by following the

steps of the DCL algorithm described in Section 5, but with different features of the neural network.

The additional agent makes decisions based on the echelon inventory positions, that is, the sum

of all inventories in stock and in production of all nodes between, and including, this node and

the most downstream node. These inventory positions are the features of the neural network. The

other agent makes decisions based on all information available and has the entire state vector as

the features of the neural network. This additional agent follows a dynamic base-stock policy where
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the base-stock levels are determined by the neural network parameters. The state vector remains

the same but this agent only makes decisions based on the echelon inventory positions. This results

in the same procedure for training this agent, see Section 5, where only the states in the data set

are converted to the echelon inventory positions in Step 3. This agent can investigate whether

prescribing the same actions for the same echelon inventory levels changes the costs of the policy,

whereas the other agent can differentiate in prescribed actions with the same echelon inventory

position. Furthermore, the number of features of the neural network is reduced in this agent, which

may affect the training of the neural network.
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7 Computational Experiments

This section presents a numerical case study to assess the suitability of the DCL algorithm to

solve the tactical production-inventory problem. First, Section 7.1 describes the different instances

in which the performance of the DCL algorithm is analyzed. The choice of hyperparameters is

discussed in Section 7.2. The main results in terms of the policy costs are reported in Section 7.3.

Insight into the production planning prescribed by the policies is provided in Section 7.4 by looking

at the KPIs. Section 7.5 provide further insight into the prescribed actions in instances with two

nodes. Lastly, the results obtained by the additional neural network agent are reported in Section

7.6.

7.1 Experimental Scenarios

This section presents the considered instances to assess the performance and suitability of the DCL

algorithm to solve the tactical production-inventory planning problem. The algorithm is tested on

a total of 28 different instances where each instance consists of a supply chain setting scenario and

a demand scenario. The instances are designed such that there is a variety in terms of demand

uncertainty type (stationary or non-stationary), demand scenarios, number of nodes, production

lead time, holding costs, and backlog penalty. Production capacity is four in all considered scenarios.

Therefore, the tightness of the capacity depends on the demand scenario. First, the demand

scenarios are presented, and then the characteristics of the supply chain scenarios. These two

scenarios are combined to create the test instances.

Demand Scenarios

The demand can be divided into stationary and non-stationary uncertain demand with each type

of uncertainty having different demand scenarios. Stationary demand scenarios are presented first,

followed by non-stationary demand scenarios.

Four different stationary demand scenarios are considered, each corresponding to a different demand

distribution. Table 7.1 reports the proposed stationary demand scenarios. Columns two through

eight show the distribution function per scenario, e.g., scenario S1 has 10% probability on realized

demand of zero per period, 10% on one, 15% on two, 30% on three, and 35% on four. The last

column is the average demand of the distribution in columns two through eight.
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Table 7.1: Stationary Demand Probabilities per Scenario

Demand per period

Scenario 0 1 2 3 4 5 6 µ

S1 0.10 0.10 0.15 0.30 0.35 0.00 0.00 2.7
S2 0.10 0.15 0.15 0.20 0.20 0.15 0.05 2.9
S3 0.10 0.10 0.10 0.25 0.20 0.15 0.10 3.2
S4 0.05 0.10 0.10 0.20 0.25 0.20 0.10 3.5

The demand distribution in scenario S1 has the maximum per period demand equal to the pro-

duction capacity. As mentioned earlier, ASML is not able to keep up with the demand and hence,

this demand distribution seems to not represent the current situation. Nevertheless, this scenario is

considered because it is known that the BS-SS should achieve near-optimal results in this setting.

In demand scenario S2, the demand per period has 20% probability of exceeding the production

capacity. In this scenario, the production capacity is not very tight because the average demand is

significantly lower than the production capacity. Scenario S3 has a tighter capacity which can be

seen by the increase in mean demand. Scenario S4 has the tightest capacity with a mean demand

of 3.5 and a production capacity of 4. Moreover, the per-period demand has a 30% probability to

exceed the production capacity.

In the non-stationary demand scenarios, demand is equal to the mean demand corresponding to the

current position in the demand tree plus the realized random noise. The considered demand tree

is a tree that starts with mean demand equal to two and with each upward movement the mean

demand is increased by one. The probability of moving upwards is equal to 5% in every position of

the tree. The tree is constructed for T periods with T as the input variable. Figure 7.1 shows the

considered demand tree where the number above the arcs indicates the moving probability. The

noise distribution is the discrete uniform distribution from −2 to 2 with only integer values. Table

7.2 presents the different non-stationary demand scenarios where only the length of the time horizon

differs. The longer the time horizon, the tighter the capacity, since there is a higher probability of

upward moves.
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Figure 7.1: The demand tree under consideration

Scenario T Noise P [mt = 1]

NS10 10 U [−2, 2] 0.05
NS15 15 U [−2, 2] 0.05
NS20 20 U [−2, 2] 0.05
NS25 25 U [−2, 2] 0.05

Table 7.2: Non-Stationary Demand Scenarios

Supply Chain Setting Scenarios

Table 7.3 and Table 7.4 present all parameter values of the considered supply chain setting scenar-

ios where the exact optimal solution is computationally feasible and infeasible, respectively. Each

supply chain is a serial multi-echelon supply chain with a variety of the following parameter values:

the number of nodes (N), the unit holding costs per node (hn), the backlog penalty (p), and the

production lead time per node (ln). Furthermore, the exact cases also have additional parameter

values for the maximum units of backlog (b), the lost sales penalty (v), and the inventory capacity

per node (in). All parameter values for each scenario are shown in the tables. The production ca-

pacity is four in all scenarios and added to the table for a clear overview of all parameter values. The

parameters that can have different values per node are represented with vectors, whose dimension

is equal to the number of nodes. The first element of the vector corresponds to the most upstream

node and the following elements for the corresponding successor nodes, e.g., the unit holding costs

in scenario E23 is equal to one and four for the upstream and downstream node, respectively. The

L223 supply chain is visualized in Figure 7.2, where the production lead times are given by the

numbers on the arcs. Furthermore, the numbers on the nodes and customers are the unit holding

cost and backlog penalty, respectively. The last column of the table lists all considered demand

scenarios in combination with that supply chain setting scenario. Each scenario is named, with E

and L corresponding to scenarios for which the optimal solution can be computed and those for

which this is computationally infeasible, respectively.

The tables show that exact instances with stationary demand have two nodes with a maximum

cumulative production lead time of five periods. On the other hand, the exact instances with non-

stationary demand have two nodes but with a maximum cumulative production lead time of three

periods and a horizon length of 10. These instances have shorter production lead times because of

the two additional variables included in the state vector representing the current position in the

tree (see (27)). In particular, this can be seen in instances E23 and NE23, which have the same

production lead times, but for E23 with stationary demand the optimal solution can be computed
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and for L23 with non-stationary demand this is infeasible.

Table 7.3: Supply Chain Setting Scenarios - Small cases

Scenario N h p l c b v i Demand Scenarios

E23 2 [1, 4] 16 [2, 3] 4 12 1000 [15, 18] S1 - S4
E11 2 [1, 4] 16 [1, 1] 4 12 1000 [15, 18] NS10
E12 2 [1, 4] 16 [1, 2] 4 12 1000 [15, 18] NS10
E21 2 [1, 4] 16 [2, 1] 4 12 1000 [15, 18] NS10

Table 7.4: Supply Chain Setting Scenarios - Large cases

Scenario N h p l c Demand Scenarios

L23 2 [2, 3] 8 [2, 3] 4 NS15 - NS25
L223 3 [1, 2, 3] 8 [2, 2, 3] 4 S1 - S4 & NS15 - NS25
L1122 4 [1, 2, 3, 4] 8 [1, 1, 2, 2] 4 S1 - S4
L2223 4 [1, 2, 3, 4] 8 [2, 2, 2, 3] 4 S1 - S4 & NS15 - NS25

Figure 7.2: The L223 supply chain

Test Instances

Each instance consists of a supply chain setting scenario and a demand scenario. Thus, the instances

have a variety in terms of demand scenarios per demand uncertainty type, number of nodes, produc-

tion lead time, holding costs, and backlog penalty. Each instance is referred to these scenarios by the

following instance name: supply chain setting scenario - demand scenario, for example, the instance

with supply chain settings equal to scenario L23 and demand scenario NS15 is instance L23-NS15.

A total of 28 test instances are created. Appendix B lists all instances and their parameter values.

7.2 Hyperparameters Settings

This section discusses the choice of hyperparameters for our experiments with the DCL algorithm.

For each test instance, three generations of neural networks are trained following the steps in Sec-

tion 5, requiring one approximate policy improvement step for each generation. All neural networks

have four hidden layers with dimensions 256, 128, 128, and 64. The neural network is trained on a
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data set with K = 50, 000 and 25, 000 samples in the instances with stationary demand and non-

stationary demand, respectively. These samples are obtained with
¯
n = 50, n̄ = 500, and β = 0.05.

Furthermore, the minibatch size is equal to 64 and ϵ = 0.02, which is the same as proposed in

van Jaarsveld (2021) where details about the latter hyperparameter can also be found. The initial

policy for the first iteration of the approximate policy improvement steps is set to be the BS-SS

and BS-T policy in instances with stationary and non-stationary demand, respectively. Each initial

state has all inventories in stock and production equal to three and four, respectively.

The discount factor γ is set to one such that there is no discounting. This means that the length

of the time horizon for instances with stationary demand must be changed since the geometric dis-

tribution will yield an infinite horizon length that results in never stopping trajectories. Therefore,

the trajectories are truncated with a length of 40 periods. This can still be seen as minimizing the

total expected costs over an infinite time horizon since the states do not contain any information

about the trajectory length. The length is set to 40 periods because this is long enough relative

to the accumulated production lead time but not too long to avoid unnecessarily long computation

times. Namely, longer trajectories lead to longer computation times. Moreover, the roll-outs are

also truncated with a length of 40 periods.

The choice of hyperparameters was mainly based on earlier experiments with the DCL algorithm

and related MDP models. In this study, there was almost no tuning involved, except for K,
¯
n,

and n̄. The objective of tuning the parameters was to find good performance in all cases where

there was a trade-off between sampling and training time, and performance. Initially, the number

of samples was set a lot lower (K = 12, 000) with
¯
n and n̄ higher (

¯
n = 500 and n̄ = 4, 000). Here,

the neural network was trained using 12, 000 samples with, for each sample, a large probability that

the simulation-based prescribed action was the action that yields the lowest costs. Namely, the

higher
¯
n and n̄ the higher the probability that, for each sample, the simulation-based prescribed

action is the correct action that yields the lowest costs. However, this comes at a cost of longer

sampling times. When tuning the parameters, it was found that the performance increased when

the number of samples increased. Furthermore, decreasing
¯
n and n̄ yielded approximately the same

performance while reducing the computation time. First, K was set to 25, 000,
¯
n = 50, and n̄ = 500,

which resulted in better performance at about the same computation time compared to the initial

settings. Further increasing the number of samples increased the performance but at the expense

of longer computation times in instances with stationary demand. On the other hand, in instances

with non-stationary demand, it led to similar performance but also to longer computation times.

Therefore, each generation of the neural network is trained using 50, 000 and 25, 000 samples in the

instances with stationary and non-stationary demand, respectively. In addition, the initial policy

for the first iteration of the approximate policy improvement steps was initially set to a random

policy. This policy takes a random action from the set of allowable actions where each allowed
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action has an equal probability of being prescribed. In the first iteration, this policy determines

the actions taken in the roll-outs after the first action. Furthermore, this policy determines the

subset of states selection when an infinite time horizon is considered and thus, in our case, in the

instances with stationary demand. The random policy was a very poor starting point, requiring

much sampling and training to obtain good results. Therefore, changing the starting policy to

these base-stock policies resulted in both better results and low computation times. Moreover,

tuning showed that the results are rather insensitive to the precise choice of the hyperparameters,

confirming other experiments with the DCL algorithm.

7.3 Main Results

This section presents the results in terms of the policy costs of the DCL algorithm compared to

the benchmarks in all experimental scenarios. The experimentation was conducted using the Dutch

national e-infrastructure with the support of the SURF Cooperative using grant no. EINF-5192.

The DCL algorithm and the supply chain simulations were implemented in c++17 with PyTorch

for the neural network training and inference (van Jaarsveld, 2021). Computations were performed

on one thin node in Snellius which is the Dutch National supercomputer, operated by SURF. Each

thin node has 2 AMD Rome CPUs running at 2.6 GHz and has a total of 128 CPU cores and 256

GiB of RAM (SURF, 2021).

The remainder of this section is organized as follows. Section 7.3.1 summarizes the results for the

exact instances, followed by the performance in the larger cases in Section 7.3.2. All reported results

are of the best-performing neural network in that instance.

7.3.1 Results in Exact Cases

Table 7.5 and Table 7.6 report the optimality gap for respectively the exact instances with stationary

and non-stationary demand. The optimality gap is computed as (C(π)− C(π∗))/(C(π∗))× 100%,

with C(π) and C(π∗) denoting the expected cumulative cost of the policy and optimal policy, re-

spectively. The expected cumulative policy costs are obtained using the procedure of Section 6.4

with a threshold of 1×10−6. The optimality gaps are reported with rounding to two decimal places.

Both tables show the great performance of the DCL algorithm in instances that can be solved

optimally. The optimality gaps for the DCL algorithm are very close to zero in all test instances.

Moreover, the DCL algorithm reports similar costs as the optimal agent in two instances. The

results show that the costs obtained by the neural network policy are lower in 6 of 7 test instances

and equal in the other instance E23-S1, where the costs obtained by the neural network policy and

the BS-SS policy are equal to the optimal cost. This illustrates the ability of the DCL algorithm

to learn how to reduce supply chain-wide costs and obtain (near-)optimal policy costs. Moreover,
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Table 7.5: Optimality Gap for Stationary Exact Instances

Instance

Policy E23-S1 E23-S2 E23-S3 E23-S4

BS-SS 0.00% 0.41% 6.34% 23.81%
DCL 0.00% 0.31% 0.00% 0.45% 1

Table 7.6: Optimality Gap for Non-Stationary Exact Instances

Instance

Policy E11-NS10 E12-NS10 E21-NS10

BS-RN 23.86% 16.52% 21.19%
BS-CN 7.52% 2.43% 5.39%
BS-T 7.52% 8.32% 16.59%
DCL 0.20% 0.03% 0.39%

this shows that the neural networks can capture the structure of the optimal policy. The optimality

gaps of the DCL algorithm do not appear to follow a pattern.

The results reported in Table 7.5 show that the base-stock policy is near-optimal in instances with

the lowest production capacity relative to the demand distribution (instances E23-S1 and E23-S2).

Here, the demand distribution is set in a way that the production capacity is much higher than

the mean demand. Furthermore, the results show a decrease in the performance of the base-stock

policy when the production capacity becomes tighter relative to the demand distribution. This

confirms our expectations, as Shang and Song heuristic is proven to be (near-)optimal in unca-

pacitated multi-echelon supply chains with these characteristics, while the heuristic does not take

capacity into account. Table 7.6 reveals that the benchmark policies are not close to the optimum

in instances with non-stationary demand. It also follows from this table that the results of the

BS-CN policy are the best of the three benchmarks.

In conclusion, the results presented in Table 7.5 and Table 7.6 demonstrate that the neural network

policies obtained from the DCL algorithm have near-optimal performance for all tested instances

for which the optimal solution can be computed.

7.3.2 Results in Large Cases

Table 7.7 and Table 7.8 present the results of the DCL algorithm in large instances. The results

are reported as the difference between the cost of the neural network policy and the benchmark

policy as a percentage of the benchmark policy costs. Thus, this is computed as (C(πDCL) −
1This instance required four generations of training
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C(π))/(C(π))× 100% with the neural network policy and benchmark policy denoted as πDCL and

π, respectively. The policy cost for instances with stationary demand is the average cost per time

unit, while the policy cost for instances with non-stationary demand is the average accumulated

cost of the trajectory with length T . These costs are computed following the method explained in

Section 6.4 with W = 100, LC = 10, 000, NCs = 100, and NCns = 10, 000. Furthermore, the tables

report the standard deviation of the neural network policy cost in the percentage of the policy cost

which is computed as σπDCL/C(πDCL)× 100%.

The tables show promising results for the DCL algorithm in large instances, where the DCL algo-

rithm significantly outperforms all benchmark policies in 17 of 21 test instances. In particular, the

neural network costs are significantly lower compared to the benchmark policies in 12 of 16 instances

with stationary demand and in all instances with non-stationary demand. The costs obtained by

the neural network in the four other instances with stationary demand do not significantly differ

from the BS-SS policy since both costs are within the standard deviation of the neural network

policy costs. Furthermore, when looking at the results reported in both tables, the performance of

the DCL algorithm relative to the benchmark policies typically increases when the production ca-

pacity becomes tighter. Table 7.7 and Table 7.8 report the highest relative cost decrease in demand

scenario S4 and NS25, respectively. This observation makes sense because the base-stock levels

in the benchmark policies do not take into account the capacity. On the contrary, the results in

the stationary cases demonstrate that the performance of the DCL algorithm relative to the BS-SS

policy decreases when the number of nodes and the production lead time increase. Here, in the

largest instances (L2223) the neural network policy obtains insignificant costs difference in two of

the four instances. On the other hand, this relationship is not so clearly observed in instances with

non-stationary demand. Moreover, Table 7.7 shows that the neural network policy can not signifi-

cantly improve upon the costs obtained by the BS-SS policy in the three test instances with demand

scenario S2. This is not in line with the expectations as it was expected that the performance of

the DCL algorithm relative to the BS-SS policy would be similar in demand scenarios S1 and S2.

This may be because of one set of hyperparameters that are used for all instances with stationary

demand but future research should be conducted to evidence this. In summary, the neural network

policies show good performance in the large cases where the policy learned to decrease the supply

chain-wide costs in 17 of 21 test instances but we also found that the performance DCL algorithm

in instances with stationary demand relatively decreases when the network size increases.
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Table 7.7: Gap to benchmark policy in large instances with stationary demand

Demand Scenario

Supply chain settings S1 S2 S3 S4

L223 −0.53% (±0.15) −0.13% (±0.18) −2.54% (±0.23) −7.03% (±0.34)
L1122 −1.63% (±0.15) +0.08% (±0.16) −2.36% (±0.22) −4.10% (±0.35)
L2223 −0.59% (±0.17) +0.13% (±0.19) +0.05% (±0.22) −3.47% (±0.31)

Table 7.8: Gap to benchmark policies in large instances with non-stationary demand

Demand Scenario

Supply chain settings Policy NS15 NS20 NS25

BS-RN −22.13% (±0.50) −30.38% (±0.62) −35.39% (±0.79)
L23 BS-CN −5.95% (±0.50) −8.51% (±0.62) −10.31% (±0.79)

BS-T −9.50% (±0.50) −11.26% (±0.62) −12.49% (±0.79)

BS-RN −21.97% (±0.46) −31.05% (±0.55) −36.87% (±0.72)
L223 BS-CN −7.73% (±0.46) −11.27% (±0.55) −13.66% (±0.72)

BS-T −11.03% (±0.46) −13.83% (±0.55) −15.69% (±0.72)

BS-RN −17.23% (±0.41) −25.77% (±0.47) −32.41% (±0.59)
L2223 BS-CN −6.13% (±0.41) −9.08% (±0.47) −12.07% (±0.59)

BS-T −10.04% (±0.41) −9.93% (±0.47) −10.14% (±0.59)

Learning the neural networks took a bit under 2 hours and 45 minutes for all 28 instances of Table

7.5, Table 7.6, Table 7.7, and Table 7.8 together. This includes the time for obtaining samples

on which the neural network is trained through supervised learning. Of the total learning time,

just over two hours was required for the instances with stationary demand, of which approximately

65% was for obtaining the samples. Individual training times ranged from six to ten minutes with

increasing training times for instances with a larger number of nodes and longer production lead

times. On the other hand, individual training times for instances with non-stationary demand

ranged from only two to five minutes. Here, also the training times increased when the number of

nodes increases and production lead times become longer, but also when the time horizon becomes

longer. The larger training time in instances with stationary demand compared to non-stationary

demand can be explained by both the higher number of samples and the longer planning horizon.

7.4 Results Key Performance Indicators

This section evaluates the performance of the neural network policy in terms of the following three

KPIs: the Requested Line Item Performance, Average Lateness, and Average Inventory Value. All

KPI values are computed for the best-performing neural network policy and the benchmark policies

for each instance following the procedure explained in Section 6.4 with NK = 1, 500 and NHs = 40.
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That is, the KPIs are computed for 1, 500 trajectories consisting of 40 and T periods in instances

with stationary and non-stationary demand, respectively. The variable T depends on the supply

chain setting scenario of the instance. The KPIs are analyzed based on the boxplots given in Figure

7.3 and Figure 7.4. Each figure consists of 12 boxplots where each column presents the results of a

different KPI and each row corresponds to a different supply chain setting scenario. Each boxplot

shows the KPI values obtained for all tested policies for the different considered demand scenarios.

These values strongly depend on the choice of holding costs and backlog penalty, whose values are

presented in Section 7.1. A clear comparison can be made between the demand scenarios since

these parameter values are the same in each row of boxplots due to similar supply chain settings.

The observed KPI values are compared against each other but not analyzed by the exact values

since the choice of parameter values does not depend on research into ASML’s supply chain.

Requested Line Item Performance (RLIP)

The RLIP is given in the first column of boxplots in Figure 7.3 and Figure 7.4 for instances with

stationary and non-stationary demand, respectively. A high RLIP value implies that a large part of

the demand is met immediately, indicating a high service level and thus, better performance. The

results in Figure 7.3 show that in the test instances with stationary demand, the neural network

policy achieves better performance in terms of RLIP compared to the BS-SS policy in 10 out of

16 instances, similar performance in 4 instances, and worse performance in 2 instances. Similar

performance in terms of RLIP is considered when the minimum, maximum, median, and quartiles

of both policies are close to each other and the averages are within 1% of each other. The latter

two instances with worse RLIP performance for the neural network policy than the BS-SS policy

are L1122-S1 and L1122-S2. The results in Figure 7.4 reveal that better performance is achieved by

the neural network policy compared to the base-stock policies in all instances with non-stationary

demand. Here, the minimum, median, and quartiles are higher for the neural network policy com-

pared to the base-stock policies with only the maximum value being similar and equal to one in

all test instances and policies. Moreover, both figures display similar RLIP values for the neural

network policy and the optimal policy in all exact instances, except in instance E23-S4 where the

RLIP is on average lower than the optimal policy. When the results presented in both figures and

in the tables of the previous section are combined, it can be seen that a larger part of the demand

is met immediately by the neural network policies compared to the base-stock benchmark policies

in all instances where the neural network policy also reports lower costs.

Both figures demonstrate declining RLIP values in all base-stock benchmark policies when the

capacity relative to the demand distribution becomes tighter. This confirms our expectations since

the base-stock levels calculated by the Shang and Song bounds do not take into account the capacity.

This relationship also seems to hold for the neural network policy in instances with non-stationary

demand, but this decrease is smaller than that of the base-stock policies. Here, it should be noted
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that the capacity is the same for all three instances in the top row of Figure 7.4. On the contrary,

this relationship does not seem to hold for the neural network policies in instances with stationary

demand. Although the minimum value decreases when the capacity becomes more tight in scenarios

L223 and L1122 with stationary demand, the median, maximum, and quartiles do not decline. In

instances E23 and L2223 with stationary demand, the boxplots reveal on average declining RLIP

values when the capacity becomes tighter, but again this decrease is less compared to the base-

stock policies. Hence, the performance in terms of RLIP of the neural network policy relative to

the base-stock policies typically increases when the capacity gets tighter.

Average Lateness (AL)

The second column of boxplots in Figure 7.3 and Figure 7.4 reports the results obtained in terms

of AL. This KPI shows similar patterns compared to the RLIP but here a low AL value indicates

a high service level and better performance. The boxplots show that the neural network policies

typically achieve lower AL values compared to base-stock policies in all instances where also higher

RLIP values are reported. In these instances, the neural network policy cost is also lower than the

cost incurred when following the base-stock policies. Only instance L2223-S1 stands out, as in this

instance the AL performance achieved by the neural network is worse than that of the BS-SS policy

while the RLIP performance is better. Furthermore, in instances where the neural network policy

and the BS-SS policy report similar RLIP performance, the AL values are also approximately the

same. In the two instances where a smaller part of the demand is immediately met when following

the neural network policy compared to the BS-SS policy, the average delay is longer. The AL values

reported in instances with non-stationary demand summarize that here the neural network policy

outperforms the base-stock policies in terms of AL. Moreover, the same performance conclusion

about the comparison between the neural network policy and the optimal policy can be made for

the AL as the RLIP.

These figures also reveal that the AL values increase for all policies in all supply chain setting

scenarios when the capacity becomes tighter relative to the demand, except for the neural network

policy from instance L1122-S2 to L1122-S3. This relationship is most clear for the base-stock policy

but this relationship also holds, but with a relatively smaller increase, for the neural network policy.

Accordingly, this implies that the performance in terms of AL achieved by the neural network policy

typically increases relative to the base-stock policies when the capacity gets tighter.

Average Inventory Value (AIV)

The last column of Figure 7.3 and Figure 7.4 presents the AIV results obtained for different test

instances. The results demonstrate that the neural network policy reports on average higher AIV

values compared to the base-stock policies in all test instances where the neural network policy

achieves better performance in terms of RLIP and AL. Hence, this holds for 10 out of 16 instances
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(a) RLIP - E23 (b) AL - E23 (c) AIV - E23

(d) RLIP - L223 (e) AL - L223 (f) AIV - L223

(g) RLIP - L1122 (h) AL - L1122 (i) AIV - L1122

(j) RLIP - L2223 (k) AL - L2223 (l) AIV - L2223

Figure 7.3: Boxplots of KPIs in instances with stationary demand
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(a) RLIP - E-NS10 (b) AL - E-NS10 (c) AIV - E-NS10

(d) RLIP - L23 (e) AL - L23 (f) AIV - L23

(g) RLIP - L223 (h) AL - L223 (i) AIV - L223

(j) RLIP - L2223 (k) AL - L2223 (l) AIV - L2223

Figure 7.4: Boxplots of KPIs in instances with non-stationary demand
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with stationary demand and for every instance with non-stationary demand. The four instances

with stationary demand that yield similar RLIP and AL values for the neural network policy and the

BS-SS policy also have similar AIV values. The neural network policy has a lower average inventory

value in the two instances where this policy has worse RLIP and AL performance compared to the

BS-SS policy. The boxplots in Figure 7.3 display that the AIV values are on average lower in

demand scenario S1 compared to S2. This seems logical since in S2 the mean demand is higher

and the capacity is tighter relative to the demand distribution. Thus, more buffers may need to

be placed to fulfill the uncertain demand. On the other hand, these values are lowered from S3

to S4 even though the mean demand increased. This implies that less safety stock is held in the

latter demand scenario. For the BS-SS policy, the AIV values typically decrease from scenario S2

to S4. Moreover, the results display that in most cases the average inventory value held by the

neural network policy relative to the BS-SS policy increases when the capacity becomes tighter.

Figure 7.4 reports that the neural network policy obtains on average higher AIV values than all

base-stock policies in the instances with non-stationary demand. Furthermore, the average AIV

value decreases from demand scenario NS15 to NS25.

Conclusion on KPI Results

The neural network policy typically has a higher safety stock and a higher service level than the

base-stock policies in instances where the neural network policy costs are lower than the base-stock

policy costs. This is evidenced by the higher AIV and RLIP values and the lower AL values for

these instances.

7.5 Actions taken by the Policy

This section analyses the differences in the actions taken by the policies. These results reported in

the previous sections showed great performance of the neural network policies, but it remains un-

clear which actions lead to this increase in performance. The neural network policy must prescribe

different actions in some states to obtain different (better) performance. This section set out to

explain the neural network policies in instances with two nodes. Neural network policies are ex-

tremely difficult to interpret, but interpreting these might help with the adoption of neural network

policies in practice. Here, the base-stock policies sharply contrast the neural network policies since

they have an intuitive character and are thus easy to interpret.

A policy prescribes in each state an action where a state is a multi-dimensional vector. Accordingly,

each element of the vector may affect the prescribed action. Neural network policies prescribe the

allowed action that has the highest output after the neural network maps the state vector to the

output action vector. The neural networks have multiple hidden layers consisting of many nodes

where each layer performs a layer operation. This complicates explaining and interpreting a neural

network policy. Moreover, the total number of possible states is extremely high making the policy
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not suitable to explain using a table. In particular, the smallest stationary instances (E23) already

have over one million possible states. To visualize the policy, the effects of changing two state

variables are discussed by showing the actions prescribed by the policy for different values of these

variables. The effects of only two variables are taken into account for visualization purposes since

each variable adds a dimension to the graphs. The policies are visualized for instances with two

nodes, where the effect of the on-hand inventory positions on the prescribed actions is investigated.

First, the combinations of on-hand inventories common in practice are determined. Then, the

actions prescribed for these inventory positions are visualized.

Actions in instance E23-S3

For the instance with stationary demand and two nodes, the actions are visualized with demand

scenario S3. Here, the neural network policy outperformed the BS-SS policy and learned to obtain

optimal costs. First, the on-hand inventory positions that are common in practice are analyzed by

keeping track of the on-hand inventory values of both nodes over 1500 trajectories of 40 periods.

These inventory values are the inventory values right before an action must be taken. This is

after Step 2 of the dynamics of the supply chain discussed in Section 4.1. Figure 7.5 displays

the probability of the combination of on-hand inventories right before taking an action. Here,

nodes 2 and 1 are the upstream and downstream nodes, respectively. The figure demonstrates that

the optimal policy and the neural network policy have approximately the same on-hand inventory

position probabilities while the BS-SS policy has a higher probability of having lower inventory both

in node 2 and node 1. This is in line with the results in terms of the KPIs for this instance where the

neural network policy and optimal policy have equivalent values for the RLIP, AL, and AIV while

the BS-SS policy has a lower AIV and RLIP value and a higher AL value. As the prescribed actions

should only be visualized for combinations of inventory positions that have a positive probability

to occur, the figure is discussed in more detail. Node 2 has the highest probability of an on-hand

inventory position of four with positions ranging from 3 to 8. On the other hand, the inventory

position of node 1 has a range from −10 to 10. Furthermore, it is observed that a combination of

inventory in node 2 higher than five and inventory in node 1 lower than zero never occurs.

Figure 7.5: On-hand inventory positions probabilities in instance E23-S3
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The prescribed actions in instance E23-S3 for different combinations of on-hand inventories are

presented in Figure 7.6 for the three policies. The top and bottom rows of the figure show the

prescribed actions for the upstream node and downstream node, respectively. In each figure, a part

is masked out that corresponds to a combination of on-hand inventories with zero probability of

occurring, see Figure 7.5. All inventories in production (Pt,n,i) at each node are set to three and

kept constant. Here, three seems the most logical choice since the mean demand is equal to 3.2.

Thus, all variables in the state vector are kept constant except the on-hand inventory positions

and sub-decision variables. The latter variable is two in the top row and one in the bottom row

corresponding to the node where the action is taken. The figure demonstrates that the neural

network policy learns and is able to capture the structure of the optimal policy. All three policies

have a diagonal where the actions change from four to zero at the upstream node. For the optimal

policy and the neural network policy, this diagonal is similar. On the other hand, this diagonal is

moved one inventory level at node 1 to the left for the BS-SS policy. This results in the BS-SS

policy producing one unit less in the upstream node in these combinations. Consider the inventory

position (4, 4), (4, 5), (4, 6) where the first element is the inventory at node 1, the actions prescribed

by the optimal policy, the neural network policy, and the BS-SS policy are 4, 3, 2, 4, 3, 2, and 3, 2, 1,

respectively. Here, it is clear that the BS-SS policy has the diagonal moved one inventory position

of node 1 to the left. All three considered combinations of inventory positions have a positive and

relatively high probability of occurring. In the actions prescribed for the downstream node, the

neural network policy also captures the structure of the optimal policy and thus prescribes similar

actions in almost all combinations of inventory positions.
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Figure 7.6: Prescribed actions in instance E23-S3 with Pt, n, i = 3 ∀n ∈ N , ∀i ∈ Ln. The top row shows
the actions for node 2 and bottom row the actions for node 1

The actions are also visualized against other inventories in production. These figures are presented

in Appendix C.1 where also the Figure 7.5 is stated for a clear overview. Figure C.2 and Figure C.3

show the prescribed actions for different on-and inventory levels when the inventory in production

that become available as stock in one period for each node is set equal to two and four, respectively.

All other inventories in production are kept at three. These figures demonstrate that the neural

network is also able to capture the structure of the optimal policy in all three tested inventories

in production vectors. Moreover, these figures illustrate that the policy learns to prescribe higher

production quantities when the inventories in production are relatively low (2), and the opposite

hold when the inventories in production are relatively high (4). In summary, the neural network

policies learn to capture the structure of the optimal policy in all test settings for instance E23-S3.

Actions in instance E21-NS10

The same procedure is applied to visualize the actions of the policies in instance E21-NS10. How-

ever, each trajectory of the instances with non-stationary demand has the same initial state and

each state has variables included corresponding to the current time period and current vertical

position in the tree. Therefore, the current time period and vertical position must be kept fixed

when visualizing the effects of the on-hand inventory positions on the prescribed actions. The

prescribed actions are visualized for the fifth period. This is the middle of the time horizon where

there is enough variability between trajectories due to the first five periods and the end-of-horizon
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(a) Zero vertical movements

(b) One vertical movement

Figure 7.7: On-hand inventory positions probabilities in instance E21-NS10

effect is not encountered. Furthermore, the vertical position is both set to zero and one to visualize

that the neural network learns to take different actions when an upward movement has been made.

The dynamic base-stock policies BS-CN and BS-T should also prescribe different actions when a

move upwards has been made while the BS-RN policy should prescribe the same actions. First, the

on-hand inventories are determined that are common in practice. This is done by simulating 2500

trajectories where the positions right before taking an action in the fifth period are stored with

the right corresponding vertical position. In total 1911 trajectories had a vertical position of zero

in the fifth period and 528 moved upwards once. The 61 other instances moved upwards at least

twice. The probabilities of inventory positions in the fifth period before taking an action are pre-

sented in Figure 7.7 where the results for a vertical position of zero and one are reported in Figure

7.7a and Figure 7.7b, respectively. These figures show similar on-hand inventory positions when

following the optimal policy or the neural network policy. These positions are higher than the po-

sitions of all base-stock policies. This is also in line with the results obtained in the previous section.

Figure 7.8 visualize the actions prescribed by each policy for different on-hand inventory positions.

Figure 7.8a shows the actions when the current vertical position is equal to zero where Figure 7.8b

report the actions when one vertical movement has taken place in or before the fifth period. The

top row in both figures shows the prescribed actions for the upstream node and the bottom row

for the downstream node which is similar to Figure 7.6. All inventories in production are also set

to three at each node. Clearly, the neural network policies are able to learn the structure of the

optimal policy. For the upstream node, these figures show that the neural network policy produces

equal or more units compared to the base-stock policies. The diagonal is again moved to the
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left for the base-stock policies compared to the neural network policy. For the downstream node,

the base-stock policy is an optimal policy which is also prescribed by the neural network policy.

Moreover, comparing Figure 7.8a with Figure 7.8b shows that the neural network learns to produce

more when the system moved upwards once. The dynamic base-stock policies, BS-T and BS-CN,

also learn to produce more while the prescribed production quantities are unchanged in the BS-RN

policy. The same observation when comparing the actions for the neural network policy and the

base-stock policies can be made that the neural network policies prescribe equal or more production

quantities. The optimal production quantities for the downstream node when the vertical position

is one is also a base-stock policy but with higher base-stock levels which is also captured by the

neural network. These figures report the same patterns as in instance E23-S3 and are thus, in line

with the boxplots of the previous section. Furthermore, the same visualizations are made for the

actions with other inventories in production for both zero and one vertical movements which are

given in Appendix C.2. These figures show a similar appearance where the neural network captures

the structure of the optimal policy. Moreover, the neural network policy learns to prescribe higher

production quantities when the inventory in production that becomes available in one period is

equal to two compared to when these are three. On the other hand, lower production quantities are

prescribed when these values are set to four. It can also be observed for all figures that the neural

network policy prescribes equal or higher production quantities compared to all base-stock policies

in the tested settings. Concluding, the neural network policies can capture the structure of the

optimal policy which produces an equal or higher number of products compared to the base-stock

policies.
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(a) Zero vertical movements

(b) One vertical movement

Figure 7.8: Prescribed actions in instance E21-NS10 with Pt, n, i = 3 ∀n ∈ N , ∀i ∈ Ln. The top row shows
the actions for node 2 and bottom row the actions for node 1
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7.6 Results of the Additional Neural Network Agent

This section presents the results of the additional agent that has the echelon inventory positions

as features of the neural network. This agent is referred to as the second neural network agent. In

this section, the agent that has the entire state vector as features of the neural network is denoted

as the first neural network agent. Table 7.9 and Table 7.10 report the differences in policy cost

between the second neural network agent and the first neural network agent as a percentage of the

first neural network agent. The reported gap is computed as (C(π2)−C(π1))/(C(π1))×100% with

π1 and π2 the first and second neural network policy, respectively. The costs are obtained following

the methods described in Section 6.4 with the same parameter values described in Section 7.3.2.

That is, the costs in exact instances are the exact converged policy cost from starting in the initial

state, the costs in large instances with stationary demand are computed as average cost per time

unit, and the costs in large instances with non-stationary costs are the average accumulated costs

over a trajectory of length T . The latter two costs are computed with W = 100, LC = 10, 000,

NCs = 100, and Ncns = 10, 000. The same initial state per test instance is used in the first and

second neural network policies.

Table 7.9: Gap to Neural Network Agent in in-
stances with stationary demand

Instance Cost difference

E23-S1 +0.07%
E23-S2 0.00%
E23-S3 +0.89%
E23-S4 +0.42% 2

L223-S1 0.00% (±0.15)
L223-S2 0.00% (±0.19)
L223-S3 −0.05% (±0.24)
L223-S4 −0.13% (±0.34)

L1122-S1 0.00% (±0.15)
L1122-S2 +0.07% (±0.17)
L1122-S3 −0.03% (±0.22)
L1122-S4 0.00% (±0.35)

L2223-S1 0.00% (±0.17)
L2223-S2 −0.13% (±0.19)
L2223-S3 −0.07% (±0.23 )
L2223-S4 −0.36% (±0.31)

Table 7.10: Gap to Neural Network Agent in in-
stances with non-stationary demand

Instance Percentage cost difference

E12-NS10 +0.10%
E21-NS10 −0.19%
E11-NS10 +0.07%

L23-NS15 +0.02% (±0.51)
L23-NS20 −0.14% (±0.61)
L23-NS25 −0.03% (±0.81)

L223-NS15 −0.08% (±0.48)
L223-NS20 −0.17% (±0.54)
L223-NS25 −0.25% (±0.73)

L2223-NS15 −0.18% (±0.42)
L2223-NS20 −0.36% (±0.46)
L2223-NS25 −0.26% (±0.58)

Both tables show that the first neural network policy obtains lower costs in five of seven exact

instances, the same cost in one instance, and in one instance the second neural network policy

2This instance required four generations of training
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obtained lower costs, but it has to be noted that all cost differences are within 1%. In large

instances, the tables summarize that there is no significant difference between the incurred costs

when following one of the two policies. The cost difference is not greater than two standard

deviations in all large test instances. The training and sampling time of the second agent was on

average 7% higher which is solely on the training of the neural network since the sampling remains

the same. The training is only needed once and thus, this increase does not seem to be a problem.

As there is no significant cost difference, no further research has been devoted to the second neural

network agent.
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8 Conclusions and Future Research

This section contains the conclusions resulting from the problem definition, MDP formulations,

methodology, and experimental results presented in the previous sections. The section closes with

limitations and suggestions for future research.

8.1 Conclusion

The production-inventory problem is a sequential decision-making problem under uncertainty that

arises in inventory management and is critical to the performance of a supply chain network. De-

spite extensive research, the optimal policy remains unknown for the inventory problems studied in

this thesis. Therefore, this thesis applies the Deep Controlled Learning (DCL) algorithm to solve

the tactical production-inventory planning problem in serial multi-echelon supply chains with finite

production capacity, production lead times, and uncertain demand.

A central decision-maker chooses production quantities to meet customer demand while minimizing

the total cost of the entire supply chain. This problem is formulated as a Markov Decision Process

and is solved by applying the DCL algorithm. This algorithm obtains policies by iterating the

procedure where a dataset consisting of a subset of states and their corresponding simulation-based

best actions is sampled and a neural network is trained on this dataset which is used to represent

policies. As multiple decisions must be made simultaneously, the resulting action space in the MDP

formulation is multi-dimensional. However, large action spaces remain difficult to handle for DRL

algorithms due to scalability issues in the action space. Therefore, the decisions are decomposed

the decisions into sub-decisions, where each sub-decision decides on the production quantity for a

single node. This effectively handles the multi-dimensional action space and has a great advantage

in both training the neural network and finding the simulation-based prescribed action while pro-

viding good results.

Furthermore, the model is extended to allow for non-stationary demand. Non-stationary demand is

sampled from a demand tree and a random noise distribution, with the demand tree modeling the

changing average demand over time. On the contrary, stationary demand is sampled from the same

distribution throughout the time horizon. The other key difference between these models is that the

time horizon is infinite when stationary demand is considered whereas the time horizon is finite in

models with non-stationary demand. Moreover, the models are further divided into two cases. One

for which the optimal solution can be computed and the other for which this is computationally

infeasible. For computing the optimal solution, two additional constraints are introduced into the

model to ensure that the total number of possible state-action pairs is finite. Thus, a total of four

different MDPs are formulated, and for each case, multiple different supply chains are considered

to better assess the suitability and performance of the DCL algorithm.
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The algorithm has been tested on 28 supply chain networks, each with variations in demand un-

certainty, number of nodes, production lead times, and cost parameters. The experiments show

highly promising results for the DCL algorithm, which demonstrates (near-)optimal behavior in

all instances for which the optimal solution can be found. Furthermore, the neural network poli-

cies obtained from the DCL algorithm significantly outperform the base-stock policies in most

test instances. The results illustrate that the costs incurred by the DCL algorithm relative to

the base-stock policies are significantly lower in all instances with non-stationary demand and in

instances with tight capacity relative to the demand distribution. However, the DCL algorithm

does not vastly outperform the base-stock policy in all test instances with stationary demand, es-

pecially when either the capacity is relatively low compared to the demand distribution, or when

the network has a relatively large number of nodes and long production lead times. Neverthe-

less, the DCL algorithm seems a promising general-purpose solution technique to solve the tactical

production-inventory problem in serial multi-echelon supply chains. Moreover, the tuning of the

hyperparameters appears to be a relatively simple task and the results are rather insensitive to the

precise choice of these parameters.

To provide insight into the neural network policy, the policy is analyzed through an extensive study

in terms of three key performance indicators: Requested Line Item Performance (RLIP), Average

Lateness (AL), and Average Inventory Value (AIV). This study revealed that the neural network

policy generally achieves lower costs by increasing the safety stocks resulting in higher service levels

which is evidenced by the higher RLIP and AIV, and lower AL values. Additionally, to investigate

which different actions result in better performance, the actions prescribed by the policies were

analyzed for different in supply chain networks with two nodes. This showed that the neural net-

work policies typically prescribe an equal or higher production quantity compared to the base-stock

policies. This is consistent with the results in terms of the KPIs. Moreover, the neural network

policy in these instances is shown to capture the structure of the optimal policy. It should be

acknowledged that neural network policies remain extremely hard to interpret.

In conclusion, the results demonstrate the ability of the DCL algorithm to not only learn how to

decrease the cost of the entire supply chain but also to obtain policies that can match and, in

most test experiments, significantly outperform the base-stock policies designed specifically for this

problem. On the other hand, in supply chains with stationary demand, the performance of the DCL

algorithm in supply chains relative to the base-stock policy decreased with longer production lead

times and more nodes. This study further provides evidence that neural networks can effectively

be used to represent policies in inventory problems. Yet, neural network policies remain a black

box. Thus, DRL seems a promising general-purpose solution technique to solve tactical production-

inventory problems in serial multi-echelon supply chains.
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8.2 Limitations and Future Research

This thesis has its limitations, mainly because of simplifications that had to be made to model the

complex supply chain of ASML. Therefore, more research can be conducted in this very promising

area. This section divides the limitations and suggestions for future research into two main parts.

The first part is concerning the modeling and the other concerning the interpretation of the results

and the possibilities of the neural network policies.

The Model

In modeling the supply chain network and formulating the MDP, several simplifications have been

made that need to be mitigated in the future. The first simplification concerns the demand un-

certainty which is modeled as stationary demand uncertainty or with a demand tree and random

noise. This choice was made because the optimal solution can be computed when sampling the

demand in this way. However, no research was performed on historical demand data for ASML or

demand forecasts in the coming years. Analysis of this could thus provide additional insight to bet-

ter represent the demand that ASML faces. There are most likely other models that better capture

the demand uncertainty but it should be noted that the exact benchmark with most other demand

models will not be available. Another possibility is to analyze the demand for better parameter

values of the demand distribution while keeping the same demand model.

Furthermore, ASML faces significant supply uncertainty which is not included in our model. Here,

the assumption is made that infinite supply is available with no uncertainties. For a good rep-

resentation of the supply uncertainty, this should first be analyzed. On the other hand, adding

some initial supply uncertainty is a relatively easy task where, for example, one could introduce

probabilities for each item ordered regarding product delivery or delay.

All supply chain parameters given in Table 7.3 and Table 7.4 are not based on an analysis of

ASML’s supply chain. Therefore, updating these values to more realistic values will result in better

representations of the supply chain of ASML. In doing so, a decision must be made about the length

of the time periods. ASML plans on a weekly and monthly basis, where this decision has a major

impact on the production lead time and capacity. Setting the decision periods to weeks results

in a large number of periods as production lead time while the production capacity is relatively

low. On the other hand, months mean that the lead times are not too large but the production

capacity must be increased. Large production lead times increase the dimension of the state vector,

while large production capacities increase the number of possible actions. In both scenarios, more

research must be conducted on the performance of the DCL algorithm in these settings.

Another simplification is that this thesis considers only one product which is manufactured using

one component at each node. However, in practice, each system has a bill of materials consisting of
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multiple components. Thus, each node has multiple components that can be stored and produced.

This results in decisions that must be made on how much of each component to produce at each

node at each period. This increases the total number of decisions that must be made in one period.

Furthermore, this requires consideration of the production capacity, as the capacity can be aggre-

gated production capacity over all components it produces or for subsets of components. A natural

further extension is to consider multiple end-products. Different end-products typically have similar

components at upstream nodes which introduces commonality. As a result, the decision as to for

which end product this component will be used can be made later in the supply chain. This turns

the supply chain into a divergent system.

Moreover, a characteristic of the supply chain network of ASML is sparse parts demand, that is,

demand at the middle nodes. Therefore, a natural extension to this paper is to incorporate this into

our model. The exogenous information should then include the spare parts demand, and a decision

should be made to meet the spare parts demand or to further produce the parts for finished end

systems. This will also turn the network into a divergent system.

All of these extensions may change the state vector, action space, and transition dynamics of the

MDP, but they all appear suitable for inclusion in the model. Further research is needed to get

insight into the effects on performance.

Results Interpretation and Future Possibilities

In addition to the simplifications to the supply chain network, this thesis has its limitations in

interpreting the results and the neural network policies. Therefore, future research may help to

adopt DRL and neural network policies in practice.

There are limitations in interpreting the results, especially in non-stationary cases. Here, three

base-stock benchmark policies are proposed which are shown to be quite far from optimal. Thus,

evaluating the performance of the DCL algorithm against benchmarks that report relatively high

costs may give a wrong impression. Therefore, more research should be done on other benchmark

policies that report costs closer to optimality in exact instances with non-stationary demand. One

base-stock policy that may show good performance is an extension of the BS-T benchmark policy

that includes the noise distribution in each period of demand distribution over lead time instead

of only adding the noise in the last period. This still ensures that the demand distribution within

lead time follows the tree. The cumulative lead time demand distribution will then follow the tree

with the noise distribution included in every position. This will result in higher base-stock levels,

which may bring the costs obtained by this base-stock policy closer to the DCL and optimal policy.
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Another limitation of the model with non-stationary demand is that the current period is included

in the state vector. This, together with the vertical position, determines the position in the demand

tree. However, this results in an end-of-horizon effect as the agent knows the current period and

the total length of the horizon, the latter one being known by simulations. This end-of-horizon

effect may result in an inventory vector of the neural network policy at the end of the time horizon

that is not preferred. Namely, the algorithm learns that these quantities will not be used to meet

customer demand as the cumulative production lead time is higher than the remaining periods in

the trajectory. Future research should investigate ways to eliminate this. One possibility could be

to only include the vertical position in the state vector since only this corresponds to the mean

demand in the demand tree and the agent would then not know when it is approaching the end of

the time horizon.

Moreover, instances with non-stationary demand all start in the same initial state. This is necessary

for the root node of the tree, but the initial inventories on-hand and in production could slightly

differ from one trajectory to another. Starting from the same initial state results in similar states

that are sampled in the approximate policy iterations steps. This introduces a bias of starting in

the same initial state when computing the policy costs and other KPI values. Thus, it is preferable

to eliminate this. It should be noted that for reasonable initial inventory values, the randomness is

limited but some randomness could be added.

A limitation of neural network policy, in general, is that it is extremely difficult to interpret and,

therefore, remains a black box. This limitation is also mentioned in the literature (see, e.g., (Boute

et al., 2021), (Gijsbrechts et al., 2021), and (Yan et al., 2022)). More research is required to explain

the neural network policies and to generate intuitive policies or structural insights from the neural

networks that can support decision-making. This study addresses this only slightly by visualiz-

ing the KPIs and analyzing the effect of the on-hand inventories on the policy in a supply chain

network with two nodes. However, much more research can be done here, which will also help in

adopting DRL and neural network policies in practice. If our black-box model prescribes produc-

tion quantities, which cannot be explained, decision-makers are not likely to follow the prescribed

production quantities. On the other hand, when the suggestions have an intuition behind them,

the probability of adopting these actions increases. This may come at the expense of performance

since interpretable policies might not be as flexible as neural networks.

Lastly, more research could be performed in fine-tuning the algorithm and the choice of hyper-

parameters. A sensitivity analysis on the latter could help find the best hyperparameters for the

considered problems. Although the algorithm is quite robust to the precise choice of hyperparam-

eters, further fine-tuning could improve the performance of the algorithm.
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A Markov Decision Process Formulations

A.1 MDP for Sub-Decisions

Objective inf
π

E
[ T∑
t=0

γtC(st,X
π
t )|s0

]
State vector st = [[ILt,n, Pt,n,1, . . . , Pt,n,ln−1, Pt,n,ln ]∀n∈N ,K]

Allowed action set Xt,n

s.t. Xt,n ≤ c

Xt,n ≤ ILt,n+1,0 if n ̸= N

Xt,n ∈ N0

Reward function C(st,Xt) =
∑

n∈N\{1}

hn(ILt,n −Xt,n−1) + h1(ILt,1)
+ − p(ILt,1)

−

Random transition dynamics [st] = f(st−1, Xt−1,0)

s.t. Pt,n,i = Pt−1,n,i+1 ∀i ∈ Ln, ∀n ∈ N
Pt,n,ln = 0 ∀n ∈ N
ILt,n = ILt−1,n + Pt−1,n,1 ∀n ∈ N \ {1}
ILt,1 = ILt−1,1 + Pt−1,1,1 − dt

K = N

Deterministic transition dynamics [st] = f(st, Xt,K)

s.t. Pt,K,lK = Xt,K

ILt,K+1 = ILt,K+1 −Xt,K if K ̸= N

K = K − 1
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A.2 MDP for Exact Case with Stationary Demand

Objective inf
π

E
[ T∑
t=0

γtC(st,X
π
t )|s0

]
State vector st = [[ILt,n, Pt,n,1, . . . , Pt,n,ln−1, Pt,n,ln ]∀n∈N ,K, Lt]

Allowed action
set

Xt,n

s.t. Xt,n ≤ c

Xt,n ≤ ILt,n+1,0 if n ̸= N

ILt,n +
∑
i∈Ln

Pt,n,i +Xt,n ≤ in

Xt,n ∈ N0

Reward func-
tion

C(st,Xt) =
∑

n∈N\{1}

[hn · (ILt,n −Xt,n−1)] + zt

s.t. zt =


h1t,1 if demand satisfied

p · −ILt,1 if backlog

v · Lt + p · b if backlog + lost sales

Random tran-
sition dynam-
ics

[st] = f(st−1, Xt−1,0)

s.t. Pt,n,i = Pt−1,n,i+1 ∀i ∈ Ln, ∀n ∈ N
Pt,n,ln = 0 ∀n ∈ N
ILt,n = ILt−1,n + Pt−1,n,1 ∀n ∈ N \ {1}

Lt =

{
−ILt−1,1 − Pt−1,1,1 + dt − b

0

if lost sales (ILt−1,1 + Pt−1,1,1 − dt ≤ b)

otherwise

ILt,1 =

{
b

ILt−1,1 + Pt−1,1,1 − dt

if lost sales (ILt−1,1 + Pt−1,1,1 − dt ≤ b)

otherwise

K = N

Deterministic
transition
dynamics

[st] = f(st, Xt,K)

s.t. Pt,K,lK = Xt,K

ILt,K+1 = ILt,K+1 −Xt,K if K ̸= N

K = K − 1
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A.3 MDP with Demand Tree

Objective inf
π

E
[ T∑
t=0

C(st,X
π
t )|s0

]
State vector st = [[ILt,n, Pt,n,1, . . . , Pt,n,ln−1]∀n∈N ,K, t, idt]

Allowed action set Xt,n

s.t. Xt,n ≤ c

Xt,n ≤ ILt,n+1,0 if n ̸= N

ILt,n +
∑
i∈Ln

Pt,n,i +Xt,n ≤ in

Xt,n ∈ N0

Reward function C(st,Xt) =
∑

n∈N\{1}

[hn · (ILt,n −Xt,n−1)] + zt

s.t. zt =


h1t,1 if demand satisfied

p · −ILt,1 if backlog

v · Lt + p · b if backlog + lost sales

Random transition dynamics [st] = f(st−1, Xt−1,0)

s.t. Pt,n,i = Pt−1,n,i+1 ∀i ∈ Ln, ∀n ∈ N
Pt,n,ln = 0 ∀n ∈ N
ILt,n = ILt−1,n + Pt−1,n,1 ∀n ∈ N \ {1}
ILt,1 = ILt−1,1 + Pt−1,1,1 − at,idt

− kt

idt = idt−1 +mt

t = t+ 1

K = N

Deterministic transition dynamics [st] = f(st, Xt,K)

s.t. Pt,K,lK = Xt,K

ILt,K+1 = ILt,K+1 −Xt,K if K ̸= N

K = K − 1
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A.4 MDP for Exact Case with Demand Tree

Objective inf
π

E
[ T∑
t=0

C(st,X
π
t )|s0

]
State vector st = [[ILt,n, Pt,n,1, . . . , Pt,n,ln−1, Pt,n,ln ]∀n∈N ,K, Lt, t, idt]

Allowed action
set

Xt,n

s.t. Xt,n ≤ c

Xt,n ≤ ILt,n+1,0 if n ̸= N

ILt,n +
∑
i∈Ln

Pt,n,i +Xt,n ≤ in

Xt,n ∈ N0

Reward func-
tion

C(st,Xt) =
∑

n∈N\{1}

[hn · (ILt,n −Xt,n−1)] + zt

s.t. zt =


h1t,1 if demand satisfied

p · −ILt,1 if backlog

v · Lt + p · b if backlog + lost sales

Random tran-
sition dynam-
ics

[st] = f(st−1, Xt−1,0)

s.t. Pt,n,i = Pt−1,n,i+1 ∀i ∈ Ln, ∀n ∈ N
Pt,n,ln = 0 ∀n ∈ N
ILt,n = ILt−1,n + Pt−1,n,1 ∀n ∈ N \ {1}

Lt =

{
−ILt−1,1 − Pt−1,1,1 + at,idt + kt − b

0

if lost sales (ILt−1,1 + Pt−1,1,1 − at,idt − kt ≤ b)

otherwise

ILt,1 =

{
b

ILt−1,1 + Pt−1,1,1 − dt

if lost sales (ILt−1,1 + Pt−1,1,1 − at,idt
− kt ≤ b)

otherwise

K = N

idt = idt−1 +mt

t = t+ 1

Deterministic
transition
dynamics

[st] = f(st, Xt,K)

s.t. Pt,K,lK = Xt,K

ILt,K+1 = ILt,K+1 −Xt,K if K ̸= N

K = K − 1
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B Test Instances

B.1 Test Instances with Stationary Demand

Table B.1: Exact Instances with Stationary Demand

Demand per period

Scenario N h p l c b v i 0 1 2 3 4 5 6 µ σ

E23-S1 2 [1, 4] 16 [2, 3] 4 12 1000 [15, 18] 0.10 0.10 0.15 0.30 0.35 0.00 0.00 2.7 ..
E23-S2 2 [1, 4] 16 [2, 3] 4 12 1000 [15, 18] 0.10 0.15 0.15 0.20 0.20 0.15 0.05 2.9 ..
E23-S3 2 [1, 4] 16 [2, 3] 4 12 1000 [15, 18] 0.10 0.10 0.10 0.25 0.20 0.15 0.10 3.2 ..
E23-S4 2 [1, 4] 16 [2, 3] 4 12 1000 [15, 18] 0.05 0.10 0.10 0.20 0.25 0.20 0.10 3.5 ..

Table B.2: Large Instances with Stationary Demand

Demand per period

Scenario N h p l c 0 1 2 3 4 5 6 µ σ

L223-S1 3 [1, 2, 3] 8 [2, 2, 3] 4 0.10 0.10 0.15 0.30 0.35 0.00 0.00 2.7 ..
L223-S2 3 [1, 2, 3] 8 [2, 2, 3] 4 0.10 0.15 0.15 0.20 0.20 0.15 0.05 2.9 ..
L223-S3 3 [1, 2, 3] 8 [2, 2, 3] 4 0.10 0.10 0.10 0.25 0.20 0.15 0.10 3.2 ..
L223-S4 3 [1, 2, 3] 8 [2, 2, 3] 4 0.05 0.10 0.10 0.20 0.25 0.20 0.10 3.5 ..
L1122-S1 4 [1, 2, 3, 4] 8 [1, 1, 2, 2] 4 0.10 0.10 0.15 0.30 0.35 0.00 0.00 2.7 ..
L1122-S2 4 [1, 2, 3, 4] 8 [1, 1, 2, 2] 4 0.10 0.15 0.15 0.20 0.20 0.15 0.05 2.9 ..
L1122-S3 4 [1, 2, 3, 4] 8 [1, 1, 2, 2] 4 0.10 0.10 0.10 0.25 0.20 0.15 0.10 3.2 ..
L1122-S4 4 [1, 2, 3, 4] 8 [1, 1, 2, 2] 4 0.05 0.10 0.10 0.20 0.25 0.20 0.10 3.5 ..
L2223-S1 4 [1, 2, 3, 4] 8 [2, 2, 2, 3] 4 0.10 0.10 0.15 0.30 0.35 0.00 0.00 2.7 ..
L2223-S2 4 [1, 2, 3, 4] 8 [2, 2, 2, 3] 4 0.10 0.15 0.15 0.20 0.20 0.15 0.05 2.9 ..
L2223-S3 4 [1, 2, 3, 4] 8 [2, 2, 2, 3] 4 0.10 0.10 0.10 0.25 0.20 0.15 0.10 3.2 ..
L2223-S4 4 [1, 2, 3, 4] 8 [2, 2, 2, 3] 4 0.05 0.10 0.10 0.20 0.25 0.20 0.10 3.5 ..

B.2 Test Instances with Non-Stationary Demand

Table B.3: Exact Instances with Non-Stationary Demand

Scenario N h p l c b v i T Noise P [mt = 1]

E11-NS10 2 [1, 4] 16 [1, 1] 4 12 1000 [15, 18] 10 U [−2, 2] 0.05
E12-NS10 2 [1, 4] 16 [1, 2] 4 12 1000 [15, 18] 10 U [−2, 2] 0.05
E21-NS10 2 [1, 4] 16 [2, 1] 4 12 1000 [15, 18] 10 U [−2, 2] 0.05
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Table B.4: Large Instances with Non-Stationary demand

Scenario N h p l c T Noise P [mt = 1]

L23-NS15 2 [2, 3] 8 [2, 3] 4 15 U [−2, 2] 0.05
L23-NS20 2 [2, 3] 8 [2, 3] 4 20 U [−2, 2] 0.05
L23-NS25 2 [2, 3] 8 [2, 3] 4 25 U [−2, 2] 0.05
L223-NS15 3 [1, 2, 3] 8 [2, 2, 3] 4 15 U [−2, 2] 0.05
L223-NS20 3 [1, 2, 3] 8 [2, 2, 3] 4 20 U [−2, 2] 0.05
L223-NS25 3 [1, 2, 3] 8 [2, 2, 3] 4 25 U [−2, 2] 0.05
L2223-NS15 4 [1, 2, 3, 4] 8 [2, 2, 2, 3] 4 15 U [−2, 2] 0.05
L2223-NS20 4 [1, 2, 3, 4] 8 [2, 2, 2, 3] 4 20 U [−2, 2] 0.05
L2223-NS25 4 [1, 2, 3, 4] 8 [2, 2, 2, 3] 4 25 U [−2, 2] 0.05
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C Prescribed Actions

C.1 Prescribed Actions in Instance E23-S3

Figure C.1: Prescribed actions in instance E23-S3 with Pt, n, i = 3 ∀n ∈ N , ∀i ∈ Ln. The top row shows
the actions for node 2 and bottom row the actions for node 1
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Figure C.2: Prescribed actions in instance E23-S3 with Pt, n, 1 = 2 and Ptni = 3 ∀n ∈ N , ∀i ∈ Ln \ 1

Figure C.3: Prescribed actions in instance E23-S3 with Pt, n, 1 = 4 and Ptni = 3 ∀n ∈ N , ∀i ∈ Ln \ 1
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C.2 Prescribed Actions in Instance E21-NS10

Zero Vertical Movements

Figure C.4: Prescribed actions in instance E21-NS10 with Pt, n, i = 3 ∀n ∈ N ,∀i ∈ Ln and id5 = 0

Figure C.5: Prescribed actions in instance E21-NS10 with Pt, n, 1 = 2, Ptni = 3 ∀n ∈ N , ∀i ∈ Ln \ 1, and
id5 = 0
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Figure C.6: Prescribed actions in instance E21-NS10 with Pt, n, 1 = 4, Ptni = 3 ∀n ∈ N , ∀i ∈ Ln \ 1, and
id5 = 0

One Vertical Movement

Figure C.7: Prescribed actions in instance E21-NS10 with Pt, n, i = 3 ∀n ∈ N ,∀i ∈ Ln and id5 = 1

87



Figure C.8: Prescribed actions in instance E21-NS10 with Pt, n, 1 = 2, Ptni = 3 ∀n ∈ N , ∀i ∈ Ln \ 1, and
id5 = 1

Figure C.9: Prescribed actions in instance E21-NS10 with Pt, n, 1 = 4, Ptni = 3 ∀n ∈ N , ∀i ∈ Ln \ 1, and
id5 = 1

88


	Acknowledgements
	Abstract
	Introduction
	Introduction to ASML
	Production Planning
	Research Objective
	Outline

	Literature Review
	Multi-Echelon Inventory Optimization
	Capacitated Multi-Echelon Inventory Problem
	Non-Stationary Demand
	Reinforcement Leaning for Inventory Optimization
	Contribution of the Current Study

	Preliminaries
	Reinforcement Learning; the core-idea
	Markov Decision Process
	Policy
	Policy Improvement and Iteration
	Neural Networks
	Neural Network Policies

	The Problem
	The Supply Chain
	MDP Formulation

	The Deep Controlled Learning Algorithm
	Overview of Approximate Policy Improvement Steps
	Subset of States Selection
	Simulation-Based Policy
	Training the Neural Network

	Methodology
	Decompose into Sub-Decisions
	Stationary Demand
	Non-Stationary Demand
	Key Performance Indicators
	Explorative Additional Neural Network Agent

	Computational Experiments
	Experimental Scenarios
	Hyperparameters Settings
	Main Results
	Results Key Performance Indicators
	Actions taken by the Policy
	Results of the Additional Neural Network Agent

	Conclusions and Future Research
	Conclusion
	Limitations and Future Research

	References
	Markov Decision Process Formulations
	MDP for Sub-Decisions
	MDP for Exact Case with Stationary Demand
	MDP with Demand Tree
	MDP for Exact Case with Demand Tree

	Test Instances
	Test Instances with Stationary Demand
	Test Instances with Non-Stationary Demand

	Prescribed Actions
	Prescribed Actions in Instance E23-S3
	Prescribed Actions in Instance E21-NS10


