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Matchings in a marriage market under limited foresight

Aron van Woerkom

February 23, 2023

Abstract

Existing research on one-to-one-matching problems has mainly focused on either
assuming myopia or full farsightedness by players in the game. This paper proposes
to introduce limited foresight as an assumption on the players by examining each
player’s incentives to change the matching by establishing or dissolving links in the
matching. Each player is assumed to have the ability to initiate these changes, and
depending on the level of foresight, each player can evaluate the effect of further
changes that may follow his change. Based on these new assumptions, I define a
new stable set that always exists in a one-to-one matching problem and is unique.
Next to assuming limited foresight, I propose the notion of stochasticity that players
are assumed to be aware of. This stochasticity makes them less optimistic about
the consequences of their actions. I show the relation of the stable sets under both
conditions and show that both stable sets may not be subsets of each other. Last,
I reconsider the assumptions under stochasticity and show the key takeaways that
arise under the new assumptions.

Key words: matchings; marriage market; limited foresight; stochasticity; stable matching;
stochastic marriage market.
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1 Introduction

Matching problems are typically presented in the form of a marriage market where the
players of the game can be divided into two separate groups. In the context of a marriage
market, these are referred to as men and women. Each player has preferences over the
players of the opposite sex. A matching is a complete allocation in which each player is
allocated a player of the opposite sex or is single. If a player a is allocated a player b,
then the player b is allocated player a. Furthermore, each player can only be allocated
one player or is single. The players in the marriage market play the game by forming or
breaking links between players of the opposite sex. These links comprise the allocation as
described. Each player has the incentive to form a link with a partner as mostly preferred
as possible and the formation and deletion of links are determined by the preferences of
players in the game.
The matching literature started with the publication of the paper by Gale and Shap-
ley (1962) which was the first paper to consider matching games. Next to considering
marriage market games, they also considered school admission problems in which school
applicants have preferences over schools and schools have preferences over applicants.
Gale and Shapley (1962) distinguished marriage market games from school admission
problems by allowing for schools to be allocated more than one student. In school ad-
mission problems, the number of schools can then be of larger size than the number of
applicants. The marriage market game can, however, be interpreted as a restricted ver-
sion of the school admission problem in which the number of schools is set equal to the
number of applicants such that each school is allocated at most one student and each
student is allocated at most one school. The marriage market game is usually referred to
as a one-to-one matching problem because each player can be allocated one player of the
opposite sex or is single.
A key concept introduced by Gale and Shapley (1962) is the concept of stability in the
marriage market. In a stable matching, no player prefers being single over being matched
to his allocated partner. Also, there is no pair of players that both prefer each other over
their allocated partner in the matching. In other words, there is no player that can inde-
pendently improve by breaking with his allocated player, and there is no pair of players
that can jointly decide to break their links and form a new link between them such that
both end up with a more preferred partner. Gale and Shapley (1962) also showed that,
in any marriage market game, a stable matching exists. They showed this by providing
an iterative procedure for finding a stable set of marriages that can be applied in every
marriage market game.
A key assumption in the paper of Gale and Shapley (1962), however, is that players of the
marriage market game act in a ‘myopic’ way. This ‘myopia’ or ‘near-sightedness’ breaks
down to players considering only the direct consequence of the formation or deletion of
a link. Consequently, players do not foresee that, through such an action, other players
in the game may start to act which could be resulting in new matchings. The matching
resulting from an action performed in the matching created by the initial player may not
necessarily be in line with the interest of the player initially deciding to act. Furthermore,
such an action could result in a path of matchings following from subsequent actions by
players in the game. Depending on the assumptions made on the myopia of the players
of the game, this path of events may or may not be foreseen by the player performing the
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action.
The literature presented so far on matchings can be subdivided into two streams. Players
are either assumed to be myopic or they are assumed to be farsighted. In the latter case,
players can fully foresee the consequences of the formation or the deletion of a link. An
example of a paper that assumes myopia includes Ehlers (2007) which shows several re-
sults in one-to-one matching problems in relation to stable sets. Others deriving results
related to stability and stable sets under the assumption of myopic players include Wako
(2010) and Demuynck, Herings, Saulle, and Seel (2019). Next to papers assuming myopia,
Mauleon, Vannetelbosch, and Vergote (2011) show several results related to stable sets
under the assumption of farsighted players. Another paper showing results with regard
to stability and stable sets is by Mauleon, Molis, Vannetelbosch, and Vergote (2014).
The problem on the subdivision in the literature based on the assumption of myopia or
farsightedness does not only apply to matching problems. Namely, in network problems,
the focus on either myopia or farsightedness has also been present. Matching games can
be seen as a restricted version of network games. Namely, in network games, no sex is de-
fined and players can usually form links with multiple players. Furthermore, players have
preferences over the networks and not necessarily over other players. Herings and Khan
(2022) address the issue of the sole focus on either myopia or farsightedness in network
games. In their research, they define the concept of ‘limited foresight’ that is assumed to
be present by players in the network game. This limited foresight means that players can
foresee the consequences of their actions up to a certain level. Herings and Khan (2022)
state that players have foresight K and thus, players can foresee the subsequent K − 1
actions, possibly by other players, that are involved in the action. The key assumption
here is that the degree of foresight gradually declines until 1 is reached which corresponds
to the last action that can be foreseen by a player.

In one-to-one matchings problems, or in a wider context of matchings, assuming full
foresight or myopia by players might not actually always be close to the setting of real-life
problems. Namely, it does not automatically go beyond human reasoning to observe that
one single action by a player can be foreseen by the acting player. The player could con-
sequently observe the result of his action and analyse whether the new resulting situation
might serve his benefit. Furthermore, it might be interesting to observe to what extent
the assumption of limited foresight affects the outcome of matching problems. Therefore,
in this paper, I assume limited foresight by players in the one-to-one matching game that
is described as a marriage market. To this purpose, I translate the approach of Herings
and Khan (2022) in network games to the context of matching problems.
The translation of the approach by Herings and Khan (2022) in my paper results in some
key conclusions that can be drawn about the outcome of the marriage market game. I de-
fine the stable set of matchings that can be seen as the collection of all possible outcomes
of the marriage market game and I show that this stable set always exists, for any level of
foresight assumed to be present over the players. Obviously, this stable set depends on the
level of foresight assumed. A key property of the stable set is that it is impossible for this
stable set to be left by consecutive actions of the players. Furthermore, it should always
be possible to get to a matching in the stable set from any matching outside the set by a
finite sequence of the players’ actions. Also, I show that the set of stable matchings, as
defined initially by Gale and Shapley (1962), equals the stable set under level-1 foresight.
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Next, I show that the stable set under level-1 foresight must be a subset of the stable
set under level-2 foresight. The theorem in this section shows under which condition the
level of foresight assumed to be present by the players does not influence the stable set of
matchings.
In the part following the previously mentioned results, I change the assumption of the
belief by the players on the outcomes of their actions by the introduction of stochasticity.
Namely, in the set-up in networks by Herings and Khan (2022) players are assumed to
be very optimistic about the game’s outcome following a possible action. In fact, players
always assume that, out of all matchings resulting from an action, a matching occurs
that makes them end up with a more preferred partner. However, following the initial
formation or deletion of a link, several paths might occur and not all the matchings at the
end of these paths might benefit the initial deviator. Therefore, I propose a new notion
of limited foresight in which players account for the existence of different paths. I refer to
this assumption as ‘stochasticity.’ Under stochasticity, players act according to the fact
that an action may make them end up with a less preferred partner than initially and do
no longer assume that they always end up with the player they foresee to end up with.
In other words, players attach probabilities to these different paths and act accordingly
when forming and breaking links. Examples, definitions, and illustrations are given under
stochasticity. Under this new assumption, I show that other deviations occur resulting
in other stable sets. Under level-1 foresight, the outcome of the game is the same as in
the initial set-up and I show the relation of the stable sets under both assumptions under
level-2 foresight. Nevertheless, I show that deviations by players can be different for other
levels of foresight and hence no relation between the outcomes of both assumptions can
be drawn in a general setting. Also, I show under which condition the level of foresight
assumed to be present over the players does not impact the stable set.
In the last part of this paper, I reconsider assumptions initially made when defining
stochasticity to make the actions of the players even more ‘credible.’ I show that devia-
tions under all set-ups defined can be different, leading to different outcomes of the game.
In the specific case of the so-called ‘utility-maximising’ players, I draw conclusions on the
outcome under level-2 foresight.

In this paper, I start off by formally defining the marriage market set-up under lim-
ited foresight in Section 2 with necessary definitions and explanations. Next, in Section
3, I give the results on this topic. In Section 4, I reconsider the assumptions from Section
2 by introducing stochasticity and the subsequent results are given in Section 4.4. In Sec-
tion 5, I reconsider assumptions made in Section 4 and I give examples of consequences
and also some new results. Last, I conclude my main findings in Section 6.
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2 Definitions

2.1 Marriage market

The marriage market framework that is described here is similar to the approach taken
by Herings, Mauleon, and Vannetelbosch (2020).
A marriage market consists of a finite set of players N that is divided into a set of men
M and women W . In this setting, N = M

⋃
W and M

⋂
W = ∅. For each player i ∈ N

it holds that he or she has a complete and transitive preference ordering ≻i over players
of the opposite sex and over him or herself, which is equivalent to having no partner.
Preferences are strict. ((≻m)m∈M , (≻w)w∈W ) is the preference profile that is denoted by
≻. Hence, a marriage market problem consists of men, women, and a preference order
(M,W,≻).
A matching µ is a function : N → N that satisfies following conditions:

1. For all m ∈ M,µ(m) ∈ W
⋃
{m}.

2. For all w ∈ W,µ(w) ∈ M
⋃
{w}.

3. For all i ∈ N,µ(µ(i)) = i.

A matching implies that each player in i ∈ N is matched to exactly one player of the
opposite sex or is matched to himself. If a player i is single, he or she is matched to him
or herself, which is described as µ(i) = i. Furthermore, it holds for all i ∈ N , that if i is
matched to j, then j is matched to i. This is made sure by condition 3.
I denote the set of all possible matchings in a defined marriage market problem as M.
A matching µ is individually rational if each player prefers his partner over not being
matched or is not matched at all. Hence, it must hold that ∀i ∈ N,µ(i) ⪰i i. In case of
a matching µ ∈ M that is not individually rational, because for player i µ(i) ≺i i, then
player i would simply break up with his partner, resulting in a matching ν ∈ M where i
is single and ν(i) = i.
A matching µ is stable if it is individually rational and it cannot be blocked by any
pair of players that are not matched in µ, but both prefer each other over their partners
in matching µ. Hence, it must hold for m and w to be blocking µ: m ≻w µ(w) and
w ≻m µ(m). The pair (m,w) is defined as the blocking pair in such a situation. Please
note that for all i ∈ {m,w}, it may hold: µ(i) = i, so a blocking pair may consist of
players that are not matched.
Similarly, I say that a matching µ ∈ M cannot be blocked by a group of players S ⊆ N ,
referred to as the blocking coalition, if there does not exist a matching µ′ in which it
holds that for all i ∈ S ⊆ N µ′(i) ≻i µ(i) and for all i ∈ S: µ′(i) ∈ S. Hence, it must
hold for all players in any power set S of N that they cannot leave their partners and
match with another player in S such that each of these players is better off. It does not
need to hold for all i ∈ S that µ(i) ∈ S because each player in the blocking coalition
may leave his partner irrespective of whether that partner is in the blocking coalition.
The core consists of all matchings for which such a blocking coalition S does not exist.
Roth and Sotomayor (1992) show that the core of a marriage market equals the set of
stable matchings and Gale and Shapley (1962) show that the core, and thus set of stable
matchings, of a marriage market problem, is nonempty.
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Let matching µ ∈ M be the matching in which m ∈ M and w ∈ W are not matched,
and let µ′ ∈ M be the matching that is exactly the same as µ but now with (m,w) being
matched. Then I write: µ′ = µ + (m,w). If links existed by either m or w or both in
µ, then writing µ′ = µ + (m,w) implies that these links are deleted in µ′. In a similar
manner, let matching µ ∈ M be the matching in which m ∈ M and w ∈ W are matched,
and let µ′ ∈ M be the matching that is exactly the same as µ but now with (m,w) not
being matched. Then I write µ′ = µ− (m,w).
In the following sections of this paper, sequences of matchings will be treated that follow
each other by breaking and/ or forming links. Therefore, it is necessary to define which
actions can be performed in one step when one goes from one matching to another. A step
initiated by player i ∈ N , affecting players j, k and ℓ while i ̸= j ̸= k ̸= ℓ, in matching µ0

resulting in matching µ1 can be one of the following actions:

1. Player i breaks his link with player j and remains unmatched resulting in: µ1(i) = i
and µ1(j) = j.

2. Player i breaks his link with player j and matches with k that was not matched in
µ0, resulting in: µ1(i) = k, µ1(j) = j and µ1(k) = i.

3. Player i breaks his link with player j and matches with k that was matched with
player ℓ in µ0, resulting in: µ1(i) = k, µ1(j) = j, µ1(k) = i and µ1(ℓ) = ℓ.

4. Players i and j are unmatched in µ0 and they form a link in µ1, resulting in: µ1(i) = j
and µ1(j) = i.

5. Player i that is unmatched in µ0 matches with player j that was matched with
player k in µ0, resulting in: µ1(i) = j, µ1(j) = i and µ1(k) = k.

So, a player that was already matched in µ0 can propose to be matched in µ1 with another
player that was also already matched in µ0 (action 3). Any step is allowed to happen
under certain conditions that are defined in the following sections. Furthermore, it is
good to make clear that simultaneous actions are not allowed to happen in one step. A
step is always initiated by only one player that proposes to form a new link or to break
a link. For instance, if, in µ0, player i is matched with j and player k is matched with
ℓ, then players i and k cannot simultaneously break their links and remain unmatched
(action 1). However, players i and k are allowed to form a new link between each other
and automatically break their links in µ0 (action 3). Such an action is to be proposed
by one of these players. When matching µ′ can be created by one of the five described
actions performed in µ, I say that µ′ is a neighbour of µ.

2.2 Deviations

In the setting of matchings, each player may have the incentive to change the matching
by performing an action as defined in Section 2.1. From here on, I refer to the action of
cutting or forming a link as a deviation. The reason for a player to deviate is that he
foresees ending up with a partner that is more preferred than his partner in the matching
without his deviation. A player may also foresee that a deviation by him will trigger more
deviations and that his partner at the end of this sequence of triggered deviations is more
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preferred than the partner he has in the matching he considers deviating from. Before
defining the concept of deviating in anticipation of further deviations, I first define the
concept of deviating without the foresight of triggered deviations. After this, I define the
concept of deviating with foresight about deviations that may follow a deviation.

Definition 2.1. The deviation µ0 →S µ1 is a level-1 deviation for player i ∈ S, if
µ1(i) ≻i µ0(i).

Definition 2.2. The deviation µ0 →S µ1 is a level-1 deviation if, for every player i ∈ S,
it is a level-1 deviation.

If the deviation from µ0 to µ1 involves the addition of a link, then both players m
and w need to switch to a more preferred partner in µ1. Hence, for both i ∈ {m,w} it
must hold: µ1(i) ≻i µ0(i). In other words, also the opposing player needs to agree on
the addition of the link to make the addition a possible level-1 deviation. However, if
the deviation from µ0 to µ1 involves the deletion of a link, then for at least one player
i ∈ {m,w}, it must hold: µ1(i) ≻i µ0(i). In other words, only one player needs to agree
on the deletion of the link to make the deletion a possible level-1 deviation for that player.
The collection of matchings that can be reached by a level-1 deviation from a matching
µ0 is denoted by f1(µ0), while f1(M) =

⋃
µ0∈M f1(µ0) is the collection of matchings that

can be reached by a level-1 deviation from matchings in the collection M ⊆ M.
Similarly, a level-K deviation can be defined, for all K ∈ N. The collection of matchings
that can be reached by a level-K deviation from µ0 is defined as fK(µ0), while fK(M) =⋃

µ0∈M fK(µ0) is defined as the set of matchings that can be reached from all matchings
in M ⊆ M.

Definition 2.3. Let K ≥ 2. The deviation µ0 →S µ1 is a level-K deviation for player
i ∈ S if one of the following two cases holds:

(i) There exists a finite sequence of matchings µ2, ..., µK such that for each k ∈ {1, ..., K−
1}, µk+1 ∈ fK−k(µk) and µK(i) ≻i µ0(i).

(ii) There exists a K ′ ∈ {1, ..., K − 1} and a finite sequence of matchings µ2, ..., µK′ ,
such that: (a) ∀k ∈ {1, ..., K ′ − 1}, µk+1 ∈ fK−k(µk), (b) fK−K′(µK′) = ∅, and (c)
µi(µK′) ≻i µi(µ0).

Definition 2.4. Let K ≥ 2. The deviation µ0 →S µ1 is a level-K deviation if, for every
player in S, it is a level-K deviation.

When deviating from µ0 to µ1, player i ∈ N , uses in his reasoning process the implied
deviations that follow from his deviation to µ1. I define each of these implied deviations
following the deviation to µ1 as an induced deviation. It is good to mention that the
matchings following the induced deviations may not necessarily be reached because once
µ1 is reached, all players again have level-K foresight meaning at this point other choices
can be made by players that do not lead to the matching µ2 from µ1 that is an induced
deviation when player i ∈ N deviates from µ0 to µ1. The deviation from µ1 to µ2 would
be possible if every player had level-K−1 foresight at µ1, meaning, with level-K foresight,
the deviation from µ1 to µ2 is not necessarily possible. The deviation µ0 → µ1 is referred
to as the actual deviation. When player i deviates from µ0 to µ1, he can foresee the
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impact of the following K − 1 induced deviations. This leads to two distinct possibilities:
In case (i) of Definition 2.3, player i forms a series of K − 1 induced deviations following
his deviation from µ0 to µ1. For each k ∈ {1, ..., K − 1}, the k’th induced deviation
is a level-K − k deviation. This means that for each k ∈ {1, ..., K − 1}, player i can
foresee the level-K − k deviation µk → µk+1. Hence, the first deviation µ1 → µ2 is a
level-K − 1 deviation and the second deviation µ2 → µ3 will be a K − 2 deviation. This
will continue until the deviation µK−1 → µK , which is a level-1 deviation. The following
matching µK is the furthest matching that can be foreseen by player i and it marks the
end of his reasoning process. I refer to this matching as the terminal matching. To make
the deviation µ0 → µ1 a desirable level-K deviation for player i, the terminal matching
µK must be more preferred than the matching µ0 by player i. Hence, it must hold:
µK(i) ≻i µ0(i). I refer to this deviation as a level-K deviation with complete support.
However, it may be that, in the reasoning process of player i, I end up in an induced
matching µK′ (1 ≤ K ′ < K) from which no more level-K − K ′ deviations exist. If this
holds, then I can say: fK−K′(µK′) = ∅, which corresponds to condition (b) in case (ii)
of Definition 2.3. In this event, player i is not able to form a sequence of K − 1 induced
deviations such that for each k ∈ {1, ..., K − 1} µk → µk+1 is a level-K − k deviation.
However, for all k ∈ {1, ..., K ′}, the k’th induced deviation is a level-K − k deviation. In
this case, µK′ is the terminal matching of player i’s reasoning process because from µK′ no
level-K−K ′ deviations exist anymore. To make the deviation µ0 → µ1 a desirable level-K
deviation for player i in this case, the terminal matching µK′ must be more preferred than
the matching µ0 by player i. Hence, it must hold: µK′(i) ≻i µ0(i). I refer to this deviation
as a level-K deviation with incomplete support.

Example 2.5. Let me now consider an example in the context of matchings in which it
is checked whether a level-K deviation may exist by some player i in some matchings,
with K ≥ 2.
The following marriage problem (M,W,≻) with men M = {m1,m2} and women W =
{w1, w2} is considered. The following preferences are present by the players of the game:

≻m1 : w1, w2,m1

≻m2 : w2, w1,m2

≻w1 : m2,m1, w1

≻w2 : m1,m2, w2

Hence, the following seven matchings are present in this game:

m1

m2

w1

w2

µ1

m1

m2

w1

w2

µ2

m1

m2

w1

w2

µ3

m1

m2

w1

w2

µ4

m1

m2

w1

w2

µ5

m1

m2

w1

w2

µ6

m1

m2

w1

w2

µ7
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Clearly, matchings µ6 and µ7 do not have any possible level-1 deviations because it is
impossible for any pair of opposite players to both get a more preferred partner by a
level-1 deviation. Hence, Definition 2.1 does not hold for any player. All other matchings
do have a deviation according to Definition 2.1 for at least 2 players.
Let me now check whether any level-2 deviations exist from the matching without level-1
deviations µ7, to be written as ν0 in this example. For players {w1, w2}, this matching
is optimal, so in any case, Definition 2.3 cannot be met for these players. Hence, let me
consider player m1 that could deviate by breaking link {m1, w2}, resulting in matching
µ5. In µ5, called ν1 here, going to matching µ7 is a level-1 deviation (could be initiated
by both m1 and w2) as well as going to µ4 (could be initiated by m2 and w2), so it
holds for this second resulting matching: f1(ν1) ̸= ∅. Hence, condition (ii) in Definition
2.3 does not hold. Although µ4, µ7 ∈ f1(ν1), it does hold that the resulting matching
ν2(m1) ⊁m1 µ7(m1) = ν0(m1). I have now shown that there is no level-2 deviation possible
for player m1 in µ7 and, by symmetry, this is neither possible for m2. Furthermore, by
symmetry, there are no level-2 deviations present for all players in {w1, w2} in µ6.
Moreover, I can establish that, for all players, deviating from µ1 = ν0 to any matching ν1
in A = {µ2, µ3, µ4, µ5} is a level-2 deviation. Namely, deviating to µ6 is a level-1 deviation
from matchings µ2 and µ4, while deviating to µ7 is a level-1 deviation from matchings
µ3 and µ5. Furthermore, it holds for all matchings ν2 ∈ {µ6, µ7} that, for all players
i ∈ M

⋃
W , ν2(i) ≻i ν0(i) = µ1(i) = i. Hence, when at µ1, for any player, forming a link

with a player of the opposite sex, leading to a matching in A, is level-2 deviation. ▲

Following Definition 2.4 and Example 2.4, the question arises whether larger degrees of
foresight lead to more possible deviations for players in the marriage market. Furthermore,
if a level-K deviation is always also a level-K+1 deviation, then this result may contribute
to conclusions about the matchings the marriage market problem results in. However, in
Example 2.6, I show that it cannot always be established that fK(µ0) ⊆ fK+1(µ0) for all
K ∈ N and all µ0 ∈ M. In Example 2.7, I show that it cannot always be established that
fK+1(µ0) ⊆ fK(µ0) for all K ∈ N and all µ0 ∈ M.

Example 2.6. In this example, I give a counterexample to establish that fK(µ) ⊆ fK+1(µ)
does not always hold. This example has the exact same set-up as Example 2.5 and I show
f1(µ2) ⊂ f2(µ2).
For matching µ2, it holds that f1(µ2) = {µ5, µ6}. Namely, deviating from µ2 to µ5 is a
level-1 deviation for both m2 and w1, because both m2 and w1 are better off in µ5 than
in µ2. Furthermore, deviating from µ2 to µ6 is a level-1 deviation as well for m2 and w2,
because both m2 and w2 are better off in µ6 than in µ2. No other level-1 deviations exist
from matching µ2.
Going from µ2 to µ5 is also a level-2 deviation for m2 and w1, because a level-1 deviation
exists from µ5 to µ7 for m1 and w2, while both m2 and w1 are better off in µ7. Next,
going from µ2 to µ6 is also a level-2 deviation for m2 and w2, because no level-1 deviation
exists from µ6 while both m2 and w2 are better off in µ6. Going from µ2 to µ1 is a level-2
deviation for w1 because going from µ1 to µ5 is a level-1 deviation for bothm2 and w1 while
in µ5, w1 is better off. Hence, {µ1, µ5, µ6} ⊆ f2(µ2). Knowing that f1(µ2) = {µ5, µ6}, it
can be established that f1(µ2) ⊂ f2(µ2). ▲

Example 2.7. In this example, I give a counterexample to establish that fK+1(µ) ⊆ fK(µ)
does not always hold. I use the same marriage market set-up as in Example 2.5, but with
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different preferences. I show in this specific example that there exists some matching
µ0 ∈ M for which f2(µ0) ⊂ f1(µ0). The preferences are as follows:

≻m1 : m1, w2, w1

≻m2 : m2, w1, w2

≻w1 : m2,m1, w1

≻w2 : w2,m1,m2

m1

m2

w1

w2

µ1

m1

m2

w1

w2

µ2

m1

m2

w1

w2

µ3

m1

m2

w1

w2

µ4

m1

m2

w1

w2

µ5

m1

m2

w1

w2

µ6

m1

m2

w1

w2

µ7

Let me first consider the level-2 deviations that are possible from µ6. A deviation from µ6

to µ2 is a level-2 deviation for both m2 and w2 because the only level-1 deviation existing
from µ2 is to µ1 and both players are better off in µ1. Furthermore, deviating to µ3 is a
level-2 deviation for m1 and w2 because the only level-1 deviation existing from µ3 is to
µ1 and both players are better off in µ1. Also, deviating to µ4 is a level-2 deviation for
m1 because the only level-1 deviation existing from µ4 is to µ1 and m1 is better off in µ1.
No other level-2 deviations exist from µ6 (going to µ5 is not a level-2 deviation for w1)
and hence f2(µ6) = {µ2, µ3, µ4}.
Next, I check the possible level-1 deviations from µ6. Deviating to µ2 is a level-1 deviation
for m2 and w2, while deviating to µ4 is a level-1 deviation for m1. Furthermore, deviating
to µ3 is a level-1 deviation for both m1 and w2 because both players are better off in
µ3. Furthermore, deviating to µ5 is a level-1 deviation for both m2 and w1 because both
players are better off in µ5. Therefore, f1(µ6) = {µ2, µ3, µ4, µ5} and now it has been
established that f2(µ6) ⊂ f1(µ6). ▲

Through these two counterexamples, it has now been shown that, in general, the set
of matchings that can be reached by a level-K deviation is not necessarily a subset of the
set of matchings that can be reached by a level-K + 1 deviation and vice versa.

2.3 k-fold iteration

To introduce the topic of k-fold iterations, I first give an example of a k-fold iteration in the
setting of level-1 deviations. Later in this section, this will be generalised in a definition
and another example is given in the setting of level-2 deviations with appropriate notation.

Example 2.8. The marriage market problem here is exactly the same as in Example
2.5. Considering matching µ1, deviating to any matching in A = {µ2, µ3, µ4, µ5} is a
level-1 deviation. For each matching in A, the deviation to this matching from µ1 could
be initiated by two players. For instance, deviating to µ2 could be initiated by m1 and
w1 A, so: µ1 →{m1,w1} µ2. Deviating to any matching in A from µ1 is a level-1 deviation
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because for each element in A, Definition 2.1 holds for the 2 players that are matched in
the matching µ ∈ A. Hence, I can say µ ∈ f1(µ1) for each µ ∈ A. Furthermore, matching
µ6 can be reached by a level-1 deviation from µ2 and µ4, so µ6 ∈ f1({µ2, µ4}), while µ7

can be reached from a level-1 deviation from µ3 and µ5, so µ7 ∈ f1({µ3, µ5}). Hence, for
any ν2 ∈ {µ6, µ7} it holds that ν2 can be reached by two sequential level-1 deviations that
start in µ1. The first level-1 deviation is from µ1 to some matching in A, while the second
level-1 deviation is from some matching in A to some matching in {µ6, µ7}. ▲

The k-fold iteration is the concept that k sequential level-K deviations may follow each
other. From a starting matching, different k sequential level-K deviations exist and hence
the set of possible matchings that may be reached after k sequential level-K deviations
may have cardinality larger than one, as is the case in Example 2.8. Furthermore, in this
same example, it has been established that {µ6, µ7} is a subset of all matchings that may
be reached after 2 sequential level-1 deviations starting in µ1.
In general, when an actual level-K deviation in matching µ0 is performed by some player
leading to matching µ1, new level-K deviations may follow this deviation. In Section 2.2,
I defined the set of matchings that can be reached by a level-K deviation from µ0 as
fK(µ0). Once µ1 ∈ fK(µ0) is reached, all players again have level-K foresight and hence
the actual deviation from µ1 is again a level-K deviation. Continuing in this manner, I can
construct a sequence of matchings that follow each other by sequential level-K deviations.
This sequence may not be unique for some K ≥ 1 and hence the set of matchings that
can be reached from k sequential level-K deviations can have more than one element but
it can also be empty if no level-K deviations exist from µ0 or if after 1 < j < k level-K
deviations no more level-K deviations exist.
The k-fold iteration of fK from matching µ0 is defined as the set of matchings that can
be reached by k sequential level-K deviations starting in µ0 and is denoted by fk

K(µ0).
For instance, µ1 will be a possible resulting matching from a level-K deviation starting
in µ0 (µ1 ∈ fK(µ0)) and µ2 will be a possible resulting matching from a level-K deviation
starting in µ1 (µ2 ∈ f 2

K(µ0) and µ2 ∈ fK(µ1)). This can be further generalised in a new
definition. Similarly, fk

K(M) is the set of all matchings that can be reached by k sequential
level-K deviations starting in any matching in the set M ⊆ M.

Definition 2.9. For µk ∈ M and M ⊆ M, µk ∈ fk
K(M), when there exists a µk−1 ∈ M

such that µk−1 ∈ fk−1
K (M) and µk ∈ fK(µk−1), with K ≥ 1 and k ≥ 2.

In Definition 2.9, we may have that M consists of only one element, say M = {µ0} and
µ0 ∈ M. The condition µk−1 ∈ fk−1

K (M) makes sure that matching µk−1 can be reached
by k− 1 sequential level-K deviations, starting in some matching µ0 ∈ M . The condition
µk ∈ fK(µk−1) makes sure that µk can be reached by a single level-K deviation starting in
µk−1. Please note that fK(µk−1) ⊆ fk

K(µ0), for some µ0 ∈ M because fk
K(µ0) may contain

matchings that are reached through a path of sequential level-K deviations of which µk−1

is not necessarily part, while µk−1 is part of the path that leads to µk.
Next, I specify the set of matchings that can be reached by any larger than zero number
of sequential level-K deviations from deviations starting in set M ⊆ M.

Definition 2.10. The collection of all matchings that can be reached by the composi-
tion of a finite number of sequential level-K deviations from any matching in the set of
matchings M ⊆ M is denoted by: fN

K(M) =
⋃

k∈N f
k
K(M).
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In Definition 2.10, it may be that M consists of only one element, say M = {µ0} and
µ0 ∈ M.

Example 2.11. Let me now consider an example regarding k-fold iterations using level-2
deviations, using the same setting as in Example 2.5 with identical preferences:

≻m1 : w1, w2,m1

≻m2 : w2, w1,m2

≻w1 : m2,m1, w1

≻w2 : m1,m2, w2

All possible matchings in this setting are shown again:

m1

m2

w1

w2

µ1

m1

m2

w1

w2

µ2

m1

m2

w1

w2

µ3

m1

m2

w1

w2

µ4

m1

m2

w1

w2

µ5

m1

m2

w1

w2

µ6

m1

m2

w1

w2

µ7

Deviating from µ1 to any matching in A = {µ2, µ3, µ4, µ5} is a level-2 deviation. This holds
because, when at µ1, each player may initiate a deviation because each player foresees
that a level-2 deviation to some matching in A can lead to a level-1 deviation that leads to
a matching in {µ6, µ7}. In any matching in {µ6, µ7}, it holds that each player is better off
than in µ1, so for any player, a level-2 deviation to a matching in A is a fruitful deviation.
Hence, I can write, for each µ ∈ A: µ ∈ f2(µ1). However, deviating from any matching
in A to a matching in {µ6, µ7} is also a level-2 deviation. This has already been shown
in Example 2.5. In fact it holds: µ6 ∈ f2({µ2, µ4}) and µ7 ∈ f2({µ3, µ5}). Hence, for any
ν2 ∈ {µ6, µ7} there exists a ν1 ∈ M such that ν1 ∈ f 1

2 (µ1) and ν2 ∈ f2(ν1), satisfying the
condition in Definition 2.9. Therefore, both µ6 and µ7 can be reached by two sequential
level-2 deviations starting in µ1. Using the notation from Definition 2.9, I can write: for
each ν2 ∈ {µ6, µ7}: ν2 ∈ f 2

2 (µ1). ▲

2.4 Stability

Definition 2.12. Let K ∈ N. The collection MK ⊆ M is a level-K stable set if it satisfies
the following three conditions:

1. Deterrence of external deviations: fK(MK) ⊆ MK .

2. Iterated external stability: For all µ /∈ MK , f
N
K(µ)

⋂
MK ̸= ∅.

3. Minimality: There is no proper subset M ⊆ MK satisfying conditions 1 and 2.
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In a level-K stable set MK ⊆ M, a level-K deviation from any matching µ ∈ MK does
not lead to a matching outside this set, as required by deterrence of external deviations,
which also implies that a finite number of sequential level-K deviations from a matching
in MK never leads to a matching outside MK . Furthermore, iterated external stability
makes sure that sequential level-K deviations from any matching ν ∈ M \MK ultimately
lead to a matching µ ∈ MK . The minimality condition is required to make sure that the
level-K stable set is not unnecessarily large, in fact, M satisfies conditions 1 and 2, but
also that the level-K stable set is unique which will be shown later on.
Deterrence of external deviations implies that, if this is satisfied by a set of matchings
MK ⊆ M, then there does not exist a subset of matchings in M \MK for which iterated
external stability holds. This holds because, for any µ ∈ MK , it is no longer possible
to reach a matching outside MK by means of sequential level-K deviations. Similarly,
iterated external stability implies that, if this is satisfied by a set of matchings MK ⊆ M,
then there does not exist a subset of matchings in M\MK for which deterrence of external
deviations holds. This holds because it is possible to reach MK by sequential level-K
deviations from any matching in M \ MK . From these properties, it follows that any
set satisfying deterrence of external deviations and iterated external stability must have a
non-empty intersection with the level-K stable set itself. Namely, in the level-K stable set
also both deterrence of external deviations and iterated external stability hold and there
does not exist any subset in M outside the level-K stable set for which both conditions
can hold. From the third condition of minimality, it then follows that this set must be
unique. Later in this paper, I formally prove that the level-K always exists and is unique.
In the next definition, I define the concept of level-K cycles.

Definition 2.13. Let K ∈ N. The non-empty set M ⊆ M is a level-K cycle if it is a
minimal set satisfying deterrence of external deviations.

If a level-K cycle M is a singleton, then the only element in set M is a level-K stable
matching.

Example 2.14. Let me now consider an example regarding stability in a matching, using
the same setting as in Example 2.5 with identical preferences:

≻m1 : w1, w2,m1

≻m2 : w2, w1,m2

≻w1 : m2,m1, w1

≻w2 : m1,m2, w2

All possible matchings in this setting are shown again:

m1

m2

w1

w2

µ1

m1

m2

w1

w2

µ2

m1

m2

w1

w2

µ3

m1

m2

w1

w2

µ4

m1

m2

w1

w2

µ5

m1

m2

w1

w2

µ6

m1

m2

w1

w2

µ7
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The purpose of this example is to show that the set M1 = M2 = {µ6, µ7} is both a level-1
and level-2 stable set but not a level-K stable set for K > 2.
Firstly, I will state that the set of matchings M1 = {µ6, µ7} is a level-1 stable set. Clearly,
for both matchings µ6, µ7 there exists no level-1 deviation by any player to a matching
outside M1. Hence, for both elements the deterrence of external deviations is satisfied.
Furthermore, for the matchings in the set A = {µ2, µ3, µ4, µ5} a level-1 deviation exists
that results in a matching in M1 and for µ1 a level-1 deviation exists that leads to a
matching in A (so µ6, µ7 ∈ f 2

1 (µ1), in fact µ6, µ7 ∈ fN
1 (A

⋃
{µ1}). Hence, for both ele-

ments in M1, iterated external stability is satisfied. Also, there exists no proper subset
of M1 satisfying both conditions. For example, let’s assume M1 = {µ6}, then it holds for
µ7 /∈ M1 that fN

K(µ7)
⋂

M1 = ∅, because no level-1 deviations are possible from µ7. By
symmetry, the same holds for assuming M1 = {µ7}. Therefore, also minimality is satisfied
and it can be concluded that M1 is a level-1 stable set.
Secondly, it can be established that the same set of matchings, now called, M2 = {µ6, µ7}
is also a level-2 stable set. In Example 2.5, I showed that there exist no level-2 devia-
tions from both elements within this set. Hence, the deterrence of external deviations is
satisfied. Furthermore, for matchings in A = {µ2, µ3, µ4, µ5} deviating to a matching in
M2 is a level-2 deviation and because it is also a level-1 deviation, deviating from µ1 to
a matching in A is a level-2 deviation. Hence, it can be concluded that iterated external
stability is satisfied for M2. By the same logic that M1 satisfies minimality when show-
ing that it is a level-1 stable set, it can be reasoned that minimality is satisfied for M2.
Therefore, it can be concluded that M2 is a level-2 stable set.
Let me now consider the case with K = 3. Going from µ7 to µ5 is a level-3 deviation by
m1 because from µ5 a level-2 deviation exists to µ4 for m2 and w2 while from µ4 a level-1
deviation exists to µ6 for m1 and w1. In µ6, m1 is better off than in µ7 and hence this
is a fruitful deviation for m1. By symmetry, going from µ7 to µ3 is a level-3 deviation
and, by symmetry, going from µ6 to µ2 and µ4 are level-3 deviations. Furthermore, three
possible level-3 deviations exist from µ5. Firstly, going from µ5 to µ7 is a level-3 deviation
for m1 and w2 because in µ7 both players are better off and no level-2 deviations exist
from µ7. Secondly, going from µ5 to µ4 is a level-3 deviation for m2 and w2, because
going from µ4 to µ6 is a level-2 deviation for m1 and w1 and no level-1 deviations exist
in µ6, while both players are better off in µ6. Thirdly, going from µ5 to µ1 is a level-3
deviation for m2 because going from µ1 to any matching in {µ2, µ4} is a level-2 deviation
and from both these matchings there exists a level-1 deviation to µ6, while m2 is better
off in any matching in µ6 than in µ5. From µ1 going to any matching in A for any player
is a level-3 deviation because from any matching in A there exists a level-2 deviation to
some matching in {µ6, µ7} from where no level-2 deviations exist and where any player is
better off than in µ1. Considering the possible level-3 deviations from µ1, µ5 and µ7 and
the symmetry that follows from µ5 and µ7, the following possible level-3 deviations exist
from each matching in M:

f3(µ1) = {µ2, µ3, µ4, µ5}
f3(µ2) = {µ1, µ5, µ6}
f3(µ3) = {µ1, µ2, µ7}
f3(µ4) = {µ1, µ3, µ6}
f3(µ5) = {µ1, µ4, µ7}
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f3(µ6) = {µ2, µ4}
f3(µ7) = {µ3, µ5}

This means that all matchings in M need to be in the level-3 stable set to satisfy the
deterrence of external deviations. Hence, the level-3 stable set here is equal to M.
Let me now consider the general case for K ≥ 4. Going from µ5 to µ1 is a level-4 devi-
ation for m2 because going from µ1 to some matching in {µ2, µ4} is a level-3 deviation
and from each matching in {µ2, µ4} there exists a level-2 deviation to µ6 from which no
more level-1 deviations exist, while m2 is better off in µ6. Furthermore, going from µ1 to
µ5 is a level-4 deviation by w1 and m2 because a level-3 deviation exists from µ5 to µ1

from which a level-2 deviation exists to some matching in {µ2, µ4} from which a level-1
deviation exists to µ6. Hence, µ1 → µ5 and µ5 → µ1 are both level-4 deviations, because
from the matching after the deviation, a sequence of induced matchings exists (starting
with a level-3 deviation) leading to µ6, where the couple or single player initiating the
deviation is better off than in the starting matching. However, if µ1 → µ5 and µ5 → µ1

are both level-4 deviations then they are also both level-5 deviations because from the
matching after the deviation (µ1 to µ5 or vice versa) a sequence of induced matchings
exists (starting with a level-4 deviation) leading to µ6.
This reasoning can be iterated as follows for K ≥ 3: going from µ5 to µ1 is a level-K
deviation because from the matching after the deviation a sequence of induced matchings
exists (starting with a level-K − 1 deviation) leading to µ6. By symmetry, this also holds
for deviations from other matchings in A to µ1 (that may have terminal matching µ6

or µ7). This same reasoning can also be applied to a level-K deviation from µ5 to µ4.
Namely, deviating from µ5 to µ4 is a level-K deviation, with K ≥ 3 because from µ4 a
sequence of induced matchings exists (starting with a level-K − 1 deviation) leading to
µ6. This same reasoning can also be applied from the deviation µ5 → µ7. However, if
K = 3, then there is no induced sequence of deviations (but we are already in {µ6, µ7}),
while if K ≥ 4, more deviations exist from µ7. Therefore, by the symmetry involved in
this setting, the following holds for K ≥ 3:

fK(µ1) = {µ2, µ3, µ4, µ5}
fK(µ2) = {µ1, µ5, µ6}
fK(µ3) = {µ1, µ2, µ7}
fK(µ4) = {µ1, µ3, µ6}
fK(µ5) = {µ1, µ4, µ7}
fK(µ6) = {µ2, µ4}
fK(µ7) = {µ3, µ5}

This means that all matchings in M need to be in the level-K stable set to satisfy the
deterrence of external deviations. Hence, the level-K stable set here is equal to M, for
K ≥ 3. ▲

2.5 α-reducibility

In this section, I introduce the concept of α-reducibility. This concept is used in Section 3
to show a result that holds under marriage markets satisfying α-reducibility. This concept
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was first described by Alcalde (1994) in the context of roommate problems.
The concept of α-reducibility implies that the marriage market problem (M,W,≻) has
the property that the set of players N = M

⋃
W can be partitioned in ℓ coalitions Sj,

j = 1, ..., ℓ, such that N =
⋃ℓ

j=1 Sj and Sj

⋂
Sk = ∅, for each j ̸= k. These coalitions

Sj consist of either one player or two players of the opposite sex. Now, α-reducibility
requires that the player(s) in S1 are their top preferred partner. The player(s) in S2 must
be their top preferred partner when the set of players S1 is discarded from the marriage
market. Hence, the player(s) in S2 are their top preferred partner when the players in S2

are only allowed to have preferences over players of the opposite sex and themselves in
N \ S1. This pattern continues for further coalitions. Hence, the player(s) in Sj are their
top preferred partner when the players in Sj are allowed to have preferences only over
players of the opposite sex and themselves in N \ S1

⋃
...
⋃
Sj−1, for j = 1, ..., ℓ. As has

been described, the ordering of the coalitions S1...Sℓ is important and will also be used
when deriving a property in α-reducible marriage markets in Section 3.
Alcalde (1994) showed in his paper that, when α-reducibility is satisfied, the core is unique
and consists of a single stable matching µ. Because there exists only one stable matching,
the partition S1, ..., Sℓ must also be unique. Namely, in each coalition, the players in the
coalition are matched to each other or the single player in the coalition remains single
if the coalition is of size one. Now only one stable matching exists, there must also be
only one way of partitioning N . Hence, only one partition exists in α-reducible marriage
market problems. In Example 2.15, I show the coalitions Sj and the stable matching of
the marriage market that satisfies α-reducibility.

Example 2.15. The purpose of this example is to illustrate the concept of α-reducibility.
Below, I first show the preferences of the marriage market with 6 players. I show how
stable matching µ evolves in the marriage market from the matching µ′ in which for all
i ∈ N µ′(i) = i. I make use of the coalitions Sj.

≻m1 : w2, w1, w3,m1

≻m2 : w2,m2, w3, w1

≻m3 : w3, w2, w1,m3

≻w1 : m2,m1,m3, w1

≻w2 : m1,m3,m2, w2

≻w3 : m1,m2,m3, w3

This marriage market does satisfy α-reducibility and hence, N can be partitioned in
several coalitions Sj. First, it can be observed thatm1 and w2 are their first choice. Hence,
they form the coalition S1 = {m1, w2} and are matched to each other in stable matching
µ. The top choice of player m2 is w2. However, when considering only N \ S2, m2’s top
choice is remaining single. Therefore, m2 remains single and S2 = {m2}. Player m3’s top
choice in N \ S1

⋃
S2 is w3, while w3’s top choice in N \ (S1

⋃
S2) is m3. Therefore, both

players match and S3 = {m3, w3}. Now the only remaining player is w1 that remains
single and so S4 = {w1}. The resulting matching µ is stable and is shown below:
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m1

w1

m2

w2

m3

w3

µ

▲

19



3 Results

In Section 2, I have introduced the context of matchings, the definition of deviating and the
conditions under which deviations can happen, and the k-fold iteration. Last, combining
these three concepts, the level-K stable set has been defined. So far, the level-K stable
set has been described extensively, but nothing is known yet about its existence and
other properties. Therefore, in this section, several theorems are established regarding
the properties of the level-K stable set.
First of all, in Theorem 3.1, I prove that there always exists such a level-K stable set
and that it is unique and, in Theorem 3.2, I prove that the level-K stable set is equal to
the union of level-K cycles. Both theorems have been derived from similar proofs in the
context of networks from the paper by Herings and Khan (2022). In the setting defined
so far, the exact same steps as in the original proofs can be performed, while in the
proofs given here, usually more explanation on each step is given and on the reason why
certain properties hold. In Theorem 3.3, the proof is provided that a level-1 stable set
only consists of singleton level-1 cycles and in Theorem 3.4 it is proved that any matching
is part of the level-1 stable set if and only if the matching is stable. In Theorem 3.5, it is
proved that the level-1 stable set is a subset of the level-2 stable set. Last, in Theorem
3.6, I prove that, in α-reducible marriage markets, for any K > 0, the level-K stable set
equals the stable matching.

Theorem 3.1. For each K ∈ N, there exists a unique level-K stable set.

Proof. This proof consists of two parts. Firstly, it is proved that the level-K stable set
exists. Secondly, it is shown that it is unique by assuming two level-K stable sets. In
this second part is shown that the intersection of these two sets also satisfies the three
properties for a level-K stable set and that therefore both sets must be equal.
Take any K ∈ N.
The set M0 = M meets the deterrence of external deviations and iterated external sta-
bility conditions.
Assume there is no level-K stable set. Since M does not satisfy minimality, there exists a
set M1 ⊂ M0 that satisfies deterrence of external deviations and iterated external stabil-
ity. We can continue this reasoning for any k ∈ N by saying that, for each subset Mk ⊆ M
that satisfies deterrence of external deviations and iterated external stability, there exists
a subset Mk+1 ⊂ Mk that also satisfies deterrence of external deviations and iterated
external stability. Ultimately, this would lead to a matching with negative cardinality
because the cardinality of M is finite. Hence, this leads to a contradiction because in this
context, sets with negative cardinality do not exist. Consequently, it can be concluded
that level-K stable sets exist.
Let me now assume that there exist two level-K stable sets M1,M2 ⊆ M. Deterrence of
external deviations implies that, if this is satisfied by a set of matchings Mk ⊆ M, then
there does not exist a subset of matchings in M \Mk for which iterated external stability
holds. This holds because, for any µ ∈ Mk, it is no longer possible to reach a matching
outside Mk by means of sequential level-K deviations. Similarly, iterated external stabil-
ity implies that, if this is satisfied by a set of matchings Mk ⊆ M, then there does not
exist a subset of matchings in M \Mk for which deterrence of external deviations holds.
This holds because it is possible to reach Mk by sequential level-K deviations from any
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matching in M \Mk.
Both M1 and M2 satisfy the deterrence of external deviations, so by definition, I can say:
fK(M

1) ⊆ M1 and fK(M
2) ⊆ M2. This means that the set of matchings that can be

reached by a level-K deviation from the intersection of M1 and M2 is a subset of the
intersection of the matchings that can be reached by a level-K deviation from M1 and
the matchings that can be reached by a level-K deviation from M2. Furthermore, the
latter is also a subset of the intersection of M1 and M2. Therefore, the following relation
holds: fK(M

1
⋂

M2) ⊆ fK(M
1)
⋂

fK(M
2) ⊆ M1

⋂
M2. Therefore, M1

⋂
M2 satisfies

deterrence of external deviations condition.
It also needs to be shown that M1

⋂
M2 satisfies iterated external stability. So for any

matching µ outside of M1
⋂

M2 it needs to be shown that there is a finite number of
sequential level-K deviations that will lead to a matching in M1

⋂
M2. So, take any

µ /∈ M1
⋂

M2. Three situations for µ can hold that need to be considered:
Situation 1 : µ ∈ M1 \M2. M2 satisfies iterated external stability, so M2 must be reach-
able from any matching outside M2 by sequential level-K deviations. Hence, it must hold:
fN
K(µ)

⋂
M2 ̸= ∅. M1 satisfies deterrence of external deviations, so: fN

K(M
1) ⊆ M1. Since

µ ∈ M1: fN
K(µ)

⋂
M1 ̸= ∅. Hence, because from µ, it is possible to reach both M1 and

M2, iterated external stability is satisfied for M1
⋂
M2, and fN

K(µ)
⋂
(M1

⋂
M2) ̸= ∅.

Situation 2 : µ ∈ M2 \M1. I can draw the same conclusion as in situation 1, because of
the symmetry.
Situation 3 : µ /∈ M1

⋃
M2. By the iterated external stability ofM1, it holds: fN

K(µ)
⋂
M1 ̸=

∅. Let µ′ ∈ fN
K(µ)

⋂
M1. If µ′ ∈ M2, it holds: fN

K(µ)
⋂
(M1

⋂
M2) ̸= ∅. If µ′ ∈

M1 \ M2, then fN
K(µ

′)
⋂
(M1

⋂
M2) ̸= ∅, which follows from situation one and also im-

plies: fN
K(µ)

⋂
(M1

⋂
M2) ̸= ∅.

Now it has been shown that M1
⋂

M2 satisfies both deterrence of external deviations and
iterated external stability. Since M1

⋂
M2 ⊂ M1, M1

⋂
M1 ⊂ M2 and M1 ̸= M2, I end

up with a contradiction of the minimality of both M1 and M2. Consequently, a unique
level-K stable set exists.

Now it has been established that the level-K stable set always exists and is unique,
I can use this result in the next proof. Namely, in that proof, I show that the level-K
stable set is equal to the union of the level-K cycles of the marriage market problem.

Theorem 3.2. Let K ∈ N. The level-K stable set is equal to the union of the level-K
cycles of the marriage market problem.

Proof. This proof consists of two parts. Firstly, it is shown that the union of level-K
cycles is a subset of the level-K stable set. Secondly, it is shown that the union of level-K
cycles is equal to the level-K stable set.
Let me denote the level-K stable set by MK and the union of the level-K cycles by CK .
Assume there is a level-K cycle C that is not a subset of MK . Let µ ∈ C \MK . Because
of the iterated external stability of MK , for any matching in C \MK , it is possible to go
to a matching in MK , so there exists a µ′ ∈ MK such that µ′ ∈ fN

K(µ). Since C is a cycle
and thus satisfies deterrence of external deviations, it holds µ′ ∈ C because any finite
sequence of level-K deviations from C always leads to a matching in C. For the same
reason, (because I know µ′ ∈ C and C is a cycle), it must hold: fN

K(µ
′) ⊆ C. It must also

be possible to reach µ by a finite number of sequential level-K deviations starting in µ′,
so it holds µ ∈ fN

K(µ
′). Namely, if this does not hold, then fN

K(µ
′) would be a subset of C
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satisfying deterrence of external deviations and hence contradicting the minimality of C.
I also know, by definition, that MK satisfies deterrence of external deviations, so it holds:
fN
K(µ

′) ⊆ MK . This, along with µ ∈ fN
K(µ

′), implies µ ∈ MK . Namely, fN
K(µ

′) ⊆ MK

implies that by a finite number of level-K deviations starting in MK , it will never be
possible to get outside of MK and µ ∈ fN

K(µ
′) implies that µ ∈ C \MK must also be an

element of the set of all matchings that can be reached by a finite sequence of matchings
starting in MK . µ ∈ MK , however, contradicts µ ∈ C \MK . Consequently, every level-K
cycle C is a subset of MK , and hence CK ⊆ MK for the union of all level-K cycles CK .
Because we know that CK is a union of cycles, it clearly satisfies deterrence of external
deviations, but it still needs to be shown that it also satisfies iterated external stability.
Essentially, I need to show that CK = MK , while so far I have shown CK ⊆ MK .
Let’s assume CK does not satisfy iterated external stability. Then a matching µ /∈ CK

exists from which it is not possible to get to a matching in CK by sequential level-K
deviations and fN

K(µ)
⋂

CK = ∅. It also holds that fN
K(µ) ̸= ∅, because otherwise {µ}

would be a level-K cycle and then it should be in the union of all level-K cycles CK . The
set of matchings fN

K(µ) satisfies deterrence of external deviations because, by definition,
fK(f

N
K(µ)) ⊆ fN

K(µ). Since fN
K(µ) is a finite set, there exists a non-empty collection of

matchings M ⊆ fN
K(µ) that is a minimal set satisfying deterrence of external deviations,

because I know that there does exist at least one matching in M from where it is not
possible to reach any matching in CK by a finite sequence of level-K deviations. Hence,
I can conclude that M contains at least one level-K cycle, so it must hold that M is in
the union of level-K cycles: M ⊆ CK . This is, however, contradicting fN

K(µ)
⋂

CK = ∅.
Hence, it must hold: fN

K(µ)
⋂

CK ̸= ∅ and thus CK is satisfying iterated external stability.
I know now that CK satisfies iterated external stability and deterrence of external devia-
tions and that is a subset of MK . Knowing that MK is a level-K stable set, it must hold
that it satisfies the minimality condition. Hence, I conclude CK = MK .

Now it has been established that the level-K stable set consists of the union of level-K
cycles, I can use this result in the next proof. Namely, in that theorem, I show that the
level-1 stable set is equal to the union of singleton level-1 cycles of the marriage market
problem.

Theorem 3.3. The level-1 stable set is equal to the union of singleton level-1 cycles.

Proof. From Theorem 3.2, I know that the level-1 stable set is equal to the union of level-1
cycles. Hence, to show that the level-1 stable set is equal to the union of singleton level-1
cycles, I only need to show that there exist no level-1 cycles with cardinality larger than 1.
If this has been shown, then it has been made clear that the level-1 stable equals the union
of singleton level-1 cycles because from Theorem 3.1 it is known that the level-1 stable set
exists. In this proof, I first introduce a result by Roth and Vande Vate (1990) regarding
paths to stable matchings and I show that stable matchings are also in the level-1 stable
set. Last, using this result, I prove that assuming level-1 cycles with cardinality larger
than 1 leads to a contradiction.
Roth and Vande Vate (1990) show that, for any matching µ ∈ M, there exists a finite
sequence of matchings µ1, ..., µk, such that µ = µ1 and such that µk is a stable matching.
Furthermore, for each i = 1, ..., k − 1, there exists a blocking pair (mi, wi) ∈ M ×W for
µi such that µi+1 is obtained from µi by satisfying the blocking pair (mi, wi). In other
words, from each matching, it is possible to reach a stable matching by a sequence of
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matchings and in each step in the sequence a blocking pair is matched. In the paper of
Roth and Vande Vate (1990), a blocking pair may also consist of one player and, in that
case, a player is a blocking pair with ‘him or herself.’
Let S ⊆ M be the set of matchings containing all stable matchings. The result of Roth and
Vande Vate (1990) implies that the deterrence of external deviations cannot be satisfied
for any subset of matchings in M \ S because from any matching in M there leads a path
to a stable matching. For any stable µ ∈ S it holds that there is no blocking (m,w)
pair, so for each i ∈ N deviating by matching a player of the opposite sex is impossible.
Furthermore, µ is individually rational, so any player i ∈ N cannot deviate by becoming
single. For these two reasons, no level-1 deviations exist in matching µ. If I now assume
that µ is not in the level-1 stable set, then the iterated external stability is not satisfied
for the set, because from µ no level-1 deviations are possible. Therefore, µ must be part
of the level-1 stable set.
Now it has been established that any matching in the set of stable matchings S is in
the level-1 stable set. Furthermore, each matching in µ ∈ S does not allow for level-
1 deviations to any matching in M \ {µ} and is thus satisfying deterrence of external
deviations. Hence, the set of stable matchings contains only singleton level-1 cycles.
Let’s now assume there exists a level-1 cycle C with cardinality larger than 1. This cycle
satisfies deterrence of external deviations and can hence not be a subset of M \ S. Now
there are two situations to consider:
Situation 1 : there is at least one matching µ ∈ C (and at most |C| − 1) matchings) that
is in M \ S. All matchings in S do not allow for level-1 deviations. Hence, this would
lead to a contradiction because it is not possible to go from µ to some matching in S and
back.
Situation 2 : C ⊆ S. This would lead to a contradiction because |C| ≥ 2 and this means
level-1 deviations should be possible to and from matchings in C. However, no level-1
deviations exist from any matching in S because it contains only singleton level-1 cycles.
This means that assuming the existence of level-1 cycles with cardinality larger than 1
leads to a contradiction. From Theorem 3.2 it is known that the level-1 stable set equals
the union of level-1 cycles. Therefore, the level-1 stable set equals the union of singleton
level-1 cycles.

The fact that a matching µ ∈ M is in the level-1 stable set that consists of singleton
level-1 cycles gives me the result of the equivalence of the stable set and the level-1 stable
set. I show this equivalence in the next proof.

Theorem 3.4. For each µ ∈ M, it holds that µ is part of the level-1 stable set M1 ⊆ M
if and only if µ is stable.

Proof. This proof consists of two parts. The first part proves that all matchings of a
level-1 stable set are stable. The second part proves that all stable matchings belong to
the level-1 stable set.
According to the framework defined so far, a level-1 deviation from µ1 to µ2 is possible
in two situations. The first situation: i breaks a link and is better off single than with
his partner in µ1, then it must hold: i ≻i µ(i). The second situation: i breaks with j
(or breaks with himself because he is single) and forms a link with k with whom he is
better off, then it must hold: µ2(i) ≻i µ1(i) and µ2(k) ≻k µ1(k). In the first situation, i
is the blocking player and in this situation, µ1 is not individually rational. In the second
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situation, there exists a blocking man-woman pair because both players can improve by
matching with each other. If there is no level-1 deviation possible, both situations 1 and
2 are absent. Therefore, the absence of a possible level-1 deviation in matching µ1 ∈ M
implies stability. I have proved in Theorem 3.3 that any level-1 stable set contains only
singleton level-1 cycles. From these cycles, no level-1 deviations exist. Therefore, all
matchings in a level-1 stable set are stable.
Let’s now assume that matching µ ∈ M is stable. Because µ is stable, there is no blocking
(m,w) pair, so for each i ∈ N deviating by matching a player of the opposite sex is
impossible. Furthermore, µ is individually rational, so any player i ∈ N cannot deviate
by becoming single. For these two reasons, no level-1 deviations exist in matching µ. If I
now assume that µ is not in the level-1 stable set, then the iterated external stability is
not satisfied for the set, because from µ no level-1 deviations are possible. Therefore, µ
is part of the level-1 stable set.

Now it has been shown that the level-1 stable set consists of singleton level-1 cycles
and that this set equals the stable set, I relate these results to the level-2 stable set. I
show in the next proof that the level-1 stable set is a subset of the level-2 stable set.

Theorem 3.5. The level-1 stable set is a subset of the level-2 stable set.

Proof. In this proof, I call the level-1 stable set Λ1 and the level-2 stable set Λ2. I prove
Λ1 ⊆ Λ2 by contradiction. Let’s assume: Λ1 ⊈ Λ2, so: ∃µ ∈ Λ1 and µ /∈ Λ2. In µ, no level-
1 deviations exist, which is known by Theorem 3.3. However, by the iterated external
stability of Λ2, there exists a sequence of level-2 deviations from µ to some matching
ν ∈ Λ2. Therefore, in µ a level-2 deviation must exist. This level-2 deviation, from µ to,
let’s say, µ′ with induced matching to µ′′, by player i ∈ N must be one of the following
situations:
Situation 1 : player i gets single in µ′ and intends to be matched with j in µ′′. In this
case, {i, j} is a blocking pair in µ.
Situation 2 : player i matches player j in µ′ and intends to be matched with k in µ′′. In
this case, {i, k} is a blocking pair in µ.
Situation 3 : player i gets matched with j in µ′ and both do not deviate in µ′. In this
case, {i, j} is a blocking pair in µ. If j now intends to be matched with k ̸= i in µ′′, then
{j, k} is a blocking pair in µ.
Situation 4 : player i gets single in µ′ and intends to remain single (does not deviate) in
µ′′. In this case, {i} is a blocking player in µ.
Situation 5 : player i matches player j in µ′ and intends to get single in µ′′. In this case,
{i} is a blocking player in µ.
Hence, this means there must exist a blocking pair or player in µ and level-2 deviations
only exist if there exists a blocking pair or blocking player. Therefore, it cannot hold that
µ is in Λ1 while not in Λ2, which contradicts assuming µ ∈ Λ1 and µ /∈ Λ2. Therefore, it
must hold that Λ1 ⊆ Λ2.

The last proof that is shown in this section is about the relation between α-reducibility,
as described in Section 2.5 and foresight. I prove that the level of foresight has no impact
in α-reducible marriage markets because the level-K stable set always contains only the
stable matching in α-reducible problems for any K > 0 as is shown next. In Theorem 3.6,
I use the same notation for the coalitions S1, ..., Sℓ as has been used in the description
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of α-reducible problems in Section 2.5. Furthermore, I make use of the property that in
α-reducible problems, there exists a single stable matching and a unique partition for this
stable matching, as was shown by Alcalde (1994).
In the proof next, I first show that the stable matching µ must be in the level-K stable
set for any K > 0 to let the level-K stable set satisfy iterated external stability. In the
second part, I show that the set containing the stable matching only is the level-K stable
set.

Theorem 3.6. Let (M,W,≻) be a marriage market problem satisfying α-reducibility.
Then, for any K > 0, the level-K stable set equals the stable matching.

Proof. Consider players in S1. In the stable matching µ in the α-reducible marriage mar-
ket (M,W,≻), all players in S1 have their top choice. Therefore, for all i ∈ S1 there does
not exist a µ′ ∈ M \ {µ} for which it holds that µ′(i) ≻i µ(i). Therefore, there exists no
matching in µ′ ∈ M \ {µ} that they would be willing to deviate to from µ. Irrespective
of the level of foresight K, all players in S1 cannot improve. Hence, it holds for all i ∈ S1

and for all K > 0 that for all µ′ ∈ fN
K(µ) that µ

′(i) = µ(i).
Now consider players in S2. All players in S2 could only improve by deviating such that
there exists an induced path that matches them with someone in S1. However, there exists
no single matching in M \ {µ} to which a player in S1 would deviate from µ, irrespective
of K. It holds for all players i ∈ S1 that for all µ′ ∈ fN

K(µ) that µ
′(i) = µ(i). Therefore,

all players in S2 cannot improve in µ, irrespective of K. Hence, it holds for all i ∈ S1

⋃
S2

and for all K > 0 that for all µ′ ∈ fN
K(µ) that µ

′(i) = µ(i).
Now consider players in Sk, for each k ∈ {3, ..., ℓ}. All players in Sk could only improve
by deviating such that there exists an induced path that matches them with someone in
S1

⋃
...
⋃

Sk−1. However, there exists no single matching in M \ {µ} to which a pair of
players in S1

⋃
...
⋃

Sk−1 would deviate by forming a link from µ or a single player by only
dissolving a link, irrespective of K. It holds for all players i ∈ S1

⋃
...
⋃
Sk−1 that for all

µ′ ∈ fN
K(µ) that µ

′(i) = µ(i). Therefore, all players in S1

⋃
...
⋃
Sk−1 cannot improve in

µ, irrespective of K. Hence, it holds for all i ∈ S1

⋃
...
⋃
Sk and for all K > 0 that for all

µ′ ∈ fN
K(µ) that µ

′(i) = µ(i).
Since N = S1

⋃
...
⋃

Sℓ there exist no level-K deviations for any player from stable match-
ing µ for K > 0. Hence, µ must be in the level-K stable set to let the level-K stable
set satisfy iterated external stability. Also, because no level-K deviations exist from µ
for any K > 0, fK({µ}) ⊆ {µ} and so the set {µ} must satisfy deterrence of external
deviations.

To show that the level-K stable set contains only the stable matching µ in the α-reducible
marriage market (M,W,≻), I show that there exists a path from every matching µ′ ̸= µ
to µ, such that {µ} also satisfies iterated external stability.
By Theorem 3.2, I know that µ is a singleton cycle in the level-K stable set because no
level-K deviations exist in µ. Furthermore, it is known that µ′ is unstable as µ is the only
stable matching in the marriage market. Therefore, there exists at least one blocking pair
in µ′. In fact, there exists at least one Sk in S1, ..., Sℓ in which the players in Sk are not
matched in µ′ if |Sk| = 2, or in which the player is not single in µ′ if |Sk| = 1.
Let Sk be the first in S1, ..., Sℓ for which this holds. For all players in Sk there always
exists at least one player in S1

⋃
...
⋃

Sk that they prefer more than their partner in µ′.
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However, since all players in S1

⋃
...
⋃
Sk−1 have no level-K deviations in each matching

in which the implied link of each Sn is formed for 1 ≤ n ≤ k− 1, all players in Sk cannot
deviate such that they end up with someone in S1

⋃
...
⋃

Sk−1. Nonetheless, all players in
Sk could improve by deviating such that they end up with themselves (if |Sk| = 1) or with
the other player in Sk (if |Sk| = 2). Hence, forming the implied link in Sk is a level-K
deviation for all players in Sk from µ′. Once the players in Sk have matched the opposite
player in Sk (or himself if |Sk| = 1), no more level-K deviations exist by these players,
for any K > 0. Namely, players in S1

⋃
...
⋃

Sk−1 do not match someone in Sk and the
player(s) in Sk do not prefer being matched with a player in Sk+1

⋃
...
⋃
Sℓ. Therefore,

forming the implied link from Sk is a level-K deviation for each i ∈ Sk, for any K > 0. If
now some i ∈ Sk matches some j /∈ Sk, then from µ′ + (i, j), there still must be a level-K
deviation that matches all players in Sk with each other. Hence, a path exists such that
all players in Sk are matched from µ′ + (i, j), with i ∈ Sk and j /∈ Sk.
Once the implied link in Sk has been formed, the same process can be repeated for the
next S in Sk+1, ..., Sℓ for which the implied link in S is not formed. This process can
be continued for any K > 0 until the stable matching µ is reached through consecutive
level-K deviations. Once µ has been reached, no more level-K deviations exist. Now there
exists a path from each µ′ ̸= µ in M to µ by a sequence of consecutive level-K deviations,
while from µ no deviations exist. Consequently, the set {µ} satisfies iterated external
stability. In the first part of this proof, I showed the deterrence of external deviations of
the set {µ}. Hence, knowing that the level-K stable set must exist, by minimality, µ is
the only matching in the level-K stable set.
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4 Stochastic behaviour of the marriage market

4.1 Motivation

In the setting so far defined, there exists a problem with the credibility of some deviations
by some players. I would like to illustrate this by giving the next example:

Example 4.1. The marriage market set-up is the same as in previous examples and is
shown here again.

≻m1 : w1, w2,m1

≻m2 : w2, w1,m2

≻w1 : m2,m1, w1

≻w2 : m1,m2, w2

All possible matchings in this setting are shown again:

m1

m2

w1

w2

µ1

m1

m2

w1

w2

µ2

m1

m2

w1

w2

µ3

m1

m2

w1

w2

µ4

m1

m2

w1

w2

µ5

m1

m2

w1

w2

µ6

m1

m2

w1

w2

µ7

Let me consider matching µ3 out of the set of all matchings. In this matching, player m1

could perform a level-2 deviation to matching µ1 because from µ1 there exists a level-1
deviation to matching µ2 and it holds: µ2(m1) ≻m1 µ3(m1). According to the current
set-up, this would be a valid level-2 deviation for player m1. However, this seems not to be
resembling reality a lot. Namely, it is not assured that the system transits from µ1 to µ2. In
fact, there exist four level-1 deviations in µ1 of which only the one to µ2 is an improvement
form1. Considering the symmetry that is present in this defined marriage market problem,
it would be intuitive to assume that each matching in f1(µ1) = {µ2, µ3, µ4, µ5} has a 0.25
probability to be reached. This means that m1 has a chance of only 25 % to improve and
a chance of 50 % to end up with a less preferred partner by his deviation. Considering
this stochastic behaviour of the game that would be plausible here, the deviation from µ2

to µ1 would not be very credible for m1 at first sight.
However, it has not been established by how much m1 prefers w1 more than w2. If w1

is preferred considerably more than w2, while w2 is only a bit more preferred than being
single, the deviation to µ1 is realistic. Nevertheless, if w1 is preferred only slightly more
than w2, while w2 is preferred considerably more than being single, the deviation to µ1 is
unrealistic. ▲

In the approach that I follow to tackle the problem defined in Example 4.1, I propose
to define a Markov chain that describes the probabilities of the system evolving from one
matching to the other in one step. The probabilities in this chain depend on the level of
foresight K and on the preferences of each of the players. Also, the probabilities depend
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on the utilities that each player gives to each partner. Defining utilities in the marriage
market problem with stochastic deviations is necessary to make sure that a planned de-
viation from a player always implies a positive expected change in utility. First, next to
some minor first notation, I give two more examples under level-1 and level-2 foresight to
illustrate the new set-up and the definitions that follow in Section 4.2.

Example 4.2. Let me now consider the same set-up as in Example 4.1. I describe how
the system might evolve under level-1 foresight. Under level-1 foresight, no utilities over
players need to be defined because each player only deviates if the consequence of his
deviation makes the player end up with a more preferred partner. From matching µ1,
each player has a level-1 deviation to two matchings in A = {µ2, µ3, µ4, µ5}, while each
matching in A can be reached by a level-1 deviation of two players. When saying that
each player has an equal probability to be given the option to deviate then for each µ ∈ A:
P1(µ|µ1) = 0.25. Deviating from µ1 to any matching in B = {µ6, µ7} is impossible because
these matchings are not a neighbour of µ1, and therefore: P1(µ6|µ1) = P1(µ7|µ1) = 0.
From µ3, two level-1 deviations exist, to µ2 by m1 and w1 and to µ7 by m2 and w1. Now,
it is crucial to define which deviation would be most credible. Clearly, both deviations
involve player w1. Previously, both deviations were defined to be credible by player w1.
Nevertheless, matching with m2 gives the highest utility to w1. Although this deviation
would be more credible, I still define P1(µ2|µ3) = P1(µ7|µ3) = 0.5. Later, this concept
could be further ennobled to let players only deviate to a matching giving them the
highest utility. Now, by symmetry, P1(µ5|µ2) = P1(µ6|µ2) = P1(µ3|µ4) = P1(µ6|µ4) =
P1(µ4|µ5) = P1(µ7|µ5) = 0.5.
Considering all described deviations in the marriage market problem, the following matrix
P1 can be constructed. In this matrix, the element (i,j) represents the probability that
the system evolves from matching µi to µj by a level-1 deviation. Matrix P1 is as follows:

0 0.25 0.25 0.25 0.25 0 0
0 0 0 0 0.50 0.50 0
0 0.50 0 0 0 0 0.50
0 0 0.50 0 0 0.50 0
0 0 0 0.50 0 0 0.50
0 0 0 0 0 1 0
0 0 0 0 0 0 1


▲

Example 4.3. In this example, I consider the same marriage market problem as in the
previous example. However, now I consider level-2 deviations in the context of the system
evolving in a stochastic manner. In this example, I define utilities that each player has
over the opposite set of players and being single to be decreasing in equal steps from the
most preferred partner to the least preferred. This means that if player i has preference
ordering ≻i: j, k, ℓ, with i ∈ {j, k, ℓ}, then j is equally preferred over k as k is over ℓ.
When utilities were to be defined in this example, then if i attaches utility a to j and
a− b to k, it follows that a− 2b utility is attached to ℓ, while b > 0.
Let me consider matching µ1 and player m1. This player can match with w1, resulting in
µ2 or with w2, resulting in µ3. Player m1 has level-2 foresight and foresees that deviating

28



to µ2 results in matching µ5 or µ6 through a level-1 deviation with equal probability.
Hence, with probability 0.5, m1 ends up with a more preferred partner than in µ1, while
the probability of having the same utility is 0.5 and thus, there is an expected increase
in utility with this deviation. Therefore, deviating to µ2 is a level-2 deviation for player
m1. Deviating to µ3 ultimately leads to a level-1 deviation to µ2 or µ7, resulting in an
increase in utility with probability 1 for m1, and so this is also a level-2 deviation for him.
For w1, deviating to µ2 is a level-2 deviation, because from µ2, under level-1 foresight, the
system evolves to µ5 or to µ6 with equal probability. Player w1 is better off than in µ1

in both matchings and hence, deviating to µ2 from µ1 is a level-2 deviation from for w1.
For w2, deviating to µ3 is a level-2 deviation, because from µ3, under level-1 foresight,
the system evolves to µ2 or to µ7 with equal probability. Player w2 is better off than in
µ7 than µ1 and has the same partner in µ2 as in µ1. Hence, this deviation results in a
positive expected increase in utility and so deviating to µ3 from µ1 is a level-2 deviation
for w2. Deviating to µ2 would be the most preferred option by m1 compared to deviating
to µ3. However, for now, I assume that both deviations have equal probabilities.
Previous reasoning implies that, if m1 were to be picked as the player to be starting
the deviation, deviations of the system from µ1 to µ2 or µ3 would be credible, and are
assumed to be equally credible here. Similar reasoning could be done for the other players
and therefore, by the symmetry here, each matching in A = {µ2, µ3, µ4, µ5} has an equal
probability to be reached by a deviation from µ1. The key underlying assumption here is
that each player has an equal chance to initiate the deviation. Therefore, P2(µ|µ1) = 0.25,
for all µ ∈ A.
Now I consider matching µ2. Player m1 cannot deviate because he has he most preferred
option. Player w1 can deviate. In the setting defined in previous sections, deviating to
µ1 would be a fruitful level-2 deviation for w1 since from µ1 a deviation exists to µ5.
However, in this newly defined setting, w1 knows that from µ1, the system evolves to
some matching in A and each matching in A has a 25 % chance to be reached from
µ1 by a level-1 deviation. Only in µ5 w1 is better off and therefore, under the current
assumption of the utilities, deviating to µ1 does not have an expected increase in utility
for player w1. Now w1 can also deviate to µ5 which would need approval by m2. From
µ5 the system goes to µ4 or µ7, with both a 50 % probability. For m2, this would be a
positive expected increase in utility. For w1 however, the probability of a more preferred
partner is 50 % and is equaling the probability of a less preferred partner. Therefore, the
expected increase in utility is zero under the current assumption of utilities and this is
not a fruitful level-2 deviation for w1. In case the utilities had been defined differently,
however, this could have been a fruitful deviation for w1. Now only players m2 and w2

can deviate in µ2. The only thing they can do is form a new link between them, resulting
in µ6. From µ6 no more level-1 deviations exist and both players are better off in µ6.
Therefore, the only level-2 deviation from µ2 is to µ6 and P2(µ6|µ2) = 1. By symmetry, I
can now say P2(µ7|µ3) = P2(µ6|µ4) = P2(µ7|µ5) = 1.
From µ6 and µ7 no level-2 deviations exist and therefore, I can construct the following
matrix P2.
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

0 0.25 0.25 0.25 0.25 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1


In this example, it has now also been shown that a level-2 deviation in the set-up as
described in Section 2 does not necessarily need to imply a level-2 deviation in this section.
For instance, in Section 2 µ2 →{m2,w1} µ5 would be a level-2 deviation. However, in this
example, this is not a level-2 deviation. ▲

In the next Section 4.2, I introduce new definitions that are necessary to tackle the
issues that have appeared in this section. Before starting that section, I briefly summarise
the motivation for the newly introduced topics in that section.
Firstly, it has been shown that in the set-up of Section 2, players are very optimistic
about their chances of improving on partners. Namely, the only requirement for a level-K
deviation by some player i was that a path of induced deviations existed that led to a
better partner, without any indication of the likelihood that this path would be realistic.
Therefore, in the next section, I introduce probabilities of switching to matchings that
players can account for when deciding on fruitful level-K deviations. This will result in a
marriage market set-up in which the transition from and to matchings is stochastic and
thus will become a Markov chain with each matching equivalent to a state in the chain.
Secondly, as a consequence of the loss of the opportunistic belief by the players that a
deviation always leads to an improved partner, a deviation by a player may depend on
the extent to which partners are preferred over others. For instance, a small probability
of improving on a partner following a deviation might actually lead to a deviation when
this partner is way more preferred than the current partner of the possible deviator. To
indicate the extent to which partners are preferred over others, however, it is necessary
to introduce utilities that are attached to possible partners.
Now, by describing this stochastic set-up in the next sections, I tackle the issues described
in this section leading to more realistic deviations and thus eventually to more realistic
outcomes of the marriage market problem.

4.2 Definitions

4.2.1 Level-1 and level-2 foresight

Now the new framework has been extensively illustrated through several examples, I give
new definitions that describe the set-up of the marriage market. I do so by first intuitively
describing the new set-up under level-1 and level-2 foresight.
In the previous examples, a key underlying assumption was that one player is given the
opportunity to initiate a deviation. In this new framework, I assume that a player is
randomly chosen over all players to initiate a deviation. Clearly, if a player is picked that,
when in matching µ, has no fruitful deviation in µ, then a random player is chosen until
there is some player that can deviate. This set-up leads to each player having a chance of
being given the opportunity to deviate as 1 divided by all players that could deviate in µ.
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Consequently, all players are aware of this ‘random draw’ when considering their options
to deviate.
Another key underlying assumption in the previous examples was that each possible
deviation by a player given the opportunity to deviate has an equal chance of being
chosen. Hence, even though deviating from µx to µy by player i results in a matching
with a higher expected utility for player i according to his reasoning process than deviating
from µx to µz, it still holds that these deviations are given equal chance to. Later, I will
restrict this and only allow players to deviate to their most preferred matching. However,
at this stage, this is not done in order to stick close to the approach of Section 2.
Another assumption that was made use of in the examples defined was the assumption
of utilities over the opposite players and over being single for each i ∈ N . As has been
illustrated, these utilities can be essential to the end result of the matching. Therefore, I
define the utility that player i gets in µ when µ(i) = j as U i(j). Hence, for each player
i ∈ N there exists a complete row vector of utilities over players of the opposite sex and
himself. ((Um)m∈M , (Uw)w∈W ) is a complete matrix of utilities that is denoted by U with
each row corresponding to a player. This means that in this section, the marriage market
problem consists of men, women, and a matrix with row vectors consisting of utilities:
(M,W,U). Also, I define Viµy ,1 = U i(µy(i)), which is the expected utility player i gets
from a level-1 deviation to µy. Later, I generalise this expected utility for general levels
of foresight. In a level-1 setting, this just the utility i gets from the player he is matched
to in µy.
Before formally defining the deviations in the new setting, I first describe the calculation of
probabilities that make the system move from one matching to the other. I describe these
probabilities by first illustrating the probabilities for K = 1. Clearly, when K = 1 and
starting in µx ∈ M, in the marriage market several players might have the possibility to
deviate and each of these players may have several possible deviations that do increase his
utility when deviating from µx to µy. As mentioned, out of all possible deviators a player
is randomly picked with equal possibility over all deviators. Thereafter, out of all his or
her possible deviations, a deviation is randomly picked, with all possible deviations having
an equal probability to be picked. If a deviation involves the addition of a link, then the
addition should be a deviation by the opposite player as well. I put these probabilities in
a matrix P1 in which the element of the x’th row and y’th column (x, y) is the probability
P1(µy|µx), and where 1 is the level of foresight. Hence, say in µx, L1,µx ⊆ N is the set
of players that can perform a level-1 deviation and let Iiµxµy ,1 be the indicator function
that is 1 if i has a level-1 deviation to µy from µx that is also a level-K deviation by
the opposite player if it involves the addition of a link and 0 otherwise. Furthermore, let
Diµx,1 be the total number of level-1 deviations by i from µx for which it holds that this
is also a deviation by the opposite player if it involves the addition of a link. Now, given
|Diµx,1| > 0, the probability that the system evolves to µy by a level-1 deviation of player

i equals 1
|L1,µx |

∗ Iiµxµy,1

Diµx,1
. If I now sum over i, I get the probability that the system moves

from µx to µy, so: P1(µy|µx) =
1

|L1,µx |
∑

i∈L1,µx

Iiµxµy,1

Diµx,1
. If |L1,µx| = 0, no level-1 deviations

exist and for all µy ̸= µx, P1(µy|µx) = 0 and P1(µx|µx) = 1.
Now, I consider the probability that the system moves from µx ∈ M to µy ∈ M through a
level-2 deviation. With level-2 foresight, players can foresee the first deviation following
their level-2 deviation. In this setting of stochastic deviations, it means that they are
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aware of the probabilities of the system moving from µy to each other matching and use
these probabilities to determine their own deviations. Next, I show how the probabilities
and deviations are calculated for K = 2 and K = 3.
I consider a setting in which three matchings µ1, µ2 and µ3 exist. Matrix P1 ∈ R3 × R3

can be taken as given with matchings µ1, µ2 and µ3. The probabilities in that matrix are
calculated as aforementioned. I consider a possible level-2 deviation by player i that has
utilities U i(µ1(i)), U

i(µ2(i)), U
i(µ3(i)). Matrix P1 is defined as follows:P1(µ1|µ1) P1(µ2|µ1) P1(µ3|µ1)

P1(µ1|µ2) P1(µ2|µ2) P1(µ3|µ2)
P1(µ1|µ3) P1(µ2|µ3) P1(µ3|µ3)


In this matrix, P1(µy|µx) is the probability that the system moves from matching µx to
matching µy by a level-1 deviation. Now consider a possible level-2 deviation from µx ∈ M
by player i in the marriage market problem. The utility that player i gets by a deviation
to µy, say Viµy ,2, equals P1(µ1|µy)∗U i(µ1(i))+P1(µ2|µy)∗U i(µ2(i))+P1(µ3|µy)∗U i(µ3(i)).
Knowing Viµy ,1 = U i(µy(i)), I can also write: Viµy ,2 = P1(µ1|µy)∗Viµ1,1+P1(µ2|µy)∗Viµ2,1+
P1(µ3|µy) ∗ Viµ3,1. Now the deviation to µy ∈ M \ {µx} is a fruitful level-2 deviation by
player i if Viµy ,2 = P1(µ1|µy) ∗ U i(µ1(i)) + P1(µ2|µy) ∗ U i(µ2(i)) + P1(µ3|µy) ∗ U i(µ3(i)) >
U i(µx(i)).
In this manner, for every player, it can be concluded whether a level-2 deviation exists
from µx to µy. Now, the elements in matrix P2 can be calculated in a similar manner to
the elements of P1. The element P2(µy|µx) gives the probability that the system moves
from µx to µy by a level-2 deviation. Hence, say in µx, |L2,µx| ≤ N players can perform a
level-2 deviation that is also a level-2 deviation by the opposite player if applicable and
let Iiµxµy ,2 be the indicator function that is 1 if i has a level-2 deviation to µy from µx

that is also a level-2 deviation by the opposite player if applicable and 0 otherwise, which
is equivalent with Viµy ,2 > U i(µx(i)). If the deviation now involves the addition of a link
with say player j ̸= i, then, for j, it must also be that Vjµy ,2 > U j(µx(j)). Furthermore,
let Diµx,2 be the total number of level-2 deviations by i from µx for which it holds that
this is also a deviation by the opposite player if it involves the addition of a link. Now,
the probability that the system evolves to µy by a level-2 deviation of player i is equal to,

given Diµx,2 > 0, 1
|L2,µx |

∗ Iiµxµy,2

Diµx,2
. If I now sum over i, I get the probability that the system

moves from µx to µy, so given |L2,µx| > 0, the probability that the system moves from

µx to µy under level-2 foresight is P2(µy|µx) = 1
|L2,µx |

∑
i∈L2,µx

Iiµxµy,2

Diµx,2
. In this manner,

all elements of P2 can be calculated. If now |L2,µx| = 0, then no one can improve by
becoming single and there exist no additions of links that can improve the utility of the
involved players. Hence, in that case P2(µx|µx) = 1 and so the system stays in µx under
level-2 foresight.
Now consider a possible level-3 deviation from µx. The deviation from µx to µy is a fruitful
level-3 deviation by player i if Viµy ,3 = P2(µ1|µy) ∗ Viµ1,2 + P2(µ2|µy) ∗ Viµ2,2 + P2(µ3|µy) ∗
Viµ3,2 > U i(µx(i)). In this sum, Viµℓ,2 is the expected utility that a player i gets when the
system evolves to matching µℓ by a level-2 deviation, with the key assumption of level-2
foresight in µy. Multiplying this utility by P2(µℓ|µy), the probability of a level-2 deviation
from µy to µℓ, gives a term that should be summed over to get the expected utility of the
level-3 deviation to µy. Namely, in this sum over all µℓ ∈ M, each term is the utility that
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i gets from each respective matching µℓ times the probability that µℓ is reached from µy

by a level-2 deviation. Therefore, this sum gives the expected utility for i of the level-3
deviation from µx to µy.

4.2.2 Arbitrary level of foresight

In the previous subsection, some new notation has been introduced for specific settings
of K = 1 and K = 2. Now, in order to present a complete overview of the new notation,
I summarise the new notation for general K > 0. In the overview presented, I consider
a deviation in the stochastic setting under level-K foresight from some matching µx ∈ M
to some other matching µy ̸= µx in M:

(i) Viµy ,K is the expected utility for player i after a level-K deviation to µy.

(ii) Iiµxµy ,K is the indicator function that is 1 if i has a level-K deviation from µx to µy

that is also a deviation by the opposite player if it involves the addition of a link
and 0 otherwise.

(iii) LK,µx ⊆ N is the set of players with a level-K deviation in µx, while for all deviations
that involve the addition it holds that this is also a deviation by the opposite player.

(iv) Diµx,K is the number of level-K deviations by i in µx for which it holds that this is
also a deviation by the opposite player if it involves the addition of a link.

(v) PK(µy|µx) is the probability that the system evolves from µx to µy through a devi-
ation under the assumption of stochasticity and level-K foresight.

The definition for LK,µx in point (iii) can be mathematically written as LK,µx = {i ∈
N |Viµx−(i,µx(i)),K > U i(µx(i))}

⋃
{i ∈ N : ∃j ∈ N |Viµx+(i,j),K > U i(µx(i)) ∧ Vjµx+(i,j),K >

U j(µx(j))}. The formula for the calculation of PK(µy|µx) in (v) is, given |LK,µx | > 0,

PK(µy|µx) =
1

|LK,µx |
∑

i∈LK,µx

Iiµxµy,K

Diµx,K
. If |LK,µx| = 0, PK(µy|µx) = 0, for all µy ̸= µx and

PK(µx|µx) = 1. In the next paragraph, I present the exact description of the calculation
of PK(µy|µx). Thereafter, I show how the parameters in the formula for PK(µy|µx) are
calculated in a recursive manner.
In a level-K setting in some µx ∈ M, out of all deviators, a deviator is randomly picked.
Hence, the probability of a random deviator to be picked is 1

|LK,µx |
. Out of all his devia-

tions, which are also deviations by the opposite player if it involves the addition of a link,
a deviation is randomly picked. Hence, the probability that the system moves from µx

to µy by a deviation of player i is, given |Diµx,K | > 0: 1
|LK,µx |

Iiµxµy,K

Diµx,K
. If I now sum over

i, I obtain the probability that the system evolves from µx to µy under level-K foresight.

Hence, given |LK,µx| > 0, PK(µy|µx) = 1
|LK,µx |

∑
i∈LK,µx

Iiµxµy,K

Diµx,K
. Now if |LK,µx| = 0, no

player can gain by dissolving a link and no two players can agree on the addition of a
link. Consequently, under level-K foresight, PK(µx|µx) = 1. Next to considering prob-
abilities of the system evolving from matching to matching, I also consider PK(My|Mx)
as the probability that the system evolves through a deviation under the assumption of
stochasticity and level-K foresight from a set of matchings Mx to a set of matchings My.
Now the formal notation needed in the description of the stochastic set-up has been given,
I intuitively describe the formal stochastic set-up in the next paragraphs. Also, the exact
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calculations of the introduced parameters are given. In Section 4.2.4, I compactly denote
all formal equations and definitions.
The probability of the evolution of the system that just has been given depends on the
utilities that each player gives to each matching and consequent deviations. For K = 1,
every player knows which deviations improve his utility. With that information, for each
µx ∈ M, µy ∈ M and i ∈ N , parameters Diµx,1, Iiµxµy ,1 and L1,µx can be calculated

and the probabilities P1(µy|µx) =
1

|L1,µx |
∑

i∈L1,µx

Iiµxµy,1

Diµx,1
. For K > 1, deviations depend

on induced deviations as well. In other words, the expected utility that a player gives
to a deviation iteratively depends on the expected utility in induced deviations. Hence,
because the expected utilities for player i following a level-K deviation iteratively depend
on the expected utilities for i following possible level-K− ℓ deviations, for 1 ≤ ℓ ≤ K− 1,
I first write down the utility for i following a level-2 deviation.
I say that matching µy is the matching that follows the level-2 deviation and so only
level-1 deviations are foreseen in µy in line with the foresight. Now, the utility player i
gets from that deviation is an explicit function of the real utilities that he gets in each
matching and the probabilities of the system evolving to each of these matchings through
a level-1 deviation from µy. So, the expected utility that player i ∈ N gets when the
system evolves to µy ∈ M with level-2 foresight is Viµy ,2 =

∑
µℓ∈M P1(µℓ|µy) ∗ Viµℓ,1 =∑

µℓ∈M P1(µℓ|µy) ∗ U i(µℓ(i)). Under level-2 foresight, the utility of a deviation to each
possible matching can now be derived. Based on the utility following a deviation, each
player knows which deviations improve his utility and so his deviations can be derived.
Consequently, in µx, for each µy ∈ M, Iiµxµy ,2, Diµx,2 and L2,µx can be derived. Knowing

P2(µy|µx) =
1

|L2,µx |
∑

i∈L2,µx

Iiµxµy,2

Diµx,2
, this probability can be calculated for each µy ∈ M.

Now, say we are in matching µx again, under level-3 foresight. For all i ∈ N and for
all µy ∈ M, it has been shown how to calculate P2(µy|µx) and Viµy ,2. This is what
is needed to calculate the expected utility of a level-3 deviation to some matching µy:
Viµy ,3 =

∑
µℓ∈M P2(µℓ|µy) ∗ Viµℓ,2. By filling in each Viµℓ,2, the exact utility of such a

deviation can be obtained. Knowing all these utilities, Iiµxµy ,3, Diµx,3 and L3,µx can be
derived to calculate P3(µy|µx) for each µy ∈ M.
This pattern can be continued for any K > 0. Therefore, for any K > 0, the expected
utility that player i ∈ N gets when the system evolves to µy ∈ M with level-K foresight
and K > 1 is Viµy ,K =

∑
µℓ∈M PK−1(µℓ|µy) ∗ Viµℓ,K−1.

Each player in the marriage market knows the expected utility of a possible deviation,
while each player is willing to deviate from µx to µy when the expected utility in µy is
higher than the utility the player gets in µx. Therefore, when assuming level-1 foresight,
a player i deviates to µy from µx when U i(µy(i)) > U i(µx(i)). Hence, the deviation
µx →S µy is a stochastic level-1 deviation for player i ∈ S, if U i(µy(i)) > U i(µx(i)).
Because a level-1 deviation does not consider any further deviations after the devia-
tion, stochastic level-1 deviations are equivalent to level-1 deviations defined in Section 2.
Knowing for each µx ∈ M which deviations exist for each i ∈ N under level-1 foresight,
the probabilities on the evolution of the system can be derived.
Now for K = 2, deviations depend on induced deviations under level-1 foresight. Hence,
knowing how to calculate Viµy ,2, the deviation µx → µy is a stochastic level-2 deviation
for player i ∈ S, if Viµy ,2 > U i(µx(i)). Consequently, the probabilities of the evolution
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of the system can be derived under level-2 foresight. This reasoning can be iterated for
larger levels of foresight by knowing the probabilities of the evolution of the system under
lower levels of foresight and the expected utilities under lower levels of foresight. Hence,
for general K > 1, the deviation µx →S µy is a stochastic level-K deviation for player
i ∈ S if Viµy ,K > U i(µx(i)).

In this paragraph, I briefly summarise the calculation of the matrix PK , for some K > 0.
When a player considers deviating under level-K foresight, he foresees all following K−1
deviations. In the stochastic setting, he calculates the probabilities of possible deviations
corresponding to the level-K foresight. These probabilities are iteratively calculated as
has been explained. This iterative calculation starts with the calculation of the matrix P1

that belongs to the last induced deviation. P1 depends on the utilities that each player
gets of being matched with each possible partner in the marriage market. Out of all play-
ers with a level-1 deviation in some matching, a player is randomly picked and out of all
his deviations, a deviation is randomly picked. If the deviation involves the addition of a
link, then both players must agree on the addition. In this manner, for each matching, the
probability of going to each other matching can be determined and P1 can be calculated.
Knowing P1, the utility of a deviation to each other matching can be calculated for each
player under level-2 foresight. Now, for each player, the deviations can be derived under
level-2 foresight in each matching in M. By the rule that, out of all deviators, a player
is randomly picked and, out of all his deviations, a deviation is randomly picked, the
subsequent matrix P2 can be derived. Here again, if a deviation involves the addition of
a link, both players should agree on that addition. Consequently, the utilities of a level-3
deviation can be derived, and with them the matrix P3. This pattern can be continued
until the matrix PK can be calculated, for some K > 0.
When defining stochastic level-K deviations, it is no longer necessary to take the level-K
deviation with incomplete support into account as is done in Definition 2.4. Namely,
when deviating, player i ∈ N takes in his reasoning process into account that the induced
level-K ′ deviation, with 2 ≤ K ′ < K, may result in a matching from which no level-
K ′ − 1 deviations exist. If that happens, then the utility in that matching is part of i’s
calculation and is considered together with the probability of getting to and from that
matching. Throughout the rest of the paper, when there exists the need to distinguish
between the two types of deviations, I refer to a level-K deviation as defined in Section
2 as an optimistic level-K deviation. I use the word optimistic because, in that section,
each player has the ‘optimistic’ belief that the path, following the induced matchings, he
foresees is reached.

4.2.3 Stability and cycles

Having intuitively explained the deviations and probabilities in the stochastic context, I
consider the k-fold iterations in the stochastic context which is necessary to define stable
sets and cycles in the stochastic context. The concept in the stochastic setting is very
similar to the setting given in Section 2.3. However, now the matrix PK has been defined
that contains the probabilities of going from matching µx to µy by a stochastic level-K
deviation, for all µx, µy ∈ M. If now two sequential stochastic level-K deviations happen,
starting in µx, then it holds that the probability that the system is in µy equals element
(x, y) in matrix P 2

K . In general, the probability that the system is in µy after k sequen-
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tial stochastic level-K deviations when starting in µx is the element (x, y) in matrix P k
K ,

which is following from the properties of a Markov chain. In Section 2, µy is in the k-fold
iteration of µx, when µy could have been reached by k sequential level-K deviations. In
this setting, this is equivalent with P k

K(µy|µx) > 0.
Now that level-K deviations and k-fold iterations have been illustrated in the context
of the stochastic evolution of the marriage market, I can define stability. In Section 2.4
the level-K stable set must satisfy deterrence of external deviations and iterated external
stability. Also, there must not be a subset of the level-K stable set that does also satisfy
these criteria. Furthermore, by Theorem 3.2 it is known that this set consists of the union
of cycles satisfying deterrence of external deviations.
Deterrence of external deviations for some set of matchings means in the new context
that the probability that the system evolves to a matching outside the set is zero. Hence,
say that the set of matchings MK ⊆ M satisfies stochastic deterrence of external devia-
tions. It must hold for each matching in MK that the probability that the system evolves
to another matching in MK is 1. Hence for all µx ∈ MK ,

∑
µy∈MK

PK(µy|µx) = 1 and∑
µy /∈MK

PK(µy|µx) = 0.
In Section 2, a set of matchings MK ⊆ M satisfies iterated external stability if from any
matching in M, it is possible to reach MK through sequential level-K deviations. In the
new setting, a set MK satisfies stochastic iterated external stability if, for any matching in
M, there exists a k ∈ N such that there exists a strictly positive probability that the sys-
tem evolves to some matching in MK through k sequential stochastic level-K deviations.
Namely, in that case, there is a path to MK and this also implies that, if k goes to infinity,
in a marriage market with a finite number of players, the probability that the system has
been in some matching in MK converges to 1. As before, the collection MK ⊆ M is a
level-K stochastically stable set if it satisfies stochastic deterrence of external deviations
and stochastic iterated external stability and there is no strict subset of MK that satisfies
both criteria.
The rationale behind the level-K stochastically stable set in this context is that, ulti-
mately, starting in any matching in M the system must evolve to some matching in MK

through sequential stochastic level-K deviations. For this reason, in a marriage market
with a finite number of players, the probability that MK has been reached converges to
1 as k → ∞. Furthermore, it must be made sure that it is impossible to reach any
matching from MK in M \MK by the deterrence of external deviations. Therefore, for all
µx ∈ MK :

∑
µy∈MK

PK(µy|µx) = 1 and
∑

µy /∈MK
PK(µy|µx) = 0. Similar to distinguishing

optimistic level-K and stochastic level-K deviations, I use the term optimistic deterrence
of external deviations and optimistic iterated external stability to refer to these specific
concepts as defined in Section 2. Also, I call the level-K stable set of that section the
level-K optimistically stable set.
Last, I also define the concept of a stochastic level-K cycle that is used in deriving re-
sults in the framework of stochastic deviations. Hence, let K ∈ N. The non-empty set
M ⊆ M is a level-K cycle if it is a minimal set satisfying stochastic deterrence of external
deviations. If a stochastic level-K cycle M is a singleton, then the only element in set
M is a level-K stochastically stable matching. Again, when distinguishing between the
stochastic level-K cycle and the level-K cycle of Section 2, I refer to the latter one as the
optimistic level-K cycle.
For each matching µ in a cycle, it holds that the probability of getting to µ again when
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starting in µ approaches 1 as k goes to infinity, in a marriage market with a finite number
of players. Since I only consider marriage markets with a finite number of players, it must
hold that each matching in a cycle is a positive recurrent state in the Markov chain that
is considered here.

4.2.4 Overview

In previous sections, I intuitively defined all necessary notation and concepts in the context
of stochasticity. In this last part of the subsection, I summarise the new set-up and
compactly write all the definitions and equations in a formal way. Notation that is used
in this section has been summarised at the beginning of Section 4.2.2. I briefly summarise
this notation again in the next paragraph.
Viµy ,K is the expected utility for player i after a level-K deviation to µy. Iiµxµy ,K is
the indicator function that is 1 if i has a level-K deviation from µx to µy that is also
a deviation by the opposite player if it involves the addition of a link and 0 otherwise.
LK,µx ⊆ N is the set of players with a level-K deviation in µx, with for all deviations that
involve the addition of a link it holds that this is also a deviation by the opposite player.
Diµx,K is the number of level-K deviations by i in µx for which it holds that this is also
a deviation by the opposite player if it involves the addition of a link. Last, PK(µy|µx)
is the probability that the system evolves through a deviation under the assumption of
stochasticity and level-K foresight from µx to µy.
As described, under stochasticity, deviations under higher levels of foresight depend on
deviations belonging to the system evolution under lower levels of foresight. Therefore, I
start by formally defining deviations under level-1 foresight.

Definition 4.4. The deviation µx →S µy is a stochastic level-1 deviation for player
i ∈ S, if U i(µy(i)) > U i(µx(i)).

Definition 4.5. The deviation µx →S µy is a stochastic level-1 deviation if, for every
player i ∈ S, it is a stochastic level-1 deviation.

Now, knowing what stochastic level-1 deviations exist by each player in matching
µx ∈ M, the parameters Iiµxµy ,1, L1,µx and Diµx,1 can be calculated for every i ∈ N .
Iiµxµy ,1 can be calculated for each µy ∈ M for which µy ̸= µx. These parameters are
necessary to calculate the probability P1(µy|µx) that the system moves from µx to every
µy ∈ N under level-1 foresight. I present this probability in Equation 4.6.

Equation 4.6. The probability that the system goes from matching µx ∈ M to µy ∈ M
under level-1 foresight, when |L1,µx | > 0, is P1(µy|µx) =

1
|L1,µx |

∑
i∈L1,µx

Iiµxµy,1

Diµx,1
.

If now |L1,µx| = 0, P1(µx|µx) = 1 and P1(µy|µx) = 0, for all µy ̸= µx.
Having formally written down the probability under level-1 foresight, I define the concept
of expected utility. Under higher levels of foresight, players base deviations on expected
utility that depends on probabilities belonging to induced deviations under lower levels
of foresight. Because of the recursive structure, I first write down the expected utility
under level-2 foresight in Equation 4.7. All necessary parameters in the equation have
been defined previously in this section.
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Equation 4.7. The expected utility that player i ∈ N gets when the system evolves to
µy ∈ M under level-2 foresight is Viµy ,2 =

∑
µℓ∈M P1(µℓ|µy) ∗ Viµℓ,1 =

∑
µℓ∈M P1(µℓ|µy) ∗

U i(µℓ(i)).

Now, knowing the expected utility under level-2 foresight, stochastic level-2 deviations
can be derived.

Definition 4.8. The deviation µx →S µy is a stochastic level-2 deviation for player
i ∈ S, if Viµy ,2 > U i(µx(i)).

Definition 4.9. The deviation µx →S µy is a stochastic level-2 deviation if, for every
player i ∈ S, it is a stochastic level-2 deviation.

Knowing what stochastic level-2 deviations exist by each player in matching µx ∈ M,
the parameters Iiµxµy ,2, L2,µx and Diµx,2 can be calculated for every i ∈ N . Iiµxµy ,2 can
be calculated for each µy ∈ M for which µy ̸= µx. These parameters are necessary to
calculate the probability P2(µy|µx) that the system moves from µx to every µy ∈ N under
level-2 foresight. I present this probability in Equation 4.10.

Equation 4.10. The probability that the system goes from matching µx ∈ M to µy ∈ M
under level-2 foresight, when |L2,µx| > 0, is P2(µy|µx) =

1
|L2,µx |

∑
i∈L2,µx

Iiµxµy,2

Diµx,2
.

If now |L2,µx| = 0, P2(µx|µx) = 1 and P2(µy|µx) = 0, for all µy ̸= µx.
In previous equations and definitions, I have described how the evolution of the marriage
market can be calculated under levels 1 and 2 foresight. If the evolution of the marriage
market needs to be described for some higher levels of foresight, then this depends on
the probabilities under lower levels of foresight that ultimately depend on the utilities
each player has over the opposite partners. The calculations under level-1 and level-2
foresight have been given in the first part of this section. The calculations for higher
levels of foresight are done in the same manner as for level-2 foresight while assuming
that necessary parameters under lower levels of foresight are known. Therefore, when
giving the equations and definitions for general levels of K in this last part, I assume that
the necessary parameters belonging to lower levels of foresight are known.

Definition 4.11. Let K ≥ 2. The deviation µx →S µy is a stochastic level-K deviation
for player i ∈ S if Viµy ,K > U i(µx(i)).

Definition 4.12. Let K ≥ 2. The deviation µx →S µy is a stochastic level-K deviation
if, for every player in S, it is a level-K deviation.

Knowing which deviations exist under level-K − 1 foresight, players in the marriage
market can determine their utility of a deviation under level-K foresight. I give the
formula for expected utility in Equation 4.13.

Equation 4.13. The expected utility that player i ∈ N gets when the system evolves to
µy ∈ M under level-K foresight is Viµy ,K =

∑
µℓ∈M PK−1(µℓ|µy) ∗ Viµℓ,K−1.

Now, knowing what stochastic level-K deviations exist by each player in matching
µx ∈ M, the parameters Iiµxµy ,K , LK,µx and Diµx,K can be calculated for every i ∈ N .
Iiµxµy ,K can be calculated for each µy ∈ M for which µy ̸= µx. These parameters are
necessary to calculate the probability PK(µy|µx) that the system moves from µx to every
µy ∈ M under level-K foresight. I present this probability in Equation 4.14.
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Equation 4.14. The probability that the system goes from matching µx ∈ M to µy ∈ M
under level-K foresight, when |LK,µx| > 0, is PK(µy|µx) =

1
|LK,µx |

∑
i∈LK,µx

Iiµxµy,K

Diµx,K
.

If now |LK,µx| = 0, PK(µx|µx) = 1 and PK(µy|µx) = 0, for all µy ̸= µx.
In Section 4.2.3, I intuitively explained the concept of k-fold iterations under the assump-
tion of stochasticity, after having described deviations for any level of foresight in that
section. Consequently, I described stable sets that need to meet stochastic iterated exter-
nal stability, stochastic deterrence of external deviations, and the minimality condition.
The formal definition of the level-K stochastically stable set is given in the next Definition
4.15.

Definition 4.15. Let K ∈ N. The collection MK ⊆ M is a level-K stochastically stable
set if it satisfies the following three conditions:

1. Stochastic deterrence of external deviations: for all µx ∈ MK :
∑

µy∈MK
PK(µy|µx) =

1.

2. Stochastic iterated external stability: for all µx /∈ MK , there exists a k ∈ N
and µy ∈ MK , such that P k

K(µy|µx) > 0.

3. Minimality: there is no proper subset M ⊆ MK satisfying conditions 1 and 2.

Last, I give the formal definition of a stochastic level-K cycle in Definition 4.16.

Definition 4.16. Let K ∈ N. The non-empty set M ⊆ M is a stochastic level-K cycle
if it is a minimal set satisfying stochastic deterrence of external deviations.

4.3 Example on stochastic set-up

Now the entire stochastic set-up has been defined, I give an example of the advantage
of employing the stochastic set-up. I do so in the next Example 4.17. The set-up is
compared to the optimistic set-up of Example 2.14 where I show that for K = 3 the
level-K stable set equals M such that nothing can be concluded about the outcome of the
marriage market problem. In the example next, it is shown that assuming stochasticity
reduces the size of the level-K stable set significantly when comparing it to the optimistic
set-up when K = 3.

Example 4.17. In this example, I consider the same marriage market that has been used
previously. I assume that the utilities are decreasing in equal steps over the preferences.
In this example, I use these utilities for making calculations and I show these utilities and
existing matchings:

m1 : Um1(w1) = 2; Um1(w2) = 1; Um1(m1) = 0

m2 : Um2(w2) = 2; Um2(w1) = 1; Um2(m2) = 0

w1 : Uw1(m2) = 2; Uw1(m1) = 1; Uw1(w1) = 0

w2 : Uw2(m1) = 2; Uw2(m2) = 1; Uw2(w2) = 0

39



m1

m2

w1

w2

µ1

m1

m2

w1

w2

µ2

m1

m2

w1

w2

µ3

m1

m2

w1

w2

µ4

m1

m2

w1

w2

µ5

m1

m2

w1

w2

µ6

m1

m2

w1

w2

µ7

For each player i ∈ N and for each matching µ ∈ M, the expected utility of a level-1
deviation to µ is Vi,µ1, which is just the utility that i gets from the partner he is matched
with in µ. Hence, I can write these in a matrix V1 in which the first row represents m1,
the second row m2, the third row w1, and the fourth row w2. Then, for j = 1, 2, ..., 7 the
j’th column represents matching µj in M. Hence, by observing which partner each player
is matched with, in each matching, this matrix can be derived as follows:

0 2 1 0 0 2 1
0 0 0 2 1 2 1
0 1 0 0 2 1 2
0 0 2 1 0 1 2


The matrix P1 that describes the probabilities of the evolution of the system has been
derived in Example 4.2 and is shown below:

0 0.25 0.25 0.25 0.25 0 0
0 0 0 0 0.50 0.50 0
0 0.50 0 0 0 0 0.50
0 0 0.50 0 0 0.50 0
0 0 0 0.50 0 0 0.50
0 0 0 0 0 1 0
0 0 0 0 0 0 1


In Example 2.14, I did not derive Vi,µ2 for each i and each µ. Because these utilities are
used in this exercise for the calculation of P3 according to the method presented, I derive
these utilities in the next paragraph.
From matchings µ6 and µ7 no level-1 deviations exist. Hence, a level-2 deviation to one of
these matchings results in a utility that is equal to the utility obtained in each respective
matching for each player. Now, from µ1, under level-1 foresight, the system goes to some
matching in {µ2, µ3, µ4, µ5}, each with equal probability. For each player, it holds that it
has a matching in this set with utility 2, a matching with utility 1, and 2 matchings with
utility 0. Hence, for each i, the expected utility of a deviation to µ1 is 0.75.
Now in µ2, the system evolves to µ5 with a probability of 0.5 and to µ6 with a probability of
0.5. Hence, form1, a level-2 deviation to µ2 results in an expected utility of 0.5∗0+0.5∗2 =
1. For m2, this results in an expected utility of 0.5 ∗ 1+ 0.5 ∗ 2 = 1.5. For w1, this results
in an expected utility of 0.5 ∗ 2 + 0.5 ∗ 1 = 1.5. For w2, this results in an expected utility
of 0.5∗0+0.5∗1 = 0.5. Hence, the second column of the matrix representing the utilities
under level-2 foresight is [1, 1.5, 1.5, 0.5]′. Now, by symmetry, I can construct the columns
for µ3, µ4, µ5, resulting in the following matrix V2:
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
0.75 1 1.5 1.5 0.5 2 1
0.75 1.5 0.5 1 1.5 2 1
0.75 1.5 1.5 0.5 1 1 2
0.75 0.5 1 1.5 1.5 1 2


The matrix P2 that describes the probabilities of the evolution of the system has been
derived in Example 4.3. Because this matrix was derived under the assumption of utilities
decreasing in equal steps over the preferences, P2 must be the same as in Example 4.3. I
show P2 again below: 

0 0.25 0.25 0.25 0.25 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1


In Example 2.14, I showed that the level-1 and level-2 optimistically stable sets are:
{µ6, µ7}, while the level-K stable set for K = 3 is M. In the stochastic setting, it holds
for both matrices P1 and P2 that the probabilities of being in states {µ1, µ2, µ3, µ4, µ5}
goes to zero if n goes to infinity when considering P n

1 and P n
2 , irrespective of the starting

matching. In matchings µ6 and µ7, the probability that the system leaves these matchings
is zero. Therefore, both must be in the level-1 and level-2 stochastically stable set and so
both sets equal {µ6, µ7}.
Now, I consider K = 3 in the stochastic setting, and I derive the utilities following a
deviation for each player in each matching and P3.
From matching µ1, under level-2 foresight, the system moves to a matching in {µ2, µ3, µ4, µ5},
each with equal probability. Looking at the utilities in the matrix following a level-2 devi-
ation, a level-3 deviation to µ1 results in an expected utility of 0.25∗(1+1.5+1.5+0.5) =
1.125 for each player.
From µ2, under level-2 foresight, the system evolves to µ6 with probability 1. Hence, for
each player, a level-3 deviation to µ2 is just the utility he gets from the partner he is
matched to in µ6. For µ4 it also holds that the system evolves to µ6 with probability
1; hence, the same utilities can be attached to a level-3 deviation to µ4 as for a level-2
deviation to µ2.
From µ3, under level-2 foresight, the system evolves to µ7 with probability 1. Hence, for
each player, a level-3 deviation to µ3 is just the utility he gets from the partner he is
matched to in µ7. For µ5 it also holds that the system evolves to µ7 with probability
1; hence, the same utilities can be attached to a level-3 deviation to µ5 as for a level-2
deviation to µ3.
From µ6, under level-2 foresight, the system stays in µ6 with probability 1. Hence, for
each player, a level-3 deviation to µ6 is just the utility he gets from the partner he is
matched to in µ6.
From µ7, under level-2 foresight, the system stays in µ7 with probability 1. Hence, for
each player, a level-3 deviation to µ7 is just the utility he gets from the partner he is
matched to in µ7.
Taking all these utilities together, I can construct the following matrix V3 of expected
utilities under level-3 foresight:
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
1.125 2 1 2 1 2 1
1.125 2 1 2 1 2 1
1.125 1 2 1 2 1 2
1.125 1 2 1 2 1 2


Now, I check the probabilities of the system’s evolution under level-3 foresight in other
matchings in the marriage market. In µ1, each player has two deviations to a matching
in {µ2, µ3, µ4, µ5}. By the symmetry involved here, each matching in {µ2, µ3, µ4, µ5} has
probability equal to 0.25 to be reached from µ1 under level-3 foresight.
In µ2, under level-3 foresight, player m1 has his most preferred partner, while w1 could
deviate to µ1 by breaking (m1,w1). As can be seen, deviating to µ1 results in a higher
expected utility than obtained in µ2 for w1. Hence, this is a stochastic level-3 deviation
for w1. She could also deviate by matching m2, resulting in µ5. A stochastic level-3
deviation to µ5 results in a higher expected utility for both and hence µ2 →{m2,w1} µ5 is
a stochastic level-3 deviation. In µ2, player m2 could also propose to w2, resulting in µ6.
For both, this results in a higher expected utility as seen in the matrix; hence, this is also
a stochastic level-3 deviation. Taking all these deviations together, player m1 could make
the system evolve to µ5 and µ6, player w1 could make the system evolve to µ1 and µ5, and
w2 could make the system evolve to µ6 only. Hence, P3(µ1|µ2) = 0.17, P3(µ5|µ2) = 0.33
and P3(µ6|µ2) = 0.5. By symmetry, I can now also derive the probabilities for stochastic
level-3 deviations from µ3, µ4 and µ5.
Now in µ6, player w1 could deviate to µ4 by breaking (m1, w1). The expected utility
of a level-3 deviation to µ4 equals 1 which is equal to the utility obtained by w1 in µ6.
Consequently, this is not a stochastic level-3 deviation for w1. By symmetry, w2 does
neither consider deviating from µ6, while m1 and m2 do not consider deviating from µ7.
Hence, P3(µ6|µ6) = 1 and P3(µ7|µ7) = 1.
Taking all these probabilities together, I can construct the following probability matrix
P3. 

0 0.25 0.25 0.25 0.25 0 0
0.17 0 0 0 0.33 0.50 0
0.17 0.33 0 0 0 0 0.50
0.17 0 0.33 0 0 0.50 0
0.17 0 0 0.33 0 0 0.50
0 0 0 0 0 1 0
0 0 0 0 0 0 1


As can be seen from P3, the level-3 stochastically stable set equals {µ6, µ7}. ▲

Through Example 4.17, it has been shown that the level-3 stable set reduces signifi-
cantly in size compared to the stable set from Example 2.14. As a consequence, it can
be concluded what the probable matchings are as a result of the marriage market. Fur-
thermore, probabilities can be attached to each of these matchings. The reason that the
level-3 stable set is smaller in Example 2.14 is that players are less optimistic about their
chances of improvement. In the optimistic set-up, players always deviate when an im-
proving path is existent, while in the stochastic set-up, players only do so when there is an
expected improvement. In Example 4.17, this has become clear by the fact that stochastic
level-3 deviations do not exist in matchings in the level-3 stochastically stable set {µ6, µ7}
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because players observe that this may not necessarily lead to a utility increase. However,
in the optimistic set-up, deviations exist in {µ6, µ7} because there exists a path to a better
matching for the deviators.
Having obtained P3 in Example 4.17, it can be seen that P3 ̸= P2 ̸= P1. However, if
a probability matrix belonging to a certain level of foresight equals another probability
matrix belonging to a different level of foresight, the question could be raised whether
there exists a pattern in the matrices.
In general settings, the matrix PK depends on existing stochastic level-K deviations in
all matchings by all players in the system. These do depend on the utilities that each
player gets from a specific deviation under level-K foresight and on the utility obtained
from the matching that is deviated from. In Equation 4.13, the formula is given for the
expected utility of a stochastic deviation under level-K foresight.
Under level-4 foresight, the expected utility of a stochastic deviation to µy for player
i is Viµy ,4 =

∑
µℓ∈M P3(µℓ|µy)Viµy ,3. The expected utility of a stochastic level-2 devi-

ation to the same matching for i is Viµy ,2 =
∑

µℓ∈M P1(µℓ|µy)Viµy ,1. If now P1 = P3,
P1(µℓ|µy) = P3(µℓ|µy), for all possible pairs of µℓ, µy in M. However, that does not auto-
matically imply that Viµy ,4 = Viµy ,2, for all µy ∈ M because then Viµy ,1 must equal Viµy ,3

for all µy ∈ M. In other words, there may exist instances of marriage market problems
where P1 = P3, but where Viµy ,3 is not equal to Viµy ,1, for all i ∈ N and for all µy ∈ M.
Stochastic level-K deviations depend on this expected utility and if all these utilities are
exactly the same for different levels of foresight, only then it can be concluded that the
probability matrix is the same for different levels of foresight.

4.4 Results stochastic marriage market

Now all definitions have been given in the context of a stochastic evolution of the marriage
market, I am ready to present the results in the context of stochastic level-K deviations.
Throughout this section, I make use of the fact that level-1 deviations are equivalent to
stochastic level-1 deviations. Namely, if a level-1 deviation by player i ∈ N exists in some
matching µ ∈ M to µ′ ∈ M, then it must hold that player i gets a more preferred partner
in µ′ and so µ′(i) ≻i µ(i). This is equivalent with U i(µ′(i)) > U i(µ(i)). Therefore, if going
from µ to µ′ is a level-1 deviation, then this must also be a stochastic level-1 deviation and
vice versa, while µ′ ∈ f1(µ) and P1(µ

′|µ) > 0. Consequently, the level-1 stable set must
equal the level-1 stochastically stable set. Both properties are formalised in the following
two lemmas.

Lemma 4.18. Going from µ →S µ′ is a level-1 deviation if and only if µ →S µ′ is a
stochastic level-1 deviation.

Lemma 4.19. The level-1 stochastically stable set is equal to the level-1 stable set.

In Example 4.3, it has been shown that an optimistic level-2 deviation does not need
to be a stochastic level-2 deviation and therefore Lemma 4.18 does generally not hold for
K > 1. However, in Example 4.3, it is the case that all stochastic level-2 deviations are
also optimistic level-2 deviations. This raises the question of whether this property holds
in general. In the next proofs, I show that each stochastic level-2 deviation must also be
an optimistic level-2 deviation. I do so by giving a proof in Theorem 4.20. However, this
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property does not hold for general K, which is shown through a counterexample in Ex-
ample 4.22. In this counterexample, however, I assume that players can have preferences
over matchings and not necessarily over players, which I need to give the counterexample.

Theorem 4.20. If µ2 →S µ1 is a stochastic level-2 deviation, then it must also be an
optimistic level-2 deviation.

Proof. Let’s assume that there exists a stochastic level-2 deviation µ2 →S µ1 that is not
an optimistic level-2 deviation, and |S| ∈ {1, 2}. Now, all players in S deviate to µ1,
and thus, for all players in S, it must hold that their expected utility in µ1 following an
optimistic level-2 deviation to µ1 is higher than their utility in µ2. Hence, for all i ∈ S
Viµ1,2 > U i(µ2(i)), which is equivalent with

∑
µ0∈M P1(µ0|µ1)∗U i(µ0(i)) > U i(µ2(i)). Now

there are two situations to consider following the stochastic level-2 deviation to µ1:
Situation 1 : no more stochastic level-1 deviations exist from µ1 and hence no more op-
timistic level-1 deviations exist. In that case P1(µ1|µ1) = 1. Now to let this be a valid
stochastic level-2 deviation, it must hold for all i ∈ S that Viµ1,2 = U i(µ1(i))∗P1(µ1|µ1) =
U i(µ1(i)) > U i(µ2(i)), equivalent with µ1(i) ≻i µ2(i). However, this leads to a contradic-
tion because I assumed that µ2 →S µ1 is not an optimistic level-2 deviation.
Situation 2 : there exists at least one stochastic level-1 deviation in µ1. Now, following
the definition of a stochastic level-2 deviation, for all i ∈ S, Viµ1,2 =

∑
µ0∈M P1(µ0|µ1) ∗

U i(µ0(i)) > U i(µ2(i)). Because µ2 →S µ1 is not an optimistic level-2 deviation, it must
hold that there does not exist for each i ∈ S a matching µ0 such that µ0 ∈ f1(µ1) and
µ0(i) ≻i µ2(i). Now I know that stochastic level-1 deviations are also always optimistic
level-1 deviations, meaning that if P1(µ0|µ1) > 0, it must be that µ0 ∈ f1(µ1). Now for
each matching µ0 ∈ M for which P1(µ0|µ1) > 0 it must be that for at least one player
i ∈ S: U i(µ0(i)) ≤ U i(µ2(i)). Namely, if this does not hold, then µ2 →S µ1 is an op-
timistic level-2 deviation because then, for all i ∈ S, there would exist a µ0 ∈ f1(µ1)
with µ1 ∈ f2(µ2) and µ0(i) ≻i µ2(i). However, this leads to a contradiction because now∑

µ0∈M P1(µ0|µ1) ∗ U i(µ0(i)) ≤ U i(µ2(i)) for at least one i because for all µ0 for which

it holds that P (µ0|µ1) > 0, it holds U i(µ0(i)) ≤ U i(µ2(i)). Therefore, this cannot be
a stochastic level-2 deviation for i if this is not an optimistic level-2 deviation and thus
leads to a contradiction with the assumption that µ2 →S µ1 is not an optimistic level-2
deviation.
Now it can be concluded that each stochastic level-2 deviation must also be an optimistic
level-2 deviation because assuming the existence of a stochastic level-2 deviation that is
not an optimistic level-2 deviation leads in each case to a contradiction.

Through previous theorem, it has been shown that a stochastic level-2 deviation from
matching µ to some µ′ can only be a stochastic level-2 deviation if this is also an optimistic
level-2 deviation. This raises the question of what consequences this has for the relation
of the level-2 optimistically stable set and the level-2 stochastically stable set.
By Theorem 3.2 I know that the level-2 optimistically stable set equals the union of
optimistic level-2 cycles and that the level-2 stochastically stable set equals the union of
stochastic level-2 cycles. I show only cycles can exist that satisfy certain requirements
with respect to these stable sets. I name Λ2 the level-2 optimistically stable set and X2

the level-2 stochastically stable set.
Let CΛ,2 be the set containing all optimistic level-2 cycles as elements such that CΛ,2 =
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{C|C is a cycle in Λ2}. Also, let CX,2 be the set containing all stochastic level-2 cycles as
elements such that CX,2 = {C|C is a cycle in X2}.
I refer to CΛ,ℓ,2 as an optimistic level-2 cycle and to CX,ℓ,2 as a stochastic level-2 cycle.
In Figure 1, I refer to 5 different types of stochastic and optimistic level-2 cycles. Cycles
1 and 2 refer to an optimistic level-2 cycle, 3 and 4 refer to a stochastic level-2 cycle and
5 refers to a cycle that is both an optimistic level-2 cycle and a stochastic level-2 cycle.
These numbers match the indices given to the cycles in Figure 1. The proof shows that
the red cycles in the figure cannot exist and that the union of the level-2 optimistically
stable set and the level-2 stochastically stable must therefore be equal to the cycles given
the black colour in the figure. For completeness, cycles for which no evidence exists that
they cannot occur are also shown in the proof.

Λ2 X2

CΛ,1,2 C5,2

CΛ,2,2 CX,3,2

CX,4,2

Figure 1: Cycles in the level-2 optimistically stable set ΛK and the level-2 stochastically
stable set XK . The indices are equivalent to what has been described. Red cycles cannot
exist.

Theorem 4.21. Λ2

⋃
X2 = (CΛ,2)

⋃
(CX,2):

(i) For all C ∈ CΛ,2: C
⋂

X2 ̸= ∅.

(ii) For all C ∈ CX,2: C
⋂

Λ2 = ∅ or C
⋂
Λ2 = C.

Proof. I consider the five situations that a cycle C2 ⊆ M that is an optimistic level-2 cycle
and/ or a stochastic level-2 cycle can be in with respect to Λ2 and X2. Situations 1 and 2
refer to an optimistic level-2 cycle, 3 and 4 refer to a stochastic level-2 cycle and 5 refers
to a cycle that is both an optimistic level-2 cycle and a stochastic level-2 cycle.
Situation 1 : CΛ,ℓ,2

⋂
X2 = ∅. This is impossible because from CΛ,ℓ,2 the other set X2

cannot be reached by a finite number of optimistic level-2 deviations and therefore neither
by a finite number of stochastic level-2 deviations, which is known from Theorem 4.20
Hence, in this situation, X2 cannot satisfy stochastic iterated external stability.
Situation 2 : CΛ,ℓ,2

⋂
X2 ̸= ∅. Now, while staying within this cycle, it is possible to go

by sequential stochastic level-2 deviations from an element in Λ2 \X2 to elements in X2.
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However, once in X2, it is impossible to go back to Λ2 \X2 by stochastic level-2 deviations
because of the stochastic iterated external stability of X2. However, it is still possible to
go back to Λ2 \ X2 by optimistic level-2 deviations. Considering that optimistic level-2
deviations are a relaxation of the stochastic level-2 deviation, this does not contradict any
property of the results so far.
Situation 3 : CX,ℓ,2

⋂
Λ2 ̸= ∅. This is impossible because, while staying in CX,ℓ,2, X2 \ Λ2

can be reached by sequential stochastic level-2 deviations from CX,ℓ,2

⋂
Λ2. Stochastic

level-K deviations are also optimistic level-2 deviations and therefore Λ2 does not satisfy
deterrence of external deviations which makes this situation contradictory.
Situation 4 : CX,ℓ,2

⋂
Λ2 = ∅. In this situation, Λ2 \ X2 may be reached from CX,ℓ,2 by

optimistic level-2 deviations but not by stochastic level-2 deviations, to satisfy the iterated
external stability of Λ2. Considering that stochastic level-2 deviations are a restriction of
the optimistic level-2 deviations, this does not contradict any property of the results so
far.
Situation 5 : CX,ℓ,2 = CΛ,ℓ,2. In this situation, the cycle is both an optimistic level-2 and a
stochastic level-2 cycle. This means that the cycle satisfies both stochastic and optimistic
deterrence of external deviations, which is not contradictory to any result so far.
Hence, considering all these five situations, optimistic level-2 cycles cannot have an empty
intersection withX2 and the intersection of stochastic level-2 cycles with Λ2 must be empty
or equal to the stochastic level-2 cycle. Therefore, the union of the level-2 optimistically
stable set and the level-2 stochastically stable set is equal to the union of stochastic
level-2 cycles and optimistic level-2 cycles with a nonempty intersection with the level-2
stochastically stable set. In Figure 1, I graphically depict which cycles can exist and
which cannot, visualising the result.

In Figure 1, X2 must satisfy stochastic iterated external stability, also from X2 \
CΛ,2,2. CΛ,2,2 and C5,2 are cycles meaning that C5,2 cannot be reached by optimistic level-2
deviations and thus not by stochastic level-2 deviations from CΛ,2,2. Now by the deterrence
of external deviations of CΛ,2,2, cycle CXK ,4,2 cannot be reached from CΛ,2,2 by stochastic
or optimistic level-2 deviations. Now to satisfy the stochastic iterated external stability
for X2 from CΛ,2,2 \X2, the only possibility is sequential stochastic level-2 deviations from
CΛ,2,2 \X2 to CΛ,2,2

⋂
X2.

The result in Theorem 4.21 is based on the property that, if some deviation from µ to µ′ is
not an optimistic level-2 deviation, then it can also not be a stochastic level-2 deviation by
Theorem 4.20. Hence, this result is a consequence of the restriction on the optimistic level-
2 deviation and must hold for all settings in which the optimistic deviations are restricted.
In the stochastic set-up, I have shown that this restriction holds for K = 2. Nonetheless,
it is not sure whether this result holds for general K. The reason why this may not hold
for general K is that, in each matching, at least as many optimistic level-2 deviations
exist as stochastic level-2 deviations. Consequently, one could think of an example with a
deviation from µ3 to µ2 under level-3 foresight in which all optimistic induced deviations
lead to a deterioration for at least one deviator, while no stochastic level-2 deviations
exist in µ2 and all deviators have a more preferred partner in µ2 compared to µ3.
In Example 4.22, I show that the result of Theorem 4.20 does not hold under the additional
assumption that there may exist players that have preferences over matchings instead of
over partners. This additional assumption has not been made anywhere else in this paper.
Hence, the game considered in Example 4.22 is different from the games considered so

46



far. However, as previously, the rules for forming and deleting links and the rule that
each player is allocated at most one partner of the opposite sex or is single still hold in
the next example.

Example 4.22. In this counterexample, I show that there may exist stochastic level-3
deviations that are not optimistic level-3 deviations. I show this under the assumption
that players in the marriage market may have preferences over matchings instead of over
partners. In other words, the utility of at least one player i ∈ N in all matchings µ ∈ M
may be affected by not only the player he is matched with but also by links formed by
other players in N \ {i, µ(i)}.
In this specific example with N = {m1,m2,m3, w1, w2, w3}, I assume that only the utilities
of m2 and w1 are affected by links formed by other players. For players in N \ {m2, w1},
I consider the following utilities that are independent of links formed by other players:

m1 : Um1(w1) = 3; Um1(w3) = 2; Um1(w2) = −10; Um1(m1) = −11

m3 : Um3(w2) = 3; Um3(m3) = 2; Um3(w1) = −10; Um3(w3) = −11

w2 : Uw2(m2) = 3; Uw2(m1) = 2; Uw2(m3) = −10; Uw2(w2) = −11

w3 : Uw3(w3) = 3; Uw3(m1) = 2; Uw3(m2) = −10; Uw3(m3) = −11

For player m2, I say that the utility he gets from a matching depends on whether m1 is
also matched. When m1 is matched, I write the utility of player m2 being matched to
player i ∈ N \ (M \ {m2}) as Um2

+ (i) and when m2 is unmatched as Um2
− (i). So, when m1

is matched, I consider the following utilities for m2:

m2 : Um2
+ (w1) = 3; Um2

+ (w2) = 2; Um2
+ (w3) = −10; Um2

+ (m2) = −11

When m1 is unmatched, I reduce each utility by 5. I keep the same order as previously.
Hence, the following utilities are considered for m2:

m2 : Um2
− (w1) = −2; Um2

− (w2) = −3; Um2
− (w3) = −15; Um2

− (m2) = −16

Clearly, now m2 has the incentive to make sure that m1 does not end up single.
For player w1, I say that the utility she gets from a matching depends on whether m1

and m2 are also matched. When m1 are both matched, I write the utility of player w1

being matched to player i ∈ N \ (W \ {w1}) as Uw1
+ (i) and when both or one player in

{m1,m2} are unmatched as Uw1
− (i). So, when both m1 and m2 are matched, I consider

the following utilities for w1:

w1 : Uw1
+ (m2) = 3; Uw1

+ (m1) = 2; Uw1
+ (m3) = −10; Uw1

+ (w1) = −11

When either m1 or m2 is unmatched or when both are unmatched, I reduce each utility
by 5. I keep the same order as previously. Hence, the following utilities are considered
for w1:

w1 : Uw1
− (m2) = −2; Uw1

− (m1) = −3; Uw1
− (m3) = −15; Uw1

− (w1) = −16
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Clearly, now w1 has the incentive to make sure that m1 and m2 do not end up single.
Now, I consider the deviation from µ3 to µ2 under level-3 foresight by players m1 and
w1, such that players have level-2 foresight in matching µ2. I show that this deviation is
a stochastic level-3 deviation for both players but not an optimistic level-3 deviation for
m1.

m1

w1

m2

w2

m3

w3

µ3

→

m1

w1

m2

w2

m3

w3

µ2

I consider the optimistic setting first. In matching µ2, under level-2 foresight, players m1,
w2, and w3 have their best-preferred partner, such that they cannot deviate and will not
accept any proposal. Hence, I consider possible deviations by the remaining players.
Player m2 could deviate by matching w1. Under level-1 foresight in µ2 + (m2, w1), when
both m1 and w2 are single, the formation of a link between them is a level-1 deviation
for both of them. Hence, proposing to w1 from µ2 is an optimistic level-2 deviation for
m2 because m2 can await the formation of this link such that he ends up with his most
preferred partner w1, while he meets the condition that m1 is also matched in the induced
matching. Player m2 cannot deviate in µ2 by becoming single since no induced level-1
deviations from µ2 − (m2, w2) result in a matching where he is matched to w1, while m1

is also matched. Only such a matching would mean an improvement for m2 compared to
µ2.
Player m3 could now only deviate by proposing to w1. However, w1 could only improve
with respect to µ2 by being matched with m2, while m1 and m2 are also matched. No
induced matching from µ2 + (m3, w1) results in a such a matching, meaning forming
(m3, w1) is not an optimistic level-2 deviation for w1.
As explained, player w1 can not deviate in µ2 by matchingm3. If she deviates by matching
m2, then she prefers that more under the condition that m1 can be matched in an induced
deviation. Under level-1 foresight, when bothm1 and w2 are single, the formation of a link
is a level-1 deviation for both of them. Hence, proposing to m2 from µ2 is an optimistic
level-2 deviation for w1. w1 cannot become single under level-2 foresight from µ2. Namely,
to improve with respect to µ2, w1 should be matched to m2 while m1 should be matched
as well but no induced level-1 deviations exist from µ2 − (m1, w1) meeting these criteria.
Having considered all induced optimistic level-2 deviations from µ2, it can be concluded
that the system evolves to the matching µ1 = µ2 + (m2, w1), as shown below:

m1

w1

m2

w2

m3

w3

µ1

In µ1, under level-1 foresight, player m2 cannot deviate such that m1 is also matched.
Under the condition that m1 is unmatched, being matched to w1 is his best preferred
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and he can therefore not deviate. Also, player w1 cannot deviate such that a matching is
created in which both m1 and m2 are matched which would be necessary to improve on
µ1. Hence, w1 can neither deviate from µ1. Player w3 has her best-preferred option in µ1

and will therefore also not deviate.
Player m1 can deviate by matching w2, resulting in an improvement for both. Player w2

can deviate by matching either m1 or m3, while m3 can only deviate by matching w2.
To conclude the optimistic setting, the induced path of the optimistic level-3 deviation
µ3 → µ2 ends with either µ1 + (m1, w2) or µ1 + (m3, w2). Both of these matchings result
in a less preferred partner for m1 and therefore, µ3 → µ2 is not an optimistic level-3
deviation for m1.

Having concluded that µ3 → µ2 is not an optimistic level-3 deviation for m1, I check
whether it is a stochastic level-3 deviation for both m1 and w1.
As in the optimistic setting, in µ2, m1, w2, and w3 all have their best-preferred partner,
meaning no proposals or acceptances are to be expected by these players.
In µ2, player m2 could propose to w1. If accepted by w1, we end up in µ1 = µ2+(m2, w1)
again. Next, I check all possible deviations in µ1.
In µ1, under level-1 foresight, player m2 cannot deviate such that m1 is also matched.
Under the condition that m1 is unmatched, being matched to w1 is his best preferred
and he can therefore not deviate. Also, player w1 cannot deviate such that a matching
is created in which both m1 and m2 are matched which would be necessary to improve
on µ1. Hence, w1 can neither deviate from µ1. Player w3 has her best-preferred option
in µ1 and will therefore also not deviate. In µ1, player m1 can deviate by matching w2,
resulting in an improvement for both. Player w2 can deviate by matching either m1 or
m3, while m3 can only deviate by matching w2. Hence, the induced path of the optimistic
level-3 deviation µ3 → µ2 ends with either µ1 + (m1, w2) or µ1 + (m3, w2). Both have a
50 % probability of being reached from µ1. The first has a utility of 3 for m2 and the
second a utility of -2. Consequently, the expected utility of this deviation is 0.5 which is
less than m2’s utility in µ2. Therefore, deviating from µ2 to µ1 is not a stochastic level-2
deviation for m2.
Player m2 can also not deviate in µ2 by becoming single since any induced level-1 devia-
tions from µ2− (m2, w2) do not result in a matching where he is matched to w1, while m1

is also matched. Only such a matching would mean an improvement for m2 compared to
µ2.
Now player w1 cannot match m2 from µ2 because m2 would not accept that proposal and
can also not deviate by becoming single. Namely, to improve with respect to µ2, w1 should
be matched to m2 and m1 must be matched as well but no induced level-1 deviations exist
from µ2 − (m1, w1) meeting these criteria. Neither can w1 match m3 because no level-1
deviation exists from the resulting matching in which w1 is matched to m2, while m1 is
also matched. Consequently, m3 can not propose to w1 from µ2.
Now it can be concluded that there exist no stochastic level-2 deviations from µ2 and
that therefore µ2 is level-2 stochastically stable. Hence, for both m1 and w1, the expected
utility of a stochastic level-3 deviation from µ3 to µ2 is just the expected utility obtained
in µ2. µ2 is a matching with a higher utility for both players and therefore deviating from
µ3 to µ2 is a stochastic level-3 deviation for both players.
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Now it can be concluded that µ3 → µ2 is a stochastic level-3 deviation for both m1 and
w1, while it is not an optimistic level-3 deviation for both players, under the assumption
that players can have preferences matchings instead of over partners. ▲

Now it has been shown that stochastic level-K deviations do not necessarily need to
be optimistic level-K deviations in a framework where players may have preferences over
matchings instead of over players, I illustrate why the marriage market set-up complicates
the construction of a counterexample in which a stochastic deviation is not an optimistic
deviation in Example 4.23. In this example, players are not allowed anymore to have
preferences over matchings instead of over players as in Example 4.22. A counterexample
without players having preferences over matchings or proof that stochastic level-K de-
viations must always be optimistic level-K deviations for any K > 0 is suggested to be
presented in future research.

Example 4.23. In this example, I discuss problems in the search for a counterexample of
a deviation that is a stochastic deviation but not an optimistic deviation under a certain
level of foresight. I do so by intuitively describing the complications.
I consider a game with N = {m1,m2,m3, w1, w2, w3} and I define the utilities as in
Example 4.22, while players m2 and w1 no longer have preferences over matchings but
over players as has been assumed in the whole paper except for Example 4.22. To that
purpose, the utilities that were reduced by -5 are discarded for m2 and w1. Later in the
example, I change part of these utilities in the example when describing the complications.
The following utilities are considered:

m1 : Um1(w1) = 3; Um1(w3) = 2; Um1(w2) = −10; Um1(m1) = −11

m2 : Um2(w1) = 3; Um2(w2) = 2; Um2(w3) = −10; Um2(m2) = −11

m3 : Um3(w2) = 3; Um3(m3) = 2; Um3(w1) = −10; Um3(w3) = −11

w1 : Uw1(m2) = 3; Uw1(m1) = 2; Uw1(m3) = −10; Uw1(w1) = −11

w2 : Uw2(m2) = 3; Uw2(m1) = 2; Uw2(m3) = −10; Uw2(w2) = −11

w3 : Uw3(w3) = 3; Uw3(m1) = 2; Uw3(m2) = −10; Uw3(m3) = −11

m1

w1

m2

w2

m3

w3

µ3

→

m1

w1

m2

w2

m3

w3

µ2

As explained, the purpose is to construct an instance that is not an optimistic deviation
for at least one player but is still a stochastic deviation for both players. Considering
µ3 → µ2, all induced paths must lead to a deterioration or to the same partner for m1

compared to µ2. Additionally, under stochasticity for m1, the deviation to µ2 must result
in a higher expected utility for m1 than his utility obtained in µ3. This could be achieved
by, for example, making w1 not considering any deviations from µ2 under stochasticity
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because she fears becoming single.
Say that in this example, µ3 → µ2 should not be an optimistic level-3 deviation for m1.
Player w1 could match m2 from µ2, which is a stochastic and optimistic level-2 deviation
for both because they prefer each other the most. In µ2, under level-2 foresight, player w1

could also unmatch m1 first with the purpose of matching m2 from µ2 − (m1, w1), under
level-1 foresight. This can be, however, a path foreseen by player m1, such that matching
w1 from µ3 is a level-3 deviation for him. Furthermore, such an induced path can be
created under any level-K foresight in µ3, where K is odd, because w1 can unmatch m1

aiming to match m2 subsequently but then, when single, she can match m1 again. This
is independent of any other existing deviations by players in N \ {m1, w1}. This problem
can arise in any such a situation, in which w1 prefers m1 over being single and m1 prefers
w1 the most, while w1 has a deviation to match someone else. Namely, unmatching m1

(under an even number of foresight) will always be a deviation for w1 and forming (m1, w1)
again will always be a deviation for both (under an odd number of foresight). Hence, we
should not end up in a matching with the link (m1, w1) existent under an even number of
foresight.
In Example 4.22, there was an extra incentive for w1 to have m1 also matched. There-
fore, in µ2, under level-2 foresight, w1 would not consider becoming single because from
µ2 − (m1, w1) no level-1 deviations exist that increase w1’s utility with respect to µ3.
From µ2 − (m1, w1), w1 could only improve by matching m2 (with m1 left single) and by
matching m1, while both deviations result in less utility for w1 compared to µ3. Hence,
to prevent forming and deleting (m1, w1) repeatedly it was necessary in Example 4.22 to
also let w1 have an incentive to let m1 be matched. Furthermore, also m2 needed to have
an incentive to let m1 be matched. Otherwise, he could first become single, intending to
match w1 subsequently, and thereby reduce both his and w1’s utility, but then he could
form (m2, w2) again in µ2 − (m2, w2), which could be used in m1’s path when matching
w1 from µ3, such that it ends up in being an optimistic level-3 deviation for him.
Increasing the level of foresight in µ3 to 4 in this specific example would neither work.
Namely, w1 could first become single from µ2 resulting in µ2 − (m1, w1), under level-2
foresight. Subsequently, m2 could also become become single aiming to match w1 as an
induced deviation, resulting in µ2 − (m1, w1)− (m2, w2) under level-1 foresight. Now m1

and w1 could match again, such that there exists an induced path from µ3 that makes m1

end up with w1, meaning µ3 → µ2 is an optimistic level-4 deviation for him.

Irrespective of the utilities just presented, ideally, I would come up with a situation in
which w1 does not consider deviating in µ2 because she risks that she gets single which she
does not prefer at all, while all optimistic induced paths from µ2 lead to a deterioration
for m1. When reformulating utilities, as can be seen, when considering µ3 → µ2 to be
under level-K foresight, with K odd, there always exists an induced path for m1 in which
he still ends up with w1. This does not need to be the case when K is even. So when
creating an instance in which w1 risks getting single in the last matching in the induced
path, she should be left alone again by the player proposed to and then I could set the
utility of being single for w1 very low and the difference in utility of being matched with
m1 and the player she aims to be ending up with should be very low as well. However,
this results in the problem that the player she proposes to can already directly perform
that deviation before the matching is reached with the implied link with w1 and her more
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preferred partner. In other words, say w1 can propose to m3, while she risks that m3 can
propose to w3, then this deviation can also already be performed directly from µ2. Now
this deviation can be used in m1’s induced path because we end up in a matching with
(m1, w1) formed under level-K foresight with K even. This means that forming the link is
still an optimistic deviation for m1 because then either (m1, w1) can be repeatedly formed
or deleted, or w1 cannot improve anymore such that (m1, w1) is not deleted.
The problem of existing deviations by players in N \ {m1, w1} is more general because
deviations by external players can also be used in m1’s induced path to make us end up in
a matching with (m1, w1) formed under an even number of K. In other words, increasing
the set of players and subsequently the number deviations goes with the risk that more
induced paths exist that can be thought of by m1 such that he can end up with w1.

Now, I consider a situation in which w1 cannot become single in the optimistic set-up
under level-2 foresight because there is no path leading to an improvement. This means
that possible deviations in µ2 must be by other players and that m1 cannot use the
repeated deletion and formation of (m1, w1) in his induced path. For that purpose, I
consider the same utilities for m1 and w3, but I change the utilities for the rest of the
players compared to the initial utilities. Hence, now I consider the following utilities:

m1 : Um1(w1) = 3; Um1(w3) = 2; Um1(w2) = −10; Um1(m1) = −11

m2 : Um2(w2) = 3; Um2(w1) = 2; Um2(w3) = −10; Um2(m2) = −11

m3 : Um3(m3) = 3; Um3(w1) = 2; Um3(w2) = −10; Um3(w3) = −11

w1 : Uw1(m2) = 3; Uw1(m1) = 2; Uw1(m3) = −10; Uw1(w1) = −11

w2 : Uw2(w2) = 3; Uw2(m1) = 2; Uw2(m2) = −10; Uw2(m3) = −11

w3 : Uw3(w3) = 3; Uw3(m1) = 2; Uw3(m2) = −10; Uw3(m3) = −11

Say that we are under level-2 foresight in matching µ2, such that µ3 → µ2 is considered
to be a possible level-3 deviation. In µ2, only w1 and w2 do not have their best-preferred
partner, meaning no proposals or acceptances are to be expected by the remaining play-
ers. Now in matching µ2, w1 cannot become single, because, under level-1 foresight in
µ2 − (m1, w1), m2 would not accept a proposal by w1. This means that in µ2, only w2

can deviate by becoming single. Subsequently, in µ2− (m2, w2), the only level-1 deviation
is the formation of (m2, w1), such that m1 ends up being single. Hence, the optimistic
induced path always leads to w1 being single. However, also under stochasticity, the only
deviation in µ2 is dissolving (m2, w2) with induced deviation the formation of (m2, w1).
Hence, now the problem occurs that µ3 → µ2 is neither an optimistic level-3 deviation
nor a stochastic level-3 deviation.
One could now think of increasing the level of foresight by 1, such that in µ2, the level
of foresight equals 3. However, now an induced path for m1 occurs such that he can still
end up with w1 in the optimistic set-up. Namely, in µ2, under level-3 foresight, w1 could
unmatch m1 in expectation of w2 dissolving the link with m2. However, in µ2 − (m1, w1),
under level-2 foresight, w1 can deviate by matching m1 again, such that we are in µ2 again
under level-1 foresight. Now w1 can no longer deviate by becoming single and m1 ends
up being matched to w1.
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To conclude, when K is odd, the problem of constructing a stochastic deviation for m1

that is not an optimistic deviation resides in the fact that level-K deviations result in
an induced path that can be used by m1 such that he is matched to w1 because w1 can
repeatedly match and unmatch m1. Therefore, this can always be an optimistic devia-
tion for m1. Now when K is even, still all induced paths must lead to a non-improving
partner for m1 with optimistic players. Ideally, under stochasticity, w1 would then not
deviate because she risks getting single from that deviation. However, then there also
exists a deviation by external players that can be used in m1’s induced path that can
make deviating to µ2 an optimistic deviation for him when K is even. Last, in a situation
in which w1 needs to wait on a sole other deviation that needs to occur under level-2
foresight, while she forms a new link in the last deviation, then it is hard to come with an
instance in which the deviation would still be a stochastic deviation for m1. Namely, then
under stochasticity, all paths also lead to a worse partner for m1, such that is neither a
stochastic deviation for him. ▲

In the previous example, I have lined out some of the problems that arise in the search
for a counterexample. This is an incomplete overview and just serves an illustrative
purpose. However, when thinking of the construction of a counterexample in which the
formation of (m1, w1) is a stochastic but not an optimistic deviation for m1, one could
consider a situation in which w1 risks getting single when deviating after the formation of
(m1, w1) under stochasticity. Additionally, it must be made sure that all induced paths do
not end up in an improvement for m1. This could be made sure by allowing for the only
deviation under level-2 foresight to be that w1 matches someone else from m1, while this
should not be possible under higher levels of foresight, if a deviation under these levels
is considered. Still, w1 should then risk to end up single following her level-2 deviation.
Such a set-up would then prevent the existence of an induced path of m1 in which w1

can repeatedly match and m1 such that (m1, w1) can be an existing link in some end
matching.
In Theorem 3.6, I showed that, for any K > 0, the level-K stable set consists of the stable
matching only in the optimistic setting in α-reducible marriage markets. In the stochastic
setting, this same result holds, which is shown in Theorem 4.24. The proof is similar to
the proof in Theorem 3.6.

Theorem 4.24. Let (M,W,U) be a marriage market problem satisfying α-reducibility.
Then, for any K > 0, the level-K stochastically stable set equals the stable matching.

Proof. Consider players in S1. In the stable matching µK in the α-reducible marriage
market (M,W,U), all players in S1 have their top choice. Therefore, for all i ∈ S1 there
does not exist a µ0 ∈ M \ {µK} for which U i(µ0(i)) > U i(µK(i)). The expected utility of
some possible deviation to µK−1 ̸= µK is ViµK−1,K . Writing out the implied recursion in
this formula under level-K foresight, I get the following equation:

ViµK−1,K =
∑

µK−2∈M

PK−1(µK−2|µK−1)...
∑
µ0∈M

P1(µ0|µ1)U
i(µ0(i)) (1)

Since for all i ∈ S1 and for all µ0 ∈ M \ {µK} U i(µ0(i)) ≤ U i(µK(i)), the sum in
Equation 1 can never be larger than U i(µK(i)). Hence, there does not exist a matching
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µK−1 ∈ M \ {µK} for which this equation is strictly larger than U i(µK(i)). Therefore, in
µK and in any matching in which the player(s) in S1 are matched, for all players in S1,
no stochastic level-K deviations exist, irrespective of the level of foresight K.
Now consider players in S2. A player i in S2 could only increase his expected utility by a
deviation when there exists a positive probability that the induced path of the deviation
ends in a matching where i is matched to someone in S1. However, for all K > 0, all
players in S1 will not perform a stochastic level-K deviation from all matchings in which
they are matched. Therefore, there is not a positive probability that the deviation from
µK to a matching µK−1 ∈ M ends in a matching where i is matched to someone in S1

when all probabilities of that induced path are considered. Hence, for all µ0 ∈ M for
which U i(µ0(i)) > U i(µK(i)) for at least one i ∈ S2, the probabilities of getting to µ0

from µK is zero. Therefore, no stochastic level-K deviations exist that are also accepted
by the opposite player if it involves a link addition for any player in S2 in µK .
Now consider players in Sk, for each k ∈ {3, ..., ℓ}. A player i in Sk could only increase
his expected utility in µK by a deviation when there exists a positive probability that
the induced path of the deviation ends in a matching where i is matched to someone in
S1

⋃
...
⋃

Sk−1. However, for all K > 0, all players in S1

⋃
...
⋃
Sk−1 will not perform a

stochastic level-K deviation from all matchings in which the implied link of Sn is formed,
for each 1 ≤ n ≤ k − 1. Therefore, there is not a positive probability that the deviation
from µK to µK−1 ends in a matching where i is matched to someone in S1

⋃
...
⋃

Sk−1

when all probabilities of that induced path are considered. Hence, for all µ0 ∈ M for which
U i(µ0(i)) > U i(µK(i)) for at least one i ∈ Sk, the probabilities of getting to µ0 is zero.
Therefore, no stochastic level-K deviations exist for any player in Sk that are also ac-
cepted by the opposite player if it involves a link addition in µK . Since N = S1

⋃
...
⋃
Sℓ,

there exist no stochastic level-K deviations for any player from stable matching µK for
K > 0. Hence, µK must be in the level-K stochastically stable set to let the level-K
stochastically stable set satisfy stochastic iterated external stability. Also, from µK , no
stochastic level-K deviations exist and therefore {µK} must satisfy stochastic deterrence
of external deviations.

To show that the level-K stochastically stable set only contains the stable matching µK

in the α-reducible marriage market (M,W,U), I show that there exists a path from every
other matching µ′ ̸= µK to µK such that {µK} also satisfies stochastic iterated external
stability.
I know that µK is a singleton cycle in the level-K stochastically stable set because no
stochastic level-K deviations exist in µK . Furthermore, it is known that µ′ is unstable as
µK is the only stable matching in the marriage market. Therefore, there exists at least
one blocking pair in µ′. In fact, there exists at least one Sk in S1, ..., Sℓ in which the
players in Sk are not matched in µ′ if |Sk| = 2, or in which the player is not single in µ′

if |Sk| = 1.
Let Sk be the first in S1, ..., Sℓ for which this holds. For all players in Sk there always
exists at least one player in S1

⋃
...
⋃
Sk that they prefer more than their partner in µ′.

However, since all players in S1

⋃
...
⋃
Sk−1 have no stochastic level-K deviations in each

matching in which the implied link of Sn is formed for each 1 ≤ n ≤ k−1, all players in Sk

cannot deviate such that there exists a positive probability that they end up with someone
in S1

⋃
...
⋃
Sk−1. Nonetheless, all players in Sk could improve by matching someone in
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Sk or by deviating such that there exists an induced path to be matched with someone
in Sk. The former situation is always a stochastic deviation under any level of foresight
by all players in Sk because they can no longer deviate in Sk and must have a more
preferred partner than in µ′. Once the players in Sk have matched the opposite player in
Sk (or himself if |Sk| = 1), no more level-K deviations that could be executed exist by
these players, for any K > 0. Namely, players in S1

⋃
...
⋃
Sk−1 do not match someone in

Sk and the player(s) in Sk do not prefer being matched with a player in Sk+1

⋃
...
⋃
Sℓ.

Therefore, forming the implied link from Sk is a stochastic level-K deviation for each
i ∈ Sk, for any K > 0. Forming the implied link in Sk leads therefore always to a higher
expected utility for all players in Sk. Namely, for all i ∈ Sk the utility of being matched to
the other player or to himself if |Sk| = 1 is always larger than being matched to all other
players in N \ S1

⋃
...
⋃

Sk−1. Hence, both players will not deviate after the formation of
the link because the players in S1

⋃
...
⋃
Sk−1 will not deviate, forming the implied link

from Sk is a stochastic level-K deviation for each i ∈ Sk, for any K > 0. If now some
i ∈ Sk matches some j /∈ Sk, then from µ′ + (i, j), there still must be a stochastic level-K
deviation from µ′ + (i, j) that matches all players in Sk with each other. Hence, a path
exists such that all players in Sk are matched from µ′ + (i, j), with i ∈ Sk and j /∈ Sk.
Once the implied link in Sk has been formed, the same process can be repeated for the
next S in Sk+1, ..., Sℓ for which it holds that the implied link in S is not formed. This
process can be continued for any K > 0 until the stable matching µK is reached through
consecutive stochastic level-K deviations. Once µK has been reached, no more stochastic
level-K deviations exist. Now there exists a path of consecutive stochastic stochastic
level-K deviations from any unstable µ′ to µK , while from µK , no stochastic level-K de-
viations exist. Consequently, the set {µK} satisfies stochastic iterated external stability.
In the first part of this proof, I showed the stochastic deterrence of external deviations
of the set {µK}. Hence, knowing that the level-K stochastically stable set must exist, by
minimality, {µK} must be the only matching in the level-K stochastically stable set.
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5 Reconsideration of assumptions in the stochastic

marriage market

In Section 4.2, I have made key assumptions about the stochastic behaviour of the mar-
riage market that have impacted the outcomes in Section 4.4. The approach of the
stochastic set-up has been motivated by examples in Section 4.1 that show optimistic
behaviour by players when using the set-up defined in Section 2. The purpose of the
introduction of stochasticity was to avoid these very optimistic deviations by players in
the marriage market. When setting up this whole new framework in Section 4.2, assump-
tions were made that simplify the description of the evolution of the marriage market
under the assumption of stochasticity. Also, I intended to stick closely to the approach
of Herings and Khan (2022) when introducing stochasticity. Herings and Khan (2022)
assumed that players did not consider the utility that can be expected when staying in a
matching when deciding on deviations. Also, they did assume that players could deviate
to any matching that was expected to result in a more preferred partner. Players were
not necessarily assumed to always pick the deviation with an induced path to the most
preferred partner. The purpose of this section is to alter the assumptions in the stochastic
setting and to show the practical consequences of the reconsideration of the assumptions.
Also, when possible, I illustrate to what extent the results drawn from the definitions in
Section 4.2 hold.
In Section 4.2, I assumed that players compare the utility following a deviation to the
expected utility obtained in the matching that is deviated from, under a certain level of
foresight. This assumption is in line with the approach by Herings and Khan (2022).
However, if a player does not deviate, another player could deviate which might result in
a higher expected utility for that player. Therefore, in Section 5.1, I assume that players
plan deviations by comparing the utility of the deviation to the utility they expect to
get when staying in that matching. In Section 4.2, I also assumed that players randomly
decide on a deviation out of all existing utility-improving deviations. This implies that
a player, when having several options on deviations, could perform a deviation that does
not imply utility maximisation. Therefore, in Section 5.2, I assume that players only
propose to the partner that maximises their utility. In Section 4.2, I also assumed that
possible deviators could only be groups of size 1 or 2. That assumption simplifies the
description of the marriage market significantly. The relaxation of this assumption by al-
lowing for the formation of larger groups of deviating coalitions has also been considered
by Herings and Khan (2022) in the context of networks. Therefore, last, in Section 5.3, I
allow for the formation of coalitions of players that can deviate as a coalition and show
two examples in both the optimistic and stochastic setting. The purpose of that section
is to show that the framework of limited foresight in one-to-one matchings can also be
applied in the setting of deviating coalitions.
All alterations that are considered should be read in the context of suggestions for future
research. However, when necessary, I make certain assumptions about the precise conse-
quences of the implementation of the new assumptions in order to show examples of the
evolution of the marriage market. Also, I introduce some minor notations necessary to
describe the marriage market under the new assumptions.
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5.1 Opportunity utility

5.1.1 Framework

In this section, I define a new framework that does consider the opportunity utility of
staying in a matching. No notation is introduced, except for the subscript ‘o’ that is
added to the parameters to indicate the opportunity utility setting. The key assump-
tion in the stochastic framework was that a stochastic level-K deviation from µx ∈ M
to neighbouring µy ∈ M by a player i ∈ N could be performed when the consequence
of this deviation meant a strict increase in expected utility for player i compared to his
utility in µx. This is equivalent with Viµy ,K > U i(µx(i)) and is formalised in Definition
4.11. Player i decides to deviate by comparing his utility to the utility he gets in µx.
However, i knows that, if he does not deviate, another player will be the one to deviate
if deviations exist by players in N \ {i}. Therefore, it makes sense to let i compare the
utility of his possible deviation to the expected utility he gets when not deviating in µx.
Throughout this section, I usually refer to this expected utility as opportunity utility. I
illustrate the new assumption of the comparison to opportunity utility by the presentation
of several examples. Furthermore, I theoretically describe this new assumption and its
consequences. At the end of this section, I conclude what key takeaways exist when this
new assumption was to be implemented in future research.

As before, I say that the expected utility is calculated under the assumption that a
random draw is performed over all possible deviators in µx. However, now i compares his
utility to the expected utility he gets when staying in µx. I describe how this utility is
calculated under level-1 foresight. Now let L1,µx,o ⊆ N , be the set of players that have a
level-1 deviation in µx that improves their expected utility with respect to the expected
utility they get when staying in µx and each player in L1,µx,o must have at least one de-
viation that is also a deviation by the opposite player if it involves adding a link. I add
the subscript o to show that we are in the opportunity utility setting. Let Iiµxµy ,1,o be the
indicator function that is one if i has a level-1 deviation to µy from µx that improves his
expected utility compared to the expected utility of staying in µx and this must also hold
for the opposite player if it involves adding a link. Diµx,1,o is the total number of level-1
deviations for i for which this holds in µx. All these players calculate this utility in the
same way as i does that is described next.
The probability that the system moves from µx to µy by a level-1 deviation of player j ̸= i
is equal to, given that i does not deviate and |Djµx,1,o| > 0:

1
|L1,µx,o\{i}| ∗

Ijµxµy,1,o−Iiµxµy,1,o∗Ijµxµy,1,o

Djµx,1,o
. The term −Iiµxµy ,1,o ∗ Ijµxµy ,1,o is added because

it needs to be made sure that the system cannot move to µy from µx if this involves
the creation of a link between i and j. Namely, if this term is not added, then devia-
tions that involve the formation of a link with i could still be executed by the opposite
player. If I now sum over j ∈ N \ {i}, I get the probability, P1,i(µy|µx), that the system
moves from µx to µy when i ∈ L1,µx,o decides to not deviate under level-1 foresight, so:

P1,i(µy|µx) = 1
|L1,µx,o\{i}|

∑
j∈L1,µx,o\{i}

Ijµxµy,1,o−Iiµxµy,1,o∗Ijµxµy,1,o

Djµx,1,o
. If |L1,µx,o \ {i}| < 1, no

level-1 deviations exist by players in N \{i} and the expected utility that i gets when not
deviating is equal to U i(µx(i)). The expected utility that i gets when the system stays in
µx with i not deviating is:

∑
µℓ∈M Pi,1(µℓ|µx) ∗ Viµℓ,1 =

∑
µℓ∈M Pi,1(µℓ|µx) ∗ U i(µℓ(i)).

The tricky part in this set-up is that players mutually decide whether to deviate based on
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the decision of others to deviate. For instance, player i ∈ N considers his possible benefit
of deviating based on the decision of player j and vice versa. In the next example, I make
this issue more concrete and I show that it is hard to continue with the assumption that
the deviation of some players depends on the deviation of other players and vice versa.

Example 5.1. I consider the example that has been used before in the paper. I show
the preferences again:

≻m1 : w1, w2,m1

≻m2 : w2, w1,m2

≻w1 : m2,m1, w1

≻w2 : m1,m2, w2

All possible matchings in this setting are also shown again:

m1

m2

w1

w2

µ1

m1

m2

w1

w2

µ2

m1

m2

w1

w2

µ3

m1

m2

w1

w2

µ4

m1

m2

w1

w2

µ5

m1

m2

w1

w2

µ6

m1

m2

w1

w2

µ7

Let me consider the expected utility of staying in µ1 for player m1 under level-1 foresight.
Player m1 needs to know about the possible deviations of all players in {m2, w1, w2} under
level-1 foresight to know his expected utility of staying. The possible planned deviations
by players in {m2, w1, w2} depend on the expected utility of staying in µ1 that does depend
on possible deviations by m1. Hence, deviations of m1 depend on that of other players and
vice versa. Consequently, it becomes hard to retrieve the expected utility of each player
i ∈ N under the assumption that the deviations by other players, where i’s expected
utility depends on, also depend on i’s expected utility. Therefore, it is problematic to
derive probabilities about the evolution of the system under the assumption of the mutual
dependence of the utilities. ▲

To solve the problem with the mutual dependence of actions by players, another def-
inition of a stochastic level-K deviation should be given in this context of opportunity
utility. In the next paragraph, I redefine this deviation. I do so by assuming that each
player decides on a deviation in µ by assuming that this player believes that each other
player compares the expected utility of the deviation to the utility in µ and not to op-
portunity utility. However, each player himself decides on a deviation by comparing the
expected utility of that deviation to the expected utility of staying in µ. This assumption
takes the mutual dependence away.
For that purpose, I say that LK,µx,o is the set of players that has a stochastic level-K
deviation in µx that has a larger expected utility than that of staying in µx. LK,µx,o is
used to describe the probabilities of the system evolution. However, I also still keep on
using LK,µx , which is the set of players with a stochastic level-K deviation in µx, because
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players calculate the expected utility of staying under the assumption that other players
compare their utility to the utility they get in µx, for which LK,µx is required. Similarly,
Ijµxµy ,K,o is the indicator function that is one if j ∈ N has a stochastic level-K deviation
from µx to µy that has a higher expected utility than staying in µx and if the deviation
involves adding a link, it must be a deviation by the opposite player as well. Djµx,K,o is
the number of matchings µy ∈ M for which that holds. As for LK,µx,o, I also keep on using
the definition for the number of stochastic level-K deviations by j in µx Djµx,K and the
indicator function Ijµxµy ,K that is one if a stochastic level-K deviation exists from µx to
µy by j. Both are necessary for the calculation of the expected utility of staying in µx for
an individual i under level-K foresight.
Now, the probability that the system moves from µx to µy by a stochastic level-K de-
viation of player j ̸= i is equal to, given that i does not deviate and |LK,µx \ {i}| > 0,

1
|LK,µx\{i}|

∗ Ijµxµy,K−Iiµxµy,K∗Ijµxµy,K

Djµx,K
. The term −Iiµxµy ,K ∗ Ijµxµy ,K is added because it

needs to be made sure that the system cannot move to µy from µx if this involves
the creation of a link between i and j. Namely, if this term is not added, then devi-
ations that involve the formation of a link with i could still be executed by the opposite
player. If I now sum over j ∈ N \ {i}, I get the probability that the system moves from
µx to µy by a stochastic level-K deviation when i ∈ LK,µx decides not to deviate, so:

PK,i(µy|µx) = 1
|LK,µx\{i}|

∑
j∈LK,µx\{i}

Ijµxµy,K−Iiµxµy,K∗Ijµxµy,K

Djµx,K
. Note that PK,i(µy|µx) does

not represent a probability of the evolution of the system, but is only used in the calcu-
lation of the opportunity utility of i. If |LK,µx \ {i}| < 1, no stochastic level-K deviations
exist by players in N \ {i} and the expected utility that i gets when not deviating is
equal to U i(µx(i)). Under |LK,µx \ {i}| > 0, the expected utility that i gets when the
system stays in µx with i not deviating is:

∑
µℓ∈M Pi,K(µℓ|µx) ∗ Viµℓ,K . Now the deviation

to µy is a stochastic level-K deviation for i if Viµy ,K >
∑

µℓ∈M Pi,K(µℓ|µx) ∗ Viµℓ,K . Hence,
i ∈ LK,µx,o if Viµy ,K >

∑
µℓ∈M Pi,K(µℓ|µx) ∗ Viµℓ,K . Now the probability that the system

moves from µx to µy under the assumption of the comparison to opportunity utility is

equal to PK,o(µy|µx) =
1

|LK,µx,o|
∑

i∈LK,µx,o

Iiµxµy,K,o

Diµx,K,o
.

Next, I give a brief overview of the introduced concepts that are used in Section 5.1.2.
The only new notation is Pi,K(µy|µx), that is the probability that is believed by player
i ∈ N that the system evolves from µx to µy when i decides to not deviate. This is used in
the calculations of each player when deciding on deviations and does not represent a true
probability. Also, I have added subscripts ‘o’ to the notation to indicate the opportunity
utility setting.

Equation 5.2. Let K ≥ 1. The probability that is believed by player i ∈ N that the
system goes from matching µx to µy with i ∈ N deciding to not deviate is, given |LK,µx \
{i}| > 0, Pi,K(µy|µx) =

1
|LK,µx\{i}|

∑
j∈LK,µx\{i}

Ijµxµy,K−Iiµxµy,K∗Ijµxµy,K

Djµx,K
. If |LK,µx \{i}| = 0,

then Pi,K(µy|µx) = 0, for all µy ̸= µx and Pi,K(µx|µx) = 1.

Equation 5.3. Let K ≥ 1. The expected utility that player i ∈ N gets when the system
evolves to µy ∈ M, under opportunity utility, is

∑
µℓ∈M Pi,K(µℓ|µy) ∗ Viµℓ,K .

Definition 5.4. Let K ≥ 1. The deviation µx →S µy is a stochastic level-K deviation
for player i ∈ S under opporunity utility if Viµy ,K >

∑
µℓ∈M Pi,K(µℓ|µx) ∗ Viµℓ,K .
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Equation 5.5. Let K ≥ 1. The probability that the system goes from matching
µx ∈ M to µy ∈ M under opportunity utility, when |LK,µx,o| > 0 is PK,o(µy|µx) =

1
|LK,µx,o|

∑
i∈LK,µx,o

Iiµxµy,K,o

Diµx,K,o
.

5.1.2 Examples and takeaways

The framework that just has been described contributes to a more realistic description of
the marriage market. A situation where this could occur is when two players are matched
to each other with one of the partners being the most preferred by the other but not
vice versa. Previously, the player having his most preferred option did have no incentive
to deviate because he compared possible deviations to the utility he received from his
most preferred partner. Now, the player matched to his most preferred partner realises
that his partner may delete the link and is able to anticipate this by deviating himself.
Another situation in which this framework contributes to a more realistic description of
the marriage market is when a player can tactically decide to not deviate in expectation
of more beneficial deviations by other players. I illustrate both situations in Example 5.6.

Example 5.6. In this example, I show two deviations in a marriage market under the
new assumptions. First, I show a level-1 deviation. This deviation follows from players
comparing the utility of that deviation by the utility they get when staying in that match-
ing. This deviation is, however, not an optimistic level-1 deviation as defined in previous
sections. Second, I show that a player is unwilling to deviate under level-2 foresight when
comparing his utility to the expected utility he would get when staying in that matching.
It will be shown, however, that optimistic deviations exist in that matching. I consider a
marriage market of four players with the following utilities:

m1 : Um1(w1) = 2; Um1(w2) = 1; Um1(m1) = 0

m2 : Um2(w2) = 2; Um2(w1) = 1; Um2(m2) = 0

w1 : Uw1(m2) = 2; Uw1(m1) = 1; Uw1(w1) = 0

w2 : Uw2(m2) = 2; Uw2(m1) = 1; Uw2(w2) = 0

All possible matchings in this setting are also shown again:

m1

m2

w1

w2

µ1

m1

m2

w1

w2

µ2

m1

m2

w1

w2

µ3

m1

m2

w1

w2

µ4

m1

m2

w1

w2

µ5

m1

m2

w1

w2

µ6

m1

m2

w1

w2

µ7

To derive deviations under both level-1 and level-2 foresight, it is useful to construct ma-
trix P1 of this marriage market (according to the definitions described in Section 4.2).
Hence, first, I briefly set up this matrix P1 in the next paragraph. This matrix is the ma-
trix that players use in the calculation of the probabilities in the system for the purpose of
the calculation of expected utility. This matrix does not represent the true probabilities
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of the evolution of the system under the new assumptions.
No player prefers to be single, and thus from µ1 deviations to any matching in {µ2, µ3, µ4, µ5}
exist that lead to a positive increase in utility under level-1 foresight. In fact, every player
has two deviations to a matching in {µ2, µ3, µ4, µ5} and so each matching in this set has
0.25 probability to be reached from µ1. Now in µ2, m1 will not deviate because he has his
most preferred option, m2 can match with w1 (leading to µ5), while m2 can also deviate
and match to w2 (leading to µ6). Player w2 can only match with m2 in µ2 which leads to
µ6. Therefore, P1(µ5|µ2) = P1(µ6|µ2) = 0.5. In µ3, m1 can match to w1 to form µ2 while
m2 can match to w1 forming µ7 and with w2 to form µ4. Player w1 can match to m1 and
to m2 to form µ2 or µ7 respectively, while w2 can match to m2 to form µ4. Therefore,
P1(µ2|µ3) = P1(µ4|µ3) = 0.375, and P1(µ7|µ3) = 0.25. In µ4, m1 can only match with w1

to form µ6 and vice versa because m2 and w2 are matched and are their most preferred
option. Hence, P1(µ6|µ4) = 1. In µ5, m1 can match with w2 to form µ7, while m2 can
form µ4 by matching w2. Player w1 has her most preferred option and w2 can match with
m1 and m2 to form µ4 or µ7 respectively. Hence, P1(µ4|µ5) = P1(µ7|µ5) = 0.5. In µ6,
m1 and m2 have their most preferred option, so P1(µ6|µ6) = 1. In µ7, m1 cannot match,
while m2 can match with w2 to form µ4. Player w1 will not deviate, while w2 will match
to m2. Hence, P1(µ4|µ7) = 1. Now taking all these probabilities together, the following
matrix P1 can be constructed:

0 0.25 0.25 0.25 0.25 0 0
0 0 0 0 0.5 0.5 0
0 0.375 0 0.375 0 0 0.25
0 0 0 0 0 1 0
0 0 0 0.5 0 0 0.5
0 0 0 0 0 1 0
0 0 0 1 0 0 0


Now I check whether a deviation exists by player w1 under the assumption of opportunity
utility in matching µ7 under level-1 foresight. Player w1 has her most preferred partner in
µ7. However, she knows that the system evolves to µ4 with probability 1 if she does not
consider a deviation. Hence, the expected utility of staying is 0 under level-1 foresight
because Uw1(µ4(w1)) = 0. Matching to m1 would however result in matching µ2 with
corresponding utility equal to 1 because Uw1(µ2(w1)) = 1. Now m1 also knows that the
system evolves to µ4 with probability 1, with utility equal to 0 in µ4. Therefore, he would
be willing to match to w1 because this deviation results in a higher expected utility than
not deviating in µ7. Hence, the system can also evolve to µ2 which would not be an
optimistic level-1 deviation by some player because w1 has her most preferred partner
in µ7. According to the framework I have defined, players m2 and w2 are unaware of
this planned deviation by m1 and w1. Therefore, if I were to attach probabilities to the
evolution of the system when starting in µ7, matchings µ2 and µ4 both have a probability
equal to 0.5 to be reached from µ7 under the new assumptions.
Now let me consider matching µ1 under level-2 foresight. I check what the expected utility
of m1 is when not deviating. If m1 does not deviate, two possible matchings can occur: µ4

(m2 matches w1) or µ5 (m2 matches w2). Both deviations have equal probability because,
for all involved players, they result in a positive increase in utility. Now, in µ4, under
level-1 foresight, the system evolves to µ6 with probability 1, with a utility for m1 equal
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to 2. In µ5, the system evolves to µ4 with probability 0.5 and to µ7 with probability 0.5,
leading to an expected utility of this evolution equal to 0.5 ∗ 0+ 0.5 ∗ 1 = 0.5. Hence, the
expected utility for m1 of not deviating equals 0.5 ∗ 2 + 0.5 ∗ 0.5 = 1.25.
Now player m1 could deviate in µ1 by matching to either w1 or w2. Matching w1 leads
to µ2. From µ2, the system has a probability of 0.5 to evolve to µ5 with corresponding
utility 0 and a probability of 0.5 to evolve to µ6 with corresponding utility 2. Hence, m1’s
expected utility of matching w1 is equal to 1. This is lower than the expected utility of
not deviating and therefore matching w1 is not a stochastic level-2 deviation that results
in a higher expected utility than not deviating. Matching w2 leads to matching µ3. In
matching µ3, under level-1 foresight, the system has a probability of 0.375 to evolve to µ2

with utility 2, a probability of 0.375 to evolve to µ4 with utility 0, and a probability of
0.25 to evolve to µ7 with utility 1. Hence, the expected utility of this deviation is equal to
0.375 ∗ 2+ 0.375 ∗ 0+ 0.25 ∗ 1 = 1. This is also lower than m1’s expected utility when not
deviating. Therefore, m1’s optimal strategy in µ1 is to not deviate under level-2 foresight.
Hence, m1 /∈ L2,µ1,o. Nevertheless, for m1, deviating to µ2 or µ3 are both optimistic and
stochastic level-2 deviations in the old setting without considering opportunity utility. ▲

The first part of the previous example has shown that, under the new assumptions,
deviations exist that are no optimistic deviations under a certain level of foresight. In
the situation of the example presented, this happens to be even possible under level-
1 foresight. The second part showed that an optimistic deviation may exist which is
no deviation under the assumptions of this section. The results drawn for stochastic
level-2 deviations rely on the fact that a level-2 deviation is also an optimistic level-2
deviation and on the observation that stochastic level-1 deviations are also optimistic
level-1 deviations. Therefore, the results drawn in Section 4.4 do not necessarily hold
under the new assumptions.
The previous example has also shown that there may exist situations in which a player i
decides to not deviate in µx ∈ M because anticipating other players deviating results in a
higher expected utility than any possible deviation. The key underlying assumption here
is that i assumes that other players decide on deviations by comparing their utility to the
utility they get in µx and not, as i does, by comparing the utility of a possible deviation
to the expected utility of not deviating. However, this approach can result in an impasse
that I illustrate in Example 5.7.

Example 5.7. Say that in some matching µ1 ∈ M, there are two players, i and j, that can
perform a stochastic level-K deviation, such that LK,µx = {i, j}. Player i can make the
system evolve to µ2, while player j can make the system evolve to µ3, with µ1 ̸= µ2 ̸= µ3.
However, for player i it holds that Viµ3,K > Viµ2,K > Viµ1,K and for player j it holds that
Vjµ2,K > Vjµ3,K > Vjµ1,K . Both players now anticipate each other’s action because they
believe that the other player decides on deviating by comparing utility to the utility in
µ1. Now, both are not part of the set of players with a deviation in µx under level-K
foresight, so: {i, j}

⋂
LK,µx,o = ∅. ▲

In Example 5.7, player i would be better off when he lets j deviate, while for player j
it would be better to let i deviate. Nevertheless, for both, staying in µ1 is not a weakly
dominant strategy. When formal definitions were to be written down on this subtopic,
it needs to be decided how the system is assumed to evolve in a situation where players
mutually anticipate each other’s actions. In Example 5.7, two options for the assumption
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on the evolution of the system exist in this symmetric setting.
The first option would be that i sees that j will not deviate and therefore decides to
deviate himself. However, this reasoning should then also apply to j that sees that i does
not deviate and therefore decides to deviate himself as well. In accordance with Section
4.2, a random draw over the possible deviators could be assumed. The outcome would
then be that both µ2 and µ3 have a 50 % probability to be reached from µ1 under level-K
foresight.
The second option would be that both players keep on anticipating a deviation from the
other player. This would result in an impasse with the result that the system stays in µ1,
under the absence of other existing deviations. However, since for both players staying in
µ1 is not a weakly dominant strategy, this assumption is not preferred.

To conclude this section about the implementation of the more realistic assumption of
comparing utility to opportunity utility when deciding on deviating, I highlight a few
takeaways that need to be taken into account when formal definitions and theory were to
be written down on this subtopic.
First, it is problematic to stick to the most realistic situation in which players can also
account for their calculations for other players taking into account opportunity utility.
Hence, the assumption so far is in line with the notion that players believe that they are
the only player that can consider opportunity utility. I have highlighted this in Example
5.1.
Second, it can not be easily concluded which of the results drawn previously for the set-
ting of optimistic and stochastic deviations also hold under the new assumptions. This is
a consequence of the fact that level-1 and level-2 deviations under the new assumptions
are not always optimistic level-1 and level-2 deviations and vice versa. I have shown this
in Example 5.6. As a consequence, different stable sets may appear of which the relation
to the stochastic and optimistic stable sets remains unclear.
Third, a decision needs to be made in situations where players await each other’s action
because they believe that possible deviations by other players result in a higher expected
utility. This has been shown in a rather theoretical setting in Example 5.7.

5.2 Utility maximisation

5.2.1 Framework and examples

In Section 4.2, it was assumed that each player calculated his expected utility of a stochas-
tic level-K deviation to matching µ based on the assumption that each other player in in-
duced deviations randomly picked a deviation out of all deviations that were improvements
on his expected utility. However, this assumption may not be very credible. Namely, if
a player i has a choice between two deviations and can fully oversee the consequences
of both deviations, then it makes more sense to assume that i chooses to deviate to the
matching that maximises his expected utility. Therefore, in this subsection, I restrict pos-
sible deviations described in Section 4.2 by only allowing players to perform a stochastic
level-K deviation to the matching maximising expected utility.
To formalise this newly introduced assumption, it is necessary to define deviations in this
context. As before, a deviation by player i ∈ N can consist of two possible actions: a
deletion of a link or a creation of a link. For the former, i can do this independently,
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while for the latter, the player i proposes to also needs to agree on that formation. If I
now allow only this new link to be formed between when the player i proposes to, say j
when this is also for j results in a matching that maximises his utility, an impasse in the
marriage market can easily occur. I illustrate this in Example 5.8.

Example 5.8. In this example, I consider the same marriage market set-up as has been
used in previous examples. I show the preferences and all matchings in this market again:

≻m1 : w1, w2,m1

≻m2 : w2, w1,m2

≻w1 : m2,m1, w1

≻w2 : m1,m2, w2

m1

m2

w1

w2

µ1

m1

m2

w1

w2

µ2

m1

m2

w1

w2

µ3

m1

m2

w1

w2

µ4

m1

m2

w1

w2

µ5

m1

m2

w1

w2

µ6

m1

m2

w1

w2

µ7

Let me consider matching µ1 in this marriage market. As has been indicated in the
description of the assumption of utility-maximising players, players only deviate to the
matching that is maximising their utility. In matching µ1, player m1 would like to form
µ2 by matching w1. However, w1 wants to match m2 to create µ5, while m2 wants to
match w2. This gives rise to a problem because no one gets their most preferred deviation
they could create. Staying in µ1 is for no player a weakly dominant strategy under level-1
foresight. Therefore, a new decision rule should be established to handle this situation.
▲

To avoid the impasse that has been shown in the previous example, I propose to use
a different approach for the acceptance of a proposal by the player that is proposed to.
In Section 4.2, I described the probabilities of the evolution of the marriage market in
the stochastic context. Key underlying assumption there was that a random draw was
executed over all players and a subsequent random draw over all their possible deviations
when describing the probabilities. In the context of utility-maximising players, I can do
the same, but now under the assumption that the player that is picked chooses his most
preferred deviation. If he then proposes to a player, this player accepts the proposal when
the resulting matching means a utility increase for him. The consequence of this approach
is that a creation of a link by the proposal of i to j is a deviation by i but not vice versa
because j may propose to another player that results in a higher expected utility for j.
However, j still accepts the proposal by i under the condition that this increases his util-
ity.
Now a deviation is a deviation for i ∈ N when that deviation results in the highest
expected utility out of all possible matchings that can be created from µx by i and
this deviation results in an increase in expected utility. Let, under level-1 foresight,
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Aiµx,1 ⊆ M be the set of matchings that i can deviate to from µx such that for all
µ ∈ Aiµx,1 U

i(µ(i)) > U i(µx(i)). If such matchings do not exist, i has no deviations in µx.
Now the only matching in Aiµx,1 that i proposes to deviate to from µx is the matching
µy for which U i(µy(i)) > U i(µ(i)) for all µ ∈ Aiµx,1 \ {µy}. If the deviation involves the
addition of a link, this addition must be a utility improvement for the opposite player.
Extending the reasoning in the previous paragraph for K > 1, let Aiµx,K be the set
of matchings that i can deviate to from µx under level-K foresight such that for all
µy ∈ Aiµx,K , the expected utility of being in µy after a level-K deviation is higher than that
of in µx. When K > 1, however, induced deviations are also taken into account. These
induced deviations must also take into account that we are in the utility-maximising set-
ting. Therefore, I add subscript U to Viµy ,K , which is the expected utility of going to µy by
a level-K deviation, resulting in Viµy ,K,U , to indicate that we are in the utility-maximising
setting. The calculation of Viµy ,K,U , for K > 0, is exactly the same as described in Section
4.2. Now the only matching in Aiµx,K that is proposed by i as a deviation from µx is the
matching µy for which it holds that Viµy ,K,U > Viµ,K,U for all µ ∈ Aiµx,K \ {µy}. Each
player j accepts a proposal by player i in µx if the resulting matching µy results in a
higher expected utility than the utility obtained in µx. Using the notation, it should hold
for j to accept the proposal that Vjµy ,K,U > U j(µx(j)).
Now the deviations have been defined in the context of utility maximisation, I can de-
fine the probability that the system evolves in a stochastic manner from µx to µy under
level-K foresight under the assumption of utility-maximising players. For that purpose,
I do not introduce any new notation but add subscript U to indicate that we are in
the utility-maximising setting. I define Iiµxµy ,K,U that is 1 if player i has a stochastic
level-K deviation from µx to µy that maximises his utility that results in utility im-
provement by the opposite player if it involves the addition of a link (not necessarily
utility-maximising by the opposite player). Furthermore, let LK,µx,U be the set of players
for which Iiµxµy ,K,U = 1. Now, the probability that the system moves from µx to µy by
a stochastic level-K deviation of player i under the assumption of utility maximisation
is equal to, given that |LK,µx,U | > 0, 1

|LK,µx,U | ∗ Iiµxµy ,K,U . Now summing over i ∈ LK,µx,U

gives the probability that the system moves from µx to µy under the new assumptions.
Hence, the probability that the system moves from µx to µy under level-K foresight with
utility-maximising players is: PK,U(µy|µx) =

1
|LK,µx,U |

∑
i∈LK,µx,U

Iiµxµy ,K,U . Again, I have

added U as a subscript to the sign of the probability to indicate the utility-maximising
setting. In Example 5.9, I show the evolution of a marriage market under the assumption
of utility-maximising players.

Example 5.9. In this example, I show how matrices P1,U and P2,U are constructed that
describe the stochastic behaviour of this specific marriage market. To not elaborate too
much in this example, I only show the calculation of the first row of the matrix P2,U . The
example I consider is the same as Example 5.6. The following utilities are present by the
players in the game:

m1 : Um1(w1) = 2; Um1(w2) = 1; Um1(m1) = 0

m2 : Um2(w2) = 2; Um2(w1) = 1; Um2(m2) = 0

w1 : Uw1(m2) = 2; Uw1(m1) = 1; Uw1(w1) = 0
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w2 : Uw2(m2) = 2; Uw2(m1) = 1; Uw2(w2) = 0

All possible matchings in this setting are also shown again:

m1

m2

w1

w2

µ1

m1

m2

w1

w2

µ2

m1

m2

w1

w2

µ3

m1

m2

w1

w2

µ4

m1

m2

w1

w2

µ5

m1

m2

w1

w2

µ6

m1

m2

w1

w2

µ7

First, I consider the construction of P1,U . In matching µ1, each player proposes to his
most preferred partner when he is the player given the chance to deviate. Hence, m1

proposes to w1, m2 to w2, w1 to m2 and w2 to m2. All these proposals are accepted
because no player prefers to be single. Hence, matchings µ2 and µ5 have probability 0.25
to be reached from µ1 and µ4 has probability 0.5 to be reached from µ1. In µ2, m1 has his
best preferred, m2 proposes to w2, w1 proposes to m2 and w2 proposes to m2. Now, µ5 has
a probability of 1/3 to be reached and µ6 has a probability of 2/3. In µ3, m1 proposes to
w1, m2 proposes to w2, w1 proposes to m2 and w2 proposes to m2. This leads to matching
µ2 having a probability of 0.25, µ4 a probability of 0.5, and µ7 a probability of 0.25. In
µ4, m1 proposes to w1, m2 and w2 do not propose, and w1 proposes to m1. This means
matching µ6 is reached with probability 1. In µ5, m1 proposes to w2, m2 proposes to w2,
w1 does not propose and w2 proposes to m2. This leads to a probability of 2/3 for µ4 and
a probability of 1/3 for µ7. In µ6, no player proposes and hence the system stays in µ6

with probability one. In µ7, m1 and w1 do not propose, and m2 and w2 propose to each
other, leading to matching µ4 with probability 1. This leads to following matrix P1,U :

0 0.25 0 0.5 0.25 0 0
0 0 0 0 0.33 0.67 0
0 0.25 0 0.5 0 0 0.25
0 0 0 0 0 1 0
0 0 0 0.67 0 0 0.33
0 0 0 0 0 1 0
0 0 0 1 0 0 0


Now I consider the marriage market under level-2 foresight. In matching µ1, player

m1 could propose to w1 and to w2. Proposing to w1 leads to µ2 from where the system
evolves, under level-1 foresight, to µ5 with probability 0.33 and to µ6 with probability
0.67, resulting in a utility of 0.33 ∗ 0 + 0.67 ∗ 2 = 1.33. Proposing to w2 leads to µ3 with
subsequent probabilities of 0.25 to evolve to µ2, of 0.5 to evolve to µ4 and 0.25 to µ7. This
leads to an expected utility equal to 0.25 ∗ 2+ 0.5 ∗ 0+ 0.25 ∗ 1 = 0.75. Hence, m1 prefers
matching to w1 but would also accept a proposal by w2 in µ1.
In µ1, m2 could propose to w1 leading to µ5. In µ5, the system goes to µ4 with probability
0.67 and to µ7 with probability 0.33, resulting in an expected utility equal to 0.67 ∗ 2 +
0.33 ∗ 1 = 1.67. Matching to w2 results in matching µ4, from where the system goes to µ6

with probability 1, resulting in an expected utility equal to 2. Hence, m2 prefers matching
to w2 but would also accept a proposal by w1 in µ1.
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In µ1, player w1 could propose to m1 leading to µ2, from where the system evolves, under
level-1 foresight, to µ5 with probability 0.33 and to µ6 with probability 0.67, resulting
in a utility of 0.33 ∗ 2 + 0.67 ∗ 1 = 1.33. Proposing to m2 leads to µ5 with subsequent
probabilities of 0.67 to evolve to µ4 and of 0.33 to evolve to µ7. This leads to an expected
utility equal to 0.67 ∗ 0 + 0.33 ∗ 2 = 0.67. Hence, w1 prefers matching to m1 but would
also accept a proposal by m2 in µ1.
In µ1, w2 could propose to m1 leading to µ3. In µ3, the system goes to µ2 with probability
0.25, to µ4 with probability 0.5 and to µ7 with probability 0.25, resulting in an expected
utility equal to 0.25 ∗ 0 + 0.5 ∗ 2 + 0.25 ∗ 1 = 1.25. Matching to m2 results in matching
µ4, from where the system goes to µ6 with probability 1, resulting in an expected utility
equal to 1 ∗ 2 = 2. Hence, w2 prefers matching to m2 but would also accept a proposal
by m1 in µ1.
To conclude, all proposals are accepted because they all lead to an increase in expected
utility. This means that m1 proposes to w1, m2 to w2, w1 to m1 and w2 to m2. This leads
to the following first row corresponding to µ1 in matrix P2,U[

0 0.5 0 0 0.5 0 0
]

▲

In the previous example, I have shown how a marriage market may evolve under the
new assumption under level-1 and level-2 foresight. Something still unrealistic in this
approach is that two players that both propose to each other may not get matched. In
Example 5.9, this may occur in matching µ1 under level-1 foresight where players m2 and
w2 propose to each other but the system has a positive probability to move to µ5 where
m2 is matched to w1. Thus, under the set-up defined so far, such pairs may still exist and
in future research, it should be considered how to deal with the existence of such pairs in
a realistic way.
In the last part of this section, I sum up the newly introduced notation and concepts
that are used in Section 5.2.2. The only new notation introduced is Aiµx,K that is the
set of matchings that player i can create by deviating from µx under level-K foresight
for which it holds that this is a utility improvement for him and by the opposite player
if the deviation involves adding a link. Hence, for this player j ̸= i that i proposes to it
must be that Vjµy ,K,U > U j(µx(j)). As well, I have added subscripts to indicate the utility
maximisation setting. The recursion that is implied by the overview presented next works
exactly the same as described in Section 4.2.

Definition 5.10. Let K ≥ 1. The deviation µx →S µy is a stochastic level-K deviation
for player i ∈ S under utility maximisation if Viµy ,K,U > Viµ,K,U for all µ ∈ Aiµx,K \{µy}
and µy ∈ Aiµx,K .

Equation 5.11. The probability that the system goes from matching µx ∈ M to µy ∈ M
under utility maximisation and K ≥ 1, when |LK,µx,U | > 0 is:
PK,U(µy|µx) =

1
|LK,µx,U |

∑
i∈LK,µx,U

Iiµxµy ,K,U .

5.2.2 Counterexample, proof and takeaways

Under level-1 foresight, it is clear that stochastic deviations are not always utility-maximising
deviations. However, under level-1 foresight, the opposite is true: utility-maximising de-
viations are also always stochastic deviations. This raises the question of whether this
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property holds in general. In Example 5.12, I show that this property can not be said to
hold for any K.

Example 5.12. In this example, I show that a utility-maximising level-2 stochastic devi-
ation does not necessarily need to be a stochastic level-2 deviation under the assumptions
as described in Section 4.2. I assume that the utilities are decreasing in equal steps and
these are shown below for convenience:

m1 : Um1(w2) = 3; Um1(w1) = 2; Um1(w3) = 1; Um1(m1) = 0

m2 : Um2(w1) = 3; Um2(w2) = 2; Um2(m2) = 1; Um2(w3) = 0

m3 : Um3(w1) = 3; Um3(w2) = 2; Um3(m3) = 1; Uw3(w3) = 0

w1 : Uw1(m2) = 3; Uw1(m3) = 2; Uw1(m1) = 1; Uw1(w1) = 0

w2 : Uw2(m2) = 3; Uw2(m3) = 2; Uw2(m1) = 1; Uw2(w2) = 0

w3 : Uw3(w3) = 3; Uw3(m1) = 2; Uw3(m2) = 1; Uw3(m3) = 0

The deviation that is considered here is by m1 and is as follows:

m1

w1

m2

w2

m3

w3

µ0

→

m1

w1

m2

w2

m3

w3

µ1

First, I show that the deviation from µ0 is not a stochastic level-2 deviation for m1 with-
out assuming utility-maximising players. In matching µ0, player m1 has a utility equal to
2. Therefore, to check whether µ0 → µ1 is a stochastic level-2 deviation by m1, I check
m1’s expected utility following a level-2 deviation to µ1. In µ1, under level-1 foresight,
deviations exist by players all players in N \ {m1}. As defined in Section 4.2, out of
all deviators, a deviator is randomly picked and of this deviator’s possible deviations a
deviation is randomly picked. Hence, each player in N \ {m1} has a probability of 1/5 to
be chosen as the player to deviate.
In µ1, player m2 deviates by matching either w1 or w2, resulting in an expected utility
for m1 when m2 deviates equal to 0.5 ∗ 3 + 0.5 ∗ 0 = 1.5. Player m3 deviates by matching
either w1, by matching w2, or by becoming single, resulting in an expected utility for
m1, when m3 deviates, equal to 0.33 ∗ 3 + 0.33 ∗ 0 + 0.33 ∗ 3 = 2. Player w1 deviates by
matching either m2 or m3, resulting in an expected utility for m1, when w1 deviates, equal
to 3. Player w2 deviates by matching either m2 or m3, resulting in an expected utility
for m1, when m2 deviates, equal to 0. Player w3 deviates by unmatching m3, resulting in
an expected utility for m1, when w3 deviates, equal to 3. Now, taking all these utilities
together with their probabilities, the expected utility of a stochastic level-2 deviation to
µ1 equals 0.2 ∗ (1.5 + 2 + 3 + 0 + 3) = 1.9. This is lower than the utility that m1 gets in
µ0 and therefore, this is not a stochastic level-2 deviation for m1 without the assumption
of utility maximisation.
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Now, I show that the deviation from µ0 to µ1 is a stochastic level-2 deviation for m1

when assuming utility-maximising players. Again, in µ1, each player in N \ {m1} has a
stochastic level-1 deviation. However, now each of these deviators deviates and proposes
to his top preferred among the opposite players that would accept him, and each player
accepts a proposal if this means a utility increase for him. Each deviator in N \ {m1} has
a probability equal to 1/5 to be chosen the player to deviate.
In µ1, player m2 deviates by matching w1, resulting in an expected utility for m1, when
m2 deviates, equal to 3. Player m3 deviates by matching w1, resulting in an expected
utility for m1, when m3 deviates, equal to 3. Player w1 deviates by matching m2, re-
sulting in an expected utility for m1, when m2 deviates, equal to 3. Player w2 deviates
by matching m2, resulting in an expected utility for m1, when w2 deviates, equal to 0.
Player w3 deviates by unmatching m3, resulting in an expected utility for m1, when w3

deviates, equal to 3. Now, taking all these utilities together with their probabilities, the
expected utility of a stochastic level-2 deviation under utility maximisation to µ1 equals
0.2 ∗ (3 + 3 + 3 + 0 + 3) = 2.4. This is higher than the utility that m1 gets in µ0 and
therefore, this is a stochastic level-2 deviation for m1 under the assumption of utility
maximisation.
It is easily observable that µ0 → µ1 is also a stochastic level-2 deviation under utility-
maximising players for w2 because U

w2(µ0(w2)) = 0 and there exists a positive probability
of getting a partner in an induced matching after µ1 while being worse off than in µ0 is
impossible. ▲

Now the difference has been established between stochastic deviations with and with-
out the assumption of utility maximisation, I show in the next Theorem 4.20 that stochas-
tic deviations under utility maximisation must also be optimistic deviations for anyK = 2.
This proof is very similar to the proof of Theorem 4.20 because the proof relies on the in-
teraction of preferences in the optimistic setting and the utilities in the stochastic setting,
while the same induction argument is used as in Theorem 4.20.

Theorem 5.13. If µ2 →S µ1 is a utility-maximising stochastic level-2 deviation, then it
must also be an optimistic level-2 deviation.

Proof. Let’s assume that there exists a utility-maximising stochastic level-2 deviation
µ2 →S µ1 that is not an optimistic level-2 deviation, and |S| ∈ {1, 2}. Now, all players
in S deviate to µ1, and thus, for all players in S, their expected utility in µ1 following an
optimistic level-2 deviation to µ1 is higher than their utility in µ2. Hence, for all i ∈ S
Viµ1,2 > U i(µ2(i)), which is equivalent with

∑
µ0∈M P1(µ0|µ1)∗U i(µ0(i)) > U i(µ2(i)). Now

there are two situations to consider following the stochastic level-2 deviation to µ1:
Situation 1 : no more optimistic level-1 deviations exist from µ1 and hence no more
utility-maximising level-1 deviations exist. In that case P1(µ1|µ1) = 1. Now to let this
be a valid utility-maximising level-2 deviation, it must hold for all i ∈ S that Viµ1,2 =
U i(µ1(i)) ∗ P1(µ1|µ1) = U i(µ1(i)) > U i(µ2(i)), equivalent with µ1(i) ≻i µ2(i). However,
this leads to a contradiction because I assumed that µ2 →S µ1 is not an optimistic level-2
deviation.
Situation 2 : there exists at least one utility-maximising level-1 deviation in µ1. Now,
following the definition of a utility-maximising level-2 deviation, for all i ∈ S, Viµ1,2 =∑

µ0∈M P1(µ0|µ1) ∗ U i(µ0(i)) > U i(µ2(i)). Because µ2 →S µ1 is not an optimistic level-2
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deviation, there does not exist for each i ∈ S a matching µ0 such that µ0 ∈ f1(µ1) and
µ0(i) ≻i µ2(i). Now I know that utility-maximising level-1 deviations are also always
optimistic level-1 deviations, meaning that if P1(µ0|µ1) > 0, it must be that µ0 ∈ f1(µ1).
Now for each matching µ0 ∈ M for which P1(µ0|µ1) > 0 it must be that for at least one
player i ∈ S: U i(µ0(i)) ≤ U i(µ2(i)). Namely, if this does not hold then µ2 →S µ1 is an
optimistic level-2 deviation because then, for all i ∈ S, there would exist a µ0 ∈ f1(µ1)
with µ1 ∈ f2(µ2) and µ0(i) ≻i µ2(i). However, this leads to a contradiction because now∑

µ0∈M P1(µ0|µ1) ∗ U i(µ0(i)) ≤ U i(µ2(i)) for at least one i because for all µ0 for which

it holds that P (µ0|µ1) > 0, it holds U i(µ0(i)) ≤ U i(µ2(i)). Therefore, this cannot be a
utility-maximising level-2 deviation for i if this is not an optimistic level-2 deviation and
thus leads to a contradiction with the assumption that µ2 →S µ1 is not an optimistic
level-2 deviation.
Now it can be concluded that each utility-maximising level-2 deviation must also be an
optimistic level-2 deviation because assuming the existence of a utility-maximising level-2
deviation that is not an optimistic level-2 deviation leads in each case to a contradiction.

Now it has been shown that utility-maximising stochastic level-2 deviations must also
be optimistic level-2 deviations in Theorem 4.20. Furthermore, it has also been shown
that utility-maximising stochastic level-2 deviations do not need to be stochastic level-2
deviations in Example 5.12. Hence, the following Venn diagram in Figure 2 is drawn
about the relation of these different types of deviations:

X2 U2

O2

Figure 2: Relation of the different level-2 deviations: optimistic (O2), stochastic without
utility maximisation (X2) and stochastic with utility maximisation (U2).

Because the utility-maximising stochastic level-2 deviation is a restricted version of the
optimistic level-2 deviation as has been shown, Theorem 4.21 about the relation of the
stochastic stable sets and the stable sets in the optimistic setting must also hold for utility-
maximising deviations. Namely, that result fully depends on the fact that stochastic
deviations are restricted optimistic deviations.
Since it might be more realistic to assume that players deviate to the most preferred
partner as is done in the utility-maximising set-up, this set-up might be more preferred.
Nonetheless, I have shown that utility-maximising deviations significantly differ from non-
utility-maximising stochastic deviations, while both are also always optimistic deviations
for any K > 0. However, in this paper, analytical derivations about the differences of the
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approaches have not been given and these are suggested for future research. Additionally,
any concrete example of the benefit of these approaches in future research would have to
involve at least 6 players to get a proper view of the dynamics of each of the approaches,
while under levels of foresight larger than 1, the derivations under stochasticity become
very extensive.

5.3 Coalitional deviations

One of the key assumptions in both the optimistic and the stochastic description of the
marriage market was that individuals were given the chance to deviate and that they pro-
posed to other individuals when forming a link, or could solitarily deviate when a link was
to be cut. The deviators anticipated further deviations also by individuals that proposed
to other individuals. In the literature, however, in network games, or more specifically in
marriage market games, deviations by coalitions have also been considered. For instance,
Herings and Khan (2022) also consider coalitional deviations in networks under limited
foresight and Chwe (1994) studies coalitional moves by players under full foresight where
players have preferences over the outcomes of the game. Therefore, to also show that
this research can be applied in the context of coalitional deviations, I give an example of
deviations by coalitions in both stochastic and optimistic settings. Further derivation of
theorems and definitions on this subtopic is suggested for future research.

In this paper so far, definitions, examples, and theorems were given both in the opti-
mistic and stochastic setting with the key underlying assumption of level-K foresight for
each player in the marriage market. In this section, I define the concept of coalitional
foresight which considers the possibility of a coalition of players deviating. Including fore-
sight, this means that a group of players in the game may jointly deviate to some new
matching in anticipation of further deviations by coalitions. In Example 5.14, I show how
a marriage market can evolve by optimistic level-2 deviations where coalitions S ⊆ N
can deviate without the restriction that |S| ≤ 2. The key underlying assumption is that
deviating coalitions can expect deviations by other coalitions in induced deviations. The
members of the deviating coalition simultaneously deviate and the links that they connect
or break form one step. A link formed must be between two members of the coalition and
a link deleted must involve only one member of the coalition. Players can be part of a
coalition in the optimistic setting when they see the path of induced coalitional deviations
to a more preferred partner, while players within the coalition can have different beliefs
about the formation of subsequent coalitions. In the stochastic setting, players can be
part of a coalition when the expected utility in the matching that the coalition deviates
to is higher. In Example 5.14, I show optimistic level-2 deviations and in Example 5.15,
I show a stochastic deviation under level-2 foresight.

Example 5.14. The purpose of this example is to show several sequential coalitional
optimistic level-K deviations. Let me consider the following marriage market following
marriage problem (M,W,≻) with men M = {m1,m2,m3} and women W = {w1, w2, w3}.
The following preferences are present by the players of the game:

≻m1 : w1, w2, w3,m1
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≻m2 : w2, w1, w3,m2

≻m3 : w2, w1, w3,m3

≻w1 : m2,m3,m1, w1

≻w2 : m3,m1,m2, w2

≻w3 : m3,m1,m2, w3

In the picture next, it is visible how the marriage market problem can evolve under level-
2 foresight. In each step, the members of the coalition that initiate the deviation have
been coloured red. In the next paragraphs, I illustrate the rationale behind each level-2
deviation.

m1

w1

m2

w2

m3

w3

µ0

→

m1

w1

m2

w2

m3

w3

µ1

→

m1

w1

m2

w2

m3

w3

µ2

→

m1

w1

m2

w2

m3

w3

µ3

In matching µ0, players w1 and w2 can form a coalition that both break their links with
their respective partners. Player w1 wants to end up with m2 and she anticipates on
the coalition {m2, w1} that can perform a level-1 deviation in µ1. Player w2, forming a
coalition with w1, breaks with m2 in µ0 in anticipation of the coalition {m3, w2} forming
a match when performing a level-1 deviation in µ1.
In µ1, the players m2,m3, w1 and w2 can form a coalition that can perform a level-2
deviation by matching to each other. Players m3 and w2 match to each other through this
coalitional level-2 deviation and both get their most preferred partner. Therefore, both
players will no longer deviate and no level-1 deviations exist in µ2 that affect them. Hence,
for these players, this is a fruitful level-2 deviation. Player w1 gets her most preferred
partner and knows that after this coalitional level-2 deviation to µ2, no coalitional level-1
deviations exist that let her end up with a less preferred partner than in µ1. She knows
this because m2 can no longer match with his preferred w2 and therefore for him no more
level-1 deviations exist in µ1 as w1 is his second most preferred partner and he can no
longer get w2. In µ2, also m2 improves compared to µ1 and no level-1 deviations exist
anymore that let him end up with a less preferred partner than in µ1. Hence, this is also
for him a fruitful level-2 deviation.
In µ2, players m3, w1, w2 have their most preferred option. Hence, for them, no coalitional
level-2 deviations exist. Player m2 could only gain by matching w2 which w2 would not
let happen, so also for m2 no level-2 deviations exist. Therefore, the only players that can
gain by deviating are players m1 and w3 that can match each other which is a coalitional
level-2 deviation with incomplete support since from µ3 no more deviations exist for these
players. ▲
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As can be seen in the previous example, coalitions can also exist of only two players
of the opposite sex that decide to deviate, with one of the two proposing to the other.
Coalitional deviations could even be defined to also include deviations by single players.
Therefore, the optimistic level-K deviations can be viewed as a restriction on the coali-
tional level-K deviations in the optimistic setting.
The next example is about stochastic coalitional level-K deviations.

Example 5.15. In this example, I show a coalitional stochastic level-2 deviation. First,
however, I show how the probabilities regarding the evolution of the system are calculated
in a level-1 setting in order to have this clarified before showing the coalitional stochastic
level-2 deviation. The same set-up and preferences as in Example 5.14 are used.
I consider the possible coalitional stochastic level-1 deviations from the matching µ0 ∈ M
where every player is single such that for every i ∈ N : µ0(i) = i. Because I consider level-
1 foresight, no utilities need to be defined. Obviously, several players can improve in this
matching as all players indicate that being single is their least preferred option. In fact,
each set of players S ⊆ N with an equal amount of men and women would be a possible
coalition in which each player can a get more preferred partner in one step. Namely,
in such a set, each player could just improve by matching any player of the opposite
sex because this would always be an improvement on being single. However, some rule
is needed to decide on the probability of each coalition being chosen. Thereafter, the
probabilities of the system evolving from µ0 to any matching µ ∈ M can be established.
The number of coalitions with two players is

(
3
1

) (
3
1

)
= 9, the number of coalitions with

four players is
(
3
2

) (
3
2

)
= 9 and the number of coalitions with 6 players is

(
3
3

) (
3
3

)
= 1.

This means 9 + 9 + 1 = 19 possible coalitions exist. When this set-up was to be made
formal, a realistic decision rule is to be chosen that decides on the right coalition that
can deviate. For simplicity, I say that out of these 19 possible coalitions, one coalition
is randomly chosen such that each coalition has a probability equal to 1

19
to be chosen.

Now, in µ0, each coalition consisting of two players has only one possible matching to
be formed, while each coalition of four players can form two different matchings and the
coalition of all players could form six different matchings. For the sake of this example,
I assume that each matching µ, given that a coalition that is chosen that can form the
matching, has a chance of being chosen equal to 1 divided by the number of matchings
that could follow a deviation by a coalition. As a consequence, each matching following
a deviation by a coalition with cardinality two has probability 1

19
∗ 1 = 1

19
to be the

matching the system evolves to, while matchings formed by coalitions with cardinality
four have probability 1

19
∗ 1

2
= 1

38
and each matching following a deviation by a coalition

with cardinality six has probability 1
19
∗ 1

6
= 1

114
. This decision rule is in line with the set-

up from Section 4.2. In that set-up, over all possible deviators, a deviator was picked and
then over all his possible deviations, a deviation was randomly picked. When considering
the matching without links each matching can only be formed by a unique coalition.
However, in general, this is not necessarily true because a link can be broken by two
different players, and therefore a matching µ′ resulting from a coalitional deviation in
µ could be the consequence of deviations by two different coalitions. With even larger
coalitions with deviators breaking links, matching µ′ could be resulting from even more
different coalitions. Nevertheless, for simplicity, I do not consider that possibility here.
Now, under level-2 foresight in some matching µ ∈ M, each player knows the probability
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of the system evolving to each other matching by a level-1 deviation. Based on this
notion, each player knows to which matching the system should evolve to improve on his
expected utility. Namely, if the system evolves to µ′, each player knows the probabilities
of the system evolving through a level-1 deviation from µ′ to any other matching in M.
Hence, each player decides to deviate from µ to that µ′ such that from µ′ the expected
increase in utility is positive by a level-1 deviation by some coalition that is (randomly)
picked according to a decision rule.
Let me now consider µ1 from Example 5.14. I show that the deviation from µ1 to µ′ is a
coalitional stochastic level-2 deviation. This can be shown without considering utilities.
In the next figure, I have coloured the coalition red.

m1

w1

m2

w2

m3

w3

µ1

→

m1

w1

m2

w2

m3

w3

µ′

Clearly, in µ′, players m3 and w2 are matched with each other and both are their best-
preferred partners. Hence, in µ′, both will not deviate and will therefore not be part of
any coalition when in µ′. This means that for m3 and w2 deviating from µ1 to µ′ is a
fruitful level-2 deviation. Also, m1 has his best-preferred partner in µ′ and hence will also
not be part of a deviating coalition in µ′. This means that in µ′ the possible coalitions
are {m2, w1} and {m2, w3}. Every player assumes that each coalition has a chance of 0.5
to be chosen and so that the following matching also has a probability of 0.5. For player
w1 it means that she has a probability of 50% to be matched with m2 following a level-1
deviation from µ′ resulting in a 50 % chance of improvement compared to µ1 and a 50
% chance of keeping the same utility. Therefore, for w1, µ1 → µ′ is a fruitful coalitional
stochastic level-2 deviation. Player m1 foresees that in µ′ that either m2 and w3 form a
link or m2 and w1 will do so. In the first instance, he improves on utility compared to µ1

and in the latter, his utility remains the same. Therefore, the system evolving from µ1 to
µ′ means also for him an expected improvement in utility. Consequently, the deviation
from µ1 to µ′ is a valid coalitional stochastic level-2 deviation by {m1,m3, w1, w2}. ▲

From the examples that have been given in this section on coalitional deviations, cer-
tain conclusions can be drawn that should be kept in mind when writing formal definitions
and drawing conclusions on this subtopic.
In both set-ups, it can be observed that the amount of possible coalitions that can be
formed is generally large. As a consequence, the possible evolution in one single deviation
of the marriage market can vary a lot. In fact, in the optimistic setting, it is obvious
that coalitional moves are a relaxation of deviations by individuals and that therefore
the amount of possible deviations is large. This does, however, not imply any conclusion
about the outcome of the marriage market problem. When coalitions of any size are al-
lowed to exist, then the system could even evolve from a matching without links to stable
matchings in one step. Furthermore, in the stochastic set-up, when analysing possible
deviations, the number of possible coalitions that may form induced deviations is also
very high. This means that calculations about possible level-K deviations become very
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extensive. To mitigate this a bit, a clear rule on how coalitions are picked that makes the
system evolve should be formulated. In Example 5.15, I used a very general rule on how
to formulate the beliefs of players on the evolution of the system. For certain, this rule
should be made more realistic and restricted. Suggestions to improve this rule include
restricting the coalition size or allowing people to choose to be part of a limited number
of coalitions.
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6 Conclusion

In this paper, I started off by introducing the concept of limited foresight in the one-to-one
matching problem. This limited foresight comprises the feature that each player is aware
of the fact that a change in the marriage market can induce further changes. The level of
foresight determines the length of the horizon that players can foresee that is induced by
their change of the system. Based on this notion of limited foresight, I define a stable set
of matchings as an outcome of the marriage market problem. This initial set-up has been
largely based on the approach of Herings and Khan (2022) that define limited foresight in
network games. It must be possible to reach the stable set by consecutive deviations from
all matchings outside the set and it must be impossible to leave the stable set by consec-
utive deviations once the system has evolved to the stable set. Furthermore, the stable
set must meet minimality by assuring that no subset of the stable set exists that satisfies
the two aforementioned criteria. The stable set has been proved to always exist and has
been proved to be unique. The set depends on the level of foresight that is assumed in
the matching game. The degree of foresight has always been assumed to be the same for
all players in the game. Next to showing the existence and uniqueness of the stable set, I
have shown that the stable set equals the union of cycles present in the game. Assuming
myopic players is equivalent to assuming level-1 foresight and under that assumption, the
stable sets equals the set of stable matchings and each of these matchings is a singleton
cycle. Also, it has been shown that the level-1 stable set is a subset of the level-2 stable
set. I have not shown that this result also holds vice versa, which is beyond the scope
of this research. I suggest this to be investigated in future research. Last, under the
assumption of α-reducibility, the level of foresight does not influence which matchings are
part of the stable set.
In the approach of the previous paragraph, players were assumed to be optimistic about
the outcomes of their deviations. This approach implies that players already deviate when
there exists only one path out of many paths leading to some improvement compared to
the matching that is deviated from. This optimism is no longer assumed in the so-called
stochastic approach. Namely, under the stochasticity assumption, players incorporate the
fact that many paths exist which influences their decision-making process when playing
the game. Furthermore, I introduced the concept of utility that each player attaches to
each partner of the opposite sex and to being single. Each player has a belief about the
utility he expects to get when deciding on adding or deleting a link. It has been shown
that deviations under the assumption of stochasticity must also be deviations under the
assumption of optimism under level-2 foresight and that they are the same under level-1
foresight. As a result, under level-1 foresight, the stable sets are equal and under level-2
foresight, they might differ but the relationship between them is clear. For larger degrees
of foresight, I have shown, under the additional assumption that players may have pref-
erences over matchings instead of over players, that the stochastic deviations do not need
to be optimistic deviations. Consequently, generally, the stable set under stochasticity
differs from the stable set under optimistic players and none of the two sets is a subset
of the other. Furthermore, also under stochasticity, in α-reducible matching problems,
the level of foresight assumed does not influence which matchings are in the stable set.
The new assumption of stochasticity also allows attaching probabilities to each stable
set. Namely, from each matching in the marriage market, it is possible to calculate the
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probability of ending in all existing stable sets.
In the last part of the paper, I change the assumptions that were made in the initial
stochastic set-up and check, when possible, how this affects the results in the marriage
market. I choose to investigate this because, when describing the initial stochastic set-up,
I make assumptions for simplification purposes. Also, in the initial set-up, I stick close
to the approach by Herings and Khan (2022). I change the initial assumptions in three
different ways and I conclude which takeaways exist when each new assumption was to
be made formal in possible future research.
In the decision-making process, under the initial assumptions of stochasticity, each player
decides on additions or deletions by comparing the utility he gets from his deviation to the
utility obtained from the partner matched to in the matching he considers to deviate from.
Each player, however, knows that other players might deviate if he chooses to not deviate.
Therefore, I assume that players decide on deviating by comparing to the expected utility
of staying which I refer to as opportunity utility. I show that it is impossible for each
player to know the true utility of staying because the deviation of some players affects the
deviation of the other players and vice versa. I simplify this by assuming that all players
assume that the other players deviate under the assumptions of the initial set-up. Under
this simplification, it is shown that new deviations appear that are no deviations under
the assumption of optimism or stochasticity. Therefore, the consequences for stability
cannot easily be derived and are suggested to be derived in future research. Also, I show
that this set-up could lead to an impasse that should be accounted for in possible future
research.
In my initial framework, players are assumed to randomly deviate to any matching with a
possible increase in expected utility. This is in line with the approach by Herings and Khan
(2022). I change this assumption by letting players deviate only to the matching resulting
in the highest expected utility. Players do nevertheless accept any utility-improving pro-
posal. I show that such deviations must also be deviations under the optimism assumption
under level-2 foresight. Furthermore, I show that deviations under utility maximisation
do not necessarily need to be stochastic deviations. Because of this first result, the same
conclusions can be drawn on the relation of the level-2 stable set under optimism and
under stochasticity with utility-maximising players as on the relation of the stable set
under optimism and under stochasticity with non-utility-maximising players. However,
this does not say anything about what differences the utility maximisation assumption
makes in relation to stability. Also, coming up with a proper example of a situation with
different stable sets involves extensive calculations. Therefore, both the analytical deriva-
tion and the presentation of an example are suggested for future research.
Last, I also give several examples of coalitional deviations where coalitions consisting of
more than two players have the opportunity to deviate as a coalition. These coalitional
deviations in the optimistic set-up can in fact be viewed as less restricted deviations of
deviations by couples or individuals. I show that this approach can also be implemented
under limited foresight with optimistic players by giving an example of such a deviation.
I give an example of coalitional deviations under stochasticity. Through that example, I
show that it is possible to implement the assumptions on coalitional deviations but that
it requires extensive calculations. Also, I illustrate that, if this set-up were to be applied
in future research, many possibilities for the evolution of the system exist and that it is
recommended to impose restrictions that mitigate this problem in possible future research.
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