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Exploring Different CNN Architectures for Predicting Body 
Measurements from 2D Images 

Ling-Yau Lee 

 

ABSTRACT 

This thesis explores different convolutional neural networks (CNNs) for predicting bodily measurements 

from 2D images with the intention of improving accuracy of automated malnutrition assessment. The 

research question is: How effective are EfficientNet and Big Transfer (BiT) architectures in predicting 

body measurements from 2D images compared to the baseline model of Mohammed Khan (2020) which 

uses Restnet50 and Inceptionv3 architectures? The data set consists of virtual images of human body 

shapes which are based on 3D human body meshes originating from the Civilian American and European 

Surface Anthropometry Resource (CAESAR) dataset. On a subset of this dataset principal component 

analysis was used to obtain the body measurements of height and waist circumference which acted as 

the labels to train our CNNs on.  Both height and weight are essential dimensions for detecting 

malnutrition. This study explores EfficientNet and Big Transfer architectures ability to predict bodily 

measurements in comparison to the baseline models. Findings show that BiT has an average MAE of 

68.1mm and 120.8mm while EfficientNet has 84.6mm and 120.2mm for height and weight respectively. 

For the baseline models, Inception has an average MAE of 64.7mm and 121.8 while ResNet has an 

average MAE of 74.2mm and 121.5mm for height and weight respectively. In conclusion, we find that 

BiT outperforms ResNet however it does not outperform Inception. EfficientNet is the worst performer, 

however due to the efficiency, it can still prove to be advantageous when used in mobile devices. 

 

DATA SOURCE / CODE / ETHICS STATEMENT 

The virtual images used in this research are anonymized. The images have been obtained with 

permission from Zero Hunger Lab for this study. 

The code in this thesis was replicated using code from Mohammed Khan (2020) with permission.  The 

author of this thesis acknowledges that they do not have any legal claim to this data or code. 

The code used in this thesis is publicly available with the location provided in the appendix B. 
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1 INTRODUCTION 

According to World Food Programme estimates, approximately 690 million people which is equivalent to 

8.9% of the world population are currently suffering from hunger. In 2019, 6.9% or 47 million children 

under the age of 5 were affected by acute malnutrition. From a societal point of view, COVID-19 has only 

exacerbated the situation and immediate action is needed (World Food Programme, 2020). 

The Zero Hunger Lab from Tilburg University is taking part in a project where the goal is to develop 

algorithms which will be used in automated malnutrition assessment. These algorithms are incorporated 

into an app known as the Child Growth Monitor ("Child Growth Monitor”, 2021).  The ultimate purpose 

of the Child Growth Monitor (CGM) is to detect malnutrition based on bodily measurements taken from 

images. Body measurements such as height, weight and waist circumference can be used as indicators of 

malnutrition. According to child growth standards, when a child is too short for his age, this could be due 

to chronic disease (“Child Growth Standards", 2021). The focus of the CGM is primarily aimed towards 

children considering they are more susceptible to chronic malnutrition (Bandsom, 2021). Detecting 

malnutrition will enable timely nourishment and prevent adverse health effects. Upon successful 

completion, the CGM can be deployed globally to automatically identify cases of malnutrition. 

In the context of the CGM, the goal of this research is to explore different neural network architectures 

and how these configurations can lead to better prediction accuracy. First, this study will replicate the 

neural network architecture of Mohammed Khan (2020) and this will form the baseline to compare with, 

hereafter referred to as the baseline model. Subsequently, EfficientNet and Big Transfer (BiT) 

architectures are applied with the goal of improving prediction accuracy.   

The work of Mohammed Khan (2020) was novel in nature as it involved predicting from full body images 

without any reference objects within the image. From the related works section, you can see there is 

research on neural networks. However, further research specific to the CGM context is required. Deeper 

understanding of this lays the foundation for better prediction accuracy which is an important prerequisite 

for launching the CGM app and enable it to achieve its prediction objectives.  

On a personal level, my aspiration is to utilize my data science skills and its versatile tools to contribute to 

real-life societal problems. This thesis is a suitable platform to realize this aspiration.    
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The main research question will be:  

 How effective are EfficientNet and Big Transfer architectures in predicting body measurements 

from 2D images compared to the baseline model of Mohammed Khan (2020) which uses 

Restnet50 and Inceptionv3 architectures?  

2   RELATED WORK  

This sections covers prior research explaining anthropometry, introduces similar studies within the 

academic community and how body shapes are formulated.   

Anthropometry is defined as the science of measurement of the human body, which includes body height, 

body circumferences, size of body segments etc. (Fialho et al., 2021). The uses of anthropometric 

measurements are not limited to health purposes, instead the uses range from fashion industry, medical 

diagnosis, ergonomics production to security systems (Yan & Kämäräinen, 2021). Traditionally manual 

anthropometric techniques have been used such as tape measure, ruler, protractor directly taken from 

the patient. Due to curvatures in the human body shape, this may lead to inconsistent measurements. 

The measurement accuracy is also reliant on the individual performing the measurement. Another 

disadvantage of manual techniques is the time required. Healthcare increasingly demands faster and 

accurate measurement process. Furthermore, COVID-19 has increased the need for less physical contact 

between health professionals and patients (Fialho et al., 2021).  

Digital anthropometric instruments (e.g., three-dimensional scanners) are more reliable comparing to 

manual tools, however they are still reliant on the measurer and takes time to perform. Fialho et al. (2021) 

introduces NLMeasurer, a smartphone application which automatically evaluates anthropometric 

measurements with deep learning models. A photo is made on which anatomical reference points (ARPs) 

are identified and the size of body segments are determined. NLMeasurer utilizes PoseNet which is a 

computer vision model from TensorFlow, and it is able to identify 17 ARPs. PoseNet uses either 

MobileNetV1 or Resnet50 architecture. The results only contained MobileNetV1 data as the Resnet50 

configuration was not able to identify any ARPs hence no results were produced for Resnet50. This may 

be attributable due to the processing power limitations of a smartphone. MobileNetV1 requires less 

computational capacity than ResNet50 and therefore was able to deliver the results. This poses a risk to 

the CGM as it plans to use smartphone application in a similar manner to run ResNet50 architecture. The 
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ResNet50 tractability issue, highlights the need for testing the CGM with different architectures and 

bearing processing requirements in mind (Fialho et al., 2021).    

One key limitation of the NLMeasurer is the extremely small sample size of 4 participants. The reason 

given was that COVID-19 did not allow safe researchers and patients to conduct this research without risk 

of infections. However, performing this research on a virtual dataset could have circumvented this 

problem. Datasets with virtual body dataset can be used instead and the details of our dataset are in 

method section. Another limitation mentioned was the clothing on participants which added some 

difficulty in identifying the ARPs.  Since the virtual body images only has light clothing this problem can be 

minimized by using a virtual dataset (Fialho et al., 2021). 

Kocabey et al. (2017) uses social media profile images to infer the BMI by adapting a two stage prediction 

process. In the first stage, feature extraction was performed by using VGG-Net and VGG-Face both of 

which are pre-trained CNNs. Subsequently, a regression model is trained using epsilon support vector 

regression because of the robust generalization qualities it provides. The performance of the algorithm 

was compared to a human evaluator. Both the human evaluator and the algorithm were presented with 

two profile images every instance and were required to predict which profile image was more overweight. 

Although the algorithm only performed on par with the human evaluator, this research does pave the way 

for future research to model BMI figures on a population and demographic level by processing profile 

images.  

De Souza et al. (2020), predicts body dimensions from images in a similar fashion but employs a selection 

of eight different algorithms. The study presents a benchmark of prediction accuracies by testing and 

presenting MSE scores by algorithm and by body part.  For the waist the top performing algorithm was 

the Expectation-Maximization algorithm. This algorithm calculates the multivariate probability density 

function parameters with the setup of a Gaussian mixture distribution where the number of mixtures has 

been determined beforehand (De Souza et al., 2020). From this study, it was interesting to note that the 

best MAE scores were obtained not necessarily as expected. This is an encouragement for this study to 

take on new architectures that were previously not attempted.    

Yan & Kämäräinen (2021) estimates anthropometric measurements from images by directly regressing 

body images to body measurements. The method used leaves out the body reshaping phase. Nonetheless, 

a 3D body mesh is still used by learning a mapping derived from the body dimensions to the shape 

coefficient of a part-based shape model.  
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Mohammed Khan (2020) investigates to what extent principal component (PC) values can be predicted 

from body shape images and explores if viewpoint effects the prediction accuracy. Principal Component 

Analyses provides valuable insight on an individual’s overall shape as it captures multiple dimensions. 

Hence the PC values are used as training targets and they represent height and the waist circumference 

which are key for detecting malnutrition. The images are trained with the respective PC values as labels 

by use of CNN.  Viewpoint is found not to have significant effect on prediction performance. The study 

utilises Resnet50 and Inception V3 models both of which are CNNs. Resnet50 is often utilised as they allow 

many layers to be used in the CNN architecture.  This is enabled by the skip connections between layers 

and addresses the vanishing gradient issue.  Inception V3 varies the filters sizes which enables the model 

to capture the high detail in images (Khan et al., 2020). Equipped to capture high detail, it has a strong 

ability for pattern recognition and extracting features which is needed with training images (Mohammed 

Khan, 2020). 

Dhaliwal et al. (2020) predicts facial anthropometric measurements (e.g., height of face, nose width) in 

order to differentiate features between sub-ethnic groups from 2D images.  Deep learning architectures 

such as VGG16, ResNet50 and InceptionV3 were utilized and InceptionV3 was found to have the leading 

performance for accuracy. Features extraction was performed by using facial landmark detector which is 

composed of an ensemble of regression trees. This ensemble of regression trees was pre-trained on 68 

facial landmark positions.  

In this facial anthropometric measurements study (Dhaliwal et al., 2020), the experiment was run on both 

the raw dataset and also separately on the normalized dataset. Although the photographs were taken 

indoors where the lighting was controlled, other variations still exist. For instance, the face size and 

location can differ. Hence, normalization is essential in obtaining accurate predictions. Min-max 

normalization was chosen in line with facial health care research practice. Results indicated the 

normalized dataset had the stronger performance.  Since normalization has been described to be an 

essential task to perform prior to feature extraction, this leads to the motivation of selecting Big Transfer 

architecture which will be elaborated upon in the methods section.  

The process of selecting a deep learning network with its complex nature is of vital importance for 

improving the performance. Yet in practice, most often architectures are designed by experts in a trial 

and error manner (Devaguptapu et al., 2021). There are automated solutions such as neural architectures 

searches, however, these still operate on a trial and error basis to find the optimal architecture. In the 

method section, the two proposed architectures will be introduced and explained why better 
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performance is expected versus the baseline. However, given the fact that most architectures are 

improved by trial and error, to a certain extent this research will also be experimenting with new 

architectures.  

Yang et al. (2014) uses a novel approach to reshape and estimate human pose by a process called Semantic 

Parametric Reshaping. The pose and shape variations were gathered by utilizing the Shape Completion 

and Animation for People (SCAPE) method. This was performed on the CAESAR data set and what this 

data set precisely entails will be explained in the methods section. The SCAPE method estimates and builds 

the human shapes which is a vital concept of this research worth elaborating on. Anguelov et al. (2005) is 

the original paper introducing this method by building a unified model of human shapes. This entails that 

the method separately learns different types of model deformation. One model is dedicated to learning 

the pose of the human while the other model learns on the differences in body shapes between different 

humans.  Together these models are able to provide full body shapes with adequate level of detail. Even 

muscle deformation in various poses are embedded in the model.   

The pose deformation part of the model is derived from a collection of 3D scans of a single individuals in 

various poses. Within the pose model, deformation is further sub-divided into rigid and non-rigid 

components. The rigid component of deformation is represented with a low degree of freedom body 

shape. While the non-rigid component is responsible for modelling the residual deformation (e.g., flexing 

of muscles). Another characteristic of this model is that deformation is only dependent on adjacent joints. 

Due to this restriction, the data is relatively low dimensional and enabling the shape deformation to be 

learned with relatively smaller datasets (Anguelov et al., 2005). 

The SCAPE model also creates variations in shape between patients. This is done by using 3D scans of 

various people in various poses. The shape variation is modelled using Principal Component Analysis 

(PCA). One of the useful attributes of PCA is reduction of dimensionality. In this context, the subspace of 

human shape deformations is low dimensional. In addition, the variations in shape between patients does 

not confound the other pose and residual deformations. Maintaining isolation between these 

deformation types is essential for the model to perform (Anguelov et al., 2005). 

By isolating the modelling of pose and body shape deformation, this model simplification in turn leads to 

simplification of the mathematics. This is useful since the algorithms can be learned more efficiently 

enabling the computations to be run in shorter lead times.   On the contrary, some limitations require 

mentioning. By isolating types of deformation, this also prevents the model capturing trends where body 
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shape and muscle deformation show a strong correlation.  For instance, patients who are more muscular 

usually have more muscle deformation. However, this aspect is not captured by the SCAPE model 

(Anguelov et al., 2005). 

3   METHOD 

This section will provide a overview of the overall research process and the PCA technique is explained. 

The first step of the research process involves virtually rendering 3D shapes from actual humans which is 

depicted on the very left of figure 1. Afterwards, these 3D human shapes were used separately for two 

steps. The first step was to generate 2D images from these 3D human shapes which are later used as 

inputs to the CNNs (lower arrow in figure 1). Secondly, PCA was used on the 3D body shapes to calculate 

measurements which will be used as labels for the CNN (upper arrow in figure 1). After we have the PC 

values as our targets and the corresponding 2D images, we can train the CNN with these two inputs. 

Finally, the PC unit predictions from our CNN need to be transformed into millimetres for comparability 

with other studies.  

Figure 1  

Overview of the research process taken from the baseline study of Mohammed Khan (2020) 

 

3.1 PCA  

PCA is a technique that has been used in both the body shape formulation and PCA was also separately 

used to calculate the PC values that served as labels for our training.  As this research relies extensively 
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on the PCA method, it will be explained in this section. Datasets are increasingly large and complex to 

interpret. PCA is effective in reducing the dimensionality which increases the interpretability while the 

variability is preserved as much as possible.  This is achieved by creating new variables, or principal 

components, which are uncorrelated to one another. These new variables are defined by the current 

dataset being used as opposed to determined beforehand, making PCA an adaptive data analysis method. 

This adaptive exploratory method can be applied to various data types and is suitable for this thesis which 

is also exploratory in nature (Jolliffe & Cadima, 2016).  

The motivation of selecting PCA for this research resides with the ability to reduce dimensionality of 

complex data sets such as body shapes. Reducing the body shapes into low-dimensional PC values allows 

the CNNs to efficiently process and predict PC values. The PCA is capable of providing comprehensive 

insight on a human shapes as it captures data across multiple dimensions. Furthermore, this method 

provides uncorrelated PC values each representing a distinct body measurement. Enabling this study to 

select the relevant body parts such as height and waist circumference which are indicators of malnutrition. 

The fact that PCs are uncorrelated and treated in isolation translates into useful interpretability and can 

explain different PCs for different purposes for future research as well.  

To generate the labels for our data set, PCA was used on the human meshes to calculate the first ten PC 

values. For instance, the first PC values corresponds to the height, the second PC value is the belly. The S-

SCAPE method from Pishchulin et al. (2017) was utilized which is an updated version of SCAPE. The 

approach is not novel but it improved the SCAPE model by applying bootstrapping and posture 

normalization. In addition, the 3D human shapes were created based on the largest commercially 

available datasets. Previously, models were only based on small datasets which had limited shape 

variations. S-SCAPE has demonstrated improved performance versus SCAPE, in terms of rebuilding shapes 

and being more robust towards variations in posture caused by movement or tilting of the body.  

Besides the PCA, anthropometric measurements also can be predicted by detecting fiducial points on the 

contours from frontal and lateral body images.  Anthropometric measurements can be calculated by 

finding the difference between the two relevant fiducial points. Circumference measurements are 

calculated by use of the ellipsoid model (Aslam et al., 2017). This method was not chosen in order to align 

methodologies with the baseline study which also used PCA. For the baseline comparison to make sense, 

the same method needs to be implemented. Beyond this restriction, PCA is able to provide comprehensive 

human shape insight and is efficient to process for the CNNs as mentioned earlier.   
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4    EXPERIMENTAL SET-UP 

This section is dedicated to describing the detail the dataset and the experimental procedure. Including 

an explanation of the architectures models and how they work. Lastly, the evaluation criterion is 

discussed.   

4.1 Dataset   

Our data set contains virtual images of human bodies which act as input to our CNN and also the body 

shape measurements which are the labels to train with. In this section, the virtual body set will be 

explained, followed by the body shape labels and finally the image data set.  

4.1.1 Virtual body data set  

We used a dataset from a secondary source to acquire a virtual body dataset from the Semantic 

Parametric Reshaping of Human Body Models provided by Yang et al. (2014).  Which originates from the 

CAESAR database which stands for Civilian American and European Surface Anthropometry Resource. The 

original CAESAR database could have provided actual body measurements and would be more accurate 

to use these instead of predicted PC values. However, the financial cost to obtain this dataset made this 

not a feasible option. Hence, we used the body shapes provided by Yang et al. (2014) as our virtual dataset. 

The virtual dataset consists of 1,517 males meshes and 1,531 females meshes and is a subset of the 

original dataset. Patients were standing upright with both arms at their sides hanging freely. In the virtual 

dataset, virtual persons were anonymized as the face is not recognizable and all patients have grey skin. 

The meshes were not labelled therefore requires the next step in obtaining body shape labels outlined in 

the next paragraph.  

4.1.2 Body Shape Labels 

In order to get the PCs, PCA was applied to the 3D body shapes. The PC is the axes with the most variation. 

In the case of body shapes, the PC value (e.g., height) resembles the measure of variation in shape for that 

component. The first PC represents height and contains the most variation, the second PC value 

represents the belly measurement, the third and fourth PC value represent the female and male waist 

circumference respectively.   Matlab R2019 was used read the human shapes into a male and female 

matrix. PCA was then applied to both matrices in order to obtain the first ten PC values from both 

matrices.  These measurements served as the labels for our training.  
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4.1.3 Image data set  

Blender 2.82 was used to transform 3D virtual objects into 2D images. Within Blender 2.82, a virtual studio 

was set up and the camera captured images rotating 360 degrees around the patient. This process created 

185 images per patient with one image was taken for approximately every 2 degrees.  The distance from 

the person to camera is 1 meter and also one meter from the ground.   

In the figure below, images of one female is taken at various viewpoints. With 3K male and female 

individuals and 185 images per individual, this leads to approximately 564K images in total. This research 

was performed on a 100 male and 100 female individuals which consists of 37K images in total due to 

computational constrains of Google Colab. Images were cropped and rescaled to 224 x 224 x 3 for the 

same computational reason.  

Figure 2  

Female sample images used for training  

                            

 

4.2 Pre-Processing   

The advantage of using CCNs is the need for pre-processing is limited since it can recognize patterns well 

and extract the relevant features without having to alter the image. Input images were re-shaped to 224 

by 224. In addition, the input was also normalized to values between 0 to 1 by diving by 255.  

Further pre-processing included ensuring every image is aligned with the correct PC label. Secondly, 

confirming no data leakage exists between patients as there can be no overlap of images between 

patients. From the processing, it was found that one male image (“SPRING0001”) was contained in the 

female images collection. Further checking revealed no other issues with the same problem. Due to the 

fact that this is an isolated event and one image will not have any significant distortion on our results as 

one image accounts only 1% of the female dataset where training was performed on. No rectification was 

performed and there is a preference to not to alter the original dataset.   
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4.3 Models   

The research uses pre-trained CNNs which require labelled data and are supervised learning methods. 

CNNs are designed specifically for working with images and maintain the spatial and temporal 

dependencies (Duong et al., 2020). By using a kernel that convolves around the input image, the CNN also 

minimizes the number of parameters. This section discusses the two models this research is 

implementing.   

4.3.1 Big Transfer  

BiT is a newer variant and based on Resnet152.  BiT model utilises transfer learning for visual tasks where 

it pre-trains on very large supervised datasets which forms the starting point for fine tuning for other 

visual tasks.  In addition to scale, BiT replaces batch normalization (BN) with group normalization (GN) and 

weight standardization (WS). GN divides the channels into groups and normalizes by group. In doing so, 

the computations of GN are independent of batch size hence the accuracies are more stable when batch 

size can come in a wide spectrum (Kolesnikov et al., 2019). In practice, small batch sizes are used for 

tractability. Batch sizes often vary between train and test set and between pre-train and fine-tune etc.   

The architecture my research is replicating is use Resnet50 and Inception v3 both of which use BN. As 

both architectures in prior studies have used BN, this research uses BiT to apply GN which should bring 

about an improvement in performance. Furthermore, as BiT is a newer version based on Resnet, it would 

be reasonable to expect this updated variant to perform better.  Resnet50 is from 2015 while BiT is from 

2019.  

Qiao et al. (2019) elaborates on GN and finds that GN only outperforms BN for small batch sizes.  

Normalization is done at every neural network layer by mean centering. The mean is derived from the 

batch and is only meaningful is the batch is not too small. Although the batch size of 32 as used in the 

basemodel this is still sufficient, GN adds the possibility of using smaller batch sizes when scaling the size 

of the network. Larger networks can adopt a smaller batch size for computational reasons. Furthermore, 

when GN is used in conjunction with WS the results outperform the BN.  Just as GN normalizes the data 

at every layer of the network, WS normalizes the weights at every layer in a similar manner.  Earlier in 

related works section, Dhaliwal et al. (2020) established that normalized dataset performed more 

accurately than the raw dataset in the facial anthropological study. In this research, we expect to obtain 

improved prediction results by normalizing with GN and WS at every layer.  
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4.3.2 EfficientNet 

EfficientNet is a CNN architecture with a scaling method that uniformly scales up all three dimensions. 

Tan et al. (2019) introduces a systematic method of scaling up CNN since there are numerous ways to 

scale up. Scaling up has not yet been well understood and mostly is done arbitrarily. The paper establishes 

that different scaling dimensions (width, depth, resolution of CNN) are dependent on each other. For 

example, if width is increased, accuracy and efficiency are improved if the input resolution is also 

increased. Compound scaling method is used to balance dimensions when upscaling and scaling with a 

constant ratio. In general, compound scaling improves accuracy by 2.5% compared to single-dimension 

scaling methods. Intuitively this concept makes sense because the larger the input image, the more layers 

and channels are needed to capture the detail of the larger image. The EfficientNet B7 model can attain a 

state-of-the-art accuracy of 84.3% on ImageNet. At the same time, this CNN is 8.4x smaller and 6.1x faster 

compared to the best CNNs. This model is faster because there are less parameters to compute. 

The compound scaling technique provides the scaling ratios to be applied to the dataset. How can we be 

confident that these ratios will continue to work for the dataset of this research as well? To answer this 

question, it should be noted the wide spectrum of application of this model. The application of 

EfficientNet ranges from detecting COVID-19 from chest X-rays (Chowdhury et al., 2020) to the automatic 

classification of fruit to enhance productivity of traditional farming (Duong et al., 2020).  

For the purposes of this study, EfficientNet is a scaling method and is able to obtain improved accuracy 

and efficiency (Duong et al., 2020), therefore selected as an architecture to experiment with for this 

research. This study is exploring architectures with the primary aim to increase prediction accuracy of 

body measurements, however gains in efficiency can also prove to be valuable. With shorter processing 

duration, computationally it can be afforded to experiment with more hyper parameter settings. Although 

fine-tuning is not within the scope of this research, this could be valuable for future research.  This also 

simplifies any future fine-tuning as the number of possible configurations among width, depth and 

resolution parameters are vastly reduced by adhering to the compound scaling formula which has a track 

record in terms of prediction results.  
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4.4 Experiment Procedure  

Keras deep learning platform was used and online servers were used in order to accommodate for the 

large data size. The online platform used for this research was Google Colab Pro which has an Intel Xeon 

CPU of 2.2GHz with 2 cores. GPU memory and RAM are respectively 16GB and 24.4GB. Google. Resources 

are not guaranteed and actual specifications may vary when running due to availability and memory limits.  

The activation of neurons followed the Relu function and global average pooling was used in the fully 

connected layers. The output layer is linear function in order to change from classifier to a regression 

model. Learning rate initially set at 1e-3 and reduced by factor of 0.1 and a batch size of 32. Male and 

female subjects were trained separately to isolate gender bias.  

As this research is replicating the CNNs from Mohammed Khan (2020), the first part of the experiment 

was to replicate the code from the baseline model. In replicating the code, the majority of the original 

code was used. At certain places, minor adjustment needed to be made to get the code to work. The 

original code was not performed on Colab, the dataset is also slightly different and some code was added 

to split the images into train, validation and test set which was not provided by the original code. I will not 

elaborate in detail about these minor code adjustments as they will be different for the person replicating 

the code of this research depending on what platform will be used. The code for this research is made 

available in appendix B. Lastly, the parameters of the models were kept the same as the original study 

only the size of the input shape was adjusted to 224 by 224 to fit the images of this research.  

In order to use a subset of 100 images for male and female images, the file images had to be selected 

manually. The labels data frame also needs to be manually changed in excel to ensure only those 100 

patients are included.  Afterwards, the 100 images are compressed using RAR format and placed on a 

google drive where Colab can access the images.    

Colab uses Python 3.6 has all the packages this research needs installed already. The packages only need 

to be imported as they are installed already, the following packages were used: Tensorflow Keras, 

ImageDataGenerator, Sequential,  Sklearn, matplotlib, cv2, pandas, numpy, shutil.  

In line with the replicated research, mean absolute error (MAE ) is used for evaluation purposes and is 

defined by the following:  
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where n is the number of images yi is the predicted PC value and xi is the target label.    

The PC values are converted into millimetres in order to compare with other studies, by using the below 

formula obtained from Mohammed Khan (2020) for converting height.  

                 

   = new prediction value in millimetres  

   = old prediction value in millimetres  

   = standard deviation of height from CAESAR dataset  

 = standard deviation of PC1 representing height  

  = mean of height in CAESAR dataset  

The conversion of PC units to millimeters of waist circumference is given by the below formula 

(Mohammed Khan, 2020):  

 

   = new prediction value in millimetres  

   = old prediction value in millimetres  

 = standard deviation of waist circumference from CAESAR  

 = standard deviation of PC value which represents waist circumference  

 = mean of waist circumference in CAESAR dataset  
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5    RESULTS 

In this section, the results from height will be presented first along with a benchmark comparison with 

other papers.  Thereafter, weight results are presented.   

5.1 Height Results 

 

Inception performs the best for predicting both male and female height and has an average MAE of 

64.7mm (average of both sexes). Also in the baseline study, Inception was also the top performer 

outperforming ResNet. The second best performer in terms of average MAE is BiT with MAE of 68.1mm. 

Followed by ResNet at 74.2mm and the worst performance is from EfficientNet at 84.6mm. This is not in 

line with expectations as EfficientNet was expected to perform better versus the baseline models. BiT 

outperformed on Resnet by 6.1mm, however performed worse by 3.4mm compared to Inception on 

average MAE.   

From figure 3, the male MAE is performing significantly better compared to the female counterpart in this 

thesis and this trend is also evident in the baseline model.  

 

Earlier from figure 3, the MAE of the baseline model was significantly better than the proposed models 

on all fronts. However, when adding other studies to this comparison as shown in figure 4, the MAE of 

this thesis is closer to other studies such as Dantcheva et al. (2018) and Hartiosh et al. (2019).  When 

comparing results across different studies, it needs to be pointed out that these other studies are using 

facial images to predict height and not using full body images. Although they are also using the Resnet 

Figure 3 Height MAE in mm by CNN Model 
Female MAE in mm Male MAE in mm Average MAE in mm 

CNN Model This Thesis Baseline Model This Thesis Baseline Model This Thesis Baseline Model
Resnet 89.7 12.2 58.8 7.8 74.2 10.0

Inception 70.8 11.2 58.7 7.0 64.7 9.1
EfficientNetB0 90.0 n/a 79.2 n/a 84.6 n/a

BiT 71.0 n/a 65.2 n/a 68.1 n/a

Figure 4 Height MAE in mm by Various Papers  
Paper Model MAE in mm

Dantcheva, Bremond, and Bilinski 2018 Resnet  77-78
Haritosh et al. 2019 ResNet Resnet 73

Mohammed Khan 2020 Resnet 10.3
Mohammed Khan 2020 Inception 9.1

this thesis Resnet 74.2
this thesis Inception 64.7
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model, there are many factors that could lead to such differences as they are using facial images instead 

of fully body images to begin with.  

5.2 Waist Results  

The waist results were almost the same for all models except some minor variations depicted in figure 5 

below. For the average MAE, the two proposed models performed slightly better versus the two baseline 

models with the differences ranging between 0.8mm to 1.6mm and arguably insignificant. The difference 

comes from the male results since female results virtually performed equally across all models at 120mm.  

 

When carrying out this research, it was noticeable that the results were significantly better when using 

less epochs.  The baseline model uses 50 epochs and all the parameters had to kept consistent for the 

baseline comparison to be meaningful. However, it is worth noting that the models performance 

deteriorated rapidly as epochs was increased as shown in Figure 7 below. The reasons for this will be 

treated in the next discussion section.  

 

 

 

 

Figure 5 Waist MAE in mm by CNN Model 
Female MAE in mm Male MAE in mm Average MAE in mm 

CNN Model This Thesis Baseline Model This Thesis Baseline Model This Thesis Baseline Model
Resnet 120.2 75.6 122.9 44.3 121.5 60.0

Inception 120.7 72.9 122.9 44.1 121.8 58.5
EfficientNetB0 120.8 n/a 119.5 n/a 120.2 n/a

BiT 120.9 n/a 120.7 n/a 120.8 n/a

Figure 6 MAE by Epochs for EfficientNet Females
Epoch Height 

1 73.3
2 77.3
3 82.5
5 93.5

50 84.6
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6   DISCUSSION AND RECOMMENDATIONS  

The goal of this research is to study how effective the two proposed models are compared to the two 

baseline models. The results of height are discussed followed by waist circumference and some 

recommendations for future research.   

From our height results, Inception model is the top performing model, followed by BiT, ResNet and 

EfficientNet in order of ranking performance. The fact that Inception outperformed ResNet is in line with 

prior research results (Mohammed Khan, 2020; Dhaliwal et al., 2020). However, it was not expected in 

this research for EfficientNet to be the worst performer. EfficientNet, equipped with compound scaling 

technique was in theory expected to obtain improved accuracy and efficiency (Tan et al., 2019). One 

possible explanation could be that introducing scaling and more complexity is not the solution in this 

context. Instead feature extraction could be more vital as Inception and ResNet are both strong for such 

qualities.  

As mentioned in the methods section, the intention of selecting EfficientNet is to experiment with and 

find architectures that are efficient and therefore can be deployed on mobile devices. In terms of result 

rankings EfficientNet does rank last, however, this thesis would argue that this model could still be useful. 

As outlined in related studies section, other studies have attempted to use ResNet50 (Fialho et al., 2021), 

and failed to generate any results on mobile devices for Resnet50 due to computational constraints of 

mobile devices. Therefore, even though ResNet outperforms EfficientNet on prediction accuracy in this 

research, it could be possible that Resnet will not work for the CGM on mobile phone applications. In that 

case, EfficientNet could be an option which sacrifices some accuracy for computational efficiency required 

on mobile devices.   

Furthermore, it is important to note that the results explained earlier are based on the exact architecture 

configuration of the baseline models. EfficientNet did not have the benefit of tuning or adjusting any 

parameters unlike the baseline models. Proposed models adapted the exact same configuration in order 

to allow meaningful comparability between the models. However, when performing a some tuning on the 

EfficientNet, the female MAE was able to improve from 90.0mm to 63.7mm with only a few adjustments. 

This tuning was only a preliminary analysis by applying dropout function and experimenting with different 

learning rates and early stopping configurations with Keras tuner. The results of the initial tuning analysis 

for all models are included in the appendix B. Further research can follow this starting point to study fine 
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tuning of these models and finding a method to maintaining comparability as different tuning methods 

will have different impacts on different architectures.  

BiT lagged behind Inception, however, BiT still significantly outperformed ResNet for height by 6.1mm 

MAE. These results indicate that the normalizing with GN and WS at every layer has had a positive impact 

on prediction accuracy. This exploratory research has found indications that normalizing techniques help 

improve the prediction accuracy of these models. This does require further testing, however, future 

research involving selection of CNN models can consider choosing models with normalisation 

components. In addition, as BiT is a updated version of Resnet, the results indicate that adopting newer 

versions are beneficial to the prediction accuracy.  Note that this is for the height results.   

For the waist results, the improvement in performance of the proposed models versus baseline are so 

small and considered insignificant. The waist results do not produce the confidence to claim an improved 

model has been found.  The reason why the waist results show so little variation between models is not 

fully understood. One possible reason is for waist a circular circumference has been assumed and reality 

would be more accurately reflected by an ellipse instead (Mohammed Khan, 2020). Compared to the 

height results, waist error is also significantly higher for this thesis and also the baseline study. Since the 

waist error was also relatively larger in prior studies, future work can explore the underlying factors of 

why waist MAE is structurally and significantly larger.   

In the final part of the results, figure 7 depicts the MAE deteriorating rapidly as the number of epochs 

increases. This is most likely due to overfitting which a common issue with large neural networks. Some 

measures to counter this overfitting are methods such as adding dropout function, tuning the early stop 

parameter to cease earlier, and regularization.    

De Souza et al. (2020) explored with eight different algorithms to study accuracy on predicting bodily 

measurements.  ResNet50 and Inceptionv3 have been chosen for their known ability to extract features 

from images useful in the baseline study (Mohammed Khan, 2020). And although the results of these two 

baseline models have shown improvement against other studies, other algorithms should not be 

disregarded. Alternative approaches may exist for the same problem and other algorithms may perform 

better than expected. In the related works section (Devaguptapu et al., 2021) pointed out the complex 

nature of deep learning and noted in practice architectures are designed in trial and error manner. The 

same trial and error mind set can be applied in finding different algorithms. Future research could be done 

by testing other algorithms in the context of the CGM.  
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Our results also noted that male outperforms females. The reasons for this gender bias is unclear as this 

research processed male and females separately and underwent the exact same process.  Further 

research could be done to explore why such variation occurs.   

6.1 Limitations  

The proposed models have been implemented based on the exact configuration of the baseline model 

and unlike the baseline model, it did not have the benefit of tuning parameters. A little change in the 

hyper parameter settings can have a sizeable effect on the performance of the model. The configuration 

was kept completely identical for comparability but this introduces an unlevelled playing field. This was 

mentioned earlier in detail in the discussion section and it is a limitation of this research. At the same 

time, the results are still valid as all models have been subjected to the exact same process and 

parameters. This allows comparability between models, hence in the results and analysis comparisons 

and rankings have been used.  

From comparing the results of the proposed models against the baseline model, results indicate that the 

proposed model is lagging behind the baseline model results significantly for both male and females. It is 

worth mentioning that although this research is replicating the baseline model, there are still differences 

to be accounted for. For instance, the structure of dataset is different to begin with. The baseline model 

has 100 images for every patient as opposed to 185 images per patient for this research.  The total number 

of images also is different as the baseline study used 66K images versus 37K images in this thesis in total 

for both males and females.  Any changes in the complex landscape in CNNs can lead to a sizeable change 

in overall performance. The inter-study comparison of heights MAEs should be understood with caution 

since different studies have used entirely different methods. However, we have included such 

benchmarks in order to have an approximation of where our results lie in relation with other academic 

studies.    

The difference in images per patient could also be an advantage for the baseline model. Since Mohammed 

Khan (2020) established that viewpoint does not matter for the prediction performance of body 

measurements, having more images per patient should in theory not be advantageous and only add to 

the computational workload. For future studies, it would be interesting to study only several images per 

patient. Doing this analysis would allow the results to incorporate far greater number of patients within 

the computational constraints. Increasing the number of patients studied would help alleviate overfitting. 
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Lastly, our training targets we have used estimations instead of actual measurements. Purchasing the 

CAESAR dataset with the actual human measurements would be the solution, unfortunately the large cost 

makes this an unfeasible option.   

7   CONCLUSION 

This thesis explored different CNN architectures for predicting body measurements from 2D images. In 

particular, the effectiveness of EfficientNet and Big Transfer architectures compared to the baseline 

models of ResNet50 and Inceptionv3 were assessed. 

The newly proposed BiT architecture outperformed Resnet by 6.1mm at 68.1mm for average MAE for 

height.  However, BiT performed worse by 3.4mm and Inception is the strongest performer at 64.7. Even 

though BiT is still lagging slightly behind Inception, it has managed to outperform Resnet considerably. In 

doing so, future research can adopt BiT as one of the models or other models which contain normalization 

features. This is only for the height and more studies need to be carried out for the weight before reaching 

any conclusion.  

EfficientNet ranked last at 84.6mm for average MAE, however can still be useful for mobile devices where 

computational constraints play a vital factor.  Further research should also take into account the efficiency 

of models since the CGM is eventually deployed on a smartphone.  
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APPENDIX A  

Preliminary analysis of tuned vs non-tuned models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Female Height MAE in mm 
CNN Model Tuned Non Tuned

Resnet 61.9 89.7
Inception 71.2 70.8

EfficientNetB0 63.7 90.0
BiT 65.2 71.0

Female Waist MAE in mm 
CNN Model Tuned Non Tuned

Resnet 94.884 120.191
Inception 106.100 120.651

EfficientNetB0 107.25673 120.846
BiT 118.152 120.863
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APPENDIX B 

Below are the links to Google Colab links containing the code used in this research. For every model 

male and female have separate code.  

ResNet CNN Male:  

https://colab.research.google.com/drive/12yz-qmsc4ixN6MK4bXHWlDo5FuY-cH9h?usp=sharing 

Inception CNN Male:  

https://colab.research.google.com/drive/1ab2DU14mXKJv2td7BV2sE2EKoYZO4OnX?usp=sharing 

EfficientNet CNN Male:  

https://colab.research.google.com/drive/1NomPKjZRg0ZFwuekDsnZM-e_4RspMGmQ?usp=sharing 

Big Transfer CNN Male:  

https://colab.research.google.com/drive/1Gja5YkXJYMDSA4cEr54PAa5gZPEHOgjq?usp=sharing 

 

ResNet CNN Female:  

https://colab.research.google.com/drive/1QMmXA0QataAliuJvuIvzlVjmJ-_AZdjj?usp=sharing 

Inception CNN Female:  

https://colab.research.google.com/drive/1q8GpslKnF_jr8C3PWhxJRoFzOnJl_Z1A?usp=sharing 

EfficientNet CNN Female:  

https://colab.research.google.com/drive/1Ea_HWt49ipL1BdOpAMNncEnMg6yvRfbK?usp=sharing 

Big Transfer CNN Female:  

https://colab.research.google.com/drive/1sDr2JYybJ0JISzuJ5nzbJlZVHxFhJuIE?usp=sharing 

 

Example of Tuned EfficientNet CNN Female:  

https://colab.research.google.com/drive/1ufHsZ27PH1cmjVtTts4e4iLa7PF1S_FT?usp=sharing 


