
Applying Cost-Sensitive Machine
Learning Models to Loan Default

Prediction

Ben Hover
STUDENT NUMBER 2000240

THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN DATA SCIENCE & SOCIETY
DEPARTMENT OF COGNITIVE SCIENCE & ARTIFICIAL INTELLIGENCE

SCHOOL OF HUMANITIES AND DIGITAL SCIENCES
TILBURG UNIVERSITY

Thesis committee:

Supervisor: dr. R.J.C.M. Starmans
Second reader: dr. E. Fukuda

Word count: 8,594

Tilburg University
School of Humanities and Digital Sciences

Department of Cognitive Science & Artificial Intelligence
Tilburg, The Netherlands

January 2022



Data Science & Society 2022

Acknowledgements

I wish to express my gratitude to my family, especially my father, for always supporting
me, both mentally and financially. Their support was of great importance in completing
not only this project, but more importantly the master’s program as a whole. Further-
more, I want to give special appreciation to dr. Richard Starmans for providing excellent
supervision throughout the entire process. Lastly, I would like to thank dr. Eriko Fukuda
for the effort of being the second reader.

I hope you enjoy reading this thesis,

Ben Hover



Contents
1 Introduction 1

1.1 Machine learning for loan default prediction . . . . . . . . . . . . . . . . . 1
1.2 The Small Business Administration . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 5
2.1 Credit risk assessment of small businesses . . . . . . . . . . . . . . . . . . . 5
2.2 Loan default prediction using machine learning models . . . . . . . . . . . 5
2.3 Cost-sensitive learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Macroeconomic indicators for non-performing loans . . . . . . . . . . . . . 6
2.5 Sector-specific and common credit risk factors in non-performing loans . . 7

3 Methods 8
3.1 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Random forest along with hyperparameters . . . . . . . . . . . . . . . . . . 9
3.4 XGBoost along with hyperparameters . . . . . . . . . . . . . . . . . . . . . 10
3.5 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.6 Receiver operating characteristic curve and area under the curve . . . . . 13
3.7 Indirect cost-sensitive learning by cost-proportionate case weighting . . . 13
3.8 SHAP values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.9 Robustness test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Experimental Setup 16
4.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Software packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Training and test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Results 19
5.1 Hyperparameter values of random forest and XGBoost . . . . . . . . . . . 19
5.2 Classification with all predictors . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Results of robustness test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Discussion 27
6.1 Classification performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Contributions to literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Limitations and recommendations for further research . . . . . . . . . . . 27

7 Conclusion 29



List of Tables
1 Search domains of hyperparameters in XGBoost . . . . . . . . . . . . . . . 11
2 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Descriptive statistics of loan attributes and macroeconomic indicators . . . 17
4 R packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5 XGBoost’s tuned settings for hyperparameters . . . . . . . . . . . . . . . . 19
6 Classification results of ML models with the best scores of each metric in

bold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7 Summary of logistic regression output . . . . . . . . . . . . . . . . . . . . . 22
8 Robustness test for XGBoost model, with different sets of predictors and

best scores in bold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



List of Figures
1 Confusion matrix of XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2 Graphical depiction of pruned DT . . . . . . . . . . . . . . . . . . . . . . . 23
3 SHAP values of individual predictors. . . . . . . . . . . . . . . . . . . . . . 24
4 ROC-curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



Data Science & Society 2022

List of Abbreviations

AUC Area Under the Curve

CS Cost-Sensitive

CSL Cost-Sensitive Learning

CS Cost-Sensitive

CV Cross-Validation

DT Decision Tree

FN False Negatives

FP False Positives

HPI House Price Index

LR Logistic Regression

ML Machine Learning

NPL Non-Performing Loan

RF Random Forest

SBA Small Business Administration

SHAP Shapley Additive exPlanations

TN True Negatives

TP True Positives

TPE Tree Parzen Estimator

U.S. United States

U.S.A. United States of America

VIX Volatility Index

XGBoost eXtreme Gradient Boosting



B. Hover Loan Default Prediction

Abstract

This thesis investigated the predictive performance of logistic regression, decision tree, random
forest and XGBoost for predicting loan default by using a dataset from the Small Business
Administration. Random forest and XGBoost are state-of-the-art models and were compared
against logistic regression and decision tree. The literature shows that correctly predicting non-
performing loans continues to be difficult, as loan datasets typically suffer from the inherent class
imbalance problem. Cost-sensitive learning is implemented to discover whether this method may
prove to be an adequate solution to class imbalance. This thesis found that XGBoost exhibits
the best results in loan default prediction. Furthermore, cost-sensitive learning considerably
increases the number of correctly predicted non-performing loans in the logistic regression,
decision tree and random forest. Moreover, this thesis explored the attribution of macroeconomic
conditions and sectors (in addition to loan attributes) to loan default probabilities. This thesis
established that both macroeconomic indicators and sectors improve predictive performance, with
sectors contributing most.



Applying Cost-Sensitive Machine Learning
Models to Loan Default Prediction

Ben Hover

1 Introduction

In this chapter, an overview of the background, purpose and scope of this thesis is provided.

1.1 Machine learning for loan default prediction

Firstly, machine learning (ML) based models have increasingly been adopted by nu-
merous domains, including credit risk assessment. Potentially, the implementation of
supervised ML techniques could improve traditional risk assessment because ML mod-
els offer a much broader view of a loan applicant than mere linear calculations of a small
number of risk factors. Indeed, the traditional risk scoring model typically gives mixed
and unreliable results (Ereiz 2019). Several ML algorithms have been investigated in the
literature with regard to default prediction, including logistic regression, decision tree,
random forest and XGBoost. Nevertheless, the highly imbalanced nature of loan data
still remains a problem, as the cost of incorrectly predicting a fully paid loan is typically
higher than the benefit of correctly doing so.

Secondly, ML models may prove a relevant remedy for predicting loan defaults for
businesses that have little credit information available, such as small businesses. Due
to this lack of information, information asymmetry arises and subsequently results in
adverse selection and moral hazards (Cassar, Ittner, and Cavalluzzo 2015). Therefore,
small businesses typically experience difficulties in accessing the credit market. The
next section provides more information about the nature of small businesses and small
business administration.

Thirdly, several empirical studies have confirmed that the number of non-
performing loans (NPLs) is related to various key macroeconomic indicators. However,
there is no consensus about the direction of the impact of these variables. In light of
this lack of clarity, it was interesting to study the individual contributions of important
macroeconomic indicators on the output of the ML models considered in this thesis.
Rather than trying to choose among the large number of macroeconomic indicators a
priori, the indicators were chosen from three classes: 1) general economic conditions
(e.g. inflation, house price index and unemployment rate); 2) the direction in which the
economy is moving (e.g. real GDP growth, policy uncertainty and business confidence);
and 3) a set of indicators of the financial market conditions (e.g. risk premium rate,
volatility index). Obviously, the sole use of macroeconomic variables is not optimal
when predicting loan defaults; therefore, loan characteristics should also be included
in ML models.

Lastly, knowledge on the persistence of shocks to specific sectors of the economy is
relevant from a lender’s point of view because such knowledge can help minimise the
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impact of sector shocks to the number of NPLs. According to (Lee and Poon 2014), credit
loss in the U.S. banking system is mainly caused by the real estate loan sectors. Gosh
(2017) also found that the construction and agriculture sectors should be intensively
monitored to reduce the number of NPLs. However, any business’ credit risk is gener-
ally driven by shared risk factors affecting all sectors (Elizalde 2005). Consequently, it is
relevant to investigate the attribution of the sectors as a whole to the model output and
the individual contributions of the real estate, agriculture and construction sectors.

1.2 The Small Business Administration

A small business is formulated as privately owned corporation, partnership or sole
proprietorship with fewer than 500 employees. The U.S. Small Business Administra-
tion (SBA) is a government agency devoted to stimulating economic growth and the
development of small businesses and lenders across the U.S.—in part, through their
loan programs. The agency does not lend directly to small business owners. Instead, it
formulates guidelines for loans made by its partnering lending institutions. The SBA
reduces the lending risk taken on by small business by guaranteeing a percentage of the
loan. 1

1.3 Purpose

This thesis focused on the performance of ML techniques for loan default prediction.
An accurate model for default prediction is beneficial to both lenders and borrowers.
On the one hand, an accurate prediction can prevent borrowers from taking on too
high of a loan, thereby averting bankruptcy costs. Moreover, improving loan default
prediction decreases the default risk, resulting in lower interest rates for borrowers. On
the other hand, an accurate prediction ensures that lenders are better able to identify
risky borrowers.

The first research question was developed to measure the performances of logistic
regression (LR), decision tree (DT), random forest (RF) and XGBoost for loan default
prediction. Specifically, it sought to confirm whether tree-based algorithms, which the
literature has found to be effective for firms, is also effective for small business loans.

Research question 1:

“For a chosen set of machine learning algorithms, which algorithm exhibits the best
performance in loan default prediction with respect to specific model evaluation metrics?”

One novelty in this thesis is that the XGBoost model was compared to both cost-
insensitive and cost-sensitive LR, DT and RF models to investigate whether the
prediction of NPLs could be improved. This approach to loan data has not yet been
used in the literature, and it is relevant since it could reduce the cost of false negatives,
as the downside risk of default is up to 100%.

1 Source:https://www.sba.gov/
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Sub-question 1.1:

“What is the effect of indirect cost-sensitive learning with cost-proportionate weights on the
predictiveness of non-performing loans?”

Also, the existing literature has found statistically significant relationships between
macroeconomic variables and the number of NPLs. However, the predictive capability
of macroeconomic variables with regard to the binary classification performance
of machine-learning based techniques has remained untouched. Consequently, the
capability of macroeconomic variables in predicting loan default was investigated
through research question 2.

Research question 2:

“To what extent is loan default prediction by machine-learning-based approaches attributable to
macroeconomic variables?”

In addition, inflation, real GDP growth, business confidence and house price index
tend to negatively relate to the number of non-performing loans as has been found
in existing literature. However, the significance of these results differs across studies,
therefore the direction of the impact of macroeconomic variables remains inconclusive.
To examine whether these indicators are also negatively related to loan default
probabilities, the relationship between these indicators and the probability of default is
examined through sub-question 2.1.

Sub-question 2.1:

“How are real GDP growth, business confidence index, and house price index related to loan
default probabilities?”

Furthermore, inflation, unemployment, economic policy uncertainty, risk premiums
and the volatility index tend to positively relate to the number of NPLs in the empirical
literature. However, the statistical significance of this direction differs across studies.
Sub-question 2.2 was developed to explore the direction of the impact of these
macroeconomic determinants on loan default probabilities.

Sub-question 2.2:

“How are inflation, unemployment, economic policy uncertainty, risk premiums and the
volatility index related to loan default probabilities?”

As mentioned above, there is no consensus in the literature about the role of sector-
specific risk on the number of NPLs. Rather, some studies insist on the systematic risk
present across all sectors, whereas other studies emphasise the sector-specific credit
risk. For that reason, the effect of sectors on loan default prediction was studied through
research question 3.

3
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Research question 3:

“To what extent is loan default prediction by machine-learning-based approaches attributable to
sectors?”

Finally, to study the direction of the impact of the real estate, construction and
agriculture sectors on loan default probabilities, the contribution of these sectors to
loan default prediction was individually assessed.

Sub-question 3.1:

“How are the real estate sector, the construction sector and the agriculture sector related to loan
default probabilities?”

1.4 Scope

The scope of this thesis was to investigate how various supervised ML techniques affect
loan default prediction. The model evaluation metrics of special interest in this thesis
were precision, recall, F1-score, AUC score and Kappa measure. The classifiers used
were as follows:

• Logistic Regression

• Decision Tree

• Random Forest

• XGBoost

The XGBoost and RF ensemble methods have proven to outperform the decision tree
and logistic regression model in literature. However, due to the high interpretability
and explainability of the results of LR and DT, it is relevant to include these models in
this thesis.

1.5 Main findings

This thesis found that the XGBoost model exhibited the best performance with regard
to loan default prediction. Next, this thesis has extended existing literature in two ways.
First, applying a cost-sensitive approach to logistic regression, decision tree and random
forest increases the number of correctly-identified NPLs. Second, loan default prediction
is attributable to sectors and macroeconomic indicators. Furthermore, the results of the
LR have shown that the agriculture and real estate sectors significantly positively relate
to loan default probabilities. Meanwhile, the construction sector was not significantly
related to loan default probabilities. This thesis also found that unemployment, the
growth of real GDP, risk premiums, the house price index and the volatility index were
significantly positively related to loan default probabilities. Similar to existing literature,
the relationship between inflation and loan default probabilities was ambiguous, as the
coefficient of inflation, even though significant, was approximately zero.

4
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2 Related Work

In this chapter, small business lending is briefly discussed. Thereafter, the LR, DT, RF and XG-
Boost models and their performances in default prediction are discussed. Lastly, the importance
of macroeconomic variables is reviewed, and the sector-specific and common risks concerned with
loan default prediction are considered.

2.1 Credit risk assessment of small businesses

First of all, a distinguishing characteristic of the credit markets that supply small busi-
nesses loans is that they suffer from information and agency problems that are caused
by a lack of information on the creditworthiness of small businesses. This limitation is
mainly caused by the fact that small firms often do not have audited financial statements
and are likely not monitored by credit rating agencies (Ortiz-Molina and Penas 2008).
Credit scoring is a statistical approach to predicting the loan default of a loan applicant.
Even though this method of assessment is firmly established in consumer credit mar-
kets, it has only been applied to small businesses’ credit evaluation for a relatively short
period of time.

2.2 Loan default prediction using machine learning models

In early approaches to statistical loan default prediction, the focus was mainly on
linear classifiers, such as LR, where the predictors are used in the model in a linear
combination. Indeed, LR is a benchmark model in the field of credit risk, especially
since the lack of interpretability of ensemble methods conflicts with the needs for credit
assessment (Dumitrescu et al. 2021). More specifically, for linear models such as LR, the
coefficients and their significance show which predictors are important determinants for
default prediction, whereas ensemble methods are often characterised as a ‘black box’
(Xia et al. 2021). More recently, nonlinear methods such as DT, RF and XGBoost have
been proposed for default prediction. In contrast to linear models, tree-based models
can learn nonlinearities, discontinuities and complex interactions.

Moreover, since DT, RF and XGBoost use trees as base learners, they are resistant
to outliers in predictors and scale invariant to monotonic transformations for predictors
(Sigrist and Hirnschall 2019). Next, tree-based learners is that their predictive perfor-
mance is not decreased by the issue of multicollinearity, whereas linear learners cannot
deal with high correlation between predictors (Kruppa et al. 2013). Besides, decision-
tree-based classifiers can predict loan defaults via automated iterations without manual
intervention, which has both practical value for loan prediction (Zhou et al. 2019). In
many prediction tasks for imbalanced and high-dimensional data, these algorithms
have achieved desirable prediction results. Accordingly, decision-tree-based algorithms
have proven to be advanced algorithms developed for loan default prediction in recent
years. Recently, though, extreme gradient boosting has become one of the state-of-the-
art models. This relatively novel approach is known for its rapidness, efficiency and
capability of parallelization.

5
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2.3 Cost-sensitive learning

In loan default prediction, predicting positive cases as negative is more harmful than
vice versa. Therefore, it is relevant to investigate how the minority class, that is, de-
faulted loans, can be better detected by ML models. (Zadrozny, Langford, and Abe
2003) propose cost-sensitive learning (CSL) to approach the common problem of class
imbalance in loan default prediction. In CSL, there is a penalty associated when an
observation is misclassified; this penalty is referred to as cost. The aim of CSL is to min-
imise the total cost of misclassification (i.e. the sum of the cost of incorrectly predicting
the negative class and the cost of incorrectly predicting the positive class).

Indirect CSL aims to minimise misclassification costs by assigning weights to classes
in the training set. There are two empirically set methods for assigning weights: weight-
ing by inverse class frequency and weighting by a smoothed version of the inverse
square root of class frequency (Cui et al. 2019). The class frequency is based on the
relative number of examples of the negative and positive class. Thus, the cost of incor-
rectly predicting the negative class will be relatively high, as the inverse frequency of
the positive class will be higher than the inverse frequency of the negative class. The
smoothed version of weighting has resulted in better performances than weighting by
inverse class frequency; therefore, this method is adopted (Cui et al. 2019).

2.4 Macroeconomic indicators for non-performing loans

The relationship between the number loan defaults and macroeconomic conditions has
been discussed by connecting the economic boom and bust cycles with the financial
distress of businesses. Intuitively, if the economy is growing fast, it is naturally in
a better state than if it is declining. (Hussain, Khalil, and Nawaz 2013) and (Makri,
Tsagkanos, and Bellas 2014) argue that an increase in GDP growth negatively relates
to the number of defaults as the ability of firms to repay their loans is high. Still, the
economy is able to grow most quickly when there is insufficient demand relative to what
the economy is capable of producing, known as a ‘period of economic slack’ (Figlewski,
Frydman, and Liang 2012). Therefore, from the perspective of (Figlewski, Frydman,
and Liang 2012), it is less obvious that rapid growth in GDP should necessarily be
associated with low risk of default. According to (Marcucci and Quagliariello 2008),
there is a relationship between the change in business cycle and NPLs. More precisely,
during economic booms, lenders tend to increase their lending activity in combination
with relaxing their selection criteria, thus leading to fewer NPLs. In contrast, during
downturns, the lending restrictions are tightened remarkably, resulting in an increase
of NPLs. In addition, it is argued by (Figlewski, Frydman, and Liang 2012) that the un-
employment rate is one of the most visible indicators of the health of an economy. High
unemployment adversely affects income and thereby reduces an economy’s output.

The impact of inflation on the number of NPLs is rather ambiguous. On the one
hand, higher inflation can make repaying debt easier by diminishing the real value
of loans; however, it can also diminish the borrowers’ real income when wages are
sticky-down (Klein 2013). That is, the nominal wages of employees of a borrowing
firm are above the equilibrium because employees resist nominal wage cuts. Moreover,
the impact of inflation depends on whether the interest rates are variable, as higher
inflation can cause interest rates to increase due to the contractionary monetary policy
strategy to limit the increase of inflation (Tanasković and Jandrić 2015). As a result,
an increase in interest rates boost the costs of lending, thus increasing the risk of loan

6
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default. Moreover, a rise in home prices boosts financial wealth and may help borrowers
facing unexpected adverse shocks, or such a rise eases their access to credit by increasing
the value of the houses used as collateral (Ghosh 2017). Consequently, positive changes
in the housing price index (HPI) are expected to diminish the number of NPLs – in
particular, for the real estate sector. However, an increase in the HPI accompanied by
higher inflation may partially extinguish the decrease in the number of NPLs, as higher
inflation diminishes the real value of houses.

Furthermore, (Vouldis and Louzis 2018) argue that the business confidence index,
which is an indicator of business sentiment, is negatively related to the number of
NPLs. On the other hand, economic policy uncertainty, which reflects the frequency
of articles containing negative sentiments in U.S. newspapers, positively relates to the
number of NPLs (Karadima and Louri 2021). According to (Karman et al. 2016), there is
also a significant positive relationship between the risk premium rate and the number
of NPLs. Another primary determinant of NPLs is the unemployment rate, which is
significantly positively related to the number of NPLs (Vouldis and Louzis 2018). The
inflation rate, which measures the change in the prices of a basket of goods and services,
can be either positively or negatively related to the number of NPLs (Nkusu 2011).
The volatility index (VIX), which measures the volatility of the U.S. stock market, also
positively relates to the number of NPL (Makri, Tsagkanos, and Bellas 2014).

2.5 Sector-specific and common credit risk factors in non-performing loans

In various empirical studies, the role of economy-wide risks in relation to default risks
have been frequently discussed. However, a scarce number of studies have investigated
the influence of sector-specific risks. (Lee and Poon 2014) found that in addition to
economy-wide credit risk, the real estate sector is one of the main contributors to the
credit risk in the U.S. banking system. This significant contribution is mainly due to the
subprime crisis of 2008, where the real value of houses dropped dramatically.

Next, an increase in real GDP has been proven to significantly reduce NPLs for the
real estate, construction and agriculture sectors (Ghosh 2017). Moreover, increases in the
HPI diminishes NPLs for all sectors in general – again with real estate, construction and
agriculture showing the highest sensitivity.

Conversely, there is also evidence that firms’ default probabilities are driven most
by a number of common macroeconomic risk factors. Unfortunately, most of these risk
factors are unobservable and therefore difficult to incorporate into ML models. (Elizalde
2005) shows that a sole common risk factor accounts for more than 50% of the business’
credit risk levels, with an average of 68% across firms. Another common and observable
factor is the evolution of the structure of interest rates, which is also associated with the
credit risk of the firms’ sector of activity. Nevertheless, this association seems to be less
influential than the unobservable risk factors.

7
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3 Methods

In this chapter, the characteristics of the ML models are provided, the evaluation metrics that are
of interest are discussed and the robustness test is explained.

3.1 Logistic regression

Logistic regression is a linear supervised learning algorithm that is used to calculate
the probability of a loan to default. The probability is calculated by taking the sigmoid
function of a linear combination of predictors and results in a value ranging from 0 to 1.
The predicted probability of X belonging to the positive class:

P (y = 1|X) =
1

1 + e−(a+bTX)
(3.1)

where e is Euler’s number, a is an unknown parameter, b is an unknown vector with
parameters and X is a predictor vector.

The goal of the LR model is to optimise the unknown parameters a and b so that
Eq. 3.1 will give an output as close to 1 as possible for the predicted values that are
correctly-identified as members of the positive class. The LR is of interest in this thesis
because the results of this algorithm show the coefficients of the predictors with their
respective significance. Thus, the contribution of the predictors on the probability of
default can be individually assessed, which is an advantage over ensemble methods.
Both the DTs and LR use decision boundaries to separate classes. However, a DT is able
to divide the decision space into increasingly smaller regions with nonlinear decision
boundaries, whereas logistic LR only fits a single linear boundary to divide the decision
space (Kim 2016).

3.2 Decision tree

Unlike LR, DTs are nonlinear classifiers that identify ways to classify observations based
on how previous questions are answered. A DT is a tree-like graph: The base of the tree
is the root node, and from the root node flows a sequence of decision nodes showing
possible decisions and finally resulting in a leaf node with the predicted class label
(e.g. a defaulted loan). For classification, the Gini impurity is a widely used measure to
choose the best predictor to split on at each step in building the tree. The Gini impurity
measures the probability of misclassifying an observation. A DT splits the nodes on all
predictors and then chooses the variables with the largest decrease in Gini impurity.

IG =

1∑
i=0

p(i) ∗ (1− p(i)) (3.2)

where IG is the probability of misclassifying an observation, i denotes the class and p(i)
is the probability of observing an observation of the i-th class.

A DT has some advantages when classifying loans. First, the interpretation of the
results in a DT is simple. Once the DT has been fitted, new observations can be rapidly

8
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predicted by only using a number of if-then statements. This attribute is useful for
addressing loan default prediction since the DT can provide insight into the relationship
between the predictors and the target. Second, since a DT is nonparametric, it is able
to generate if-then statements which do not require any implicit assumption about
the underlying distributions of the variables. Third, a DT is capable of learning the
nonlinear behavior of predictors, which is relevant since loan data predictors typically
behave in a nonlinear way (Zhao and Zou 2021).

Even though introducing nonlinearity usually increases complexity, a DT is able to
implement nonlinearity in a interpretable manner. Furthermore, overfitting of the DT
can be avoided by decreasing the size of the DT, this technique was used in this thesis.
DTs are useful for loan default prediction since they are intuitive and interpretable,
compared to the ensemble models. However, a DT is more sensitive to data patterns
than LR, as any minor change in the training set can drastically change the tree and
significant change in the predictions.

3.3 Random forest along with hyperparameters

Similar to the DT, RFs are nonlinear classifiers. RF is based on an ensemble technique
of many individual DTs, also known as bagging. In bagging, a random subset of
the training data is created with replacement. For classifications, all individual trees
independently make predictions of the output class and the majority class is chosen as
output value. The majority vote can be calculated as follows:

f̄(X) = sign(sign(

T∑
i=0

fi(x))) (3.3)

Where fi represents the i-th decision tree and sign denotes the signum function, that is,
sign: [0,∞)→ {0, 1} , sign(x) = 0 ⇔ x = 0

As mentioned in section 3.2, each internal node of a DT determines the decrease
in the Gini impurity of each predictor. The predictor with the largest decrease in
impurity is selected for the internal node. In RFs, each individual tree is grown to the
largest extent possible. If each individual tree is unstable, the aggregated classifier
has a smaller variance compared to the individual trees. Therefore, RFs are less prone
to overfitting than individual DTs. Moreover, due to bootstrapping and the random
predictor selection, RFs achieve uncorrelated trees. Tuning the number of variables
randomly sampled at each split provides the biggest improvement of the AUC (Probst,
Wright, and Boulesteix 2019). Therefore, the number of variables at each split has been
tuned on the validation set, with the evaluation measure AUC, the evaluation strategy
10-fold cross-validation and the search domain ranging from 1 to 15 variables. The
remaining hyperparameters are based on the default settings in R. The main advantage
of this ensemble technique is that it produces better predictive performance than an
individual DT, as the combination of weak learners form a stronger learner. Therefore,
an RF typically outperforms a single DT. However, the RF model is less interpretable
than the LR and DT models.

9
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3.4 XGBoost along with hyperparameters

Gradient boosting (GB) is a method for creating an ensemble by combining weak
learners into a stronger learner. More clearly, it starts by fitting a DT, and then it builds
a second model that focuses on the poorly predicted cases of the previous model,
continuing to do so for many models. The rationale behind this technique is that each
successive model corrects for the shortcomings of all previous models, thus creating
a more powerful model. The XGBoost algorithm is the more advanced version of
gradient boosting, as it also incorporates regularization, which improves the model’s
generalisation capabilities (Wang and Ni 2019).

According to (Wang and Ni 2019), the optimisation of XGBoost can be explained as
follows. Let the dataset be denoted as D = {x, y} with n observations, where x and y
are the predictors and the response variable, respectively. Let ŷi be the prediction and
yi the actual value of the i-th instance at the b-th boost, having l(yi, ŷi), which measures
the difference between the predicted and the real value. fb represents a DT q with leaf
j having a weight measure of wj . The regularization term Ω (fb) penalises the model’s
complexity. The hyperparameter γ indicates the minimum loss reduction required to
make a split. On condition that the loss reduction is smaller than γ, XGBoost stops
adding trees, thus reducing the complexity. λ is a fixed coefficient, T indicates the num-
ber of leaves that are contained by the tree and ||w||2 constitutes the L2 regularization
norm of the weight of the leaf. Comparable with γ, the hyperparameter wmc reduces
the model’s complexity by controlling the depth of the tree, where a large wmc causes
the model to be more conservative in splitting. Another manner in which XGBoost
avoids overfitting is the column subsampling. It is considered that column subsampling
is more effective in avoiding overfitting than the traditional row subsampling used in
GB (Bergstra and Bengio 2012). The goal of XGBoost is to minimise the loss function Lb
given in Eq. 3.4 below.

Lb =

n∑
i=1

l(yi, ŷi) +

B∑
b=1

Ω (fb) =

n∑
i=1

l(yi, ŷi) + γT + 0.5λ||w||2 (3.4)

Since various studies have shown that the hyperparameters can be efficiently optimised
by adopting the Bayesian Tree Parzen Estimators (TPE), I also used this method for
hyperparameter optimisation (Hutter, Hoos, and Leyton-Brown 2011)(Thornton et al.
2013). TPE relies on Bayes’ Theorem given in Eq. 3.5, to direct the search for the
minimum of the objective function:

P (A|B) =
P (B|A)P (A)

P (B)
(3.5)

Since TPE is used to optimise the objective function instead of calculating the condi-
tional probability, the normalizing value P(B) can be removed (Wang and Ni 2019).
Instead, the conditional probability can be formulated as a proportional quantity as in
Eq 3.6:

P (A|B) = P (B|A)P (A) (3.6)

10
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The search domains of the hyperparameters in Table 1 were based on the proposition of
(Wang and Ni 2019). The remaining hyperparameters were based on the default settings
in R. The hyperparameters were tuned on the validation set, with the evaluation metric
AUC and the evaluation strategy 10-fold cross-validation.

Table 1: Search domains of hyperparameters in XGBoost

Hyperparameter Description Domain

Eta (η, learning rate) Step size shrinkage of predictor weights (0.005, 0.2)
Subsample Ratio of observations to be randomly sampled for each tree (0.8, 1)
Max_depth Maximum depth of a tree (5, 30)
Gamma (γ) Minimum loss reduction required for further partition (0, 0.02)

Colsample_bytree Ratio of features used for fitting an individual tree (0.8, 1)
Min_child_weight(wmc) Minimum sum of weights of all observations required in a child (0, 10))

While both RF and XGBoost use an ensemble method of DTs, the XGBoost model
provides better predictive performance. First, XGBoost considers the similarity
between the parent node and its child nodes and stops increasing the depth of the tree
when the gain from a node is found to be minimal, thus reducing the complexity of the
model. In contrast, the RF potentially overfits the data if trees are provided with similar
samples. Second, when XGBoost fails to predict the minority class for the first time, it
gives more weight to the minority class in the upcoming iterations. Meanwhile, each
tree in an RF is based on a random sample from the data. Consequently, each DT will
be biased in the same direction by class imbalance.

3.5 Evaluation metrics

In this thesis, the designations true positive (TP) and false positive (FP) denote correctly
and wrongly classified NPLs, respectively. Similarly, true negative (TN) and false nega-
tive (FN) indicate correctly and wrongly classified loans paid in full, respectively. Accu-
racy is a widely used metric in binary classifications. However, because the dataset used
in this thesis is imbalanced, accuracy can be a misleading metric (Vuttipittayamongkol,
Elyan, and Petrovski 2021). As considered in (Begueria 2006), recall and precision are
weighted more heavily than accuracy in the risk-modelling domain. At the same time,
recall is weighted more heavily than precision because a false negative error may signify
a loss in loan default prediction (Wang and Ni 2019). Moreover, the F1-score is another
relevant measure in this thesis since it is the harmonic mean of precision and recall.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.7)

Precision =
TP

TP + FP
(3.8)
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Recall =
TP

TP + FN
(3.9)

Specificity =
TN

TN + FP
(3.10)

F1 − score = 2 ∗ precision ∗ recall
precision+ recall

=
TP

TP + 1
2 (FP + FN)

(3.11)

Finally, the Kappa coefficient is a measure of agreement between the predictions and
the actual values. Practically, Kappa removes the possibility of agreement between the
classifier and a random guess and calculates the number of predictions that cannot be
explained by randomness. The Kappa measure is relevant for ranking models when
using imbalanced data (Fatourechi et al. 2008).

κ =
p0 − pe
1− pe

(3.12)

where p0 is the number of agreed cases divided by the total number of cases and pe is
the probability of random agreement for both the prediction and the real value.

The confusion matrix, which is formatted in Table 2, provides the accuracy, precision,
recall, specificity, F1-score and Kappa coefficient. The confusion matrix of the best
performing model is given in Figure 1 in chapter 5.

Table 2: Confusion matrix

Actual
Fully paid Defaulted

Predicted Fully paid TN FN
Defaulted FP TP

12
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3.6 Receiver operating characteristic curve and area under the curve

The receiver operating characteristic (ROC) curve shows the tradeoff between the false
positive rate (FPR) and the true positive rate (TPR). 2 The ROC curve does not emphasise
one class over the other, thus is not biased against the minority class. The area under the
curve (AUC) is the quantitative evaluation metric of the ROC curve, which ranges from
0 to 1. A larger AUC value indicates a better classification result and therefore a better
capability of distinguishing between fully paid and defaulted loans. When AUC is
approximately equal to 0, the model is predicting a negative class as a positive class and
vice versa. Since one of the goals of this thesis is to minimise the number of incorrectly
predicted negative classes, it is relevant to include the AUC metric. Also, according
to (Wardhani et al. 2019), the AUC is a robust metric for measuring imbalanced data.
When the decision threshold varies, the AUC can be calculated by using Eq. 3.13 as was
proven by (Bradley 1997).

AUC =
∑
i

(1− βi∆α) +
1

2
[∆(1− β)∆α] (3.13)

where αi and (1− βi) denote the FPR and TPR for threshold i, respectively.

∆(1− β) = (1− βi)− (1− βi−1),

∆α = αi − αi−1

3.7 Indirect cost-sensitive learning by cost-proportionate case weighting

To address class imbalance, cost-sensitive learning is included in this thesis. The ad-
vantage of this technique is that the original data remains untouched, whereas other
techniques such as oversampling the minority class introduce bias (Kim, Kwon, and
Paik 2019). To implement indirect cost-sensitive learning, weights should be assigned
to the positive and negative class in the training data. The weights of the negative class
and positive class are given in Eq. 3.14 and 3.15, respectively:

w0 =

√∑1
i=0 ni
n0

(3.14)

2

TPR =
TP

TP + FN

FPR =
FP

FP + TN
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w1 =

√∑1
i=0 ni
n1

(3.15)

where the number of observations of the i-th class in the training data is denoted by ni,
i = 0 denotes the negative class and i = 1 represents the positive class.

The re-weighted classes were used in the LR, DT and RF models. In XGBoost,
class weighting was already accounted for in the model itself. Including these class
weights in the binary cross-entropy function of LR gives the weighted cost function
stated in Eq. 3.16:

CostLR =
1

n

n∑
i=1

−w1yi log(ŷi)− w0 (1− yi) log(1− ŷi) (3.16)

where yi and ŷi are the actual class and the predicted class of the i-th example,
respectively.

The number of examples is denoted as n. Regarding the DT and RF, the weights
are incorporated in the process of splitting the nodes. The weight of the observations in
a potential child node c is:

tc =

1∑
i=0

wi ∗ ni (3.17)

where ni is the number of examples of the i-th class in child node c and wi is the weight
assigned to the i-th class.

In addition, the impurity of child node c is formulated in Eq. 3.18:

Ic = 1−
1∑
i=0

(
wi ∗ ni

tc
)2 (3.18)

Finally, the impurity of the entire split is:

It =
∑
c

tc
tp
∗ Ic (3.19)

where tp is the total weight of all examples in the parent node that is being split.
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3.8 SHAP values

The SHAP values method is used to quantify how much individual predictors con-
tribute to XGBoost predictions (Meng et al. 2021). Where positive SHAP values indicate
a positive impact on prediction, the resulting model predicts the positive class. In the
same way, negative SHAP values represent a negative impact, leading the model to
predict the negative class. This method is of interest in thesis since it increases the
interpretability of XGBoost.

3.9 Robustness test

First, the model with the highest performance on the dataset including all variables had
to be determined. Thereafter, three robustness checks were done to confirm whether
the inclusion of macroeconomic indicators and sectors considerably improved the pre-
dictive performance. The first check only used loan attributes to train and test the best
model. Second, another check was done with data that included loan attributes and
macroeconomic indicators. Finally, the last check was done by training and testing data
containing loan attributes and sectors. Consequently, the robustness of the individual
contributions of macroeconomic variables and sectors was checked.
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4 Experimental Setup

This chapter contains information about the origin of the data, the processing of the data, the
exploratory data analysis, the software packages used and the manner in which the data was
split.

4.1 Data description

The SBA loan dataset used in this thesis originated from the U.S. Small Business
Administration and is publicly available on Kaggle.3 The SBA dataset, which includes
historical data from 1987 through 2014, contains 897,994 unique loans with 27 variables.
The target variable, which shows whether a loan was paid in full or defaulted, was
treated as a dummy variable (0 = paid in full, 1 = defaulted). 157,558 loans were charged
off, and 739,609 loans were paid in full (i.e. a default rate of approximately 18%).

The unemployment rate, unemployment rate change, GDP growth rate, the eco-
nomic policy uncertainty index, volatility index and the house price index were col-
lected from the Federal Reserve Economic Data website.4 The risk premium rate on
lending (lending rate minus treasury bill rate) and inflation rate were collected from the
World Bank website.5 The business confidence index was retrieved from the website
of the Organization for Economic Co-operation and Development.6 The descriptive
statistics of the loan variables and macroeconomic indicators are given in Table 3.

The predictors can be divided into three groups: loan, sector and macroeconomic
indicators. The loan variables were determined by the loan characteristics, such as
the loan amount. The sector variables show which sector the loan was distributed to.
The macroeconomic variables contain information about general economic conditions
(inflation, house price index, unemployment); information relating to the direction
in which the economy is moving (real GDP growth, policy uncertainty and business
confidence); and a set of indicators of the financial market conditions (risk premium,
volatility index). The full description of all variables is given in Appendix A.

3 Source: https://www.kaggle.com/kerneler/
starter-should-this-loan-be-approved-b812e39d-a/data

4 Source: https://fred.stlouisfed.org/
5 Source: https://data.worldbank.org/
6 Source: https://data.oecd.org/
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Table 3: Descriptive statistics of loan attributes and macroeconomic indicators

Variable Mean SD Min 25% Median 75% Max

Term 83.75 58.91 1 51 85 85 411
NoEmp 8.33 31.57 0 2 8.33 8 8,000

CreateJob 2.05 14.33 0 0 0 2 5,085
RetainedJob 5.68 20.08 0 1 2 6 7,250

DisbursementGross 161,787 285,373 4,000 27,800 63,000 160,000 1,144,635
GrAppv 138,842 268,902 1,000 25,000 50,000 120,000 5,000,000

SBA_Appv 101,853 220,986 500 12,500 25,000 75,000 4,500,000
GDP growth (%) 4.68 2.08 -2.00 3.70 4.80 6.40 6.70

Risk premium (%) 3.52 0.23 2.90 3.10 3.20 3.50 3.60
Unemployment rate (%) 5.67 1.55 4.00 4.60 5.10 5.80 9.60

Unemployment rate change (%) 0.14 0.95 -1.20 -0.50 0.00 0.30 3.50
Inflation (%) 2.73 0.92 -0.40 2.30 2.90 3.40 3.80

VIX 19.93 6.63 12.39 12.81 17.54 24.20 32.70
House price index 331.40 44.78 182.60 312.60 349.10 374.10 378.30

Policy uncertainty index 92.38 36.20 58.00 62.40 73.00 130.60 155.60
Business confidence index 99.89 1.42 95.70 99.30 99.90 100.80 102.20

4.2 Data processing

Initially, all sector codes were translated to the corresponding sector names. Thereafter,
since XGBoost cannot handle categorical variables, the sectors were one-hot encoded,
that is, each sector was converted into a new column and was assigned a binary value
of 0 or 1. Three variables containing the bank name, the state in which the business is
situated and the state in which the bank is situated are also categorical; however, one-
hot encoding these would have resulted in a considerable increase in dimensions and
therefore an increase in overfitting. In addition, the relative differences between states
and between banks are not of interest in this thesis, therefore these three categorical
variables were removed. Furthermore, variables that were not of interest were removed
– namely, loan ID, city, zip code, disbursement data, approval date and charged off date.
Furthermore, the missing values were removed, and the (relative) number of missing
values is given in Appendix B. Finally, the macroeconomic indicators that are of interest
in this thesis were added column wise for similar years to the SBA dataset, thereafter
the final dataset consisted of 362,970 observations and 40 variables.

4.3 Exploratory Data Analysis

One of the aims of this thesis was to investigate the individual contribution of macroeco-
nomic indicators and sectors. However, when there are correlations between predictors,
a problem may arise in determining the impact of predictors on the response variable.
On the one hand, the precision of the estimated coefficients is reduced. On the other
hand, the confidence intervals will be wide (Paul 2006). Therefore, it was relevant to
determine whether there were strong correlations between predictors. The correlation
matrix, given in Appendix C, provided insight into the correlations between predictors.
There were strong correlations between the loan variables concerning the loan amount
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(i.e. SBA_Appv, GrAppv, DisbursementGross), to avoid (multi-)collinearity, only the
disbursement gross was kept for classification. Furthermore, there was a strong corre-
lation between the change in unemployment rate and the growth rate of real GDP. For
that reason, the change in unemployment rate was also not considered for classification.

4.4 Software packages

In this thesis, I used the programming language R and the program RStudio version
4.1.1 to perform the data manipulation and ML. The packages used are listed in Table 4
below.

Table 4: R packages

Package Usage

Caret Machine learning techniques
Dplyr Data manipulation

Fastshap SHAP Values
Ggplot2 Visualization purposes
Metan Correlation matrix

ParBayesianOptimization Bayesian Tree Parzen Estimator
pROC ROC-curve and AUC

Randomforest Random forest algorithm
Readr Importation of CSV file
Rpart Decision tree

Rpart.plot Decision tree plot
Tidyr Data manipulation

XGBoost XGBoost algorithm

4.5 Training and test set

For training and evaluation of the ML models, it is necessary to split the data. In this
thesis, the data was split: 80% of the data was used for training, and 20%, for the test
set. The training set was used to fit the model parameters, and the test set was used for
model evaluation. With regard to the RF and XGBoost models, 10% of the training set
was used to tune the hyperparameters. The training set contained 290,376 observations,
and the test set contained 72,594 observations. For comparability purposes, all models
were trained on the same training set and tested on the same test set. This was achieved
by fixing the seed (i.e. a pseudo-random number) before the data was split. Cross-
validation (CV) was used to assess the generalisability of the ML models and to prevent
overfitting (Berrar 2019). In this thesis, due to the class imbalance, stratified CV was
used to preserve the class distribution in each fold (Purushotham and Tripathy 2011).
Considering the large size of the dataset, 10-fold CV was adopted.
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5 Results

In this chapter, the tuned values of the hyperparameters are given, the results from the ML models
on the test are presented, the significance of the results are discussed, and the robustness of the
findings is tested.

5.1 Hyperparameter values of random forest and XGBoost

First, the tuned number of variables to randomly sample at each split in RF was 6. Table
5 contains the tuned values of hyperparameters in XGBoost. The tuned values for the
hyperparameters of RF and XGBoost were used in the training of the models.

Table 5: XGBoost’s tuned settings for hyperparameters

Hyperparameter Tuned value

Eta (η, learning rate) 0.170
Subsample 0.971
Max_depth 9
Gamma (γ) 0.001

Colsample_bytree 0.838
Min_child_weight(wmc) 5

5.2 Classification with all predictors

The results of the classifications on the test set are displayed in Table 6 below, where LR,
DT and RF are also used with weighted classes. Considering the metrics of most interest
in this thesis, XGBoost exhibited the best predictive performance with regard to recall,
F1-score and Kappa. However, although accuracy and specificity are both excellent for
cost-insensitive models, precision is relatively low, indicating that the positive class is
poorly predicted. CSL improves precision for all models, which shows that CSL makes
ML models more reliable in classifying samples as positive. Since precision and recall
are inversely proportional to each other, recall diminishes when adopting CSL, which
results in more false negatives. Still, the F1-score is higher for cost-sensitive LR and DT
compared to cost-insensitive LR and DT, which means that the total number of incorrect
classes is reduced by CSL for these models. CSL also improves Kappa and AUC for LR
and DT. This shows better agreement between predictions and actual values and better
capability of distinguishing between classes, respectively. All the same, CSL proves to
be a suitable method to increase the number of true positives, albeit at the cost of having
more false negatives.
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Table 6: Classification results of ML models with the best scores of each metric in bold

Algorithm Classes Accuracy Precision Recall F1-score Specificity Kappa AUC

LR Standard 0.860 0.411 0.623 0.495 0.889 0.418 0.681
LR Weighted 0.847 0.664 0.533 0.592 0.929 0.499 0.774
DT Standard 0.868 0473 0.646 0.546 0.899 0.472 0.863
DT Weighted 0.829 0.858 0.494 0.627 0.967 0.527 0.886
RF Standard 0.901 0.700 0.707 0.703 0.940 0.644 0.937
RF Weighted 0.884 0.793 0.619 0.696 0.956 0.625 0.934

XGBoost Weighted 0.940 0.842 0.806 0.824 0.968 0.788 0.901

5.2.1 Confusion matrix of XGBoost

The confusion matrix of XGBoost in Figure 1 shows all predictions in combination
with the actual classes. Even though XGBoost takes class imbalance into account, a
considerable share of the NPLs was still predicted incorrectly: Approximately 20% of
all defaulted loans were predicted as fully paid.

Figure 1: Confusion matrix of XGBoost
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5.2.2 Prediction with logistic regression

The results of the CS-LR were considered to test the magnitude and significance of the
individual contributions displayed in Table 7. The magnitude of the contribution was
investigated through the estimated coefficient and the significance through the p-value.
For continuous predictors, the estimated coefficient (βi) is the expected change in the
odds of default by a factor of eβi per unit change in that predictor.7 For binary predictors,
changing predictor j from the reference group 0 to 1 changes the estimated odds of
default by a factor of eβj . To judge whether a coefficient was statistically significant,
the p-value was compared to the significance criterion (α) that was set at 5%. When
the p-value was smaller than α, the coefficient estimate was statistically significant.
The intercept is interpreted assuming a value of 0 for all the predictors, which was
not realistic in this thesis, therefore the intercept was omitted from Table 7. The loan
attributes were all statistically significant. With regard to the macroeconomic indica-
tors, the unemployment rate, real GDP growth, risk premium rate, house price index
and volatility index were all positively related to loan default probabilities. The most
important contribution, with respect to magnitude, was given by the risk premium rate.
The relationship between default probabilities and inflation, even though significant,
was ambiguous because the coefficient estimate was approximately zero. With regard
to the sectors of interest, agriculture and real estate were significantly positively related
to loan default probabilities, whereas construction was not significantly related.

7

Odds of default =
probability of default

1− probability of default
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Table 7: Summary of logistic regression output

Variable Estimate SE 95% confidence P-value

ApprovalFY -0.250 0.011 (0.762, 0.796) 0.000*
Term -0.037 0.000 (0.963, 0.964) 0.000*

NoEmp -0.005 0.000 (0.995, 0.996) 0.000*
NewExist -0.183 0.007 (0.821, 0.845) 0.000*
CreateJob 0.003 0.000 (1.002, 1.003) 0.000*

RetainedJob -0.013 0.000 (0.986, 0.989) 0.000*
UrbanRural -0.408 0.010 (0.654, 0.677 0.000*
RevLineCr -0.720 0.007 (0.479, 0.493) 0.000*

DisbursementGross 0.000 0.000 (1.000, 1.000) 0.000*
Agriculture 0.332 0.115 (1.114, 1.745) 0.004*

Mining -0.848 0.136 (0.328, 0.560) 0.000*
Construction 0.170 0.112 (0.951, 1.477) 0.129

Manufacturing -0.027 0.113 (0.780, 1.213) 0.808
Wholesale 0.131 0.113 (0.914, 1.421) 0.246

Retail 0.367 0.112 (1.159, 1.799) 0.001*
Transportation 0.029 0.113 (0.825, 1.284) 0.800

Information 0.234 0.114 (1.010, 1.581) 0.041 *
Finance 0.424 0.114 (1.221, 1.912) 0.000*
Estate 0.552 0.114 (1.389, 2.169) 0.000*

Professional 0.007 0.112 (0.808, 1.255) 0.948
Management 0.288 0.238 (0.836, 2.126) 0.227

Administrative 0.112 0.113 (0.897, 1.394) 0.322
Education 0.212 0.116 (0.985, 1.551) 0.068

Health -0.445 0.113 (0.514, 0.800) 0.000*
Recreation 0.288 0.114 (1.066, 1.670) 0.012*

Accommodation 0.471 0.112 (1.284, 1.996) 0.000*
Other 0.199 0.112 (0.979, 1.521) 0.076
Public 0.233 0.209 (0.838, 1.902) 0.264

UnemploymentRate 0.179 0.019 (1.152, 1.241) 0.000*
GDPgrowth 0.122 0.019 (1.114, 1.197) 0.000*

Inflation -0.072 0.014 (0.920, 0.972) 0.000*
UncertaintyIndex 0.000 0.000 (0.999, 1.001) 0.837

Riskpremium 1.206 0.044 (3.066, 3.641) 0.000*
BusinessConfidence 0.023 0.000 (0.997, 1.050) 0.080

HousePriceIndex 0.029 0.001 (1.028, 1.030) 0.000*
VIX 0.070 0.004 (1.062, 1.078) 0.000*

*Indicates significant at α = 0.05

5.2.3 Prediction with decision tree

As mentioned above, two advantages of a DT are the interpretability and rapid manner
in which new observations can be classified. The optimal number of splits was 3, as can
been observed in Appendix D. As can be seen in Figure 2, the term and house price in-
dex were the most important variables for splitting the nodes. The nodes contained the
positive or negative class, the probability of default and the percentage of observations.
At the root node, the overall probability of loan default was given, which was 29%. The
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root node asked whether the term was greater than 79 months. If so, then the next node
was the child node down on the left. This leaf node shows that 53% of the loans had
a term greater than 79 months, with a probability of default of 6%. This process was
similar for the other nodes.

Figure 2: Graphical depiction of pruned DT

5.2.4 SHAP values for XGBoost

The SHAP values show the average of the marginal contribution of predictors to pre-
diction considering all possible order of the contributors arrival. As can be observed in
Figure 3 below, the HPI had a contribution of approximately 0.48. More specifically, the
inclusion of HPI on average increased the log-odds ratio by approximately 0.48. With
regard to the other macroeconomic indicators, only the uncertainty index seemed to
have some (negative) impact on default prediction; other macroeconomic contributions
to prediction were negligible. With respect to the sectors, no individual sector had a
considerable contribution to prediction.
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Figure 3: SHAP values of individual predictors.

5.2.5 Evaluation in the ROC-plane

As mentioned earlier, the amount of True Positives is relevant, as the costs of not de-
tecting a loan default are high. From the ROC-curves (Figure 4), it can be observed that
the LR had the worst performance for both cost-insensitive and cost-sensitive models,
as LR had a lower True Positive Rate (TPR) than the other models. However, the TPR
considerably increased due to the CSL approach. With respect to the DT and RF, the
effect of CSL also increased the TPR, thereby increasing the AUC.
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(a) Cost-insensitive

(b) Cost-sensitive

Figure 4: ROC-curves.

5.3 Results of robustness test

In Table 8, the results of the robustness test are given. The predictive performance
of XGBoost increased when macroeconomic indicators or sectors were added to loan
attributes. The strongest improvement occurred when sectors were added. So, the
findings in literature that suggest that macroeconomic variables and sectors have a
relationship with the number NPLs are similar to the findings of this thesis, as the
predictive performance of XGBoost was improved by including these variables.
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Table 8: Robustness test for XGBoost model, with different sets of predictors and best
scores in bold

Predictors included Accuracy Precision Recall F1-score Specificity Kappa AUC

Loan attributes 0.928 0.842 0.756 0.797 0.967 0.753 0.894
Loan attr. + macro 0.938 0.839 0.799 0.818 0.967 0.781 0.896
Loan attr. + sectors 0.940 0.855 0.801 0.827 0.970 0.791 0.901
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6 Discussion

In this chapter, the results of the classifications in the context of existing literature are discussed.
The contributions of this thesis to existing literature is given as well as the limitations and
recommendations for further research.

6.1 Classification performance

The differences in performance measures of classifications by LR, DT, RF and XGBoost
are in line with the findings in the existing literature. (Kruppa et al. 2013)and (Zhou
et al. 2019) found that tree-based algorithms outperform the benchmark LR model in
loan default prediction, which is consistent with the results of the classification results
in this thesis. Moreover, (Malekipirbazari and Aksakalli 2015) proposed cost-sensitive
approach for class imbalance was found to positively influence the prediction of cor-
rectly identified NPLs. However, the number of incorrectly predicted fully paid loans
increased in this method. Furthermore, it is suggested that there is a significant positive
relationship between real GDP growth and the number of NPLs (Hussain, Khalil, and
Nawaz 2013);(Makri, Tsagkanos, and Bellas 2014). Comparable with these findings,
this thesis found that real GDP was significantly positively related to loan default
probabilities. Lastly, similar to the findings of (Lee and Poon 2014) and (Ghosh 2017),
the agriculture and the real estate sectors were both significantly positively related to
loan default probabilities.

6.2 Contributions to literature

This thesis contributes to existing literature through its robust results relating to the cost-
sensitive learning method in cost-insensitive ML models for loan default prediction,
which have been untouched by past studies. Also, this thesis extended literature by in-
vestigating the attribution of important macroeconomic variables and risky sectors. The
relationships between macroeconomic indicators and the number of NPLs and between
several sectors and the number of NPLs had already been discussed in literature. This
thesis extended literature by investigating the relationships between these variables
and loan default probabilities. The results of the robustness test showed that these
variables are indeed important with regard to loan default prediction. Moreover, the
sector-specific risk was assessed, considering the attribution of sectors to the prediction
of loan default probabilities, which showed that sectors substantially contribute to the
predictive performance of XGBoost.

6.3 Limitations and recommendations for further research

The foremost limitation of this thesis is that the SBA loan data did not contain any
information about the incentives for loan approval or loan rejection. This deficit limited
the ability of this thesis to consider the loan application process. Also, the SBA dataset
only runs to 2014, thereby limiting the generalisation of the results to the present. For
further research on loan default prediction, this thesis suggests three directions. First,
a future study should investigate whether the results of this thesis can be generalised
to small businesses in countries outside the United States. Second, the optimisation of
cost-sensitive learning for loan data might be useful for better detecting NPLs. Lastly,
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research on the inherent risks of sectors could be expanded, possibly leading to a better
understanding of the riskiness of sectors.
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7 Conclusion

In this chapter, the research questions of this thesis are restated and answered.

Research question 1:

“For a chosen set of machine learning algorithms, which algorithm exhibits the best
performance in loan default prediction with respect to specific model evaluation metrics?”

In conclusion, the XGBoost model exhibited the best predictive performance for loan
default prediction. The other state-of-the-art model, the RF model, outperformed LR
and the DT, as has also been found in the existing literature. At the same time, the DT
outperformed LR, which is also similar to the findings in literature.

Sub-question 1.1:

“What is the effect of indirect cost-sensitive learning with cost-proportionate weights on the
predictiveness of non-performing loans?”

Cost-sensitive learning considerably increased precision compared to cost-insensitive
models for the LR, DT and RF models, thereby increasing the ability of ML models to
detect true positives. With regard to CS-LR and CS-DT, the F1-score, Kappa measure
and AUC also improved.

Research question 2:

“To what extent is loan default prediction by machine-learning-based approaches attributable to
macroeconomic variables?”

Sub-question 2.1:

“How are real GDP growth, business confidence index, and house price index related to loan
default probabilities?”

Sub-question 2.2:

“How are inflation, unemployment, economic policy uncertainty, risk premiums and the
volatility index related to loan default probabilities?”

The inclusion of macroeconomic indicators improved the predictive performance of
XGBoost. With regard to the individual contributions of macroeconomic indicators,
the unemployment rate, real GDP growth, risk premium rate, house price index and
volatility index were all significantly positively related to loan default probabilities.
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In contrast, the impact of inflation was negligible; nonetheless, it had a statistically
significant impact. Meanwhile, business confidence and economic policy uncertainty
were not significantly related to loan default probabilities.

Research question 3:

“To what extent is loan default prediction by machine-learning-based approaches attributable to
sectors?”

Sub-question 3.1:

“How are the real estate sector, the construction sector and the agriculture sector related to loan
default probabilities?”

The contribution of sectors improved the predictive performance of XGBoost. Also,
considering the individual contributions of agriculture, construction and real estate
sectors, which have been suggested by the literature, to bear more risk of default, only
agriculture and real estate are significantly positively related to loan default probabili-
ties.
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Appendix A: Description of variables

Description of variables

Abbreviation Description Type

ApprovalFY Year of loan approval Loan
Term Loan term in months Loan

NoEmp Number of employees before loan Loan
NewExist 0 = existing, 1 = new Loan
CreateJob Number of jobs created Loan

RetainedJob Number of jobs retained Loan
UrbanRural 0 = urban, 1 = rural Loan
RevLineCr 0 = repeated credit, 1 = new credit Loan

DisbursementGross Loan amount in dollars Loan
GrAppv Loan amount in dollars approved by bank Loan

SBA_Appv Loan amount in dollars guaranteed by SBA Loan
MIS_Status 0 = paid in full, 1 = defaulted Loan
Agriculture 0 = non-agricultural, 1 = agriculture Sector

Mining 0 = non-mining, 1 = mining Sector
Construction 0 = non-construction, 1 = construction Sector

Manufacturing 0 = non-manufacturing, 1 = manufacturing Sector
Wholesale 0 = non-wholesale 1 = wholesale Sector

Retail 0 = non-retail, 1 = retail Sector
Transportation 0 = non-transportation, 1 = transportation Sector

Information 0 = non-informational, 1 = information Sector
Finance 0 = non-financial, 1 = finance Sector
Estate 0 = non-estate, 1 = estate Sector

Professional 0 = non-professional, 1 = professional Sector
Management 0 = non-managerial, 1 = management Sector

Administrative 0 = non-administrative, 1 = administrative Sector
Education 0 = non-educational, 1 = education Sector

Health 0 = non-health, 1 = health Sector
Recreation 0 = non-recreational, 1 = recreation Sector

Accommodation 0 = non-accommodation, 1 = accommodation Sector
Other 0 = defined sector, 1 = other Sector
Public 0 = non-public, 1 = public Sector

UnemploymentRate Annual unemployment rate (%) Macro
UnemploymentRateChange Change in annual unemployment rate (%) Macro

GDPgrowth Annual growth of real GDP (%) Macro
Inflation Annual inflation rate (%) Macro

UncertaintyIndex Risk of future government policies Macro
Riskpremium Loan interest rate minus risk-free rate Macro

BusinessConfidence Business confidence towards future economic situation Macro
HousePriceIndex Price development of single-family property prices Macro

VIX Volatility of the stock market Macro
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Appendix B: Information about missing values in loan data

Information about missing values in loan data

Variable name N %

ApprovalFY 18 0.00
Term 0 0.00

NoEmp 0 0.00
NewExist 136 0.02
CreateJob 0 0.00

RetainedJob 0 0.00
UrbanRural 0 0.00
RevLineCr 4528 0.50

DisbursementGross 0 0.00
MIS_Status 1997 2.20

GrAppv 0 0.00
SBA_Appv 0 0.00
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Appendix C: Correlation matrix of loan variables and macroeconomic variables. Ex-
cept for some clusters (e.g. disbursement gross and amount approved), the correlation
between predictors is relatively low
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Appendix D: Complexity plot for decision tree, where the bottom horizontal axis
shows the complexity level, the vertical axis shows the error rate, and the top hor-
izontal axis shows the number of splits
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