
AU T O M AT I C S H A R E D E - M O P E D
M I R R O R P R E S E N C E D E T E C T I O N

U S I N G D E E P O B J E C T D E T E C T O R S

L I Z E T PA O L A H E R N A N D E Z VA R G A S

thesis submitted in partial fulfillment

of the requirements for the degree of

master of science in data science & society

at the school of humanities and digital sciences

of tilburg university

total number of words : 7933

student number

2061326 / u370066

committee

dr. I. Önal
dr. R. G. Alhama

location

Tilburg University
School of Humanities and Digital Sciences
Department of Cognitive Science &
Artificial Intelligence
Tilburg, The Netherlands

date

January 13, 2022

disclaimer

This thesis does not contain any studies with human participants or animals
performed by the author. Data used in this study were previously collected.
The original owner of the data retains ownership of the data during and after
the completion of this thesis.

acknowledgments

I would like to firstly thank felyx sharing B.V. for giving me the
opportunity to work on this fun and exciting project. I especially
thank Annanina Koster for her always friendly guidance and
patience, Hein Harlaar for his accurate advice, and Andi Aliko for
his support and inspiration. Furthermore, I want to express
gratitude to my thesis supervisor, dr—Itir Önal, for her help and
direction through the entire process of this project. Lastly, I would
like to thank my parents Fredy and Oliva, my brother Deyvit, my
partner Jack, the Huijgen family, and my friends for always motiva-
ting me in these strange times.

Mil gracias,
Lizet Paola Hernandez Vargas

AU T O M AT I C S H A R E D E - M O P E D
M I R R O R P R E S E N C E D E T E C T I O N

U S I N G D E E P O B J E C T D E T E C T O R S

lizet paola hernandez vargas

Abstract

Safety issues occupy a significant position on the agenda when
discussing the threats to society of last-mile transportation means,
such as e-mopeds. Therefore, this project aims towards the automatic
visual detection of e-moped damages that could endanger drivers.
More specifically, it focuses on assessing the efficiency of deep neural
network-based object detectors when assessing the presence of rear-
view mirrors on e-mopeds from customer-taken images, since it is a
mandatory safety regulation to travel. Little research has been done in
this area; however, generic object detectors have proven good results
when used on scooter/moped parts recognition and localization
problems. This study aimed to establish a foundation for future
exploration on this topic. The Faster R-CNN and YOLOv5 models
were used, comparing both when trained under fully-supervised and
semi-supervised settings. Furthermore, the performance of fine-tuned
Faster R-CNN and fine-tuned YOLOv5 was compared when trained
with different amounts of manually-labeled data. It was found that
the best-performing model under fully-supervised consisted of fine-
tuned YOLOv5; however, the performance gap between models was
not extensive. Lastly, the semi-supervised self-training technique did
not show further favorable results for the e-moped rear-view mirror
detection problem.

1 introduction

Detecting damages on the shared E-mopeds is a process that is currently
done through damage report submissions made by either Scooter Support
Agents (SSAs) or customers. Given the nature of the process, it is highly
time-consuming and prone to error due to fatigue. Additionally, customers
tend to wrongly report or not report at all the damages on the mopeds,
leading to unnecessary actions over them (e.g., putting the e-mopeds
out of service) or even risking other riders’ safety. This thesis project

1

1 introduction 2

aims towards the automatic visual detection of e-moped damages through
images. More specifically, it focuses on assessing the efficiency of deep
neural networks when detecting e-moped damages. For the particular
case of this study the damage of interest is the presence/absence of rear-
view mirrors. For this purpose, a dataset of 86,400 non-labeled images
of parked e-mopeds provided by Felyx Sharing B.V. was pre-processed
and divided into train, validation, and test sets that later was used as
the input of two different models: (1) one-stage object detector: YOLOv5,
(2) two-stage object detector: Faster R-CNN. Their performance results
under supervised and semi-supervised conditions were compared based
on common evaluation metrics.

Urban transportation currently faces numerous challenges, such as
congestion and air pollution, mainly produced by the plethora of private
cars on the streets. Therefore, the introduction or transition to other means
of transportation that contribute to ameliorating the problems mentioned
above has become a priority. Micromobility facilities, also known as
first/last-mile transportation systems (Degele et al., 2018), in combination
with new sources of energy, provide a partial answer to those issues
(Christoforou, Gioldasis, de Bortoli, & Seidowsky, 2021). Shared electronic
micromobility facilities such as electronic mopeds (e-mopeds) are among
the most promising options introduced to multiple cities. This shared mode
of transport does not represent a source of greenhouse gas emissions and
does respond to the public’s appetite for a cheap, convenient, and flexible
way to quickly get around increasingly congested cities (Schellong, Sadek,
Schaetzberger, & Barrack, 2021). Yet, with the introduction of this means
of transportation, use of public space, vandalism, and safety concerns have
appeared. Although the use of public space has caused the biggest debates
after the introduction of shared e-mopeds in the cities, safety issues occupy
a significant position on the agenda when discussing the threats to society
of this transportation mode (Gössling, 2020).

While the regularization of the mandatory use of helmets to ensure
riders safety has been in the spotlight since the introduction of the vehicles
(Gauquelin, 2021) (Helm wordt vanaf juli volgend jaar verplicht voor snorfietsers
| RTL Nieuws, n.d.), the precedent of mandatory existence of rear-view
mirrors as a safety measure, explicitly the left-side rear-view mirror, is
already required by law (Gössling, 2020) (wetten.nl - Regeling - Regeling vo-
ertuigen - BWBR0025798, n.d.). According to felyx internal data, numerous
reports related to missing or damaged rear-view mirrors are made daily.
However, these damages are not reported in their totality since it is not a
mandatory step to ride the e-mopeds. To tackle this issue, the automatic
detection of the rear-view mirrors would help to reinforce shared e-mopeds
riders’ safety by supporting the service providers’ reparation operations.

1 introduction 3

From a business perspective, the automation of the damages detection, as
missing rear-view mirrors, reduces operations time, optimizes the mopeds
reparation process, and helps to enhance the image of the product and the
company itself. For the particular case of felyx, this automatic detection
can be carried utilizing Deep Neural Networks together with the obligatory
pictures submitted by customers when parking the vehicles.

Visual vehicle’s part detection is encompassed by the object detection
problem, and as a fundamental computer vision task, it has been widely
researched (Wu, Sahoo, & Hoi, 2020). Among the multiple real-world
applications of object detection, vehicles’ visual part detection has only
been applied to cars and helmets (Prajwal, Tejas, Varshad, Murgod, &
Shashidhar, 2019). For the vehicle detection and vehicles’ parts detection
the most commonly used and compared methods are the two-stage and
one-stage detectors Faster R-CNN and the YOLO family, respectively Meng,
Bao, and Ma (2020) Zaman et al. (2021). This given that each of the detection
paradigms presents its own performance advantage. On one hand, two-
stage detection algorithms had better detection results in terms of average
precision (AP), and on the other hand one-stage detectors are faster and
can achieve real-time performance (Wu et al., 2020). Nonetheless, to the
best of our knowledge, literature that encompasses the object detection
problem through deep neural networks on data related to e-mopeds parts
has not been yet researched.

As the nature of the provided data is completely unlabeled and the
manual-labeling process is a highly taxing task in terms of time and
resources, assessing the amount of labeled data needed to obtain the best
possible performance while using the minimum amount of manually-
labeled data represents a way to optimize future automatic detection
processes of damages with similar characteristics as the one of this study.
In the view of the fact that a first appropriate amount of images can be
annotated with certainty. In a similar manner, applying semi-supervised
learning to problems that have limited annotated data has proved to be a
satisfactory approach to foster the data scarcity problem(Van Engelen &
Hoos, 2020).

Consequently, this project provides an understanding of domain-specific,
e-mopeds rear-view mirrors’ presence detection, real-world application
of fine-tuned state-of-the-art deep neural network architectures, extensive
empirical performance evaluation, and a comparison between the archi-
tectures’ efficiency. Consequently, the following main research question is
defined:

How efficient are fine-tuned generic state-of-the-art deep object detec-
tors when identifying e-moped rear-view mirrors presence in images?

2 background 4

The study addresses the following sub-questions:

RQ1 To what extend fine-tuned Faster R-CNN and fine-tuned YOLOv5 can
detect the presence of e-moped rear-view mirrors?

RQ2 How does the amount of labeled data affect the performance of visual object
detectors when recognizing e-moped rear-view mirrors in images?

RQ3 How does the use of semi-supervised learning affect the performance of
fine-tuned Faster RCNN and YOLOv5 object detectors?

The organization of this document is as follows: First, the related work
is explained in Section 2. Section 3 provides further details about the
models and algorithms used, followed by the experimental setup of this
study in Section 4. The results of the experiments are described in Section
5 and discussed in detail in Section 6. Finally, some conclusions are drawn
in Section 7.

2 background

Since the late 1960’s numerous research and applications in the computer
vision field have been developed. Applications such as autonomous vehi-
cle navigation, robotic vision, simultaneous visual localization, instance
segmentation, and object detection have revolutionized industries through-
out the whole spectrum (Kakani, Nguyen, Kumar, Kim, & Pasupuleti,
2020). The damage identification process has also taken advantage of the
remarkable development of this field by utilizing object detection and
instance segmentation solutions to visually identify the presence of flaws.
In this section, the evolution of methods used for object detection and its
application on automobile parts detection will be presented, followed by
the introduction of existing semi-supervised learning approaches used to
enhance object detectors performance.

Object detection aims to identify the location of objects and subse-
quently differentiate them into a specific class using computational models.
Depending on their application, object detectors can be divided into gen-
eral and domain-specific. The former application focuses on simulating the
human vision while the latter target the detection of instances encompass
in a particular domain(Zou, Shi, Guo, & Ye, 2019).

The advancement of this technique is recognized to have two main
periods: "traditional object detection" and "deep-learning based object
detection." The distinction between the two is mainly based on the way
the features to detect the objects are extracted, where the "traditional
object detectors" relied completely upon handcrafted features and the

2 background 5

"deep-learning based object detectors," as their name implies, utilize deep
convolutional neural network (CNN) feature representations (Wu et al.,
2020). As for the deep-learning based object detectors, the literature
separates them into two paradigms: "two-stage" and "one-stage" object
detectors.

In 2014, the first two-stage object detector was proposed by R. Girschik
et al. It was an object detector based on region-based convolutional neural
networks (RCNN), from there its name. The RCNN model works by
starting with a selective search to create a set of object candidate boxes.
Those proposed boxes are re-scaled to a fixed size image and used as
the input of a pre-trained CNN model producing extracted features as
output. The extracted features are fed into linear SVM classifiers to predict
the presence of an object in a certain region and to finally categorize the
object(Ren, He, Girshick, & Sun, 2016). Even though the accuracy of the
RCNN was incomparable at that time, the detection speed was extremely
slow given the overlap between the candidate boxes. As solutions to this
issue, the Spatial Pyramid Pooling Network (SPPNet), Fast RCNN, and
Faster RCNN models were later proposed. SPPNet fixed the necessity of a
specific size for the input images (224x224 for AlexNet) by introducing a
Spatial Pyramid Pooling layer permitting the generation of a fixed-length
representation without re-scaling the images (He, Zhang, Ren, & Sun, 2015).
Fast RCNN mended the multi-stage training pipeline issue by enabling
the simultaneous training of the detector and bounding box regressor
under the same network configurations (Girshick, 2015). Faster RCNN
overcame the bottleneck generated by the region proposal computation by
introducing a Region Proposal Network (RPN) (Ren et al., 2016).

In 2015, the first one-stage detector, You Only Look Once (YOLO),
was presented by R. Joseph et al. Abandoning the paradigm of first
proposal detection and next verification, YOLO utilized a neural network to
divide the image into regions and simultaneously predict bounding boxes
and probabilities for each of those regions(Redmon, Divvala, Girshick, &
Farhadi, 2016). The detection speed of the algorithm was incomparable;
however, the localization accuracy, especially for small objects, was not high
enough to surpass one of the two-stage object detectors. Later versions of
this algorithm family tried to overcome this problem(Alex, 2020).

An extensive amount of literature shows the diverse domain-specific
and generic applications of Computer Vision’s one-stage and two-stage ob-
ject detectors (Jaffari, Hashmani, Reyes-Aldasoro, Aziz, & Rizvi, 2021)(Wu
et al., 2020)(Zou et al., 2019). For the specific case of vehicle detection and
vehicles’ parts detection, multiple methods have been proposed. X. Zhu,
Liu, Zhang, and Duan (2019) proposed a model to identify 31 different car
parts based on image segmentation and a Mask R-CNN algorithm (Mask

2 background 6

R-CNN adds an extra branch in to Faster R-CNN, which also predicts
segmentation masks for each instance), simultaneously they proposed a
damage type and degree framework based on the Inception-v3 architecture
integrated with Batch normalization and Convolutional Factorization. Ad-
ditionally, they used RetinaNet, a one-stage object detector, to identify the
presence and position of the vehicles’ damages. However, they concluded
that algorithms such as YOLO or Faster R-CNN are more suitable options
to accomplish this task, given their smaller backbones and the detection
complexity. Mhalla, Chateau, Gazzah, and Amara (2018) introduced an
embedded system for traffic surveillance. Their system detected and cate-
gorized traffic objects under different conditions (day and night conditions)
using a modified Faster R-CNN. Given the modifications, replacing the
Faster R-CNN four MAX-Pooling layers with Stochastic Pooling layers,
the proposed system outperformed generic object detectors with a me-
dian improvement of 57%; such improvement is given the capacity of the
Stochastic pooling layers to preserve more information.

Meng et al. (2020) provided a comprehensive review of the perfor-
mance of state-of-the-art generic object detectors together with transfer
learning methods when assessing the existence of cars in an image. The
visual detectors compared were Faster R-CNN, R-FCN, SSD, YOLOv3, and
RetinaNet. Two-stage detection algorithms had better detection results in
terms of average precision (AP); nevertheless, their inference time could
not achieve real-time performance. From their experiments on the public
dataset KITTI Faster R-CNN proved to be the fastest (0.68 FPS), however
not the most precise with a 48.37% AP (R-FCN obtained a 66.01% AP)
of the two-stage detectors when test on hard examples. Concerning the
one-stage detectors, while YOLOv3 and SSD had similar average precision
(38.23% AP), RetinaNet was the most precise (68.73% AP) when tested on
hard examples, SDD is the fastest among the three of them (14.15 FPS).

As for studies related to motorcycles, scooters, or mopeds parts de-
tection, few efforts have been made, leaving aside the helmet-used visual
detection case, which has been broadly evaluated (Lin, Deng, Albers, &
Siebert, 2020) (Prajwal et al., 2019) (e Silva, Aires, & de MS Veras, 2018)
(Sanjana, Shriya, Vaishnavi, & Ashwini, 2021). It is relevant to mention
that all of these methodologies approached the helmet-used detection
by first detecting the motorcycle and later the presence of the helmet it-
self. The methods implemented for the motorcycle detection were mainly
YOLOv2, YOLOv3, random forest, multilayer perceptron (MLP), Faster
R-CNN, and support vector machine (SVM). Concerning motorcycle visual
detection, numerous pieces of literature show different methods to address
this process. Zaman et al. (2021) compared the one-stage detector YOLO
to Aggregate Channel Features (ACF) and the two-stage detector Faster

2 background 7

R-CNN when detecting motorcycles, and all architectures used ResNet50

as the backbone. Their research showed that YOLO outperforms the other
algorithms in precision and inference time when trained on ten epochs and
small batches of images. Espinosa, Velastin, and Branch (2018) introduced
a deep detector based on Faster-RCNN for motorcycle detection and clas-
sification on occluded scenarios. The network achieved results of 75% in
average precision (AP) for high occluded scenarios and results of 92% in
AP for low occluded ones.

Concerning the issue of limited labeled data and its impact on per-
formance for classification problems, varied literature has shown that
semi-supervised learning (SSL) methods tackle this problem (Van Engelen
& Hoos, 2020). Semi-supervised learning is a branch of machine learn-
ing that combines supervised and unsupervised learning principles to
aid the learning process of the algorithm and consequently its perfor-
mance by utilizing a combination of labeled and unlabeled data during
training(X. J. Zhu, 2005).

N. Li and Xia (2018) proved improvement on the affective images
classification accuracy by implementing SSL to train a hierarchical classifier.
Given the difficulty of obtaining a labeled dataset big enough to obtain
good results under a supervised learning training approach, this training
method was chosen. Chun and Ryu (2019) proposed a road surface damage
detection method based on the SSL self-learning (proxy-labeling) approach
to ease the collection of labeled data. The resulted precision of the model
train under SSL settings improved compared to that of supervised learning
settings. However, the recall experienced a minor decrease. Accomplishing
a higher overall F1-score under SSL settings.

Burton II, Myers, and Rullkoetter (2020) tackled the manual labeling
of medical images bottleneck by training 2D and 3D CNNs using a semi-
supervised learning framework. Their CNNs trained with SSL settings
outperformed those trained using a fully supervised technique and proved
competing results compared it to similar literature even though it imple-
mented less labeled data. Weinstein, Marconi, Bohlman, Zare, and White
(2019) advanced a method to detect tree-crowns from images by adopt-
ing an SSL approach while training a deep learning detection network.
Their implementation was compared against an existing Light Detection
and Ranging (LIDAR)-based unsupervised technique showing that the
model train with the combination of labeled and self-generated labeled
data yielded more accurate predictions.

For this study, the state-of-the-art YOLO version 5 and Faster R-CNN
algorithms are used given their proven performance and speed when
targeting detection of objects encompassed in a similar context as the ones
of this research. As for the SSL method, self-training will be implemented

3 methods 8

following an incremental approach considering the amount of unlabeled
data present in the dataset.

Based on this preliminary literature review, the contribution of this re-
search is to provide an understanding of a fine-tuned state-of-the-art deep
object detector architectures domain-specific application, e-mopeds rear-
view mirrors’ presence detection, along with their empirical performance
evaluation under supervised and semi-supervised settings to explore per-
formance enhancement from the unlabeled data, furthermore a comparison
between the architectures’ efficiency is presented.

3 methods

The current section provides a general explanation of the object detector ar-
chitectures and the semi-supervised learning approach used in the making
of this research.

3.1 Faster R-CNN

Faster R-CNN, one of the latest improvements of the R-CNN (see section
2.) algorithm proposed by Ren et al. (2016), is composed of two modules, a
deep fully convolutional network that proposes regions (RPN) and the Fast
R-CNN detector that uses the proposed regions to perform classification of
objects. The RPN aims to help the Fast R-CNN detector to know where to
direct its attention by ranking region boxes (anchors) and proposing the
ones most likely containing objects.

The detection process starts with an image represented as HeightxWidth
xDepth tensors (multidimensional arrays) that is input to a pre-trained
for the classification task CNN (current implementations use ResNet) to
obtain a convolutional feature map by using the output of an intermediate
layer. The convolutional feature map is the result of the abstractions (edges,
patterns in edges, etc.) created by each of the convolutional layers that
conform the network, and it has spatial dimensions much smaller than the
original image and greater depth. This dimensional reduction has place
given the pooling applied in-between convolutional layers, and the greater
depth the result of the number of filters that each of the convolutional
layers learns.

Afterward, the RPN and the convolutional feature map are used to
identify regions containing objects. For this purpose, reference boxes,
anchors as Ren et al. (2016) called them, are used to help the network
learning to predict offsets from those predefined anchors. These anchors
are pre-established bounding boxes, defined as xcenter, ycenter, width, height,
of different sizes and ratios arranged all through the original image. Even

3 methods 9

Figure 1: Faster R-CNN architecture.

3 methods 10

though the final anchors refer to the original image, these are defined
based on the convolutional feature map; therefore, there is a set of anchors
for each of the points that compose it. Utilizing these anchors and the
RPN, a set of good region proposals for objects is generated by obtaining
two different outputs for each of the anchors. The first output is the
probability that an anchor does contain an object, called by Ren et al. (2016)
objectness score. This score is understood as the likelihood that the anchor
contemplates "something" other than the background of the image, i.e.,
foreground. The second output is the bounding box regression that will
improve the fit of the anchors to the object being predicted.

The authors implemented the RPN in a fully convolutional manner,
using the convolutional feature map as the input to a convolutional layer
with 512 channels and 3x3 kernel size that bifurcates into two parallel
convolutional layers using a 1x1 kernel and number of channels depending
on the number of anchors per point. The layer that outputs the objectness
score requires 2000 channels, and the one that outputs the bounding
box adjustments requires 4000 output channels. Post-processing of the
proposed regions is necessary after the RPN generates them since proposals
end up overlapping over the same object given the overlap of the reference
anchors used to generate them.

The method used to solve the duplication of proposals is called Non-
Maximum Suppression (NMS), and it works by iterating over a list of
proposals sorted based on score and discarding those proposals that have
an Intersection over Union (IoU) lower than a predefined threshold but
keeping the one that has the highest score. With the not duplicated object
proposals generated by the RPN, the location of the objects is known, but
their classes still need to be assigned. However, given that classifying
each of the 2000 proposals is highly inefficient and slow, Ren et al. (2016)
fixed this problem by reusing the previously generated feature map and
applying region of interest pooling to it. The purpose of this technique
is to perform max pooling on inputs of nonuniform sizes, in this case,
the RPN-generated convolutional feature map, to obtain fixed-size feature
maps for each object proposal. Such a process is needed since the R-CNN
used to classify the objects inside the proposal needs a fixed-size input to
output a fixed number of classes.

As previously mentioned, Fast R-CNN is the second and final step
of object detection, and it aims to classify proposals as one of the object
classes or as background and to adjust in a better way the bounding boxes
for the proposals according to the predicted class. The R-CNN flattens
the pre-extracted proposals’ convolutional feature maps and injects them
into two different dense layers to reach those goals. Where one of the
dense layers has C + 1 units (C + 1 being the total number of classes plus

3 methods 11

background), and the other has 4C units (4 given the four parameters that
defined the bounding boxes)(Ren et al., 2016).

3.2 YOLO

The first algorithm of the YOLO family was proposed, as mentioned in
section 2., by Redmon et al. (2016) This architecture unified the bounding
box and classification of objects tasks by means of a single neural network
that considers the entirety of the image and all the objects in it. This results
in the possibility of end-to-end training and real-time speed detection.

The detection process starts by dividing the input image into a grid of
SxS size. Where if the center of an object is located at a certain grid cell,
such cell is the one that will detect that object. Each of the grid cells has
as a task to predict a set of B bounding boxes and confidence scores for
those boxes. The level of confidence is defined by Redmon et al. (2016)
as Pr ∗ IoU. Given this definition, if there is no object present in a cell,
the confidence score is zero. In order to consider a prediction confident
enough, the authors set a threshold of at least the same value as the IoU
between the predicted box and the ground truth. The predicted bounding
boxes are defined as a set of xcenter, ycenter coordinates (parametrized to be
offsets of a particular grid cell location, 0 < xcenter < 1 and 0 < ycenter < 1),
a width, height measures relative to the whole image (0 < w < 1 and
0 < h < 1), and a confidence score. As for the Pr these are predicted
for each of the cells as Pr(Classi|Object) and a single grid could predict C
conditional class probabilities. During the test phase, the probability of a
class appearing in a certain box and how well the predicted box fits the
object are encoded by the class-specific confidence scores (Equation 1).

Pr(Classi|Object) ∗ Pr(Object) ∗ IoU = Pr(Classi) ∗ IoU (1)

Inspired by the GoogLeNet model for image classification, the YOLO
architecture has 24 convolutional layers followed by two fully connected
layers. However, the inception modules were replaced by 1X1 reduction
layers followed by 3X3 convolutional layers. In where the first convo-
lutional layers extract features from the image, and the fully connected
layers are in charge of the probabilities and coordinates. The training of
the network is described by Redmon et al. (2016) as first pretraining the
20 initial convolutional layers with the ImageNet 1000-class competition
dataset, using an input size of 224x224, followed by an increase of the input
resolution to 448x448 and the conversion of the network from classification
to detection by adding four convolutional layers and two fully connected
layers with randomly initialized weights, where the final layer outputs both
class probabilities and bounding box coordinates. As for the activation

3 methods 12

Figure 2: YOLO architecture. Source: YOLOv5 Repository

https://github.com/ultralytics/yolov5/issues/1333##issuecomment-817375294

3 methods 13

functions used, all the layers except the final one utilize a leaky rectified
linear activation function (Leaky ReLu), and the final layer uses a linear
activation function. Finally, the network is trained on the Pascal VOC
2007-2012 datasets.

The loss function (Equation 2) used is a modified squared sum where
λcoord = 5 and λnoobj = 0.5 are introduce in order to avoid having the same
weight for localization error, the difference between predicted and true
bounding box coordinates, and class prediction error. Additionally, the
width and height differences are square-rooted to prevent bias prediction
of only small bounding boxes.

λcoord

S2

∑
i=0

B

∑
j=0

1obj
ij [(xi − x̂i)

2 + (yi − ŷi)
2]

+λcoord

S2

∑
i=0

B

∑
j=0

1obj
ij [(
√

wi −
√

ŵi)
2 + (

√
hi −

√
ĥi)

2]

+
S2

∑
i=0

B

∑
j=0

1obj
ij (Ci − Ĉi)

2

+λnoobj

S2

∑
i=0

B

∑
j=0

1obj
ij (Ci − Ĉi)

2

+
S2

∑
i=0

1obj
i ∑

c∈classes
(pi(c)− p̂i(c))2

(2)

The limitations of the model encompassed difficulty to detect and
segregate small objects that appear in groups, low accuracy when com-
pared with two-stage object detectors (Faster R-CNN). YOLO version 2

was proposed to fix the detection of small objects in groups problem. This
proposal introduced the YOLO architecture anchor boxes allowing the
prediction of multiple bounding boxes from a single cell. Later, YOLO
version 3 was proposed to improve the detection accuracy of its predeces-
sors by utilizing a much more complex backbone, DarkNet-53. YOLOv4

proposed by improved, even more, the detector performance by adding
Weighted Residual Connections, Cross Mini Batch Normalization, Cross
Stage Partial Connections, Self-Adversarial Training, and Mish Activation
as methodological changes amongst modern methods of regularization and
data augmentation. Finally, YOLOv5, a PyTorch implementation of this
one-stage object detector by Ultralytics, reduced the training and prediction
times of YOLOv4 with similar performance.

3 methods 14

3.3 Proxy-label Semi-supervised Learning method

Based on the taxonomy proposed by Van Engelen and Hoos (2020) the
process of first training a classifier on labeled data and then using the
predictions of the resulting classifier to generate additional labeled data
is called a wrapper procedure, and it belongs to the many existent semi-
supervised techniques. According to X. J. Zhu (2005) wrapper methods are
among the oldest and most widely known algorithms for semi-supervised
learning. Among wrapper methods, self-training techniques are the most
basic of the approaches.

In words of Triguero, García, and Herrera (2015), “they consist of a sin-
gle supervised classifier that is iteratively trained on both labeled data and
data that has been pseudo-labeled in previous iterations of the algorithm.
At the beginning of the self-training procedure, a supervised classifier is
trained on only the labeled data. The resulting classifier is used to obtain
predictions for the unlabeled data points. Then, the most confident of these
predictions are added to the labeled data set, and the supervised classifier
is re-trained on both the original labeled data and the newly obtained
pseudo-labeled data. This procedure is typically iterated until no more
unlabeled data remain.”

The self-learning algorithm works as follows:

1. Train the classifier with the existing labeled dataset.

2. Predict a portion of samples using the trained classifier.

3. Add the predicted data with a high confidence score into the training
set.

4. Repeat all steps above until meeting the stopping criteria.

The most confidence predictions are selected based on a predefined
confidence measure, and its selection is of great importance given that an
inaccurate confidence measure leads to adding mislabeled examples to
the training set, bringing with it a classification performance degradation
(Triguero et al., 2015). As for the addition mechanism, there are a variety
of schemes in which the training set can be incremented (e.g., incremen-
tal, amending, or batch). Incremental addition consists of the instance
by instance enlargement of the training set after meeting the confidence
measure threshold. The batch approach involves first assessing each of the
instances’ confidence measures before adding any of them to the training
set. This followed by adding to the training data a batch of all of those that
do meet the confidence criteria. Amending addition, contrary to the other

3 methods 15

two methods, allows to iteratively add or remove any instance that does or
does not fulfill the confidence criteria. In that way, this addition mecha-
nism provides a rectification of previous self-labeled instances, avoiding
the introduction of noise.

The stopping criteria is the mechanism used to stop the self-labeling
process and according to Triguero et al. (2015) there exist three main
approaches. The first technique utilizes during the self-labeling process
all the unlabeled data available. The second approach involves choosing
instances from a smaller pool instead of the whole unlabeled data to form
the new training set by establishing a limited number of iterations. The
third method is based on the unchanging status of the classifier learned
hypothesis. When the learned hypothesis remains the same for a couple of
iterations, the process ends.

3.4 Evaluation metrics

The evaluation and comparison of the model’s performance are made using
the standard metrics used for similar object detection tasks, namely, Mean
Average Precision (mAP) at some specific IoU threshold (e.g., mAP@0.5),
and average precision(AP).

The Confidence Score is the probability that an anchor box contains an
object. Intersection over Union (IoU) (Equation 3) is defined as the area of
the intersection divided by the area of the union of a predicted bounding
box (Bp) and a ground truth box(Bgt). IoU metric ranges from 0 and 1, with
0 representing no overlap and 1 meaning perfect overlap between Bp and
Bgt. With the IoU, metric a threshold is necessary to distinguish a valid
detection from an invalid one. A detection is considered a true positive (TP)
only if: (1)Con f idenceScore > threshold; (2) the predicted class matches the
class of a ground truth; and (3) the predicted bounding box has an IoU
greater than a threshold with the ground truth. Violation of either of the
latter two conditions produces a false positive (FP). Recall (Equation 4)
measures the ability of the model to find all relevant cases (all ground
truths). It is defined as the proportion of TPs detected among all ground
truths. Precision (Equation 5) is the ability of a classifier to identify relevant
objects only. It is evaluated as the proportion of TPs detections among all
detections. A good model is a model that can identify most ground-truth
objects (high recall) while only finding the relevant objects (high precision)
often. AP (Equation 6) is calculated based on the Precision-Recall curve
at a certain IoU threshold for each of the classes, and it condenses the

4 experimental setup 16

weighted mean of precisions for each threshold with the increase in recall.
mAP (Equation 7) is the average of AP values over all classes.

IoU =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
(3)

R =
TP

TP + FN
(4)

P =
TP

TP + FP
(5)

AP@α =
∫ 1

0
p(r)dr (6)

mAP@α =
1
n ∑ APi, f ornclasses (7)

4 experimental setup

The present chapter describes the specifics of the dataset and experimental
procedure undertaken.

4.1 Software

Python 3.7 was used to implement the experiments of this study. The
experiments were executed on Jupyter notebooks hosted on a Google
Cloud Platform Server Virtual Machine with a Debian kernel, 4vCPUs,
15GB RAM, an NVIDIA Tesla T4 GPU, and CUDA 11.0. A Pytorch based
implementation of Faster R-CNN by Open MMLab (Chen et al., 2019)
was used for this study, and YOLOv5 was adapted from the Ultralytics’
implementation (Jocher et al., 2021). The different packages and modules
used to complement the previously mentioned algorithms were: Numpy,
Pandas, Matplotlib, Seaborn, Torch & Torchvision.

4.2 Data

The dataset was provided by felyx Sharing B.V., and it contains 86,400

pictures in jpg format with different resolutions. On each of the images,
it is possible to completely or partially observe parked e-moped(s) from
diverse angles and with different backgrounds. The images were taken
by felyx Sharing B.V. customers with various cellphone models. All the
pictures have three channels (RGB) and come in different dimensions, see
Appendix A (page 32). The images required labeling and re-scaling to

4 experimental setup 17

proceed with the presence mirror detection through supervised learning.
This process was conducted using Roboflow’s bounding boxes labeling
feature (Roboflow, 2022). Only a limited amount of pictures were labeled,
approximately 3000. As for the remaining unlabeled data, an amount
(defined by the SSL method) of them were used for semi-supervised
learning purposes.

4.3 Preprocessing

Images can be annotated in different fashions depending on the use case
(e.g., semantic segmentation, bounding boxes, polygons, and others) under
supervised learning settings. For the purpose of this research, a bounding
box approach was undertaken. A total of 2955 randomly selected images
were manually-annotated utilizing Roboflow’s bounding boxes labeling
feature. The labels assigned to each of the images, when possible, were (0)
"left mirror" and (1) "right mirror." Finally, 215 null-images (images that
do not contain mirrors) were added to the annotated dataset. An example
of the annotations can be found in Figure 3. The dataset containing the
manually-annotated 3170 images was divided in a stratified manner into
train (n = 2220), validation (n = 633), and test (n = 317) set, each of
them containing an approximately 6% of null-images (m = 158, 38, 19,
respectively). The annotations of each of the splits has a fairly balanced
distribution of labels, for the train set from a total of 4218 annotations 2116

(50.166%) belong to the ’left mirror’ class, for the validation set from a total
of 1994 annotations 607 (30.441%) belong to the ’left mirror’ class, and for
the test set from a total of 628 annotations 322 (51.274%) belong to the ’left
mirror’ class (Table 1.) The average number of mirrors (annotations) per
image for the annotated data set is 2.053, and the total number of images
with only one mirror (annotation) is 232, 131 images with only one left
mirror and 101 images with only one right mirror.

Table 1: Annotations details.

Split No. images No. Annotations

Labeled Null Left Right

Train 2062 158 2116 2102

Validation 595 38 607 1387

Test 298 19 322 306

The images on each set were re-seized and transformed to the appro-
priated ingestion format for each algorithm. For YOLOv5, an input size
of 640X640 and a format that implies a collection of images where each

4 experimental setup 18

of the images has a unique name together with a TXT file, with the same
name as its corresponding image, containing x and y coordinates of the
bounding box(es) and the assigned label to the same(s). These files were
stored in different folders, for each set, containing two separate folders for
the images and the TXT files, respectively. For Faster R-CNN, the input
size is 1333X800, and different ingestion formats are supported; however,
the COCO format was selected for this study. The COCO format consists of
raw image data and a single JSON file that contains all of the annotations,
metadata of the images, categories, and other information about the dataset.
The Faster R-CNN files were stored based on train, validation, and test set
in different folders that store all the images of the corresponding set and
their JSON file.

Figure 3: Manually annotated images example

4.4 Experimental procedure

The process of identifying the presence of a rear-view mirror through im-
ages is an object detection problem that could be carried out in a supervised
or semi-supervised manner, with the aim of assessing the performance of
fine-tuned generic state-of-the-art deep object detectors both approaches
were adopted. This sub-section presents the details of the experimental
procedure.

4.4.1 YOLOv5 training and fine-tuning

YOLOv5 is available in five different base models, all of which are pre-
trained on the standard COCO dataset and differ in size. One of the most
miniature versions, YOLOv5s, was chosen for this study, given its detection
speed and size-performance trade-off, to see other models’ characteristics
go to Appendix B (page 33).

Yolov5s architecture was trained to detect the 80 different classes
present on the COCO dataset, and therefore the number of classes to

4 experimental setup 19

be identified by the architecture’s head detection layer had to be fine-tuned,
from 80 to two classes for this case, "left mirror" and "right mirror," labeled
as 0 and 1 respectively. As for the rest of the architecture, it remained the
same. The source paths of the dataset must be previously established in
a configuration file of YAML type. Such file comprehends the train, and
validation directories paths, number of classes to be detected, and their
names. As mentioned, the images are required to be re-sized (640X640)
before starting with the training. For the fine-tuning of the model, the
weights obtained after training the YOLOv5s on the COCO dataset were
preloaded, and the layers comprehending the backbone (0-9) were frozen
to speed up the training process. The baseline model was considered
as the previously described configuration of the model trained without
augmentation and with the default hyperparameters.

To yield better model performance, a model hyperparameter tuning
was carried by means of manual search, given that an exhaustive grid
search represented a high computational cost. The summary of the specific
hyperparameter settings explored during training is presented in Table
3. In order to find the best combination of hyperparameters, each of
the parameters was changed one at a time and asses according to the
validation set mAP@0.5-0.9, its classification, and bounding boxes loss. An
SGD optimizer with different learning rates and small batch sizes together
with momentum was utilized (Xing, Arpit, Tsirigotis, & Bengio, 2018).
The model was trained for 50, 150, and 300 epochs to observe what was
the most suitable value to prevent overfitting or underfitting the train
set data. According to the results obtained from the manual search, the
best-founded configuration for this model had a learning rate of 0.01, a
momentum of 0.937, and a batch size set to 32. To enforce light condition
changes robustness of the model, photometric augmentation (see Table 2)
was implemented on the training data (Tellez et al., 2019).

4.4.2 Faster R-CNN training and fine-tuning

The Faster R-CNN model has several implementations available; for this
project, the implementation of Open MMLab was used for the mirrors
detection problem, given its high efficiency and training speed in com-
parison to other implementations such as Detectron2 or SimpleDet (open-
mmlab/mmdetection: OpenMMLab Detection Toolbox and Benchmark, 2021). The
selected backbone for the Faster R-CNN model implemented on PyTorch
style was ResNet50, and the network was initialized using the pre-trained
weights obtained with the COCO dataset. For the model fine-tuning, the
head of the architecture’s second stage, classification of objects stage, had
to be modified by adjusting the number of classes from 80 to 2 classes, "left
mirror" and "right mirror," labeled as 0 and 1, respectively. Additionally,

4 experimental setup 20

Table 2: Data Augmentation for both models.

Data Augmentation

Image HSV-Hue = 0.015 (fraction)
Image HSV-Saturation = 0.7 (fraction)
Image HSV-Lightness = 0.4 (fraction)
Image HSV-Contrast = 0.5 (fraction)

−→ Note: Image flip left-right must be omitted by all means.

all the weights of the model’s first stage, region proposal generation stage,
were frozen. As mentioned, the selected format of the data for ingestion
was COCO format, and the images required non-destructive re-sizing
(1333X800) to start with the training of the model. The baseline model was
considered as the previously described configuration of the model trained
without augmentation and with the default hyperparameters.

Manual hyperparameter tuning was undertaken to achieve good perfor-
mance and generalization ability of the model. Based on the validation set
mAP@0.5-0.9, its classification, and bounding boxes loss, the best-founded
parameters for this model were learning rate set to 0.01, batch size of 4, and
a momentum of 0.9. The explored hyperparameters are described in Table
4. Only one parameter at a time was changed. Data photometric augmenta-
tion was also done for this model (see Table 2.) The optimizer used for this
model was SGD since the authors of the toolbox do not recommend using
ADAM given that the performance could drop considerably. The number
of epochs used for training was 6, and 12. Obtaining an appropriate fitting
with 12 epochs.

4.4.3 Amount of labeled data

After obtaining the best configuration for both models, the training data set
was used to randomly select bundles of labeled images of different sizes,
namely, 500, 1000, 1500, and 2000 images. Those bundles of data were then
used to re-trained the models so to see how the amount of manually-labeled
data affected the performance of the models when detecting e-moped rear-
view mirrors. The results can be observed in Table 6 in the Results section.

4.4.4 Semi-supervised learning

As explained in section 3., semi-supervised learning requires a proxy-
labeled data addition mechanism, a confidence measure for addition, and
a stopping criteria mechanism. The addition mechanism selected for both
models was the batch addition mechanism given that this technique, in
contrast to the incremental mechanism, do not alter the learned hypothesis

5 results 21

during training phase allowing to prioritize the most confident self-labeled
instances when injecting them for re-training after filtration. The stopping
criteria the so-called by Triguero et al. (2015) unchanging status stopping
criteria reinforced with help of an early stopping mechanism, based on
mAP@0.5 value evaluated over the validation set, with a patience of 50

for YOLOv5 and of 4 for Faster R-CNN; such stopping mechanism was
chosen as it limits the number of iterations without having to unnecessarily
over or underused all the available unlabeled data, opposite to the other to
previously mentioned methods. The confidence measure for addition the
probability that the anchor box contains an object (detection confidence
score.) The confidence score threshold was defined to 0.7 following the
criteria selected by Y. Li, Huang, Qin, Wang, and Gong (2020) to obtain
their empirical results. The final size of the train data set and performance
results for each of the models are described in section 5.

5 results

This section is divided as follows: firstly, an overall comparison of the
fine-tuned models trained on manually-labeled data will be made. Sub-
sequently, the impact of the amount of labeled data while training on the
model’s performance will be discussed. Finally, the detection results of the
supervised and semi-supervised trained models will be compared.

5.1 Fine-tuned models comparison

To help answer the first sub-question, a comparison was made between
two state-of-the-art object detectors: Faster R-CNN and YOLOv5. Table
5 shows the difference in performance (measured based on mAP@0.5,
mAP@0.5 : 0.95, and AP@0.5) between the two approaches, which was
evaluated on the test partition of the dataset. As shown in the table, the
effect of fine-tuning on the performance of YOLOv5 and Faster R-CNN
can be observed. Fine-tuning the YOLOv5 and Faster R-CNN models
on domain-specific knowledge substantially increases the performance
of the models. The increase in performance for the YOLOv5 model was
on average 76.9% for all measures. For example, compared to the high-
est mAP@0.5 reported for the baseline models, fine-tuning increased the
mAP@0.5 of the fine-tuned YOLOv5 model from 0.587 to 0.965. Similarly,
the Faster R-CNN model performance increased on average 17.3% for
all measures. As for the contrast between the fine-tuned models, from
the values evaluated, it is possible to see that both models have similar
performance; however, YOLOv5 does a slightly better job when detecting

5 results 22

mirrors at high confidence scores, see mAP@0.5 : 0.95. That is to say, that
the localization of the objects is more precise for this model.

Table 3: Hyperparameter search for YOLOv5. The values presented in boldface
are the ones that gave the best results for this model.

Hyperparameter Values

Lr 0.001 0.01 0.05

Momentum 0.537 0.737 0.937

Batch size 16 32 64

? Optimizer SGD

Table 4: Hyperparameter search for Faster R-CNN. The values presented in
boldface are the ones that gave the best results for this model.

Hyperparameter Values

Lr 0.001 0.01 0.02

Momentum 0.5 0.7 0.9

Batch size 2 4 8

? Optimizer SGD

Table 5: Performance of the models in rear-view mirrors detection. The results of
all models were obtained using the test set.

Models mAP@0.5 mAP@0.5:0.95 AP@0.5

YOLOv5

Baseline 0.587 0.362 0.577

Fine-tuned 0.965 0.728 0.96

Faster R-CNN
Baseline 0.817 0.592 0.817

Fine-tuned 0.955 0.7 0.955

5.2 Impact of amount of labeled data

Besides the performance of the fine-tuned models when detecting the
presence of e-moped rear-view mirrors, the performance of the same when
trained with different amounts of manually-labeled data has been assessed
and can be seen in Table 6. As it can be appreciated, when increasing
the number of data the performance of both models improves. Especially

5 results 23

Figure 4: Performance of the fine-tuned models depending on the amount of data
used for training

for the mAP across detections with values of IoU between 0.5 and 0.95,
observing an increase of 10.19% between extreme values (500 and 2000

labeled images) for YOLOv5, and for Faster R-CNN of 3.9%. Nevertheless,
as it is perceive for both models a plateau for the mAP with IoU of 0.5 took
place after using more than 1500 labeled images.

Table 6: Performance of the fine-tuned models depending on the amount of data
used for training. The best results are presented in boldface. All results were
evaluated on the test set.

Model labeled data(#) mAP@0.5 mAP@0.5:0.95 AP@0.5

YOLOv5

500 0.922 0.657 0.94

1000 0.930 0.684 0.930

1500 0.951 0.712 0.944

2000 0.957 0.724 0.956

Faster R-CNN

500 0.910 0.665 0.910

1000 0.925 0.681 0.925

1500 0.935 0.686 0.935

2000 0.935 0.691 0.935

5.3 Fully supervised vs. Semi-supervised models

To answer sub-question three, the models were trained under SSL settings.
For YOLOv5 not improvement was seen from the addition of self-labeled
data, contrarily a slight deterioration of 2.47% for the model’s mAP@0.5 :

6 discussion 24

0.95 over all classes was appreciated. After injecting 624 images and their
proxy-labels to the train set the SS learning training was stopped given
no performance improvement, see Tables 7. Additionally, the increment
on the AP@0.5 appreciated for the first batch of added self-labeled images
represented a diminished AR@0.5. As for Faster R-CNN, similar results
were obtained even though the amount of injected self-label images per
batch was slightly larger than the one of the one-stage detector. A decline
of 6.71% for the model’s mAP@0.5 : 0.95 over all classes was obtained, as
well as a drop of the same proportion on the AP@0.5. Therefore, the FL
trained model represents a more suitable approach for the objective of this
work.

Table 7: Comparison between Fully-Supervised (FS) trained models and Semi-
Supervised (SS) trained models performance. The performance of the model
under semi-supervised learning was register after the addition of each self-labeled
data batch. All results were obtained using the test set.

Model Approach Train set size mAP@0.5 mAP@0.5:0.95 AP@0.5

YOLOv5

FS 2220 0.965 0.728 0.96

SS
2568 0.96 0.719 0.981

2844 0.959 0.71 0.972

FasterR-CNN
FS 2220 0.955 0.7 0.955

SS
2842 0.94 0.676 0.94

3313 0.938 0.653 0.938

6 discussion

The primary goal of this study was to assess how efficient generic state-of-
the-art deep object detectors are when locating and classifying e-moped
rear-view mirrors by answering three sub-questions. The main finding
was that generic fine-tuned object detectors such as Faster R-CNN and
YOLOv5 could efficiently detect e-moped rear-view mirrors from images.

The first sub-question explored how well fine-tuned Faster R-CNN and
YOLOv5 work when applied on a domain-specific detection application.
Results showed that both models have similar performance when detecting
e-moped rear-view mirrors; nonetheless, YOLOv5 has a slightly better per-
formance than Faster R-CNN, especially for the task of mirrors localization
inside a picture. Previous studies that carried comparisons between both
architectures have shown results in line with the ones obtained in this
examination. (Kim, Sung, & Park, 2020) contrasted the efficiency of Faster
R-CNN to the one of YOLO version 4 and SSD when detecting vehicles in
real-time. Their results show that YOLO version 4 has a better performance

6 discussion 25

Figure 5: Automatically detected mirrors in test set images using Faster R-CNN.
Examples of correct and incorrect detections.

and faster detection than Faster R-CNN. Similarly, Benjdira, Khursheed,
Koubaa, Ammar, and Ouni (2019) presented a comparison between YOLO
version 3 and Faster R-CNN when detecting vehicles from aerially-taken
images. The precision of YOLOv3 was to some extent better than Faster
R-CNN’s, yet the recall was notably higher for the one-stage object detector.
A possible reason for Faster R-CNN to not have as favorable results as the
other model could be its two-stage architecture, typically slower, and the
fact that it was trained for a relatively small amount of epochs compared
to YOLOv5. Another limitation of this experiment can be found in the
manual hyperparameter tuning undertaken to find the best-performing
version of the models.

6 discussion 26

Figure 6: Automatically detected mirrors in test set images using YOLOv5. Exam-
ples of correct and incorrect detections.

The second sub-question focused on the effect of manually-labeled data
amount on the performance of fine-tuned object detectors. The empirical
results agreed with the literature (Van Engelen & Hoos, 2020) as the
performance of both detectors increases as the size of the training set
grows. Notably, the evaluation outcomes exhibited that the detection at
higher confidence levels enhanced with a more considerable amount of
data to learn from. From this experiment, it is possible to notice that
YOLOv5 required fewer data to yield moderately better results than Faster
R-CNN. This behavior could be given by the feature of, introduced to
the YOLO family with YOLOv3 PyTorch implementation, learning anchor
boxes based on the distribution of bounding boxes in the custom dataset
with K-means and genetic learning algorithms. This feature helps the

7 conclusion 27

model tackle custom tasks with various distributions of bounding box sizes
and locations more effectively than the Faster R-CNN’s RPN. Accordingly,
limitations for comparing both approaches can be found in the architecture
of Faster R-CNN. In future works, a comparison between YOLOv5 and
Cascade R-CNN (Cai & Vasconcelos, 2018) could give fairer results.

The third sub-question examined how implementing semi-supervised
learning affects the detection of Faster R-CNN and YOLOv5 e-moped rear-
view mirrors. This question was raised given the nature of the provided
data (mainly unlabeled) and the fact that manual labeling is a highly
taxing task. Literature has proven that the bigger the training dataset, the
better the results, and that proxy labels help enlarge a training dataset
when aiming for better results (X. Zhu & Goldberg, 2009). Nonetheless,
after evaluating the SSL trained object detectors, the results obtained were
opposed to expectations, attaining a slight drop in performance after
adding two batches of proxy-labeled data. However, other studies also
recorded an unsatisfactory impact on model efficiency after using SSL
training, as it is stated in the work of Y.-F. Li and Zhou (2014). One of the
most significant limitations was the selected confidence measure threshold
(cm > 0.7); this could be set to a more discriminative value that does not
allow wrongly labeled images, noise, to be introduced to the training set.

From the explorations and limitations of this study, a groundwork
for future work in the area of detection of moped-related damages has
been laid out, and from it, few recommendations emerged. Future studies
are advised to explore instance segmentation for the purpose of e-moped
mirror detection and other scooter and rear-view mirror damages detection.
This since the level of detail of the annotations, pixel by pixel, can improve
the performance without extensive training datasets (He, Gkioxari, Dollár,
& Girshick, 2017). Additionally, exploring the effect of different backbones,
pre-trained weights, and a grid search-based hyperparameter tuning for
each of the architectures is encouraged since this could lead to possible
further improvements of the models. Lastly, applying more complex semi-
supervised learning methods (e.g., adversarial SSL learning) or selective
self-training methods (Oliver, Odena, Raffel, Cubuk, & Goodfellow, 2019)
would be interesting.

7 conclusion

All things considered, this study exhibited that generic fine-tuned object
detectors such as Faster R-CNN and YOLOv5 could efficiently carry out
automatic visual detection of e-moped rear-view mirrors, and potentially
detection of other kind of e-moped damages. In line with previous litera-
ture, results displayed a slight difference between the one-stage and the

REFERENCES 28

two-stage object detectors. Therefore, a selection between one or the other
depends on the deployment preferred platform restrictions and/or the
detection speed requirements. However, it is essential to highlight that
YOLOv5 required fewer data to yield moderately better results than Faster
R-CNN; hence its use for applications where minimal data is available
could be recommended based on this work results. The semi-supervised
learning self-training method, used to take advantage of all the provided
data, did not prove an enhancement on the performance of neither of the
object detectors; however, these results could have been caused by improper
confidence measure threshold selection or lack of discrimination of the
proxy-labeled images that fulfilled the addition-criteria. Consequently, fu-
ture works are encouraged to explore further the effect of SSL in detection
problems encompassed in the moped-related areas. Additionally, future
research should explore the effects of different backbones, pre-trained
weights, and hyperparameter tuning strategies over the object detectors
postulated before. Finally, this study can help with the development of a
tool that aids the reparation process of e-moped damages by reducing miss-
ing mirrors detection time, helping to ensure the integrity of the vehicles
and, subsequently, the driver’s safety.

references

Alex, R. (2020). Object detection algorithms: A review.
Benjdira, B., Khursheed, T., Koubaa, A., Ammar, A., & Ouni, K. (2019).

Car detection using unmanned aerial vehicles: Comparison between
faster r-cnn and yolov3. In 2019 1st international conference on unmanned
vehicle systems-oman (uvs) (pp. 1–6).

Burton II, W., Myers, C., & Rullkoetter, P. (2020). Semi-supervised learning
for automatic segmentation of the knee from mri with convolutional
neural networks. Computer methods and programs in biomedicine, 189,
105328.

Cai, Z., & Vasconcelos, N. (2018). Cascade r-cnn: Delving into high quality
object detection. In Proceedings of the ieee conference on computer vision
and pattern recognition (pp. 6154–6162).

Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., . . . Lin, D. (2019).
MMDetection: Open mmlab detection toolbox and benchmark. arXiv
preprint arXiv:1906.07155.

Christoforou, Z., Gioldasis, C., de Bortoli, A., & Seidowsky, R. (2021). Who
is using e-scooters and how? evidence from paris. Transportation
research part D: transport and environment, 92, 102708.

Chun, C., & Ryu, S.-K. (2019). Road surface damage detection using fully
convolutional neural networks and semi-supervised learning. Sensors,

REFERENCES 29

19(24), 5501.
Degele, J., Gorr, A., Haas, K., Kormann, D., Krauss, S., Lipinski, P., . . .

Hertweck, D. (2018). Identifying e-scooter sharing customer segments
using clustering. In 2018 ieee international conference on engineering,
technology and innovation (ice/itmc) (pp. 1–8).

e Silva, R. R., Aires, K. R., & de MS Veras, R. (2018). Detection of helmets
on motorcyclists. Multimedia Tools and Applications, 77(5), 5659–5683.

Espinosa, J. E., Velastin, S. A., & Branch, J. W. (2018). Motorcycle detection
and classification in urban scenarios using a model based on faster
r-cnn.

Gauquelin, A. (2021, Jun). Moped-sharing: The dutch connection.
Retrieved from https://shared-micromobility.com/moped-sharing

-the-dutch-connection/

Girshick, R. (2015). Fast r-cnn. In Proceedings of the ieee international
conference on computer vision (pp. 1440–1448).

Gössling, S. (2020). Integrating e-scooters in urban transportation: Prob-
lems, policies, and the prospect of system change. Transportation
Research Part D: Transport and Environment, 79, 102230.

He, K., Gkioxari, G., Dollár, P., & Girshick, R. B. (2017). Mask R-CNN. CoRR,
abs/1703.06870. Retrieved from http://arxiv.org/abs/1703.06870

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in
deep convolutional networks for visual recognition. IEEE transactions
on pattern analysis and machine intelligence, 37(9), 1904–1916.

Helm wordt vanaf juli volgend jaar verplicht voor snorfietsers | rtl nieuws. (n.d.).
https://www.rtlnieuws.nl/nieuws/politiek/artikel/5233620/

helm-wordt-verplicht-voor-snorfietsers-vanaf-juli-volgend

-jaar.
Jaffari, R., Hashmani, M. A., Reyes-Aldasoro, C. C., Aziz, N., & Rizvi,

S. S. H. (2021). Deep learning object detection techniques for thin
objects in computer vision: An experimental investigation. In 2021
7th international conference on control, automation and robotics (iccar) (pp.
295–302).

Jocher, G., Stoken, A., Chaurasia, A., Borovec, J., NanoCode012, TaoXie, . . .
wanghaoyang0106 (2021, October). ultralytics/yolov5: v6.0 - YOLOv5n
’Nano’ models, Roboflow integration, TensorFlow export, OpenCV DNN
support. Zenodo. Retrieved from https://doi.org/10.5281/zenodo

.5563715 doi: 10.5281/zenodo.5563715

Kakani, V., Nguyen, V. H., Kumar, B. P., Kim, H., & Pasupuleti, V. R. (2020).
A critical review on computer vision and artificial intelligence in food
industry. Journal of Agriculture and Food Research, 2, 100033.

Kim, J.-a., Sung, J.-Y., & Park, S.-h. (2020). Comparison of faster-rcnn, yolo,
and ssd for real-time vehicle type recognition. In 2020 ieee international

https://shared-micromobility.com/moped-sharing-the-dutch-connection/
https://shared-micromobility.com/moped-sharing-the-dutch-connection/
http://arxiv.org/abs/1703.06870
https://www.rtlnieuws.nl/nieuws/politiek/artikel/5233620/helm-wordt-verplicht-voor-snorfietsers-vanaf-juli-volgend-jaar
https://www.rtlnieuws.nl/nieuws/politiek/artikel/5233620/helm-wordt-verplicht-voor-snorfietsers-vanaf-juli-volgend-jaar
https://www.rtlnieuws.nl/nieuws/politiek/artikel/5233620/helm-wordt-verplicht-voor-snorfietsers-vanaf-juli-volgend-jaar
https://doi.org/10.5281/zenodo.5563715
https://doi.org/10.5281/zenodo.5563715

REFERENCES 30

conference on consumer electronics-asia (icce-asia) (pp. 1–4).
Li, N., & Xia, Y. (2018). Affective image classification via semi-supervised

learning from web images. Multimedia Tools and Applications, 77(23),
30633–30650.

Li, Y., Huang, D., Qin, D., Wang, L., & Gong, B. (2020). Improving object
detection with selective self-supervised self-training.

Li, Y.-F., & Zhou, Z.-H. (2014). Towards making unlabeled data never
hurt. IEEE transactions on pattern analysis and machine intelligence, 37(1),
175–188.

Lin, H., Deng, J. D., Albers, D., & Siebert, F. W. (2020). Helmet use
detection of tracked motorcycles using cnn-based multi-task learning.
IEEE Access, 8, 162073-162084. doi: 10.1109/ACCESS.2020.3021357

Meng, C., Bao, H., & Ma, Y. (2020). Vehicle detection: A review. In Journal
of physics: Conference series (Vol. 1634, p. 012107).

Mhalla, A., Chateau, T., Gazzah, S., & Amara, N. E. B. (2018). An em-
bedded computer-vision system for multi-object detection in traffic
surveillance. IEEE Transactions on Intelligent Transportation Systems,
20(11), 4006–4018.

Oliver, A., Odena, A., Raffel, C., Cubuk, E. D., & Goodfellow, I. J. (2019).
Realistic evaluation of deep semi-supervised learning algorithms.

open-mmlab/mmdetection: Openmmlab detection toolbox and benchmark. (2021).
https://github.com/open-mmlab/mmdetection.

Prajwal, M., Tejas, K., Varshad, V., Murgod, M., & Shashidhar, R. (2019).
Detection of non-helmet riders and extraction of license plate num-
ber using yolo v2 and ocr method. Int. J. Innov. Technol. Exploring
Eng.(IJITEE), 9(2).

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look
once: Unified, real-time object detection. In Proceedings of the ieee
conference on computer vision and pattern recognition (pp. 779–788).

Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster r-cnn: towards real-time
object detection with region proposal networks. IEEE transactions on
pattern analysis and machine intelligence, 39(6), 1137–1149.

Roboflow, I. (2022). Roboflow annotation tool. https://roboflow.com/

annotate.
Sanjana, S., Shriya, V., Vaishnavi, G., & Ashwini, K. (2021). A review

on various methodologies used for vehicle classification, helmet
detection and number plate recognition. Evolutionary Intelligence,
14(2), 979–987.

Schellong, D., Sadek, P., Schaetzberger, C., & Barrack, T. (2021, Jan).
The promise and pitfalls of e-scooter sharing. BCG Global. Retrieved
from https://www.bcg.com/publications/2019/promise-pitfalls

-e-scooter-sharing

https://github.com/open-mmlab/mmdetection
https://roboflow.com/annotate
https://roboflow.com/annotate
https://www.bcg.com/publications/2019/promise-pitfalls-e-scooter-sharing
https://www.bcg.com/publications/2019/promise-pitfalls-e-scooter-sharing

REFERENCES 31

Tellez, D., Litjens, G., Bándi, P., Bulten, W., Bokhorst, J.-M., Ciompi, F., &
van der Laak, J. (2019). Quantifying the effects of data augmentation
and stain color normalization in convolutional neural networks for
computational pathology. Medical image analysis, 58, 101544.

Triguero, I., García, S., & Herrera, F. (2015). Self-labeled techniques for
semi-supervised learning: taxonomy, software and empirical study.
Knowledge and Information systems, 42(2), 245–284.

Van Engelen, J. E., & Hoos, H. H. (2020). A survey on semi-supervised
learning. Machine Learning, 109(2), 373–440.

Weinstein, B. G., Marconi, S., Bohlman, S., Zare, A., & White, E. (2019). In-
dividual tree-crown detection in rgb imagery using semi-supervised
deep learning neural networks. Remote Sensing, 11(11), 1309.

wetten.nl - regeling - regeling voertuigen - bwbr0025798. (n.d.). https://

wetten.overheid.nl/BWBR0025798/2021-01-21#Hoofdstuk5.
Wu, X., Sahoo, D., & Hoi, S. C. (2020). Recent advances in deep learning

for object detection. Neurocomputing, 396, 39–64.
Xing, C., Arpit, D., Tsirigotis, C., & Bengio, Y. (2018). A walk with sgd.
Zaman, F. H. K., Abdullah, S. A. C., Razak, N. A., Johari, J., Pasya, I., &

Kassim, K. A. A. (2021). Visual-based motorcycle detection using you
only look once (yolo) deep network. In Iop conference series: Materials
science and engineering (Vol. 1051, p. 012004).

Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised learning.
Synthesis lectures on artificial intelligence and machine learning, 3(1), 1–
130.

Zhu, X., Liu, S., Zhang, P., & Duan, Y. (2019). A unified framework of
intelligent vehicle damage assessment based on computer vision
technology. In 2019 ieee 2nd international conference on automation,
electronics and electrical engineering (auteee) (pp. 124–128).

Zhu, X. J. (2005). Semi-supervised learning literature survey.
Zou, Z., Shi, Z., Guo, Y., & Ye, J. (2019). Object detection in 20 years: A

survey. arXiv preprint arXiv:1905.05055.

https://wetten.overheid.nl/BWBR0025798/2021-01-21#Hoofdstuk5
https://wetten.overheid.nl/BWBR0025798/2021-01-21#Hoofdstuk5

REFERENCES 32

appendix a

Figure 7: Examples of images present in the provided dataset

REFERENCES 33

Figure 8: YOLOv5 available models. Source: YOLOv5 Repository

appendix b

https://github.com/ultralytics/yolov5

	Introduction
	Background
	Methods
	Faster R-CNN
	YOLO
	Proxy-label Semi-supervised Learning method
	Evaluation metrics

	Experimental Setup
	Software
	Data
	Preprocessing
	Experimental procedure
	YOLOv5 training and fine-tuning
	Faster R-CNN training and fine-tuning
	Amount of labeled data
	Semi-supervised learning

	Results
	Fine-tuned models comparison
	Impact of amount of labeled data
	Fully supervised vs. Semi-supervised models

	Discussion
	Conclusion

