
D O C U M E N T L AY O U T A N A LY S I S
O N M U LT I - S T R U C T U R E D

I N F O R M AT I O N D O C U M E N T S
U S I N G M A S K R - C N N M O D E L S

A N E X T E N D E D O B J E C T D E T E C T I O N S T U D Y
C O M PA R I N G M E A N AV E R A G E P R E C I S I O N S A N D

E L E M E N T P R E C I S I O N S O F M A S K R - C N N M O D E L S
O N M U LT I - S T R U C T U R E D I N F O R M AT I O N

D O C U M E N T S R E P R E S E N T E D B Y T W O D I F F E R E N T
D ATA S E T S

M I C K H E L L E R

thesis submitted in partial fulfillment

of the requirements for the degree of

master of science in data science & society

at the school of humanities and digital sciences

of tilburg university



student number

2003152

committee

dr. Gonzalo Nápoles
Mariana Dias Da Silva-van Riel

location

Tilburg University
School of Humanities and Digital Sciences
Department of Cognitive Science &
Artificial Intelligence
Tilburg, The Netherlands

date

February 7, 2022

acknowledgments

I would like to give my warmest thanks to my supervisors dr. Gonzalo
Nápoles and Mariana Dias Da Silva-van Riel for providing feedback and
helping me during the supervisor meetings. Their guidance and advice
helped me achieve this study. I would also like to thank Semmtech B.V.,
in particular, Bram Bazuin and Louise Dam. Bram for introducing me to
the company Semmtech and giving me a warm welcome. Louise for her
feedback, guidance, and fun meetings. Without her, this study would not
be the way it is now. Finally, I want to thank my family and my girlfriend,
for standing beside me through the whole graduation period. 1

1 Word count: 8639



D O C U M E N T L AY O U T A N A LY S I S
O N M U LT I - S T R U C T U R E D

I N F O R M AT I O N D O C U M E N T S
U S I N G M A S K R - C N N M O D E L S

A N E X T E N D E D O B J E C T D E T E C T I O N S T U D Y C O M PA R I N G
M E A N AV E R A G E P R E C I S I O N S A N D E L E M E N T P R E C I S I O N S

O F M A S K R - C N N M O D E L S O N M U LT I - S T R U C T U R E D
I N F O R M AT I O N D O C U M E N T S R E P R E S E N T E D B Y T W O

D I F F E R E N T D ATA S E T S

mick heller

Abstract

Deep learning models – specifically Detectron2 Mask Region-
Based Neural Networks (R-CNN) – have recently become dominant
for Document Layout Analysis (DLA) and object detection tasks.
However, applying layout analysis by using object detection on multi-
structured documents is lacking. To narrow the gap, this study
proposes a comparison of different pre-trained Mask R-CNN model
variations to apply DLA and object detection on multi-structured
documents by answering the following research question, which is
the best performing Detectron2 Mask Region-Based Convolutional
Neural Network variation for Document Layout Analysis on multi-
structured information documents?. This will be done by comparing
a synthetic dataset to a manually annotated dataset to determine
whether such a synthetic dataset can account for the manually expen-
sive annotation process.

The results demonstrate that the manually annotated dataset
model variations have significantly outperformed the baseline model
and achieved high performance on both average precisions and ele-
ment precisions on multi-structured documents. The models from
the synthetic dataset performed worse than the baseline method, indi-
cating low detection powers. The reason for this could be the number
of annotations, document creation, and the non-structured nature of
the synthetic dataset. However, implications for future research can
argue the contribution of introducing a synthetic dataset in DLA if
the dataset is created more critically including more pre-determined
rules for multi-structured document re-creation.
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Data Source, Code, and Ethics Statement

• The author of this thesis acknowledges that they do not have
any legal claim to part of this data or code.

1 introduction

Documents in Portable Document Format (PDF) are a great source of infor-
mation for humans, with over 2.5 trillion created documents worldwide
(Yepes, Zhong, & Burdick, 2021). However, PDF as a format is not under-
standable for machines. Machines cannot understand the PDF layout and
extract information using the PDF format (Zhong, Tang, & Jimeno Yepes,
2019). Data needs to be structured to be machine-readable (Open Knowl-
edge, 2015). Structured data refers to data where the structural relation
between elements is explicit in the way the data is stored on a computer
disk. PDF documents contain unstructured data because the representation
of PDF documents reflects the position of entities on the page and not
their logical structure, which is difficult to extract automatically (Open
Knowledge, 2015). However, extracting information is essential since PDF
documents usually contain important information, key results, or summa-
rizations (Zhong et al., 2019).

A potential way of automatically extracting information from PDF
documents is through Document Layout Analysis (DLA). Using DLA, it is
possible to annotate the physical layout structure of a document. DLA is
the first process in the pipeline of a document understanding system that
detects and labels homogeneous document regions (Binmakhashen & Mah-
moud, 2019). The DLA process separates the document into zones, and
subsequent classification of individual zones into one of the pre-defined
categories such as text, tables, images, or lines (Tran et al., 2017). An
important aspect of DLA is annotating the relevant elements in an image.
Document annotation refers to the transformation of textual documents to
linked knowledge structures that represent relevant information (Hand-
schuh, Staab, & Maedche, 2001). It identifies fields and associated values
in a text document and extracts relevant information using a set of criteria.
It involves labeling and organizing data to deliver key insights and make
it approachable for analysis (Handschuh & Staab, 2003). The annotation
approach applied in this research involves the bounding box approach.
This approach is elaborated on in section 3. In this study, the bounding box
approach will be employed with the focus on a multi-model layout analysis,
which combines the visual and semantic modalities of DLA (Zhang et al.,
2021). This study will focus particularly on the DLA application docu-
ment understanding. Document understanding refers to region detection,
labeling of meaningful regions, and semantic interpretation using layout
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analysis and arranging them according to a predefined domain knowledge
(Rigaud, Guérin, Karatzas, Burie, & Ogier, 2015).

The provided PDF documents will be analyzed using object detection
models. Object detection is a computer vision technique that tries to
identify objects in an image and label them accordingly (Dasiopoulou,
Mezaris, Kompatsiaris, Papastathis, & Strintzis, 2005). By doing this, object
detection models draw bounding boxes around the objects of interest.
These bounding boxes are later used to identify these objects. In this
object detection study, images containing lists, figures, texts, titles, and
tables are used as input data and objects to be detected. The outputs
contain bounding boxes and class labels for every bounding box on the
images. Deep learning-based object detection will be used in this research.
These methods employ the R-CNN models to perform unsupervised object
detection. Here, the specific features do not need to be defined and
extracted separately (Deng & Liu, 2018).

Besides the dominant role of deep learning-based object detection,
deep learning algorithms also became dominant in DLA applications
(Binmakhashen & Mahmoud, 2019). R-CNN models are deep learning
models, used specifically for object detection (K. He, Gkioxari, Dollár,
& Girshick, 2017). These models have become more efficient and more
accurate (Hafiz & Bhat, 2020). Recently, Facebook introduced an object
detection model named ’Detectron2’. Detectron2 is a deep learning model
that consists of a vast arsenal of models. Most notably, R-CNN models are
used to provide the target area and classify and recognize the target on
the proposal region (K. He et al., 2017). A more detailed elaboration and
implementation of the models described above are given in section 3.

DLA plays an important role in terms of document understanding
and in extracting relevant information from documents. The practical
and societal implications are manifold, including document retrieval, con-
tent categorization, text recognition, and document understanding (Bin-
makhashen & Mahmoud, 2019). Also, the layout analysis performed will
be done for business usage to contribute to machine readability of the PDF
documents for document understanding. As mentioned, PDF documents
as data are unstructured. However, A PDF document can have a struc-
tured, semi-structured, or non-structured layout (Belhadj, Belaïd, & Belaïd,
2021). A combination of multiple documents with these different layout
structures can refer to multi-structured documents (Rigaud et al., 2015). In
this research, multi-structured documents are PDF documents that differ
in the type of PDF document (e.g. contract document or standardiza-
tion document) or differ in document structure (e.g. semi-structured or
unstructured). To perform DLA, the generation of data is an important
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process. The input data is generated by annotating document images.
High-quality data can be generated in multiple ways. In this study, both a
manual process and an automatic generation process were used, resulting
in an automatically generated dataset and a manually annotated dataset.
These two datasets both represent multi-structured information documents
and were used to train models for DLA to compare the results in terms
of their ability to correctly classify different document structures. This
research will contribute to the existing literature in the following ways.
Many papers apply DLA on documents having similar layout structures.
Section 2 will further elaborate on this point when revising the pertinent
literature. Therefore, models on more diverse layout documents are needed
to facilitate DLA (Binmakhashen & Mahmoud, 2019). Moreover, object
detection algorithms are widely used in images with objects, instead of
text-based documents including figures and tables. Lastly, the annotation
process is an expensive manual process. By introducing a synthetic created
dataset, this study will investigate whether such a dataset can account
for the expensive annotation process by training on the different datasets
and comparing the results on a manually annotated real-life test set to
investigate the ability to classify the different elements in the document
structures. Consequently, this research will focus on new insights in DLA
using Mask R-CNN models by answering the following research question;

Which is the best performing Detectron2 Mask Region-Based Convo-
lutional Neural Network variation for Document Layout Analysis on
Multi-Structured Information Documents?

To examine this research question, three sub-questions are derived and
will be answered in addition to the main research question.

RQ1 What is the performance difference of Mask R-CNN architectures on the
synthetic and manually annotated datasets?

This research question introduces the baseline method together with
its performance as a benchmark for this research. The baseline
models consist of the Detectron2 model pre-trained on the PubLayNet
dataset with the FPN backbone and three ResNet variations ’as is’.
The model ’as is’ refers to running inference on the test set without
training on either of the two introduced datasets using only the
pre-trained model. The PubLayNet dataset is a dataset containing
over 360 thousand images of scientific articles to identify tables,
texts, lists, titles, and figures (Zhong et al., 2019). A pre-trained
model is a saved model that was previously trained on a larger
dataset (Abadi et al., 2015). During this research, the pre-trained
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models are used for transfer learning on their own dataset for better
performance. Different architectures and pre-trained models are
evaluated because deep neural networks depend on a wide range of
hyperparameters concerning their optimization, regularization, and
architecture (Hutter, Kotthoff, & Vanschoren, 2019). This research
question will also introduce the proposed Mask R-CNN Detecron2

models and compare the precision results to the baseline models. The
proposed models differ in architecture and trained dataset and are
the Detectron2 Mask R-CNN pre-trained on PubLayNet and trained
on either the synthetic dataset or the manually annotated dataset,
using the FPN backbone and three ResNet variations.

RQ2 What are the element precisions of the Detectron2 Mask R-CNN model
variations for object detection?

To evaluate the performances of the Detectron2 model variations on
individual elements for object detection, element precisions will be
calculated for the baseline models and proposed models. Element
precision is preferred since it provides information about which
elements the models can detect best for individual inference. The
elements to be detected are text, titles, figures, tables, and lists.

RQ3 To what extent can the synthetic dataset be used for inference on manually
annotated real-life documents?

The final question evaluates whether the synthetic dataset can be
used for inference on real-life data. The manually annotated test set is
derived from real-life documents. Hence, this test set will be used to
evaluate the models and to determine whether inference is possible
using the synthetic dataset. The results of the synthetic dataset will
be compared to the results of the manually annotated dataset. When
performance is high, it could mitigate the expensive manual process
because of the automatic generation.

By answering the research questions, the goal of this research is to exam-
ine the performance of the Mask R-CNN model Detectron2 for predicting
document structures. This will be done by performing object detection and
DLA on a synthetic created and manually annotated dataset, representing
formal multi-structured information documents. Furthermore, a compar-
ison between the results of the two datasets will be made to examine
whether the synthetic dataset can be used as training data to account for
the expensive manual process.
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This study demonstrates that Detectron2 Mask R-CNN variations
trained on the manually annotated dataset have high detection precision
on multi-structured documents. The performance of the models trained
on the synthetic dataset was lower compared to the baseline and manually
annotated dataset, indicating the difficulty of the multi-structured layout
analysis. Model variations of the baseline and synthetic datasets were not
able to detect all elements. Considering the manually expensive annotation
method and the limiting annotated element, future research regarding
multi-structured documents will be argued for.

This paper is structured in the following manner. In section 2, the
related work on DLA, Object Detection, and Detectron2 will be discussed.
Section 3 gives insights into the method of the research to apply DLA on
multi-structured documents. The methods section focuses on the compo-
sition of the Detectron2 model and the Mask R-CNN algorithm. Section
4 focuses on the experimental setup of the research, which includes the
data generation phase. Section 5 shows the results of the research whereas
sections 6 and 7 focus on the discussion and conclusion consequently.

2 related work

This related work section presents previous work from the field of DLA,
document annotation, deep learning, and object detection. It will discuss
the limitations of these studies, methods used in this research, and how
the limitations can be accounted for in this research.

2.1 Document Layout Analysis

DLA aims to divide documents images into different region types. It plays
an important role in document understanding and information extraction
from documents (X. Wu, Ma, Li, Chen, & He, 2021). The purpose of DLA is
to extract valuable information from the different document images (X. Wu
et al., 2021). Many previous studies in DLA have used the uni-modal layout
analysis, which only focuses on either visual features or semantic features
for document understanding (Zhang et al., 2021). For example, studies of
Gatos, Louloudis, and Stamatopoulos (2014), D. He, Cohen, Price, Kifer,
and Giles (2017) have used the visual features to segment text paragraphs,
figures, and tables. Zhang et al. (2021) proposes the multi-model layout
analysis, a method combining both uni-model layout analyses (meaning;
both visual features and semantic features). Such a method contributes
to better recognition of the document layout, because of the combined
information (Zhang et al., 2021). During this research, the proposed multi-
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model method will be used. By introducing this multi-model method, the
limitations of the above-mentioned studies – which only use a uni-model
method – will be disclosed.

Typically, documents fall into three main categories: structured docu-
ments, semi-structured documents, and unstructured documents (Belhadj
et al., 2021). Structure documents have the same layout, where elements
are always positioned in the same place on the page. Semi-structured
documents contain data and fields of data that vary between documents.
Lastly, unstructured documents contain information embedded in texts.
Many previous studies focused on specific structures, mostly structured
or semi-structured, and types of documents. For example, Yepes et al.
(2021) focused on structured multi-column research papers, Binmakhashen
and Mahmoud (2019) researched handwritten historical manuscripts, and
Rigaud et al. (2015) focused on structured comic books.

DLA can have two tasks – the physical and the logical layout analy-
sis. The physical layout analysis is used to detect the document structure
and identify boundaries of its homogeneous regions (Binmakhashen &
Mahmoud, 2019). Meanwhile, the logical layout analysis labels these
regions in different elements like tables, text, or titles (Binmakhashen
& Mahmoud, 2019). Previous studies have focused on either one of
these tasks. Pletschacher and Antonacopoulos (2010) and Antonacopou-
los, Pletschacher, Bridson, and Papadopoulos (2009) focused solely on
page segmentation. Hence, combining both logical analysis and physical
layout analysis can improve overall DLA performance (Binmakhashen &
Mahmoud, 2019).

2.2 Document Annotations

Besides different analyses, datasets need to be annotated before being
usable for a model. Annotating is usually conducted using three major
modes; fully automatic, semi-automatic, and manual (Trivedi & Sarvadev-
abhatla, 2021). Manually annotating documents is a slow and expensive
process, which can be a limiting factor when willing to use these specific
DLA techniques in different domains (Yepes et al., 2021). According to
K. He et al. (2017), fully automated annotation works well with structured
printed documents and structured handwritten documents, but it is less
accurate predicting highly unstructured documents (Hafiz & Bhat, 2020).
Many DLA datasets rely on manual annotations. Since the process is slow
and expensive, these datasets are of limited size (Pletschacher & Antona-
copoulos, 2010). In Yepes et al. (2021)’s study, the dataset is generated with
millions of automated annotations used by matching the XML format with
the PDF document. It is a method that can lead to great results, but it is



2 related work 8

very time-consuming (Yepes et al., 2021). Limitations of the previous study
are that in the Yepes et al. (2021) study, the same structured documents are
used, which can make the model less versatile while using multi-structured
documents. Synthetic data is an important approach to solving the data
problem imposed by the manual expensive process (Nikolenko, 2019). This
is done by producing diverse artificial data. According to Nikolenko (2019),
the synthetic data approach is exemplified by standard computer visions,
defined as a high-level understanding of images by computers (Freeman,
Tanaka, Ohta, & Kyuma, 1996). However, it can also be relevant in other,
more complex, computer vision domains.

In sum, the main limitations concerning the previous studies regarding
DLA consist of the lacking research direction to multi-structured PDF
documents, multi-modal layout analysis, and the possible solution of
synthetic data in DLA.

2.3 Deep Learning and Object Detection

Before the introduction of deep learning algorithms, techniques based on
image representation and optical character recognition were first used for
understanding documents (Zhong et al., 2019). However, deep learning
algorithms became dominant in the last few years. This is because of more
powerful algorithms, infrastructures, and methods as well as unsupervised
learning, where features do not need to be defined and extracted sepa-
rately (Deng & Liu, 2018). Deep learning can improve the classification
performance and robustness (Deng & Liu, 2018) for DLA. Consequently,
deep learning-based DLA can address more complex layout analysis for
PDF documents (Binmakhashen & Mahmoud, 2019). The R-CNN frame-
works are important deep learning networks for object detection (Hafiz
& Bhat, 2020). By the broad adaptation of deep learning, object detection
performance grew immensely (Hafiz & Bhat, 2020).

Mask R-CNN, a region-based convolutional neural network and state-
of-the-art algorithm for object detection, is one of the latest introduced
R-CNN models (K. He et al., 2017). It avoids the heavy CNN computations
of the Faster R-CNN and is one of the most successful techniques for object
detection (K. He et al., 2017). Therefore, it will be used throughout this
research as a benchmark, but also as multiple proposed models. Although
Mask-RCNN is commonly used in object detection for images, research
is lacking regarding PDF text documents. Many previous studies apply
object detection on COCO dataset images. COCO is a large-scale object
detection dataset, including 80 object categories, 330 thousand images, and
1.5 million object instances (Lin et al., 2014). For example, studies like
Kirillov, Wu, He, and Girshick (2020) and Bolya, Zhou, Xiao, and Lee (2019)
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focus on object detection on pictures similar to the COCO dataset. The goal
is to advance the state of the art in object detection by broadening the scene
understanding by gathering images of complex everyday scenes containing
common objects Lin et al. (2014). However, if studies perform object
detection on text-based documents, the focus will either be on structured
documents or handwritten text.

Therefore, it is interesting to research DLA with an extensive amount of
synthetic data which can possibly account for the manual annotation pro-
cess. By using the pre-trained model of Yepes et al. (2021) and including an
extra dataset, this study tries to compare the results of a smaller manually
annotated dataset with the synthetic created dataset. The above-mentioned
studies did not work with a synthetically created dataset as an option to
account for manual annotation. It is therefore interesting to see whether
such a synthetic dataset can be used as training input for DLA to mimic
multi-structured PDF documents. Also, object detection for DLA is a re-
search direction where many previous studies focus on images containing
real objects (COCO dataset) instead of PDF documents. Hence, document
understanding using object detection can give interesting results and will
therefore be researched in this work.

3 methods

This chapter describes the different models used for object detection ap-
plied to document layout analysis. First, a description will be given of the
method object detection including its steps. Second, an explanation of the
contents of the relevant Detectron2 models and architectures, as well as
their application in this study will be provided. Besides explaining the
Detectron2 model, the focus will also be on illustrating the Mask R-CNN
model and the Faster R-CNN model. The former is used in this research,
the latter is its predecessor and an explanation of both is needed.

R-CNN models are machine learning models which can be used for
computer vision, specifically for object detection (K. He et al., 2017). These
models have rapidly improved results over short periods of time. These
fast improvements have led to powerful baseline systems, such as the
faster R-CNN models. The R-CNN models are useful because of their fast
training and inference time, robustness, and flexibility (K. He et al., 2017).

3.1 Object Detection Steps

Object detection localizes all the objects present in an image using a prede-
termined model. Multiple important constructs related to object detection
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need to be elaborated to provide the reader with a solid understanding
of object detection in this research. These constructs are; bounding boxes,
anchor boxes, the intersection over union, and the non-max suppression.
The bounding box is a rectangle used to enclose the object in the image
and is described by the following values: (bx, by, bh, and bw). Below in
figure 1, examples of the bounding boxes are presented. Here, the green
bounding boxes surround titles, whereas the red bounding boxes surround
text elements.

Figure 1: Bounding Box example used in this research

Anchor boxes are predefined bounding boxes. During the detection
phase, these anchor boxes are tiled across the image. After identifying
the bounding boxes and anchor boxes, the Intersection of Union (IoU)
is calculated. The IoU is an evaluation metric for the prediction of the
bounding box with respect to the ground truth. An elaboration of the
IoU as a metric can be found in section 4 experimental setup. For object
detection, detection can be represented by multiple boxes. The non-max
suppression gives the box that has the highest IoU and discards the other
boxes.

3.2 Detectron2

The model selected for object detection in this research is Detectron2. It is a
Facebook AI Research (FAIR) software system that implements state-of-the-
art object detection algorithms, including Faster R-CNN, Mask R-CNN, Cas-
cade R-CNN, RetinaNet, Densepose, and TensorMask (A. M. F. L. W. G. R. Wu
Y.; Kirillov, 2019). Detectron2 is a newer version of Detectron, and it is im-
plemented in Pytorch with a more modular design (A. M. F. L. W. G. R. Wu
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Y.; Kirillov, 2019). To provide a clear understanding of the used models in
this research, the following models relevant to object detection will be ex-
plained; Faster R-CNN, Mask R-CNN, Panoptic Future Pyramid Network
(FPN), and ResNet. The Detectron2 models will be distinguished using a
pre-trained model and different backbones. The pre-trained model used
in this study is trained on the PubLayNet dataset. According to K. He et
al. (2017), a backbone is a standard CNN model. In this study, the ResNet
and FPN backbone will be used with different layer depths for the ResNet
backbone.

3.2.1 Faster R-CNN

Before the main model will be introduced, an explanation of the Faster R-
CNN model is given. The Faster R-CNN model is a network introduced as
a computationally efficient solution for object detection and the precursor
of the Mask R-CNN model (Ren, He, Girshick, and Sun (2015)). A Faster
R-CNN consists of two stages. The first stage is a deep fully CNN that
proposes regions, more specifically a region proposal network (RPN) (Ren
et al., 2015). The second stage extracts features from each bounding box
and uses bounding-box regression and classification (K. He et al., 2017).
The RPN takes an image as an input value and generates the proposal for
the objects as outputs (Ren et al., 2015).

3.2.2 Mask R-CNN

A Mask R-CNN model consists of three outputs for each object; a class
label, bounding box offset, and the object Mask (K. He et al., 2017). Mask
R-CNN is also a CNN specified for object detection (K. He et al., 2017).
It is developed on top of the Faster R-CNN model. Therefore, it has the
same two stages as the Faster R-CNN model. Mask R-CNN is an extension
of Faster R-CNN in the way that it adds the prediction of an object mask,
which is the region of interest, simultaneously with the bounding box
recognition already present in the Faster R-CNN model. Both stages
described above are connected to a backbone. The RPN generates region
proposals for every image. Each proposal (ROIs) goes through the object
detection and Mask prediction network.

3.2.3 Panoptic FPN

A Panoptic FPN is an extension of an FPN that can generate object detection
through FPN (Kirillov, Girshick, He, & Dollár, 2019). Starting from the
deepest FPN level, three upsampling stages are performed to yield a
feature map at scale. This strategy is repeated for every FPN scale, with
progressively fewer upsampling stages. The result is a set of feature maps
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at the 1/4 scale, which are then element-wise summed. A final convolution,
bilinear upsampling, and softmax are used to generate the per-pixel class
labels at the original image resolution. In addition to stuff classes, this
branch also outputs a special other class for all pixels belonging to objects
to avoid predicting stuff classes for such pixels (Kirillov et al., 2019). The
backbone network extracts the feature maps from the input image.

3.2.4 ResNet

In this study, multiple ResNets will be used as a backbone for comparison
and evaluation. These are ResNet50, ResNet101, and ResNeXt101. ResNets
are residual networks that learn (residual) functions with specified input
layers. After doing so, these residual ’nets’ fit the layers in a residual map
(K. He, Zhang, Ren, & Sun, 2016). ResNets then stack these residual blocks
to form their network. The number in the ResNet variation stands for the
depth of the layers (ResNet50 has a depth of 50 layers). According to K. He
et al. (2016), ResNets are easier to optimize and gain accuracy from their
increased depth.

4 experimental setup

This section describes the dataset generation and steps to perform DLA for
model comparison between the datasets using the Detectron2 Mask R-CNN
model variations. This section is composed of two subsections. First, the
data will be explained by introducing the datasets and the data preparation
steps. Second, the experimental procedure will be presented, comprising
of the development of the models, the parameter tuning, implementation,
evaluation metrics, and the software used to realize this research.

4.1 Data

In this subsection, the data used in this research will be explained. It will
discuss the creation, explanation, and preparation of the datasets. This
research uses multiple different PDF documents, which were provided by
Semmtech B.V. The PDF documents consist of different types of documents
and are all semi- or unstructured, thus resulting in multi-structured data.
The input data consists of mostly contract documents, requirements docu-
ments, and standardization documents. Examples of these documents are
’Rules and Regulations for the Classification of Ships’ and ’OpenSG EIM
System Requirements Specification’. To correctly use the PDF documents
as input data for the models, two COCO format datasets were created; A
synthetic generated dataset and a manually annotated dataset.
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4.1.1 COCO JSON Format

The COCO format is necessary as an input format for the Mask R-CNN
Detectron2 models to perform object detection. COCO format is a specific
JSON structure dictating how labels and metadata are saved for an image
dataset (Lin et al., 2014). It defines how annotations and metadata are
stored. The datasets are formatted in JSON and are a collection of multiple
inputs; "info", "licenses", "images", "annotations", "categories", and "seg-
ment info". The info section contains information about the datasets. Since
the datasets are self-generated, the "info" sections are structured follow-
ing the available information. The "licenses" sections contain information
about the image licenses needed when sharing or selling the data. Since
the documents are open source, licensing information is not needed. The
"images" section contains all the images and the information about each
image used in this research. In this file, there are no labels, bounding boxes,
or segmentations specified. In figure 2 below, two COCO JSON formats for
separate images can be seen presenting the differences in an image file.

Figure 2: Two COCO JSON instances for seperate images

Every image ID is a unique value. In the datasets, the image IDs are
identical to the file names, as can be seen in figure 2. The height and width
of the images are set to 1100 and 850 respectively. The category section
contains the list of categories and super categories. Due to simplicity,
these datasets consist of five super categories and identical categories
(text, title, figure, list, and table). For example, "super-category"; list,
"category"; list. The last section in the COCO format is the annotation
section. The annotation section contains the list of every object annotated in
an image. It contains "segmentation", "area", "iscrowd", "imageID", "bbox",
"categoryID", and "annotationID". In this research, "segmentation" refers
to a list of polygon vertices around the object. The area is measured in
pixels. "Iscrowd" refers to whether segmentation is done for a single object
or a cluster of objects. In this research "iscrowd" is always set to 0. The
"imageID" is the unique id of the image. The "bbox" is the bounding box
format. This can be represented as top-left x position, top-left y position,
width, and height. The "categoryID" refers to the specific category. Lastly,
each annotation has a unique "annotionID".
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4.2 Dataset Generation

This study compares two different datasets. The first dataset is manu-
ally annotated, representing real-world PDF documents. The manually
annotated dataset is created using Labelbox for image annotations. PDF
documents are transformed into images before processing. After the anno-
tation process, the JSON file was converted into the COCO JSON format
using Roboflow.

The second dataset is a larger synthetically created dataset established
to mimic the multi-structured documents. The synthetic dataset is gener-
ated in the following way. Using Gimp software, 7 background images of
PDF files were extracted. Next, using Gimp software, 50 titles, 50 texts,
50 tables, 50 figures, and 50 lists including their bounding boxes were
created as foregrounds. To generate the images, one of the 7 backgrounds
is randomly chosen. Following the background, a minimum of 1 to a
maximum of 2 foregrounds are randomly placed over the background,
mimicking a PDF file and minimizing the foregrounds overlapping. Slight
alterations in size and brightness are created to increase the number of
unique instances. The test set of the manually annotated dataset will be
used to compare the results of the two datasets.

In table 1, the number of elements of the manually annotated dataset
differentiating between training, validation, and test set is presented. It
consists of 460 training, 58 validation, and 58 test images including a total
of 2916 annotations. The train, validation, test set split used in this research
for the manually annotated dataset is 80, 10, 10 percent.

Table 1: Element count for the training, validation, and test set of the manually
annotated dataset

Category instances train set instances validation set instances test set

Table 250 34 24

Figure 140 12 15

Title 957 124 129

Text 1258 150 164

List 311 51 31

Total 2916 371 363

Table 2 presents an overview of the synthetic dataset. The synthetic
dataset consists of 8000 training and 2000 validation images that are gen-
erated. In total, the synthetic dataset has 11958 annotations. In table 2

below, the number of texts, tables, titles, figures, and lists used in the
generated training and validation set can be seen. The tables show that
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the distribution of the different categories is in balance in the training and
validation set. The split for the synthetic dataset is 80, 20 percent.

Table 2: Element count for the training and validation set of the synthetic dataset

Category Instances train set Instances validation set

Table 2432 610

Figure 2303 587

Title 2377 567

Text 2403 605

List 2443 638

Total 11958 3006

Below, two pie charts are presented illustrating the total element distri-
bution of the two datasets. The left pie represents the manually annotated
distribution and the right pie represents the synthetic distribution. Notice-
able is the difference between the distributions. The synthetic dataset has
an even distribution of all elements. Resulting from the random generation
and the equal number of annotated elements. The manually annotated
dataset has a more real-life distribution based on PDF document contents.
Normally, more titles and texts elements can be found in a document
contrary to figures, lists, or tables. Hence, the distribution difference.

Table
8.4%

Figure

4.6%

Title

33.2%

Text

43.1% List

10.7%

Table

20.3%Figure

19.3%

Title

19.7%

Text

20.1%

List
20.6%

Figure 3: Element distribution manually annotated dataset (left) and synthetic
dataset (right)

4.2.1 Annotation

To generate the datasets, five different elements had to be annotated to
create input data for the models. These annotations were done following
the method of Li et al. (2020), and Zhong et al. (2019). Although these
annotations were done through the XML format, this research manually
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annotated elements following the same method. The annotation process
for the synthetic dataset was done through foregrounds and backgrounds,
whereas the manually annotated dataset was generated using manual
annotations. The five elements were annotated using their bounding boxes.
This has resulted in the bounding box surrounding the whole element of
interest through their maximum points on the image.

4.2.2 Algorithms

The Mask R-CNN Detectron2 base model as-is will be used as a bench-
mark model. These include three ResNet variations. The Mask R-CNN
Detectron2 model pre-trained on the PubLayNet dataset, after hyperpa-
rameter tuning, trained on both the synthetic and manually annotated
dataset will be used as the proposed models. These models will include
the three ResNet varieties. For comparison, the different architectures
of both models are explained. The Mask R-CNN Detectron2 model is
evaluated in six ways. The first three evaluations were pre-trained on the
PubLayNet and trained using the synthetic dataset using the ResNet50

FPN, ResNet101 FPN, and ResNeXt101x FPN as the backbone. The other
three Mask R-CNN Detectron2 models were pre-trained on PubLayNet
and trained using the manually annotated dataset including the ResNet50

FPN, ResNet101 FPN, and ResNeXt101 FPN backbones. All six models are
tested on the manually annotated test set. This test set represents real-life
PDF documents.

4.2.3 Software

The programming language used in this research is Python 3.9.2 by using
Anaconda Navigator and Google Colaboratory. The models have been
implemented using PyTorch, Keras, and Tensorflow. During the implemen-
tation of the models, the newest version of both Keras and Tensorflow was
used. For the data set generation, Visual Studio Code was used whereas
Gimp Software, Labelbox, and Roboflow were used for bounding box
annotations and JSON conversions. The following libraries and packages
have also been used;

• Numpy

• Flask

• Python-dotenv

• flask-wtf

• Opencv-python
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• Pillow

• Flask-cors

• Pyyaml

• Gunicorn

• Pdf2image

4.2.4 Parameter Tuning

To achieve the highest performance of the models, the correct hyperparam-
eters had to be selected. In this research, multiple parameters specific for
Mark R-CNN models have been optimized. These were:

• Intersection over Union

According to K. He et al. (2017) and Girshick (2015), the RoI is positive
when the IoU is at least 0.5. Hence, when the IoU is 0.5, the inference
will be correct. Therefore, an IoU of 0.5 will be used.

• Train ROIs per image

The train ROI per image is the maximum number of ROI the RPN
will generate for the image. The image per batch size is set to 4,
which is in accordance with K. He et al. (2017), Girshick (2015), and
Ren et al. (2015), and the RoI batch size per image is set as default
(512).

• Backbone

The backbone of choice which will be used is the FPN backbone.
According to the Detectron2 Model Zoo, the FPN Backbones gives
the highest Bounding box average precisions. Hence, the FPN will
be used. To compare the performance of different layers, multiple
ResNet Backbones will be used. These are ResNet50, ResNet101, and
ResNeXt101.

• Loss Weights

The Mask R-CNN loss function was calculated as the weighted sum
of different losses. The loss weights used in this research include
the bounding box losses; RPN Bounding Box loss and Mask R-CNN
Bounding Box loss. The RPN Bounding Box loss corresponds to
the localization accuracy of the RPN. This was the weight to tune
in case the object was being detected but the bounding box should
be corrected. The Mask R-CNN Bounding Box loss was the loss,
assigned on the localization of the bounding box of the identified
class.
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• Iterations

The maximum iterations are set to 2000. The validation precision
started to increase around iteration 2000. It was also the value where
the validation losses mentioned above were at their lowest point
or started stagnating. The number of iterations was retrieved by a
manual optimization loop. The number of iterations was chosen
resulting in the lowest loss weights on the validation set and when
the validation precision started to rise.

• Learning Rate

Training will be done with a learning rate of 0.001, following the De-
tectron2 pre-trained setup. According to K. He et al. (2017), Girshick
(2015), and Ren et al. (2015), this learning rate achieved good training
results. Implementing a higher learning rate decreased training preci-
sion and gave inaccurate bounding box precision, where the training
diverged. Therefore, a learning rate of 0.001 was applied.

4.2.5 Evaluation Metrics

The last step in the experimental process will be comparing the evaluation
results of the model variations with each other and to the baseline. To
compare the Detectron2 models with the Baseline model, precision will
be used. Eq. (1) shows the calculation of precision by the true positives
divided by the sum of the true positives and false positives. Precision
will be used because it quantifies the number of positive class predictions
belonging to the positive class.

Precision =
TruePositive

TruePositive + FalsePositive
(1)

Specifically, the mean average precision (mAP) will be used. Eq. (2)
shows the mAP calculation over i classes. Here, C is the number of classes
evaluated and the APi is the average precision for the ith class. The mAP
quantifies the accuracy of object detectors. Here, The average precision
for an image means the precision averaged over all instances of objects
presented in the image. The mAP is the average precision averaged over
the IOU of 0.5 to 0.95 with a step size of 0.05 and expressed as a percentage.

mAP =
1
C

C

∑
i=1

APi (2)

Besides the mAP, the element average precisions (AP) will also be used
to evaluate the performance of the models on individual elements. Eq. (3)
presents the AP over different individual elements. The average precision
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is calculated by finding the area under the precision-recall curve. The
integral is between 0 and 1 because precision has always a value between
those numbers.

AP =
∫ 1

0
p(r)dr (3)

The following precision metrics will be used to evaluate the models; mAP,
mAP50 (mean average precision with an IoU of 50 percent), mAP75 (mean
average precision with an IoU of 75 percent), mAPs (mean average precision
for instances smaller than 322), mAPm (mean average precision for medium
instances between 322 and 962), mAPl (mean average precision for large
instances bigger than 962), and the element precision. These precisions
are connected to the IoU. For object detection, the IoU is equal to the
overlapping area between the ground truth and predicted bounding box
(Padilla, Passos, Dias, Netto, & da Silva, 2021). A perfect overlap results in
an IoU of one, whereas IoU of zero represents no overlap. For precision
evaluation, the IoU threshold will be set to 0.5 to classify whether the
prediction is a true positive (one) or false positive (zero). Eq. (4) shows the
IoU equation. Which is composed of the Area of Overlap divided by the
Area of Union.

IntersectionoverUnion =
Area of Overlap
Area of Union

(4)

Because of the importance of the IoU and precision, the mAP with IoU of
0.5 (mAP50) will be the most valuable metric evaluated in this study.

5 results

The results section is organized in the following way. First, the results of
the baseline models will be presented. Following these results, the average
precision metrics and element precisions of the Detectron2 architectures
trained on the synthetic dataset will be presented. Lastly, the results of the
Detectron2 architectures trained on the manually annotated dataset will
be explained. The models that were evaluated ’as is’ on the baseline, the
synthetic dataset, and manually annotated dataset are listed below;

• Mask R-CNN Detectron2 pre-trained on PubLayNet dataset using
the ResNet50 FPN backbone architecture

• Mask R-CNN Detectron2 pre-trained on PubLayNet dataset using
the ResNet101 FPN backbone architecture

• Mask R-CNN Detectron2 pre-trained on PubLaynet dataset using the
ResNeXt101 FPN backbone architecture
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As mentioned in section 4, the results were evaluated using multiple
bounding box mean average precision metrics. These metrics were; mAP,
mAP50, mAP75, mAPs, mAPm, mAPl, and element precision.

5.1 Mask R-CNN Baseline Measures

The baseline models evaluated in this study were the pre-trained Pub-
LayNet Mask R-CNN Detectron2 model ’as is’ with the ResNet50, ResNet101,
and ResNeXt101 architectures. The different bounding box mAP can be
seen in Table 3 below. As can be seen in the table, the mAPs and mAPm
both resulted in 0.000 with every ResNet variation, indicating that they
are not able to detect elements of smaller and medium sizes. The highest
precisions were generated by the ResNeXt101 variation with a mAP50 of
25.131. The lowest results were generated by the ResNet101 variation with
a mAP50 of 15.192.

Table 3: Mean average precisions across the baseline model

Architecture mAP mAP50 mAP75 mAPs mAPm mAPl
PubLayNet ResNeXt50 FPN 16.441 20.614 17.060 0.000 0.000 16.484

PubLayNet ResNet101 FPN 12.340 15.192 12.733 0.000 0.000 12.340

PubLayNet ResNeXt101 FPN 19.305 25.13 19.996 0.000 0.000 19.482

The element precisions will also be evaluated to determine the detection
power of the individual elements. In table 4, the elements precisions of the
baseline model variations are presented. Similar to the precisions above,
some elements could not be detected. Here, all models had difficulty
detecting texts, titles, and figures, with an element precision of 0.000. All
models were able to correctly detect tables, where the ResNeXt101 variation
reported the highest element precision of 74.900. The models were also able
to detect lists. Again, the ResNeXt101 variation had the highest element
precision with 21.624. Just as in table 3, the ResNet101 variation had the
lowest precisions contrary to the other two models with element precisions
of 48.320 and 13.380 for tables and lists respectively.

5.2 Average Precisions Detectron2 Architectures using the Synthetic Dataset

In this subsection, the results of object detection on the synthetic dataset are
reported. Table 5 shows the bounding box precisions of the baseline model
and the synthetic dataset. It shows that the results on the synthetic dataset
were lower compared to the baseline model with all variations. As can
be seen in table 5, all models had a mAPs of 0.000, whereas the synthetic
model had a slightly better precision on the mAPm. The best performing
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Table 4: Bounding box element precisions across the baseline model

Category Architecture Bounding Box Element Precision
Text PubLay NetResNet50 FPN 0.000

PubLayNet ResNet101 FPN 0.000

PubLayNetResNeXt101 FPN 0.000

Table PubLayNetResNet50 FPN 63.621

PubLayNetResNet101 FPN 48.320

PubLayNetResNet101x FPN 74.900
Title PubLayNetResNet50 FPN 0.000

PubLayNetResNet101 FPN 0.000

PubLayNetResNeXt101 FPN 0.000

Figure PubLayNetResNet50 FPN 0.000

PubLayNetResNet101 FPN 0.000

PubLaynetResNeXt101 FPN 0.000

List PubLayNetResNet50 FPN 18.584

PubLayNetResNet101 FPN 13.380

PubLayNetResNeXt101 FPN 21.624

model variation on the synthetic dataset is the PubLayNet ResNeXt101

with a mAP50 of 9.304. Although this is the best variation on the synthetic
dataset, all baseline variations achieve higher scores on the test set. The
worst-performing baseline model outperformed the best-performing model
on the synthetic dataset by 3.036 percent. Surprisingly, the ResNet101 was
the overall worst performing model in both the baseline and synthetic
dataset, outperformed by its ResNet50 and ResNeXt101 counterparts.

Table 5: Mean average precisions across the baseline and improved models

Architecture mAP mAP50 mAP75 mAPs mAPm mAPl
PubLayNet ResNet50 FPN Baseline 16.441 20.614 17.060 0.000 0.000 16.484

PubLayNet ResNet101 FPN Baseline 12.340 15.192 12.733 0.000 0.000 12.340

PubLayNet ResNeXt101 FPN Baseline 19.305 25.131 19.996 0.000 0.000 19.482
PubLeyNet ResNet50 FPN Synthetic 7.592 10.421 7.691 0.000 0.973 7.840

PubLayNet ResNet101 FPN Synthetic 7.769 9.732 9.033 0.000 0.337 7.891

PubLayNet ResNeXt101 FPN Synthetic 9.304 10.448 10.203 0.000 0.020 9.236

5.3 Object Detection using Detectron2 Mask R-CNN comparing Element Preci-
sions using the Synthetic Dataset

This subsection contains the results for object detection for the elements
trained on the synthetic dataset. As can be seen in table 6, each result
is listed per element and per architecture. After inspecting the table, it
was notable that not all elements could be detected evenly well. For all
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three models, titles could not be detected at all, having a precision of
0.000. Contrary to the baseline measures, all three models were able to
detect texts and figures, ranging from 0.022 to 1.408 for text and 0.139

to 2.002 for figures. For both elements, the PubLayNet ResNet50 had
the highest precision with 1.408 percent and 2.002 percent respectively.
Surprisingly, the PubLayNet ResNet101 model does not outperform its
ResNet50 counterpart having less accuracy on all elements except for tables.
The PubLayNet ResNeXt101 achieved the highest precision for detecting
tables, with a precision of 45.541 percent. The models were able to detect
lists almost with the same precision, ranging from 0.820 to 2.091, whereas
the PubLayNet ResNet50 model had the highest precision percentage with
2.091. Concluding, the PubLayNet ResNet50 model achieved the best
overall performance by having the best scores on four of the five elements.
However, taking the sum of the precisions, the PubLayNet ResNeXt101

had the highest precision score. Comparing these results from 4, it can
be seen that the results of the baseline model were significantly better at
predicting tables and lists, with the improved model better at predicting
texts and figures. Both the baseline as well as the improved model were
not able to detect titles.

Table 6: Bounding box element precision synthetic dataset variations

Category Architecture Bounding Box Element Precision
Text PubLayNetResNet50 FPN 1.408

PubLayNetResNet101 FPN 0.485

PubLayNetResNeXt101 FPN 0.022

Table PubLayNetResNet50 FPN 32.458

PubLayNetResNet101 FPN 35.719

PubLayNetResNet101x FPN 45.541
Title PubLayNetResNet50 FPN 0.000

PubLayNetResNet101 FPN 0.000

PubLayNetResNeXt101 FPN 0.000

Figure PubLayNetResNet50 FPN 2.002
PubLayNetResNet101 FPN 0.824

PubLaynetResNeXt101 FPN 0.139

List PubLayNetResNet50 FPN 2.091
PubLayNetResNet101 FPN 1.818

PubLayNetResNeXt101 FPN 0.820
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5.4 Average Precisions Detectron2 Architectures for the manually annotated
Dataset

The last Detectron2 variations were trained on the manually annotated
dataset. In table 7, the different average precisions comparing the base-
line models, improved synthetic dataset models, and manually annotated
dataset models are illustrated. The different average precisions for the
manually annotated dataset were significantly higher than the baseline
and synthetic dataset variations. The mAP50 ranged from 82.746 to 88.498

for the PubLayeNt ResNeXt101. Similar to the previous models, the man-
ually annotated model variations had a precision of 0.000 on the mAPs,
indicating that these variations could not detect elements of a smaller
size. The ResNext101 model variation had the highest overall score on the
manually annotated dataset on every precision apart from the mAPm. The
manually annotated dataset model variation outperformed the baseline
and synthetic model variations for every precision with a precision delta –
highest precision minus lowest precision – ranging from 48.968 to 63.367

percent for the baseline model and a precision delta ranging from 48.005

to 78.077 percent for the Synthetic dataset variations (i.e. 48.968 - 0.00 for
the mAPm).

Table 7: Mean average precisions across the baseline and imrpoved models

Architecture mAP mAP50 mAP75 mAPs mAPm mAPl
PubLayNet ResNeXt50 FPN Baseline 16.441 20.614 17.060 0.000 0.000 16.484

PubLayNet ResNet101 FPN Baseline 12.340 15.192 12.733 0.000 0.000 12.340

PubLayNet ResNeXt101 FPN Baseline 19.305 25.131 19.996 0.000 0.000 19.482

PubLeyNet ResNet50 FPN Synthetic 7.592 10.421 7.691 0.000 0.973 7.840

PubLayNet ResNet101 FPN Synthetic 7.769 9.732 9.033 0.000 0.337 7.891

PubLayNet ResNeXt101 FPN Synthetic 7.769 9.732 9.033 0.000 0.337 7.891

PubLeyNet ResNet50 FPN Manually 69.366 85.858 77.976 0.000 48.968 69.419

PubLayNet ResNet101 FPN Manually 65.466 82.746 73.433 0.000 31.722 66.262

PubLayNet ResNeXt101 FPN Manually 70.942 86.898 78.927 0.000 40.326 72.946

5.5 Object Detection for Detectron2 comparing Element Precisions using the
Manually Annotated Dataset

This subsection presents the element precisions of the model variations
trained on the manually annotated dataset. In table 8, the different element
precisions are visualized. Contrary to the previous element precisions,
these model variations performed significantly better on all elements. For
all three model variations, the element table had the highest element
precision ranging from 83.516 to 87.858 percent followed by the element
text ranging from 76.076 to 78.593 percent. Contrary to the previous models,
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these variations can detect titles. With element precisions ranging from
58.552 to 60.767 percent as well as a high element precision for figures,
ranging from 62.149 to 76.396. The worst detected elements were lists,
with a element precisions ranging from 45.748 to 56.926. Although the
ResNext101 variation had the highest average precisions for four of the
five precisions, it only had the highest element precisions of two of the five
elements.

Table 8: Bounding box element precision manually annotated Dataset Variations

Category Architecture Bounding Box Element Precision
Text PubLayNetResNet50 FPN 78.593

PubLayNetResNet101 FPN 77.366

PubLayNetResNeXt101 FPN 76.076

Table PubLayNetResNet50 FPN 87.858
PubLayNetResNet101 FPN 83.516

PubLayNetResNet101x FPN 86.754

Title PubLayNetResNet50 FPN 60.767
PubLayNetResNet101 FPN 58.552

PubLayNetResNeXt101 FPN 58.556

Figure PubLayNetResNet50 FPN 69.449

PubLayNetResNet101 FPN 62.149

PubLaynetResNeXt101 FPN 76.396
List PubLayNetResNet50 FPN 50.162

PubLayNetResNet101 FPN 45.748

PubLayNetResNeXt101 FPN 56.926
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6 discussion

The main goal of this research was to identify which Mask R-CNN models
– focusing on the Detectron2 Mask R-CNN models – had the highest per-
formance for DLA and to compare the results of the synthetic dataset with
the manually annotated dataset. This was done to identify whether the
implementation of synthetic data could account for the manual expensive
annotation process. These datasets were created from contract documents,
standardization documents, and information documents. The synthetic
dataset was generated using cut-out foreground titles, figures, tables, texts,
and lists. The manually annotated dataset was generated by manually
annotating the five elements. The baseline model variations of this research
were the Detectron2 Mask R-CNN model ’as is’ with three ResNet varia-
tions. To these variations, six model variations of Detectron2 Mask R-CNN
architectures had been compared. Half of the variations were trained on
the synthetic dataset and the other half on the manually annotated dataset.
Prior research, in particular, Lin et al. (2014) and Li et al. (2020), found
that Mask R-CNN models were useful in object detection, which can also
be used in DLA. This research found that multi-structured documents
were more difficult to analyse using the synthetic dataset compared to the
manually annotated dataset. This falls in line with the studies from Li
et al. (2020) Docbank dataset and Zhong et al. (2019) PubLayNet dataset,
although these datasets used structured documents. Although the object
detection results of the synthetic dataset were lower than the baseline and
manually annotated dataset, this method potentially opened the doors for
the use of, or inclusion of, a synthetic dataset. To come to this conclusion,
several subquestions have been examined throughout this study.

6.1 Mean average Precisions across the Detectron2 Pre-Trained Models and
Architectures

The first sub-question explored whether different Mask R-CNN Detec-
tron2 architectures differ significantly in performance between the baseline,
synthetic, and manual annotated models. The results from the proposed
model variations on the synthetic dataset achieved lower results compared
to the baseline model. Previous research with object detection baseline
methods using Mask R-CNN models had shown a step-wise increase in
performance using the ResNet variations. Where the ResNeXt101 architec-
tures outperformed ResNet101 and ResNet50 architectures (Li et al., 2020;
Lin et al., 2014). This is partly in line with the results of this study. In
some cases, the ResNet50 outperformed the ResNet101 and ResNeXt101



6 discussion 26

architectures and vice versa. However, this might be due to the ResNet50

architecture being easier to use for simpler datasets (K. He et al., 2016).
It was not expected that the baseline variations outperformed the pro-

posed variations on the synthetic dataset. Every baseline model variation
outperformed the proposed synthetic variations. The highest precision of
the synthetic model variation (9.304) had a lower precision than the lowest
baseline result (19.305). According to (Nikolenko, 2019), this phenomenon
can be attributed to the synthetic images not representing exactly the
multi-structured documents available, thus resulting in lower test results.
However, the implementation of the synthetic dataset functioned as an
introduction to explore whether a synthetic dataset could be useful.

The best performing model regarding the different mAP was the
ResNext101 model for the manually annotated dataset. This is in line with
the Zhong et al. (2019) study. Although their study uses solely structured
documents, this manually annoted dataset is more-structured than the
randomly placed elements in the synthetic dataset. Also, comparing these
results to previous research regarding PubLayNet represents a precision
decrease in our study. This might be due to the multi-structural dataset,
which makes prediction more difficult. Hence, taking away the structure
might result in a decrease in the performance of the model variations.

6.2 Element Performance

The second sub-question explores the individual element precisions across
the different datasets between the model variations. To improve the perfor-
mance of the Detectron2 model on element detection, multiple different
architectures were examined. The six PubLayNet models were evaluated
on their element precisions. Results showed that the three synthetic models
had difficulty detecting titles. This can be attributed to the annotation
differences between texts, titles, and lists. All three elements have the same
annotation properties, consisting only of words and spaces. Tables have
the highest detecting precision. This can indicate that the shape of the table
is easier detected than solely words or different shaped figures. Text, titles,
tables, and lists all consist of words, thus having overlap in the way they
are structured and annotated. Therefore, finding a distinctive annotation
for these elements is difficult. Hence, this could result in difficulties for the
model to detect elements. However, since the synthetic dataset was multi-
structured, the percentage precisions were not as high as the Zhong et al.
(2019) study, which achieved high results (precisions above 90 percent).

The element precisions of the manually annotated dataset resulted in
significantly higher results than their synthetic counterpart and baseline
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model, with results ranging from 56.926 to 87.858 percent for the best
model.

6.3 Real-Life Document Comparison

The last sub-question investigates whether a conclusion can be made if
the results on the synthetic dataset are appropriate enough for real-life
documents. To test this, all the model variations were being tested on
the manually annotated test set and results were compared. As can be
seen in section 5 Results, the synthetic dataset varies greatly from the
standard document structure known. This is done because of the central
multi-structured aspect in this study. As a result, it is important to know
how these trained models performs compared to real-life documents. As
mentioned in section 5, the synthetic dataset model variations performed
worse than the baseline method. The neglected performance could be
influenced by several issues. First, the manually annotated dataset is
more-structured than the randomly placed element in the synthetic dataset,
which results in less performance Nikolenko (2019). Second, consideration
had to be made between the number of elements on a page and the
non-overlapping elements on that page. The choice of two elements per
page solved the overlapping of the elements. However, this neglected the
fact that in real-life documents, a page consists mostly of more than two
elements. This could potentially reduce the detection power of the synthetic
dataset. Lastly, to increase precision on these multi-structured documents
and account for declined precision, more data can be annotated. In this
study, only 250 elements instances were annotated (50 titles, 50 figures,
50 texts, 50 titles, and 50 tables). When comparing against the DocBank
and PubLayNet datasets, these differences are immense. However, when
increasing this number of annotations, the model might perform better on
the multi-structured data (Yepes et al., 2021). Therefore, performance can
be improved by increasing the annotations (Molloy, 2011). Even though
the low results of the variations trained on the synthetic dataset were not
expected in this study, it can be argued that there is great potential in using
a synthetic dataset that is more tailored to existing documents. This could
allow for a clearer representation of real-life PDF documents.

6.4 Limitations

Due to the computationally expensive models used in this research, con-
sideration had to be made between the length of the training and testing
time and the performance of the model. In previous studies with Li et al.
(2020) and Zhong et al. (2019), model training time exceeded multiple days
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and iterations exceeded multiple ten thousand. Due to time constraints,
this was deemed impossible. Therefore, the training maximum was set at
three hours and the iterations at 3000 for hyper-parameter tuning.

Another limitation is the time-consuming annotation process. Since
the annotations process is manually expensive – and this research was
done individually – large amounts of annotations were impossible. Hence,
element annotations were set at 50 for the synthetic created dataset which
accounted for the low amount of data. The combination of the pre-trained
models, as well as the synthetic created dataset, accounted for the relatively
low amount of annotations. The annotation limitation of the manual
dataset was set at 15 hours, which resulted in 2916 annotations.

Despite its limitations, this study might offer some contributions to the
field of DLA and object detection in the following ways. This study made
efforts to introduce multi-structured documents with object detection. Also,
by comparing the results of a synthetic dataset and manually annotated
dataset regarding object detection, improvements have to be made to tailor
the synthetic dataset for better results. By doing this, such a synthetic
dataset could, in the future, be used to account for the manual annotation
process. Also, in the field of document layout analysis, multi-structured
documents tend to be more difficult to detect. However, with mimicking
the diverse structure of a document, DLA achieved good performance.

7 conclusion

The study explores which Mask R-CNN model variation – in particular
the Detectron2 model – is useful for DLA for multi-structured information
documents using object detection. This was done by answereing the
following research question, ’Which is the best performing Detectron2

Mask Region-Based Convolutional Neural Network variation for Document
Layout Analysis on Multi-Structured Information Documents?’. It also
compares two different datasets, one synthetic created and one manually
annotated. Several sub-questions have been formulated to answer this
research goal. To try to come to this goal, this research used a pre-trained
model with a synthetic created dataset to mimick the multi-structure of the
real-life documents which was compared to a smaller manually annotated
dataset. In contrast to previous studies from Li et al. (2020), Lin et al. (2014),
and Zhong et al. (2019), this study implemented the research direction
for multi-structured documents by using a synthetic created dataset and
multi-structured documents by comparing the results on multiple datasets.

The results show that the combination of a pre-trained model with a
synthetic created dataset achieved lower scores than their baseline model
and manually annotated counterpart. However, the results argued that a
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synthetic dataset is still a promising way of training data. The baseline
model outperformed the proposed model variation of the synthetic dataset.
However, the baseline model was outperformed by the manually annotated
variations which resulted in high average precisions and element precisions.
The results of the first subquestion have shown a distinctively set baseline
model to improve. Both the synthetic dataset and baseline model were not
able to detect titles, with the synthetic dataset results being low for text
figures and lists as well.

The precisions of the three improved Detectron2 models on the man-
ually annotated dataset showed that the these models were good in pre-
dicting all elements and that the models – compared to the baseline – were
drastically improved. The PubLayNet Detectron2 Models showed great
results in detecting every element, with the lowest score still drastically
improved compared to the other models.

In conclusion, although the synthetic dataset achieved lower scores
than expected, there can still be argued for promising future results. The
introduction of a synthetic dataset in DLA can achieve high precision scores
when the dataset is created more critically with more pre-determined rules
for document re-creation. This can be achieved by annotating more data,
placing more elements on a page, and creating fewer random images.
Although the dataset was smaller, the manually annotated dataset showed
that the models achieved high detection scores and showed that DLA can
be applied to multi-structured data. Just like the synthetic dataset, higher
results can be achieved by increasing the number of annotations.

In future research, it would be interesting to discover to what extent
a very large synthetic dataset can achieve the same results as the pre-
trained model or manually annotated dataset. Also, a more advanced
generation document can be made to synthetically create the dataset to
include more instances on a page, to more closely mimic the multi-structure
documents. In this study, only two foregrounds were generated on every
page. Including more data in the form of annotation might contribute to a
higher performance of multi-structural document understanding.
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