
A D D I N G S I M P L I C I T Y T O
T R A N S L AT I O N

U S I N G C O M P R E S S E D T E X T S A S A P I V O T F O R
N E U R A L M A C H I N E T R A N S L AT I O N B E T W E E N

S I G N A N D S P O K E N L A N G UA G E

M I C K F O P P E L E

thesis submitted in partial fulfillment

of the requirements for the degree of

master of science in data science & society

at the school of humanities and digital sciences

of tilburg university

wordcount : 8729

student number

2003181

committee

dr. Dimitar Shterionov
dr. Henry Brighton

location

Tilburg University
School of Humanities and Digital Sciences
Department of Cognitive Science &
Artificial Intelligence
Tilburg, The Netherlands

date

January 14, 2022

acknowledgments

The completion of this thesis would not have been possible without
the help of dr. Dimitar Shterionov and the opportunity to use the GPU
infrastructure of Tilburg University.

A D D I N G S I M P L I C I T Y T O
T R A N S L AT I O N

U S I N G C O M P R E S S E D T E X T S A S A P I V O T F O R N E U R A L
M A C H I N E T R A N S L AT I O N B E T W E E N S I G N A N D S P O K E N

L A N G UA G E

mick foppele

Abstract
Sign language translation generally consists of two translation

systems. A Video-to-Gloss translation system and a Gloss-to-Text
translation system. This paper describes a new method for Gloss-to-
Text translation. We propose a pipeline that consists of a MTS that
translates the glosses received from a sign recognition system, to a
compressed text and a MTS that translates the compressed text to
a full text functioning as a text expander. In this paper the target
text will be written German and the source text will be German sign
language (DGS). By compressing the target text of the first MTS in the
pipeline, we get the target text closer to the source text, which could
improve translation performance. The second MTS serves as a text
expander, going from compressed to full text. Two types of neural
networks will be compared, an LSTM and a Transformer. The data
set used is a Deutsche Gebärdesprache (DGS) Corpus consisting of
59,035 sentences. This thesis finds evidence that neither the proposed
pipeline of the LSTM nor the proposed pipeline of the Transfomer
outperforms their respective baseline. This thesis also finds evidence
that the type-token ratio and the moving average type-token ratio de-
crease after every machine translation, indicating that MTS’s struggle
to generate diverse output.

1 introduction

Sign languages are natural languages used by deaf people and people
who suffer from muteness to communicate with others (Sandler & Lillo-
Martin, 2006). ”Sign languages are used for everything that spoken languages
are - within the family circle, for social interaction, oratory, education, scientific
exchange, introspection and dreaming, story-telling, theatre, and poetry” (Sandler
& Lillo-Martin, 2006). Sign languages are not only an important means of
communication within the deaf community, but they are also gaining pop-
ularity by the public who have difficulty with hearing or communication

1

1 introduction 2

(Naresh, Visalakshi, & Satyanarayana, 2020). Globalization and digitization
are increasing the amount and pace of interaction between different cul-
tures and countries. This also applies to those who use sign language as
their primary way to communicate. To ease the communication between
people who are deaf or suffer from muteness and those who can hear and
speak, the scientific community has been trying to create ways to automate
the translation of sign language to text via machine translation systems
(MTS’s). These translation systems are generally not of high quality. Those
that achieve a high accuracy are often domain specific systems. Every
increase in performance, be it speed or accuracy, is useful.

Given a video recording of a message in sign language, the automated
translation of sign language to spoken language is a process that involves
two major steps. The first step would be the recognition of signs and the
translation of these signs into glosses. In this context, glosses are words
that correspond to the core meaning of a sign (Konrad et al., 2020). Glosses
can be seen as the labels of a certain sign or combination of signs. The
second step would be the translation of these glosses to full text. We
define the spoken text as shown in the ’Spoken’ column of Figure 6 of the
appendix [7] as ’full text’. Moryossef, Yin, Neubig, and Goldberg (2021)
defines the first step as Video-to-Gloss and the second step as Gloss-to-Text.
Both of these steps are processed by a different system. This thesis will
have a focus on Gloss-to-Text, hence we will only describe this specific
system in more detail. In Gloss-to-Text translation, a MTS trained on a
sign language lexicon and a full text lexicon needs to be built. This MTS
will then be able to translate glosses to full text. The model of Mehdi and
Khan (2002) has been adapted and is shown in Figure 3 of the appendix [7].
This Figure gives a clear structure of the entire process of converting sign
language to speech. Boxes are added to show where the Video-to-Gloss
and Gloss-to-Text steps occur in this process. A similar format could be
applied when converting German sign language, or Deutsche Gebärde
Sprache (DGS), to text. In this case, the MTS is trained on a DGS lexicon
and a full German text lexicon. Since this paper has a focus on Gloss-to-
Text translation, we define a MTS translating glosses directly to full text
as an ’end-to-end’ translation system. By this definition, the MTS used in
the Gloss-to-Text section of Figure 3 in the appendix [7] is an end-to-end
translation system.

This paper proposes an extra step in the translation process of Gloss-to-
Text. The proposed pipeline consists of a MTS that translates the glosses
received from the recognition system, to compressed texts and a MTS
that translates these compressed texts to full text. The compression of
texts or sentences can be defined as the natural language processing task
of abbreviating or shortening the original text corpus while retaining its

1 introduction 3

underlying meaning and information (Mandya, Nomoto, & Siddharthan,
2014). Compression will be described in more detail in Section 2.1. Using
the format of Mehdi and Khan (2002), our pipeline could be displayed
as shown in Figure 4 of the appendix [7]. By implementing compression
we get the full text closer to its sign language counterpart which could
improve the translation process. The inclusion of this step results in the
following research question:

How does a pipeline of machine translation systems trained on sign
language glosses, compressed texts and spoken texts differ from an
end-to-end machine translation system for the task of sign to spoken
language translation in terms of performance?

To see whether the inclusion of this extra MTS will actually increase the
accuracy of the Gloss-to-Text translation process, we create a baseline using
the format of Figure 3 the appendix [7]. To substantiate the main research
question we create the following sub-questions:

SRQ1 How does the performance of a machine translation system pipeline for
Gloss-to-Text translation based on LSTM compare to a machine translation
system pipeline based on Transformer?

SRQ2 To what extent do specialized hyper parameters for spoken language transla-
tion with a low resource data set transition to sign language translation with
a low resource data set when used in a pipeline and how do these models
compare to an end-to-end translation system?

SRQ3 How does the lexical diversity of the training data correlate with the end
performance of the machine translation system pipeline?

The first sub-question has a focus on which type of neural network
will be used to build the MTS’s within the pipeline and the baseline.
Which neural networks are taken into consideration will be described in
more detail in Section 2.2. The second sub-question has a focus on hyper
parameters. We will use the current literature based on low resource
spoken to spoken machine translation and adapt these hyper parameters
for our models. The literature and parameters are described in more detail
in Section 2.4. The third research question has a focus on the correlation of
the lexical diversity of the training data with the performance of the MTS
pipeline. The concept of lexical diversity and its use will be described in
more detail in Section 2.5.

This paper shows that the inclusion of an extra MTS in both methods
does not increase the translation accuracy in the field of sign language
translation. Other insights include the inability of MTS’s to generate diverse

2 related work 4

output, the impact of different evaluation metrics and the importance of
pre-processing in sign to spoken language translation.

This paper is divided into several sections. Section 2 gives an insight
into the relevant literature. The methods, implementation of these methods
and the data used to answer the research questions are described in Sections
3 and 4. In Section 5, the results are presented. These results are further
discussed in Section 6. In this Section the limitations of this paper are
also mentioned. Finally, Section 7 outlines the main conclusions and
recommendations for further research.

2 related work

A considerable amount of research has been done in the field of automated
sign language translation. However, previous research has been mainly
focused on using end-to-end translation systems as defined in Section 1.
We cover the current literature to each specific topic mentioned in Section
1.

2.1 Text simplification and compression

Text simplification is a natural language processing task of simplifying
the grammar and structure of a text corpus while retaining its underlying
meaning and information (Mandya et al., 2014). Text can be simplified
in different ways. One way could be compression. As mentioned before,
compression can be defined as the natural language processing task of
abbreviating or shortening the original text corpus while retaining its un-
derlying meaning and information (Mandya et al., 2014). Even though
compression can be seen as a form of simplification, we will define sim-
plification and compression as two different methods: (i) ‘simplification’
performs lexical simplification and (ii) ‘compression’ performs sentence
compression (Mandya et al., 2014).

Applications of text simplification and compression are, often but not
exclusively, seen in the medical domain. Medical texts are generally diffi-
cult to understand, since its target audience are highly-skilled professionals
who are prone to use complex language and jargon (Van den Bercken, Sips,
& Lofi, 2019). Simplification helps the audience understand a text which
would normally require an expert intermediary to understand. Simplifi-
cation has other uses as well, it can broaden the literature for children,
non-native speakers and non-expert readers (Sun, Jin, & Wan, 2021).

Data, or text, compression offers an efficient and reliable way of com-
munication. With current innovations such as Internet of Things (IoT) that
provide a continuous connectivity, the amount of data grows exceptionally

2 related work 5

(Vaerenbergh & Tourwé, 2021). The rate of growth of data being a lot
higher than the rate of growth of technologies makes reduction of data
volume in both storage as well as transmission desirable (Uthayakumar,
Vengattaraman, & Dhavachelvan, 2018). Both simplification and compres-
sion can be applied at the same time (Nisioi, Štajner, Ponzetto, & Dinu,
2017). This type of combination will not be applied on the source sentences
for the MTS in this paper due to time limitations. The implementation of
simplification and compression is often seen as the main natural language
processing (NLP) problem as shown in the examples above. In this paper
the we will apply compression as a form of pre-processing on our source
data.

2.2 Machine Translation Systems

Recent work (Bawa, Kumar, et al., 2021) provides a detailed overview
of all the different types of MTS’s. Both Bawa et al. (2021) and Östling,
Scherrer, Tiedemann, Tang, and Nieminen (2017) show that neural networks
currently achieve state-of-the-art results in machine translation. Junczys-
Dowmunt, Dwojak, and Hoang (2016), Östling et al. (2017) and Shterionov
et al. (2018) prove that neural networks, or neural machine translations
systems (NMT), outperform Statistical Machine Translation systems (SMT).
Based on these results our focus for building the MTS will be on neural
networks. It is to be noted that in the research of Shterionov et al. (2018),
the NMT only outperformed statistical machine translation when evaluated
by human reviewers. Quality evaluation scores indicate that the statistical
machine translation engines perform better. We also want to note that this
paper will not use human evaluation due to time and budget limitations.

For machine translation, architectures based on recurrent neural net-
works (RNN) with attention (Bahdanau, Cho, & Bengio, 2014) have achieved
state-of-the-art results since its creation until the introduction of the Trans-
former (Vaswani et al., 2017). Both approaches are currently being widely
employed for building academic as well as commercial MTSs. For this
paper, we will compare RNN- and Transformer-based approaches. The
basic ’vanilla’ RNN (Rumelhart, Hinton, & Williams, 1986) risks both the
exploding and vanishing gradients problems (Xu et al., 2020). To fix this
problem two new approaches were introduced: (i) Long Short Term Mem-
ory (LSTM) (Hochreiter & Schmidhuber, 1997) and (ii) Gated Recurrent
Units (GRU) (Cho et al., 2014). Xu et al. (2020) compares the performance
of the LSTM and GRU for natural language processing of online reviews.
They mention that GRU has one less gate than LSTM which effectively
reduces its computation time. The simpler structure of GRU can save a
lot of time without sacrificing much performance. When looking at their

2 related work 6

results we can see that GRU only outperforms LSTM on a small data set
containing long sentences. Since our data set (see Section 3.1) is small
with relatively short sentences and computation power should not really
be a bottleneck due to the infrastructure provided by Tilburg University,
we will opt for LSTM. The infrastructure of Tilburg University has 4 Dell
PowerEdge R750 servers. Each server hosts 192GB of RAM with 2 CPUs
and 2 GPUs. The CPU’s are Intel(R) Xeon(R) Gold 6346 CPU @ 3.10GHz as
mentioned on the site of Tilburg University1.

As mentioned before, the other approach is the Transformer (Vaswani et
al., 2017). The Transformer attains a better BLEU score (Papineni, Roukos,
Ward, & Zhu, 2002) than other state-of-the-art models (Vaswani et al., 2017).
The combination of the vanishing and exploding gradient problem and
the usage of attention-based algorithms often leads to the Transformers
outperforming RNN’s (Lankford, Alfi, & Way, 2021). Since a Transformer
generally requires a lot of data (Lankford et al., 2021; Xu et al., 2020),
the LSTM seems to be better suited for a low resource data set. Training
machine translation models on pre-processed data has been done before.
Mehta et al. (2020) provides proof that models with pre-processed source
sentences, in this case simplified sentences, lead to better performance
compared to models without pre-processed source sentences. This paper
could fill the gap in whether these results could be extended when applying
compression in the field of sign language translation.

2.3 Gloss-to-Text Translation

Gloss-to-Text translation systems (e.g. DGS to German) have a similar
approach as the traditional Text-to-Text translation systems (e.g. English to
German) mentioned in Section 2.2. Both translation systems are trained
on source and target sentences. The essence is to learn the relationships of
the word combinations between both sentences. However, Gloss-to-Text
translation systems have an inherent problem. According to Moryossef et
al. (2021), when matching a sign language to its spoken counterpart, there
seems to be a lower amount of syntactical similarity when compared to the
matching of two spoken languages. Moryossef et al. (2021) defines lexical
similarity as the overlap of words between multiple lexicons. It is to be
noted that in this case, syntactic similarity as defined by Moryossef et al.
(2021) can be seen as a form of semantic similarity defined by Harispe,
Ranwez, Janaqi, and Montmain (2015) as the similarity of different entities
when looked at their semantics, i.e. their meaning. Harispe et al. (2015)
gives the clear example of the words tea, toffee and coffee. Both tea and cof-
fee are hot beverages indicating a relatively high semantic similarity score.

1 https://www.tilburguniversity.edu/current/news/more-news/gpu-computers

2 related work 7

The words toffee and coffee look very similar, indicating a relatively high
lexical similarity score. The inherent lower semantic similarity between
sign and spoken languages decreases translation accuracy of Gloss-to-Text
translation systems (Moryossef et al., 2021). By increasing this similarity
we aim to increase translation performance.

2.4 Hyper Parameters

Well performing MTS’s used in natural language processing are usually
trained on massive amounts of data. These amounts often exceed millions
of sentences to train (Zhang & Duh, 2021). Since sign language is not a
spoken language, the costs of creating sample sentences with correspond-
ing videos and glosses are high. As a consequence, sign language data sets
rarely exceed 60k sentences. Compared to the earlier mentioned MT tasks,
Gloss-to-Text can be defined as a low resource MT problem (Moryossef
et al., 2021; Zhang & Duh, 2021). In order to improve natural language
processing tasks done by MTS’s, multiple suggestions are made to alter the
optimized hyper parameters for general usage of these models (Lankford
et al., 2021; Sennrich & Zhang, 2019). These suggestions are all based and
optimized on low resource Text-to-Text translation tasks. Different types
of neural networks require different hyper parameter tuning (Lankford
et al., 2021). This paper could fill the gap to see whether the hyper pa-
rameter tuning proposed by Lankford et al. (2021); Sennrich and Zhang
(2019) for low resource Text-to-Text translation tasks can also be applied in
Gloss-to-Text translation tasks.

2.5 Lexical Diversity

Malvern, Richards, Chipere, and Durán (2004) mention that there is dis-
agreement within the scientific field about the definitions of lexical diver-
sity and vocabulary richness, which sometimes appear to be synonymous.
O’Dell, Read, McCarthy, et al. (2000) defines vocabulary richness as a fea-
ture consisting of multiple components. These components include ’lexical
variation’, lexical sophistication’, ‘lexical density’, and ‘number of errors’.
Lexical variation, which can be seen as lexical diversity, is here defined
as ’the range of vocabulary and avoidance of repetition’. The measure
for lexical diversity as defined by O’Dell et al. (2000) is traditionally the
type-token ratio (TTR), which can be calculated by comparing the number
of different words with the number of total words within a sentence (given
that the TTR is computed on a sentence level). This paper will use two
different methods for lexical diversity: (i) the basic TTR as defined by

3 methods and methodology 8

O’Dell et al. (2000) and (ii) the moving average TTR (MATTR) as defined
by Covington and McFall (2010).

The loss of lexical diversity has been used as a feature to estimate the
quality of MTS’s before (Vanmassenhove, Shterionov, & Way, 2019). Since
neural networks show an inability to generate diverse output and there
appears to be a loss of lexical diversity caused by machine translation (Van-
massenhove et al., 2019), we want to see whether the reduction in lexical
diversity impacts the performance of our proposed pipeline by measuring
the correlation of the lexical diversity metrics and the performance metrics.

3 methods and methodology

Besides the usage of the earlier mentioned LSTM and Transformer methods,
we also apply forms of pre-processing and compression on the data. Since
compression is a big part of the methodology we apply, it will not be
discussed in the pre-processing section but it will have its own separate
subsection.

Figure 8 of the appendix [7] shows a flowchart of the entire method-
ology for the baseline model. The flowchart uses the symbols as defined
by Hebb (2012). Both texts are color coded, indicating which text becomes
the source text and which text becomes the target text. Figure 9 of the
appendix [7] shows a flowchart of the entire methodology for the pipeline
model. The same symbols and color coding is applied for the pipeline.
In the pipeline flowchart we excluded the compression phase from the
pre-processing process to emphasize this phase. It is to be noted that in
the pipeline model, the second MTS uses the output of the first MTS as
source text. The second MTS is then trained on this output and the target
data set of the baseline model. All of the steps shown in Figures 8 and 9 of
the appendix [7] are discussed in detail in Section 3.1.2.

3.1 Data

The data sets are (DGS) corpora provided by Konrad et al. (2020). We
obtained the data sets via the GitHub page of Gijs Thissen2 who performed
a study based on gloss to text translation. The data sets are a watered-down
version of the DGS public corpus. The data we use is a merged set that
originally consisted of 359,130 and 374,411 fragments of sign language
recordings associated with single-gloss annotations. After merging the
data sets into one data set and organising the glosses into sequences, it con-

2 https://github.com/GijsThissen/g-thissen-csai-thesis.

3 methods and methodology 9

stitutes 59,035 instances. The data set contains timestamps and mouthing
signs. Due to time limitations we will not be using these attributes.

3.1.1 Annotation and Glossing Conventions

Project notes are provided by Konrad et al. (2020) to get a better under-
standing of the data. Since sign language is its own natural language
it is important to get an understanding of the grammar and spelling of
the signs (source) glosses within the scope of this research. Some of the
underlying meaning or the combination of signs and mouthed words goes
beyond that scope. For example the DGS sign ’SQUARE1’̂, which is basi-
cally signing a square shape with both hands, is frequently used to cover
words or meanings such as ‘square’, ‘page’, ‘letter’, ‘recipe’, or ‘map’. The
meaning of ’SQUARE1’̂ depends on the mouthed words as well. Changing
the mouthed words can change the meaning of ’SQUARE1’̂ to ’newspa-
per’, ’visa’, ’television’, or ’stole’ (Konrad et al., 2020). For some glosses
the meaning is derived from context. This could be the core reason for
semantic dissimilarity between sign and spoken languages as mentioned
by Moryossef et al. (2021).

There are multiple types of glosses within the DGS corpus. These
glosses are linked in a parent and child relationship. All parent type
glosses are followed by a circumflex ()̂ (e.g. $ORAL)̂. Glosses without
circumflex represent child types. This parent child relationship is defined
as: X is the parent type. Y is the child type. Y is a subclass to X. In the
DGS corpus these relationships correspond to the type-token matching
of signs and mouthed words within the project data set. Since we do not
use the mouthed words the circumflex derives no direct meaning in this
paper. Among the sign language glosses there are multiple child groups
distinguished using a prefix. In the DGS corpus they use a dollar sign
followed by the prefix to group the child groups. The types occurring in
this data set are described in the bullet points below:

• name signs ($name)

Sign language makes use of name signs. All names included in this data
set are defined by ’$NAME’. Since the data set is based on real people
all names are kept ’$NAME’ in order to preserve privacy. For public or
well-known individuals the prefix is normally followed by the name (e.g.
$NAME-JOE-BIDEN1), however the public DGS corpus does not make this
further differentiation and only uses the parent class ’$NAME’.

• productive signs ($prod)

3 methods and methodology 10

Within sign language there is an interaction between lexical signs (telling
something) and polymorphemic signs (showing something). Polymor-
phemic, which are called productive signs in the DGS corpus, are small
signs built on conventional and non-conventional elements (Konrad et al.,
2020). The meaning of these productive signs can only be derived via
context. This makes classification and translation of such signs extremely
hard. Especially since this DGS is a low resource data set and this type of
classification would require a lot of data.

•pointing signs ($index)

Pointing signs look a lot like pointing gestures. Unlike the earlier men-
tioned productive signs, pointing signs normally do have a limited range of
meanings. In the DGS Corpus the pointing signs are glossed by ’$INDEX’
followed by a number. Some examples of this would be ’$INDEX4’ which
indicates the signer is using a thumb to sign or ’$INDEX-ORAL1’ where
the signer points to his or her lips. The latter is often used to direct focus
on a mouthing sign. Pointing signs are complex since they can be used to
sign objects in the area, which again need to be derived from context.

3 methods and methodology 11

•fingerspelling ($alpha)

In DGS, the spelling of words or denoting a single letter is done via finger-
spelling. All fingerspelling signs are labelled as ’$ALPHA’̂. This parent
type contains multiple child types such as ’$ALPHA1’ and ’$ALPHA2’
which represent one-handed and two-handed signs respectively. For ex-
ample the gloss related to the one handed signing of the letter ’L’ would
be ’$ALPHA1:L’. Cities, villages or names consisting of a few letters such
as ’Iglu’ will sometimes be spelled completely. This would be glossed as
’$ALPHA1:I-G-L-U’. Note that this example is spelled using one hand.

• initialisation ($init)

Initialisation is the process of denoting the first letter of a word. In DGS this
is done using the fingerspelling signs (’$ALPHA’) we mentioned before.
The inclusion of a tilde symbol ()̃ before a gloss indicates that the gloss is
derived from the same type of sign but with a changed parameter (Konrad
et al., 2020). This type of sign is often implemented when the signer does
not know the regular sign. The deriving of these glosses could trouble the
translation process since the machine translation systems need to learn a
lot more relations.

• number signs ($num)

In order to communicate large numbers in sign language there needs to be
an efficient system in place. In the DGS corpus a ’$NUM’̂ parent class is
created. This parent class is again split up in multiple child types (Konrad
et al., 2020):

1-10 ($NUM-ONE-TO-TEN1A etc.),
11-19 ($NUM-TEEN1 etc.),
10, 20. . . 90 ($NUM-TENS1 etc.),
100, 200. . . 900 ($NUM-HUNDREDS1),
1000, 2000. . . 10,000 ($NUM-THOUSANDS1).

The project notes gives the example of 1989. This would be segmented into
three tokens: $NUM-TEEN1:9 (nineteen), $NUM-ONE-TO-TEN1A:9 (nine),
$NUM-TENS1:8d (eighty). For repeated digits there is a special child type
of the ’$NUM’̂ type (i.e. ’$NUM-DOUBLE1A’). Due to the difference in
format used to describe numbers we foresee some trouble in translating
numbers. We tried to prevent this problem by writing an algorithm that
changes the glossed numbers of the source sentences into integers. How-
ever, the development and implementation of such an algorithm would
take too much time hence we use the glosses provided by the DGS corpus
as input.

3 methods and methodology 12

• list buoys ($list)

In the DGS corpus enumerating items to a list is communicated by pointing
the index finger to the finger of the other hand. The function called ’list’ has
multiple functions. It can be used to actually make a list of e.g. politicians
or colors, but it can also be done to simply enumerate numbers. These
signs are glossed in the ’$LIST’ type. The glosses in the data set get more
detailed since it is also possible to show the total items within the list by yet
another sign. The fact that such a gloss has that many different meanings
makes the training of a MTS harder.

• gestures ($gest)

Other signs that rely a lot on context are gestures. These types of signs
are usually unconventional. An example of a gloss labelled as gesture is
’$GEST-OFF’̂. This is a sign made with the hand palm up and the hand
open. The German word ’offene’ means ’open’. These types of glosses
are often really specific and indicate a movement not visible in either the
source or target sentence. The MTS does not see the video recording, only
’$GEST-OFF’̂ and the corresponding target word.

• mouthing ($oral)

Some words in DGS are purely based on mouthed words, also known as
lip reading or speech reading. These signs are glossed as ’$ORAL’̂. These
glosses are linked to a mouthing sign. As mentioned in Section 3.1, we
will not be using these signs. The choice to skip this attribute will decrease
the performance of our MTS.

The quality and complexity of this data will reduce the performance of
our MTS. However, since all the models are trained on the same data, we
can still compare their respective performance.

3.1.2 Pre-processing

The data sets will be loaded into Python for processing. Google Colab3

will be used as a Python environment. The training of the systems is
done using the GPU infrastructure of Tilburg University. As mentioned in
Section 3.1, the data set consists of many fragments. These are originally
ordered as shown in Figure 6 of the appendix [7]. In order for the MTS
to be trained, the glosses need to be aligned with their respective target
sentence as shown in Figure 7 of the appendix [7]. The alignment of the
sentences resulted in many empty or NaN values in the source data. All

3 https://colab.research.google.com/

3 methods and methodology 13

these values are removed using own code. This code will be freely available
on the related GitHub repository of this paper4.

On a character level we see some inconsistencies. In the example shown
below we see that in the source sentence the word Fußball is spelled with
’ss’ while in the target sentence the word is spelled with ’ß’.

Source (sign) = WEIT1 ICH1* GEHEN1A* MÖGEN3 ICH1* FUSS-
BALL2* SPIELEN2
Target (spoken) = Das war so weit. Ich wollte lieber Fußball spielen.

In the German language both types of spelling are correct. In order for us
to maintain consistency, we change all the ’ß’ characters to ’ss’. We choose
this option due to the brevity of the code. Replacing ’ß’ with ’ss’ will not
result in errors, whereas the replacement of ’ss’ by ’ß’ in, for example, the
word ’wissen’ will result in faulty spelling. This process is done using own
code. Before removing the ß from the data we check to see whether the
gloss ’$ALPHA1:ß’ or ’$ALPHA1:SS’ is present in the data set in order
to prevent bad translation. Neither ’$ALPHA1:ß’ nor ’$ALPHA1:SS’ is
present in our data.

After formatting and fixing inconsistencies, the first step in natural
language processing is tokenization (Webster & Kit, 1992). By tokenizing
a piece of text we make each word or stand alone character (including
punctuation marks) a token. Since sign language does not use punctuation
marks, and all glosses are already split, the source files are already tok-
enized. An example of why tokenization is necessary for the target files is
the end of a sentence. This can have a punctuation mark. To make sure
that these characters are not added to the last word of the sentence, and
thus creating a new word, the tokenization algorithm splits this in two
tokens as shown in the example below.

Pre-tokenized = #Name4 hat mir gesagt, dass sie austreten will, weil
ihr Mann gestorben ist.
Tokenized = # Name4 hat mir gesagt , dass sie austreten will , weil
ihr Mann gestorben ist .

The example also clearly shows how this algorithm deals with commas.
The implementation is done using a tokenization script5. The provided
script also cleans the data. After the tokenization and cleaning, we will use
a train_test_dev.py script6 to split the data into six subsets:

4 https://github.com/MFoppele/ThesisDSS
5 This script is provided by dr. Dimitar Shterionov
6 This script is provided by dr. Dimitar Shterionov

3 methods and methodology 14

-train.src
-test.src
-development.src

-train.trg
-test.trg
-development.trg

The src extension is an abbreviation for ’source’ and the trg extension is an
abbreviation for ’target’. The test and development subsets contain 1000

randomly selected sentences each. The remaining sentences will be used
for training the models. The same process is done for the compressed data
sets. This results in the following six subsets:

-train.src
-test.src
-development.src

-train_compressed.trg
-test_compressed.trg
-development_compressed.trg

We opt for this split due to the small amount of data as mentioned in
Section 3.1. The train_test_dev.py script used to split the data creates
source files with empty lines inside. The MTS interprets these lines as
sentences and starts assigning sentences to empty lines. Hence we need
to remove the empty lines. This is done using own code. In order to
remove these lines we need to remove the corresponding target lines as
well, otherwise the src and trg files are not aligned anymore. The removal
is done using a loop based on the indices of the src file. These are simply
put in a list. Then the list of indices is used to remove the sentences in the
trg file. Due to the nature of a for loop, the indices list is looped over in
reverse to prevent us from removing the wrong index.

The final step of pre-processing is to implement a variation of the
Byte-Pair Encoding (BPE) algorithm as introduced by Gage (1994) on all
the different data sets. BPE is used to split each word into sub-words
(smaller parts of a word) which reduces the vocabulary used to train the
NMT. When considering the English words ’taller’ and ’lowest’, the BPE
algorithm will split ’taller’ into ’tall’ and ’er’ and ’lowest’ into ’low’ and ’est’.
When the NMT models learn from the data, they will learn not ’taller’ and
’lowest’, but they will learn the sub-words ’tall’, ’er’, ’low’ and ’est’. With this
new vocabulary the NMT models can recognize (and translate) ’tall’, ’taller’,
’tallest’, ’low’, ’lower’, ’lowest’. A big advantage of BPE is that the NMT
models are now able to recognize more words then there are available
in the original data set. The NMT models are now able to recognize the
adjective, comparative and superlative. Even when only the word ’small’
is in the data set, ’smaller’ and ’smallest’ will be recognized as well. The
same principle applies for morphological derivation (Sennrich, Haddow,
& Birch, 2015). Morphological derivation is the process of forming a new
word by adding a prefix of suffix (Dixon, 2014). Considering the root word

4 experimental setup 15

’happy’, a prefix (e.g. ’un-’) could be added to create a new word ’unhappy’.
A suffix (e.g.-ness) could be added to create the word ’happiness’.

It is to be noted that the mentioned BPE examples above are very ide-
alized. Due to the small data set used in this paper, the BPE algorithm
evidently has a low amount of sub-words as training input. As a conse-
quence, there might be low lexical cohesion within the data which impedes
the BPE algorithm.

3.2 Compression

The form of simplification used on the target sentences of the first MTS
in the pipeline for both the LSTM and the Transformer will be compres-
sion as defined in Section 2.1. This form of simplification is the least
computationally expensive and the easiest method to implement. Due to
time limitations, compression seems to be the best approach in this NLP
problem. Given that we use a ’Deutsche Gebärdensprache’ (DGS) corpus
and German sign language does not have copula words (Pfau & Quer,
2008), we choose a compression method which removes stop words as
defined by the nltk library7 (e.g. ’ich’, ’weil’, ’wir’, ’deiner’) as a proxy for
copula words. By removing the amount of words in a spoken language,
the semantic similarity should increase compared to a sign language. The
compression is applied in Python by removing the nltk stopword list from
the random assigned target train, test and development sets. We will
apply compression before the split algorithm and the letter inconsistency
algorithm to keep the evaluation pairwise and reduce computation time.
The Evaluation of the compression algorithm, defined as the compression
ratio, will be discussed in more detail in Section 4.4.1.

4 experimental setup

Both LSTM and Transformer are implemented using early stopping (Prechelt,
1998). The value is set to 10, this indicates that if the validation perplexity
does not decrease for 10 consecutive steps the training process is stopped.
Early stopping is done in order to prevent overfitting.

The implementation of the second MTS in the pipeline requires some
additional processing of the data. The output files of the OpenNMT
framework (Klein, Kim, Deng, Senellart, & Rush, 2017) gives metadata per
sentence as shown in the example below:

[2021-11-24 11:10:00,047 INFO]
SENT 6: [’ÜBER1’̂, ’ERZÄHLEN4*’, ’$INDEX1*’]

7 https://www.nltk.org/

4 experimental setup 16

PRED 6: Das hat also nichts erzählt .
PRED SCORE: -3.5319

The removal of all the metadata is done using own code based on index
number.

4.1 Implementation of LSTM

The LSTM is implemented using the OpenNMT framework (Klein et al.,
2017). Both the decoder and encoder are RNN’s of type LSTM. We imple-
mented the hyper parameters optimized for general use. Besides hyper
parameter tuning, Sennrich and Zhang (2019) mention other improvements
such as a reduced vocabulary and the implementation of a lexical model
introduced by Nguyen and Chiang (2017). The tuning of hyper parameters
is done based on the changed vocabulary and the lexical model. However,
the biggest improvements in accuracy are obtained when the RNN and
CNN architectures are completely replaced with an attention mechanism,
thus creating a Transformer (Lankford et al., 2021). We are focused on the
hyper parameters and not the inclusion of the additional steps mentioned
by Sennrich and Zhang (2019). Due to time limitations and the scope of
this paper, we will only test a tuned version of the Transformer. As shown
in the results, the LSTM does not have a second run.

4.2 Implementation of Transformer

The Transformer is implemented using the OpenNMT framework (Klein
et al., 2017) as well. In the first run we implement the hyper parameters
optimized for general use. Based on the optimized hyper parameters for
low resource data sets mentioned by Lankford et al. (2021), our hyper
parameter values are shown in Table 2. Values that differ in run 2 are
indicated in bold. It is to be noted that according to Lankford et al. (2021),
both 2 and 8 attention heads could work. In their results they mention that
a model trained on 55k lines favours 2 attention heads. Since the volume
of our data is closest to the benchmark of 2 attention heads we opt for 2

heads as well.

4 experimental setup 17

Hyper parameter run_1 run_2

Learning rate 2.0 2.0
Batch size 4096 2048

Attention heads 8 2
Feed-forward dimension 2048 2048

Embedding dimension 512 256
Label smoothing 0.1 0.1

Dropout 0.1 0.3

Table 1: Transformer optimization.
Changed hyper parameters in run 2 are shown in bold

4.3 Implementation of TTR and MATTR

In order to check for the correlation of lexical diversity and the MTS
pipeline performance, we will measure the lexical diversity of the target
test file, the output of MTS 1 and the output of MTS 2 as displayed in
Figure 5 of the appendix[7], where LDT denotes Lexical Diversity Test.
Using a high interval of tests we can see if lexical diversity is positively or
negatively correlated with the performance of the MTS pipeline compared
to the baseline. Both the basic TTR and the MATTR are calculated using
the lexicalrichness package8. The TTR and MATTR will only be calculated
on the test sets. We want to calculate these measures for the output of the
first MTS and second MTS in the pipeline. Since translating the train data
will result in a bias, only the test data will be translated. Hence this set is
used in every LDT to maintain consistency.

4.4 Evaluation metrics

In order to measure the amount of compression applied on the data, we
will use a compression ratio metric provided by Alva-Manchego, Martin,
Scarton, and Specia (2019). The compression ratio will be described in
more detail in Section 4.4.1. To evaluate the quality of the MTS’s, we use
BLEU (Papineni et al., 2002) and TER (Snover, Dorr, Schwartz, Micciulla,
& Makhoul, 2006). Since both metrics have the same purpose they are
described in the same section. These evaluation metrics for performance
are described in more detail in Section 4.4.2.

8 https://pypi.org/project/lexicalrichness/

5 results 18

4.4.1 Compression ratio

The compression ratio is our metric to evaluate the amount of compression.
It is defined by Alva-Manchego et al. (2019) as “The number of characters in
the simplification divided by the number of characters in the original sentence.”
All individual characters (including spaces, periods, commas etc) are used
in this calculation. This is done using own code. The compression ratio of
each sentence will be appended to a list. Then the average compression
ratio will be calculated over this list. In our data set, this resulted in a
compression ratio of 0.7010. Due to the nature of this metric, tokenization is
not necessary to compute the compression ratio. The decision to compress
the sentences before splitting is not impacting the compression ratio.

4.4.2 Bilingual evaluation understudy (BLEU) and Translation Edit Rate (TER)

The bilingual evaluation understudy (BLEU) is an algorithm that helps
to evaluate automatic machine translation with the central idea of ’The
closer a machine translation is to a professional human translation, the better it is’
(Papineni et al., 2002). We choose this metric due to its accurate depiction
of translation quality and its extensive use in the field of natural language
processing.

We will also evaluate the Translation Edit Rate (TER), defined as ’the
amount of editing that a human would have to perform to change a system output
so it exactly matches a reference translation’ (Snover et al., 2006). TER seems
to yield a higher correlation to human judgement than BLUE (Snover et al.,
2006), hence we include this evaluation metric as well.

Both BLEU and TER will be calculated using the sacrebleu package9.
The output files of the OpenNMT package are not suited for the sacrebleu
script. As mentioned before, the output files of the OpenNMT gives
metadata per sentence. This metadata alters the BLEU score. Since we are
only interested in the predicted (translated) lines we need to filter these
lines out. This is done using the same code used to prepare the data for
the second MTS in the pipeline. This code will be freely available on the
related GitHub repository of this paper10. The sacrebleu script will be
applied on the predicted sentences and test.trg files.

5 results

In Section 5.1 the BLEU and TER scores will be described for the first run
of the LSTM and Transformer as well as the second run for the Transformer.

9 https://github.com/mjpost/sacrebleu
10 https://github.com/MFoppele/ThesisDSS

5 results 19

All results of the final output will be shown in Table 2. The ’NA’ in Table 2

and Table 3 indicates that there is no score for that model.
In Section 5.2 the TTR and MATTR are described for LDTs. The values

for the ’DGS corpus normal’ and ’DGS corpus compressed’ are identical in
run 2 simply because the same data sets are used in both runs. The ’NA’
in Table 4 indicates that there is no score for that model.

5.1 Performance

Model run_1 (BLEU/TER) run_2 (BLEU/TER)

LSTM Baseline 1.2025 / 98.0305 NA
LSTM Pipeline 0.4807 / 102.2522 NA

Transformer Baseline 2.4522 / 97.6840 2.6023 / 95.5138
Transformer Pipeline 0.2236 / 101.2857 0.4965 / 100.8480

Table 2: Results of run_1 and run_2.
The better performing run is highlighted in bold.

For both the LSTM as well as the Transformer, we see that the baseline
outperforms the pipeline significantly on BLEU score and TER score. Even
after fine tuning the hyper parameters of the second run of the Transformer,
the pipeline did not outperform the baseline.

When comparing the baselines of the two different neural networks in
run 1, we see that the Transformer outperforms the LSTM in terms of BLEU
score. The difference in the TER score is still in favour of the Transformer
but the difference has become relatively smaller. This is a result that
contradicts prior research and our expectations since an LSTM generally
performs better on a low resource data set compared to a Transformer (Xu
et al., 2020). The LSTM pipeline outperforms the Transformer pipeline
based on BLUE score but not on TER score. This indicates that both the
TER and BLEU evaluation metric can favour a different model in terms of
performance.

The adaptation of the hyper parameters for Transformers trained on low
resources data sets defined by Lankford et al. (2021) seems to improve the
performance of our Transformer as well. Both the BLEU and the TER score
improve in the second run compared to the first run. This is in line with
the findings of Lankford et al. (2021). The difference in increase between
the pipeline and baseline is minimal, about 0.1501 BLEU for the baseline
and about 0.2729 BLEU for the pipeline. After tuning the Transformer, the
Transformer pipeline of the second run outperforms the LSTM pipeline
of the first run. Where the BLEU score seems to increase a lot (relatively

5 results 20

speaking), the TER score seems to improve marginally. In Figure 1 all the
models are ordered from best performing to worst performing based on
BLEU score. B1 stands for Baseline run 1, B2 stands for Baseline run 2, P1

stands for Pipeline run 1 etc.

Figure 1: BLEU scores all models

In the first run, the first MTS in the LSTM pipeline, achieved a BLEU score
of 0.8535 and a TER of 97.6556. These scores are calculated based on the
output of this particular system and the compressed test data set. For the
first MTS in the Transformer pipeline, a BLEU score of 2.5663 and a TER
of 96.8974 were achieved based on the same compressed test data set. In
the second run, the first MTS in the Transformer pipeline achieved a BLEU
score of 2.5943 and a TER of 95.5461 based on the same compressed test
data set. The performance increase for this MTS compared to the first run
is extremely minimal. Most of the performance increase is achieved at the
second MTS. The results of each MTS in the pipelines are shown in Table 3.

MTS run_1 (BLEU/TER) run_2 (BLEU/TER)

LSTM 1 0.8535 / 97.6556 NA
Transformer 1 2.5663 / 96.8974 2.5943 / 95.5461

Table 3: Results of each MTS within the pipeline

5 results 21

The BLEU score of the first MTS in each pipeline does not indicate the
accuracy of the full pipeline, hence these results are not shown in Table 2.
We choose to measure this accuracy to see which MTS reduces or improves
the accuracy of the pipeline the most and to calculate the correlation of
BLEU and TER with TTR. When taking a closer look at the exact predictions
we see that numbers are not translated correctly both ways. A number is
sometimes translated as a word and a word is sometimes translated as a
number.

The individual pipeline translation systems seem to train faster than
the baseline translation systems. The pipeline translation systems use a
reduced vocabulary to train which reduces the complexity of the translation
system itself. However, it is to be noted that when using this as an argument
for efficiency it does not hold since the pipeline uses two MTS’s. Comparing
the time used to train the full baseline and the full pipeline will give the
edge to the baseline.

5.2 TTR and MATTR

Data run 1 (TTR/MATTR) run 2 (TTR/MATTR)

DGS corpus normal 0.249 / 0.932 0.249 / 0.932

Baseline LSTM output 0.089 / 0.829 NA
Baseline Transformer output 0.228 / 0.913 0.153 / 0.789

DGS corpus compressed 0.409 / 0.97 0.409 / 0.97

Pipeline LSTM output 1* 0.092 / 0.778 NA
Pipeline LSTM output 2* 0.008 / 0.605 NA

Pipeline Transformer output 1 0.401 / 0.961 0.192 / 0.74

Pipeline Transformer output 2 0.02 / 0.732 0.014 0.652

Table 4: Lexical Diversity of run 1 and run 2.
* Output 1 denotes the output of the first MTS in the pipeline, Output 2 denotes
the output of the second MTS in the pipeline

Both the TTR and MATTR decrease with every translation step, which
is in line with the claim of Vanmassenhove et al. (2019) that MTS’s have
an inability to generate diverse output. We see that the Transformer
outperforms the LSTM drastically in both the baseline as well as the
pipeline scenario based on TTR and MATTR. Both metrics decrease after
every MTS, but it is remarkable that the Transformer baseline and the first
model of the Transformer pipeline see a small reduction in these metrics.
These models seem to be able to produce a more diverse output than the
LSTM. The second MTS in both pipelines seems to favour certain sentences

5 results 22

and predict these sentences many times. A high amount of repetition,
which means a low diversity in output, reduces the TTR and MATTR
drastically.

The TTR and MATTR move in the same direction, just by other degrees.
After computing Spearman’s rank correlation between the both lexical
diversity metrics and MTS evaluation metrics, we see that only the TER
and TTR have a significant correlation of -0.8857 at p < 0.05. The other
correlations and p values are shown in Table 4. Even though the combi-
nations of TER/MATTR and BLEU/TTR are not significant at p < 0.05, it
is interesting to see that they have the exact same correlation in opposite
directions.

Combination Correlation p-value

BLEU and TTR 0.7714 0.0724

BLEU and MATTR 0.6571 0.1562

TER and TTR -0.8857 0.0188

TER and MATTR -0.7714 0.0724

Table 5: Spearman rank correlations

In Figure 2 the trends of the TTR within the pipelines are shown. The
x-axis represents the MTS output where the origin denotes the TTR of the
starting test set.

6 discussion 23

Figure 2: TTR all models

As shown in Figure 2 we see that, in contrast to the other models, the
second run with the Transformer has an almost linear decrease across
the pipeline. The difference between the first MTS in the pipeline of the
first and second run is large but diminishes after the second MTS. The
increased performance in the second run of the Transformer resulted in
lower TTR and MATTR scores. This means that, even though the output of
the system in run 2 is less diverse, it is more accurate. It seems that the
Transformer with tuned hyper parameters performs differently than all the
other models in terms of diverse output in combination with accuracy.

6 discussion

The goal of this paper is to see whether the creation of a translation pipeline
by including an extra MTS trained on compressed data would improve
the machine translation process. This is done via multiple sub questions
consisting of different neural networks, different evaluation metrics for
these networks and hyper parameter tuning of these networks. In the first
subsection we will provide our interpretation of the results and in the
second subsection we will acknowledge some limitations of this paper.

6 discussion 24

6.1 Interpretations

All baseline models (Transformer run 1, Transformer run 2 and LSTM run 1)
outperform their pipeline counterpart, indicating that the inclusion an extra
MTS in this format does not improve machine translation performance. It is
to be noted that we expected rather low BLEU scores and high TER scores
when comparing these models to operating machine translation models
for spoken-to-spoken language. The low BLEU and high TER scores have
multiple reasons. The inherent problem of Gloss-to-Text translation as
mentioned by Moryossef et al. (2021) makes MTS’s built for sign language
less accurate than MTS’s built for spoken-to-spoken translation. The quality
and volume of the DGS corpus reduces performance even more. Besides
these two problems based on data, there was a low amount of time and
resources available when writing this paper. However, the goal of this
paper was not to create an optimal performing MTS for sign language
translation, but to make relative comparisons between the baseline and the
pipeline.

Recent work has shown that current MTS’s fail to generate diverse
output (Vanmassenhove et al., 2019). These results are in line with our
findings as mentioned in Section 5.2. This might be one of the reasons that
a pipeline does not work. The more MTS’s are included, the more repetitive
the input data gets for the second MTS. The results of our pipelines show
that the second MTS does get extremely repetitive in terms of output.
The performance of the pipeline could perhaps be improved by creating a
more advanced text expander. Models developed for text expansion could
perhaps outperform a MTS used for text expansion. An improvement in
this phase of the pipeline could have big impact since the second MTS
in the pipelines seems to perform poorly. However the first MTS’s in the
pipelines already underperforms compared to the baseline. MTS’s capable
of generating a more diverse output could improve the performance of the
pipeline since they reduce the chance of repetition in the second MTS.

The second MTS could, in its current form, be improved by changing
the volume of its training data. In this paper we trained the second MTS
on the same data volume as the first MTS. In contrast to the first MTS is
the second MTS, which is used as a text expander, not limited to glossed
data. The second MTS could be trained on a data set consisting of millions
of sentences. Such a data set could be created by compressing a massive
amount of German sentences using own code. As mentioned before this
improvement of the text expander could improve both performance and
output diversity of the pipeline.

The LSTM pipeline outperforms the Transformer pipeline based on
BLUE score but not on TER score. As mentioned before, does the TER score

6 discussion 25

not only seems to yield a higher correlation to human judgement than
BLEU (Snover et al., 2006), but also seems to yield stronger correlation with
lexical diversity compared to BLEU. This could indicate that the pipeline of
the Transformer in the first run is indeed more accurate than the LSTM in
the first run. Further research could be done to see why these two metrics
favour different models.

When looking at the first and second run of the Transformer, we see that
the performance increase for the first MTS in the second run is extremely
minimal, hence most of the relative performance increase is achieved in
the second MTS. This is an interesting result since the performance of the
pipeline massively drops as soon as the translation of the second system
is executed. This would imply that the hyper parameter tuning has the
biggest impact on the text expander and not on the first MTS.

The inability to translate numbers correctly might have to do with the
semantic dissimilarity described in Section 2.3. To overcome this problem,
the source and target sentences of the first MTS need to get more similar
in terms of semantics or the volume of training data needs to increase
a lot. The ’$NUM’ parent type has a lot of child types. Some of these
types only appear once in the entire data set. The format used by the
DGS corpus to portray numbers weakens the performance even more.
As mentioned in Section 3.1.1, a larger number such as 1989 would be
segmented into three tokens: $NUM-TEEN1: 9 (nineteen), $NUM-ONE-
TO-TEN1A:9 (nine) and $NUM-TENS1: 8d (eighty) (Konrad et al., 2020).
In the target sentences there would only be ’1989’. In order for the MTS to
recognize the combination of the three tokens as ’1989’, it would need a lot
more data. Especially since a number like $NUM-TENS1: 8d (eighty) can
appear as a stand alone number ’80’ instead of being part of e.g. ’89’. The
example mentioned above would result in three glosses together meaning
the same number (1989) in spoken German. Pre-processing of the numbers
could increase performance of both the pipeline and the baseline.

The results of the main research question are rather surprising. To
get a better understanding of why these results are not in line with our
expectations we ran some additional tests after the results came in. These
test were done in order to check the semantic similarity between the source
sentences and the compressed target sentences. The tests were done using
the same nltk library in Python as mentioned before. To our surprise we
notice that the removal of stop words decreases the semantic similarity
between the source and target sentences. A decrease in translation perfor-
mance for MTS trained on two languages with a lower semantic similarity
is in line with the findings of Moryossef et al. (2021). The results of the test
are shown in Table 6

7 conclusion 26

Language pair Semantic similarity

DGS and German 0.0206

DGS and Compressed German 0.0174

Table 6: Semantic similarity

6.2 Limitations

The mouthing signs attribute mentioned in Section 3.1 adds meaning to
the signs gestures. The exclusion of this attribute lowers the potential
accuracy of both the baseline and the pipeline. The data set is built with
the help of many different translators. As mentioned by Konrad et al.
(2020), translators can use different signs and combinations to represent
the same word. This ambiguity reduces the accuracy of MTS trained on
this data set as well.

There are more advanced forms of compression and simplification
available. Some of these more advanced models could increase the semantic
similarity between sign and spoken language.

There are better evaluation metrics available such as human evaluation.
Research with more time and resources could implement this type of
evaluation. A different evaluation metric for machine translation can
impact the results drastically as shown by the results of (Shterionov et
al., 2018) and the difference in TER and BLEU in this paper. Using more
evaluation metrics could help to better understand the details of what
happens within the pipeline.

7 conclusion

This paper provides an empirical analysis to see how a pipeline of MTS’s
trained on sign language glosses, compressed texts and full texts differs
from an end-to-end MTS trained on sign language glosses and full texts
for the task of sign to spoken language translation in terms of performance.
The results suggest that the inclusion of an extra MTS makes the translation
process not only slower in both training and computation time but also less
accurate when evaluated by the BLEU and TER scores. The results comple-
ment earlier findings (Vanmassenhove et al., 2019) about the inability of
MTS’s to generate a diverse output. This paper also provides proof that
the specialized hyper parameters for Transformers trained on low resource

7 conclusion 27

data sets can be applied in both spoken-to-spoken and sign-to-spoken
translation.

Further research should implement different forms of compression or
simplification to see if the target texts can get closer to the structure of
sign language. There should be more focus on semantic similarity between
the source and target languages. This could improve performance of the
pipeline and perhaps make the pipeline outperform the baseline. Another
aspect that can be improved is the implementation of mouthing signs
and the pre-processing of for example the numerical (’$NUM’) data in
order to see whether this could improve the pipeline. By pre-processing
these ’$NUM’ glosses, the semantic similarity between DGS and German
should increase as well. Not only the implementation of more attributes
but also a better understanding of the data in general is favourable. A
thorough understanding and more pre-processing of the glosses could
further increase performance.

REFERENCES 28

references

Alva-Manchego, F., Martin, L., Scarton, C., & Specia, L. (2019, Novem-
ber). EASSE: Easier automatic sentence simplification evaluation.
In Proceedings of the 2019 conference on empirical methods in natural
language processing and the 9th international joint conference on natu-
ral language processing (emnlp-ijcnlp): System demonstrations (pp. 49–
54). Hong Kong, China: Association for Computational Linguis-
tics. Retrieved from https://aclanthology.org/D19-3009 doi:
10.18653/v1/D19-3009

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

Bawa, S., Kumar, M., et al. (2021). A comprehensive survey on machine
translation for english, hindi and sanskrit languages. Journal of Ambi-
ent Intelligence and Humanized Computing, 1–34.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., & Bengio, Y. (2014). Learning phrase representations
using rnn encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078.

Covington, M. A., & McFall, J. D. (2010). Cutting the gordian knot:
The moving-average type–token ratio (mattr). Journal of quantitative
linguistics, 17(2), 94–100.

Dixon, R. M. (2014). Making new words: Morphological derivation in english.
Oxford University Press, USA.

Gage, P. (1994). A new algorithm for data compression. C Users Journal,
12(2), 23–38.

Harispe, S., Ranwez, S., Janaqi, S., & Montmain, J. (2015). Semantic
similarity from natural language and ontology analysis. Synthesis
Lectures on Human Language Technologies, 8(1), 1–254.

Hebb, N. (2012). Flowchart symbols defined. BreezeTree Software.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8), 1735–1780.
Junczys-Dowmunt, M., Dwojak, T., & Hoang, H. (2016). Is neural machine

translation ready for deployment? a case study on 30 translation
directions. arXiv preprint arXiv:1610.01108.

Klein, G., Kim, Y., Deng, Y., Senellart, J., & Rush, A. M. (2017). Opennmt:
Open-source toolkit for neural machine translation. In Proc. acl.
Retrieved from https://doi.org/10.18653/v1/P17-4012 doi: 10

.18653/v1/P17-4012

Konrad, R., Hanke, T., Langer, G., Blanck, D., Bleicken, J., Hofmann, I.,
. . . Schulder, M. (2020). Meine dgs – annotiert. öffentliches korpus der
deutschen gebärdensprache, 3. release / my dgs – annotated. public corpus

https://aclanthology.org/D19-3009
https://doi.org/10.18653/v1/P17-4012

REFERENCES 29

of german sign language, 3rd release [languageresource]. Universität
Hamburg. Retrieved from https://doi.org/10.25592/dgs.corpus

-3.0 doi: 10.25592/dgs.corpus-3.0
Lankford, S., Alfi, H., & Way, A. (2021). Transformers for low-resource

languages: Is féidir linn! In Proceedings of the 18th biennial machine
translation summit (volume 1: Research track) (pp. 48–60).

Malvern, D., Richards, B., Chipere, N., & Durán, P. (2004). Lexical diversity
and language development. Springer.

Mandya, A. A., Nomoto, T., & Siddharthan, A. (2014). Lexico-syntactic text
simplification and compression with typed dependencies. In 25th
international conference on computational linguistics.

Mehdi, S. A., & Khan, Y. N. (2002). Sign language recognition using
sensor gloves. In Proceedings of the 9th international conference on neural
information processing, 2002. iconip’02. (Vol. 5, pp. 2204–2206).

Mehta, S., Azarnoush, B., Chen, B., Saluja, A., Misra, V., Bihani, B., &
Kumar, R. (2020). Simplify-then-translate: Automatic preprocessing
for black-box translation. In Proceedings of the aaai conference on artificial
intelligence (Vol. 34, pp. 8488–8495).

Moryossef, A., Yin, K., Neubig, G., & Goldberg, Y. (2021). Data aug-
mentation for sign language gloss translation. CoRR, abs/2105.07476.
Retrieved from https://arxiv.org/abs/2105.07476

Naresh, P., Visalakshi, R., & Satyanarayana, B. (2020). A study on sign
language recognition-a literature survey. ICDSMLA 2019, 745–752.

Nguyen, T. Q., & Chiang, D. (2017). Improving lexical choice in neural
machine translation. arXiv preprint arXiv:1710.01329.

Nisioi, S., Štajner, S., Ponzetto, S. P., & Dinu, L. P. (2017). Exploring neural
text simplification models. In Proceedings of the 55th annual meeting of
the association for computational linguistics (volume 2: Short papers) (pp.
85–91).

O’Dell, F., Read, J., McCarthy, M., et al. (2000). Assessing vocabulary.
Cambridge university press.

Östling, R., Scherrer, Y., Tiedemann, J., Tang, G., & Nieminen, T. (2017).
The helsinki neural machine translation system. arXiv preprint
arXiv:1708.05942.

Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). Bleu: a method
for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the association for computational linguistics (pp.
311–318).

Pfau, R., & Quer, J. (2008). On the syntax of negation and modals in catalan
sign language and german sign language. In Visible variation (pp.
129–162). De Gruyter Mouton.

Prechelt, L. (1998). Early stopping-but when? In Neural networks: Tricks of

https://doi.org/10.25592/dgs.corpus-3.0
https://doi.org/10.25592/dgs.corpus-3.0
https://arxiv.org/abs/2105.07476

REFERENCES 30

the trade (pp. 55–69). Springer.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning repre-

sentations by back-propagating errors. nature, 323(6088), 533–536.
Sandler, W., & Lillo-Martin, D. (2006). Sign language and linguistic universals.

Cambridge University Press.
Sennrich, R., Haddow, B., & Birch, A. (2015). Neural machine translation

of rare words with subword units. arXiv preprint arXiv:1508.07909.
Sennrich, R., & Zhang, B. (2019). Revisiting low-resource neural machine

translation: A case study. arXiv preprint arXiv:1905.11901.
Shterionov, D., Superbo, R., Nagle, P., Casanellas, L., O’dowd, T., & Way,

A. (2018). Human versus automatic quality evaluation of nmt and
pbsmt. Machine Translation, 32(3), 217–235.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., & Makhoul, J. (2006, August
8-12). A study of translation edit rate with targeted human annotation.
In Proceedings of the 7th conference of the association for machine transla-
tion in the americas: Technical papers (pp. 223–231). Cambridge, Mas-
sachusetts, USA: Association for Machine Translation in the Americas.
Retrieved from https://aclanthology.org/2006.amta-papers.25

Sun, R., Jin, H., & Wan, X. (2021). Document-level text simplification:
Dataset, criteria and baseline. arXiv preprint arXiv:2110.05071.

Uthayakumar, J., Vengattaraman, T., & Dhavachelvan, P. (2018). A survey on
data compression techniques: From the perspective of data quality,
coding schemes, data type and applications. Journal of King Saud
University-Computer and Information Sciences.

Vaerenbergh, K. V., & Tourwé, T. (2021). Distributed data compression
for edge devices. In Ifip international conference on artificial intelligence
applications and innovations (pp. 293–304).

Van den Bercken, L., Sips, R.-J., & Lofi, C. (2019). Evaluating neural text
simplification in the medical domain. In The world wide web conference
(pp. 3286–3292).

Vanmassenhove, E., Shterionov, D., & Way, A. (2019). Lost in translation:
Loss and decay of linguistic richness in machine translation. arXiv
preprint arXiv:1906.12068.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
. . . Polosukhin, I. (2017). Attention is all you need. In Advances in
neural information processing systems (pp. 5998–6008).

Webster, J. J., & Kit, C. (1992). Tokenization as the initial phase in nlp. In
Coling 1992 volume 4: The 14th international conference on computational
linguistics.

Xu, P., Yang, W., Zi, W., Tang, K., Huang, C., Cheung, J. C. K., & Cao, Y.
(2020). Optimizing deeper transformers on small datasets: An applica-
tion on text-to-sql semantic parsing. arXiv preprint arXiv:2012.15355.

https://aclanthology.org/2006.amta-papers.25

REFERENCES 31

Zhang, X., & Duh, K. (2021, August). Approaching sign language gloss
translation as a low-resource machine translation task. In Proceedings
of the 1st international workshop on automatic translation for signed and
spoken languages (at4ssl) (pp. 60–70). Virtual: Association for Machine
Translation in the Americas. Retrieved from https://aclanthology

.org/2021.mtsummit-at4ssl.7

https://aclanthology.org/2021.mtsummit-at4ssl.7
https://aclanthology.org/2021.mtsummit-at4ssl.7

REFERENCES 32

appendix

Figure 3: Baseline

Figure 4: Proposed Pipeline

REFERENCES 33

Figure 5: Proposed Pipeline Including LDT

REFERENCES 34

Figure 6

Figure 7

REFERENCES 35

Figure 8: Flowchart Baseline model

Figure 9: Flowchart Pipeline model
Target text* refers to the target set from the baseline model

	Introduction
	Related Work
	Text simplification and compression
	Machine Translation Systems
	Gloss-to-Text Translation
	Hyper Parameters
	Lexical Diversity

	Methods and Methodology
	Data
	Annotation and Glossing Conventions
	Pre-processing

	Compression

	Experimental Setup
	Implementation of LSTM
	Implementation of Transformer
	Implementation of TTR and MATTR
	Evaluation metrics
	Compression ratio
	Bilingual evaluation understudy (BLEU) and Translation Edit Rate (TER)

	Results
	Performance
	TTR and MATTR

	Discussion
	Interpretations
	Limitations

	Conclusion

