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Abstract

Predicting and understanding patients’ subgroups is critical in
helping clinicians, and device providers make early decisions about
the patients’ treatment plans for CPAP patients. Currently, researchers
have been using clustering techniques to explore CPAP patients ad-
herence subgroups. However, it is still unclear if we can use the
clustering techniques to effectively identify patients’ AHI and mask
leakage subgroups. This thesis uses a self-supervised learning ap-
proach by first identifying both AHI and LargeLeakPct subgroups
with unsupervised learning techniques. Then, supervised learning
techniques are utilized to inspect the performance when predicting
the patient subgroups. In the experiments, we implement six uni-
variate clustering methods to extract the cluster memberships. We
also implement multinomial Logistic Regression and Random Forest
to predict their cluster memberships at an early stage. Results show
that cluster memberships obtained from GCKM with the optimal
number of clusters with Random Forest outperform other pipelines
for both AHI and LargeLeakPct. The result also indicated that it is
possible to identify underlying patterns of CPAP patients subgroups,
furthermore, predict therapy subgroups as early as four weeks with
high performance.

Keywords: longitudinal clustering, univariate clustering, obstructive sleep
apnea, self-supervised learning
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this data. The code used in this thesis is not publicly available due to the
confidentiality agreement with the external partner.

2 introduction

This thesis aims to use clustering and self-supervised learning to explore
patterns and identify patient subgroups in the device data obtained from
Obstructive Sleep Apnea (OSA) patients on Continuous Positive Airway
Pressure (CPAP) therapy. OSA has a 9% to 38% prevalence in the adult
population and is a serious chronic disorder related to pauses in breathing
while sleeping (Senaratna et al., 2017). Apnea-Hypopnea Index (AHI)
is an indicator of the severity of the OSA disorder, which means how
many apneas (temporary absence of breathing) occurred per hour over
the sleep period. OSA is considered severe if the AHI is more than 30

during sleep (Quan, Gillin, Littner, & Shepard, 1999). Moreover, OSA can
lead to side effects, including a higher risk of cardiovascular diseases and
decreased overall quality of life (Kendzerska et al., 2014).

CPAP is an effective therapy for the OSA population (Kribbs et al., 2012),
patients on this therapy wear a mask and hose that connects to a device for
CPAP therapy. The device supplies compressed air to the patients while
they are asleep, which prevents the occurrence of obstructive apneas, and
can help to decrease the OSA symptoms. It is strongly suggested that the
patients use the device daily in order to ensure effective treatment (Weaver
et al., 1997), which can increase the patients’ overall quality of life. Kribbs
et al. (1993) indicated that the benefits of the CPAP treatment could drop
significantly even with one non-attempt day. Therapy effectiveness may
also be influenced by other factors. A common cause is poor mask fit,
causing abnormal leakage for various reasons. It may influence the effec-
tiveness of the CPAP therapy for the OSA population (Sopkova, Dorkova,
& Tkacova, 2009).

CPAP therapy devices measure detailed daily data with many variables,
including usage time, mask leakage (which we will refer to as LargeLeakPct
below), AHI, and the air pressure supplied by the device. Despite such rich
data, it remains a challenge to understand different OSA patient subgroups
and their underlying patterns. Such information is critical for the clinicians
and device providers to assist the patients in adhering to the CPAP therapy.
With such information, we may also enable clinicians, device providers,
and future researchers to understand how early we can predict the therapy
patterns for this population.

Previously, Den Teuling, Pauws, and van den Heuvel (2020) has used
K-means longitudinal (KmL) and two-step clustering (i.e. GCKM and
LMKM) methods to cluster the longitudinal OSA patient data using ad-
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herence patterns. However, previous research did not inspect the AHI
and LargeLeakPct variables. Also, it is unclear whether the recently devel-
oped models, such as High Dimensional Data Clustering (HDDC) (Bergé,
Bouveyron, & Girard, 2012), and Deep Gaussian Mixture Modeling (Deep-
gmm) (Viroli & McLachlan, 2019), together with previously used models,
can effectively identify patient subgroups using AHI and LargeLeakPct.
Moreover, recent advance of machine learning, especially self-supervised
learning techniques, provides a great opportunity to cluster OSA patient
subgroups and examine if the clusters can be predicted accurately. With
the self-supervised learning approach, it could be beneficial for clinicians
and new patients by forecasting their therapy subgroups.

Therefore, this thesis aims to answer the following research question
(RQ) that contains two sub-questions (SQ1 and SQ2):

RQ Using a self-supervised approach, which supervised machine learning model
can best predict cluster memberships derived from medical device data of
OSA patients on CPAP therapy, using unsupervised longitudinal cluster-
ing?

SQ1 Can advanced clustering algorithms, like Deepgmm or HDDC, or statistical
models, such as GCKM or LMKM outperform traditional ones, like KmL,
for identifying patterns in different OSA patient groups, based on the Dunn
index?

SQ2 Which classification algorithm, such as Random Forest or Logistic Re-
gression, can be used to predict OSA patients’ subgroups defined by the
clustering algorithm with the highest accuracy?

Results from the experiments show that the GCKM outperforms other
clustering techniques for the AHI univariate clustering. Compared to other
clustering techniques, the cluster memberships obtained from GCKM are
the most compact (within cluster) and well-separated (among clusters).
For the Large Leakage Percentage (LargeLeakPct) univariate clustering,
the results indicated that LMKM outperforms others. When investigating
the cluster differences, the result shows that the mean values of all the
variables are significantly different across clusters that are created using
the best model for both univariate clustering.

Regarding the task of classifying AHI and LargeLeakPct cluster mem-
berships, we compared and evaluated the models based on accuracy and
macro F1 score. We also analyzed the best two models for predicting AHI
and LargeLeakPct cluster memberships with confusion matrix, accuracy,
precision, recall, F1 score, and prevalence (i.e., percentage of data in the
cluster). The results show that Random Forest with cluster memberships
obtained from GCKM outperforms other combinations for both AHI and
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LargeLeakPct. Moreover, we could obtain high accuracy macro F1, and
good precision and recall at the early stage at the fourth week out of 13

weeks. This means that, for new patients during their CPAP treatment,
it is possible to early predict their belonging subgroups with underlying
patterns, which can help the clinicians and device providers intervene
early if more assistance is needed. With the above information, we can
conclude that using the self-supervised learning pipeline, we can predict
CPAP patient subgroups (i.e., cluster memberships) with high performance.
Thus, it is possible to use this pipeline to aid the patients, clinicians, and
device providers.

3 related work

This section explains each methods separately. The self-supervised learning
approach remains under-explored in the CPAP patient population. In
addition, there is a lack of research work related to univariate clustering
for the CPAP patients population other than adherence patterns. Hence,
this section focuses on the clustering methods and their application in the
medical domain, including the evaluation metrics. The current research
gaps and the research questions are also discussed.

3.1 CPAP Therapy

Self-supervised learning approach for CPAP patients is still an under-
explored topic in this population. Previous research related to this popula-
tion focused on how to cluster patients on adherence patterns accurately,
and multivariate clustering to investigate the patterns among different
subgroups.

Babbin, Velicer, Aloia, and Kushida (2015) identified four OSA adher-
ence subgroups using dynamic clustering analysis with temporal features
from longitudinal data. The four clusters including Great Users (n=22),
Good Users (n=42), Low Users (n=29), and Slow Decliners (n=33). The tem-
poral features included parameters with mean, level, and slope. The paper
reported that there were significantly different patterns among different
subgroups and similar patterns with-in groups, based on chi-square and
MANOVAs analysis. The paper concluded that it could be meaningful for
future studies to understand both individual and subgroup patterns for
the patients.

Kim et al. (2021) used the regular k-means algorithm to categorize and
identify the phenotype of OSA patients by integrating craniofacial risks
with BMI, apnea severity, symptoms, and comorbidity. This research iden-
tified three phenotypic subgroups, including noncraniofacial phenotype
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(39% patients), craniofacial skeletal phenotype (33% patients), and complex
phenotype (29% patients). The three phenotypes differed mainly from BMI,
OSA severity, and skeletal discrepancy, which could provide basic patterns
for clinicians’ decision-making process, such as alternative intervention
or determining the appropriate goal for different clusters’ patients. They
also performed the multivariable linear regression analysis within each
cluster, which found that the contributing factors for the OSA severity were
observed to be different between clusters.

Den Teuling, van den Heuvel, Aloia, and Pauws (2021) utilized a "het-
eroskedastic hurdle growth mixture modeling" approach with generalized
additive modeling to identify the different adherence patterns for OSA
patients on CPAP therapy. As a result, nine group trajectories have been
identified, and the findings of the different OSA patient subgroups pat-
terns are worth exploring, including: first; the residual AHI is higher in
non-adherence groups; second, the early drop-out group has the highest
mask leakage variability; in contrast, the more adherent group has the
lowest mask leakage variability; third, the lowest possible device pressure
of 5 cmH2O was found to be of a higher rate in drop-out groups.

While these work provides insights about how to model CPAP therapy
data, they are either based on simulated samples or small datasets. It
remains an open challenges about whether these approaches work on real
and large datasets, which is the case of this research. Moreover, this paper
has a different set of target variables for patients, which have not been
explored in previous works.

3.2 Self-Supervised Learning

Self-supervised learning is a machine learning pipeline which is commonly
used on unlabelled data. In recent years, self-supervised learning has been
recognized as an effective method for various fields, including computer
vision and speech recognition (Zhai, Oliver, Kolesnikov, & Beyer, 2019).
This pipeline employs the unlabelled data to obtain pseudo-labels from
unsupervised learning (i.e., clustering).

However, medical data can be challenging to label manually because it
typically needs domain experts in order to perform it accurately. There-
fore, unsupervised learning can play an essential role in clustering the
patients into subgroups, making pseudo-label, and enabling the following
task. In this way, supervised learning (i.e., regression or classification) or
unsupervised learning tasks can carry out the desired outcome (Doersch
& Zisserman, 2017). The self-supervised learning is compelling due to its
ability to learn insight from unlabelled data, which is common in medical
fields (Zheng, Wang, Wang, & Liu, 2018).
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To the best of our knowledge, this research is the first that inspects the
potential of adopting the self-supervised learning pipeline to a large CPAP
therapy dataset, specifically on the LargeLeakPct and AHI variables.

3.3 Longitudinal Clustering

Nowadays, there is a growing capability to collect large datasets, includ-
ing many repeated measurements per subject (e.g., patients) over time,
which is called intensive longitudinal data (ILD) (Walls & Schafer, 2006).
Longitudinal clustering enables researchers to explore subgroup patterns’
changing over time and the variability within and between subgroups. For
instance, Den Teuling et al. (2020) explored five clustering techniques for
longitudinal data on simulated datasets by comparing the actual group
membership and the clustered group membership based on mean Nor-
malized Split-Join (NSJ) scores, which is a metric to compare classification
agreement. The paper indicated that the Growth Mixture Modeling (GMM)
and two-step clustering (GCKM) have significantly better performance.
The authors suggested GCKM over GMM when there is a limitation of com-
putation time due to similar results compared to GMM. The researchers in
another paper recommended K-means longitudinal (KmL) for its flexibility
in describing the subgroups’ trajectories, computational efficiency, and rel-
atively favorable computational scaling (Teuling, Pauws, & Heuvel, 2021).
Moreover, Genolini et al. (2013) introduced the KmL3D package, enabling
the user to utilize multiple variables to cluster the joint trajectories, with
the co-evolution taking account. With a real dataset, the researchers found
that classic KmL and Kml3D could capture different clusters, with only
49.45% results matching each other (Jaccard similarity = 0.25), and tend to
suggest a lower number of clusters than KmL.

Additionally, it can be challenging for longitudinal clustering when
dealing with high dimensionality problems due to the nature of temporal
features. To address this challenge, Bouveyron, Girard, and Schmid (2007)
proposed the High Dimensional Data Clustering (HDDC) method based
on the Gaussian Mixture Model (GMM) using subspace clustering and
parsimonious modeling with Expectation-Maximization (EM) algorithm. In
comparing different GMM model-based clustering techniques and HDDC,
they found that HDDC outperforms Sphe-GMM and Vs-GMM models
with a cluster recognition rate of 0.95. Bergé, Bouveyron, and Girard (2012)
compared HDDC model with GMM and GMM with a variable selection
approach model (clustvarsel) proposed by Scrucca and Raftery (2018).
Results show that the HDDC outperformed the other methods, with a
Correct Classification Rate (CCR) = 0.945. GMM obtained CCR = 0.575 and
clustvarsel with CCR = 0.925.
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In recent years, deep learning models received extensive attention for
their capability in supervised learning (LeCun, Bengio, & Hinton, 2015).
There are comparatively not many clustering techniques implemented deep
learning concepts. An example is seen in the work of Viroli and McLachlan
(2019), who presented the Deep Gaussian Mixture Model. The researchers
implemented the Deepgmm model on various simulation datasets and
compared the Deepgmm model with other clustering techniques, such as
GMM, Skewed Normal Mixture Model (SNMM), Skewed-t Mixture Model
(STMM), K-means, Partition around Medoids (PAM), and Ward’s method
(Hclust), based on Adjusted Rand Index (ARI) and misclassification rate.
Results showed that Deepgmm outperformed all the simulation datasets
with as high as 0.997 ARI and at the lowest as 0.002 misclassification rate.
Deepgmm also outperformed other models even on the most challenging
dataset related to silhouettes of vehicles.

Based on the insights from these previous works in longitudinal cluster-
ing, this thesis adopts KmL, KmL3D, two-steps clustering (i.e., GCKM and
LMKM), HDDC, and Deepgmm techniques to cluster CPAP therapy data
(with LargeLeakPct and AHI variables) and compare their performance.

3.4 Optimal Number of Clusters

Most clustering methods require specifying the number of clusters in
advance. It is up to the researcher to determine the most suitable number of
clusters. Unlike supervised learning tasks, it is difficult to know the optimal
number of clusters due to the unknown underlying structure in real-world
data. For Mixture Models, Bayesian Information Criterion (BIC) is a well-
known technique to determine the optimal number of clusters (Chen
& Gopalakrishnan, 1998), where a lower BIC value is preferred. The
BIC value can decrease in a real dataset when there are more groups.
However, more groups (i.e., clusters) might not always give the researchers
more information. Therefore, a commonly used method, called the elbow
method, can assist the researchers in determining the best number of
clusters (Shi et al., 2021). The elbow method enables the researcher to
examine the relative improvement of the BIC for each number of clusters.
Usually, the BIC value will decrease when the number of groups increases.
However, the visual plot of the BIC value often shows a turning point,
indicating that the improvement is declining. The turning point is where
the optimal cluster number lies based on this method (Hardy, 1994).

To assess the quality of clustering results, Dunn Index (Dunn, 1974)
is one of the most common evaluation metrics. For example, Lynch and
DeGruttola (2022) used a univariate ensemble clustering method to mea-
sure disease progression for HIV biomarkers. The researchers compared
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the Viral Load (VL), and CD4 cell counts clusters based on Dunn Index
to see the group validity. The results showed that VL with three clusters
scored 0.032 and CD4 with three clusters scored 0.024. Hence, the authors
concluded that the two biomarkers performed similar result. Another
work by Sobisek, Stachova, and Fojtik (2018) proposed a feature-based
novel clustering method (called CluMP) and compared the algorithm with
mixAK and KmL on micro-panel simulation datasets based on Dunn Index
for three clusters. With experiments on the univariate clustering approach
for unbalanced high noise dataset, unbalanced low noise dataset, balanced
high noise data, and balanced low noise data, the Dunn index performance
differed significantly. For instance, when using unbalanced high noise
data, KmL achieved the highest Dunn Index 0.0863, and mixAK has the
lowest Dunn Index 0.0404. On the other hand, with balanced low noise
data, KmL was able to perform significantly better with Dunn Index 0.6608,
and CluMP with Dunn Index 0.7064. The authors concluded that CluMP
outperformed mixAK and KmL with balanced low noise data in the uni-
variate clustering setting. The univariate clustering research observed
comparatively low Dunn index in unbalanced data (for both low noise
and high noise cases) and high-noise balanced data across all clustering
methods.

Based on these previous works, this thesis applies BIC when choos-
ing the optimal number of clusters within each clustering model. Then,
Dunn Index is used when comparing different clustering models. Also,
it is important to note that our CPAP data is unbalanced. Most patients
throughout the therapy has a stable trend in AHI, and the LargeLeakPct
remains stable with low value. Only a small number of patients encounter
difficulties in the therapy. Moreover, our data contains high noise since
there are many uncertainties in the therapy, such as the condition of the
therapy machine, behaviors about how patients use the machine, indi-
vidual differences among patients, etc. Thus, based on the insights from
previous work, it is likely that Dunn Index would be low in our dataset.

3.5 Connection of Research Questions to the Literature

The literature review above shows that the self-supervised learning ap-
proach for CPAP patients’ underlying therapy patterns is currently under-
explored. Most of the research related to the CPAP patients was based on
multivariate clustering or univariate clustering with usage time (adherence
patterns).

To answer the research questions, this thesis uses and compares six
clustering methods for SQ1. Each method’s optimal cluster numbers are
compared and evaluated based on Dunn Index. The KmL and KmL3D
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clustering methods are selected based on their wide usage and easy imple-
mentation with good scaling capability. GCKM and LMKM are selected
based on the promising result of modeling the slowing change over time
on the CPAP population. For the advanced GMM-based model, HDDC is
selected due to its ability to capture clusters with high dimensional tempo-
ral features. Finally, Deepgmm is chosen because of its high performance
on both simple and complex datasets.

With a self-supervised learning approach, each clustering method gen-
erates a set of labels based on their optimal cluster numbers. To answer
SQ2, Logistic Regression and Random Forest are evaluated and compared
with a different subset of temporal features from two weeks to 12 weeks
as predictors, based on accuracy. These two classification algorithms are
selected since they are widely used and easy to implement. The macro
F1-score are computed to ensure the prediction quality for the unbalanced
data observed. Since early prediction for the patients’ subgroups can be
beneficial for the patients, this thesis focuses on the possibility of early
prediction with high accuracy.

4 method

We address the research questions using a self-supervised learning pipeline.
Longitudinal clustering methods are used to establish pseudo-labels for the
follow-up prediction task. In other words, since the longitudinal dataset
is unlabelled, we implement the unsupervised learning algorithms and
make the generated cluster memberships the dependent variables for the
supervised learning task. We use BIC with the visual elbow method to
determine the optimal number of clusters for each variable. Moreover,
univariate clustering results are evaluated and compared based on Dunn
Index. The supervised learning step is implemented and compared based
on accuracy and macro F1-score for each univariate clustering method for
AHI and LargeLeakPct. First, we implement univariate clustering methods
to obtain labels. Second, we use all the relevant device parameters as
predictors to predict the clustering memberships. The methods in the
pipeline are described below. Figure 1 demonstrated the detailed pipeline
of this thesis.

4.1 Unsupervised Learning

4.1.1 K-means clustering for Longitudinal Data (KmL)

KmL is a widely used clustering method for longitudinal data based on
traditional k-means (MacQueen et al., 1967). The user first identifies a
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Figure 1: The flow chart of the self-supervised learning pipeline
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variable k, and the algorithm would find similar k clusters. K-means
use the mean as a metric to determine the cluster, where the Euclidean
distance is calculated in a given cluster with each data point. In this
way, the data point will be assigned to a cluster based on the minimum
Euclidean distance from the mean point. After one round ended without
any datapoint left, a new mean is re-calculated and will be iterated several
times until the "mean" stop changing. The criterion is to identify the
subgroups with minimal within-cluster variance and maximum between-
cluster variance. KmL utilizes the same approach; however, it uses vectors
as the input and, therefore, can represent the trajectories for each cluster.
In this thesis, both classic KmL and the KmL3D will be evaluated because
they could provide different clustering results, which we described in the
literature review. KmL will be computed based on raw features; on the
other hand, we will implement KmL3D with temporal features.

4.1.2 Two-Steps Clustering (GCKM, LMKM)

This method models the trajectories first using a Growth Curve Model
(GCM). In the second step, the k-means algorithm (MacQueen et al., 1967)
is used to cluster the subject parameter estimates (i.e., the random effects).
In other word, the Growth Curve Model is first trained with a mixed model
and therefore, represents the longitudinal datasets as fixed effects. It also
represents each subjects’ deviation from the fixed effects, which referred
to as random effects. Then, the k-means algorithm will be performed.
The model was referred to as GCKM by Den Teuling et al. (2020) and
was described previously by Twisk and Hoekstra (2012). With the GCKM
approach, the longitudinal data characteristics will not be ignored. This
thesis also utilizes a similar approach with linear regression instead of a
growth curve model to model the trajectories. This method was referred to
as LMKM in the latrend package by Den Teuling (2022).

4.1.3 High Dimensional Data Clustering (HDDC)

High Dimensional Data Clustering is a clustering model based on Gaussian
Mixture Model and Bayesian techniques for high dimensional data. The
idea of this clustering model is based on the assumption that the data
can live in a lower-dimensional subspace and still be representative of
the original space (Bergé et al., 2012). The method utilizes the subspace
clustering algorithms based on Bouveyron et al. (2007), and the expectation-
maximization (EM) algorithm is used for fitting the model parameters by
maximizing the likelihood iteratively.
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4.1.4 Deep Gaussian Mixture Modeling (Deepgmm)

Deep Gaussian Mixture Modeling (Deepgmm) is a model-based traditional
Gaussian Mixture Model with multiple layers (Viroli & McLachlan, 2019).
Multiple layers of learning can effectively handle the complex relationships
between inputs. Deepgmm is therefore defined as a model with multiple
layers with latent variables based on the deep neural network perspectives.
Hence, the latent variables follow the mixture of Gaussian distributions.
Due to the nature of the high dimensionality, dimensionality reduction is
used at each layer to prevent an excessive number of parameters.

4.2 Supervised Learning

In this step, two supervised learning algorithms will be evaluated and
compared to determine how early one can predict the cluster memberships
created based on the univariate clustering in the previous step. This will be
done using multinomial Logistic Regression and Random Forest, chosen
due to their robustness and widely used in the classification research area.

4.2.1 Multinomial Logistic Regression

The traditional Logistic Regression was commonly used for the binary
classification task. However, using the one versus all approach with multi-
nomial Logistic Regression enables multi-class classification. The multinom
function within the "nnet" package in R was utilized (Venables & Ripley,
2002). The "multinom" function in the nnet package fits multinomial Logis-
tic Regression using the feed-forward neural networks, which enables the
multinomial Logistic Regression.

4.3 Evaluation Metrics

4.3.1 Dunn Index and Silhouette Score

Dunn Index (DI) is a commonly used metric for clustering analysis. Dunn
Index denotes the ratio of the minimum of inter-cluster distances and the
maximum of intra-cluster distances. Therefore, the better clustering results,
the higher the Dunn Index value. Below is the Dunn Index formula:

DI =
min(inter_cluster_distance)
max(intra_cluster_distance)

(1)

In this thesis, we utilize Euclidean distance to calculate the inter and
intra-cluster distance of Dunn Index.

Previous work showed that Dunn Index might be low with our dataset
(see section 3.4). Thus, we also compute the Silhouette score to complement
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Dunn Index and make our research more comprehensive. Silhouette score
is a common evaluation metric for unsupervised learning. The score ranges
from −1 to 1, where a value closer to 1 means that each cluster is more
cohesive, and all clusters are better separated. In contrast, the clusters are
not optimal if the Silhouette score is closer to −1 (Rousseeuw, 1987).

4.3.2 Accuracy and Macro F1-scores

The evaluation metric for the supervised learning task will be accuracy and
F1 score. Due to the nature of multi-class classification and the imbalanced
cluster memberships observed, we will use the macro F1-score to evaluate
the result of the classification task. The macro F1-score computes each
class’ precision and recall and takes the average of their F1-score. In this
way, smaller classes are considered equally important as the majority class.

5 experimental setup

5.1 Dataset Description

The data of this thesis were obtained from OSA patients on CPAP therapy
in the United States who are using the "Dream Mapper" application by
Philips Respironics. The longitudinal dataset consisted of 54,310 CPAP
patients’ daily usage data over approximately two years, making it a total
of 23,863,809 observations. The raw dataset has 45 variables. The most
relevant variables include de-identified patient IDs, day of therapy, daily
usage hours, residual AHI (which we will refer to as AHI below), average
pressure, and LargeLeakPct. Table 1 shows the description of the relevant
variables that are used in this thesis.

In this thesis, both AHI and LargeLeakPct will be used as the univariate
clustering target, and in the supervised learning step, all the relevant
variables will be transformed into temporal features as predictors. In
addition, there are excessive missing values (11.6%) since not all patients
used the therapy consistently every day. For example, some patients are
more adhering to the therapy with few missing days, but some other
patients might only attempt to take the therapy one or two days a week.
Due to computational complexity, this thesis analyzes a random subset
of 5,000 patients and their first 90 days of device data. Moreover, the
dependent variables are selected according to domain knowledge, insights
from exploratory data analysis, and literature reviews.
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Table 1: CPAP machine variables descriptions

Variable Names Description
Patient De-identified patient ID

DayOfTherapy
The number of the day the patient
has been on therapy

AHI Number of apnea per hour
LargeLeakPct Proportion of connected time in large leak (%)
UsageHours The amount of time the patient was on therapy
LeakTotal Average total leak (L/min)

PressureCpap
The average of the session-averaged CPAP
pressure (cmH2O) with range [4, 20]

5.2 Data Cleaning and Pre-processing

During pre-processing, missing values of the usage time (i.e., the Usage-
Hours variable) are replaced with zero, meaning there was no usage on
that day. For device data other than the usage time, missing values due
to no therapy attempts are replaced by the most recent non-missing value
(e.g., not "NA") prior to the missing value using the Last Observation
Carried Forward (LOCF) approach.

Outliers of the AHI variable can influence the quality of the analysis
significantly. For example, low AHI values in short usage days are not
reliable, and for the research purpose, any AHI value lower than 2.5 are
not considered useful information. The patient is well-treated in both cases
above. In addition, extremely high AHI values are also found unreasonable
(i.e., AHI with value 40 means that the patients pause their breath 40 times
in an hour). Hence, any value higher than 40 is replaced with 40, and any
value lower than 2.5 is imputed as 2.5. These bounds are determined based
on domain knowledge.

For clustering techniques such as KmL, LMKM, and GCKM, the AHI
variable is log-transformed, which can ensure the variable approximately
conform to normality. For cross-sectional clustering techniques such as
KmL3D, HDDC, and Deepgmm, the input is transformed into temporal
features as mean, slope, and standard deviation for each week. Also, the
temporal features are transformed into Z-scores, which can make each
feature equally important by scaling them.

For the classification step, and for each cluster memberships (i.e. target
variable) generated per model, the temporal features of the slope, mean,
and standard deviation for each week of relevant variables such as CPAP
pressure, Total Leak, AHI, LargeLeakPct, and Usage Hours are selected
as predictors. The temporal features are all computed as Z-scores across
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patients. In order to explore how early we can predict the cluster member-
ship of the patients, we subset the features as their initial 2, 4, 6, 8, 10, and
12 weeks as predictors.

AHI and LargeLeakPct are particularly selected to perform univariate
longitudinal clustering to identify the potential underlying patterns and
subgroups. During exploratory data analysis, the AHI and LargeLeakPct
variable are found to be positively correlated for some patients individually.
But at the population level, the correlation is small (Pearson’s r = 0.12), as
discuss later in section 6.1. Moreover, the AHI and LargeLeakPct could
significantly influence CPAP patients’ quality of life. For example, AHI can
indicate the therapy effectiveness, and LargeLeakPct is related to therapy
comfort and the amount of time with effective treatment.

5.3 Experimental Procedure

5.3.1 Unsupervised Learning

AHI and LargeLeakPct variable are selected to perform the univariate
clustering. The procedure of both univariate clustering is as follows.
For the model that requires raw input data, such as KmL, LMKM and
GCKM, the clusters are created first with a different number of clusters
(i.e., k = 2, 3, ..., 8). Then, BIC values are compared and the most suitable
number of clusters is determined using the visual elbow method.

For the kml3D model, the features are transformed to cl3d to perform
with the kml3D function. The nbDrawing parameter is tuned using 5, 10,
15, and 20. The final setting is 10 since performance is not very different
when increasing the nbDrawing number after 10.

Regarding the HDDC clustering method, different sets of hyperparame-
ters are performed to explore the optimal cluster numbers. We tuned three
hyperparameters in the model. The first one is the number of the cluster
(k = 1, 3, ..., 8). Secondly, we examine the applied algorithm, which has
three possibilities: Expectation-Maximisation ("EM"), Classification E-M
("CEM"), and Stochastic E-M ("SEM"). Thirdly, we investigate the initializa-
tion of model parameters, which has three choices: "k-means", "random",
and "param". The final setup is to use "EM" as algorithm, "k-means" as
initialization, and "AkjBkQkDk" as model.

For Deepgmm, a grid search on different hyperparameters is performed.
Deepgmm has the option to adjust the hidden layers from 1 to 3. In
this research, the number of hidden layers is set to one. With all the
combinations of the other hyperparameters, BIC values are calculated,
and the optimal number of clusters is selected. The final setting of the
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Deepgmm model is: init="kmeans", r=5, iteration=50, eps=0.001 and
init-est="factanal".

5.3.2 Supervised Learning

The cluster memberships generated in the unsupervised learning step
for each combination of clustering models and variables are used as the
dependent variable for supervised learning. The temporal features of
relevant variables of their mean, standard deviation, and slope described
previously are selected as independent variables. The dataset is split (using
R language’s createDataPartition function) into 80% of the training set and
20% testing set by patients. Then, 5-fold cross-validation is computed for
Logistic Regression and Random Forest classifier, providing an unbiased
estimation of the true error, which can be used when tuning the model to
prevent overfitting. Logistic Regression and Random Forest are applied to
explore how early we can predict the cluster memberships with high accu-
racy and macro F1-score. To achieve this goal, the independent variables
are subset to their first 2, 4, 6, 8, 10, and 12 weeks as predictors for both
classification models.

5.4 Programming Language and Packages

This thesis uses the R language (version 4.0.5) for experiments. For uni-
variate clustering, the implementation and evaluation of KmL (Genolini,
Alacoque, Sentenac, & Arnaud, 2015a), LMKM, and GCKM applies the
latrend package with version 1.2.3 (Den Teuling, 2022). HDDC clustering
uses the HDclassif package with version 2.2.0 (Bergé et al., 2012). Deep-
gmm clustering uses the Deepgmm package with version 0.1.62 (Viroli
& McLachlan, 2020). The kml3d package with version 2.4.2 is used for
kml3D clustering (Genolini, Alacoque, Sentenac, & Arnaud, 2015b). For
evaluating HDDC, Deepgmm, and kml3D clustering, the clValid package
with version 0.7 is used (Brock, Pihur, Datta, & Datta, 2008). For supervised
learning, the caret package with version 6.0.88 is used for Random Forest
and evaluation (Kuhn, 2021). The nnet package with version 7.3.16 is
utilized for the multiclass Logistic Regression (Venables & Ripley, 2002).

6 results

This section firstly presents the key results of the exploratory data analysis.
Secondly, we present the optimal number of clusters and the results for
each univariate clustering for AHI and LargeLeakPct across different clus-
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tering methods. Finally, a comparison of the different supervised learning
methods results is presented.

6.1 Exploratory Data Analysis

Figure 2: Population level correlation
plot

Figure 3: One example of patient
level correlation plot

Figure 4: AHI density plot for the
first 90 days

Figure 5: LargeLeakPct distribution
excluding zero value (90 days)

Figure 2 shows the population level correlation plot on relevant vari-
ables. It is observed that the usage hours and AHI are slightly and neg-
atively correlated (Pearson’s r = −0.1). On the other hand, AHI and
LargeLeakPct are slightly and positively correlated with each other (Pear-
son’s r = 0.12) on population level. Figure 3 shows one example of the
patient level correlation plot. We found that LargeLeakPct is significantly
correlated with AHI positively (Pearson’s r = 0.38). Also, the Pressure
is positively correlated with LargeLeakPct (Pearson’s r = 0.34) and AHI
(Pearson’s r = 0.45). Figure 4 shows the AHI variable density plot, and
Figure 5 shows the distribution of LargeLeakPct distribution exclude zero
value. It is noted that 57% of the LargeLeakPct values are zero (486,345 out
of 841,197 observation).
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Table 2: Optimal number of clusters (k∗), Dunn Index, and Silhouette score

AHI LargeLeakPct

Model k∗
Dunn
Index

Silhouette k∗
Dunn
Index

Silhouette

KmL 4 0.045 0.22 3 0.063 0.65

KmL3D 3 0.047 0.46 3 0.068 0.63

LMKM 5 0.062 0.16 3 0.071 0.73

GCKM 3 0.066 0.25 3 0.054 0.64

HDDC 3 0.002 -0.04 3 0.00002 -0.25

Deepgmm 3 0.023 0.34 3 0.013 0.55

6.2 Results from Unsupervised Learning

Table 2 shows the optimal cluster numbers based on the lowest BIC values.
The Silhouette score and Dunn Index for each clustering method are
also presented. Take KmL for AHI univariate clustering as an example.
Figure 6 shows that the 8-cluster approach has the lowest BIC value, which
indicates the best model fit. However, in our case, we apply the visual
elbow technique to select 4 as the optimal number of clusters.

Figure 6: KmL Bayesian Information Criterion for AHI
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Table 3: Cluster mean per variable obtained from AHI GCKM clustering

Variable Names
Cluster 1

(N=1405,
28.1%)

Cluster 2

(N=3077,
61.54%)

Cluster 3

(N=518,
10.36%)

F-statistic

AHI 5.05 2.96 10.39 3500***
UsageHours 5.58 5.84 5.33 20.06***
PressureCpap 8.29 8.36 8.71 6.111**
LargeLeakPct 2.93 1.73 5.17 71.93***
LeakTotal 34.88 33.76 39.51 52.91***
*p<.05 **p<.01 ***p<.001

6.2.1 AHI Clustering

Results of AHI clustering show that GCKM with 3 clusters outperforms
other methods with Dunn Index 0.066. Table 3 contains the number
of patients and their percentage per cluster with the GCKM univariate
clustering for AHI. Figure 7 shows the raw trajectories and Figure 8 relative
trajectories for each cluster memberships for GCKM AHI clustering.

Table 3 shows the mean device parameters per cluster memberships
obtained from GCKM. Patients from cluster 2 have the lowest on AHI,
LargeLeakPct, and LeakTotal, with the highest UsageHours. In contrast,
cluster 3 exhibited the highest AHI, PressureCpap, LargeLeakPct, and
LeakTotal, but with the lowest UsageHours. Results in Table 3 also in-
cluded the ANOVA test, which described the variance of means for each
variable between the different clusters with statistically significant differ-
ences. Results show that for the subgroups retrieved from GCKM for AHI
univariate clustering, the supplied pressure significantly differs from each
cluster (p-value < 0.01). At the same time, all other variables, including
AHI, UsageHours, LargeLeakPct, and LeakTotal, are significantly different
across the clusters (p-values < 0.001).

6.2.2 LargeLeakPct Clustering

Results from Table 2 show that LMKM with 3 clusters outperforms other
methods with Dunn Index 0.071 and Silhouette score 0.73 for LargeLeakPct
univariate clustering. Figure 9 shows the raw trajectories for each cluster
memberships for LMKM LargeLeakPct clustering. Also, Figure 10 presents
the relative trajectories.

Table 4 presents the distribution and the device parameters mean per
cluster memberships retrieved from LMKM for LargeLeakPct. ANOVA test
is also included in Table 4, indicating that each variable among different
cluster memberships differs from each other significantly (p-value < 0.01).
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Figure 7: GCKM raw trajectories for AHI (higher value means worse)

Figure 8: GCKM relative trajectories for AHI

Patients from cluster 2 have the lowest AHI, PressureCpap, LargeLeakPct,
and LeakTotal among the clusters, with the highest UsageHours. On
the other hand, patients from cluster 1 and 3 have higher LargeLeakPct,
LeakTotal, and AHI. However, their UsageHours and PressureCpap are
different from each other. Patients from cluster 1 have significantly lower
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Figure 9: LMKM raw trajectories for LargeLeakPct (higher value means worse)

Figure 10: LMKM relative trajectories for LargeLeakPct

UsageHours and lower PressureCpap compare to cluster 3. On the other
hand, the patients from cluster 3 have higher UsageHours comparing to
cluster 1 and higher PressureCpap comparing to cluster 1 and cluster 2.
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Table 4: Cluster mean per variable obtained from LargeLeakPct LMKM clustering

Variable Names
Cluster 1

(N=87,
1.74%)

Cluster 2

(N=4785,
95.7%)

Cluster 3

(N=128,
2.56%)

F-statistic

AHI 6.83 4.20 6.85 84.37***
UsageHours 4.55 5.76 5.23 20.59***
PressureCpap 8.36 8.36 9.07 5.63**
LargeLeakPct 22.18 1.46 24.90 2498***
LeakTotal 54.66 33.64 59.77 510.5***
*p<.05 **p<.01 ***p<.001

Table 5: Accuracy (mean ± standard error) for Logistic Regression (LR) and
Random Forest (RF) using 5-fold cross-validation for AHI with 4 weeks of data as
predictors

KmL KmL3D LMKM GCKM HDDC Deepgmm

LR
0.83

±0.01

0.91

±0.008

0.75

±0.007

0.935

±0.011

0.79

±0.003

0.87

±0.006

RF
0.84

±0.018

0.92

±0.01

0.76

±0.015

0.938

±0.007

0.80

±0.012

0.87

±0.009

6.3 Results from Supervised learning

6.3.1 Classification for AHI

Appendix A (page 38) visualizes the classification results for AHI clusters
memberships from all the clustering methods with Logistic Regression and
Random Forest classifier across different weeks. The results show that the
Random Forest classifier with AHI cluster memberships obtained from
GCKM outperforms other combinations based on accuracy and macro
F1-score. Moreover, the result shows that Random Forest with GCKM AHI
with high performance (accuracy = 93.8% and macro F1-score = 90.9%)
as early as four weeks. The 5-fold cross-validation results are shown in
Table 5 and Table 6. Table 11 shows the accuracy and macro F1-scores on
test set of the two best models (GCKM and KmL3D with Random Forest,
selected by cross-validation). Appendix E (page 46) shows the confusion
matrix from Random Forest for GCKM and KmL3D labels on test set. The
above information shows that the results can be generalized to test set with
Random Forest. Table 8 displays the statistics per cluster for the best two
models, including the prevalence, accuracy, precision, recall and F1.



6 results 27

Table 6: Macro F1-scores for Logistic Regression (LR) and Random Forest (RF)
using 5-fold cross-validation for AHI with 4 weeks of data as predictors

KmL KmL3D LMKM GCKM HDDC Deepgmm
LR 0.73 0.75 0.52 0.906 0.78 0.77

RF 0.77 0.79 0.11 0.909 0.79 0.77

Table 7: Accuracy and macro F1-score for AHI GCKM and KmL3D on test set
with Random Forest with 4 weeks of data

Accuracy Macro F1

GCKM 0.93 0.90

KmL3D 0.92 0.80

Table 8: Statistics per cluster (denoted as Ci, where i is the cluster number) for
the best two models of AHI using 4 weeks of data

Random Forest
with GCKM

Random Forest
with KmL3D

Statistics C1 C2 C3 C1 C2 C3

Prevalence 0.29 0.62 0.09 0.78 0.20 0.02

Accuracy 0.89 0.97 0.81 0.97 0.79 0.54

Precision 0.86 0.96 0.91 0.95 0.80 0.81

Recall 0.89 0.97 0.82 0.97 0.79 0.54

F-1 0.88 0.97 0.86 0.96 0.80 0.65
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Table 9: Accuracy (mean ± standard error) for Logistic Regression (LR) and
Random Forest (RF) using 5-fold cross-validation for LargeLeakPct with 4 weeks
of data as predictors

KmL KmL3D LMKM GCKM HDDC Deepgmm

LR
0.95

±0.006

0.92

±0.005

0.96

±0.004

0.97

±0.005

0.76

±0.008

0.883

±0.015

RF
0.96

±0.002

0.93

±0.008

0.96

±0.007

0.98

±0.007

0.78

±0.005

0.884

±0.013

Table 10: Macro F1-scores for Logistic Regression (LR) and Random Forest (RF)
using 5-fold cross-validation with 4 weeks of data as predictors for LargeLeakPct

KmL KmL3D LMKM GCKM HDDC Deepgmm
LR 0.39 0.74 0.56 0.88 0.56 0.75

RF 0.41 0.77 0.57 0.90 0.75 0.76

6.3.2 Classification for LargeLeakPct

Appendix B (page 40) presents the classification results for LargeLeakPct
clusters memberships. The results show that the Random Forest classifier
with LargeLeakPct cluster memberships obtained from GCKM outperforms
other combinations based on accuracy and macro F1-scores. According to
the figures in Appendix B, the result indicated that we can perform classifi-
cation with merely four weeks of initial device data since the accuracy and
macro F1-score did not increase significantly after four weeks. The 5 folds
cross-validation scores are shown in Table 9 and Table 10. Table 11 shows
the accuracy and macro F1-scores of the best two models (with KmL3D and
GCKM cluster memberships) on test set. Appendix E (page 46) shows the
confusion matrix for the results obtained from KmL3D and GCKM with
Random Forest on test set. The results conclude that the Random Forest
with cluster memberships generated from GCKM can be generalized well
on test set. Furthermore, Table 12 displays the statistics per clusters for the
best two models for LargeLeakPct subgroups prediction.

Table 11: Accuracy and macro F1-score for LargeLeakPct GCKM and KmL3D on
test set with Random Forest with 4 weeks of data

Accuracy Macro F1

GCKM 0.98 0.89

KmL3D 0.91 0.68
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Table 12: Statistics per cluster (denoted as Ci, where i is the cluster number) for
the best two Models of LargeLeakPct using 4 weeks of data

Random Forest
with GCKM

Random Forest
with KmL3D

Statistics C1 C2 C3 C1 C2 C3

Prevalence 0.07 0.92 0.01 0.86 0.12 0.02

Accuracy 0.81 0.99 0.70 0.97 0.61 0.35

Precision 0.88 0.98 1.00 0.95 0.67 0.60

Recall 0.81 0.99 0.7 0.97 0.61 0.35

F-1 0.84 0.99 0.82 0.96 0.64 0.44

7 discussion

This thesis explores the common patterns in the first 90 days of therapy on
AHI and large leakage percentage (LargeLeakPct) for CPAP patients using
a self-supervised learning approach. First, we used longitudinal clustering
to create the labels based on AHI or LargeLeakPct. We then evaluated the
clustering results based on the Dunn Index and the mean value of device
parameters (i.e., variables in Table 1) per cluster. Second, we used different
sets of weeks of device parameters to assess the performance of predicting
cluster memberships by accuracy and macro F1-scores.

Considering the complexity of the self-supervised learning approach
for multi-class classification, the result of this thesis is promising and
is able to be interpreted clinically. With this research, we found that it
is possible for clinicians and device provider to understand and predict
the underlying patterns of each patients subgroups in an early manner.
In the following subsections, we explain the insights obtained from the
experiment results to inform the CPAP therapy practice and data analysis.

7.1 Sub Research Question 1

7.1.1 Insights for CPAP Therapy Practice

The result shows that GCKM can summarize CPAP patient therapy pat-
terns into three AHI clusters, each with different characteristics that can
be explained by clinicians. Specifically, the minority clusters reveal prob-
lematic therapy patterns, which indicates that patients belonging to the
minority clusters may need early assistance.

As mentioned in the result section (section 6.2.1), AHI univariate clus-
tering shows that the GCKM with 3 clusters outperforms other clustering
algorithms. Clusters generated by the GCKM model are unbalanced, with
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the largest cluster having 61.54% patients. Using the elbow method with
BIC, GCKM created meaningful clusters since the mean of device param-
eters are different among clusters significantly. Additionally, we observe
that patients from cluster 2 are the most stable, adherent, and treated
subgroups among the 3 clusters, which represented the majority of the pa-
tients (61.54%). On the other hand, although the AHI trajectory of patients
from cluster 3 shows a decreasing trend over time, the AHI value is still
comparatively high and unstable (i.e., with high variance) compared with
other clusters, with also the highest large leakage percentage and lowest
usage hours (10.36% of patients). Although the trajectories from cluster
1 (28.1%) patients seem stable, they have higher AHI and large leakage
percentage than the other more stable clusters. It is also noted that cluster
3 has the highest average Pressure setting among the three clusters.

Similar to the insight obtained from AHI clustering using GCKM, the
LMKM model can create three meaningful LargeLeakPct clusters, which
can help identify large leakage patterns in CPAP therapy devices. The
experiment shows that for the LargeLeakPct univariate clustering, LMKM
with 3 clusters outperforms other methods based on Dunn Index. It is
also noted that LMKM also obtained the highest on Silhouette score. The
clusters obtained using LMKM are extremely unbalanced, with the majority
cluster having 95.7% of patients. Based on the ANOVA test, the average of
device variables significantly differed from each other among clusters. The
LargeLeakPct trajectory for patients in cluster 2 is the most stable, has the
highest usage hours, and has the lowest AHI. Moreover, the trajectories of
cluster 1 and cluster 3 show problematic patterns, where the LargeLeakPct
of cluster 3 (2.56% of patients) has a higher AHI and LargeLeakPct with a
decreasing LargeLeakPct trend over time. Also, patients from cluster 3 have
higher usage hours than cluster 1. On the other hand, the LargeLeakPct of
patients from cluster 1 (1.74%) shows an increasing trend over time, with
lowest usage hours and similar LargeLeakPct and AHI values with cluster
3. These problematic patterns indicate that patients from cluster 1 and 3

may have abnormal leakage over time during their therapy with higher
AHI, meaning they may receive less effective treatment and thus need
further assistance in receiving CPAP therapy. It would be worth further
research on the relationships among LargeLeakPct, AHI, UsageHours, and
PressureCpap over time in the future. With all the above findings, we
conclude that LMKM can identify patients’ mask fit patterns.

7.1.2 Insights for CPAP Data Analysis

For CPAP data analysis, the first insight is that Dunn Index may not be a fair
evaluation metric when assessing the performance of univariate clustering
with our AHI and LargeLeakPct data. It is observed that the Dunn Index,
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in general, obtained from this study is comparatively low when compared
with other research (see section 3.4). We suspect it is due to our univariate
clustering approach with unbalanced data. A previous study (Sobisek et
al., 2018) showed that with unbalanced and high noise data, the Dunn
index is significantly lower than balanced and low noise data. Furthermore,
another work also demonstrated that univariate clustering with unbalanced
data obtained Dunn Index lower than 0.05 (Lynch & DeGruttola, 2022).
Additionally, due to the low performance of the Dunn Index, we compute
the Silhouette score to make our research more comprehensive. Our result
shows that Silhouette score performs adequately with some discrepancy
with Dunn Index. Future research might be worth exploring other suitable
evaluation metrics for high noise and imbalanced data.

The second insight is that although HDDC has been proven useful in
the literature for other tasks, it does not perform well on our data to cluster
CPAP therapy patterns meaningfully. Surprisingly, HDDC performed with
the lowest Dunn Index and Silhouette score among all of the methods
with both univariate clustering tasks, with only 0.002 and 0.00002 Dunn
Index for AHI and LargeLeakPct univariate clustering, respectively. Our
assumption is that various temporal features make the input features high
dimensional, which matches the HDDC assumption we discussed in the
method section. However, compared with other methods using temporal
features, such as Deepgmm, and KmL3D, the performance of other models
is much better than HDDC. Appendix C and D (see page 42, and page 44)
show the mean values of device parameters per cluster of each clustering
models. It is found that HDDC identifies comparatively not very different
clusters among all the models, and hence, it might explain the low Dunn
Index and Silhouette score.

7.2 Sub Research Question 2

Experiments show that using Random Forest to predict GCKM-generated
clusters outperform other combinations and can perform well with as early
as four weeks of data based on accuracy. Our self-supervised learning ap-
proach for early prediction of patients’ cluster memberships has provided
good results with GCKM univariate clustering. Based on the findings of our
clustering analysis, we can identify patient cluster membership at an early
stage. With our classification task, we found that with only four weeks of
device data, it is possible to predict CPAP patients’ AHI patterns during
therapy with 93.8% accuracy and 90.9% macro F1-scores, meaning the
model could capture most of the cluster memberships of patients correctly.
Also, for the LargeLeakPct patterns, we obtained excellent performance
with 98% accuracy and 90% macro F1-scores with cluster memberships
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generated from GCKM, which means it is also possible to examine as early
as the fourth week for the abnormal mask leakage patterns among CPAP
patients. When we explore the performance in each class, we conclude that
Random Forest can predict GCKM cluster memberships with adequate
recall and excellent precision for both AHI and LargeLeakPct classification.
In sum, for new patients, it is possible to predict their subgroups with high
accuracy and macro f1-score. Clinicians and device providers can assist
the patients early if the patients are in the problematic subgroups.

7.3 Limitation and Future Direction

We identified several major limitations in this research. First, we only
sample 5,000 patients with their first 90 days of CPAP data due to the
complexity of the task. In the future, it is recommended to re-sample
the patients several times or use full data to investigate how well the
proposed approaches in this research can be generalized to the population.
Secondly, we only adopt BIC to decide the optimal number of clusters. In
order to make the research more comprehensive, it might be beneficial to
take different methods into account, such as Davies–Bouldin index and
Calinski-Harbasz score. Thirdly, we did not extensively tune the model
hyper-parameters since our research goal for SQ2 focuses on understanding
which supervised learning model can predict the SQ1 output with the
highest accuracy, and how early we can predict it. Future research can
tune hyper-parameters in our supervised learning models using grid-
search. Finally, our Logistic Regression did not include regularization.
Future research can also explore ways of adding regularization terms in
the Logistic Regression. For the future study on clustering longitudinal
CPAP patient data, it may be worth exploring the possibility of adopting
unsupervised deep learning techniques. For example, De Jong et al. (2019)
proposed a deep learning-based model, Variational Deep Embedding with
Recurrence (VaDER), to perform cluster analysis. They discussed that
VaDER is advantageous for longitudinal data with missing values because
it can treat missing values directly by integrating model training with
imputation. The paper displayed that they could accurately classify the
clusters for the simulated dataset (cluster purity > 0.9). The researchers
specified that they could effectively classify patients with Parkinson’s and
Alzheimer’s diseases into subgroups using VaDER.

Moreover, for the supervised learning step in this research, the Random
Forest classifier performs well for both classification tasks. However, for
the future work, it would be interesting to implement the XGBOOST or
Deep Learning approach due to their proven ability to predict multi-class
problems with high performance.
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It is also suggested that future work could apply a semi-supervised
learning approach to ensure the quality of both unsupervised learning and
supervised learning tasks. It could be difficult to label all data in medical
datasets since domain experts are needed to label each observation manu-
ally, which could be laborious, time-consuming, and expensive. However,
with semi-supervised learning, it may be more practical to have the domain
experts label a small size of the datasets and train the models on mixed
labeled and unlabeled datasets. In this way, the clusters will contain the
labels provided by domain experts, and therefore the labels can be used to
further assess the quality of clusters.

8 conclusion

With rich data obtained from CPAP patients, researchers can further an-
alyze different OSA patient subgroups and their underlying patterns by
clustering analysis, allowing the clinicians and device providers to better
assist the patients in adhering to the CPAP therapy. The result can also be
further analyzed by self-supervised learning techniques to examine if the
clustering memberships can be predicted with high performance, which
can enable clinicians, device providers, and future researchers to under-
stand how early we can predict the therapy patterns for CPAP patients.
With this study, it can be concluded that it is possible to predict and under-
stand the subgroups of CPAP patients with high performance in early-stage
with a self-supervised learning pipeline, which can be beneficial for clinical
practice. In future research, the results from the present study can be
improved by implementing a semi-supervised learning approach, finding
suitable evaluation metrics, and experimenting with other supervised and
unsupervised learning models.
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appendix a

Figure 11: Logistic Regression macro F1-scores for AHI classification

Figure 12: Logistic Regression mean Accuracy (5-fold cross validation) for AHI
classification
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Figure 13: Random Forest macro F1-scores for AHI classification

Figure 14: Random Forest mean Accuracy (5-fold cross validation) for AHI
classification
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appendix b

Figure 15: Logistic Regression macro F1-scores for LargeLeakPct classification

Figure 16: Logistic Regression mean Accuracy (5-fold cross validation) for Large-
LeakPct classification
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Figure 17: Random Forest macro F1-scores for LargeLeakPct classification

Figure 18: Random Forest mean Accuracy (5-fold cross validation) for Large-
LeakPct classification
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appendix c : cluster variables average for ahi univariate

clustering

Figure 19: Cluster variables average for AHI univariate clustering-1
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Figure 20: Cluster variables average for AHI univariate clustering-2
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appendix d : cluster variables average for largeleakpct uni-
variate clustering

Figure 21: Cluster variables average for LargeLeakPct univariate clustering-1
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Figure 22: Cluster variables average for LargeLeakPct univariate clustering-2
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appendix e : confusion matrix for ahi and largeleakpct

Table 13: Confusion Matrix (Random Forest for GCKM AHI with four weeks of
data)

Predicted
Cluster 1 Cluster 2 Cluster 3

Ground
Truth

Cluster 1 251 21 19

Cluster 2 22 594 0

Cluster 3 8 0 84

Table 14: Confusion Matrix (Random Forest for Kml3D AHI with four weeks of
data)

Predicted
Cluster 1 Cluster 2 Cluster 3

Ground
Truth

Cluster 1 750 39 0

Cluster 2 27 156 11

Cluster 3 0 3 13
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Table 15: Confusion Matrix (Random Forest for GCKM LargeLeakPct with four
weeks of data)

Predicted
Cluster 1 Cluster 2 Cluster 3

Ground
Truth

Cluster 1 56 6 2

Cluster 2 13 908 0

Cluster 3 4 2 8

Table 16: Confusion Matrix (Random Forest for KmL3D LargeLeakPct with four
weeks of data)

Predicted
Cluster 1 Cluster 2 Cluster 3

Ground
Truth

Cluster 1 834 43 0

Cluster 2 26 75 11

Cluster 3 0 4 6
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