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Abstract

The role of higher education in social inequality and inequality
in access to higher education has been extensively studied in Social
Sciences. The large corpus of the studies discovered various factors
and their interplay in shaping the educational trajectories of youth.
However, it is still unclear to what extent can we predict who will
get higher education based on the educational and background infor-
mation from teenage years. Moreover, it is not yet known what type
of models produce better predictive performance in this and similar
matters. Previous studies in adjacent domains (life-course studies)
have shown that machine learning algorithms can slightly outperform
classic statistical models. However, the understanding of what predic-
tors these algorithms rely on and how it compares to well-established
statistical models is still opaque. In this study, we made an attempt
to answer these questions by predicting higher education completion
with fine-tuned machine learning algorithms and comparing it to the
classic statistical model – Logistic Regression. We used the data (N =
3743) from the longitudinal cohort survey "Trajectories of Education
and Careers" (TrEC) which is based on the comparative educational
study of eighth-graders – "Trends in International Mathematics and
Science Study" (TIMSS-2011). The results demonstrate that higher
education completion could be predicted relatively accurately (accu-
racy = 0.72-0.73) from the educational and background information
from teenage years. Machine learning algorithms (Random Forest,
XGBoost, and Elastic Net) slightly outperform Logistic Regression.
The predictors’ importance derived from the best-performing ma-
chine learning model (Random Forest) and Logistic Regression are
moderately correlated but have some intriguing disparities. However,
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1 introduction 2

the predictors’ importance of Logistic Regression suffers from multi-
collinearity in our model specification. We address this problem and
suggest possible solutions in the Limitations sections.

1 introduction

The research goal of this study is to reveal how accurately it is possible to
predict who will get higher education based on the socioeconomic back-
ground, family composition, school characteristics as well as educational
results, aspirations, and attitudes in teenage years.

1.1 Problem Statement

In contemporary society, higher education plays a crucial role in intergener-
ational social mobility. Throughout the history of social sciences, the role of
higher education in shaping and maintaining social inequality has been ex-
tensively investigated in different contexts and from different perspectives
(Ballarino, Bernardi, Requena, & Schadee, 2009; Boudon, 1974; Brown, 2018;
Dickert-Conlin & Rubenstien, 2007; Duta, Wielgoszewska, & Iannelli, 2021;
Hartas, 2015; Triventi, 2013). Studies revealed the relationship between
multiple variables such as educational attainment in school, aspirations,
socioeconomic status of the family, school characteristics (and many oth-
ers), and chances of getting a higher education (Bernardi & Cebolla, 2014;
Jerrim, Chmielewski, & Parker, 2015; Morgan, 2012; Yastrebov, Kosyakova,
& Kurakin, 2018).

However, most of these studies had explanatory rather than predic-
tive nature (Shmueli, 2010). In other words, the research questions of
these studies concentrated on revealing the relationship between various
variables and chances of getting higher education rather than assessing
the predictive power of these models in predicting who will actually get
higher education (Shmueli, 2010). Despite the vast amount of studies that
scrutinize complex interactions between socioeconomic background and
academic results in education inequality with sophisticated explanatory
models, we still do not know how accurately we can predict who will get
higher education based on the data from earlier life stages.

Meanwhile, in the last years, more and more social scientists urge to
raise research questions of predictive nature, arguing that this will make
social research more policy-oriented (Cranmer & Desmarais, 2017; Hofman,
Sharma, & Watts, 2017; Hofman et al., 2021; Molina & Garip, 2019; Risi,
Sharma, Shah, Connelly, & Watts, 2019; Verhagen, 2022; Yarkoni & Westfall,
2017). Recently, several studies attempted to predict various life outcomes
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and latent characteristics of individuals (Joel et al., 2020; Li, Han, Cohen, &
Markus, 2021; Salganik et al., 2020).

Nevertheless, it is still unclear to what extent we can predict who will
get higher education. Thus, this study will fill this niche by assessing
the predictive power of the data about educational results, socioeconomic
background, educational aspirations, and attitudes in teenage years in
predicting higher education completion by the age of 25. The choice of the
age of 25 is driven by the available data. However, it is also reasonable to
assume that most people from the cohort who will get higher education
during their lifetime will get it by the age of 25. Moreover, research based
on the data of older cohorts would have been outdated and could have
been less relevant for the current patterns and relations in the investigated
phenomena.

1.2 Research Questions

Thus, the broad research question of the study is:

Given educational and background information from teenage years,
how accurately can we predict higher education completion by the age
of 25 with machine learning algorithms and classic statistical model,
that is, logistic regression?

This research question could be expanded in the following research sub-
questions:

RQ1 To what extent can we predict higher education completion by the age of 25
based on the educational and background information from teenage years?

RQ2 Do the machine learning algorithms outperform classic statistical model,
that is, logistic regression in predicting higher education completion?

RQ3 What are the differences in predictors’ importance between classic statistical
model, that is, logistic regression and best-performing machine learning
algorithm in predicting higher education completion?

1.3 Social and Scientific Relevance

The proposed research question is important both socially and scientifically
for the following reasons. First of all, predictive models of higher education
completion on the individual level could be used for more tailored and
targeted interventions (Salganik, Lundberg, Kindel, & McLanahan, 2019, p.
1). Secondly, changing focus from explanatory to predictive modeling in
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social research could advance social theories by offering novel methods of
testing hypotheses (Molina & Garip, 2019; Salganik et al., 2019, p. 1).

2 literature review

The research question and design of this research are partly inspired
by the aforementioned study by Salganik et al. (2020). The literature
review is divided into two subsections. The first one, predictive modeling
in social sciences, is devoted to reviewing studies in social sciences which
were conducted in the framework of predictive modeling while the second,
Educational Studies, specifically covers theoretical frameworks and empirical
studies in the field of sociology of education.

2.1 Predictive Modeling in Social Sciences

In the aforementioned study by Salganik et al. (2020), more than one hun-
dred research teams around the world tried to predict various individuals’
life outcomes in the format of a machine learning challenge. The study
was based on the Fragile Families and Child Wellbeing Study (FFCWS)
– a high-quality longitudinal survey of one birth cohort in the USA. In
this challenge, teams used all available variables about the socioeconomic
background, health, wealth, education, family relationships, and various
attitudes measured at ages 1, 3, 5, 9, and 15 to predict six outcomes at
age 15: material hardship of the household, GPA, grit, household eviction,
participation in job training by the primary caregiver, and caregiver layoff
(Salganik et al., 2020, p. 8399). The performance was assessed on the hold-
out test data set. The results indicate relatively low predictability of life
outcomes at the age of 15 despite the vast amount of available information
about the respondents and usage of the broad range of different machine
learning algorithms and approaches to data preprocessing (Salganik et al.,
2020, 2019). For example, the best performing model for the target variable
GPA had R2 of 0.19 (Salganik et al., 2020). Moreover, the classic statis-
tical models, that is, linear and logistic models, performed only slightly
worse than sophisticated fine-tuned machine learning algorithms (Ahearn
& Brand, 2019; Salganik et al., 2020, 2019).

Nevertheless, this challenge resulted in several papers describing the
best approaches and nuances of data wrangling and predictive modeling
based on the longitudinal survey data (Altschul, 2019; Compton, 2019;
McKay, 2019; Raes, 2019; Rigobon et al., 2019). One of the best performing
models for predicting GPA was gradient boosting as demonstrated by Raes
(2019). However, regularized regression models (LASSO, Ridge, Elastic
Net) also performed comparably well (Raes, 2019). The paper Rigobon et
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al. (2019) describes data preprocessing, feature engineering, and selection
as well as winning models for predicting GPA, grit, and layoff of primary
caregiver. At first, the authors removed features with low variance and
a high fraction of missing values (>80%). Then, they created indicator
variables for missing values in each variable. As for the feature selection,
the authors tried two approaches: mutual information criterion and LASSO
(Rigobon et al., 2019). For the prediction, the authors trained and tuned
three types of models: Elastic Net, Random Forest, and Gradient Boosting
(XGBoost). Moreover, they also tried to stack these models. However, for
GPA and grit, the best performing model on the hold-out set was XGBoost.

In other fields, such as political science, available predictive studies
also demonstrate relatively modest predictive capabilities. For example, it
was shown in Bach et al. (2021) that the voting behavior could be hardly
predicted from the digital traces on the Internet. In this study, the authors
employed Gradient Boosting (XGBoost) as well as Random Forests on the
data from mobile device usage and web browsing to predict political
preferences and self-reported voting behavior in Germany during elections
in 2017 (Bach et al., 2021). The ROC-AUC performance measure of the best
model varied between 0.6-0.7 for different voting outcomes (Bach et al.,
2021, p. 873).

In the Human Resources field, there was an attempt to employ ma-
chine learning algorithms and interpretability methods to uncover the
relationship between personality traits and leadership (Doornenbal, Spisak,
& van der Laken, 2021). Moreover, this study compares the predictor
importance of standard linear regression and fine-tuned tree-based ma-
chine learning algorithm – Random Forest, which is relevant for RQ3 of
our research. Random Forest slightly outperformed the linear model with
sensitivity on the test set equal to 34.1% versus 27.9%. As for the feature
importance, the authors have used a perturbation-based approach which
constitutes of adding random noise to values of the particular variable and
reassessing the drop in performance of the already estimated model after
this (Doornenbal et al., 2021, p. 6). Although, the predictor importance
derived from Random Forest and standardized coefficients from Linear
Regression mostly aligned it also demonstrated some differences between
the two models.

Overall, based on the literature review the following machine learning
algorithms were chosen for this research as the most promising: XGboost,
Random Forest, and Elastic Net.
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2.2 Educational Studies

As for the higher education domain, there were a number of studies dedi-
cated to predicting higher education dropout and performance (Nagy &
Molontay, 2018; Niessen, Meijer, & Tendeiro, 2016). The systematic litera-
ture review of studies on predictors of higher education dropout revealed
that previous academic results and educational goals are consistently re-
lated to higher education dropout across various countries, contexts, and
times (Delnoij, Dirkx, Janssen, & Martens, 2020). Another systematic re-
view of empirical studies demonstrated that the most important factors in
predicting students’ higher education success are academic performance
in school, socio-demographic characteristics, and students’ environment
(Alyahyan & Düştegör, 2020). However, most of these studies investi-
gated students who have already enrolled in higher education institutions
while my study focuses on predicting which schoolchildren will get higher
education, thus, considering both enrollment and completion of higher
education.

The studies in the sphere of social inequality in education have con-
stantly revealed that the socioeconomic background of the family is an
important factor in the educational trajectory of the children even when we
control for the academic results (Ballarino et al., 2009; Bernardi & Boado,
2014; Bernardi & Cebolla, 2014; Jerrim et al., 2015; Lucas, 2001; Morgan,
2012; Simonová & Soukup, 2015; Yastrebov et al., 2018).

Nonetheless, the majority of the reviewed studies answered explanatory
rather than predictive research questions. Moreover, even though some of
these studies collaterally reported predictive performance measures, they
were not the primary focus of the papers and usually were assessed using
in-sample data. For example, in Simonová and Soukup (2015) it is reported
that the model has an accuracy of 90% in predicting transition to higher
education. However, the predictive performance was not tested on the
hold-out data set nor the limitations of the reported metric were discussed.

In the recent paper by Verhagen (2021), the author used multilevel
regression models (MLM) to predict the educational track assigned to the
Dutch schoolchildren at the age of 12 by their teachers. However, in contrast
to other studies in this field, this paper concentrated on the predictive rather
than an explanatory aspect of the MLM which led to the discovery that
school effects play an important role in predicting educational tracking by
teachers in the Netherlands (Verhagen, 2021). Moreover, adding variability
in intercepts on the school level led to a greater increase in predictive
performance than adding parental education variables in the models. Thus,
we can anticipate that school characteristics and school-level variables
might be important predictors of higher education completion as well.
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Nevertheless, to my best knowledge, there are no studies regarding
the prediction of higher education completion based on the data from
individuals’ earlier life stages such as teenage years. Thus, this study will
fill this niche by estimating how accurately we can predict who will get
higher education based on the data from teenage years and by comparing
the classic logistic model with fine-tuned machine learning algorithms.

3 methodology

3.1 Dataset Description

This study is based on the data from the longitudinal cohort study "Tra-
jectories in Education and Careers" – TrEC. TrEC, in its turn, is based on
the nationally representative sample (N = 4893) of the cohort of Russian
eighth graders of 2011 who participated in the international comparative
educational study "Trends in International Mathematics and Science Study"
(TIMSS-2011). This study included a set of tests on mathematics, and sci-
ence as well as a questionnaire about students’ attitudes towards school,
career aspirations, socioeconomic background, and other contextual factors.
Moreover, the study included questionnaires for teachers and school ad-
ministration that covered such topics as educational practices in the school,
bullying, school characteristics, school performance, and other variables.
The participants of TIMSS-2011 have been surveyed annually ever since
in the TrEC study. New waves of TrEC are conducted every year and
cover a broad range of topics from education and employment to family
composition and attitudes towards various social phenomena. The precise
set of questions could vary from wave to wave but the main core of the
questionnaire includes questions regarding education and job occupation
(Kurakin, 2014; Malik, 2019). For more details about the design, aim, and
history of TrEC see Kurakin (2014); Malik (2019). This dataset is available
for researchers upon request. In this research, we will use information
about the educational status of the respondents from the last available, 9

th,
wave of the TrEC (N = 3743). At the moment of 9

th wave, the modal age of
the cohort was 25.

3.2 Data Preprocessing

This section describes the data cleaning and preprocessing pipeline. At
first, the TIMSS-2011 and 9

th wave of TrEC databases were merged using
the student identification variable resulting in a dataset of 3743 observa-
tions. Then, we selected variables from TIMSS-2011 related to demographic
characteristics, socioeconomic background of the family, educational as-



3 methodology 8

pirations, attitudes and results, family attitudes towards education, and
school characteristics. The selection of the variables was done by filtering
out variables that are clearly unrelated to these domains: socioeconomic
background, family composition, school characteristics as well as educa-
tional results, aspirations, and attitudes. The limitations of this approach
are discussed in the Section 5.2. The final dataset (before preprocessing)
comprised 91 variables: 1 ID variable, 1 target variable and 89 predictors
(the full list of variables is available in Appendix A).

3.2.1 Variable Constructing and Transformations

Constructed predictors:

• The "migration status" variable was constructed by coalescing two
dependent survey questions about whether the person was born in
the country and, if not, at what age they came to the country.

• TIMSS Mathematics and Science scores were computed as arithmetic
averages of the respective variables representing 1

st-5th plausible val-
ues for mathematics and science achievement test scores as proposed
in Martin and Mullis (2011).

The target variable was constructed based on the question about the
highest completed level of education in the 9

th wave of TrEC. Those who
answered that they have either bachelor’s or master’s or specialist degrees
were assigned to the category of those who completed higher education
while those who selected other options were assigned to the category of
those who did not complete higher education.

Table 1: Correspondence of constructed target variable "Higher Education comple-
tion" values with values from the initial variable.

Initial values Higher Education Completion
9 classes of school Do not have higher education
11 classes of school Do not have higher education
Secondary vocational education Do not have higher education
Bachelor’s Have higher education
Specialist
(university degree of 5-6 years length)

Have higher education

Master’s Have higher education
Other Do not have higher education

The distribution of constructed variables about higher education com-
pletion is roughly balanced with 49.8% completed higher education and
50.2% did not (see Table 2).
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Table 2: Distribution of the target variable – Higher Education completion.

Higher Education completion N %
Do not have higher education 1878 50.2
Have higher education 1865 49.8
Total 3743 100

3.2.2 Removing Variables with Missing Values

Then, we removed all predictors that contained more than 30% of missing
values. These included the following variables:

1. "bsbgsls" – student like learning science scale.

2. "bsbgsvs" – student value learning science scale.

3. "bsbgsvs" – student confidence with science scale.

4. "bsbgesl" – student engaged in science lessons scale.

For some reason, all removed variables were related to the "Science" school
subject. After investigation, it turned out that these variables are fully
empty and do not contain any real values. One of the possible reasons
for this is that these scales are available in the more detailed partition by
particular scientific subjects: chemistry, biology, physics, and earth science.
The plausible reason for this is that in Russia there is no single subject
for Science in the academic curriculum of eight-graders but rather four
distinct subjects by subfields. Thus, the removed variables contained 100%
of the missing values.

3.2.3 Imputing Missing Values with kNN

Missing values within the remaining predictors were imputed with the
k-Nearest Neighbours algorithm. k-Nearest Neighbours is an algorithm that
calculates a distance between each observation in the space defined by some
set of predictors (or all of them) and imputes missing values based on the
top-k matching instances in this space. In the case of continuous missing
values, the mean value of the respective variable of k most similar instances
is used for imputation while in the case of a nominal variable – the mode.
In this study, k was set to 5 as it was suggested as a practical default
value in the literature (Kuhn & Johnson, 2019). Thus, the imputation of
the particular missing value was based on the 5 most similar respondents
derived based on the whole set of all available predictors.

One advantage of using kNN for imputation is that it will produce
values that are within the observed in-sample range of values for the
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Figure 1: Missing values in the data.

particular variable. Thus, in contrast to, for instance, linear models, it
is impossible to get unrealistically low or high values for continuous
variables. For example, kNN could not propose negative values for the
weight variable or zero for the human height. Moreover, since the share
of the missing values in the dataset in general and in most variables, in
particular, is neglectable low (see Figure 1) it is unlikely that the choice of
the imputation method will substantially affect the results of the analysis.
Moreover, the imputation procedure will be conducted separately for the
train and test data as well as within folds during cross-validation. Thus,
we avoid the problem of information leakage and thoroughly mimic the
process of testing models on the fully unseen hold-out data.

3.2.4 Categorical Predictors Transformation

In this step, infrequent categories of each nominal variable that constitutes
less than 5% of the training data were combined into one artificial category
called "other". This step affected 18 nominal predictors out of 42 present in
the data.

Then, all categorical predictors were transformed into a set of dummy
variables (also known as one-hot encoding in the machine learning com-
munity) with the removal of one dummy variable for each categorical
predictor to avoid linear dependency between these newly constructed
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variables. This approach was implemented only for machine learning
algorithms that require a transformation of categorical predictors into a set
of dummy variables: XGBoost and Elastic Net. For other algorithms, namely
Random Forest and Logistic Regression, we used categorical features with-
out transformations into dummy format. However, we experimented with
dummy variables and Random Forest and Logistic Regression algorithms
and received similar results. This is expected because dummy variables are
just another way of representing categorical features. It does not produce
or extract more information or signal from the data.

3.2.5 Near-Zero Variance Filter

At this stage, variables with near-zero variance were removed from the
data since they are not informative for the models and, thus, do not bring
any added value to predictive performance. Moreover, the presence of
non-informative predictors could worsen the performance of some types
of models (especially linear models) and increase computational expenses
and, consequently, training time (Boehmke & Greenwell, 2019, p. 52). The
near-zero variance filtering was done based on the two criteria:

1. Share of the number of unique values in the variable relative to the
sample size. This parameter was set to 10 as suggested in Boehmke
and Greenwell (2019).

2. "The ratio of the frequency of the most prevalent value to the fre-
quency of the second most prevalent value" (Boehmke & Greenwell,
2019, p. 52-53). This parameter was set to 97/3 as suggested in
Boehmke and Greenwell (2019).

This filtering method removed 8 variables.

3.2.6 Continuous Predictors Normalization

All continuous predictors, including newly created dummy variables, were
normalized (z-standardized), that is, centered and scaled. By centering, it
implies subtracting the training set mean value of the particular variable
from each value of this variable. Scaling is dividing centered values
on the standard deviation of this variable calculated on the training set.
This transformation converts all variables to the same measurement scale
with mean = 0 and standard deviation = 1. This might be particularly
important for specific machine learning algorithms, such as regularized
regressions (Elastic Net in our case) (Boehmke & Greenwell, 2019, p. 57).
It is important to note that necessary statistics for normalization, mean
and standard deviation, were calculated on the training set and for each
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training fold inside cross-validation. This prevents data leakage from the
test data into the modeling process.

3.2.7 PCA for Mathematics and Science achievement scores

As was shown in the literature and previous studies (see Section 2), edu-
cational achievement is a strong predictor of the educational trajectory of
children. Thus, it might be convenient to have a single variable represent-
ing general academic results. This would also ease the interpretation of this
variable in further analysis. Moreover, some machine learning methods
tailored to regularization might exclude some of the highly correlated
predictors while other methods will not. This would potentially cause
problems with the interpretation of predictors’ importance.

As could be observed from the scatter plot in Figure 2, there is a strong
linear relationship between Mathematics and Science achievement scores
(Pearson’s r = 0.86, p = 0.00).

Figure 2: Scatter plot and Pearson correlation coefficient of TIMSS Mathematics
and Science scores on the training data.

Therefore, we exploited this relationship by projecting these two vari-
ables onto a single dimension using Principal Component Analysis (PCA).
Since there are only two highly correlated variables, it is meaningful to
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extract one component that would represent general educational achieve-
ment based on the Mathematics and Science achievement scores measured
in TIMSS.

As could be seen from the Figure 3, the first component explains almost
93% of the variance in the Mathematics and Science achievement scores. In
other words, by knowing the values of this component we can reconstruct
initial achievement scores in Mathematics and Science with high accuracy.

As well as with other performed preprocessing steps, PCA was also
trained only using the training data and/or training folds inside the cross-
validation to avoid potential data leakage (Kuhn & Johnson, 2019). Thus,
when assessing model performance on the hold-out test data, the extraction
of principal components for the test data was done using the pretrained
PCA model on the train data.

Figure 3: % of explained variance by Principal Components.

3.2.8 Correlation and Linear Combination Filters

At this stage, we filtered out variables that were either linearly dependent
or highly correlated. In other words, if one variable could be perfectly
reconstructed from the others or it highly correlates with others. The
threshold for the correlation filter was set to 0.95 to remove only those
variables that correlate so strongly that it is reasonable to assume that they
might measure the same phenomenon. The application of these filters
resulted in the removal of the scale representing the degree to which
instruction at schools is affected by mathematics resource shortages.
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3.3 Algorithms

To answer the main research question, that is, how accurately we can
predict who will obtain higher education, we will employ the following
machine learning algorithms: XGboost, Random Forest, Elastic Net, and
Logistic regression. The choice of gradient boosting (XGboost) is driven by
the fact they have shown superior performance on the tabular data (Ivanov
& Prokhorenkova, 2021; Prokhorenkova, Gusev, Vorobev, Dorogush, &
Gulin, 2018; Shwartz-Ziv & Armon, 2022). ElasticNet and Random Forests,
as it was shown in section 2.1, have been employed in similar studies and
have shown relatively good performance (Ahearn & Brand, 2019; Raes,
2019).

3.3.1 Random Forest

Random Forest is a machine learning algorithm that is based on the
ensemble of classification trees. There are different implementations of
the Random Forest algorithm that was first introduced by Breiman (2001).
However, in this study, we describe and employ the version implemented
in the ranger package in R (Wright & Ziegler, 2017). In more detail, at first,
the algorithm takes a sample of the instances and a sample of variables and
builds the decision tree on this subset of the data. Usually, the decision
trees in Random Forests are grown based on the bootstrapped sample
of instances of the original data size. However, in contrast to canonical
decision trees, in the Random Forest at each node the algorithm makes a
split based on the subsample of predictors of prespecified size rather than
considering all variables for splitting.

The random sampling of observations for tree growth and predictors
for splitting the nodes inside the trees allows for growing the forest of
the de-correlated and independent trees which usually leads to better pre-
dictive performance and good out-of-sample generalization (Boehmke &
Greenwell, 2019, p. 203).

The maximum depth of the decision trees could be preset beforehand or
could be explicitly constrained by the preset minimum number of instances
in the nodes at which the further splitting of these nodes stops. Thus, a
minimum number of instances partially controls overfitting by constraining
the depth of individual trees in the ensemble.

In this study, we tuned the following hyperparameters of the Random
Forest algorithm:

• Number of trees in the ensemble: 800, 1000, 1500.

• Number of sampled variables that will be considered for splitting the
nodes: 10, 15, 20.
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• Minimum number of instances in the nodes (odd numbers were
chosen so that at each terminal node it would be possible for a tree
to determine the class by majority vote principle): 3, 7, 11, 15.

The grid of hyperparameters’ values was defined based on the previous
research which used Random Forests on similar survey data (Bach et al.,
2021; Doornenbal et al., 2021; Rigobon et al., 2019) and suggested default
values for tuning in (Boehmke & Greenwell, 2019, p. 206).

3.3.2 Gradient Boosting (XGBoost)

Gradient boosting is a machine learning algorithm that is based on the
principle of sequentially training simple models taking into account the
mistakes of previous models (Boehmke & Greenwell, 2019, p. 221). If
Random Forest is an ensemble of independent and large trees, Gradient
Boosting is an ensemble of small trees that are trained one after another on
the mistakes of previous trees.

There are several variations of gradient boosting algorithms. For exam-
ple, CatBoost and LightGBM are quite common in contemporary machine
learning applications (Ivanov & Prokhorenkova, 2021; Prokhorenkova et
al., 2018; Shwartz-Ziv & Armon, 2022). However, in this study, we use
XGBoost as it has shown good performance in similar studies that were
also based on the survey data of comparable size and nature (Raes, 2019;
Rigobon et al., 2019).

We employed the maximum entropy approach to create the grid of the
hyperparameters for XGBoost. The maximum entropy approach is trying
to fill the space of the potential hyperparameter values such that it has low
overlapping and is evenly distributed across the hyperparameter space
(Kuhn & Silge, 2020). The size of the grid was set to 50. Thus, the grid
has 50 unique combinations of hyperparameters’ values. Table 3 describes
hyperparameters of XGBoost that are available in tidymodels framework in
R and were tuned during the grid search.

Table 3: Descriptive statistics of hyperparameters’ values for XGBoost created by
maximum entropy approach.

Hyperparameters
Unique
values

Min Q1 Mean Median Q3 Max

Number of trees 50 16 508.75 930.32 1001 1333.5 1955

Min N in nodes 50 5 14.25 22.96 22.5 32 40

Tree depth 50 1 3 7.72 8 12 15

Learning rate 50 0.0011 0.0026 0.049 0.023 0.077 0.24

Loss reduction 50 0.0000000001 0.0000001 0.693 0.00002 0.032 20.08

Sample size 50 0.1356 0.3546 0.581 0.590 0.829 0.97

Number of iterations 50 3 6 10.92 10.5 15 20
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3.3.3 Elastic Net

Elastic Net is an extension of Linear or Logistic Regressions specifically
tailored to the improvement of out-of-sample predictive performance by
imposing regularization to the loss function during the training of the
model. It is a mixture of Ridge regularization (λ ∑

p
i=1 β2

i ) and Lasso
regularization (λ ∑

p
i=1 |βi|) that are imposed on the loss function during

the training where βi is the coefficient for predictor i in the set of predictors
p (Boehmke & Greenwell, 2019, p. 126) . There are two hyperparameters
that can be tuned in Elastic Net: mixture and penalty. The mixture is a
degree of balance between Ridge and Lasso regularization. The penalty is a
magnitude of these regularizations (proportional to the balance between
Ridge and Lasso defined by mixture) – λ.

Table 4 presents descriptive statistics of the hyperparameters of Elastic
Net that were tuned using cross-validation. This grid of hyperparameters
was also constructed using a maximum entropy approach and a plausible
range of values for these hyperparameters available in tidymodels frame-
work in R.

Table 4: Descriptive statistics of hyperparameters’ values for Elastic Net grid
created by maximum entropy approach.

Hyperparameters
Unique
values

Min Q1 Mean Median Q3 Max

Penalty 20 1.136E-10 2.232E-08 0.080 1.79E-05 0.002 0.831

Mixture 20 0.061 0.241 0.509 0.527 0.735 0.996

3.3.4 Predictors’ Importance

We will employ permutation-based feature importance tests to substantively
compare the importance of the predictors in the classic interpretable al-
gorithm, that is, logistic regression, with the best-performing machine
learning algorithm.

The permutation-based feature importance work as follows (Biecek &
Burzykowski, 2021; Molnar, 2020):

1. Calculate performance metric for the model.

2. Shuffle values within the predictor or set of predictors.

3. Feed the dataset with permuted predictor(s) to the pretrained model
and produce predictions.

4. Calculate performance metric for the predictions from the previous
step.
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5. Feature importance for the predictor(s) is the difference or ratio
between the original performance of the model and performance on
the data with permuted predictor(s)

The visual schema and toy example of permutation feature importance are
presented in the Figure 4.

The idea behind permutation feature importance is that it eliminates all
relationships of the particular feature in the dataset, both with the target
variable as well as with other features, thus, also removing potential inter-
action effects (Molnar, 2020). One of the main advantages of permutation
feature importance is that it is model-agnostic. In other words, this method
could be applied to models of various types (Biecek & Burzykowski, 2021;
Molnar, 2020). Despite the fact that Logistic Regression belongs to the
class of interpretable models and its’ coefficients have straightforward
interpretation, we applied permutation feature importance to it as well for
the sake of direct comparison with less interpretable algorithms. Moreover,
the permutation feature importance allows to directly interpret features in
terms of an impact on the predictive power of the model. Another advan-
tage of permutation feature importance is that it is agnostic to variables’
measurement. It provides a single approach to measuring and comparing
the importance of both categorical and continuous predictors.

In this study, we used a ratio of the model performance on the test
data to the model performance on the data with the permuted feature.
This approach allows direct comparison of features’ importance between
different models and interpretation of features’ importance in terms of
relative change to the original model’s performance. For each feature 30

iterations of permutations were conducted and results were then averaged
to get more robust estimates of importance.

3.4 Training, Validation, and Testing Procedure

80% of the data was used for training, development, and validation of the
models while the remaining 20% was used to evaluate the out-of-sample
predictive performance of the models. We employed 5-fold cross-validation
to tune hyperparameters of machine learning algorithms and pick the best
combination of them for each type of model. We then applied these models
to the test data to determine the best one.

It is important to note that this setup "will produce slightly optimistic
estimates of the performance in new holdout data" (Salganik et al., 2020, p.
8401-8402). However, this bias is assumed to be negligible and the same
approach was used in the aforementioned machine learning challenge
published in the Proceedings of the National Academy of Sciences (PNAS)
(Salganik et al., 2020, p. 8401-8402). The same methodological approach
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Figure 4: Schema of Permutation Feature Importance calculation.

to tuning, testing, and interpreting the best-performing model on the test
data was practiced in the paper describing winning models for the Fragile
Families Challenge by Rigobon et al. (2019).

All data splittings implied stratification by the target variable to enforce
the similar distribution of the target variable in train and test subsets as
well as between cross-validation folds. Stratified splitting is a variety of
random splitting but the instances are sampled randomly within each class
of the target variable (Kuhn & Johnson, 2019).

3.5 Performance Metrics

Since the distribution of the target variable is roughly balanced (49.8% vs
50.2%) and there is no substantive importance of one class over another in
terms of the research questions, accuracy and ROC-AUC will be used to eval-
uate and compare the predictive power of the models. Accuracy is simply
a share of correctly classified instances while ROC-AUC presents a more
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complex metric that reflects the ability of the models to correctly classify
instances using different thresholds for determining class belonging.

Usually, in classification models, the decision of whether a particular
sample belongs to one class or another is determined based on the 0.5
threshold. If the estimated probability of a positive class for the set of
observations is greater than 0.5 these observations are assigned to a pos-
itive class and if it is smaller than 0.5 they are assigned to the negative
class. However, this threshold could be adjusted in order to find a compro-
mise between True Positive Rate (TP/(TP + FP)) and False Positive Rate
(FP/(FP + TN)). ROC-AUC measures True Positive and False Positive
Rates at different thresholds, plot these values (Receiver Operating Curve)
and calculates the area under this ROC curve. Thus, it is possible to com-
pare the performance of classification models by comparing areas under
respective ROC curves. ROC-AUC of the random classifier would be equal
to 0.5.

Despite that both accuracy and ROC-AUC are reported in this study,
ROC-AUC is the primary metric that hyperparameters were optimized
for during grid search on cross-validation. It was also used to determine
which model performs better on the test set as well as the primary metric
for assessing the drop in performance for the permutation-based feature
importance algorithm. Accuracy is also reported, however, the primary
intent for this is an ease of interpretation of the results and a concise and
expressive answer to the question "How accurately can we predict who will
get higher education?". The naive baselines for accuracy and ROC-AUC
were set by the random guessing principle and are equal to 0.502 and 0.5
respectively.

3.6 Programming Language and Frameworks

All data preprocessing and modeling were conducted in R programming
language (R version 4.1.2 (2021-11-01) by R Core Team (2021)). The tidy-
models framework was employed for combining data preprocessing, fea-
ture engineering, hyperparameter tuning, model training, validation, and
testing into a single workflow (Kuhn & Wickham, 2020). For feature im-
portance analysis and visualization, we used the DALEX package since
it provides built-in functionality for exploring and explaining machine
learning models from tidymodels framework (Biecek, 2018).
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Figure 5: Methodology and modeling pipeline schema.

4 results

4.1 Hyperparameter Tuning and Cross-Validation Results

In this paragraph, we present and discuss the results of the hyperparameter
tuning with grid search and cross-validation assessment of the predictive
performance of the models. As could be seen from Table 5, the fine-
tuned Random Forest model demonstrated the highest performance on
cross-validation while Logistic Regression, expectedly, scored the lowest.
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Table 5: Models’ accuracy and ROC-AUC with best hyperparameters on 5-fold
cross-validation. Standard errors calculated over 5-fold cross-validation are pre-
sented in the brackets.

Models Accuracy (s.e.) ROC-AUC (s.e.)
Elastic Net 0.733 (0.009) 0.804 (0.009)
XGBoost 0.728 (0.007) 0.800 (0.009)
Random Forest 0.737 (0.007) 0.799 (0.008)
Logistic Regression 0.728 (0.01) 0.798 (0.0116)
Baseline 0.502 0.5

4.1.1 Random Forest

As could be seen from Figure 6, tuning hyperparameters of Random
Forest has not led to substantial gains in the predictive performance on
cross-validation. The ROC-AUC values for different combinations of hyper-
parameters are spanned between 0.7965 and 0.7995. This was expected as
Random Forests are known for the good out-of-box performance (Boehmke
& Greenwell, 2019, p. 203). The best combination of hyperparameters with
800 trees, 10 randomly selected predictors, and a minimum node size of 11

achieved a ROC-AUC of 0.7995.

Figure 6: Grid search results for Random Forest.

4.1.2 XGBoost

The best performing combination of hyperparameters of XGBoost (see Table
6) achieved a ROC-AUC of 0.7998 on 5-fold cross-validation. Moreover,
XGBoost demonstrated the largest spread in performance for different
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hyperparameter combinations compared to other models – from 0.75 to
almost 0.80.

Table 6: Best hyperparameters’ values of XGBoost on 5-fold cross-validation.

Hyperparameters Best values
Number of trees 1208

Min N in nodes 19

Tree depth 5

Learning rate 0.0039

Loss reduction 0.0002

Sample size 0.69

Number of iterations 20

Interestingly, we can see a strong reverse U-shaped dependency of
ROC-AUC and log-transformed learning rate (see Figure 7). Moreover,
XGBoost specifications with a higher proportion of sampled observations
for tree growth on average demonstrated higher performance in terms of
ROC-AUC. On the contrary, the models with larger minimum node sizes
of the trees demonstrated lower performance. Both of these patterns might
happen because of the relatively high dimensionality of the data (N/p
ratio). Trees grown during gradient boosting might need more data to
detect potential interactions in the multidimensional space.
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Figure 7: Grid search results for XGBoost. Lines represent locally estimated
scatterplot smoothing (loess), and shaded areas around the lines are the 95%
confidence intervals.

4.1.3 Elastic Net

Elastic Net demonstrated the best performance on cross-validation across
all models. The best set of hyperparameters achieved a ROC-AUC of
0.8037 as could be seen from the Figure 8. Interestingly, the best Elastic
Net specification is more inclined towards Ridge regularization since the
mixture parameter is equal to 0.119. This could be explained by the fact
that the Ridge penalty could better handle correlated features (Boehmke &
Greenwell, 2019, p. 124). However, other hyperparameter combinations
show almost the same performance.
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Figure 8: Grid search results for mixture and logarithm of penalty hyperparame-
ters for Elastic Net.

4.1.4 Logistic Regression

Since Logistic Regression does not have any hyperparameters to tune
its’ performance was simply assessed on 5-fold cross-validation. It has
demonstrated the lowest performance and the highest standard error
estimated on 5-folds compared to other models – ROC-AUC = 0.798, std.
error = 0.0116. The higher standard error of the performance metric might
be an indicator of the greater degree of the model overfitting.

4.2 Performance on the Test Data

In this section, we report the performance of the fine-tuned models on the
hold-out test data. After determining the best sets of hyperparameters
for each model on the cross-validation, we retrained all models with the
best hyperparameters on the training data. Data transformations and
preprocessing described in the section 3.2 were also recalculated again
using the whole training data.

All models demonstrated slightly worse performance than on the cross-
validation (see Table 7, ROC curves are available in Appendix B). Nonethe-
less, all models substantially outperformed the baseline which was set
based on the random guessing principle.
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The best performing model on the test data is Random Forest with
a ROC-AUC of 0.798. However, in terms of accuracy, the best model is
XGBoost – 0.729. In other words, with XGBoost we can correctly classify
who will get higher education in almost 73% of the cases.

Overall, Elastic Net, Random Forest, and XGBoost demonstrated compa-
rable predictive performance and the differences are negligible. However,
Logistic regression demonstrated the worst performance with ROC-AUC
= 0.787 and accuracy = 0.717. Nevertheless, the difference in ROC-AUC
between Logistic Regression and the best performing algorithm, that is
Random Forest, is small. The ratio between the predictive performance of
the best model and the worst model is 0.798

0.787 = 1.014.

Table 7: Performance of the models on the test data.

Model Accuracy ROC-AUC
Random Forest 0.725 0.798

XGBoost 0.729 0.793

Elastic Net 0.725 0.792

Logistic Regression 0.717 0.787

Baseline 0.501 0.5

4.3 Predictors’ Importance

In this section, we explore the differences in features’ importance in pre-
dicting higher education completion between the best-performing machine
learning algorithm, that is, Random Forest and Logistic Regression. For
this purpose, we plotted in Figures 9, 10 the top 10 most important pre-
dictors for each algorithm derived by the permutation feature importance
approach introduced in the section 3.3.4.

There are two predictors that stand out in terms of impact on the
predictive performance of the Logistic Regression, both of them measured
on the school level: number of instructional days per week in school and
type of settlement where the school is located. Next, with almost twice
as small measure of predictive importance, is the educational aspirations
or, in terms of the survey question, the maximum level of education the
student plan to complete.

However, estimates of predictors’ importance in Logistic Regression
might be partly flawed because of the multicollinearity issue. Some pre-
dictors might apparently measure adjacent phenomena which could have
provoked the issue of multicollinearity between them in the Logistic Regres-
sion model. We assessed the Generalized Variance Inflation Factor (GVIF)
for all predictors in the Logistic Regression model and found out that there
are predictors with GVIFs larger than 5 which indicates multicollinearity
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issues for these predictors as suggested in Fox and Monette (1992) (see
Figure 13 in Appendix B). Notably, there is an overlap between predictors
with high GVIF values and those that are considered the most important by
the features permutation algorithm. Both "number of instructional days per
week in school" and "type of settlement of school location" are considered
important predictors and at the same time have high GVIF values that are
evidence of the multicollinearity issue for these predictors (Fox & Monette,
1992).

Figure 9: Permutation feature importance for Logistic Regression based on the
30 iterations. Box plots represent the range of predictors’ importance over 30

iterations.

As for the Random Forest’s features’ importance, educational aspira-
tions and educational achievement (the principal component of TIMSS
Mathematics and Science scores) play the most important role in predicting
higher education completion followed by sex. Interestingly, the predictors’
importance of the Random Forest model on average have much higher
spread when we look at the box plots in the Figure 10. One possible
explanation for this is that Random Forest is an ensemble of large trees and
predictors might appear in different trees and on different levels of these
trees, thus, interacting with other predictors in this branch, both on higher
and lower levels of the trees. Therefore, when the values of the feature
are permuted it might also affect the outcome because of the interactions
with other predictors. The magnitude of this effect could vastly vary from
permutation to permutation.
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Figure 10: Permutation feature importance for Random Forest based on the
30 iterations. Box plots represent the range of predictors’ importance over 30

iterations.

The Figure 11 presents the scatter plot and Pearson’s correlation be-
tween predictors’ importance in Logistic Regression and Random Forest
models. Although there is evidence of the moderate and statistically
significant correlation between predictors’ importance derived from Logis-
tic Regression and Random Forest models there are some discrepancies
between them as well.

Most notably, there are features that play a crucial role in predicting
higher education completion in Logistic Regression but they are considered
much less important by the Random Forest model. These are, as described
above, instructional days per week in school and the type of settlement
where the school is located. These two predictors have the greatest effect on
the predictive performance of the Logistic Regression but do not play such
a major role in the Random Forest model. On the other hand, predictors
that have the greatest impact on the predictive performance of the Random
Forest model are also playing a notable role in Logistic Regression. Those
are educational aspirations, educational achievement, and sex. More than
that, among the top 10 most crucial predictors in Logistic Regression there
are more school characteristics compared to the Random Forest model
where individual-level predictors prevail. Moreover, there is only one
school-level predictor among the top 10 most important predictors of
Random Forest – the number of students in 8 grade in the school.
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Figure 11: Scatter plot and Pearson’s correlation of predictors’ importance in
Logistic Regression and Random Forest. The line represents linear smoothing,
and the shaded area around the line is the 95% confidence interval.

5 discussion

The research goal of this study was to estimate how accurately we can
predict who will get higher education by the age of 25 based on the
information about socioeconomic background, family composition, school
characteristics as well as educational results, aspirations, and attitudes
from teenage years. Two other research sub-questions implied a comparison
of the predictive performance of the machine learning algorithms and
Logistic Regression as well as predictors’ importance of those models.

5.1 Results Discussion

Answering the main research question, we can conclude that with given
data it is possible to predict who will get higher education based on the
information from teenage years with moderately high accuracy – 0.725-729

depending on the algorithm. In other words, in almost 73% of the cases,
the machine learning algorithms can correctly predict who will get higher
education by the age of 25. Moreover, this result could be considered robust
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since all models demonstrated slightly higher but comparable performance
on cross-validation (0.728-0.733). Given that the naive baseline for the
target variable was 0.502 this result could be considered a significant
improvement over the random guessing benchmark. Although this result
does not come close to the (nearly) perfect predictions, it is intriguing
because presumably demonstrates promising findings on human behavior
prediction compared to other studies that made similar attempts (Bach et
al., 2021; Salganik et al., 2020). Nevertheless, it is undoubtedly impossible
to directly compare the predictive performance of studies that investigated
different phenomena and used different metrics.

As for the comparison of machine learning algorithms and Logistic
Regression, in our experimental and methodological setup, the fine-tuned
machine learning algorithms (Random Forest, Elastic Net, XGBoost) outper-
formed Logistic Regression in predicting higher education completion both
on cross-validation and test data. However, the difference between the
machine learning algorithms and Logistic Regression is neglectably small.
In more detail, the best-performing model, Random Forest, achieved a
ROC-AUC of 0.798 while the Logistic Regression scored 0.787. The ratio of
performance between two models is 0.798

0.787 = 1.014. In other words, Random
Forest’s discriminatory ability to predict higher education completion is
1.4% better than the respective ability of the Logistic Regression. The
small differences in predictive performance between fine-tuned machine
learning algorithms and classic regression models were also reported in the
Salganik et al. (2020, 2019). However, in the study by Salganik et al. (2020)
the benchmark models were estimated using four expertly preselected
predictors with one predictor being the outcome measured in the previous
period (survey wave). In our case, even if it would be of research inter-
est, it would be unfeasible to use the information about higher education
from the earlier waves because of the cumulative nature of this variable.
Once the individuals complete higher education, they will have this sta-
tus for the rest of their lives. Thus, information about higher education
from the previous waves for those individuals who had higher education
will deterministically define their outcome in the current, predicted, time
period.

Although there is some alignment between predictors’ importance in
the best-performing algorithm, that is, Random Forest, and the classic
Logistic Regression model, there are differences between them in this
regard as well. The most striking difference is that Logistic Regression
more heavily relies on the school-level predictors such as the number of
instructional days per week in school and the type of settlement where the
school is located. The importance of school-level features for the predic-
tive performance of the regression models in the domain of educational
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inequality was also reported in (Verhagen, 2021). For the Random Forest
model, on the other hand, the most important predictors are the individual
ones: educational aspirations, educational achievement, sex, and parents’
highest education. Interestingly, these predictors perfectly correspond with
the results from the explanatory studies discussed in the literature review
section 2.2. However, as further discussed in the section 5.2, predictors’ im-
portance in the Logistic Regression might be flawed by the multicollinearity
issue.

5.2 Limitations

One of the limitations of this study is lack of the strict criteria for the inclu-
sion of the variables in the analysis which introduce relative arbitrariness
in this process. However, based on the used variables it is possible to
reproduce and recreate the research design to some extent using the data
from similar longitudinal cohort surveys.

The other limitation is the sample size of the available data and its’
multidimensionality. Since the most powerful machine learning algo-
rithms achieve their’ superiority by detecting complex interactions and
non-linearities in the data, they might require more data to detect such
patterns (Shmueli, 2010, p. 295). This might be of special importance when
the ratio of the number of predictors to the sample size is large which
introduces the curse-of-dimensionality (Friedman, 1997). The fundamental
for this study paper by Salganik et al. (2020) also experienced this critique
(Garip, 2020, p. 8235). However, our study might be less prone to this
problem because of the preselection of the variables in the analysis while
in the study by Salganik et al. (2020), most teams used (nearly) all available
variables from multiple waves.

As for the predictors’ importance analysis, one of the main limitations
is the potential problem of multicollinearity in the Logistic Regression
model. Although multicollinearity does not affect the overall predictive
performance of the Logistic Regression it might affect the interpretation
of predictors’ importance since it might result in unstable regression co-
efficients, which in its turn, is a proxy measure of predictors’ importance.
We believe that this might impose significant restrictions on one of the
advantages of using Logistic Regression for predictive modeling – direct
interpretability of predictors’ importance through regression coefficients.
Thus, in some cases, it could require a trade-off between removal of the
collinear predictors for the sake of better interpretability and keeping
collinear predictors for the sake of better predictive performance. However,
given that more complex algorithms only slightly outperformed Logis-
tic Regression in our study and evidence from McKay (2019) that linear
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models with few expertly selected predictors can achieve almost the same
performance as sophisticated machine learning models with thousand of
predictors, we might expect that removal of collinear predictors might not
result in a substantial drop in the predictive performance but in the same
time can offer clear interpretation for such models.

5.3 Future Research

The research design implemented in this study could be extended and
applied to data from other countries and sociocultural contexts. The
predictability of the higher education completion based on the information
from the teenage years might be an intriguing metric itself that could be
compared between contexts and time. Moreover, the predictive studies as
suggested in (Garip, 2020, p. 8235) could benefit from using large sample
sizes.

If such studies would be also interested in employing classical Logistic
Regression because of its’ interpretability they could employ Lasso regular-
ization to enjoy data-driven feature selection (Boehmke & Greenwell, 2019,
p. 125). However, the regression coefficient estimates derived from the
regularized models are distorted due to the shrinkage which is imposed
on them during regularization and could not be considered an unbiased
estimates (Knaus, 2021, p. 287). One of the possible solutions could be the
usage of fine-tuned machine learning algorithms, selection of the feasible
number of the most important predictors, and further exploration of the re-
lationship and interactions between them with more complex explanatory
methods – structural equation modeling, multilevel regressions, causal
inference techniques, etc.

Future research interested in gains in predictive performance could
also try deep learning approaches crafted for the tabular data – for ex-
ample, TabNet (Arık & Pfister, 2021). TabNet is the novel architecture of
deep neural networks that employ a sequential attention approach and is
declared to be a good fit for tabular data (Arık & Pfister, 2021). However,
this approach might also require larger sample sizes to take advantage of
architectures that allow the detection of more complex, non-linear, and
detailed patterns in the data.

6 conclusion

Overall, this study contributes to the growing body of research in predic-
tive modeling in Social Sciences as well as to the Educational Studies by
answering the following research questions:
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RQ1 To what extent can we predict higher education completion by the age of 25
based on the educational and background information from teenage years?

The study revealed that using data about the various educational,
background, and family characteristics from teenage years we can correctly
predict with an accuracy of 72-73% which eighth-graders will get higher
education by the age of 25.

This finding could be useful for social policy and can be used for more
tailored educational interventions. Moreover, this result suggests that some
life outcomes could be predicted relatively well which collides with the
results achieved by previous predictive research in the sphere of life-course
studies (Salganik et al., 2019).

RQ2 Do the machine learning algorithms outperform classic statistical model,
that is, logistic regression in predicting higher education completion?

All tested machine learning algorithms slightly outperformed Logistic
Regression. On the one hand, this result might argue for the usage of
more sophisticated algorithms in predictive studies. On the other hand,
one might consider it as an argument for the usage of linear models as
more interpretable and robust which at the same time achieves comparable
performance with sophisticated but less interpretable machine learning
algorithms.

RQ3 What are the differences in predictors’ importance between classic statistical
model, that is, logistic regression and best-performing machine learning
algorithm in predicting higher education completion?

The main difference is in type of predictors that are considered influen-
tial for Logistic Regression and Random Forest (best-performing algorithm).
The former mostly relies on school-level predictors while the latter gives
higher importance to the well-known in the literature individual-level
predictors: educational aspirations and results, sex, and parents’ education.
Nevertheless, there is moderate correlation between predictors’ importance
of two models. However, the predictors’ importance of the Logistic model
might be flawed by the multicollinearity issue.

7 data source/code/ethics statement

Work on this study did not involve collecting data from human participants
or animals. The data is available for researchers upon request from the
data operator. The author of this study acknowledges that they do not
have any legal claim to the data. The code used in this study is available at
GitHub. All figures and tables in this study are made by the author.

https://trec.hse.ru/en/
https://github.com/bogdanovm/MB_Thesis.git
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appendix a

Table 8: Variables selected for the analysis.

Variable Label in TIMSS data
idstud TIMSS student id
itbirthy *date of students birth\year*
itsex *sex of students*
bsbg03 gen\often speak <lang of test>at home
bsbg04 gen\amount of books in your home
bsbg05a gen\home possess\computer
bsbg05b gen\home possess\study desk
bsbg05c gen\home possess\books
bsbg05d gen\home possess\own room
bsbg05e gen\home possess\internet connection
bsbg05f gen\home possess\<country specific>
bsbg05g gen\home possess\<country specific>
bsbg05h gen\home possess\<country specific>
bsbg05i gen\home possess\<country specific>
bsbg05j gen\home possess\<country specific>
bsbg05k gen\home possess\<country specific>
bsbg07 gen\how far in edu do you expect to go
bsbg08a gen\<stmo or fem guard>born <country>
bsbg08b gen\<stfa or ma guard>born in <country>
bsbg09a gen\born in <country>
bsbg09b gen\born in <country>\age of coming
bsbg11a gen\how often\home\parents ask learning
bsbg11b gen\how often\home\talking about school
bsbg11c gen\how often\home\parents make sure
bsbg11d gen\how often\home\parents check homewor
bsbg12a gen\agree\being in school
bsbg12b gen\agree\safe at school
bsbg12c gen\agree\belong at school
bsbm33ba mat\hm\minutes spent on hmwork\mat
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Table 8 continued from previous page
Variable Label in TIMSS data

bsbb33bb bio\hm\minutes spent on hmwork\bio
bsbe33bc ear\hm\minutes spent on hmwork\ear
bsbc33bd che\hm\minutes spent on hmwork\che
bsbp33be phy\hm\minutes spent on hmwork\phy
bsmmat01 *1st plausible value mathematics*
bsmmat02 *2nd plausible value mathematics*
bsmmat03 *3rd plausible value mathematics*
bsmmat04 *4th plausible value mathematics*
bsmmat05 *5th plausible value mathematics*
bsssci01 *1st plausible value science*
bsssci02 *2nd plausible value science*
bsssci03 *3rd plausible value science*
bsssci04 *4th plausible value science*
bsssci05 *5th plausible value science*
bsbgher *home educational resources /scl*
bsbgsbs *students bullied at school/scl*
bsbgslm *students like learning mathematics/scl*
bsbgsls *students like learning science/scl*
bsbgslb *students like learning biology/scl*
bsbgslc *students like learning chemistry/scl*
bsbgslp *students like learning physics/scl*
bsbgsle *students like learning earth science/scl*
bsbgsvm *students value learning mathematics/scl*
bsbgsvs *students value learning science/scl*
bsbgsvb *students value learning biology/scl*
bsbgsvc *students value learning chemistry/scl*
bsbgsvp *students value learning physics/scl*
bsbgsve *students value learning earth sci/scl*
bsbgscm *student confidence with mathematics/scl*
bsbgscs *student confidence with science/scl*
bsbgscb *student confidence with biology/scl*
bsbgscc *student confidence with chemistry/scl*
bsbgscp *student confidence with physics/scl*
bsbgsce *student confidence with earth sci/scl*
bsbgeml *students engaged in mathematics lessons/scl*
bsbgesl *students engaged in science lessons/scl*
bsbgebl *students engaged in biology lessons/scl*
bsbgecl *students engaged in chemistry lessons/scl*
bsbgepl *students engaged in physics lessons/scl*
bsbgeel *students engaged in earth science lessons/scl*
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Table 8 continued from previous page
Variable Label in TIMSS data

bsdgedup *parents’ highest education level*
bcbg01 gen\total enrollment of students
bcbg02 gen\total enroll <eighth grade>std
bcbg03a gen\students background\economic disadva
bcbg03b gen\students background\economic affluen
bcbg04 gen\percent of students <lang of test>
bcbg05a gen\how many people live in area
bcbg05b gen\immediate area of sch location
bcbg05c gen\average income level of area
bcbg06a gen\instructional days per year
bcbg06c gen\instructional days in 1 calenderweek
bcbg07 gen\total number computers
bcbg08a gen\existing science laboratory
bcbg08b gen\existing assistance during exp

bcbgsrs
*instruction affected by
science resource shortages/scl*

bcbgmrs
*instruction affected by
mathematics resource shortages/scl*

bcbgeas
*school emphasis on academic success
- principal reports/scl*

bcbgdas *school discipline and safety/scl*
bcdg03 *school composition by student backgd*
bcdgcmp *computer availability for instruction*
bcdg06hy *total instructional hours per year*

appendix b
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Figure 12: ROC-AUC of the models on the test data.



REFERENCES 41

Figure 13: Histogram of the squares of Generalized Variance Inflation Factor
adjusted by the degrees of freedom for the particular predictor. The blue vertical
line represents the threshold for the rule-of-thumb for multicollinearity.
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