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Abstract

Companies often have the feeling they do not reclaim all possible
VAT. Therefore, they seek help from external consultants and tax
advisors to optimise their VAT reclamation process. As these third
parties have to go through all VAT-free deemed invoices manually to
look for reclaimable VAT, they seek methods to automatically classify
invoices. This research aims to investigate whether various machine
learning methods are able to identify VAT on incoming invoices which
were previously deemed VAT-free. Following the findings of Freitas
(2004) and Mori and Uchihira (2019), we propose to use techniques
along the lines of the accuracy interpretability trade-off stating that
models become more accurate, the more complex they get. Therefore,
we have tested a decision tree, a random forest, a gradient boosting,
and explainable boosting classifier using invoices and metadata from
the ERP system from a multinational active in the chemical industry.
This research proposes two novelties. The first one is the identification
of VAT instead of the identification of line items, while the second
one is classifying invoices based on ERP data instead of attempting
to extract features from the invoice itself. On the basis of several
threshold and ranking metrics, we found the random forest classifier
to perform best.

data source/code/ethics statement

Work on this thesis did not involve collecting data from human partici-
pants or animals. The original owner of the data and code used in this
thesis retains ownership of the data and code during and after the com-
pletion of this thesis. The author of this thesis acknowledges that they
do not have any legal claim to this data or code. The code used in this
thesis is available on GitHub when given access by the administrator:
https://github.com/albertaletrino/thesis-Aletrino.
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1 introduction

The processing of invoices can be a very tiresome task for companies,
especially on the receiving end of them. AP (Accounts Payable) clerks have
to manually read the invoice and input the information into the ERP (En-
terprise Resource Planning) system (Van Loo et al., 2015). This is especially
difficult regarding the tax code determination as AP clerks will have to
possess some basic knowledge of VAT (Value Added Tax) regulations. This
makes VAT recovery a very cumbersome task. Tax consultants, therefore,
offer their services to check for VAT recovery potential (Horsthuis et al.,
2020). Although they do possess the required knowledge, the process is
still executed manually. Therefore, the question is raised whether this
undertaking can be automated.

Contemporary literature emphasises an upcoming awareness of VAT
compliance (Lahann et al., 2019) and VAT reclamation optimisation (Horsthuis
et al., 2020). This VAT reclamation works as follows: companies are al-
lowed to reclaim their VAT over their business expenses (Belastingdienst,
2020). Incoming invoices are categorised into two classes: VAT-reclaimable
invoices and VAT-irreclaimable invoices. The latter constitutes primarily of
invoices which are deemed VAT-free. However, oftentimes, companies have
the feeling invoices belonging to the first class, accidentally fall into the
second class due to a non-functioning OCR (Optical Character Recognition)
system or because of manual failure of AP clerks. Therefore, they hire the
expertise of external tax consultants to check whether the invoices which
were deemed VAT-free actually do have VAT stated on them as this offers
them a one-off cash opportunity. Since the majority of invoices have been
processed correctly, most invoices sent to tax advisors are indeed VAT-free.
However, this causes tax advisors to go through correctly assessed invoices
unnecessarily. Therefore, tax advisors would benefit from a system which
could process VAT-free deemed invoices and predict whether the client
has assessed the invoice correctly. Using data from the ERP system, one
is able to identify VAT on incoming invoices employing several machine
learning methods. This constitutes a binary classification problem which
categorises invoices into two classes: VAT-free and VAT-carrying invoices.
Hence, the following research question is constructed:

RQ “To what extent are machine learning techniques able to identify whether
VAT is actually present on incoming invoices that have been deemed VAT-
free?”

Only incoming invoices are assessed as only the VAT on the accounts
payable side of operations is able to be reclaimed. Following the views of
Freitas (2004) and Mori and Uchihira (2019), a decision tree, random forest,
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gradient boosting, and explainable boosting classifier have been chosen
based on the accuracy interpretability trade-off. Additionally, these will be
evaluated based on several threshold and ranking metrics. Therefore, the
following sub research questions have been drawn up:

sub-RQ1 "What is the performance of a decision tree classifier to identify whether VAT
is stated on incoming invoices in terms of threshold and ranking metrics?"

sub-RQ2 "What is the performance of a random forest classifier to identify whether
VAT is stated on incoming invoices in terms of threshold and ranking
metrics?"

sub-RQ3 "What is the performance of a gradient boosting classifier to identify whether
VAT is stated on incoming invoices in terms of threshold and ranking
metrics?"

sub-RQ4 "What is the performance of a explainable boosting classifier to identify
whether VAT is stated on incoming invoices in terms of threshold and
ranking metrics?"

Note that the adopted sub-research questions are solely focused on the
comparison of performance between models. However, the required steps
for a data science research strategy are set forth in the experimental setup
section.

This research aims to investigate whether machine learning methods
are able to identify VAT on incoming invoices previously deemed VAT-free
in addition to finding out which method performs best. As we only asses
those invoices which, at first glance, have been deemed VAT-free, the data
constitutes of a huge class imbalance. To identify whether VAT is states
on these invoices, we turn to ERP data which constitutes of information
of the line items per good or service delivered, which was manually
inputted by AP clerks. Classifiers were assessed relative to a no-skill
classifier on the basis of several threshold and ranking metrics. Threshold
metrics constituted of precision, recall, and F2-scores, while ranking metrics
included of ROC (Receiver Operator Characteristic) curves, PR (Precision
Recall) curves as well as AUC (Area Under the Curve) scores. Against
the expectations, the random forest classifier was deemed to perform best
relative to the other classifiers.

The remainder of this paper is structured as follows: section 2 will
describe prior research on the optimisation of the VAT reclamation and
the current status of invoice classification methods. Section 3 and 4 will
describe the employed methods as well as give an explanation of the
general flow of the research and its evaluation methods. Thereafter, the
general findings of this research will be presented in section 5. Next,
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section 6 will set forth a discussion where the findings of this research
will be critically examined. In here, practical implications, limitations, and
recommendations for future research will be given as well. Lastly, section 7

will close with a brief conclusion.
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2 related work

This section will give a brief overview of the relevant work in current
literature. First, a short introduction into the workings of the VAT and VAT
analytics in general will be given, after which we will touch briefly on the
function of an ERP system. Lastly, the progress on invoice classification
will be discussed in more detail.

2.1 Value Added Tax

VAT is an indirect tax designed to tax the consumption of goods and
services. However, the tax is not directly levied at consumers, but levied
at every player along the supply chain (Goossenearts et al., 2009). Tax
authorities make a distinction between a taxable person and a person who
is tax due. A taxable person can be any player along the supply chain,
e.g. a supplier company, while a person who is tax due is always the
consumer. This implies that every transaction between two suppliers is
VAT due, while a consumer does not have to be at the other end of the
transaction. Subsequently, suppliers are allowed to reclaim their paid VAT
over business expenses in most cases (Belastingdienst, 2022). However,
Pijnenburg et al. (2017) claim it is detrimental for tax administrations to
become more efficient as the workload is expanding, while staff is reduced
and budget is cut. Davenport and Harris (2007) propose a solution in which
companies should invest and double down on analytics in order to generate
a competitive advantage. Although the competitive advantage by gaining
insights into your VAT reclamation does not seem clear cut, gaining an
better understanding of your internal processes is always valuable practice
in addition to earning a one-off cash opportunity. In fact, if you reclaim too
much, this is fraudulent, if you reclaim too little, you miss out on income.
VAT declaration fraud annually leads to billions of losses for EU member
states, with the VAT gap being approximately 9.6% in 2020 (European
Commission, 2020). Keen (2007) explains that this is partly due to the
way this indirect tax is set up. By creating a system in which VAT can be
reclaimed from the tax authorities, governments give way to criminals who
can abuse this.

2.2 VAT reclamation

Until now, there has not been done a lot of academic research into the
optimisation of VAT reclamation. Van den Biggelaar et al. (2008) conclude
that companies lack the willingness to exploit their ERP systems, while
simultaneously have a large risk exposure regarding VAT. They state a
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combination of expert tax knowledge and ERP technical knowledge is
needed to remedy those risks. However, this research argues the opposite.
When VAT can be recognised on invoices without human intervention,
only expert tax knowledge is needed to be able to determine whether
the VAT stated is actually reclaimable. In addition, tax authorities are
doubling down on data analytics as well as making them increasingly
better in performing VAT audits (Van Loo et al., 2015). It is therefore
even more important companies have their own VAT processes aligned
with regulations. Lahann et al. (2019) confirm this issue and propose
various machine learning methods to increase VAT compliance. Using ERP
data, the authors trained a classifier to predict tax rates based on related
voucher information of journal reports. This research builds on the work
of Lahann et al. (2019) by employing similar data to determine whether
VAT is present on invoices.

2.3 ERP management

This research aims to classify invoices based on ERP data. Therefore, a
small light is shed on the definition and workings of ERP systems. Enter-
prise Resource Planning systems generally have the function to automate
and integrate a majority of business functions for companies through the
use of various software modules (Davenport, 1998). Examples of automa-
tion and integration are the sharing, accessing, and practicing of data and
information. The author identifies the defining feature of an ERP system
as the integration of different organisational functions. This means that
data only has to be entered once, making it available for the complete
organisation to observe and use.

2.4 Invoice classification

Lastly, the current state of invoice classification will be discussed. Bartoli
et al. (2010) classify invoices based on the nature of information they
contain. The authors do this based on low-level features they extracted
from the invoices themselves. They find their performance to rely solely
on the employed classifier and selection of features used. Sorio et al.
(2010) employ a similar approach, only this time they feed the classifier
instances one at a time, providing an online learning approach. They
find a support vector machine classifier to perform just as well as other
classifiers in a closed world setting, i.e. a batch learning approach. The
current state-of-the-art technique for the identification of invoices is OCR
(Optical Character Recognition) technology. Tarawneh et al. (2019) propose
a method employing OCR technology in which they classify invoices into
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three categories: handwritten, machine-printed, or regular receipts. To do
so, they employ a random forest, k-nearest neighbours, and naïve Bayes
approach and find the k-nearest neighbours classifier to perform best based
on accuracy. Larsson and Segeras (2016) employed a similar OCR approach
to recognise and classify line items on invoices.

On the other end, their have been efforts to optimise the invoice man-
agement process by implementing a standard electronic invoice format. In
Italy, this has been mandatory for Italian companies since January 2019.
Bardelli et al. (2020) have implemented a multiclass classification approach
to classify invoices into account and VAT codes. They found random
forests to outperform boosting techniques on the subject matter. Khan et
al. (2020) employed neural nets to predict posting parameter on incoming
invoices, while Hamza et al. (2009) used a special type of neural network,
an incremental growing neural gas, to classify documents into eight distinct
classes. Additionally, Freitas (2004) and Mori and Uchihira (2019) describe
a trade-off between the accuracy and interpretability of machine learning
models. When deciding which algorithm suits your problem best, one
should take this trade-off into account. Therefore, we will elaborated on
this further in the methods section. These works show the progress aca-
demic research has made regarding the classification of incoming invoices.
This research attempts two novelties. The first one is the prediction of VAT
on invoices, instead of regular line item classification. Although the latter is
much more important in determining whether VAT is actually deductible,
technology has not yet been proven capable of replacing an expert tax
advisor. Therefore, this research takes a step back and only attempts to
recognise VAT such that a tax expert can determine its deductibility. The
second novelty will be making a classification based on features found in
ERP data. Current research has mainly focused on features extracted from
the invoices itself, while a rich database is usually already present in the
companies themselves.
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3 methods

In the following section, the choice for the employed algorithms will be
laid out. Similarly, the choice to leave out specific algorithms will be sub-
stantiated. Thereafter, the inner workings and mathematical foundations
of the chosen algorithms will be described.

3.1 Classification

This research aims to predict whether incoming invoices have VAT stated
on them using various machine learning techniques, making it a classical
binary classification problem: invoices either fall into a class with VAT or
into a class without VAT. Unlike linear regression, a classification problem
is characterised by the fact that the response variable is qualitative, rather
than quantitative (James et al., 2013, p. 129). This implies that the machine
learning methods should be chosen such that they support a binary or
multiclass outcome. Additionally, as the findings of this research will
be used by tax advisors to further optimise their processes, there is a
need for the model to be sufficiently interpretable, i.e. comprehensible.
Mercado et al. (2016) argue that comprehensibility stems from the degree
to which a model is transparent. Therefore, we follow the definition of
transparency of Chen et al. (2014) stating that agent transparency is an
interface’s quality to make an intelligent agent’s intent, performance, future
plans, and reasoning process comprehensible for an operator. In general,
there has been a development amongst artificial intelligence practitioners
to make their algorithms more comprehensible (Miller, 2019). In the XAI
(explainable artificial intelligence) domain, it is hypothesised that the
greater the level of transparency in the algorithm, the more likely one
is to trust the outcome (Mercado et al., 2016; Miller, 2019). With respect
to this research, tax advisors are more likely to trust and, therefore, use
a machine learning technique in their daily practice when it is founded
upon transparent and legally-binding rules. This is partly due to their
fiduciary responsibility in their agent-principal relationship (Jensen, 1983).
Therefore, this research chooses to opt for machine learning algorithms
based on the accuracy versus comprehensibility trade-off, meaning that it
is attempted to optimise the accuracy of several machine learning model
while keeping the nature of the algorithm as understandable as possible
(Freitas, 2004; Mori & Uchihira, 2019). The accuracy comprehensibility
trade-off works as follows: on the x-axis, we have the comprehensibility,
while the y-axis represents the accuracy. In the bottom right corner, we
have the easiest to understand algorithms with poor performances, while
the top left corner contains difficult to understand black-box models with
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very high performances. An imaginary line can be drawn between these
two corners and we will choose algorithms which are situated along this
line.

First, a simple decision tree will be used to classify the invoices. Al-
though its workings are easy to understand, the model will probably
perform poorly. Secondly, a gradient boosting classifier will be used
to tackle our problem. This model already comes closer to a black-box
model, which inner workings are more difficult to understand but prob-
ably will perform better. Thirdly, a random forest classifier, which sits
in between the two previously mentioned classifiers will be employed as
well. Additionally, a explainable boosting classifier will be added, which
is a state-of-the-art classifier which resides in the upper right corner of
the accuracy comprehensibility axis, meaning its both accurate as well as
interpretable.

3.2 Alternatives

One other important factor to keep in mind are characteristics of each
classifier. These characteristics determine whether a certain classifier would
be fit for the prediction in this specific research. Classifiers which were
considered but left out were a support vector machine, a naïve Bayes
classifier, and a k-nearest neighbours approach. In the following, we will
briefly touch upon the reasons for disregarding these classifier.

First, a support vector machine struggles with its performance when
handling big datasets (Cervantes et al., 2020). As this research aims to
aid large multinationals with reducing its invoice load, one should take
into account that such companies sometimes process thousands of invoices
on a daily basis. Therefore, when considering future use, support vector
machines do not seem fit. Secondly, a naïve Bayes classifier assumes all
features to be independent, which rarely happens in real life. Additionally,
such a classifier struggles with categorical data unseen in the training
data, yet present in the test data (Zhang, 2004). This is not uncommon for
invoices received from all different kinds of suppliers, selling all different
kinds of products and services. Lastly, a k-nearest neighbours approach
is computationally very expensive and decreases in speed with the size
of the data set. In addition, its performance decreases when dealing with
imbalanced data. In the following section, this will be explained in more
detail. Additionally, it is difficult to determine the optimal of value k
and misspecifying this will lead to either under- or overfitting (Jadhav &
Channe, 2016).
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3.3 Mathematical foundations

In the following section, the workings as well as mathematical foundations
of the employed classifiers will be given. The algorithms are ordered
ascending in complexity.

3.3.1 Decision tree

Decision tree learning is a machine learning method in which a decision
tree is made up from a set of training instances where a split is induced
based upon a certain decision criterion (Su & Zhang, 2006). Its simplified
workings are displayed in figure 1. A decision tree’s splitting criterion can
either be a given feature of the training set or based upon an actual criterion
such as gini impurity or entropy (Shalev-Shwartz & Ben-David, 2014, p.
250). The splitting is continued until all instances at the end of a node have
the same target label. This process is called recursive partitioning. It is
claimed to be one of the most widespread and successful learning methods
due to four main characteristics: its simple and understandable nature,
the fact that no parameters are needed, and the ability to handle data of
various types. Decision tree learning is described as a greedy, top-down,
and recursive learning process as the complete training data is used to
train upon an empty tree (Su & Zhang, 2006).

Start

Decision 1 yesno

End nodeDecision 2no yes

End node Decision 3

Figure 1: Simplified visualisation of the workings of a decision tree classifier
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3.3.2 Random forest

A random forest classifier stems from the decision tree learning method. In
decision tree learning, trees can have the tendency to overfit to the training
data because they keep splitting until all instances from a subset at a node
belong to the same target class (Shalev-Shwartz & Ben-David, 2014, p. 250).
A random forest classifier solves this by averaging multiple deep decision
trees, all trained on a different subset of the training data (Hastie et al., 2009,
p. 587). On the other hand, this also implies that the comprehensibility of
the combined trees decreases in addition to an increase in bias. However,
this is often accepted as the performance increases drastically.

3.3.3 Gradient booster

A booster is simply a general method to boost the accuracy of any given
machine learning method (Schapire, 1999). In fact, boosting has been one of
the most powerful additions to the domain of machine learning in the last
twenty years (Hastie et al., 2009, p. 356). A regular boosting method entails
combining the outputs of several weak classifiers to come together as one
powerful committee. This is displayed in figure 2. Weak classifiers are
defined as classifiers whose error rate is only slightly better than random
guessing. When sequentially applying weak classifiers to modified versions
of the data, one essentially boosts the data until it has reached the desired
accuracy, thereby producing a sequence of weak classifiers Gm (x), m =
1,2,. . . ,M (Hastie et al., 2009, p. 356). Next, the predictions of all the weak
classifiers are combined through a weighted majority vote:

G(x) = sign(
M

∑
m=1

αmGm(x)) (1)

Here, the weak classifiers are displayed as a series of rounds m = 1,. . . ,M.
G(m) represents a hypothesis for the weight each classifier should receive,
with weak learners receiving a higher weight such that the algorithm
focuses more on the difficult examples. αm are parameters chosen by the
boosting algorithm and measures the importance of G. A gradient booster
differs from a regular boosting method by adding an optimisation of an
arbitrary loss function.



3 methods 12

Start Data Classifier 1

Data Classifier 1&2

Data Classifier 1,2&3

Figure 2: Simplified visualisation of the workings of a gradient boosting classifier

3.3.4 Explainable booster

An explainable boosting method builds on the basics of the AdaBoost
method of Schapire (1999), yet is able maintain the perfect trade-off being
intelligibility and comprehensibility (Nori et al., 2019). It is a state-of-the-
art glassbox model which looks like the following generalised additive
model:

g(E[y]) = β0 + ∑ f j(xj) (2)

Where β0 depicts a standard coefficient. fj is a regular feature function,
which is, in this case, bagging or gradient boosting. g represents the link
function which combines a regular boosting function to a regression or
classification. Additionally, an explainable boosting classifier is able to
increase accuracy while maintaining comprehensibility using the following
equation:

g(E[y]) = β0 + ∑ f j(xj) + ∑ fi j(xi, xj) (3)

Lastly, the reason why an explainable boosting classifier is so easy to
understand is because one is able to plot the contribution of each feature to
the final prediction by plotting fj. This is due to the fact that an explainable
boosting classifier is an additive model and therefore, each feature, adds to
the performance of the model (Nori et al., 2019).
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4 experimental setup

The following section gives a detailed description of the multifaceted ap-
proach to this classification problem. First, the data set and complementary
exploratory data analysis will be discussed, before the processing of the
data will be described. Afterwards, a section on the evaluation metrics and
criteria will be given. The complete processing and analysis of the data has
been conducted using Python 3.5 in a JupyterLab environment.

4.1 Data description

The data represents a portion of the incoming invoices of a multinational
active in the chemical industry which were deemed VAT-free. 4,595 invoices
have been assessed of which 153 contain VAT and 4,418 do not contain
VAT. These invoices are entered per line item in the ERP system meaning
that the initial 4,595 invoices lead to a total of 55,425 line items of which
1,177 contain VAT and 54,248 do not contain VAT, which constitutes a huge
class imbalance. The data is complemented by ERP data with metadata
regarding the line items which was gathered by AP clerks of the firm.
As the objective of this research is to identify all invoices which contain
VAT, line items containing no VAT that are situated on an invoice which
does contain VAT were- given a positive label as well. To tackle the class
imbalance, stratified sampling is employed to set aside a test set consisting
of 20% of the complete sample which resembles the complete data set in
terms of class distribution.

The ERP data constitutes of 68 mostly categorical features, only the
document values constitute a numerical value, and is presented in table 6,
Appendix A. Invoices are sent from 23 different countries and received
in 44 different countries. Goods and services posted on the line items
are subdivided into 256 different product groups. There are 54,360 credit
invoices of which 1,111 contain VAT, while there are only 1,065 debit
invoices of which 66 contain VAT. Additionally, SIC codes are added to the
suppliers to group companies per industry they are active in. SIC codes
were retrieved from the Eikon Datastream database and constitute 4 digits
where each digit is a subcategory from the digit to its left. In our sample,
there are 446 unique SIC codes which originate from 9 different industries
and 83 different subindustries.

4.2 Process

In figure 3, the workflow of this research is displayed. This can be sub-
divided into six components: preprocessing, feature engineering, feature
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selection, over- and undersampling, hyperparameter tuning, evaluation,
and error analyses.

Figure 3: General overview of the workflow of the research

First, the preprocessing of the data and feature engineering is conducted.
Incomplete variables are imputed with the mode of that specific variable
and all categorical features are binarised in order to be able to work
with them. As mentioned previously, additional features are created to
categorise companies into their first, second, and third digit of their SIC
code. Additionally, a ‘crosscountryborder’ feature is added which states
whether a good or service has been delivered in a country other than the
country of supply. Next, a Pearson’s Chi2̂ test is used for feature selection
to determine which features should be entered into the model. This test is
chosen as it tests for independence between categorical variables (Kuhn &
Johnson, 2019). Ultimately, one can remove those features from the data set
that prove to be independent of the target variable. The scikit-learn library
SelectKBest has been used to execute this test and the benchmark is set at
10, such that all variables falling below this threshold will be removed. The
model is then left with 9 features which are presented and explained in
table 7, Appendix B.

Secondly, to remedy the class imbalance, SMOTE (Synthetic Minority
Oversampling Technique) is used to oversample the minority class (Chawla,
2002). This is done in an effort to make the algorithm learn from as much
instances as possible without adding too much ’fake’ information to the
model. The technique works by selecting a few instances from the minority
class and generate its k-nearest neighbours inside the minority class. A
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line is drawn between the original instance and its k-nearest neighbour.
Subsequently, a new synthetic instance is created along that line and
added to the feature space (He & Ma, 2013, p.47). Additionally, Chawla
(2002) describes that a combination of SMOTE oversampling and random
under-sampling will generate the best performance. After testing various
configurations, the best results were generated when the minority class
was increase up to 10% of the complete sample and the majority class was
trimmed down to 30% of its initial size. This is done keeping in mind that
not too much synthetic data should be added by oversampling and not too
much information should be lost by undersampling.

Next, the aforementioned algorithms are run using scikit-learn packages
for the decision tree, random forest, and gradient booster. An InterpretML
package is used to run the explainable booster. Additionally, a K-fold
cross validation approach is employed on the training data. This statistical
method involves randomly leaving a fold out of the training data which
can then be used as validation (James et al., 2013, p. 183). The choice for
k is set rather arbitrarily. Therefore, the choice for k is set to 10, which is
common practice in the domain of machine learning as it provides a good
trade-off between computational efficiency and bias (Kuhn & Johnson,
2013, p. 70).

Lastly, grid searches are used for hyperparameter tuning to find the
optimal configuration of each model in combination with a 5-fold cross
validation. However, as the hyperparameters and corresponding values
can lead to a very high number of possibilities, only a few hyperparameters
per algorithm will be chosen to be optimised. In fact, hyperparameter
tuning is often warranted and not recommended due to this very reason
(Bergsta et al., 2011). However, Montavoni et al. (2018) prove that the
more complex the data gets, the more an algorithm will benefit from
hyperparameter tuning. The hyperparameters that were chosen to be
optimised are presented in table 1. This eventually came down to the
configurations displayed in table 8 in Appendix C.

Table 1: Optimised hyperparameters per algorithm and number of fits needed

DTC RFC GBC EBC

criterion max features learning_rate learning_rate
min_samples_split min_samples_split min_samples_split interactions
min_samples_leaf min_samples_leaf min_samples_leaf min_samples_leaf

n_estimators n_estimators

150 450 720 135

DTC: Decision Tree Classifier, RFC: Random Forest Classifier, GBC: Gradient
Boosting Classifier, EBC: Explainable Boosting Classifier
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4.3 Evaluation

In order to gain valuable insights from the analyses, it is of the utmost
importance to take a look at how one should evaluate the models (Sun et
al., 2009). Additionally, to assess the performance of our classifiers, we will
compare them to a no-skill classifier which consists of a dummy classifier
employing a stratified strategy.

Accuracy is traditionally the leading measure to evaluate classification
problems. However, due to the huge class imbalance, accuracy does not
contain that much of an added value in this case. For example, even a
simple majority baseline would reach an accuracy of 99% in our data set.
Therefore, one must look for other evaluation measures. Ferri et al. (2009)
propose a distinction of evaluation measures: threshold metrics, which
give the evaluator a qualitative understanding of error and ranking metrics,
which give an impression of the algorithm’s ability to separate classes.
Thresholds metrics constitute, amongst others, the accuracy, precision,
recall and Fβ-score, while the ranking metrics contain the ROC (Receiver
Operating Characteristic) curve, the PR (Precision Recall) curve, and the
AUC (Area Under the Curve). The authors propose a third evaluation
metric as well, namely probabilistic metrics. However, as these are not in
line with the models of this research, these metrics are disregarded.

Threshold metrics quantify the prediction errors of the classification
algorithms. As discussed prior, the accuracy is the ratio of correctly
predicted instances versus all predictions made displayed in equation 4.

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

where TP denotes the true positives, TN the true negatives, FP the false
positives, and FN the false negatives. Positive and negative relate to the
positive minority and negative majority class. The precision score displays
the ratio of correctly identified instances of the relevant class versus the
instances that were identified as being relevant, while recall shows the
ratio of correctly identified instances of the relevant class versus all the
relevant (positive) instances that are actually in the sample. Both metrics
are displayed by equations 5 and 6.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

The Fβ-score represents the mean between these two metrics and is
displayed by equation 7. Keeping the objective of this research in mind,
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it is more costly to identify an invoice containing VAT as VAT-free than
the other way around. Therefore, recall is given additional weight in the
Fβ-score, such that we will assess our findings based on an F2-score instead
of an F1-score, which is the harmonic mean between precision and recall.

Fβ − score =
(1 + β2) ∗ (Precision ∗ Recall)

β2 ∗ Precision ∗ Recall
(7)

Ranking metrics, on the other hand, do not quantify the prediction
error but evaluate classifiers based on their ability to separate classes (Ferri
et al., 2009). In addition, ranking metrics, and ROC analysis specifically,
have the property to deal with class imbalance as they are not affected by
models that are biased towards the minority class at the expense of the
majority class (He & Ma, 2013, p. 27). An ROC curve is actually nothing
more than a plot between the false positive rate on the x-axis and the true
positive rate on the y-axis, with a diagonal going from the bottom left to
the top right representing a no-skill classifier. Every point on the plot left
of this diagonal is an increase in performance, with the top left corner of
the plot representing a perfect-skill classifier. Similar to the ROC curve,
one can plot the PR-curve, with the recall on the x-axis and precision on
the y-axis. This time, the no-skill classifier is denoted by a horizontal line
and every point above this line is seen as an increase in performance with
the top-right corner denoting a perfect-skill classifier. One can calculate
the AUC’s of these plots to express the performance of a specific classifier
in a number.
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5 results

The following section is dedicated to the description and discussion of the
results of this research. The aim of this research is to test whether specific
classifiers are able to identify VAT on incoming invoices. In order to do
so, four sub-questions have been drawn up to answer the main research
question. This section aims to answer these four sub-questions by first
assessing the classifiers on the basis of threshold metrics, after which the
same will be done for the ranking metrics. Additionally, each algorithm is
assessed relative to a no-skill classifier and relative to one another.

5.1 Threshold metrics

Table 2 shows the results of the threshold metrics of the four different
classifiers. Column 2 shows the performance of the no-skill classifier
in terms of accuracy, precision, recall, and F2-score. Recall that the no-
skill classifier was a dummy classifier employing a stratified strategy
meaning the classifier randomly samples one-hot encoded vectors from a
multinomial distribution parametrised by the empirical class probabilities
(Pedregosa et al., 2011). Additionally, the F2-score was chosen because this
puts more weight on recall as false negative are more costly, i.e. predicting a
VAT-carrying invoice as VAT-free should be avoided at all costs. The results
show a very high accuracy of 96.0% which is common for a classification
problem with such a huge class imbalance. Therefore, we have to take a
look at the precision, recall, and F2-scores. However, these are 1.9%. 1.7%,
and 1.7%, respectively, showing an extreme lack in skill of the dummy
classifier to correctly identify invoices as VAT-free or VAT-carrying.

Columns 3 to 6 in table 2 present the performance of the examined
classifiers. The decision tree, which is shown in column 3, has an accuracy
of 90.6% meaning that around 9 out of 10 invoices are classified correctly.
This is not a particularly good score when keeping the class imbalance in
mind. However, when taking a deeper look into its performance by as-
sessing the ratio of correctly specified positive instances versus all relevant
instances, a recall of 78.9% is observed, which is the second highest recall
of all the employed algorithms. Combined with a precision of 15.8%, this
results in an F2-score of 43.8%.

According to the accuracy comprehensibility trade-off, one would ex-
pect a classifier’s performance to increase in its complexity (Freitas, 2004;
Mori & Uchihira, 2019). However, this is not really applicable to the algo-
rithms used in this research. The accuracy of the decision tree, random
forest, and gradient booster – shown in columns 3-5 - are all somewhat
equal around 90-91%. The explainable booster outperforms these clas-
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sifiers in terms of accuracy as its accuracy is 95.6%, shown in column
6. All classifiers show to have high recall, which is good as this proves
the classifiers’ ability to correctly identify the positive instances. This is
especially true for the decision tree and random forest, which report recall
scores of 78.9% (column 3) and 82.6% (column 4), respectively. However,
this is at the expense of precision – which denotes a classifier’s ability to
identify positive instances among the retrieved instances - as all classifiers
report a much lower precision. These are actually pretty solid findings as
one should interpret them as follows: the decision tree is able to identify
78.9% of positive instances – denoted by its recall in column 3 – in addition
to have 15.8% of retrieved instances being positive. Assuming that the
VAT is normally distributed amongst the invoices, this means that around
80% of all VAT is found while simultaneously having only to check 1 in 6

1

invoices to find a VAT-carrying invoice.
When assessing the models based on their F2-scores, we observe the

gradient booster in column 5 to have performed worst. In line with Freitas
(2014) and Mori and Uchihira (2019), it is expected that more complex
models generate higher F2-scores. However, this is not the what we observe
in our case as the decision tree and random forest have similar F2-scores,
43.8% and 44.3% shown in column 3 and 4, respectively, while the random
forest is more complex than the decision tree. In fact, the most complex
model - the explainable booster - performs only slightly better than both of
them with an F2-score of 34.8%. On top of that, the gradient booster – third
in terms of complexity – performs worst of all with an F2-score of 34.8%.
All in all, when assessing recall and precision, we can conclude that the
random forest is in fact the best classifier amongst these four algorithms.
However, when only assessing F2-scores, the explainable booster performs
best.

Table 2: Performance per classifier including no-skill classifier

No-skill DTC RFC GBC EBC

Accuracy 0.960 0.906 0.901 0.910 0.956

Precision 0.019 0.158 0.156 0.137 0.259

Recall 0.017 0.789 0.826 0.586 0.579

F2 0.017 0.438 0.443 0.348 0.462

DTC: Decision Tree Classifier, RFC: Random Forest Classifier, GBC: Gradient
Boosting Classifier, EBC: Explainable Boosting Classifier

1
100%/15.8%
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Table 3: AUC per classifier for ROC and PR curves

No-skill DTC RFC GBC EBC

ROC 0.500 0.697 0.864 0.625 0.666

PR 0.000 0.281 0.195 0.230 0.192

DTC: Decision Tree Classifier, RFC: Random Forest Classifier, GBC: Gradient
Boosting Classifier, EBC: Explainable Boosting Classifier

5.2 Ranking metrics

Next, the performance of the classifiers will be assessed on the basis of
four ranking metrics: the ROC curve, the AUC-ROC, the PR curve, and the
AUC-PR. Figure 4 and 5 present the ROC and PR curves of the decision
tree classifier, respectively. The dashed blue line in both figures represents
the performance of the no-skill classifier. Remember, the closer the curve
gets to the top left corner, the better the algorithm classifies. The no-skill
classifier in figure 4 shows the true positive rate to be equal to the false
positive rate, meaning that for every correctly classified instance there
is an incorrectly specified instance. The ROC curve of the decision tree
shows to outperform the no-skill classifier as its completely left of the blue
diagonal. One is able to quantify this curve by calculating the area under
the curve, the AUC-ROC score. Table 3 displays all AUC-ROC scores for
all classifiers. Column 3 shows that the AUC-ROC of the decision tree is
higher than the AUC-ROC of the no-skill classifier, with scores of 0.697

and 0.500, respectively. Figurre 5 presents the PR curve of the decision
tree. In this case, the top right corner represents a high-skill classifier.
The PR curve of the decision tree runs similar to a diagonal displaying
no high-skill performance, resulting in an AUC of 0.281. These ranking
metrics confirm the decision tree to be a poor classifier when it comes to
identifying VAT on incoming invoices.

Figure 4: ROC curve of the decision
tree

Figure 5: PR curve of the decision
tree
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In figure 6 and 7, the ROC and PR curves of the random forest classifier
are presented. The random forest classifier outperforms the no-skill clas-
sifier clearly in addition to outperforming the decision tree. This results
in an AUC-ROC of 0.864 - displayed in column 4, table 3 - which is much
higher than the AUC of the no-skill classifier. The PR curve shows a steep
decline initially before steadily declining further, resulting in an AUC-PR
of 0.195.

Figure 6: ROC curve of the random
forest

Figure 7: PR curve of the random
forest

Figure 8 presents the ROC curve of the gradient boosting classifier
which touches the diagonal of the no-skill classifier, indicating the poor
performance of the classifier as it means that for every correctly identified
instance there is approximately one incorrectly identified instance. This is
confirmed by an AUC-ROC of 0.625, shown in column 5 in table 3. The
PR curve of the gradient booster, displayed in figure 9, shows its poor
performance as well.

Figure 8: ROC curve of the gradient
booster

Figure 9: PR curve of the gradient
booster

The explainable booster, on the other hand, confirms the steady per-
formance which was already visible when assessing the threshold metrics.
Its ROC curve, shown in figure 10, is always left of the no-skill diagonal,
implying it always outperforms the dummy classifier. Column 6 in table 3

shows an AUC-ROC of 0.666 which is lower than the random forest classi-
fier but higher than the decision tree and gradient booster. Additionally, its
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PR curve, shown in figure 11 never hits the blue horizontal line. Combined
with an AUC of the PR curve of 0.192, this confirms the skillful perfor-
mance of the classifier. Nonetheless, taking the threshold and ranking
metrics together, we must conclude the random forest classifier to perform
best on the data.

Figure 10: ROC curve of the explain-
able booster

Figure 11: PR curve of the explain-
able booster

5.3 Error analysis

The following section is used to describe the post-hoc error analysis which
is performed to shed a different light on the findings of this research.
First, the confusion matrices per classifier will be discussed. Second, the
scalability of the models will be described. Third, a post-hoc feature
importance analysis is performed and will be explained. And lastly, the
performance of the classifiers will be elaborated on per subclass.

5.3.1 Confusion matrices

Confusion matrices per classifier are displayed in figures 12, 13, 14, and
15. The plots show how many predictions were correct on the majority
and minority class as well as the false positives and false negatives. All
classifiers show the minority class to be predicted correct most often which
was expected as there is a huge class imbalance. The decision tree shows to
predict very few false negatives (0.98%) relative to false positives (4.96%).
This is similar for all classifiers. However, the gradient booster shows to
perform the poorest as its true negative rate, meaning its ability to identify
the majority class, is lowest with 86.74%, in addition to a very high false
positive rate (11.13%). However, it must also be noted that false positives
are less costly than false negatives.
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Figure 12: Confusion matrix of the
decision tree

Figure 13: Confusion matrix of the
random forest

Figure 14: Confusion matrix of the
gradient booster

Figure 15: Confusion matrix of the
explainable booster

5.3.2 Scalability

Figures 16, 17, 18, and 19 depict the scalability of the models, i.e. the time
each classifier needs to run when increasing the number of samples. When
assessing the y-axes which display the fit times of each classifier, one is
able to observe the decision tree – displayed in figure 16 - to report the
smallest ones. This implies the classifier to be the least computationally
expensive. The explainable booster – displayed in figure 19 -, on the
other hand, displays quite the opposite with fit times that are around a
hundredfold larger. The random forest and gradient booster – displayed
in figures 17 and 18 – are in between these two extremes with fit times
around 10 times larger than the decision tree. Nonetheless, all classifiers
present a somewhat linear relation between number of samples and fit
times, implying the classifiers need to take proportionate time extra when
additional samples are fed into the model. Especially the random forest and
gradient booster show a similar course. The decision tree and explainable
booster, however, give an indication that the increase in fit time attenuates
with the number of samples.
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Figure 16: Scalability of the decision
tree

Figure 17: Scalability of the random
forest

Figure 18: Scalability of the gradient
booster

Figure 19: Scalability of the explain-
able booster

5.3.3 Effect sizes

To assess whether the correct features were fed into the model post-hoc, one
can turn to a logistic regression to statistically analyse whether the correct
choices were made. The results of the logistic regression which present that
dependent variables alongside its effect sizes and corresponding p-values
are displayed in figure 4. Almost all variables are significant at the 1% level,
except for the reversed flag (β = 1.395, p = 0.018) and reporting period
(β = 0.422, p = 0.017), which are significant at the 5% level. The debit
credit and the late posting feature show to be insignificant, suggesting
no apparent relation between these and the fact whether a product or
service on a line item contains VAT. Additionally, the model shows an
R2 of 22.4% which means that around 22% of the data’s variability is
explained by the variability of the features used. Although this is generally
described as weak, one must recall that VAT is often not only determined
by characteristics of the supplier – which are stated on the invoice – but
dependent on the performance of the receiver itself (Belastingdienst, 2022).
Therefore, one cannot unilaterally conclude the R2 in this case to be low.
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Table 4: Logistic regression for feature importance

Feature Coefficient (β) Std error

Constant -1.448*** (0.395)
Debit credit -0.064 (0.368)
Reversed flag 1.395** (0.591)
Log related -2.731*** (0.175)
Product group -0.007*** (0.001)
Product type key -0.308*** (0.088)
Reporting period 0.422** (0.177)
Late posting 0.182 (0.152)
First SIC digit -0.773*** (0.252)
First two SIC digits 0.135*** (0.031)

R2
0.224

Observations 11,085

Significance is displayed at the ***1%, **5% and *10% levels.

5.3.4 Performance per subclass

Lastly, the performance of the classifiers on subclasses within the data will
be discussed. Recall that the aim of this research is to classify whether
invoices that have been deemed VAT-free actually do have VAT stated on
them. However, as ERP data is recorded per line item, VAT-free line items
could receive a positive label when they are stated on an invoice which
contains both VAT-free as well as VAT-carrying goods. From a practical
perspective, this is not necessarily bad as we want those - VAT-free - line
items to be positively classified as well as these are stated on VAT-carrying
invoices. However, this does imply that classifiers learn from negative
instances. Therefore, we need to assess these cases separately and thus, the
performance of the four classifiers is assessed based on these subclasses.
The data is divided into three subclasses: line items which contain VAT
and have a positive label accordingly, line items which do not contain VAT
yet do have received a positive label, and all other line items which do not
contain VAT and have received a negative label accordingly. The results of
this analysis is displayed in table 5. The random forest classifier is found
to perform best in identifying the first subclass of line items (VAT-carrying
invoices with a correct positive label) as displayed in column 4 (0.503%).
More surprisingly, columns 4, 5, and 6 show that the other classifiers are
better in identifying line items which do not contain VAT but are stated on
VAT-carrying invoices than invoices which do contain VAT. This suggests
the classifiers to learn from features which are not solely characteristic to
VAT-carrying line items.
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Table 5: Performance per subclass

No-skill DTC RFC GBC EBC

VAT-free & positive label 0.977 0.552 0.414 0.471 0.471

VAT-carrying & positive label 0.014 0.428 0.503 0.297 0.234

DTC: Decision Tree Classifier, RFC: Random Forest Classifier, GBC: Gradient
Boosting Classifier, EBC: Explainable Boosting Classifier
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6 discussion

The following section is divided into three parts. First, a brief summary of
our findings will be given in addition to placing these into context. Next,
the practical implications in the business domain will be elaborated on.
Lastly, limitations of the research will be discussed and some recommen-
dations for future research will be given.

6.1 Discussion of the results

The goal of this research was to examine whether several machine learning
techniques were able to identify whether VAT is prevalent on incoming
invoices which were at first ought to be VAT-free. These machine learning
techniques were a decision tree, a random forest, a gradient boosting, and
an explainable boosting classifier. Using several threshold and ranking
metrics we were able to identify the random forest classifier to be per-
form best in identifying VAT from the inputted data. This contradicts
Freitas (2004) and Mori and Uchihira (2019) which explain the accuracy
interpretability trade-off as a negative linear relationship between these
two entities. The more complex a model gets, i.e. less interpretable, the
more accurate a model becomes. When looking solely at F2-scores, one
could argue in favour of the trade-off with only the gradient booster as
obvious outlier. However, when taking the other threshold and ranking
metrics into account, the random forest’s performance is too high and the
gradient booster’s performance too low for the trade-off to hold. There are
two possible explanations for this finding: limited hyperparameter tuning
and class imbalance. Limited hyperparameter tuning follows from using
a grid search to find the optimal configuration of the algorithms. A grid
search is an extensive search of all combinations of hyperparameter values
one puts in. However, this implies that only the optimal configuration
within the set of inputted parameters will be found. Therefore, its quality
is completely dependent on the values the operator puts in. Additionally,
the class imbalance is only accounted for in the hyperparameters of the
decision tree and random forest. Although boosters generally do not need
to have a hyperparameter for this as the boosting goes on as long as the
performance improves, it is possible that the boosters have found a local
minimum instead of a global minimum. Lastly, this research adds to con-
temporary literature as we have proposed two novelties. The first one is
the identification of VAT instead of the identification of line items and the
second one is classifying invoices based on ERP data instead of attempting
to extract features from the invoice itself.
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6.2 Practical implications

Of equal importance to the accuracy interpretability trade-off is the time
saved employing machine learning methods instead of manual labour,
when looking from a business perspective. Remember, the VAT reclamation
is currently a manual process of tax advisors going through all invoices
looking for VAT before assessing whether this VAT can be reclaimed. It is
a very time-consuming and, therefore, very costly process as their earnings
are based on whether they find reclaimable VAT (Horsthuis et al., 2020).
The most important metric for tax advisors would be recall as it specifies
the percentage of all positive cases identified amongst all positive cases.
Assuming VAT to be normally distributed amongst the invoices, a recall
of 0.9 would imply that 90% of all VAT will be found. Depending on
the total document value of all invoices combined, one is able to quantify
the monetary loss due to this 10% lack in accuracy on the positive class.
However, this is compensated by the monetary gain of not having to go
through all invoices manually. We observe the upside potential to be quite
large - high likelihood of finding the majority of VAT -, while the downside
risk is minimised - missing VAT is not very costly as not a lot of manual
hours would be lost. Therefore, tax advisors would benefit employing a
random forest approach to these types of inquiries.

6.3 Limitations & recommendations for future research

This research contributes to current literature by finding that the accuracy
interpretability trade-off does not hold for VAT identification on incoming
invoices in addition to serving as a proof of concept for using machine
learning methods to identify VAT. However, there are certain limitations to
this research which could be addressed in future research. The first two
limitations are of methodological nature, while the latter two are related to
the data set.

First of all, as mentioned before, hyperparameters are needed to be
tuned for optimal performance of the classifiers. Employing a grid search is
computationally very expensive, yet needed to assess every possible config-
uration of the model. However, it is limited by the values one incorporates
into the grid search. Therefore, it is possible that some configurations
are not tested, including the most optimal one. Secondly, SMOTE and
random undersampling are employed to remedy the huge class imbal-
ance. Although SMOTE is the state-of-the-art method for oversampling, it
does add ’fake’ instances to the model through which the classifiers learn.
In addition, random undersampling removes instances from the sample,
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therefore, losing information. Future research could find optimal values
for the degree to which one should over- and undersample.

Next, we are taking a critical look at the data used to perform our
research. The data consisted of a sample of invoices which were deemed
VAT-free. The data used in this research consisted of the first 4,595 invoices
shared by the client, meaning these 4,595 invoices are only a subset of
all VAT-free deemed invoices they possess. Therefore, we are not able
to assess whether the employed data set is actually representative of the
complete data. This means we are unable to generalise our findings to the
complete sample, let alone generalise across companies. Future research
should attempt to reproduce this research using a sample of invoices from
multiple companies in order to be able to make conclusions regarding
generalisation. Lastly, the metadata was ordered on a per line item basis,
meaning that a single invoice consisting of multiple line items (per service
or good supplied) will lead to more observations than there are invoices.
Subsequently, some VAT-free line items are labeled as VAT-carrying as
these line items are featured on an invoice which includes VAT-carrying
line items. While this is in principle not a problem as the aim of this
research is to identify all VAT-carrying invoices, this does mean that our
classifiers learn from wrongly labeled data. Although we account for
this in the error analysis, future research would benefit from making this
distinction at the start of the research.
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7 conclusion

This research aims to examine whether various machine learning classifiers,
such as a decision tree, a random forest, a gradient booster, and explainable
booster, are able to identify VAT on incoming invoices which were at first
deemed VAT-free. Additionally, we have aimed to discover which of these
previously mentioned classifiers performs best on our data. Because a
distinction between VAT-carrying and VAT-free invoices has been made
prior to our research scope, we have dealt with an extremely imbalanced
data set. Using ERP data ordered on a per line item basis, we found the
random forest to perform best in terms of multiple threshold and ranking
metrics. This contradicted the accuracy interpretability trade-off of Freitas
(2004) and Mori and Uchihira (2019) which prescribes the more complex a
model gets, the more accurate it becomes. In our case, the gradient and
explainable booster are more complex in terms of interpretability and were
therefore expected to perform better. Additionally, this research proposed
two novelties to the literature of invoice classification. The first one is
the ability to identify VAT on incoming invoices and the second one is
the use of ERP data. As only invoices of one company were used in this
research, there are questions regarding the generalisability of this research.
Therefore, future research should aim to reproduce this research with a
combined data set of invoices from multiple companies.
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appendix a

Table 6: List of all features in the ERP data including their corresponding type

Feature Type

Instance id Nominal
Accounting document number Nominal
Debit credit Nominal
Reversed flag Nominal
Document source Nominal
Fin related Nominal
Log related Nominal
Tax related Nominal
Legal entity key Nominal
Legal entity id Nominal
Legal entity country id Nominal
Posting date Nominal
Document date Nominal
Reporting date Nominal
Calendar period Nominal
Fiscal year Nominal
Product key Nominal
Product id Nominal
Product group Nominal
Product type key Nominal
Product taxable transaction Nominal
Vendor key Nominal
Vendor id Nominal
Vendor name Nominal
SIC Nominal
Vendor site key Nominal
Vendor site id Nominal
Vendor country id Nominal
Vendor country EU flag Nominal
Receiving warehouse key Nominal
Receiving warehouse id Nominal
Receiving warehouse country id Nominal
Supplying country Nominal
Entry user key Nominal
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Table 6 – continued from previous page
Feature Type

PTP key Nominal
Header key Nominal
Net document value doc Continuous
Document value doc Continuous
Tax value Continuous
Currency doc Nominal
Net document value le Continuous
Tax value le Nominal
Currency le Nominal
Goods flow Nominal
Invoice flow Nominal
Tax fin log Nominal
Months late Continuous
Quarters late Continuous
Reporting period Nominal
Monthly declaration used flag Declaration used flag Nominal
Net document value reporting Continuous
Tax value reporting Continuous
Tax value calculated reporting Continuous
Tax value calculated le Continuous
Tax value difference reporting Continuous
Tax value difference le Continuous
Interest lost reporting Continuous
Currency type reporting Nominal
Exchange rate Continuous
Late posting Nominal
Interest lost Continuous
Late grouping Nominal
Period late Nominal
Total tax value reporting Continuous
Total document value reporting Continuous
Labels Nominal
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appendix b

Table 7: Features extracted from the Chi2 test for feature importance with their
description included

Feature Description

Debit credit Shows whether invoice should be credited or debited
Reversed flag Shows whether the invoice was cancelled
Log related Categorical variable indicating whether the line item is po,

pi, or tl
Product group Categorical variable (256 categories) indicating the category

of the good or service delivered
Product type key Categorical variable showing to which type key a product

belongs
Reporting period Shows in which reporting period (4 quarters) the invoice has

been received
Late posting Binary variable (yes / no) indicating whether the invoice has

been posted into the ERP system late
First SIC digit Categorical variable (9 categories) indicating the industry in

which the supplier is active
First two SIC digits Categorical variable (83 categories) indicating the subindustry

in which the supplier is active



REFERENCES 37

appendix c

Table 8: List of tested and adopted values of the hyperparameter tuning

Hyperparameter Tested values Adopted value

Decision tree
criterion [gini, entropy] gini
min samples split [5, 25, 50] 5

min samples leaf [7, 9, 11, 13, 15] 9

class weight 0:0.01, 1:0.99

max depth None

Random forest
n estimators [50, 150, 250] 50

max features [auto, sqrt] auto
min samples split [50, 100, 150] 100

min samples leaf [5, 7, 9, 11, 13] 5

class weight 0:0.01, 1:0.99

max depth None

Gradient booster
n estimators [5, 25, 50] 5

learning rate [5, 10, 50, 100] 5

min samples split [5, 25, 50] 5

min samples leaf [3, 5, 7, 9] 3

max depth None

Explainable booster
interactions [18, 28, 38] 18

learning rate [0.2, 2, 20] 0.2
min samples leaf [7, 13, 19] 7
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