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Abstract

Automatic segmentation of the pancreas can help battle pancreatic
cancer and other pancreatic diseases. Quantitative measures which
are extracted from the pancreas based on CT imaging provide valu-
able biomarkers for tracking the progression of various endocrine and
exocrine diseases (Panda et al., 2021). In recent years, deep learning
has proven to be a powerful tool for pancreas segmentation. However,
deep learning models suffer from data scarcity: the lack of annotated
data poses a significant drawback in developing new models. The
current work investigates to what extent self-supervised learning
(SSL) can be used to leverage unlabeled data to increase performance
in pancreas segmentation. This is done by in-painting masks gener-
ated by superpixels. It is hypothesized that this task yields a more
heterogeneous representation since the network is forced to learn
contextual information. It is empirically shown that the current ap-
proach outperforms the baseline trained without any self-supervision.
Moreover, the current approach outperforms other state-of-art SSL
approaches.

1 ethic statement

The work on this thesis did not involve collecting data from human partici-
pants or animals. The data used in the current dissertation belongs to the
cancer imaging archive (TCIA), and the author acknowledges it does not
have any legal claim to this data. In this research, code is used, which is
adapted from Zhou et al. (2017).

2 introduction

It is estimated that pancreatic cancer will be one of the deadliest forms
of cancer by the year 2030 (Rahib et al., 2014). Early detection is vital
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for the survival of the patient. However, since physical complaints only
appear at a later stage, medical experts are often too late. As a result,
the five-year survival rate has remained stable at around 5 % for the last
30 years (Åkerberg, Ansari, Andersson, & Tingstedt, 2017). Automatic
segmentation of the pancreas can help battle pancreatic cancer and other
pancreatic diseases. Pancreas segmentation is an crucial step in medical
image processing. It consists of extracting a region of interest from a
CT image or MRI scan, which identifies pancreatic tissue. Quantitative
measures, which are extracted from the pancreas based on CT or MRI
imaging, provide valuable biomarkers not only for tracking the progression
of cancer but also of various other endocrine and exocrine diseases (Panda
et al., 2021). Likewise, pancreas segmentation can be crucial for tasks such
as observing lesions, analyzing anatomical structures, and the tracking of a
disease and predicting the prognosis of a patient. (Lim et al., 2022). It has
been found that all this can greatly support diagnosis and therapy (Yao,
Song, & Liu, 2019). Therefore, pancreas segmentation is an important task
in medical image analysis.

Segmenting the pancreas is a long and tedious task, and there are
not always enough resources available to do this. Next tot this, manual
segmentation of the pancreas is very error-prone. For example, a single
abdominal CT scan can easily consist of several hundreds of slices, and the
radiologist must keep concentration during the entire process. Therefore, it
is worthwhile to investigate methods that can automate this process. This
thesis will further explore this topic and is conducted in collaboration with
the cancer center of UMC Utrecht. It is part of a larger coalition aimed at
detecting pancreatic cancer recurrence after resection. Several researchers
at this division are investigating whether Artificial Intelligence can be
used in the early detection of pancreatic cancer recurrence. Their goal is to
develop a pipeline in which Artificial Intelligence is used to aid radiologists
in medical image diagnosis. This thesis is exploratory and explores the
possibilities of a self-supervised learning method within the domain of
pancreas segmentation. Moreover, it is estimated that these techniques
will eventually also improve performance in detecting pancreatic cancer
recurrence.

2.1 Recent Developments in Medical Image Analysis

In last years, significant process has been made in medical image analysis,
which is empowered by the usage of deep learning models (Ker, Wang,
Rao, & Lim, 2018). Convolutional Neural Networks (CNNs), a branch of
deep learning models, are are at the core of state-of-art models in multiple
subfields of medical image processing, such as image segmentation, classi-



2 introduction 3

fication, and more. For example, variations of convolutional networks have
been successfully used to classify brain tumors (Irmak, 2021), segment lung
tumors (Kasinathan & Jayakumar, 2022) and segment pancreatic tissue-
and tumors (Lim et al., 2022; Mahmoudi et al., 2022).

2.2 Current Drawbacks

A downside of CNNs is that they usually contain many parameters. As a
result, these networks require large amounts of data to learn (Shurrab &
Duwairi, 2021). However, especially in medical image processing, anno-
tated data is rare. Therefore, one of the significant drawbacks in developing
deep learning models in the medical domain is data scarcity. Moreover,
data is not easily shared due to privacy concerns (Bansal, Sharma, &
Kathuria, 2022). One approach to tackle this is transfer learning, in which
knowledge that is learned in a particular task is used in another target task.
The most common approach is to use pre-trained state-of-art models such
as ResNet or VGGnet. These pre-trained models are trained on massive
datasets, which usually consist of millions of natural images and more than
a thousand corresponding labels (Shurrab & Duwairi, 2021). Although pre-
trained models show significant performance improvements in the natural
image domain, it has been found that leveraging these pre-trained models
in the medical domain yields limited performance increases. Mostly be-
cause natural- and medical images significantly differ in the distribution
of features, such as intensity, contrast, and more (Azizi et al., 2021). Thus,
the natural- and medical domains do not share enough characteristics to
yield feature representations that are valuable in both domains (ibid.). An
alternative option is to use transfer learning from tasks within the same
domain. Nonetheless, this is often infeasible since it also requires labeled
data (ibid.). However, other promising approaches have been developed in
deep learning to tackle this.

2.3 Self-Supervised Learning

Self-Supervised Learning (SSL) is a hybrid learning approach that combines
supervised and unsupervised learning. It consists of an unsupervised
pre-training stage and a supervised fine-tuning stage. The unsupervised
pre-training stage is aimed at introducing a kind of common sense into a
network: it leverages supervisory signals from the data itself, which allows
it to learn a representation that captures the underlying structure (Shurrab
& Duwairi, 2021). This representation is functional at a later stage, as the
model has learned a set of features that are useful in the subsequent task
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(Zhai, Oliver, Kolesnikov, & Beyer, 2019). The knowledge is transferred by
initializing a part of the network for the subsequent task with the weights
that are learned in the unsupervised task. This way, unstructured medical
data, such as unannotated CT scans, can be utilized. It it is hypothesized
that self-supervised learning can strongly accelerate developments in deep
learning, especially in industries where data is scarce (T. Chen, Kornblith,
Swersky, Norouzi, & Hinton, 2020).

The current research will focus on this further, and will investigate the
potential of self-supervision techniques to improve pancreas segmenta-
tion. More specifically, this research builds further upon that of (Chen et
al., 2019), who proposed a context-restoration strategy for self-supervised
learning. Their self-supervised task consisted of reconstructing a distorted
image. It has been found that reconstructing these images as pre-training
stage has produced significantly better performance on various subsequent
tasks such as fetal standard scan plane classification, abdominal multi-
organ localization, and brain tumor segmentation (ibid.).

2.4 Superpixel-based Self-Supervised Learning

In the current paper, it is investigated to what extent this also holds for
pancreas segmentation. Besides, it is examined to what extent this method
can be improved by using superpixels. To elaborate, most self-supervised
learning that rely on reconstruction of distorted images use uninformed
and random regions to corrupt an image (Kayal, Chen, & de Bruijne,
2020). For example, in the context-restoration method as described in
Chen et al. (2019), images are distorted by swapping sub-patches of an
image. However, the boundaries of the patches do not adhere to the
boundaries of the organs in the image. Consequently, the network can
use information from the organ itself to reconstruct the distorted areas.
Therefore, it is hypothesized that the network does not have to rely on
global contextual information, such as the presence and relative position
of other anatomical structures, to rebuild the image. As a result, the
network is not forced to learn a representation that encapsulates global
spatial relationships. However, learning this information can be especially
relevant for the pancreas, since the position, shape and size of the pancreas
are strongly affected by its surrounding organs, such as the liver, stomach
and kidneys (Oda et al., 2016). Likewise, it has been found that learning
contextual information in CT scans improves performance in deep learning
networks (Petit, Thome, Rambour, & Soler, 2021; Tang et al., 2020).

Therefore, the current thesis aims to improve this, by distorting images
based on superpixels. Superpixels are a subgroup of pixels in an image that
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share common characteristics, such as their location and pixel intensities.
This way, superpixels segment an image into subsegments by considering
similarity measures. The central principle is that the areas of the segmented
superpixels adhere well to organ boundaries within a CT scan, which is
utilized to segment parts of the image automatically. After the superpixels
have been made, several superpixel segments are randomly selected and
distorted. Afterward, a neural network is trained to reconstruct the image.
Since superpixel segments correlate with the object boundaries in an image,
areas that contain large parts of an organ, or even the entire organ are
distorted. Therefore, the network is forced to use the presence and position
of other organs to recreate the image. It is hypothesized that this will
increase performance in the subsequent task.

2.5 Research Questions

In the following thesis, it will be investigated to what extent pancreas
segmentation can be improved by using superpixel-based SSL. The goal of
this method, is to learn a representation during pre-training that encapsu-
lates contextual information in the abdominal region. It is hypothesized
that learning this contextual information will yield a more heterogeneous
representation that encapsulates global contextual information, which will
benefit performance during pancreas segmentation. Given all this, the
current research revolves around the following research question:

To what extent can superpixel-based context restoration improve pan-
creas segmentation?

In order to tackle this question. Multiple sub-questions need to be ad-
dressed. First, a baseline is established to which the effects of superpixel-
based context restoration is compared. This baseline will consist of U-Net,
a common segmentation architecture, which is either randomly initialized,
or initialized using patch-based pre-training as described by Chen et al.
(2019). As a result, the first subquestion will read as follows:

RQ1: To what extent does patch-based context restoration increase
performance in pancreas segmentation?

Afterward, the results both networks will be compared to a third U-Net,
which is pre-trained using superpixel-based context restoration. Thus, the
second subquestion will read as follows:
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RQ2: Does superpixel-based context restoration improve segmentation
performance, compared to patch-based context restoration?

Moreover, (Chen et al., 2019) used L2 loss as loss function during the
pre-training task. However the impact of using a different loss function
during pre-training is not clear. Although L2 loss has been used widely
in image reconstruction tasks, it also suffers from significant drawbacks.
For example, L2 assumes pixel independence, and therefore fails to take
spatial relationships between pixels into account. Other loss functions,
such as SSIM loss do not make this assumption (Zhao, Gallo, Frosio, &
Kautz, 2017). Therefore, it is further evaluated how SSIM loss improves
performance compared to L2 loss. This yields the third subqestion:

RQ3: To what extent does the usage of SSIM loss during pre-training
improve performance of pancreas segmentation, compared to L2 loss?

2.6 Contributions

2.6.1 Academic Contributions

The current work will investigate how superpixel-based SSL can be utilized
to improve pancreas segmentation, which has not been investigated yet.
The main goal is to develop a method that can leverage unstructured data.
This can tackle the problem of data scarcity, which is especially relevant
for the medical domain. It is hypothesized that leveraging SSL methods in
the medical domain will result in more robust models and better general-
ization performance. Likewise, this can accelerate the performance of deep
learning models for pancreas segmentation.

2.6.2 Societal Contributions

The current research investigates SSL in the context of pancreas segmen-
tation, which can be utilized as tool to battle diseases such as pancreatic
cancer. However, SSL techniques are applicable to a much wider range of
tasks in the medical domain, such as brain tumour classification (Kayal et
al., 2020), cardiac arrhythmia classification (Kiyasseh, Zhu, & Clifton, 2021)
and abdominal organ segmentation (Ouyang et al., 2020). As a result, it
can help accelerate the development- and performance of deep learning
models in various medical tasks. This will can help the adoption of AI in
the medical domain, which can increase the efficiency and effectiveness of
our healthcare systems.
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2.7 Thesis Outline

The research is structured in the following manner. Section 3 provides
an overview of relevant literature. In section 4, the data and methods are
further elaborated. The performance of the methods is evaluated in section
4. In section 5, the results are discussed, In section 6, conclusions are drawn
from the research.

3 related work

3.1 Current Advancements in pancreas segmentation

Several methods for pancreas segmentation have been developed over the
last years. The segmentation of the pancreas is a difficult task due to large
anatomical differences in terms of shape, size, and location (Yao et al., 2019).
However, various methods have been proposed for this task. Traditional
approaches involve multi-atlas techniques, which extract statistical infor-
mation regarding size, orientation, or shape from training data. However,
these techniques usually fail to cover all the anatomical variability and
are highly dependent on the selection of training images (Huang, Huang,
Yuan, & Kong, 2021). Therefore, these techniques have shown limited per-
formance and generalization capability. Deep learning-based approaches
greatly increased performance in pancreas segmentation (Yao et al., 2019),
in which CNNs are at the core of these developments. Examples of well
known architectures used for pancreas segmentation include fully convolu-
tional neural networks (FCNs) (Xue et al., 2021), U-net (M. Li, Lian, Wang,
& Guo, 2021; Petit et al., 2021; Zhou et al., 2017) and V-Net (Giddwani,
Tekchandani, & Verma, 2020). Moreover, CNN architectures can either be
in 2D, 3D or hybrid structure. In the following sections, multiple pancreas
segmentation networks will be further elaborated.

3.1.1 2D Pancreas Segmentation

2D CNNs operate on the single slice level. Therefore, they are computa-
tionally very efficient, making them suitable for large datasets and easy
deployment in production. Therefore, they are widely used in pancreas
segmentation. For example, Petit et al. (2021) augmented the U-net archi-
tecture with self-and cross attention modules in order to learn long-range
contextual interactions and spatial dependencies. The model yielded good
results, with a Dice score of 78.50 %. Other approaches include multi-stage
U-Net models, in which a bottom-up approach is used to segment the
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pancreas Zhou et al. (2017). First, a coarse model is used to roughly seg-
ment the pancreas region, which is used as input to a subsequent model
to fine-tune the segmentation. This process is repeated multiple times to
improve performance. The model proved to be successful in 2D pancreas
segmentation, with an average Dice coefficient of 82.37 %. One of the
drawbacks of this method was that the loss function was minimized for
each stage individually. As a result, it was found that some dependencies
between stages could not be modeled. In order to tackle this, Yu et al. (2017)
enhanced this work by introducing a saliency transformation module, in
which the segmentation map of the previous iteration is applied to the cur-
rent iteration. This allows for joint optimization, improving segmentation
performance. Moreover, in more recent work by M. Li et al. (2021), a multi-
level pyramidal pooling mechanism is used, which combines multiple
pooling layers to gather contextual information for segmentation. However,
one of the significant drawbacks of 2D models is that they cannot model
inter-slice dependencies. As a result, some spatial information gets lost.
This decreases the performance compared to other methods, such as 3D
convolutional neural networks.

3.1.2 2.5D and 3D models for pancreas Segmentation

2.5D and 3D models generally outperform 2D models for pancreas segmen-
tation. In short, 2.5D models operate by training a segmentation network
for the axial, coronal, and sagittal planes and combining their predictions
by using a majority vote, used to construct a 3D pancreas volume. This
approach is powerful, especially when combined with other techniques,
such as described by Zhou et al. (2017). For example, Yan and Zhang (2021)
combined a 2.5D segmentation network with a coarse-to-fine grained train-
ing process. The network yields impressive results, with a Dice score of
86.61 %. Although 2.5D models are less resource-intensive than 3D models,
they still require a longer time to train compared to 2D (Minnema et al.,
2021). When looking at 3D networks , Salanitri et al. (2021) developed
a fully connected CNN for pancreas segmentation. It consists of a 3D
encoder that learns to extract volumes at different scales, which are sent to
multiple 3D decoders, which are combined to obtain a unique single mask.
The model yields impressive performance. However, this also comes at a
cost. For 3D models, both training and inference models take significantly
longer. Such models are often infeasible to use in a production setting,
since state-of-art computational devices are needed, which are not always
available. Moreover, all three architectures are limited by the fact that they
are trained in a fully-supervised manner.
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3.1.3 Limitations of Supervised Deep Learning models

Since all three approaches are based on supervised learning, they are all
limited by the amount of annotated data that is available. Since anno-
tated data is scarce, it is harder for a network to learn a heterogeneous
representation that encapsulates the variation in the data. Data augmen-
tation is one way to create a more heterogeneous representation. In data
augmentation, existing data is augmented by copies of the data, which
are slightly modified. Data augmentation has proven to be powerful in
increasing robustness and generalization performance. However, it still
requires annotated data. Therefore, its performance gains are limited, and
abundantly available unstructured data sets remain unused. Likewise,
transfer learning can be effective but suffers from the same limitation,
since it requires annotated medical data to be effective (Azizi et al., 2021).
Learning a more heterogeneous representation is especially relevant for
the pancreas, since its high anatomical variability. Therefore, SSL methods
have been developed to tackle this.

3.2 Self-Supervised Learning

Self-Supervised learning refers to methods in which neural networks can
be trained to learn from data using self-supervision. The most popular
approach in self-supervision is a two-stage paradigm, in which a network
is pre-trained on a proxy task and then fine-tuned on a downstream
task. It is found that pre-training on a proxy task yields robust features
that increase generalization performance and convergence and avoids
overfitting. The usage of SSL approaches in the medical domain has
received relatively little attention (Azizi et al., 2021). As a result, several
developed frameworks have not been extensively tested in the medical
domain. In general, self-supervised learning approaches can be divided
into three categories: contrast-based, context-based, and generative self-
supervised learning strategies.

3.2.1 Contrast-based Self-Supervised Learning

Contrast-based self-supervised learning aims to learn representations by
comparative learning. The core idea of contrastive learning is that similar
objects should have similar representations. Recent developments in con-
trastive learning show promising results. For example, Azizi et al. (2021)
proposed multi-instance-constrastive learning, in which data augmentation
methods such as cropping or Gaussian blur were used to create different
views of the same image (see figure 1). Moreover, if multiple images of
the same object are available (such as a CT scan and a follow-up scan),
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the distinct images were used to create positive pairs of examples. Af-
terward, an encoder network was used to learn valuable representations.
The network was optimized using contrastive loss, aiming to minimize
the difference between positive examples and maximize the difference
between negative examples. For each positive pair, negative examples were
obtained by considering all other augmented examples within a minibatch
as negative pairs, following the training protocol of (T. Chen, Kornblith,
Norouzi, & Hinton, 2020). It has been found that this technique yields sig-
nificant performance improvements, which outperforms other approaches
such as supervised transfer learning from images of the natural image
domain, e.g. from images such as real-world scenes (ibid.). Moreover,
the self-supervised models generalize better and are more label-efficient.
As a result, the downstream model achieves state-of-art performance in
a dermatology condition classification task. However, these methods are
severely affected by the selection of negative examples, which is not op-
timal and can result in varying performance depending on the task (Xu,
2021). Other approaches exist within self-supervision frameworks, such as
context-based learning and generative learning, which do not require the
construction of negative examples.

Figure 1: Schematic overview of a contrastive learning task. Image based on
(Azizi et al., 2021).

3.2.2 Context-based Self-Supervised Learning

The primary goal of context-based SSL tasks is to learn contextual seman-
tics. Examples include patch relative position prediction, angle prediction,
or jigsaw puzzles. It has been found that it can increase performance in
the subsequent task. For example, Noroozi and Favaro (2016) created a
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jigsaw puzzle task in which a CNN was trained to classify nine sub-patches
of an image in the correct sequence. The method proved successful in
pre-training for the subsequent task but also had drawbacks. For example,
since the number of possible combinations of a sequence of 9 items is
exceptionally high (362880), the method was challenging in terms of model
complexity and memory.

Figure 2: Schematic overview of a Context Learning task, based on the method of
Doersch et al. (2015)

In order to tackle this, less computationally expensive tasks have been
developed. One example is rotation prediction, in which the pre-training
task consisted of predicting the angle in rotation. Although the model
showed performance improvements on limited data and converged faster,
the performance improvements on the whole dataset were limited (Imran et
al., 2020). Other approaches to self-supervised learning include predicting
the position in a 3x3 between a central patch and its surrounding patches
(Doersch et al., 2015) (see figure 2). However, it has been found that the
performance gains are limited since the network could complete the task
using relatively trivial features (Chen et al., 2019). This emphasizes the
complexity of designing a good pre-training task: it should have a good
balance between simplicity and complexity. Moreover, the pre-training task
must lie in the same domain as the fine-tuned task to learn semantically
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relevant features. As a result, designing a pre-training task is difficult.
Nonetheless, other approaches have been developed to tackle this.

3.2.3 Generative Self-Supervised Learning

Generative approaches are aimed at reconstructing distorted images vol-
umes. For example, (Pathak, Krähenbühl, Donahue, Darrell, & Efros, 2016)
proposed a method in which a CNN was learned to inpaint removed sub-
patches in an image. The authors proposed that by inpainting the image,
the model had to learn the semantic context of an image to reconstruct
it. However, this approach yield limited performance in medical imaging.
One of the reasons for this is that removing an image patch alters the
intensity distribution of an image. As a result, the resulting- and original
images belong to a different domain, which yields limited performance
(Chen et al., 2019). However, other generative approaches have yielded
impressive results.

As noted earlier, Chen et al. (2019) constructed a reconstruction task in
which the network had to reconstruct an image that was distorted by swap-
ping sub-patches. More specifically, the images are distorted by iteratively
swapping two random patches of size p x p. Repeating this process sev-
eral times will yield a distorted image in which the spatial information is
altered, but the intensity distribution is preserved. The context restoration
task yielded impressive results and improved performance in various tasks,
such as semantic segmentation, localization, and classification. However,
one of the drawbacks is that the pre-training task is not optimized for the
downstream task since the selection of regions to mask is uninformed and
random. Thus, the boundaries of the masked regions do not adhere to the
boundaries of the organs in the image. As a result, the network can use
information from the organ itself to reconstruct the image. Therefore, the
network is less forced to learn a representation that encapsulates the spatial
relationships between organs. Other approaches have been developed to
tackle this. For example, Kayal et al. (2020) constructed a region-of-interest
guided super voxel inpainting task. In this task, supervoxels were used
to mask regions in an image. Supervoxels best can be described as su-
perpixels in 3D space, in which similar voxels are grouped based using
similarity measures. Thus, the described approach is similar to the ap-
proach in the current paper. The selection of supervoxels to be masked,
is guided by a region-of-interest (ROI). This entails that the task uses the
annotated segmentation maps to select relevant areas to be masked. Thus,
only regions that (partly) contain tumour tissue are masked. The results
of this approach are promising. The ROI-super voxel task outperformed
the baseline to a great extent in the downstream task. However, one of
the significant drawbacks of this approach is that the method uses the



4 methods 13

ROI to select relevant supervoxels. This counters one of the core ideas of
self-supervised learning: learning from unlabelled data. Therefore, it is less
relevant in the medical domain since annotated data is sparse. However,
it also should be noted that even without using the ROI to select areas,
the approach yielded significant performance improvements compared
to the baseline. However, the potential of these methods for pancreas
segmentation is unclear. Therefore, the current research will investigate
this further and take the limitations of current research into account. In the
following sections, the proposed method will be further elaborated (see
figure 3 for an overview).

4 methods

The current study will focus on the effectiveness of superpixel-based con-
text restoration as self-supervised learning (SSL) technique to improve
U-Net performance in pancreas segmentation. In order to evaluate perfor-
mance, the technique will be compared to a randomly initialized 2D U-Net
(Baseline U-Net). Besides, the effectiveness will be compared to another
SSL method, which is patch-based context-restoration (PB U-Net) (Chen
et al., 2019). Each model will be compared using the Dice- and Jaccard
coefficient. The data, network architecture, and pre-training methods are
further explained in this chapter.

4.1 Experimental Set-Up

As noted earlier, the pre-training task is designed to yield a set of layer-
weights that encapsulates useful information for the final task of pancreas
segmentation. Therefore, instead of randomly initializing the weights of
the segmentation network, the weights are initialized by using (a subset) of
the weights which are obtained during the pre-training task. The primary
difference between self-supervised learning methods lies in the design of
the pre-training task. The goal is to create a useful task, which forces the
network to learn domain knowledge that can be transferred.

The architectures of the networks in the pre-training tasks are exactly
the same as in the fine-tuning tasks, and both consist of a 2D U-net
(Ronneberger, Fischer, & Brox, 2015). However, since the pre-training tasks
and fine-tuning tasks consist of seperate objectives, different loss functions
and hyper-parameters are used. Likewise, the activation functions in the
output layers are different. An overview of the experimental setup can be
found in figure 3.
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Figure 3: Overview of the experimental set-up.

4.2 Dataset Description

In the current study, the NIH pancreas-CT dataset is used (Roth et al.,
2016) to train- and evaluate a network that can segment the pancreas.
The dataset contains 82 abdominal, contrast-enhanced 3D CT scans. All
scans are manually segmented by a medical student and verified by an
experienced radiologist. The resolution of the CT scans is 512 x 512 x N,
where N lies between [181, 466]. Moreover, the slice thickness T varies
per scan where T lies between [1.5, 2.5]. Since it has been found that
augmenting the data during the pre-training phase in SSL tasks leads to
better performance in the subsequent task, another dataset is used during
pre-training. This dataset consists of 50 abdominal CT scans from the
AbdomenCT-1k dataset (Ma et al., 2021). The resolution of the CT scans is
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512 x 512 x N, where N lies between [71, 113]. The slice thickness varies
between [0.65, 5] cm. The AbdomenCT dataset will not be used during the
subsequent task of training a model for pancreas segmentation. Therefore,
it is only used in the pre-training SSL task.

4.3 Data Preprocessing

Pre-processing of the data consists of several steps. First, each image is
clipped between [-100, 240] HU, following the protocol in (M. Li et al., 2021;
Yan & Zhang, 2021). Afterward, each scan is normalized within [0,1] by
using MinMax scaling. Finally, all images are cropped to the dimensions
[300,300], to decrease the amount of abundant information. Afterward, the
images are blurred using a Gaussian blur with a standard deviation of 0.5
to counter anti-aliasing effects. Finally, they are resized to [208, 224].

4.4 U-Net Architecture

The model will for both the pre-training tasks and pancreas segmentation
will consist of a 2D U-Net (Ronneberger et al., 2015), which has been used
extensively in medical image segmentation tasks. The U-Net architecture
is based upon the fully convolutional network (Long, Shelhamer, & Darrell,
2014), which is adapted to work with few training data and to yield more
precise segmentation. The U-Net follows an encoder-decoder-like structure,
in which a contracting part consisting of various convolutional layers is
followed by an expanding part that consists of various up-sampling layers.
Hence the expanding layers increase the resolution of the output back
to its original shape. The network differs from other encoder-decoder
architectures such that the contracting and expanding part of the network
is not fully decoupled. This is due to skip connections between the layers
in the contrasting and expanding parts: feature maps of the convolutional
layers in the contrasting part are concatenated with outputs of subsequent
layers in the expanding part, which are used as input for each up-sampling
layer. This allows the network to recover spatial information that is lost
during down-sampling operations in the contrasting part of the network
(Ronneberger et al., 2015). As a result, the number of convolutional- and up-
sampling layers is equal, yielding an identical U shape. An overview of the
U-Net architecture adapted for the current task of pancreas segmentation
can be found in figure 4.

Since the CT scan is in grayscale, the input map is of size 208 x 224 x 1,
which is followed by four encoder blocks. Each encoder block consists of
two convolutional layers with a ReLu activation function and a kernel size
of 3x3. Both layers are followed by a max-pooling operation with a kernel
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Figure 4: Overview of the used U-Net architecture, figure adapted from (Ron-
neberger et al., 2015)

size of 2x2. Batch Normalization is applied after each convolutional layer
to make the network train faster and more stable (Ioffe & Szegedy, 2015).
The number of convolutional layers in each block increases by a factor of
two: the convolutional layers in the first block have 64 filters, the layers
in the second block have 128 filters, the layers in the third block have 256

filters, and the layers in the fourth block have 512 filters. Afterward, the
resulting feature maps are expanded by transposed convolutional layers.
The expansive part of the network consists of 4 blocks that consist of one up-
sampling layer, followed by two convolutional layers with ReLu activation
function and a kernel size of 3x3. The output is passed to a concatenation
layer, where the output of the subsequent layers and the corresponding
output of the feature maps in the contracting path is concatenated. The
amount of filters is divided by two in each block. During this process,
the down-sampled representation from the contrasting part is up-sampled
back to the size of the original input.

The loss during the segmentation task is minimized by using Dice Loss,
which is calculated as follows:

LDice = 1 − DSC (1)

The Dice score coefficient (DSC) measures the overlap between the
prediction and ground truth and is widely used to assess segmentation
performance. The DSC is calculated by multiplying the area of intersection
between A and B with two, divided by the sum of the areas of A and B.
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This gives the following equation:

DSC =
2TP

2TP + FP + TN
(2)

In this equation, True positive (TP) indicates the number of foreground
pixels (e.g., the pancreas mask) correctly classified as pancreas by the
model. The false positives (FP) are the background pixels incorrectly
classified as foreground pixels. True negatives (TN) indicate the number
of the background pixels correctly classified as background pixels by the
model. Likewise, false negatives (FN) indicate the number of foreground
pixels incorrectly classified as background pixels by the model. One
of the main advantages of using Dice Loss over other loss functions in
semantic segmentation is that it can handle imbalanced data (Sudre, Li,
Vercauteren, Ourselin, & Cardoso, 2017). Therefore, this is especially
relevant for pancreas segmentation since the pancreas only makes up a
small part of each CT scan (Laoveeravat et al., 2021). Moreover, only slices
that contain 50 or more pixels of the pancreas are used for training, while
testing is done on all data, which helps to limit the impact of background
pixels during training (Zhou et al., 2017).

4.5 Weight Initialization

The primary goal of pre-training is to use these weights when initializing
the contractive part in the U-Net in the subsequent task. In the section
below, the pre-training tasks are further explored.

4.5.1 Standard U-Net

If a network is not pre-trained, the weights are initialized by using the
Xavier initialization (Glorot & Bengio, 2010). In this method, biases in each
layer are initialized with the value 0. The weights Wij are sampled from
the following uniform distribution D:

Wij ∼ D[
−1√

n
,

1√
n
] (3)

Where n is the number of outgoing connections in the previous layer.
Thus, the lower- and upper bound of the distribution at layer Li is depen-
dent on size of the previous layer Li−1.

4.5.2 Superpixel-based pre-training

In the superpixel-based context-restoration method, a CNN is learned to
approximate the function g (x1 ), where x1 is the distorted image, and g(x1)
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Figure 5: Example of a distorted image in both pre-training methods.

yields the original image (x). Superpixels are used to distort the image.
Superpixels are a subgroup of pixels in an image that shares common
characteristics, such as pixel intensities. In this way, superpixels segment
an image into subsegments by considering similarity measures. The main
idea is that the areas of the segmented superpixels adhere well to object
boundaries within the CT scan, which can be utilized to segment parts
of the image automatically. This characteristic is leveraged to create a
self-supervised learning task. In short, this task is constructed as follows:
first, each slice is segmented into N segments by using the SLIC algorithm
(which will be discussed in more detail later on). After the image has been
segmented, K segments are randomly chosen, and the intensity values are
replaced with intensity values that are randomly sampled from the image.
K is calculated by using the ratio parameter R. To elaborate, R can be seen
as a ratio of N, the total amount of superpixel segments. For example, if N
is 200 and R is 0.2, K yields 40. As a result, 40 segments will be selected
to be distorted. Moreover, the reason that pixels values are sampled from
the original image, is that the intensity distribution is preserved. This is
important for the network to learn features belonging to a specific domain.
(Chen et al., 2019).

Algorithm 1 Distort images using Superpixel method

Require: image xo

1: Transform image xo into N superpixel segments. Following from this
is Sϵ[S1, S2...SN ], where Si is a superpixel segment.

2: Randomly sample K superpixel segments into S′, which yields
S′ϵ[S1, S2...SK].

3: Save the indices [xi, yi] of all pixel values from the superpixels in S′

into I.
4: Replace all values at indicies I with pixels randomly sampled from xo,

which gives distorted image xd
5: Return distorted image xd
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In the current study, superpixels are generated by using the SLIC (Sim-
ple Linear Iterative Clustering) algorithm (Achanta et al., 2012). It generates
superpixels by clustering pixels based on color similarity and closeness
in the image plane. Since the CT images are in grayscale, clustering is
performed in three-dimensional [xyi] space, [xy] is the pixel position and i
is the intensity SLIC has been proven to be a fast and effective method to
generate superpixels (ibid.). The algorithm works through several steps
explained in more detail below.

1. The first step consists of initializing the cluster centers N. The number
of cluster centers corresponds to the number of superpixels present
in the image and is obtained by sampling pixels at regular grid steps
S. Each pixel is represented by [In, Xn, Yn]. After the cluster centers
are created, they are moved to a seed location corresponding to the
lowest gradient position in a 3 × 3 neighborhood to avoid placing
them at an edge.

2. After the previous step, each pixel is assigned to the nearest cluster
within the search area. After all, pixels are assigned, a new center
is computed by taking the mean of all [ixy] vectors. This process
is repeated until convergence. The algorithm converges when the
residual error E is below a certain threshold.

3. After this process has been finished, connectivity is enforced by
connecting disjointed pixels.

SLIC is initialized with 100 segments and a compactness 0f 0.05, which
is the trade-off for color-similarity and proximity. An example can be
found in figure 5.

4.5.3 Patch-based pre-training

In patch-based context restoration, images are distorted through a patch
swapping method: given an image xn, two sub-patches of dimensions
(p, p) are randomly selected and swapped. This process is repeated T
times, which leads to the distorted image xd. The optimal values for the
parameters p and T will be found through a random search across multiple
combinations of values. An example of a distorted image can be found in
figure 5.

4.6 Loss Functions for pre-training

In this research, the effect of two loss functions for the pre-training stage
are compared: l2 Loss and SSIM loss, in order to investigate the choice of
loss function on the final performance.
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4.6.1 L2 Loss

The loss is minimized by using the L2 loss (least Squares Error) function.
The L2 loss is a relatively simple loss function, as it is the sum of all the
squared differences between the true and predicted values. It is calculated
as:

L2loss(x, y) =
N

∑
i=1

(x − y)2 (4)

Although L2 loss has shown powerful results, it is also known that
L2 loss is not optimal for image restoration as it leads to blurred images
and does not correspond well to image quality as perceived by a human
observer (Zhang, Zhang, Mou, & Zhang, 2012). One of the main drawbacks
of L2 loss is that it assumes that pixels are independent of each other,
while in reality, this is not the case: the value for a pixel depends on the
values of the pixels that surround it. However, other loss functions exist
which do not make this assumption. For example, the structural similarity
(SSIM) index provides a measure of similarity by comparing two images
based on luminance, structural- and contrast similarity (Zhao et al., 2017),
which resembles how a human would evaluate the similarity between two
images.

4.6.2 SSIM Loss

The loss function consists of three core parts: luminance, contrast, and
structure. Luminance reflects the averaged intensity values over all pixels
in an image (µx). In order to calculate the similarity in luminance between
two images (x, y) the following equation is used, where C1 is a constant.

L(x, y) =
2µxµy + C1

2µ2
xµ2

y + C1
(5)

The second part reflects the similarity in variation in luminance, which is
defined as contrast (σx). The similarity in contrast between the two images
is calculated as follows

C(x, y) =
2σxσy + C2

2σ2
x σ2

y + C2
(6)
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The third part, structure is defined as the pearson correlation of the lumi-
nance of two images. It is calculated as follows:

S(x, y) =
σxy + C3

σ2
x σ2

y + C3
(7)

is defined by multiplying the three individual functions with each other,
together with a corresponding weighting factor (α, β and γ)

SSIM(x, y) = αL(x, y) · βC(x, y) · γS(x, y) (8)

Following from this, SSIM loss can be calculated as follows:

LSSIM(x, y) = 1 − SSIM (9)

In the current work, SSIM is implemented by using the function from
the Tensorflow library.

4.7 Evaluation Metrics

All models will be evaluated in terms of their Dice coefficient, which is
explained in section 4.2. Besides, each model will also be evaluated using
the Jaccard Index. For each class, it is defined as follows:

IoU =
TP

TP + FP + TN
(10)

Afterward, all scores are weighted for each class. While the Dice
coefficient and Jaccard index are very similar, the Dice coefficient puts
more weight into the true positives (recall that for calculating the Dice
coefficient, true positives are multiplied with 2 in both the numerator and
denominator). On the contrary, the Jaccard index yields an even weighting
for TP, FN, and TN. Therefore, it can be a more robust metric in cases
where false positives or false negatives are increasingly unfavorable, such
as in the healthcare domain.

4.8 Implementation Details

4.8.1 Pre-training Stage

In the pre-training stage, all experiments are conducted by training a
network for 10 epochs with a learning rate of 0.0001 and a batch-size of 4.
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4.8.2 Fine-tuning Stage

In the fine-tuning stage, all experiments are conducted by training the
network for 10 epochs, which is common when training with lower batch
sizes (Huang et al., 2021). Moreover, the networks are trained with a
learning rate of 0.0001 and a batch-size of 4. In order to get a more robust
estimate of performance, all experiments were carried out using four-fold
cross-validation. Three folds of patients are used as training data set for
each fold, and the remaining fold for testing. This process is repeated until
all folds have been used for training- and testing.

4.8.3 Software libraries

All code is written in Python 3.8. The used libraries are Numpy, OpenCV2

and skimage for data processing. Besides, the Tensorflow framework is
used to construct all machine learning models. Moreover, a Google Colab
Pro+ instance is used to train all models, which consists of 54 GB of RAM
and a Nvidia P100 GPU.

5 results

This thesis will present the results of all experiments in three parts. In the
first two sections (5.1, 5.2), the results of each SSL method are explained.
This consists of a qualitative- and quantitative comparison of different
pre-training methods- and loss functions. In the last section (5.3), the
performance of all approaches is compared. All metrics are calculated for
the full CT scan (e.g. the 3D image). Moreover, the standard deviations
and minimum and maximum values of each fold are reported. Note that
the standard deviation is calculated over all individual predictions. Finally,
in order to increase evaluation robustness, all models are compared to the
baseline by using a paired t-test.

5.1 Patch-based Context Restoration

In the following section, the results of patch-based context restoration are
presented.

5.1.1 Pre-training task

A qualitative overview of the results of context restoration can be found
in figure 6. Both models, pre-trained with L2 and SSIM loss, yield good
results. The structure of images is similar to the original image. However,
some of the restored parts are blurry for both models.
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Figure 6: Example of the restored images using patch-based pre-training.

5.1.2 Fine-tuning task

In table 1, the results of both loss functions for patch-based context restora-
tion are presented. Compared to the baseline, it has been found that
pre-training the model using patch-based context restoration slightly im-
proves performance. However, results from the paired t-test indicate that
these improvements are not significant. As can be seen in table 1, SSIM
loss yields the best performance, both in terms of Dice and Jaccard coeffi-
cients, with average scores of 75.03 and 61.06, respectively. Moreover, the
standard deviations for the Dice and Jaccard scores for the model trained
with SSIM Loss are 10.55 and 12.16, which are lower compared to both the
baseline and the U-Net model pre-trained with L2 loss. However, the UNet
pre-trained with L2 loss model has a higher minimum score for the Dice
coefficient, and a higher maximum score for the Jaccard coefficient.

Loss Dice Std. Min. Max. Jaccard Std. Min. Max.
SSIM 75.03 10.55 70.99. 78.79 61.06 12.16 59.95 62.55

L2 74.49 11.51 71.89. 77.55 60.50 12.68 58.22 64.09
Baseline 74.44 11.89 71.06 77.40 60.59 13.25 57.4 63.59

Table 1: Evaluatin metrics for patch-based method as decribed by Chen et al.
(2019).

In figure 7, one can see a qualitative overview in which the predictions
of both loss functions for patch-based pre-training are compared for patient
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70. When looking at the images, one can see that both models perform
similar. However, it seems that the predictions of the pre-trained models are
slightly more in line with the boundaries of the true masks. For example,
when looking at figure 7, the baseline U-Net shows a less fine-grained
mask of the pancreas compared to other the other models. However, it
should be stressed that the performance differences in figure 7 are minor
and only for a single patient.

Figure 7: Example of the predicted masks of each model using patch-based pre-
training. See appendix A (figure 11) for a more detailed overview.

5.2 Superpixel-Based Context Restoration

In the following section, the results of superpixel-based context restoration
are presented.

5.2.1 Pre-training task

In figure 8, one can see a qualitative overview of the results of superpixel-
based context restoration. As one can see, both models, pre-trained with
L2 and SSIM loss, yield good results. The structure of images is similar to
the original image. However, similar to the patch-based method, some of
the restored parts are blurry for both models.

5.2.2 Fine-tuning task

In table 2, the results of superpixel-based pre-training are presented. Com-
pared to the baseline, it has been found that pre-training the model using
superpixel-based context restoration improves results. However, only for
the model pre-trained with L2 loss are the results significant. Contrary
to the results of patch-based context restoration, L2 loss yields the best
performance, with an average Dice of 76.00 and Jaccard of 62.27 . Moreover,
the standard deviation in general is lower compared to the baseline. It
should be noted that although the Dice scores are slighly lower, the stan-
dard deviation of the model trained with SSIM Loss is lower compared
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Figure 8: Example of the restored images using superpixel-based pre-training.

to the baseline and L2 loss. However, the UNet pre-trained with L2 loss
model has a higher minimum score for the Dice coefficient, and a higher
maximum score for the Jaccard coefficient.

Loss Dice Std. Min. Max. Jaccard Std. Min. Max.
SSIM 75.40 10.23 70.99. 78.79 61.47 11.75 56.74 65.50

L2* 76.00 10.36 74.26. 78.34 62.27 11.89 60.22 64.89
Baseline 74.44 11.89 71.06 77.40 60.59 13.25 57.4 63.59

Table 2: Results of the U-Net models pre-trained with superpixel-based context
restoration. The * indicates that the results are significant compared to the baseline,
for alpha 0.05.

In figure 9, one can see a qualitative overview in which the predictions
of both loss functions for superpixel-based pre-training for patient 70 are
compared. Similair to the results from patch-based context restoration,
the results from the pre-trained models based on superpixels seem more
fine-grained compared to the baseline model.

5.3 Comparison of pre-training methods

In table 3, all models are compared. Given these results, it is clear that
pre-training with superpixels yields the best performance. Moreover,
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Figure 9: Example of the predicted masks of each model using superpixel-based
pretraining. See appendix B (figure 12) for a more detailed overview.

pretraining with superpixels seems to result in more robust models, since
the standard deviation is lower for both the Dice- and Jaccard scores.

Model Loss Dice Std. Min. Max. Jaccard Std. Min. Max.
PB U-Net L2 74.49 11.51 71.89. 77.55 60.50 12.68 58.22 64.09

PB U-Net SSIM 75.03 10.55 70.99. 78.79 61.06 12.16 59.95 62.55

SP U-Net* L2 76.00 10.36 74.26. 78.34 62.27 11.89 60.22 64.89

SP U-Net SSIM 75.40 10.23 70.99. 78.79 61.47 11.75 56.74 65.50
Standard U-Net - 74.44 11.89 71.06 77.40 60.59 13.25 57.4 63.59

Table 3: Comparison of all three pre-training methods. Abbreviations are used for
model names such that the table can fit on one page.

This can also be seen when performing a qualtiative assesement of
the results: superpixel-based pre-training significantly outperforms other
methods when the data is irregular, such as being slightly rotated. For
example, clear differences can be seen in terms of performance for patient
80 (figure 10). It is clear that the the irregular- and disconnected shapes of
the pancreas are detected much better in comparison to other models.

Figure 10: Example of the predicted masks of each model. See appendix C (figure
13) for a more detailed overview.

6 discussion

This research has investigated the extent to which superpixel-based pre-
training self-supervised learning improves the task of pancreas segmenta-
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tion. Thus, the current study revolved around the following research ques-
tion: "To what extent can superpixel-based context restoration improve
pancreas segmentation". Besides, it is investigated whether superpixel-
based pre-training improves results compared to existing methods, and
how the loss function during pre-training influences performance in the
target task.

Each of the three sub-questions will be answered in the following
sections to formulate an adequate answer to the overarching research
question. As a first step to answer the research question, it is investigated
to what extent patch-based context restoration (Chen et al., 2019) improves
results (section 6.1). Besides, it has been investigated whether superpixel-
based context restoration improves performance in pancreas segmentation
compared to patch-based context restoration (section 6.2). Moreover, the
effect of different loss functions are compared in section 6.3. In section
4, the main findings are discussed in light of the overarching research
question. Finally, in section 6.5, the limitations of the current research are
debated.

6.1 Patch-based context restoration

When looking at table 2, one can see that patch-based context restoration
does not yield significant performance gains compared to the baseline. The
performance gains for patch-based context restoration with L2 loss are
negligible. Therefore, the differences can also be attributed to randomness
during the initialization of parameters (recall that not all weights are trans-
ferred after retraining), which can also account for differences performance
(Man, Huang, Feng, Li, & Wu, 2019). Therefore, when coming back to the
original subquestion "to what extent does patch-based context restoration
increase performance in pancreas segmentation? one cannot conclude that
patch-based context restoration improves pancreas segmentation, which
counters the findings presented by Chen et al. (2019). One possibility is
that patch-based pre-training is not suitable for pancreas segmentation due
to the nature of the pre-training task. As a result, the network does not
learn semantic features relevant to the target task. This pattern can also be
found in other literature. For example, Azizi et al. (2021) found that the
in-painting of random patches in an image did not significantly improve
brain tumor segmentation when training all data.

6.2 Superpixel-based context restoration

When looking at table 2, one can see that superpixel-based pre-training
with L2 loss significantly outperforms the baseline. Moreover, the standard
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deviations for both the Jaccard- and Dice coefficients are lower, which
indicates that both models are more robust. Therefore, when coming
back to the second subquestion "does superpixel-based context restoration
improve segmentation performance, compared to patch-based context
restoration", one can conclude that superpixel based context restoration
yields better performance compared to patch-based context restoration.
However, it should also be noted that only the results of superpixel-based
pre-training with L2 loss are significant. Interestingly, these findings
support the hypothesis that superpixel-based context restoration yields a
more heterogeneous representation, which benefits pancreas segmentation.

6.3 Effect of different loss functions

In the current study, it has been investigated to what extent the choice of
loss function affects performance in the subsequent task, which leads to
the third subquestion To what extent does the usage of SSIM loss during
pre-training improve performance of pancreas segmentation, compared to
L2 loss. When looking at superpixel-based context restoration, only the
pre-training using L2 loss resulted in significant results compared to the
baseline. Using SSIM loss did not result in significant performance im-
provements for both pre-training methods. Therefore, the current evidence
indicates that L2 loss is favorable to SSIM loss. One possibility for the
lower performance is the usage of a Gaussian filter during pre-process to
blur the images, while it has been found that blurring negatively affects
SSIM performance (C. Li & Bovik, 2010). Moreover, it can be the case that
SSIM loss is not optimal for medical imaging in general, which has been
supported by other studies as well (Kim et al., 2011)

6.4 Main Findings

The current research is the first to investigate the effect of superpixel-
based context restoration in the context of pancreas segmentation. Coming
back to the main research question, to what extent can superpixel-based
context restoration improve pancreas segmentation, the results indicate
that pre-training a model using superpixel-based context restoration with
L2 yields the best results. It is found that pre-training the model results
in performance gains of up to 1.5 %. Besides, the standard deviation is
also lower, which indicates that the model is more robust. Thus, the results
suggest that superpixel-based pre-training tasks are promising for pancreas
segmentation and self-supervised learning in general, which extends the
findings of other literature (Kayal et al., 2020).
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6.5 Limitations

The methodological limitations are further elaborated in the following
subsections.

6.5.1 Choice of hyperparameters

Due to limited time, the selection of hyper-parameters could have received
more attention, which can limit the robustness of the findings. For example,
while training the model in both the pre-training- and fine-tuning stage,
the effect of different batch sizes or the number of epochs has not been
investigated. Likewise, it can be that some parts of the restored images
in figure 6 and 8 are blurry simply because all models have not fully
converged. Likewise, it has not been well investigated how different hyper-
parameters generating distorted data can affect model performance. For
the patch-based pre-training, this includes the size of the patches or the
number of patches that are swapped. For superpixel-based pre-training,
this consists of the number of segments when initializing the superpixel
centers or the number of segments that are distorted.

6.5.2 High Variance

Another limitation is that the standard deviation of all models is high,
which indicates a high variation in performance depending on the subject.
Especially for critical applications, such as healthcare, results should be
robust and consistent. Likewise, since the dataset is relatively small (82

patients), it should be further investigated how the findings generalize to a
broader public.

6.5.3 Effects of model complexity or data augmentation

Moreover, the current study focuses on self-supervised learning and uses
a relatively simple network architecture (standard U-Net) to investigate
this. It is hypothesized that pre-training the model yields a richer, more
heterogeneous representation, which is helpful in the subsequent task.
However, can these heterogenous features only be learned by using pre-
training? Or can these features also be learned when using more complex
network architectures- and training setups, as described in the current
state-of-art in the literature (M. Li et al., 2021; Petit et al., 2021; Zhou et
al., 2017). This remains unclear from the current research. Moreover, the
possible benefits of data augmentation have not been taken into account in
the current research. Therefore, it more research is needed to investigate
whether performance gains of SSL and data augmentation would yield
similar representations, which would limit the total performance gains, or
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whether the learned representations are complementary and both increase
performance when used together.

6.5.4 Lack of validation data

In current validation set has not been used in the c. The main reason for
this is that data is limited, and the validation set will decrease the (already
small) training data size. Moreover, since the dataset is small, a validation
set of 10 % will only result in eight CT scans for validation, which is simply
too small for a robust estimate. Therefore, it has not been well investigated
to what extent the models have converged, since callbacks such as early
stopping are no implemented.

6.6 Suggestions for further research

The current work yields several opportunities for further research. For ex-
ample, one of which is to compare the results of the current self-supervised
learning approaches to other SSL paradigms, such as methods from
contrast- and context-based SSL. Besides, the effect of different hyper-
parameters should be further investigated. Another interesting topic which
builds further upon this, would be to investigate the effects of increasing
the size of the dataset during pre-training. To elaborate, currently only 50

extra scans are used during pre-training. However, other studies use sub-
stantially more data during pre-training (Azizi et al., 2021). It is definitely
possible that this yields a more heterogeneous representation which is
useful for the subsequent task. Finally, it is worthwhile to investigate how
the superpixel-based context restoration can be used together with coarse-
to-fine methods, as described in M. Li et al. (2021); Zhou et al. (2017). For
example, first a network can be used to extract a coarse segmentation of the
pancreas, which is used in a subsequent superpixel-based pre-training task
following the current approach. Afterward, the weights can be shared with
a second segmentation network to improve the segmentation performance
during fine-grained pancreas segmentation.

7 conclusion

In summary, the current work explored the usage of superpixels to con-
struct a pre-training task for self-supervised learning. During the task,
superpixels are used to distort areas of an image, which the network
has to reconstruct during the pre-training task. It has been found that
superpixel-based context restoration adds a significant increase in per-
formance compared to the baseline. Moreover, it outperforms existing
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methods. The results indicate that superpixels can be promising in the
development of pre-training tasks. However, more research is needed to
take the limitations of the current research into account.

8 self-reflection

Writing this thesis was a very valuable experience. Not only have I learned
a lot in the domain of self-supervised learning and medical image analy-
sis, I also learned practical things such as the importance of structuring
your projects. Moreover, working together with the UMC was a valuable
experience.
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Appendix A

Figure 11: Example of the predicted masks of each model using patch-based
pretraining.
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Appendix B

Figure 12: Example of the predicted masks of each model using superpixel-based
pretraining.
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Appendix C

Figure 13: Comparison of predicted masks of different models.
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