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Abstract

This master thesis explores the hedging problem in a general incomplete market setting.
The goal of the hedger is to reduce the basis risk of a non-tradable asset using imper-
fect hedging instruments. We follow a methodology developed in the context of dynamic
minimum-variance hedging by Basak and Chabakauri (2011). We extend the class of
dynamic hedges presented in this paper to the setting where the hedging instrument and
the risk position are cointegrated. Furthermore, we constructed a numerical approach to
extend the hedging strategy for an Asian option using a LSMC algorithm in a market set-
ting with two Geometric Brownian Motions. Using Monte Carlo simulations, we evaluate
the hedging performance of these two extensions. We find that a hedger can significantly
improve his/her hedging effectiveness by accounting for incorporating the possibility of
cointegation between assets. In a numerical experiment we show that the hedging effec-
tiveness is approximately equal for Asian options of different strike prices, but that their
hedging positions differ over the hedging horizon.
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CHAPTER 1. INTRODUCTION

1 Introduction

Hedging is a strategy in finance that is used to reduce risk. It is used to offset
the risk of any adverse price movement and is therefore an important part of risk
management. In the case of dynamic trading and a frictionless complete market
perfect hedging, constructed through no-arbitrage methods, could theoretically elim-
inate risk completely. However, in reality investors and intermediaries are not able
to hedge perfectly, because of market frictions such as the inability to trade continu-
ously, stochastic volatility, jumps in the underlying investment, and transaction cost.
Therefore, perfect replication is not feasible and hedging is only an approximation
of the final payoff function, and as such it causes a non-trivial error. In this thesis
we will focus on the risk associated with hedging a non-tradable security using an
imperfectly correlated tradable asset. The risk that arises due the introduction of
the aforementioned non-trivial error is called residual risk or basis risk. Prominent
examples of parts in the financial sector where residual risk is present are:

e  Futures and forward contracts that are used by energy market participants
to buy or sell a specific volume of gas or electricity, at a certain price, for
settlement on a specific date in the future. Futures and forwards can be
used to hedge price risk of a future risk position. To guarantee liquidity in
the energy market, futures are highly standardized. However, there could
be a mismatch between the expiration date of the futures and the date on
which the risk position is sold or received, therefore inducing residual risk.

. Stocks that have been grouped in an index are called index options. Index
options are generally hedged by using a certain number of, but not all,
the underlying assets. As a consequence, basis risk arises due to imperfect
correlation between the underlying assets and the index.

So why do we care to minimize basis risk by hedging? Ankirchner and Imkeller (2011)
and Ankirchner, Schneider, et al. (2014) illustrate that in commodity and complex
life insurance hedging even a relatively large correlation between assets only reduces
basis risk by half. Insurance companies generally use dynamic hedging in financial
products to hedge the risk from their variable annuity business. Basis risk arises due
to imperfect correlation between the underlying mutual fund and the assets used to
cross hedge the financial obligations.

A static hedge minimizes the basis risk at the initial start of the hedging horizon and
holds the number of assets used to hedge constant throughout the this horizon. While
static hedges are easy to implement, they can be very inefficient. A static hedging
strategy does not have the mechanism of updating itself as new information unfolds
with time, and is therefore vulnerable to future market changes and generally less ef-
fective than a dynamic strategy. Dynamic hedging involves a strategy that rebalances
hedging positions as market conditions change. A breakthrough in dynamic hedg-
ing is made by Basak and Chabakauri (2010) who obtain an explicit time-consistent
optimal policy using a mean-variance framework. Basak and Chabakauri (2011) ex-
tended this framework to a minimum variance hedging error criterion. The paper by
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Basak and Chabakauri (2011) will be the basis of the hedging strategies derived in
this thesis.

1.1 Literature review

Schweizer (1994) and Duffie and Richardson (1991) solve the dynamic minimum-
variance hedging problem using a quadratic theory framework. Duffie and Richardson
(1991) derive an explicit solution for the minimum variance criterion subject to a
predetermined expected hedging error under Geometric Brownian Motion (GBM)
asset prices. The hedging strategy derived minimizes the hedging error variance at
an initial date. These strategies are classified as "pre-commitment' strategies, as the
strategy becomes sub optimal at future time point on the hedging horizon unless
the hedger is able to pre-commit to the strategy. Several authors have formulated
the problem of hedging basis risk in terms of the utility maximization approach. The
utility maximization objective is another way of specifying the hedgers appetite for the
amount of basis risk. Monoyios (2004) used the utility framework to derive analytic
approximations for the price and hedging strategy of the claim using an exponential
utility. Monoyios (2007) developed analytic expansions for the indifference price and
hedging strategies using this utility framework. A key expansion is the incorporation
of a filtering approach, where the hedger integrates observations of asset prices to
leverage better estimates of the market price of the asset models.

Basak and Chabakauri (2010) developed in the context of dynamic mean variance
portfolio optimization a recursive formulation for the hedger’s objective function. Us-
ing the same methodology as Basak and Chabakauri (2010) in Basak and Chabakauri
(2011) dynamic time consistent hedging strategies for the minimum-variance criterion
are derived. The dynamic strategies are defined mathematically similar to complete
market dynamic hedging strategies, which are constructed using no-arbitrage meth-
ods. The similarity lies in " ’Greeks’ that quantify the sensitivities of the asset value
under the unique risk-neutral measure to the pertinent stochastic variables in the
economy" (Basak and Chabakauri, 2011). The difference is twofold: the addition of
a parameter that accounts for the degree of market incompleteness. And a change
in drift parameters, resulting in the consideration of hedging cost due to the incom-
pleteness of the market.

Ankirchner, Pigorsch, et al. (2014) derive an approximation of the variance minimal
hedging strategy based on decomposing the risk position into a hedgeable and an
orthogonal non-hedgeable component. They construct an algorithm for calculating
hedging error characteristics. The algorithm delivers tight upper and lower bounds on
the minimal hedging variance and consequently contains an efficient built-in control
for the quality of the approximation. Ankirchner, Schneider, et al. (2014) study
the effect of a long-term relationship on optimal cross-hedging strategies; thereby
accounting for a possible dependence of the correlation and time to maturity in
the cross hedge framework. In their research the long-term relationship of asset
prices is replicated modelling the spread between two assets as a Ornstein-Uhlenbeck
process and by modeling the futures price as a GBM. Using the decomposition method
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described by Foellmer et al. (1985) they derive a variance minimizing cross hedge
strategy in an continuous martingale setting of an incomplete market.

1.2 Research Objective

The aim of the thesis is to solve the dynamic hedging problem by implementing
a minimum-variance criterion and derive tractable optimal hedging strategies in a
incomplete market. We consider a hedger that wishes to reduce the risk of a non-
tradable or illiquid asset at some future date using a correlated tradable asset. Our
research has both similarities and extensions compared to previous research. We
adopt the dynamic hedging strategy derived in Basak and Chabakauri (2011) and
extend their time-consistent strategy framework to a broader range of settings. Our
research objectives can best be summarized as follows:

e Analyze the impact of different parameter settings on the performance of
the Geometric Brownian Motion model.

e Propose an numerical approach to extend the time-consistent hedging strat-
egy to Asian options.

e Study the effect of a long-term relationship on optimal strategies and the
consequences of model misspecification.

We will evaluate the performance of the last two research objectives using Monte
Carlo simulation techniques. The remainder of this thesis is structured as follows.
Section 2 starts by presenting the general theoretical framework. After that, we
introduce the concept of the time consistency property and the dynamic optimal
hedging strategy. Section 4 addresses an implementation of hedging strategies on
options. In Section 5 we present two models on which we apply our dynamic optimal
hedging strategy. Section 6 outlines the simulation results for our option hedging
strategies and analysis of model risk. Finally, Section 7 summarizes and concludes.
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2 Theoretical framework

2.1 Stochastic processes

We consider a continuous-time incomplete market Markovian economy with finite
horizon [0,7]. The price processes of the two risk assets are defined over the com-
mon probability space (€2, F,P). Define the state space €2 as the set of all possible
realization of the underlying processes between [0, T]. F represents a sigma field of
distinguishable events at time 7, and P is the probability measure that is defined on
F. Define F = {F; : t € [0,T]} as the augmented filtration generated by the relevant
underlying processes and assume F = Fp. Denote by (Wy, Wa) = {Wy(t), Wa(t) : t €
[0,7T]} a two-dimensional Brownian Motion on the common probability space. Given
that W; L Wa we use the Cholesky decomposition to generate two correlated Wiener
processes. Let Y denote the correlation matrix for two Brownian Motions, then there
exists a lower-triangular matrix L, such that the following holds

Y =_LL"
where

() )

The vector of correlated Brownian Motions W is given by
W= LW

The two Brownian motions (W7, W5) have instantaneous correlation denoted by p €
[_17 1]

We will consider an hedger who is committed to hold the derivative of a non-tradable
asset with payoff h(X7) at time T. The function h is determined by the derivative,
e.g. for a call option with strike K we have h(Xr) = max(Xr — K,0). The price of
the non-tradable asset follows the dynamics.

dX

Tt = m(Xy, t)dt + v( Xy, t)dWs () (2.1)
t

The risk of holding the derivative of the non-tradable asset can be hedged by contin-

uous trading in a risk-free asset earning at a constant rate of » > 0 and a tradable

risky security. The dynamics for the price of the tradable security are given by

dsS

?t = 1u( Sy, t)dt + o (S, t)dWy (t) (2.2)
t

We will denote p, o¢, my, vy as shorthand for the coefficients in (2.1) and (2.2), and

Wi, Way for the Brownian motions.
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2.2 Incomplete market

In a complete financial market we can perfectly replicate the payoff of a derivative via
continuous trading. Discreteness of stock price observations, jumps in the stock price,
stochastic volatility, transaction cost and market liquidity render perfect replication
impracticable.

We focus on liquidity as the source of incompleteness. Consider an investor that
seeks to hedge a derivative where the underlying security is either non-tradable or
not sufficiently liquid. Consequently, the investor uses another asset that is tradable,
or highly liquid, and ideally highly correlated to the underlying asset of the derivative.
We call this cross hedging. Let’s assume we have a risk position equal to N, Xt and
a hedge position N,Sr where N, and N, are the units of X; and .S; respectively. The
basis is defined as

N, X1 — NSp (2.3)

for a risk position maturing at time 7. Basis risk is often defined as the variance of
the basis. The unconditional variance of the basis is equal to

Var[N, X7 — N,Sr] = N2Var[X7] + N2Var[S;] — 2N, N,Cov(Xr, St)

The basis risk is zero when the variances of X; and S; are equal. This only holds if
the assets are perfectly correlated:

COV(XT, ST) - COV(XT, XT)

a \/Var[Xz]/Var[Sz] T Varlxy] -

However, in practice assets are rarely perfectly correlated and this imperfection cre-
ates basis risk. Under basis risk, hedging can only reduce the risk of a position to a
limited extent. For the assets defined in Section 2.1 we observe that for p € (—1,1)
the randomness in S;, indicated by W;,, and the randomness in X, indicated by
Ws ., are imperfectly correlated and thus entail basis risk in hedging.

A simple example of basis risk is given by Ankirchner et al., 2012. Consider the
German gas forward market, which is not very liquid. In order for an energy company
to hedge its commitment to sell gas in the German spot market, they must use
forwards of other countries to hedge their position. The degree of correlation between
different regions depends on the local demand, local production and local availability
with respect to pipelines etc. The energy company can hedge it’s risk position by
buying Dutch gas on the forward market, however because of the geographical spread
in commodity prices the Dutch forward price will not exactly converge to the German
spot price at maturity. This gives rise to basis risk.

2.3 Variance-minimize criterion

The agents wealth at time ¢ is given by M, = N, X, + 6;, where 6, = m,S; denotes the
amount of money invested in the tradable security S;. Hence we have an amount of
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money (M; — 6;) that is invested in the riskless bond. The dynamics of the bond are
given by

dBt = TBtdt (24)

The agents wealth, given initial wealth M, follows the process given by

dM, = [rM; + 6,(j1, — )] dt + 6,0,dW (2.5)

The goal of the agent is to minimize the variance of the hedging error h(Xr) — Mr.
Denote the conditional variance at time t by Var|-| = Var[ - | Xy = 2,5, = s] =
Var,[ - |F;]. The variance-minimizing criterion can be defined as

min = Var,[h(Xr1) — Mr] (2.6)

0t

The criterion above is subjected to the dynamic budget constraint of (2.5). The
purpose of minimizing the variance of the hedging error is to reduce basis risk. Note
that if the objective of the agent would be to minimize potential losses, the agent
could adopt for example a VaR (Value at Risk) minimizing criterion. The mean-
variance criterion would be suitable for agents looking to maximize the trade off
between expected return and risk.

The goal of minimizing the variance replication error is adopted in a large part of the
risk management literature (Hull, 2009). Instinctively, the motive behind a minimum-
variance hedge is to construct a hedge similar to the delta neutral hedge in the
complete market setting as a means to eliminate all risk. However, in incomplete
markets not all risk can be eliminated and hence the objective is to eliminate as
much as risk as possible by replicating the risk position as accurately as possible.
The motive for the minimum variance objective originates from the nature of the
hedger. Take market-makers for example, they provide liquidity by allowing buyers
and sellers to trade in the market at any given time. At the same time they act
as a hedger by trading in the underlying or cross correlated asset on which they
write derivatives. Their hedging purpose is largely based on minimizing the risk
that originates from writing of derivatives, and is therefore not mean return driven.
The variance minimization criterion is used as well in other contexts in economics.
Monetary economics is a prime example, in this environment the primary goal of a
intuition such as the government is to achieve stability and decrease uncertainty in
the economy.

2.4 Stationary Basis

In this section we will introduce cointegrated stochastic processes. Cointegration is
referred to as the existence of a linear relationship between two stochastic processes



CHAPTER 2. THEORETICAL FRAMEWORK

that has constant mean and standard deviation. Ankirchner et al. (2012) emphasize
the sizeable dependence of correlation on the selected time measured interval. They
give an example of weekly, monthly and yearly log returns of kerosene and crude oil,
and show that short-term correlation is considerably lower than long-term correlation.
This could be evidence of the existence of a long-term linear relationship with short-
term deviations. In non mathematical terms, if this linear relationship is stationary
then the two assets are cointegrated. If correlation is a function of time to maturity
then we must account for the time dependence of the correlation parameter in our
cross hedge. "Intuitively, for long-term hedges it is likely that the two assets are in
their equilibrium relationship, whereas in the short-term the dynamics are dominated
by noisy fluctuations due to shortage or oversupply of kerosene" (Ankirchner et al.,
2012).

2.4.1 Stationarity

Stationarity means that the statistical properties of the process are roughly constant
over longer periods; non-stationary thus implies that movements are not necessarily
within a certain range, and that the process has no limits with respect to where it
goes.

Definition 2.4.1. Let X; be a stochastic process. Then X; is a weakly stationary
process if

px(t) = ux < oo constant,
ox(t) =0x < oo constant,
Cov(Xy, Xy) = Cov(Xyyn, Xoyn),

for all integers t,s and n.

In order to test if the process X; is weakly stationary, a unit root statistical test
should be employed. Some of the most basic unit root tests are the Augmented

Dickey-Fuller (ADF) test, the Phillips-Ouliaris test and the KPSS test. Consider the
following discrete time AR(1) process

Xt =+ ﬁXt—l + & (27)
and take the first difference to obtain
AXt =+ ¢Xt—1 + € (28)

where AX; = X; — X;_1 and ¢ = (8 — 1). The Dickey-Fuller test has the following
hypothesis

Hong:() H13¢<0 (29)
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if we reject Hy then the process X; does not have a unit root (i.e. the process is
stationary). Consider the discrete time AR(p) process

AXt = + ¢Xt—l + ’YlAXt—l —l— s 4 ’}/pAXt—p + €t (210)

then the ADF-test tests whether ¢ is different from zero. The ADF-test statistic
Tapr 1s defined as

¢
s.e.(¢)
where ¢ is the estimated coefficient of ¢ in (2.14). Note that this test statistic has its

own Dickey-Fuller distribution which causes the hypothesis test to be asymmetrical.
The number of lags p for which we test in the ADF-test is generally determined

TADF =

empirically.

2.4.2 Cointegration

Consider two stochastic processes S; and I;. In order to test if these processes are
cointegrated we use the Engle and Granger (1987) 2-step approach

o Use a statistical unit root test to test if S; and I; are non-stationary.

e Run the regression equation S; = o + BI; + u;. Use a unit root test to
determine if the estimated residuals 4, are stationary. Here 3 is called the
cointegration coefficient.

The correlation between selected assets is a critical factor of the performance of a
cross hedge. Correlation is a measure for how two processes move jointly over time.
Cointegration is a measure of the similarity in behaviour of two processes in the
long term. Cointegration is referred to a more stable and robust relationship than
correlation. Next, we show with a basic illustration the difference between correlation
and cointegration. Consider two different cases:

o Case 1: process Z; follows a geometric Brownian Motion (GBM) and pro-
cess Y; = ¢+ Z; + ¢ where c is a constant and € ~ N(0,0.5) is white noise.
The parameters of the GBM are = 0.04,0 = 0.2 and Z; = 100.

. Case 2: Z; and Y; both follow a geometric Brownian Motion with correlation

matrix X = (019 019>, drift and volatility are pu; = 0.01, uo = 0.03, 01 =

0.05,09 = 0.03 and Z, = Y, = 100.
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Figure 1: Simulated processes.

The simulated processes as well as the log spread are shown in Figure 1. For both
cases the assets move together across the corresponding horizon. We observe that
for Case 1 the spread of the processes remains stable around a constant mean. We
can proceed with a statistical simple statistic analysis. Table 1 shows the correlation
results as well as the p-value of augmented Dickey—Fuller test for one lagged period.
As we can see, both cases exhibit strong correlation, however only for Case 1 we
can reject the null hypothesis of non stationarity for a significance level of 1%. This
shows that two variables can be highly correlated, but therefore do not have to be
cointegrated.
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Case 1 Case 2

Pearson Correlation 0.9820 0.9911
ADF test (p-value) 0.0062 0.7730

Table 1: Statistics of Case 1 and Case 2

Cointegration is closely related to the pair trading strategy. This strategy groups
assets that are closely linked together in pairs. The pairs are traded when their asset
prices differ more than a pre-specified amount. The pair trading strategy assumes a
certain price relationship between two assets. Any short-term deviation in the market
from this relationship allows the investor to take advantage by taking a long position
in the undervalued asset and short position in the overvalued asset at the same time.
Whenever the price relationship is restored, the investors closes both positions and
has realized a profit. In terms of processes S; and I;, the strategy yields a profit of

(St - Stfl) - 5<[t - [t71>
(St = BLy) — (S—1 — BLio1) = Xy — Xy

The profit of the pair trading strategy over period At is given by the change process
X;. Since the process X; is weakly stationary, the investor can use this to construct
a strategy of long and short positions.

2.4.3 Stationary Basis

In this section we denote the non-tradable asset by I;. Define the spread of the log
asset prices of I, and S; by

Xy = log(S;) — log(1) (2.11)

If I, and S; are cointegrated processes then the log spread is stationary. The spread
X; can be thought of as the basis similar to (2.3). This spread is a source of basis
risk since the underlying assets are not perfectly correlated. We assume that the log
spread follows a mean-reverting Ornstein-Uhlenbeck process

X, = K(X = Xp)dt + ox 4 (pdWyy + /1 = p2dWa,) (2.12)

where ox,; > 0 by assumption. For x — 0 the log spread X; converges to a Arith-
metic Brownian Motion with drift zero, that is correlated with the tradable asset.
Consequently, the variance of the log spread increases for an increasing time to ma-
turity. Note, here p quantifies the correlation between the tradable asset and the log
spread, instead of the correlation between the tradable and non-tradable asset.

We define p = /1 — p?. From the dynamics of X; and S; we derive the dynamics of
the non-tradable asset I, as
I, = Sie=™ (2.13)

For a positive log spread X; the asset price of I; is expected to increase relative to
the asset price of S;. Conversely for a negative log spread the price of I; decreases

10
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with respect to S;. Applying Ito’s formula to (2.13) shows that the dynamics of I,
satisfy

oL, oI, oI, 1021, 1 021, 21,
O+ Aegs, 4+ 92ty X
ot U a5, x5 e 2ax2 X"+ 555,

1
= /th-[tdt + UtltdWM — /i(X - Xt)ltdt — O'Xﬂg_[t (deLt + ﬁdWQi) + §It0'§(,tdt — pXtO'XﬂgO'tdt

d-[t - (dSt) (dStht)

1 _ _ o
= <2U§(¢ — KZ(X - Xt) + Mt — pUXJgUt) [tdt + [t((at — Uthp)dWLt — UXdeWQJ)

Define the volatility term and the Brownian Motion driving the dynamics of I; by

_ 2 2
o1y = \/Ot — 2p00x ¢ + Xt

WI,t = ((Ut - UX,tp)Wl,t - UX,tﬁWZt)/UI,t

Under the asset dynamics above, the correlation between the the assets I; and S; is
given by
Ot — OX P

PIx =
\/at — 2p00x ¢ + aXt

The correlation of the two assets is now a function of oy, p and ox .

2.5 Trading cost

Most theoretical models assume the market setting to be friction-free and shares
of an asset to be infinitely divisible. In reality, trading is often only possible in
discrete increments. Moreover, an investors incurs transaction cost when trading on
the market. Trading cost consist mainly of: quoted bid-ask spread, commission fees
and market impact cost. Other cost could include delay cost, opportunity cost and
short borrowing cost. Bid-ask spreads costs are independent of the investor size;
commission fees are partly dependent on the volume of trading and investor size;
market impact cost are dependent on investor size and liquidity.

Realizing a realistic model for incurred trading cost is not easy and beyond the scope
of our research. To simplify the treatment of trading cost, we assume that the trading
cost are proportional to the volume of trading. This assumption is mainly valid for
large investors; we only take into account bid-ask spread cost; commission fees and
market impact cost are assumed to be negligible. Define the trading cost for a discrete
time horizon [0,T] by

T
Cr=>_ o(m1 — )5S, (2.14)
t=0

where my = 0 and g are the trading cost of trading a long or short position of one
unit of S;.

11
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3 Hedging strategies

There exist situations where an investor who maximizes a reward function with initial
values (¢, X;) finds that the derived strategy is no longer optimal at a later moment
in time (s, X;) for s > t. Subsequently, time inconsistency arises. The investor
can employ one of three hedging strategies to respond to time inconsistency: naive,
pre-commit or equilibrium strategy. We will discuss all three strategies in the next
sections.

3.1 Time consistency

The dynamic programming approach applied to our variance-minimize criterion is
hard, because in a multi-period setting the conditional variance gives rise to time-
inconsistency. To see how this works we look at the law of total variance

Vart[XT — MT] = Et[Vart+5(XT — MT)] + Vart(Et+5 [XT — ]\47“])7 g > 0 (31)

As we can see, the variance at time ¢ exceeds the expected value of the variance at
time t+¢. As a consequence, the hedging strategy 6, that is constructed to minimize
Var,[ X7 — Mr] at time ¢, actually minimizes the future (¢4 €)-expected variance plus
the variance of the future (¢ 4 €)-expectation. The time inconsistency arises as we
arrive at time t+¢; the second term in (3.1) vanishes and the hedger is only interested
in minimizing the (¢ + ¢)-variance. However, the hedging strategy chosen at time ¢
minimizes the expected variance and the variance of the expectation. Hence from a
time t 4+ € perspective the hedger may wish to deviate from optimal policy at time
t. At time t + € the hedger has two options: continue to adopt the original hedging
strategy or to devise a new plan that is 'optimal’ for him/her at time ¢ + . If the
latter would be enforced over the complete hedge horizon [0,7] then the hedging
strategy is conceived as time consistent.

Basak and Chabakauri (2010) were the first to solve this problem of time inconsistency
in the derivation of an optimal dynamic solution. Provided in their research is a
novel approach of obtaining a ’consistent’ solution to a portfolio selection problem
for a mean-variance objective function. They use a game theoretic formulation to
define the ’optimal’ strategy as an equilibrium solution. Later, Bjork and Murgoci
(2014) derived a more thorough solution for the ’consistent’ solution for general time-
inconsistent problems using a game theory approach. In the next paragraph we
illustrate how the problem can be defined in a game theory framework to give a
intuitive idea of how the hedging problem of time inconsistency is solved.

The time inconsistency problem can be viewed as a non-cooperative sequential game,
with one player for each time ¢ and the sub-game perfect Nash equilibrium as the
‘time consistent’ solution. A sequential form game is a tuple (Z, (6;)icz, (u;)iez). The
hedging problem can be described as a sequential game in discrete time as follows:

12
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1. Discretize the time interval [t,T] into N € N equidistant time steps and
set t; = ﬁ(T —t) for 1 <i < N. Consider one player at each time point ¢;
and call this 'player t;. Player ¢; can be seen as a future reincarnation of
the hedger. Define the set of players as Z = {1,..., N}.

2. Conditional on process X;, and S, player ¢; will choose a action. The set of
actions for player t; is denoted by ¢; = 9(t;, Sy, Xy,). Define © = {0 | 6 =
(0:)iez,0; € U;,Vi € I} as the set of actions of all players. We can behold
© as the set of available strategies over [0, 7] and 0; as the set of strategies
over [t,t+ ).

3. The payoff function of player ¢; is u;(S;,, Xi,, ©) = Vary, [h(Xr) — Mr]. The
payoff functions maps © — R. Note that the payoff of player ¢; does not
only depend on the strategy chosen by himself, but also by the strategies
chosen by all players coming after him in time.

The sub-game perfect Nash equilibrium of the game above is given by the set of payoff
functions © that comply with the following reasoning:

1. Pick an arbitrary point ¢; in time.

2. Suppose that every player ¢, for k > ¢ will play strategy é;(tk, St Xt,.)-

3. The optimal strategy for player ¢; is to play strategy éf (ti, Sty X3,)-
Thus, the strategy 0; (¢, S;, X;) that takes into account that the hedger may wish to
deviate from the time-t optimal strategy at time ¢ + € is a sub-game perfect Nash
equilibrium of the game presented above.

3.2 Dynamically time-consistent hedging strategy

Our next step is to apply the line of thought from above to our economic setup as
defined in Section 2. The goal is to find a recursive relationship for the value function

Ji(Sy, Xy, My) = néin Var,[h(X7) — Mr] (3.2)

By applying the law of total variance as in (3.1) we arrive at

Ji (S, Xy, My) = T%in E[Jive] + Vary (B [h(Xr) — Mr]) (3.3)

Given the optimal time-consistent hedging strategy 6% with complementary terminal
wealth M7 for s € [t,T], the value function of (3.2) becomes

Jt(St, Xt, Mt) = Vart[h(XT) — Mr;:] (34)
The hedger at time ¢ plans to follow the optimal strategy 67 for s € [t +¢,T]. Hence
the time-¢ problem of the hedger boils down to finding the optimal hedging strategy

0, for s € [t,t+¢) that minimizes the right hand side of (3.3). In the next proposition
we state the optimal hedging strategy 0; as derived by Basak and Chabakauri (2011).

13



CHAPTER 3. HEDGING STRATEGIES

Proposition 1. The optimal hedging policy and the corresponding variance of the
hedging error are given by

OE! [W(Xp)e (T4

Py, OE; [h(X7)e " (TY)]

o =2 o L5 o (3.5)
T * 2
Var[Xr — M) = (1 — p)E, [ [ v <8EVL(XT>]> ds} (3.6)
t 0X,

Here, M7 represent the wealth level under the optimal hedging strateqy. Furthermore,
the conditional expectation E} is under the hedge neutral probability measure P*.

Proof. The wealth process is given by
dM; = [r My + 0,(py — )] dt + Or0,dW 4 (3.7)

Here the wealth process My is given by
T T
M} = Me" T +/ 0% (s — r)e" T ds + / 0o, T daw, (3.8)
t t

Fix a strategy 0; over the interval [¢t,t + ) and let € converge to zero. The law of
total variance yields

Jt = Il'éln Et[Jt—l-s] + V&I‘t<Et+€ [h(XT) — MT]> (39)

Here My is the final wealth of using strategy 0; over the time interval [¢,¢ + ¢) and
0* over [t + &, T]. Now define the process G; as

T
Gy = Gi(X,, Sy, t) = By [h(Xp)e 71 — / 0 (s — )TV ds| (3.10)
t
Hence now we can write the following

Var,(Eyc[h(X7) — Mr]) = Vary(Gie — Myy.) (3.11)

For the process G, Ito’s formula gives us

0G oG
dGy = ... dt + et <8X,thXtdW2,t + aSZSf,UtdWM)

Hence we obtain with AWy, = W 410y — W, for i = 1,2

Vary(Eos [h(Xr) — My]) = Var, (gfgutXtAM2,t+g?StOtAMI,t—etatAWu) 2r(T—)
t t
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Now we can write (3.9) as follows

2 2
0 DJt + mln [(aG VtXt> + <8Gt Stat> (eto_t) + 2p8Gt StO'taG VtXt
00X, 05, 05y X (3.12)
,9G oG '
aSt Steta-t 2p X: VtXtetUt] €2r(T7t)
The minimization gives us
Pl 8Gt 8G’t
0 = X S, 3.13
t ta + taSt ( )
Substituting this back into (3.12) we obtain the following
oG
DJt + (1 - )(VtXtaXz> 6 r(T=t) =0 (314)

With the terminal expression Jr = 0 we obtain an expression for the process J;

J, = E, [JT - /tTDJSdsl —(1- p2)EtMT ( X, gf( ) (1= S>ds] (3.15)

Next, we show that G; = E}[h(X7)e " ™=Y]. We apply the Feynman-Kac theorem
to the definition of G; in (3.10) and substitute the optimal strategy into the partial
differential equation. This gives us:

(9Gt 3Gt MUt — T 8Gt 82Gt 32Gt 2 A2 (9G
—+—X —rS 2 XS o; S Gy,=0
ot Tax, mm )T t* arx, OIS, T Ot ges, ) T
(3.16)
where the terminal condition is given by Gr = h(Xr). By applying the reversed
Feynman-Kac solution to equation (3.16) we obtain
Gy = Ef[hM(Xp)e T (3.17)
where the expectation is taken under the probability measure P*. The probability
measure P* is defined as the measure on which assets X; and S; have drift (m; —
PV ’“U:T) and r respectively. In order to better understand this change of measure
look at the drift terms of G; under P and P*.
oG, 0Gy oG, 102Gy 5, 10°G; 5262 0?G,
DGy = — + —mu Xp + — iS¢ + = X; vS; + XS
R T P T LRI ) ¢ A S W T I * P3x,55, "0
aGt aGt me — T (9Gt 1 82Gt 2 v2 182Gt 2 2 32G
DG = —+—X — — 1S+ vy Xi+ TS+ XS
= o Tax, e e St e i X g G Pox,05,

Clearly, both drift term are equal if process G; under the measure P* is defined with
asset drifts (m; — pr#=") and r. Under these alternative drift terms for G,, the
optimal strategy defined in (3.13) solves equation (3.12) and is therefore the solution
to the value function in (3.2). Since our goal is to find #; such that (3.2) is minimized,
the proof is complete. O
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An important step in the proof above is the labeling of the hedge-neutral measure
P*. On this measure we define the Brownian motions Wy, and W3, with correlation

p
AWy, = dWi, + 2 La
K O-t

AW3, = dWay + p™— "t

O

The asset process dynamics under P* are given by

dSt = TStdt + O'tStde:t

_ 3.18
B0 Xodt + 1,8, dW3, (3.18)

dX; = (my — pv
O¢

Note that the measure P* is a risk-neutral probability measure, since the drift of
S; equals rS;. Nonetheless, the hedge-neutral measure is not unique; to see this
we decompose dWy,; = PdWLt + \/1—7,026”71\/2715, where Wy, and W, are independent
under the real-world measure P. Consequently, any probability measure for which
the Brownian motions are defined as Wy, = dW;, + “gr dt and dWQ* ;= deﬂg + qdt
is a risk neutral measure, independently of the process ¢;. The hedging strategy in
Proposition 1 is compromised of the sensitivity of the time-¢ risk position under the
unique risk-neutral measure to the stochastic processes X; and S;. Additionally, the p
that occurs in the hedging strategy accounts for the incomplete market environment.
In Corollary 3.2.1 we derive the optimal dynamic strategy for a function h(Xr, St).

Corollary 3.2.1. The optimal dynamic hedging strategy and corresponding hedging
error variance for a risky position h(Xy, Sy) with asset dynamics (5.6) and (5.7) are
given by:

pve OB} [h( Xz, Sr)e "] . g OB h(Xr, Sr)e~"(T=0)]
. t

0; =
t O¢ aXt a‘St

Var,[h(Xr, Sp)] — Mj] = <1—P2>E'fl/f <”§X3 aEﬂhéviT’Sﬂ]) dS}

Proof. The proof is given in Appendix A.1 O]

3.2.1 Hedging error variance

The quality of the hedging strategy can be measured by the variance of the hedging
error. From Proposition 1 we observe that the hedging error variance decreases
quadratically in p. The parameter p can be interpreted as the measure of market
completeness. For the complete market case (p = 1) we can construct the perfect
hedge and the hedging error variance vanishes. For zero correlation (p = 0) the first
term of (3.5) in Proposition 1 disappears; the hedging strategy only depends on the
joint distribution of h(X;) and S;. Intuitively, hedging for the zero correlation case
makes little sense.
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3.2.2 Wealth dependence

Note that the hedging strategy 0}, the value function J; and function G, are inde-
pendent of the wealth M;. 67, J, and G, are only affected by the asset processes X;
and S; and time ¢. This observation implicates that the optimal hedging strategy is
identical for two hedger with dissimilar wealth levels. This "policy is economically less
reasonable because the rich and the poor should not have the same investment strat-
egy" (Bjork and Murgoci, 2014). Bjork and Murgoci (2014) introduced a dynamic
mean-variance criterion with wealth dependent mean-variance preference. Later, Dai
et al. (2021) extended this framework to conform with the investment wisdom that
short-sale is never optimal for a stock investment with a positive stock risk premium.

3.3 Pre-commitment strategy

A hedger that follows the dynamic optimal hedge is concerned with minimizing
the time-t variance of the hedging error. The dynamic hedging policy provides a
time-consistent solution. The pre-commitment hedging policy disregards the time-
consistency of the variance-minimize criterion. The pre-commitment strategy min-
imizes the hedging error variance at the initial date zero. Conditional of being in
time-t, the goal of a pre-committed hedger is to maintain a low time-zero hedging
error variance, instead of a time-¢ hedging error variance.

Duffie and Richardson (1991) derive the optimal pre-commitment mean-variance
hedging strategy in continuous time. The asset prices follow a Geometric Brown-
ian Motion with correlated Brownian Motions. The hedger has a future commitment
in a risky asset and can trade futures of another correlated asset to minimize the
risk. The optimal pre-commitment hedge derived by Duffie and Richardson (1991)
holds for the case r = 0 and Wy = 0. To obtain the pre-commitment hedge for the
more general setting » > 0 and My > 0 we derive a modified expression of our wealth
process M,.
dM,; = 0,adt + 0,5dW

Where M, = Mye =8 — Mye'™ | ji, = (u—r)e" T, 6 = 0”1 For time constant
coefficients i, o, m, v the objective function is given by
r%in Varg[Xp — Mry]

Proposition 2. The pre-commitment hedging strateqy and hedging error variance
for two GBM processes is given by

efommit :gXte(m—r—W)(T—t)
o

—-T m—p—ere=r) r m—p—eve=r) commi
a MU2 <(X0€( ST Mo)e™ — (Xee! T - M; t>>

(3.19)
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Vart [XT — Mjcjommit} :(Ht — H0)2Ct(1 — Ct)
(2220 (T—t) _ . (3.20)

v(p=r) e
+(1— 2,2x2 2(m—E28E=T ) (T —t)
(1= p)vXie V2 4 2puk=t 4 T

where

Ht _ Xte(m—r—W)(T—t) . Mtcommite—r(T—t)>
Proof. A proof can be found in Appendix B of Duffie and Richardson (1991). n

The first term of the pre-commitment hedging strategy in (3.19) is equivalent to the
dynamic hedging strategy for two GBM derived by Basak and Chabakauri (2011).
However, the pre-commitment strategy contains an additional second term that is not
present in the dynamic strategy. to understand how this term comes into being we
have take a look at the expected hedging error under the dynamic hedging strategy.
To derive the expected hedging error we start by looking at the time-f conditional
expectation of the wealth process at time of maturity.

T T
E,[My] = E[M,e" T —I—/ 0% (s — r)e"T=9ds +/ 0 o T=0dw, ] (3.21)
t t
T
E\[My — Mye"T9] = B, / 0 0" T AW, ] (3.22)
t

If we substitute the equation above into the definition of G; defined in (3.10) and use
that G, = E}[h(X7)e """~ we obtain the following relation:

Ef[h(Xr)e " T = B [h(Xp)e T — By (Mg — Myer ™) (3.23)
Rearranging terms allows us to derive an expression of the hedging error
Efh(Xr)e " T — Myer™ =] = By [h(X7)e " T — M) (3.24)

and given that the conditional expectation of the GBM process X; under the measure
P* is given by:
Ef[Xr) = Xte(m—PV(#—T)/U)(T—t) (3.25)

the expected hedging error is defined as
E[(h(X7) — Mp)e " T=9] = X, elm=priu=n/o)T=) _ yp, (3.26)

As we can see the expected hedging error defined in (3.26) appears twice in the
pre-commitment hedging strategy in (3.19): once as time-t value and once as time
zero value. A pre-commitmented hedger accounts in his/her hedging strategy for
deviations of the expected time-t hedging error from the time zero expected hedging
error. To understand why, we have a look at the law of total variance defined in (3.1)

Varg[ X7 — My] = Eo[Var, (X — My)] + Varg(E,[ X7 — My]), t>0
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here it immediately becomes clear that by keeping the variation between E[ X1 — M|
and Eo[ Xt — Mr| small, results in a smaller Vary(E:[ Xt — Mr]) and consequently
a smaller value of Varg[Xy — Mr]. A pre-committed hedger will decrease his/her
hedging position in S; whenever the second term in (3.19), given here below, becomes
positive.

((Xoe(m—r—ﬂl’(i—?"))T _ Mo)ert - (Xte(m—r—W)T N Mtcommit)>

By doing so, the expected wealth at time to maturity My decreases; accordingly the
expected hedging error E;[X7 — Mry| will increase and the will be closer to the time
zero hedging error. Over the hedging horizon [0, T'] the pre-commitment will perform
better for small ¢, nonetheless the dynamically optimal strategy will perform better
after a certain time ¢. Basak and Chabakauri (2011) show for different parameter
settings that for tradable and non-tradable GBM asset prices, the pre-commitment
strategy is outperformed by the dynamic strategy after a period of time.

3.4 Myopic hedging strategy

The myopic hedging strategy, also called the naive strategy, minimizes at each time
point the hedging error over the next moment:

r%in Var,[dX 1 — dM,]

subject to the budget constraint in (2.5). The myopic strategy can be viewed as a
static hedge over an infinitesimally hedging horizon, recurrent over time. The myopic
hedge is given by:
Q;nyopic _ %Xt
Ot

The myopic strategy has a similar structure to the first term of the dynamically
optimal strategy in (3.5). In contrast to the dynamic strategy the myopic hedge
does not account for the impact of future investment returns on the hedging error
variance. Generally, the myopic strategy doesn’t yield a perfect variance minimum
hedge in complete markets. Basak and Chabakauri (2010) provide an short overview
of parameter settings of cases where the myopic hedge outperforms the dynamic

hedging strategy.

3.5 Delta Tolerance strategy

The dynamic hedging strategies requires frequent adjustment of the asset position.
A more frequently adjusted hedging strategy will possibly reduce the hedging error
variance, but increase transaction cost. The hedger is faced with a trade off between
reducing transaction cost and hedging error variance.

The presence of trading cost results in an incomplete market and therefore renders
perfect hedging impossible. A variety of methods have been suggested to deal with
this problem. The research of Leland (1985) was the first to provide a solution: the
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strategy is based on hedging at fixed regular intervals by following the Black-Scholes
hedging strategy using a modified volatility term. Another common method is the
delta tolerance strategy first suggested by Whalley and Wilmott (1997). The method
prescribes adjusting the hedging strategy to the Black-Scholes delta as soon as the
delta of the risk position exceeds a prescribed tolerance distance from the ’perfect’
hedge position. We use apply an adaptation of the work of Whalley and Wilmott
(1997) to our framework. Recall, the optimal time consistent strategy is defined by

* —r(T—t) * —r(T—1)
gr = P OB BXr)e 0] o OF; [h(Xr)e )

2
O¢ 8Xt 8St (3 7)

then the series of rebalancing times is recursively given by

T =1, Ti+1:inf{Ti<T<TI‘Ai—Ai

>Hp, i=12,..,

where Al for i € {X,S} are the Greeks defined in (3.27) and the parameter H is
a proxy for the amount of risk the hedger takes on. The hedger commits to the
following strategy

e At time ¢ the hedge position is equal to:

0; = %XtAf( + SAF
t

o  For time s > t the hedger monitors the absolute difference between A, and
Ay, If |Ay — Ag| < H then the hedger uses the A, sensitivity

0r = X AX 1 SAS

S
S

and if |A; — Ag| > H then the hedger uses the A; sensitivity

Ny N N

S O_S

A risk-averse hedger will choose a large bandwidth H, because this will enable
him/her to rebalance the position frequently. Consequently, the hedging error at
time of maturity is minimized. A large rebalance frequency could possibly carry
large trading costs. A risk tolerant hedger will choose a small H, in order to avoid
large trading costs and therefore accepts a larger hedging error.
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4 Option Hedging strategies

In this section we will derive the dynamic optimal hedging strategies for options. For
the strategies derived in this section we will assume that X; ans S; follow a Geometric
Brownian Motion.

4.1 Plain Vanilla Options

Consider a simple call or put option, this is a derivative with payoff function h(X7) =
(wX7r — wK)*, where w = 1 for a call option and w = —1 for a put option. We
assume that the assets S; and X; follow a Geometric Brownian Motion. We obtain
the following expression for the optimal hedging portfolio of a call and put option

Proposition 3. The optimal dynamic option hedging strategies for GBM non-tradable
and tradable assets (3.20) and (3.21) are given by:

Py, OB (wXr — wK) e T OE(wXy — wK)* e (T

vanilla,t p 8Xt + Ot GSt
( ) (4.1)
m—r—pvE=" | (T—t)
= %e d(wdy)

where
In(3t) + <m — prrt £ l’;) (T —1t)
vT —t

dy =

The derivation of Proposition 3 is provided in Appendix A.2. In their paper, Basak
and Chabakauri (2011) derive the optimal dynamic hedging strategy for a call option
under the 2GBM model in a general discrete-time setting. In this thesis, we will focus
on an adaptation of the plain vanilla option: Asian options.

4.2 Asian Option

Asian options have a large array of applications in commodities, currency, energy,
interest rates, equity and insurance markets. The name ‘Asian’ option emerged in
1987 when a Banker’s Trust Tokyo office used it for pricing average options on crude
oil contracts. In contrast to vanilla options, the payoff of an Asian option is based
on the average of the underlying asset price over an interval of time. Asian option
have a lower volatility than plain vanilla options, since the payoff is dependent on an
average of the underlying asset instead of a single asset price.

Asian options can be assigned to two main categories: floating strike and fixed strike.
The payoff of a floating Asian option is the difference between the average of the
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underlying asset and the asset price at time of maturity. The payoff of a fixed Asian
option is the difference between the average of the underlying asset and the pre-
specified strike price. Moreover, the average of the underlying asset can be taken
arithmetically or geometrically. Given an underlying asset price process X;, the
payoff of a Asian arithmetic call option with exercise date T and strike price K is
given by

A 1 th
== t
t T/O t

h(Ar) = (Ar — K)©

and the payoff of a Asian geometric call option is given by

Gy = exp <; /Ot ln(Xt)dt>
WMGr) = (Gr — K)*

In this thesis we focus on arithmetic Asian call options with a fixed strike, because
geometric Asian options are rarely used in practice.

The optimal hedging strategy for the Asian option is given by

v OB (AN O] OB [h(Ag)e )]
asian,t o t 8Xt + St aSt

There exists no easily tractable closed-form solution for the conditional expected
value of an arithmetically averaged Asian option, and thus we have to approximate
the expectation numerically. The simulation of a dynamic hedge requires to know the
Asian options conditional expectation for many time and state space points. For the
simulation of a single hedge portfolio value process, the conditional expectation needs
to be calculated at every time point where the hedge portfolio is rebalanced. This
approach is extremely time consuming. In practice fast estimation algorithms are
desirable. Therefore we resort to the Least-Squares Monte Carlo algorithm presented
in Ankirchner, Pigorsch, et al. (2014).

4.3 Least Squares Monte Carlo (LSMC) algorithm

The algorithm that we will present is complementary to the algorithm of Ankirchner,
Pigorsch, et al., 2014, however we assume the hedging instrument to be a martingale
under our hedge neutral measure P* instead of under the real-world measure P.
Denote the conditional expectation of the discounted risk position under P* by

V(X t) = Effe " h(Xr)]

and the gradient of the conditional expectation by

8 Xtu
Vi(x,, 1) = 2
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We can express Vi)(Xy,t) as the conditional expectation V(X t) = E*[Zyr|X: =
x], where Z; r are Fr-measurable random variables. Next, we approximate E;[Z; 7| X; =
x] by f(z,t) at each time step ¢ using a set of chosen basis functions L, ..., L, for
n € N. The expression for f(x,t) is given by:

fa.t) = S BurLn(e)
k=1

where f3; , are regression coefficients minimizing the quadratic distance between f (X4, t)
and Z,p. For sufficiently smooth function h we can use pathwise differentiation to
obtain an estimate for Vi (X4, t) for the Asian option.

ox ox (Xr)

ATy —
83:|t o

4.3.1 Basis functions

Assume that Vi(X;,t) is an element of L?(Q, F,P). Since L? is a Hilbert space,
it has a countable orthonormal basis and the conditional expectation function can
be represented as a linear function of the elements of the basis. Therefore we can
represent Vi)(Xy, t) as a linear combination of a countable set of F;-measurable basis
function. One example suggested by Longstaff and Schwartz (2001) is the set of
weighted Laguerre polynomials

The Laguerre polynomials belong to the set of orthogonal polynomials. Orthogonal
polynomials are shown to solve the multicollinearity problem in case of multidimen-
sional problems (Judd., 1999). The accuracy and the robustness of the LSMC using
polynomial basis functions cannot be guaranteed for complex products because of
the weakness of the polynomials to proxy the value of these products. The selection
of basis functions for the regression model is crucial for the accuracy of the LSMC
simulation. Therefore, we choose to adopt different sets of basis functions to examine
the effect of basis function selection on the reduction of basis risk.
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Basis function Ankirchner et al. (2012)

Lo(x) 1

Lq(z) re/°
Ly(z) rle/c
Ly(z) Liu@)>Ky
Ly() Tlu@)>rye e
Ls() (u(z) — K)*e /e

L)xr and c is a

Table 2: Functional form of basis functions. u(z) = a(z) + (1 — %

constant

Basis function Linear spline Buckets

Lyi(x) re/° re?/°
LQ(ZE) x267:v/c 1.267:1:/0
Lg(ﬂf) g1 1{u(:v)€B1}kl
Ly(z) 9j Liu(x)eBiy o

Table 3: Functional form of basis functions; ¢;(z) = [u(z) — K]t — [u(x) — K1) T;
kp(2) = [z — K" = o — K"

The basis functions of Ankirchner, Pigorsch, et al. (2014) consist of a combination
of weighted monomial polynomials, weighted polynomials evaluated for in-the-money
paths and the weighted payoffs of in-the-money paths. Longstaff and Schwartz (2001)
state that the use of in-the-money paths limits the region over which the conditional
expectation must be estimated, hence less basis functions are needed to obtain an
accurate approximation of the conditional expectation. The use of all paths would
result in estimates with larger standard errors than those obtained by using all of the
conditioning (in-the-money) information.

For the linear spline basis functions we have L,(x) basis functions based on the
spread function g;(x) for j € {1,...,J} and K; fori € {1,...,J+1}. For the bucket
basis functions we have the functions L, ;(x) each representing a combination of a
bucket {Bj, ..., B;} and spread function k,(z) for {1,...,L} x {1,..., P} where K;
for i € {1,..., P 4+ 1}. The choice of linear spline basis functions is motivated by
shape of the Asian option payoff function. The functional form of the bucket basis
functions is peculiar; in the basis functions we subdivide the simulation paths into
different buckets evaluated for the projected payoff of the simulation path.

4.3.2 The Algorithm

The LSMC method creates scenarios through Monte Carlo simulation, and then per-
forms iteratively, and at each time step a least-squares approximation of the con-
ditional expectation. The LSMC algorithm aims at approximating the conditional
expectation, without iterative simulation at each time step.
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Preparation Let At = & denote the step size for horizon [0,T] and N € N. Define
t=Aiforie{0,...,N}.

Choose n basis functions Ly,..., L, € R.

Step 1 Simulate m € N trajectories of X and S under the P* measure via Euler
approximation. The jth Euler approximation of X and S at time t + At is
defined by:

)A(tﬁm =X/ + (m— pu)X}jAt + v X] AW,
o
§g+At = Sg + ngAt + UggAlet
where AW/ ,, AWY, ~ N(0, At).

Step 2 Calculate
oh

e

X7
X7

DI(X{.1) (X7)

Step 3 For every time point i € {1,..., N — 1} regress D] onto Ly(X}), ..., L,(X})

using least-squares regression; the output is the set of estimated coefficients
Bias- -, By that minimize the sum of squared errors:

mjn Lé(yj - 33]-)2]

where y; = D! and G; = Yr, BFLL(X)).
Step 4 Use the conventional Monte Carlo estimator for ¢ = 0:
F(X3,0) = D}(X3,0)
Forie{l,....,N}:
F(X ) = an kL (X7)
where the vector f(X,,t) is an approximation of Vi (¢, X,).

Step 5 Simulate m new trajectories of X and S via Euler approximation. Using the
approximation of Vi (X;,t) we calculate the hedging strategy 6;.

4.3.3 Measure of error

In order to evaluate how the set of basis functions approximate the conditional expec-
tation we use a measure of error. To use this measure we evaluate the basis functions
for the case where S; and X; under the are martingales (i.e. driftless) under the
hedge neutral measure P*. A similar approach is used in the paper of Ankirchner,
Pigorsch, et al. (2014).
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To explain how we can derive the measure of error, we start by taking the conditional
expectation of the wealth process at time of maturity:

T T
E[My] = E[M;e" T +/ 0% (1 — r)e"T=*)ds +/ 0 ce T aw, ] (4.2)
t ¢
T
Ei[My — Me"T0] = B, / Boer T qw, ] (4.3)
t

If we substitute the equation above into the definition of G; defined in (3.10) and use
that G, = Ef[h(X7)e """~ we obtain the following relation:

Ef[h(Xp)e "] = Ey[h(Xp)e " T0] — E\ (M5 — Mye ™Y (4.4)

The second term in (4.4) represents the expected gains in wealth, discounted back
to time-t, that are obtained by hedging h(X;) with S; over [t,T]. The left side of
equation can also be seen as the expected "hedge neutral" value of h(Xp) under
the measure P*. Ultimately, the expected value of our risk position h(Xr) equals
the expected value under the real world measure P plus expected gains obtained by
hedging. If we now assume that the non-tradable asset is a martingale, the right hand
side of (4.4) is also a martingale. Consequently, the second term in (4.4) vanishes and
the hedging strategy at time-¢ is not influenced by future hedging strategies anymore.
Therefore, the hedging strategy becomes time-consistent. The hedging error variance
under the martingale is given by:

Vi = Var[Xr — M;] = (1 - p*)E, [ /t Cxe (aESg;((XT)]> ds]

— (1 p*)Var, l /t ' <W>2yxsdmﬁ]

= (1 — p*)Var, l /t ! <8Esg;§XT)]>2dX81

s

= (1 — p*)Var,[h(X7)]

Hence we can approximate Var;[ X1 — Mj| by generating sample paths of h(Xr) and
multiply the empirical variance of h(Xr) by (1 — p?); we call this estimate V;. We
express the measure of error M; as a fraction of the true’ value.

where Vt” is the hedging error variance obtained by using the LSMC approximation
of the conditional expectation.
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5 Models

In this section we derive the hedging strategy for two simple models. In the first
model the assets X; and S; are Geometric Brownian motions, hereupon referred to
as the 2GBM model. In the second model the log asset prices of X; and S; are
cointegrated, hereupon referred to as the stationary spread model.

5.1 2GBM model

For the 2GBM model the dynamics of X; and S; satisty:

dXt = thdt + VXtdWQ’t (5].)
dSt = ILLStdt + OStdWLt (52)

where m, v, p and o are constants. For now, consider the simple case of h(Xr) = X7p.
The optimal dynamic hedging strategy for Xr can be obtained from Proposition 1
given that the conditional expectation of X; under the measure P* is given by:

Ef[Xp) = Xte(m—pV(u—r)/U)(T—t) (5.3)

Proposition 4. The optimal dynamic hedging strategy and corresponding hedging
error variance for the 2GBM model (3.20)-(3.21) are given by:

§2eBM _ pU—VXte(m_T_"”(“_T)/U)(T_t) (5.4)

e +200(u=r) [0)(T—t) _

v2+2pv(pn—r)/o
(V2 4-2pv 8 ) (T—t) _ 1

V2 + 2pvS,

Var, [ Xy — M7] = (1 — p2)VQXEGQ(m—pV(M—r)/g)(T—t)
(5.5)
= (1= p)yAx e s

=

where S, = is the Sharpe ratio of the hedge instrument.

The Sharpe ratio describes how much return is achieved per unit of risk by holding
the underlying asset. Or put differently, how much risk an investor is willing to take
on to achieve a level of return. The higher the Sharpe ratio of an asset, the better its
returns are relative to the amount of risk taken on. A Sharpe ratio of zero implicates
that the returns of asset S; match the returns of the risk-free bond B;. A negative
Sharpe ratio implicates that the asset returns are smaller than the risk-free returns
or that the asset returns are negative. If we were to obtain a more realistic indicator
of the risk that we take on by holding asset S; we could use the Sortino ratio; we
then divide excess return by downside volatility instead of total volatility.
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To assess the relative performance of the hedged position with respect to the unhedged
position we define:

A J Var,[Xr — M;]

Var, [ Xr|
1.6 -
S, =
S. = 0.45
—35,=0.9
— S, =135
Sa = 1.8
—S. =225
-5, =27
S, = 3.15

Figure 2: Ratio of the standard deviation of hedged (Xt — Mj) and unhedged
position Xr plotted for p € [—1,1]. Evaluated for T' = 2, X, = 10, Sy = 10, r = 0.01,
m = 0.2, v = 0.2 and Sharpe ratio S, € [0.45, 3.15]

Figure 2 displays the performance measure A; for p € [—1,1] from a time zero per-
spective. Evidently, if absolute correlation is high (|p| > 0.9), then a small change in
the correlation leads to a large change reduction in basis risk relative to total risk.
According to (5.4), the optimal hedging strategy for no correlation p = 0 is to not
invest in the tradable asset at all; in Figure 2 we can see that the hedging error
variance equals the variance of the unhedged risk position. For p = 1 we are in the
complete market setting and therefore it is possible to construct the perfect hedge.
Accordingly, the hedging error variance equals zero.

Ay becomes more skewed as S, increases. For a positive S, the measure Ag increases
in S, for p € [-1,0) and decreases in S, for p € (0,1]. For S, < 0 the contrary
is true: A increases in S, for p € [—1,0) and decreases in S, for p € (0,1]. For
example, assume we have two correlated assets with p = 0.5, then for a Sharpe ratio
of 3.15 the basis risk is reduced by roughly 40% and for a Sharpe ratio of 0.9 only
20%. A higher Sharpe ratio implicates lower volatility per unit of return of asset S;.
For p > 0 basis risk decreases in S, because the asset S; is less volatile and therefore
the hedger is better able to replicate the risk position h(Xr) = Xr.

The optimal hedging policy Oacpar: is to take a long position in S; for p > 0 and a
short position for p < 0. Next, we evaluate the sensitivity of the hedging strategy
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with respect to the asset volatility parameters. First take the derivative with respect

to o )
d9t2GBM _ 63(m—r—7p‘; )(S(M _ T)l/2p2 _ l/pO')
do o3
For S, > ﬁ and p € (—1,0] the strategy 62“BM increases in o; vice versa for

p€[0,1) and S, > 3’%/ the optimal hedging strategy decreases in 0. Next, we take
the derivative with respect to v

AgzoBM S (3 — r)p? — po)

dv o?

Given that v > ﬁ and p € [0,1) the hedging position fagpar: decreases in v;

conversely, for v > oo and p € (—1,0] we have that 07" increases in v.

2GBM 2GBM
d6? d6?

P Sa do dv
(=10 >4, >0 >0
(-L0] <3, <0 <0
0,1) <5, >0 >0
0,1) >3, <0 <0

Table 4: Hedging strategy sensitivity with respect to volatility parameters.

Table 4 summarizes the volatility sensitivities for the different parameter conditions.
To illustrate: given a fixed value of correlation p > 0 and asset volatility v > 0,
as volatility o increases the optimal strategy for the hedger is to increase his/her
hedging position as long as .S, is larger than 3’%/ (note that S, decreases in o).

We are also interested in the parameters for which we have Ag > 1, i.e. the hedged
position Xp — M7 has a higher variance than the unhedged position Xp. To this end,
we will evaluate the derivative

_ dVar, (X — M|

IT
t dp

p=0
262m(T7t) SQ(GI/Q (T—t) _ 1) + 2€2m(Tft) Sa(T _ t) 2
1%

for the parameters S,, m,v and T. For II; > 0 we have Ay > 1 on p € (0,1] and vice
versa. We find that I1; < 0 holds for a positive Sharpe ratio and II, > 0 for a negative
Sharpe ratio. That is, for a positive Sharpe ratio the measure Ay decreases in p = 0
and thus for positive correlated assets the hedging strategy will yield a lower variance
than the unhedged position. The other way around, for a negative Sharpe ratio only
negatively correlated variable will yield a lower variance than the unhedged position.
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5.2 Stationary spread model

For the stationary spread model the dynamics of X; and S; satisfy:

dSt = ,LLStdt + O'StdWLt (56)
dXt = K,(X - Xt)dt + UXdW2,t (57)

where u,0x,x and X are constants. In contrast to the 2GBM model, the market
here consists of three stochastic processes. Due to the incompleteness imposed by the
existing spread, the hedging strategy includes a term that captures the sensitivity of
the hedge neutral asset I, with respect to stochastic spread. This term quantifies the
source of incompleteness due to level of co-integration. We consider hedging the risk
position h(Xp, Sp) = Spe=X7 = I. In Corollary 3.2.1 we define the optimal dynamic
hedging strategy in the scenario where the risk position explicitly depends on .Sy, i.e.
h(X7,St). Next, in Lemma 5.2.1 we derive closed form solutions for the Greeks of
h(X7,St). Using Corollary 3.2.1 and Lemma 5.2.1 we present in Proposition 5 the
dynamic optimal hedging strategy for assets (5.6) and (5.7)

Lemma 5.2.1. Let X; and S; follow the dynamics of (5.12) and (5.13) then

OE} [e7" (Tt Spe=XT]

_ —r(T—t)
75, e Vs(x, s, t)

8E*[ —r(T— t)STefXT]
0X,

— ¢ T[T —r(T-1) Spbs(w, 5,t)

where

1 11—
Vs(w,5,1) =exp (T(T —1) = Xpe "D — (X + poxo- + paxf'u T)(l — e‘”(T—t))>
ag

1
X exp <a§4(1 — 6_2”(T_t)))
K

Proof. Under probability measure P* the spread X; is defined as

_ 1 _
X; = Xoe "+ X(1 —e ") — —paxﬂ —e ) +/ K(t—u) oxdWa,,
K

Now we mathematically define h(X;, S;) = Sye=Xt

1 = 1 -
Sye™*t =S, exp ((7" - 502)15 — Xoe " — X(1 —e") — —payM T(l — e“t)>
K o

t
xexp(/o( — pe” tudx)dW1u>
t

X eXp< pe” Klt— ”)JXdW2u>

0
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Note that for a deterministic function g(u) we have
t t
/ g(u)dW, ~ N(0,1?) where n? :/ g (u)du
0 0

Due to the fact that dW;, L dWha, the last two exponential terms of equation (5.8)
are independently and lognormally distributed. The expectation of a lognormal dis-
tributed variable exp ( f(f g(u)qu> is given by exp (%772) Subsequently we have for
the last two terms of the equation above:

t . 1 gt
Er {exp <—/ pe "W gy dTV, u):| = exp (/ (ﬁeﬁ(t“)ax)zdu)
0 ’ 2 Jo
* ! —K(t—u) 1 Lt —r(t—u) 2
E; {exp </0 (o0 — pe UX)dWl,uﬂ = exp (2/0 (a — pe 0X> du>

By working out the integrals the expectation of h(X7, Sp) = Spe X7 is defined as

_ 1 1y —
Ef[Spe 7] =S, exp <T’(T —t) — X " (X 4 poxo— + pax—u)(l - e_”(T_t))>
K K O

1
X exp ((I?(%(l - 6_2“(T_t))>
Now define 9 (z, s,t) = Ef[Spe=*7].
1 * -X
Vs(t,x,s) = —Ef[Sre 7]
St

Vo(t, x,5) = —e T D EX[Spe X

Using the result of Lemma 5.3.1 we can derive the optimal hedging strategy.

Proposition 5. The optimal dynamic hedging strategy and corresponding hedging
error variance for a risky position h(Xy, S;) = Sre™~T with asset dynamics (5.6) and
(5.7) are given by:
gresa_ 0 DB T0Sre ] QB[00
o 0X, t 05,

_ <1 _ PZX e—n(T—t)) ¢TI0 B2 G0 X1] (5.9)

= (1 - Wﬁﬁ(Tt)) Stws(xa S, t)
g
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Var[I7 — M7 :a§<(1 — pQ)St2

_ 1u—
X exp (2(X+,00XH# r

_ 1y —
_ Xt)e—f@(T—t) . 2(X + anilu 7“>)
K g

2

X €xXp <—2PUUX(1 — 2e"TD) 4 2%(1 _ Qe—n(T—t)>>
k K

T 1 1
X / exp (—QK(T —u) + o*u — 2poox—e T 4 03(26_2”@_“)) du
¢ K K
(5.10)

The hedging strategy in Proposition 5 has a similar functional form as the hedging
strategy in Ankirchner et al. (2012). The optimal strategy in (5.9) consists of two
components. The first component consists of the sensitivity of the expected risk
position with respect to the tradable asset. The second component is a function of
time to maturity:

y(T —t) =1 — 22X e=r(T=0)
o

The function y(T"—t) converges to 1 for a large horizon T'—¢ or large mean-reversion
term k. For a large horizon or mean reversion term we expect the we expect the
log spread X, to return to its mean reversion level X before the time of maturity.
Consequently, the basis risk that arises through the log spread is eliminated. The
optimal hedging strategy equals

0;7 ! = Sips(x, 5,1)

which translates to taking a hedging position equal to the sensitivity of asset X; with
respect to S;. Additionally, we observe that for small values of mean reversion x the
function y(T — t) converges to

pPoOx 0 — pox o1

and the optimal hedging strategy equals
gsrread — ﬁpIXStws(a:, s,t) (5.12)
o

The same goes for times close to time to maturity; for lim (7' —¢) — 0 the function
y(T —t) converges to the value in (5.12) as well.
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6 Simulation results

We use the Monte Carlo method to simulate m asset paths. Define the following
Vi = (MXj1r) = Mjr) (6.1)

where X,..., X,, are i.i.d random variables. Denote the sample mean by a,, and
sample standard deviation by b,,.

1 1 m
am = — > Vi(Xjr, Sjr) bm = \l —— > (Vi(Xj7, Sjr) — am)?

[t m—1:=
The Law of Large numbers implies
lim _ay, — E[h(Xr) — My] lim b2, — Var[h(Xr) — Mr]

Under the assumption that m — oo and Var[h(Xr) — M7| < oo the Central Limit
Theorem states that

\/E(Clm - E[h(XT) - MT]) g N(O, Var[h(XT) - MT])
Using the Central Limit Theorem we can construct a 95% confidence interval for our
Monte Carlo estimator a,,
1 1
LD NZD

The rate of convergence of the Monte Carlo estimator equals /m. As we try to
achieve greater accuracy using Monte Carlo simulation, we must increase the number
of simulation paths drastically. To reduce the sampling standard error by half we

(@, —1.96 b, A, + 1.96 b

have to quadruple the number of simulations. This relatively slow convergence is one
of the weaknesses of the Monte Carlo simulation technique.

In this numerical experiment the hedging portfolio is rebalanced at the monitoring
dates of the (underlying of the) risk position. From a theoretical perspective the
hedging strategies derived in this paper require continuous rebalancing of the hedging
position. Discrete rebalancing originates an error, however continuous rebalancing
would incur an infinite amount of transaction cost for the hedger. To find a balance in
the trade-off between accuracy and validity of our hedging strategy, we have adopted
discrete rebalancing.

To assess the performance of a given hedging strategy we compare the variance of the
hedged position to the variance of the unhedged position. Define the measure HFE
(hedging effectiveness) as the percentage increase or decrease in the hedging error
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variance from using strategy 6; compared the unhedged strategy. Mathematically,
the measure HE is defined as

(6.2)

HE(9) =1 (Var[h(XT) - MT]>

Var[h(X7)]

A positive value implies that the quality of the evaluated hedge is higher than that
of the alternative hedge. The higher the measure HE, the better the quality of the
hedge. The measure HE% can be interpreted as the percentage reduction of basis
risk due to hedging; for a complete market this would be one hundred percent.

6.1 Model error

There is a possibility that a statistical test leads to the wrong conclusion, or different
test lead to different conclusions. Consider the following situation: assets X; and I;
are cointegrated, however due to ignorance or model uncertainty the hedger chooses
to his/her risk position h(Xr, St) using the dynamic optimal 2GBM hedging strategy.
Consequently, the question arises: how does the performance of §2¢ZM compare to
:7"* ynder a model with cointegrated assets? The 2GBM hedging strategy under
this model is given by

o
QEGBM = %]t exp ((MI - PIXUI'u

"N - t)) (6.3)

where the true parameters of I, are given by

1 _
pr = <2U§( — k(X = Xp) +p— PUXUt>

or = \/02 —2poox + 0%

Note, in the 2GBM strategy above we use the true parameters of the cointegrated
‘true’ asset model. This choice is motivated by the attempt to isolate the effect of
using the wrong model assumptions, without interference of parameter risk. Fur-
thermore, in a practical application where the asset evolve according to our ’true’
cointegrated model and the hedger uses a 2GBM hedging strategy, we assume that
the hedger is able to estimate the drift and volatility parameters from historical
observations and plug them into his/her hedging strategy (6.3). We simulate both
strategies under the cointegrated model for different time of maturities (T'—¢). Define
the function AHE = HFEgpeqq — HE>qpm as the difference in hedging effectiveness
of strategies 07" and §2¢BM under the cointegrated asset model. The difference in
hedging effectiveness measure by AH FE increases for larger values of correlation and
mean reversion as can be seen in Figure 3. Stronger levels of mean reversion trans-

late to a higher relative performance of strategy 0;7"**? to H26BM

, even for 'relatively’
small values of correlation p. Clearly, for short time to maturity hedges the long-term
equilibrium of the cointegrated assets is not reached. However, for hedging strategies
with a longer horizon, we observe that the contrast in hedging performance between
the 2GBM and spread strategy is considerable. Strong correlation and a large mean

reversion term expedite the time it takes for the 877 strategy to reach this long
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Figure 3: The difference in hedging effectiveness for different correlation values
and mean reversion parameters. Asset parameters: u = 0.1, ¢ = 0.2, X = 0.1,
In =12, Sy = 10, Xy = 0.08. Monte Carlo parameters: T € [0.2, 2], m = 100000 and

N € [50,500].

d .
;% and 026BM over time

term state. In Figure 4 we plot the hedging strategy of 6;

for a time to maturity 7' = 1, mean reversion k = 3 and correlation p = 0.9. The

difference in hedging effectiveness measure AHFE is 70% as we can see in Figure 3c.

The 2GBM strategy clearly under hedges the risk position as the hedging position is
spread

significantly smaller than the spread strategy. As the 6; strategy approaches the
time to maturity, the quantiles converge to the 02¢8M strategy quantiles.

0.14
LT T T e 0.8 Tme——
0.13} T \\\\\:\\
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O 1 | | | | J 0'2 L | | | | \\\\
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——10% q--- 50% q- - -90% q | 10% g~ 50% q- - -90% q
(a) 2GBM strategy (b) Spread strategy

Figure 4: Hedging position quantiles for p =0.9,x =3 and T' = 1.
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6.2 Option hedging

In this section we analyze dynamic hedging strategy for h(Az) where the risk position
is an Asian call option. We will evaluate a base case Asian option that is based on
the following asset parameters

H Lo m o v r  Xo So T K H
H 0.1 01 02 0.2 002 10 10 1 [8,12] H

Table 5: Parameter values for base case Asian option

We define the following input parameters for the basis functions.
. Parameter ¢ in the exponential dampening factor is set to 2.

. The buckets B; are determined using the ¢-% quantiles of the simulated
asset asset payoff h(Ar) under the hedge neutral measure. The range of ¢
is equal to g = {0, 25, 50,75, 1}.

. The strike prices K; in the spread functions are set to a range with incre-
ments of one.

Figure 5 illustrates the hedging effectiveness of the simulated Asian option using four
different sets of basis functions. The hedging effectiveness is evaluated at different
levels of moneyness, which is the strike price divided by the asset price at time zero.
The four basis sets perform approximately equal across correlation and moneyness
in terms of the hedging effectiveness. Next, we evaluate the basis functions in terms
of measure of error M. In order evaluate the measure of error, we simulate the
Asian option for the scenario where X; and S; are both martingales. The results
are displayed in Figure 6. Recall, M; is defined as the absolute difference between
the approximated hedging error variance of the LSMC algorithm and plain Monte
Carlo, as a fraction of the approximated plain Monte Carlo value. This measure of
error should us give some insight into the performance of our basis functions. The
measure of error increases in moneyness for all four basis function sets, as we can
observe in Figure 6. A possible explanation for this occurrence could be that for
higher strike prices the number of nonzero payoffs will decrease. Consequently, it
will become harder for the LSMC to approximate the conditional expectation. The
Linear Spline basis function set reveals the most consistent measure of error over the
levels of moneyness, therefore we select this basis function set for our next analyses.
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Figure 5: HE as function of moneyness for different basis function sets. Monte
Carlo parameters: N = 250 and m = 100000. Basis functions parameters: J = 22,
L =4, P=32 3<K,; <25; for the linear spline basis functions; 3 < K; < 35. for

the bucket functions.
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Figure 6: Measure of error M as function of moneyness for different basis function
sets under the driftless p = m = 0 scenario. Monte Carlo parameters: N = 250 and

m = 100000.
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6.2.1 Parameter risk

In this section we perform a small numerical experiment to asses the impact of a mis-
specified drift parameter. We assume that the hedger computes the hedging strategy
using erroneous estimates of the drift parameters, but the tradable and non-tradable
assets are simulated according to the 2GBM model with the correct values. Assume
that the correlation between the assets is 0.9. In order to systematically evaluate
the impact of misspecified drift parameter we define the estimates p; and uo, which
are respectively 50% lower and 50% higher than the correct parameter value p*.
Similarly, define m; and my for m*. Table 6 displays the parameter sensitivity for
different strike prices. Asian option hedging strategies are fairly robust to misestima-

HE%
K=8 K=10 K=12

gt m*  57.88  59.94  57.09
p1 mi 57.89  59.74  55.78
ps me 57.86  60.06  57.83
g1 me 5743 56.48  48.48
ps mi  57.89  50.79  32.11

Table 6: Parameters: T'= 1,57 = 10, Xy = 10, My = 1,r = 0.02 and ¢ = v = 0.2,
p* = 0.1 and m* = 0.1. Simulated using m = 100000 paths and N = 250 time steps.

tion of parameters as we observe in Table 6, especially if the misestimation of x and
m is in the same direction. For the misspecified parameters ps and m; the effect is
moderately more apparent for out-of-the-money options; the hedger believes that the
option is less risky than in reality and that the asset S; is a more effective hedging
instrument than in reality. For the parameters p; and my the hedger assumes that
the hedging instrument is less effective than in reality and that the option is riskier
than in reality.

6.2.2 Hedging strategies

Using the linear spline basis function set we analyse Asian options with three different
strike prices: ATM (K = 10), OTM (K = 12) and ITM (K = 8). The correlation
is fixed at p = 0.9 and hedging horizon T = 1. A graphical representation of the
quantiles of portfolio weights 7, over time for ¢ € {0.1,0.5,0.9} is presented in Figure
7.

The Asian call option Delta represents the change in expected option payoff with
respect to a change in the underlying asset. Delta can be interpreted as the probability
of a positive payoff value; for more in-the-money the options this probability is larger
and thereby also the value of Delta. The dynamic Asian option hedging strategy is
driven by this Delta under the hedge neutral measure, consequently for more in-the-
money options the hedging position will be larger. The dynamic hedging strategy
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Figure 7: Quantiles of optimal dynamic hedging strategies for different levels of
moneyness and volatility. Monte Carlo parameters: N = 250 and m = 100000.

is thus dependent on the moneyness of the option. By looking at the options over
the different quantile scenarios we observe that the ATM and OTM options are more
sensitive to the simulation path of the underlying asset. This sensitivity is called
Gamma and is denoted by

_ OB} [MAp)e T )]

r
K 92X,

The optimal hedging position for ATM and OTM options will require rebalancing
more often to reduce basis risk. We expect that the hedging strategy to perform better
if we use hedge using Gamma instead of Delta, since the hedging strategy is more
sensitive with respect to the underlying assets for ATM and OTM options compared
to I'TM options. The sensitivity of the Asian option payoff with respect volatility of
the underlying asset is called vanna. An increase in volatility results in increment in

40



CHAPTER 6. SIMULATION RESULTS

the probability that OTM options will have a positive payoff. Consequently, in more
volatile market conditions the optimal hedging strategy for OTM is bound to change
more than ATM and ITM options.

Furthermore, the decay rate of the hedging position changes across all three dimen-
sions: moneyness, quantile scenario and volatility. For example, for v > 0.1 all the
90% quantile scenarios exhibit a certain time point 7 € [0, T] for which the optimal
strategy is to decrease the hedge position. This time point 7 increases with the strike
price K. This is due the nature of the Asian option. As moneyness increases, it will
take longer before there is a reduction of the uncertainty about the terminal payoff.

To illustrate the dynamics of the hedging strategy more clearly we plot asset paths
and corresponding hedging strategies for an arbitrarily chosen simulation. For a
correlation p = 0.9 we graphically display the strategies in Figure 8b. In Figure 8a
we introduce the averaging process

1 t
0, = f/ X.ds
t Jo

In Figure 8c we present the time difference operator for the Delta of the Asian option,
where the operator is defined as ¢(A;) = A; — Ay_;. Consistent with our intuition,
Delta displays more variation for more out-the-money options.

| | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
— X Q
(a) Simulation paths for X;

1
0.8
0.6
0.4
0.2
0 | | | J
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
—ITM —ATM — OTM
(b) Hedging strategies for simulated asset paths of X.
01
SR
ASS

|
0.7 08 09 1

| | | |
0 01 02 03 04 05 06
—ITM—ATM — OTM

(c) Time difference operator ¢(A;) for different options.

Figure 8: Simulated paths for X; and ATM and OTM hedging strategies.
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6.2.3 Delta Tolerance strategy

In this section we will introduce transaction cost into our model. The transaction cost
are defined as a percentage of the volume of the trade. We will let the transaction cost
o vary over a hypothetical range of zero to 200 bps. One basis point (bps) is equal to
0.01%. With the introduction of transaction cost we are able to evaluate the trade-
off between reducing transaction cost and hedging error variance. Furthermore, we
will test the effect of the Delta Tolerance strategy on the performance of our hedge.
In Table 7 we present the hedging effectiveness of our hedging strategy for a OTM
option. Our choice to evaluate the OTM is motivated by the fact that OTM options
are more sensitive to a change in the underlying asset than I'TM and ATM options,
and therefore require more frequent rebalancing. The correlation is set to p = 0.9,
and all other asset parameter are equal to the values in Table 5. In Table 7 we
present the hedging effectiveness of our Delta Tolerance strategy for different levels
of transaction cost and different values of the bandwidth H.

bps 0 50 100 200
H HE%

0 56.09 44.79 2992 -4.24
0.06 54.35 47.21 38.11 16.68
0.1 43.17 3841 3226 17.04
0.15 39.72 35.60 30.28 17.01
0.2 37.80 34.00 29.10 16.82

Table 7: Hedging effectiveness as function of bandwidth H for different transaction
cost scenario’s. Calculated for an OTM option. Asset parameter as given in Table 5.

0.3 100
+= n
g
g 0.21 \\\ —— 50 bps E 60
g \ —— 100 bps s
5 - - -~ 200 bps 240
2 0 5
— x 20
0 | | | | 0 | |
0 5.10720.1 0.15 0.2 0 5.10720.1 0.15 0.2
bandwidth H bandwidth H
(a) Cumulative transaction cost (b) Percentage total trades where hedger
rebalances his/her position for bandwidth
H

Figure 9: Illustration of the cumalative transaction cost and percentage of trades
for different values of bandwidth H.
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For zero transaction cost, increasing bandwidth H has a negative impact on the hedg-
ing effectiveness. Intuitively, this makes sense since the Delta Tolerance strategy for
bandwidth zero equals the dynamic optimal hedging strategy. Under zero transac-
tion cost, increasing the bandwidth results in a sub-optimal strategy. The hedging
effectiveness is negatively impacted by an increase of transaction cost. For H = 0 and
sufficiently high transaction cost (bps> 200) our dynamic hedging strategy becomes
subordinate to the unhedged strategy. Transaction cost affect the ability of our hedg-
ing strategy to replicate the payoff of our OTM Asian option. In the Delta Tolerance
strategy the hedging position is only corrected if the change of the asset with respect
to the expected value of the Asian option is larger than our preset bandwidth. There-
fore, the number of periods that the hedging strategy is rebalanced over the hedging
horizon is drastically reduced, as can be seen in Figure 9b. For a bandwidth larger
than 0.2, the dynamic strategy will converge to a static one.
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7 Conclusion

In this research we studied the dynamic time consistent hedging strategy of Basak and
Chabakauri (2011) in an incomplete market setting. We derived closed form solutions
for this strategy under an asset model with two Geometric Brownian Motions and an
asset model with two cointegrated assets. Furthermore, we constructed a numerical
hedging strategy for an Asian option using a LSMC algorithm in a market setting
with two Geometric Brownian Motions.

The objective of this research was to evaluate the performance of the two extensions
of the Basak and Chabakauri (2011) paper using simulation techniques. The perfor-
mance of the cointegrated asset model is evaluated in the context of model error. We
find that the relative hedging performance increases in correlation, mean reversion
and time to maturity, in the case that hedger employs the correct hedging strategy un-
der the cointegrated asset model. In that respect, a hedger can significantly improve
his/her hedging effectiveness by accounting for incorporating the possibility of coin-
tegation between assets. Furthermore, we find that Asian option hedging strategies
perform approximately equal in terms of reduction of basis risk for the range of strike
prices we evaluated in our experiment. However, the hedging positions themselves
differ considerably for the different strike prices. At-the-money and out-of-the-money
options are more sensitive to the simulation path of the underlying asset and require
more frequent rebalancing of the hedging position.

Although we did not find surprising results in general, future research may provide
greater insights into basis risk and the effects of hedging. Some possible other re-
search directions could be to extend our numerical hedging strategy to more complex
risk positions or exotic options. In line with this research direction, a comparison
could be made between the performance of the LSMC algorithm and the implemen-
tation of a neural network to approximate the conditional expectation of the risk
position. Additionally, it would be interesting to leverage such a numerical approach
to investigate the performance of a risk position that is hedged using an imperfectly
correlated diversified portfolio of assets.
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A Appendix

A.1 Proof of Corollary 3.2.1

Proof. The wealth process M7 is given by
T T
M; = Me" =0 4 / 0% (s — r)e’"(T_s)ds + / Q:OSe’"(T_S)dWLS
t t

Using the law of total variance we obtain a recursive representation of the value
function

Jy = I%in Ei[Jise] + Vary (Epe[h( Xy, ST) — Mr])

Now define the process G, as
T
o= G 5) - B[00S0~ [ 5~ T
t

Applying Ito’s Lemma to process G:

oG 0G
dGy = ... dt + e (= <8)(fgytdW2t + TS;StOtdwl t)

Now we can write the value function as:
oG, \° (oG 2 oG, = 0G
0 DJt + mln |\<8‘X{;Vt> + (85; St0t> (Qtat) + 2,0 aSZ Stat ttl/
8Gt oG,

83 SthO't p Xt Vtetat] 2r(T—t)

Minimizing the equation above in # results in:

th 5’Gt St (9Gt

et Ot aXt 3St

Next, we substitute the optimal value of # back into the PDE:

oG
DJt+(1—p2)<thtaXz> e T=t =

By using the terminal condition J;r = 0 we obtain:

T oG, \*
Jy = (1 - p2)Et [/t <Vs SHX ) €2r(T_S)dS]
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Next, we show that Gy = Ef[h(X7)e "], We apply the Feynman-Kac theorem
to the definition of G in (3.10) and substitute the optimal strategy into the partial
differential equation. This gives us:

(9Gt 8Gt Ut — T aGt 82Gt 82Gt 2 A2 8G B
W‘FT‘X}Xt(mt Pl o, ) aist St (aQX + 2thUtXtSTaXtaSt St aQSt T’Gt =0
(A1)

where the terminal condition is given by Gy = h(Xr, Sr). By applying the reversed
Feynman-Kac solution to equation (3.16) we obtain

Gy = Ef[W( Xy, Sp)e "I (A.2)

where the expectation is taken under the probability measure P*. The probability
measure P* is defined as the measure on which assets X, and S; have drift (m; —
pvt“’;—:’”) and r respectively. In order to better understand this change of measure
look at the drift terms of GG; under P and P*.

0G, 9G, oG, 19°G, X 10°G, 5.0 Gy
t t

DGy =5+ gx, Xt g, ot T 5 o i T 5 g Pox,98, 0
% aGt 8Gt me — T 8(;75 1 8 Gt 2 w2 1 8 Gt 2 2 0 Gt
DGE = 5 Hox, Nelmimpn = = e St g i e X g e O S pge a oe XS,

Clearly, both drift term are equal if process GG; under the measure P* is defined with
asset drifts (m; — pr—= 7") and r. Under these alternative drift terms for G;, the
optimal strategy defined in (3.13) solves equation (3.12) and is therefore the solution
to the value function in (3.2). Since our goal is to find 6, such that (3.2) is minimized,
the proof is complete. n

A.2 Derivation of Proposition 3

Since the asset X; follows a GBM, we can write the process X; under the hedge
neutral measure as

2

;’I“ i V2> (T — t) + V<W2,T — Wg}t)}

Xr = Xtexp{<m — pVM

Now let’s define the variable z

Z:{(m—py“o__T—’j)(T—t)Jqu\/T—t Y ~ N(0,1)

We have )

ZwN((m—pyu;r—V2>(T—t),y2(T—t)>
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The time-t discounted payoff of an European call option is given by
V(t,x) = e "I B [h(Xr)]
=T /oo h(ze®)f(z)dz
For h(Xr) = max(Xr — K,0) we get
V(t,z)=e T / max(Xr — K,0)f(2)dz

=T 1t)/ (xe® — K) f(2)dz

Where u is defined as

[S

e_r(T_t) 0o <mp,/HJTu2>(T t)+vV/T—ty 2
V(t,x) = (m/ e e zdy— K

s~
3
Q)
|
“"Nw
QL
N
~

e~ r(T—1) 00 <<mpu”; v >(T )4/ T—ty—L-
= .73/ e dy

2

(%)~ (= gz < £ )7 -
v

1 (m—pV‘LUT—Q—r> (T—t) 00 2
= e ZE/ VTl gy

— Keir(Tft)® ( —

V2T u
— Ke7"T=Dd(dy)

m—pr ="

1 o er) (T=4) X 14,2 2 2
— e <ZC/ 6—§(y —2v/T—ty+v (T—t)) 71/ (T—t) dy)
\ 271’ u

— Ke " T Dd(dy)
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Where d; and dy are defined as:

i)+ (m— sz~ % ) -

vyT —1
d1:d2+V\/T—t

dy =

To derive the optimal hedging strategy we take the derivative of function V(x,t) with
respect to X;.

OB (Xr — K)Te T
0X,

or =""x,
g

o o 00X,
PV 1o —r(T—t) 0P(dy)
_PPr Zo\72)
o © aXt
1 1 it 1 1 d3
—A,0(dy) — 7 P Re -0 3

Ai—————e 2 — —Ke e
"UVT —t2n o vX T — t\/21

PY - —r(T—t) 1 | O Al e
—A,D(d)) — Ai———(dy) + = Ke e
(P(d) = A= o) + VX NT —t\/2n
1 Ju% 1 1 d%72dlum+u2(T7t)
—A,®(dy) — Ay———0(dy) + = Ke T e 2
1®(d) tV\/T—t(b( 1) o vXivT —t/27
1 pv 1 AT-t) | ow per L2
—AP(d) — A ————&(d K —r(T—t) ___ — d)e "7 In( )+ (m—pv =45 )(T—1)
1®(d) ty T—td)( 1)+ o ¢ vX, T—t¢( e ¢

1
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VT e
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where A, is defined as

m—r—pu“vr> (T—t)
At py W@(
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