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Abstract

This research investigates the use of Reinforcement Learning (RL) to construct the Dynamic
Asset Allocation (DAA) strategy for an insurer. More specifically, we implement the
Proximal Policy Optimization (PPO) method introduced by Schulman et al. (2017) and
consider an insurer based in Singapore which has to comply with the Risk Based Capital
(RBC) requirements as determined by the Monetary Authority of Singapore (MAS).
In this research, we extend the traditional risk-return trade-off by incorporating RBC
requirements and preferences into the optimization problem. We test the RL strategies
by comparing the performance to one realistic Strategic Asset Allocation strategy and
two traditional Mean-Variance (MV) strategies. More specifically, we consider a MV
Sharpe-Ratio and Minimum-Volatility strategy. The main results of this research can be
summarized as follows: (1) RL strategies using PPO can achieve equal or higher expected
returns compared to the benchmark strategies; (2) including RBC requirements into the
RL model can significantly decrease the probability of violating the RBC requirements and
preferences compared to the SAA and MV benchmark strategies; and (3) the RL model is
able to determine DAA strategies which are more practically applicable compared to the
MV strategies.
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1 Introduction

During the last decades, insurers and other institutional investors typically have optimized
their asset allocation using modern portfolio theory or Mean-Variance (MV) analysis, as
first introduced by Markowitz (1952) and Markowitz (1959). This method attempts to find
a portfolio such that it achieves the investor-specific optimum in the risk-return trade-off.
At the same time, insurers may wish to include other considerations in the optimization
problem, such as capital requirements. Including such nonlinear objectives or constraints in
the optimization problem is complex and will likely yield a problem-specific solution, which
is only worsened when adding more considerations. A set of possible solution methods
that has relatively recently gained popularity is Reinforcement Learning (RL). RL is a
branch of machine learning that is concerned with finding optimal dynamic strategies for
Markov Decision Processes (Sutton and Barto, 2018). Many financial decision-making
problems are concerned with devising asset allocation strategies for continuously changing
environments. Examples of this changing environment are market fluctuations and varying
interest rates. Ideally, the model used to devise the portfolio allocation strategy considers
and makes use of these circumstances.

Compared to other solutions to this type of problem, i.e. analytical solutions or
dynamic programming, RL is scalable and flexible. In general, analytical solutions and
dynamic programming may require over-simplification of the problem, are problem-specific,
or are very computationally expensive. In contrast, Reinforcement Learning provides
generic tools by training an agent through repeated interactions with its environment -
teaching it to take actions based on its observations such that it maximizes cumulative
rewards (Sutton and Barto, 2018). RL has shown to be capable of relatively efficiently
tackling large-scale problems and to be flexible in obtaining successful dynamic strategies
for varying complex underlying stochastic processes (Botvinick et al., 2019). Furthermore,
as stated by Botvinick et al. (2019), Deep Reinforcement Learning (DRL) methods, where
neural networks are combined with RL, have been able to outperform humans in domains
ranging from a game of Go, to Dota 2, to no-limit poker (Silver et al., 2016;Berner et al.,
2019;Xu et al., 2021).

To conclude, the goal of this research paper is to provide insight into how non-linear
objectives can be incorporated into the optimal Dynamic Asset Allocation (DAA) of an
institutional investor by using a Reinforcement Learning model. We demonstrate this by
incorporating Risk Based Capital (RBC) requirements into the DAA of an insurer based
in Singapore. In addition, this paper provides arguments why RL is a suitable method to
solve this problem. Lastly, this research provides insight into the RL model, i.e. whether
or not an RL model behaves according to an investors’ intuition. The resulting research
question which is answered in this research is:

1
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How can insurers optimize their Dynamic Asset Allocation, incorporating Risk
Based Capital requirements in addition to the risk-return trade-off?

This research question will be answered as follows. First, a review of relevant literature
concerning RL and DAA is provided in Section 2. Second, the data used in this project
is explained and relevant descriptive statistics are provided in Section 3. Thereafter,
the extensive methodology used to develop the RL model is presented in Section 4 and
subsequently, the results and performance are discussed in Section 5. Lastly, a discussion
is provided and recommendations for future research are given in Section 6. For reference,
Appendix A contains a glossary of the acronyms which are frequently used throughout
this paper.

2
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2 Literature review

This section is dedicated to the study of relevant literature. First, the theoretical framework
and general literature of RL is discussed. Then, previous research concerning Dynamic
Asset Allocation by using RL will be investigated.

2.1 Reinforcement Learning

In this section, the theoretical framework of Reinforcement Learning (RL) is discussed.
As for the mathematical notation, this paper follows Sutton and Barto (2018).

2.1.1 The basic Reinforcement Learning model

The basis of the RL model can be visualized as in Figure 1. In essence, the basic RL
model consists of an agent which interacts with the environment to optimize sequential
decisions to maximize cumulative rewards (Grondman et al., 2012; Sutton et al., 1999).

Figure 1: Basic RL model.

More formally, as defined by Sutton and Barto (2018), the agent and the environment
interact at each discrete time step for all values t ∈ {0, 1, 2, ..., T}. At time t, the state
St ∈ S and reward Rt ∈ R serve as the input for the agent, where S and R ⊆ R are the
sets containing all possible states and rewards respectively. Using this input St, the RL
agent chooses an action At ∈ A(St), where A(St) denotes the set of all possible actions
available in state St. After the agent has chosen its action, the transition is made towards
the next time step and the environment changes. As a consequence, there will be a new
reward Rt+1 and state St+1 available which will serve as input to the agent in the next
time step. Then, the loop starts over for t + 1. In essence, the goal of the agent is to
maximize the accumulative discounted long-run reward formulated as in Equation (1):

Gt = Rt + γRt+1 + γ2Rt+2 + ... + γT −tRT (1)

3



Master Thesis Reinforcement Learning to optimize the DAA of an insurer

Here, γ denotes the discount factor and is considered to be a hyperparameter.

2.1.2 Fundamental Reinforcement Learning concepts

In this subsection, the following fundamental RL concepts are explained in more detail,
namely: the policy function, value function and advantage function.

In order to determine the action at time t, the agent utilizes a mapping from the current
state to a probability of selecting each possible action. This mapping is called the agent’s
policy and is denoted by Pt (Achiam, 2018). Provided that the agent is following policy Pt,
the probability of choosing At = a given that St = s is denoted by Pt(a|s). Whatever the
application of RL, the ultimate objective is to find the optimal policy P ∗

t which maximizes
the discounted accumulative expected reward.

There exist several RL methods which specify how the agent adjusts its policy based
on its experience. In order to update the policy of the agent, there is a trade-off between
exploration and exploitation. On the one hand, exploration concerns exploring the action-
space to learn usable information and explore new policies. On the other hand, exploitation
relates to utilizing the information already known about the environment, in order to
maximize return (Sutton and Barto, 2018). As one might expect, purely exploring might
restrict the RL agent from finding the optimal policy. However, purely exploiting might
push the agent’s learning process towards a local optimum, limiting the RL agent from
finding the global optimum (Yogeswaran and Ponnambalam, 2012).

In addition, the value function is the discounted accumulated expected reward of the
agent over time, given that the agent starts in some state and follows policy P afterwards.
As denoted by Sutton and Barto (2018), the value function indicates the state’s desirability.
Within RL, there exist mainly two different kinds of value functions. On the one hand, the
value function can be a state-action value function denoted by QP (at, st), depending on
both the action and state at time t. Thus, QP (at, st) can be interpreted as the discounted
accumulated expected reward of the agent, given that the agent starts in state st, chooses
action at and acts according to policy P afterwards. On the other hand, the value
function could be a state value function denoted by V P (st), providing the expected reward
depending only on the current state and not on the action at time t (Achiam, 2018). Thus,
V P (st) denotes the discounted accumulated expected reward, given that the agent starts
in state st and acts according to policy P . The relationship between QP (at, st) and V P (st)
is displayed in Equation 2:

V P (st) = Ea∼P [QP (at, st)] (2)

Thus, the state value function V P (st) can be interpreted as the expected value of the

4



Master Thesis Reinforcement Learning to optimize the DAA of an insurer

state-action value function QP (at, st) over all possible actions.
Lastly, the advantage function AP (at, st) is a combination of the two preceding value

functions. Achiam (2018) defines the advantage function as a function indicating to what
extent one action is an improvement compared to all other possible actions the agent
could have taken by acting according to policy P . This results in defining the advantage
function as in Equation (3).

AP (at, st) = QP (at, st) − V P (st) (3)

2.1.3 Types of RL algorithms

Within literature, there exist a vast amount of different RL algorithms. However, an
important distinction can be made between model-based and model-free RL algorithms
(Achiam, 2018; Filos, 2019; Sutton and Barto, 2018). Within model-based RL algorithms,
the agent tries to model the environment, enabling the agent to include predictions about
future states in its decision making. On the other hand, model-free RL algorithms do
not try to model the environment. Since model-free approaches perform well when a
sufficient amount of data is available and this research makes use of simulated data from
the Economic Scenario Generator of Ortec-Finance, a model-free approach is used.

Model-free RL can be divided into three sub-categories, namely critic-only, actor-only
and actor-critic methods. These three categories differ in their usage of explicit value
and/or policy functions (Grondman et al., 2012). Critic-only methods are the most
published methods in finance (Fischer, 2018). These methods only rely on approximating
the value function and do not use an explicit policy function (Konda and Tsitsiklis, 2003).
The main drawback of critic-only methods is that these require discrete action-spaces and
since we consider a continuous action-space, these methods are not applicable. The most
common example of the critic-only approach is Q-learning (Watkins and Dayan, 1992).

The actor-only methods are the second most common methods in finance literature.
In actor-only methods, no value function is used, thus the agent only learns the policy, i.e.
the direct mapping from states to actions. The major advantage over critic-only methods
is that actor-only methods can make use of a continuous action-space. A common example
of actor-only methods is REINFORCE, as proposed by Williams (1992).

Lastly, the least common approach within finance literature is the actor-critic approach.
This approach tries to combine the advantages of the critic-only and actor-only methods.
In essence, the actor determines an action given the current state and the critic evaluates
this selected action (Fischer, 2018). Although this potential major advantage over the
previous two methods, the actor-critic approach has not been researched intensively in
the finance domain. However, in other applications of RL, actor-critic methods have

5
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proven to be successful in various applications in large-scale problems (Grondman et al.,
2012). Frequently used examples of the actor-critic approach are Deep Deterministic
Policy Gradient (DDPG) (Lillicrap et al., 2015), Twin-Delayed DDPG (TD3) (Fujimoto
et al., 2018), Advantage Actor-Critic (A3C) (Mnih et al., 2016), Trust Region Policy
Optimization (TRPO) (Schulman et al., 2015a) and Proximal Policy Optimization (PPO)
(Schulman et al., 2017).

Aboussalah et al. (2022) have shown that out of eight policy-based algorithms, PPO
and DDPG have the most promising performance in asset allocation problems. In addition,
Schulman et al. (2017) have shown that PPO has better performance on continuous control
tasks compared to TPRO. Moreover, as a consequence of the lack of research and the
promising advantages of the actor-critic approach in finance, we have adopted this method
in this research. More specifically, we implement the PPO algorithm as proposed by
Schulman et al. (2017). More information about the exact implementation can be found
in Section 4.4.3.

2.2 Dynamic Asset Allocation using Reinforcement Learning

This section is dedicated to the literature concerning Dynamic Asset Allocation together
with Reinforcement Learning.

Dynamic Asset Allocation (DAA) optimization is considered to be one of the most chal-
lenging problems in the field of finance (Markowitz, 1959). Traditionally, asset allocation
strategies are optimized by utilizing dynamic programming and convex optimization as
introduced by Bellman (1966) and Boyd et al. (2004) respectively (Infanger, 2008; Merton,
1969; Neuneier, 1995). The main drawback of these approaches is that they require discrete
action-spaces and consequently, suffer from the ‘curse of dimensionality’.

In recent years, RL also found its way into the field of Dynamic Asset Allocation
(DAA) within institutional investors. RL has shown to be capable of producing portfolio
management algorithms for wealth maximization (Almahdi and Yang, 2017; Moody et al.,
1998). Moreover, several studies have shown that dynamic investment strategies can be
efficiently derived by using an RL approach. Guo et al. (2018) proposed a model-based
RL agent which optimizes the asset allocation in a multi-asset investment environment.
They showed that their RL trading algorithm outperformed traditional trading strategies
on several back tests. Moreover, Yu et al. (2019) proposed a model-based RL agent that
was trained by making use of an innovative RL architecture, consisting of a generative
adversarial data augmentation module (DAM), an infused prediction module (IPM) and
a behavior cloning module (BCM). Yu et al. (2019) demonstrated that their RL model
is profitable, risk-sensitive and robust, as compared to the performance of the used

6
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baseline trading strategies. Lastly, Li and Forsyth (2019) proposed a data-driven Deep
Reinforcement Learning optimization framework to determine the optimal asset allocation
during the accumulation phase of a defined contribution pension scheme. The proposed
solution was validated by comparing the DRL solution to the optimal solution of the
Hamilton-Jacobi-Bellman (HJB) equation, where the DRL solution achieved near optimal
performance.

However, a great shortcoming of the previous mentioned papers is that they only
consider the traditional risk-return trade-off, while as mentioned before, institutional
investors may have other considerations like capital requirements. Therefore, the main
contribution of this research is to show that RL is capable of incorporating these non-linear
objectives, while still considering the traditional risk-return trade-off.

7
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3 Data

In this section, the data used within this research will be elaborated. First, the used data
sources are discussed. Then, the structure of the data will be looked at in more detail
and lastly, descriptive statistics of both the historic and scenario data from the Economic
Scenario Generator will be reviewed.

3.1 Data sources

In this paper, we use 15000 simulated scenarios generated by the Economic Scenario
Generator (ESG) of Ortec-Finance. The idea of the ESG is to generate scenarios in a
consistent and transparent way. This is achieved by decomposing economic and financial
indicators into long-, medium-, and short-term components. Using these components,
the ESG constructs factor models for each time series. Then, the long-, medium-, and
short-term factors are merged to achieve consistency across different time horizons. For
further reading about the ESG of Ortec-Finance, please consult Steehouwer (2016).

The ESG generates scenarios which are contained in the Ortec-Finance Scenario set
(OFS). The OFS contains scenarios for more than 700 economic variables and asset classes.
These asset classes can be divided into currencies, equities, fixed income and alternatives.
The economic variables consist of GDP, unemployment, inflation and exchange rates
indices (Ortec-Finance, 2022).

Besides the data from the OFS, we will make use of input and views from experts in
the field of insurance from both Ortec-Finance and a client of Ortec-Finance.

3.2 Data structure

In this research, every scenario contains the time series of the returns of 12 asset classes and
5 macro-economic variables, namely: (1) Equity - Worldwide, (2) Private Equity, (3) Equity
Asia excluding Japan, (4) Equity Singapore, (5) Direct Real Estate, (6) Infrastructure,
(7) Government Bonds Singapore, (8) Emerging Market Debt, (9) Credits Singapore A,
(10) Credits Asia A, (11) Credits Singapore BBB, (12) Credits Asia BBB, (13) Inflation
Singapore, (14) GDP Singapore, (15) Inflation US, (16) GDP US and (17) Unemployment
US. All time series contain monthly data points for a time span of 60 months. Within
this paper, the Ortec-Finance Scenario set (OFS) of December 2021 is used, which implies
that the scenarios are generated by the ESG with the economic outlook of December 2021.
Moreover, the OFS of May 2022 is used to check the robustness of the proposed model.
Thus, the December 2021 OFS is used for training, validation and testing, while the May
2022 OFS is solely used for robustness testing. In addition, the December 2021 OFS is
split up into a training set (70%), validation set (15%) and test set (15%). The training

8
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set is used to train the Reinforcement Learning algorithm, the validation set is used to
calibrate the hyperparameters of the model and the test set is solely used to acquire results.
Thus, the May 2022 OFS serves for 100% as a test set.

As mentioned before, the OFS contains macro-economic and returns data. Therefore,
we will provide the descriptive statistics of the development of the macro-economic variables
and the returns of all asset classes over time in the following section.

3.3 Descriptive statistics

This section is dedicated to the descriptive statistics of the data used throughout this
paper. First, the historic returns will be analysed. Then, the returns of all asset classes
will be looked at in more detail. Lastly, the development of the macro-economic variables
will be investigated. Notice that only the descriptive statistics of the OFS of December
2021 are provided in the following section, the descriptive statistics of May 2022 can be
found in Appendix B. Moreover, the individual fan charts of all asset classes are provided
in Appendix C.

3.3.1 Historic returns

Figure 2 displays the historic returns of the 12 asset classes. First note that there is a
significant difference between the volatility of the equity asset classes compared to the
other asset classes. Moreover, the Fixed-Income (FI) asset classes, which consist of bonds,
EMD and credits, show very little variation over time. In addition, note that a significant
drop in returns is visible around April 2020 for almost all asset classes, which corresponds
to the start of the Covid pandemic.

Figure 2: Historic returns of all asset classes.
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3.3.2 Scenario returns

Figure 3 shows the average returns of the December 2021 OFS of all asset classes for
every month. First observe that the first months show a significant decrease in returns,
especially within the equity classes. Second, notice that the asset class Bonds Singapore
shows very little variation over time and that, in the long run, this also results in the
lowest expected return compared to other asset classes. This is consistent with literature
as government bonds are seen as one of the safest investment opportunities, consequently
having low expected return. In addition, all credits asset classes show a similar pattern as
government bonds Singapore, although these asset classes exhibit a bit more variance and
consequently, have a higher average return. Another noteworthy aspect in Figure 3 is the
course of Credits SGP BBB, which seems to exhibit a significant yearly trend. According
to the Scenario and Asset Valuation (SAV) department of Ortec-Finance, this is caused
by the increase in the credit spread of Singapore from the first to the second year. This
sudden increase results in a lower expected return for Credits SGP BBB. This effect is
even more noticeable in the May 2022 OFS displayed in Appendix B.

Figure 3: Average nominal scenario returns of all asset classes in December 2021 OFS.

3.3.3 History macro-economic variables

Figures 4 and 5 display the historic development of the macro-economic variables. First
note that at the start of the pandemic, both GDP’s and Unemployment US experienced a
large decrease and increase respectively. However, where GDP Singapore and US quickly
recovered from this significant decrease, Unemployment US needed much more time to
restore to its long-run mean. Furthermore, notice that Inflation Singapore and US did not
seem to be effected by the pandemic. However, notice that a slight upward trend for both
Inflation Singapore and US is visible in the last months.
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Figure 4: History of macro-economic vari-
ables, excluding Unemployment US.

Figure 5: History of macro-economic vari-
ables, only Unemployment US.

3.3.4 Macro-economic variables

Figure 6 shows the average change of the four macro-economic variables and Figure 7
displays the average level of unemployment in the US over all scenarios. First, note the
sudden drop of both Inflation and GDP Singapore in the first month in Figure 6. Second,
notice that in the December 2021 OFS it is assumed that the growth factor of the GDP
of Singapore will slow down in the first 18 months. A similar pattern is visible for GDP
US in the first 10 months. After these periods, the growth factors increase slightly and
then converge to their long-run mean. On the other hand, the growth factor of Inflation
US is first expected to increase slightly and then converge to its long-run mean. When
looking at Figure 7, one notices that the average unemployment level first increases to
approximately 5% and then remains equal.

Figure 6: Average change of macro-
economic variables over all scenarios in
the December 2021 OFS.

Figure 7: Average level of Unemployment
US over all scenarios in the December
2021 OFS.
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4 Methodology

This section is dedicated to the methodology used within this research. First, the problem
definition and objective are clarified. Then, the DAA framework needed for this research
is provided and the used RBC framework is elaborated. Thereafter, the RL model
implementation is explained in more detail and the benchmark models are elaborated.
Lastly, the performance metrics and hyperparameter tuning are discussed.

4.1 Problem definition

In this research, we consider an insurer based in Singapore. The main goal of this insurer
is to maximize returns while conforming to the Risk Based Capital (RBC) framework
provided by the Monetary Authority of Singapore (MAS). The MAS is the central bank
of Singapore. The RBC framework forces insurers to properly define and calculate their
risk capital. The National Association of Insurance Commissioners (NAIC, 2022) states
that ’the purpose of RBC requirements is to identify weakly capitalized companies, which
facilitates regulatory actions to ensure that policyholders will receive the benefits promised
without relying on a guarantee association or taxpayer funds. In essence, the RBC formula
calculations are critical thresholds that enable timely regulatory intervention’. The most
crucial concept within the RBC framework is the Capital Adequacy Ratio (CARt), which
determines how solvent an insurer is. A detailed description on how the CARt is determined
is provided in Section 4.3.

The considered time horizon is 5 years where monthly time steps are used. The starting
capital is set to 33 Bln SGD and the starting liability value is 21 Bln SGD. The only
actions the insurer can take is to adjust its portfolio allocation and we consider both 0.15%
and no transaction costs. We choose to consider 0.15% transaction costs since this is a
representative number for most multi-asset funds (Petraki, 2020). The objective of this
research was to train an RL agent which is able to find the DAA which maximizes the
expected net return, while conforming to the Risk Based Capital requirements set by the
MAS. First, lets define the net return at time t as NRt, more information about the precise
definition of NRt can be found in Section 4.2. Then, this results in the following general
optimization problem:

max
πi(st)

E[
T∑

t=1
γtut(NRt, CARt)] (4a)

Subject to:
p∑

i=1
πi(st) = 1, ∀t ∈ {1, 2, ..., T} (4b)

li ≤ πi(st) ≤ ui, ∀i ∈ {1, 2, ..., p},∀t ∈ {1, 2, ..., T} (4c)
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where γ denotes the discount factor and ut(NR_t, CARt) denotes some utility function
of NRt and CARt. Moreover, note that the asset weights πi(st) explicitly depend on the
state of the environment st via the policy P . More information about the state st can be
found in Section 4.4.1. In addition, both NRt and CARt depend on πi(st) and the state
st. Thus, the objective in Equation 4a can be interpreted as maximizing the expected
discounted cumulative utility from net returns and the CAR. Then, solely focusing on
maximizing net returns while conforming to the RBC requirements and setting γ = 1,
results in the following intuitive objective function:

max
πi(st)

E[
T∑

t=1
NRt − α21CARt≤1] (5a)

Subject to:
p∑

i=1
πi(st) = 1, ∀t ∈ {1, 2, ..., T} (5b)

li ≤ πi(st) ≤ ui, ∀i ∈ {1, 2, ..., p},∀t ∈ {1, 2, ..., T} (5c)

In consultation with the client of Ortec-Finance, we concluded that the objective function
in Equation 5a did not fully capture the preferences of an insurer. Therefore, conforming
to the RBC requirements has been interpreted as follows. On the one hand, an insurer
wants to minimize the probability of having the CARt below 1. On the other hand,
an insurer wants to maximize NRt provided that the Capital Adequacy Ratio at time
t is between a given range. Then, putting everything together, this corresponds to the
following optimization problem:

max
πi(st)

E[
T∑

t=1
NRt1α0≤CARt≤α1 − α21CARt≤1] (6a)

Subject to:
p∑

i=1
πi(st) = 1, ∀t ∈ {1, 2, ..., T} (6b)

li ≤ πi(st) ≤ ui, ∀i ∈ {1, 2, ..., p},∀t ∈ {1, 2, ..., T} (6c)

First note that α0, α1 and α2 are preference parameters. Here, α0 and α1 denote the
preferred lower and upper bound of the Capital Adequacy Ratio respectively. From
literature and in consultation with a client of Ortec-Finance, the preferred Capital Adequacy
Ratio range is set to (1.75−2.50) (Milliman, 2019). Although these boundaries are arbitrary,
some intuition can be extracted from it. The lower bound of 1.75 ensures that there is
a sufficient buffer available for when the portfolio value decreases rapidly, for in stance
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during an economic recession. In addition, the upper bound of 2.5 is related to the notion
that when the CAR is above this level, one has too much safety capital available. Here,
having too much safety capital implies that an insurer could have increased its liabilities,
for instance by selling more insurance products. Therefore, having an extremely high
CAR is not preferred. Furthermore, note that in Equation (6a) there is no explicit penalty
for volatility as this is implicitly captured within the CARt. That is, a volatile portfolio
will result in heavy fluctuations in the CARt, resulting in an increased probability of not
meeting the RBC requirements. Therefore, a trade-off has to be made between on the one
hand, staying within the specified bounds of the CARt, implying a less risky portfolio and
lower returns, and on the other hand maximizing expected return, implying a more risky
portfolio. Therefore, the indicator function ensures that the agent only gets a reward if
the CAR preferences are met. Lastly, a penalty is introduced for when the CARt is lower
than 1, as this would imply regulatory intervention. Using α2, one can increase or decrease
the weight of this penalty according to the preferred probability of (not) meeting the RBC
requirements. In addition, the insurer is only allowed to invest all of its capital, resulting
in the constraint displayed in Equation (6b). Moreover, the asset weights must adhere
to the lower and upper bound li and ui respectively. Within this research research, these
boundaries are set to 0 and 1 for all asset classes, implying that only short selling is not
allowed. Then, the optimization objective which is considered throughout this research
can be written as follows:

max
πi(st)

E[
60∑

t=1
NRt11.75≤CARt≤2.5 − α21CARt≤1] (7a)

Subject to:
11∑

i=0
πi(st) = 1, ∀t ∈ {1, 2, ..., 60} (7b)

0 ≤ πi(st), ∀i ∈ {0, 1, ..., 11},∀t ∈ {1, 2, ..., 60} (7c)

4.2 Dynamic Asset Allocation fundamentals

In this section, the fundamental concepts and elements of DAA are discussed. For this
purpose, the mathematical notation is largely based on the lecture notes of Munk (2017).

First, let us define the price of an asset (class) as Pi,t, then the nominal return over one
period can be denoted as:

Rn
i,t+∆t = Pi,t+∆t − Pi,t

Pi,t

(8)

Since only real returns are considered within this research, the real returns are defined as
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in Equation (9).

Rr
i,t+∆t =

1 + Rn
i,t+∆t

1 + It+∆t

(9)

where It denotes the inflation rate at time t. Throughout this research, real return Rr
i,t+∆t

is also denoted as Ri,t+∆t to improve readability. At time t, the agent chooses a portfolio
which will remain unchanged until time t + ∆t, holding Mi,t units of asset i. Then, current
wealth Wt is given by:

Wt =
p∑

i=1
Mi,t−∆tPi,t (10)

where p denotes the number of asset classes within the portfolio. It is assumed that the
insurer is not allowed to add or withdraw wealth to the fund. Thus, the portfolio choice
at time t must satisfy the following budget restriction:

p∑
i=1

(Mi,t − Mi,t−∆t)Pi,t = 0 (11)

Equation 11 is commonly known as the budget restriction for a self-financing portfolio.
Now let us define the amount invested in asset i at time t as θi,t = Mi,tPi,t. Then, the
portfolio weight of asset i at time t is given by:

πi,t = θi,t

Wt

(12)

As stated before, it is assumed that all capital must be invested, this results in the following
constraint:

p∑
i=1

πi,t = 1, ∀t ∈ {0, 1, ..., T} (13)

In addition, the asset weights should adhere to the following constraint:

πi,t ≥ 0, ∀i ∈ {1, 2, ..., p}, ∀t ∈ {1, 2, ..., T} (14)

Moreover, transaction costs are denoted by β and will be paid over the difference in wealth
allocation per asset type when the RL agent adjusts the asset allocation at time t. Let
TCt denote the transaction costs at time t, then TCt is calculated by using equation 15.

TCt =
p∑

i=1
β|Mi,t − Mi,t−∆t|Pi,t (15)

Combining all of the above, the wealth dynamics can be described as:

Wt+∆t = Wt +
p∑

i=1
θi,tRi,t+∆t − TCt+∆t (16)
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Then, the Total (real) Return obtained in period t (TRt) is calculated by:

TRt = Wt − Wt−∆t (17)

=
p∑

i=1
θi,t−∆tRi,t − β|Mi,t − Mi,t−∆t|Pi,t (18)

Where Equations (15) and (16) are used to go from Equation (17) to (18). Subsequently,
the net return over period (t − ∆t, t) is denoted as NRt and calculated by:

NRt = Wt − Wt−∆t

Wt−∆t

(19)

=
∑p

i=1 θi,t−∆tRi,t − β|Mi,t − Mi,t−∆t|Pi,t

Wt−∆t

(20)

Then, using Equation (12), Equation (20) can be rewritten as:

NRt =
p∑

i=1
πi,t−∆tRi,t − β

|Mi,t − Mi,t−∆t|Pi,t

Wt−∆t

(21)

Here, the first part of Equation (21) can be interpreted as the real returns over the portfolio
allocation and the second part as the correction for the transaction costs as a percentage
of the previous wealth level. Thus, the net returns NRt can be interpreted as the real
returns of the portfolio corrected for transactions costs. Throughout this research, the
goal of the insurer is to maximize NRt while conforming to the RBC requirements and
preferences.

4.3 Risk Based Capital fundamentals

This section is dedicated to the fundamental concepts of RBC and subsequently, the
implementation of RBC requirements in this research. Here, the RBC guidelines published
by the Monetary Authority of Singapore (MAS) are used (MAS, 2022).

As mentioned before, the Capital Adequacy Ratio (CARt) is a crucial concept within the
RBC framework. This CARt consists of two components, namely Financial Resources
(FRt) and Total Risk Requirement (TRRt). The FRt are simply calculated as the difference
between the total wealth (Wt) of the insurer and its liabilities (Lt), thus the financial
resources at time t are calculated by FRt = Wt − Lt. In practice, a regulatory adjustment
is made to the FRt, however, this is outside the scope of this research. In order to model
the liabilities, we use an example liability structure provided by Ortec-Finance. This
specific liability structure contains a set of potential monthly cash flows of a closed-book
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insurer for 100 years. These cash flows have been discounted to calculate the present value
for all t ∈ {0, 1, ...., 60}. The resulting present value at time t is then used as the value
of the liabilities at time t. The second component of the CARt, the TRRt is less simple
and will be discussed in more detail below. In essence however, the TRRt represents the
minimum amount of capital which has to be reserved, based on the amount of risk the
insurer takes.

Now, an insurer based in Singapore has to calculate their Capital Adequacy Ratio at
time t according to Equation (22).

CARt = FRt

TRRt

(22)

In order to calculate the TRRt, the following formula has to be used:

TRRt =
√

C2
1,t + C2

2,t + ORt (23)

where:

C1,t =
√

C2
1,Life,t + C2

1,General excl. A&H,t + C1,General (A&H only),t (24)

C2,t =
√

C2
2,Market,t + C2

2,Default,t + 2ρM,DC2,Market,tC2,Default,t (25)

ORt = min(0.005Lt, 0.1(C1,t + C2,t)) (26)

where C1,t and C2,t denote the diversified life and general liability risks and diversified
market risks respectively. Moreover, ORt denotes the Operational Risk at time t. The
main focus of this research is in the C2,t element of the RBC requirements, since this
element dominates the contribution to the TRRt and this is the only element which directly
depends on the asset allocation of an insurer. As a simplification, a fixed percentage of the
total value of liabilities is assumed for the C1,t risk requirements. Throughout this research,
this percentage is set to 2.5%. In addition, another simplification in this research is that the
C2,Default,t risk is set to 0. This is the consequence of using the ESG of Ortec-Finance, where
only sub asset classes are defined and consequently, no proper default risk can be assigned
to these classes. Moreover, the contribution of C2,Default,t to C2,t is commonly less than 1%
and therefore, will not influence the results significantly (MAS, 2020). Therefore, only the
detailed methodology with regard to the calculations of C2,Market,t and ORt are provided
below. For more details about the proper calculations of C1,t requirements, see MAS (2022).

The C2,Market,t requirements are calculated according to equation (27).

C2,Market,t =
√∑

i,j

ρi,jMarketi,tMarketj,t (27)
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where Marketi,t denotes the shock for market i at time t. According to MAS (2022), the
market shock has to be calculated as the sum of the shocks of every asset class which falls
into this market category. The shock for every asset class separately is simply calculated
as a percentage of the total amount invested in this asset class. Thus, the shock for market
j at time t has to be calculated as follows:

Marketj,t =
∑
q∈Sj

sq

∑
i∈q

θi,t (28)

where Sj denotes the collection of sub-markets which fall into market j and q denotes the
collection of asset classes in sub-market q. Additionally, sj denotes the shock which has to
be calculated over asset class i. As can be seen in Table 1, every sub-market has a different
shock percentage since different asset classes are assumed to carry different amounts of risk.
In order to clarify these calculations, a simple example is provided. Consider an insurer
which invested 1 Bln SGD into Direct Real Estate US and 2 Bln SGD into Infrastructure.
Then, the shock for market Property will be 0.3(1 + 2) = 0.9 Bln SGD.

Another important aspect which can be noted in Table 1 is that this research only
applies currency risk to non-FI asset classes, since it is assumed that currency risk is only
fully hedged for the Fixed-Income asset classes. With regard to Interest Rate requirements,
another noteworthy simplification is introduced compared to MAS (2022). Since this
research abstracts away from the modeling of the duration dynamics of the Fixed-Income
asset classes and a flat term-structure is used, it is additionally assumed that the duration
mix within all government bonds and credits stays constant over time. As a result, a fixed
percentage (8) is considered for all Fixed-Income asset classes to account for interest rate
risk. This is a significant simplification compared to MAS (2022) since these assumptions
completely disregard the duration dynamics and the accompanying risk requirements.

To account for interaction between the markets, all markets are given correlation factors.
These correlation coefficients can be found in Table 2. As can be seen, it is assumed
that especially the markets Credit Spread and Property are assumed to exhibit strong
correlation with the Equity market, while the Currency market displays weak correlations
with all other markets. Note that in MAS (2022), the Monetary Authority of Singapore
prescribes the use of two different correlation matrices, namely one for an upward and an
downward interest rate scenario. As mentioned before however, this research assumes a
flat term-structure and consequently, only the downward interest rate correlation matrix
is used. This research choose to use the downward correlation matrix since this matrix
contains higher correlation coefficients between the different markets, resulting in a higher
TRRt.
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Market Sub-market Asset class Shock
Equity Listed, developed Equity World (0) 0.35

Private Equity (1) 0.35
Equity Asia excl. Japan (2) 0.35

Other Equity Singapore (3) 0.50
Interest Rate All* Government Bonds SGP (6) 0.08

Emerging Market Debt (7) 0.08
Credits SGP A (8) 0.08
Credits Asia A (9) 0.08
Credits SGP BBB (10) 0.08
Credits Asia BBB (11) 0.08

Credit Spread Government Government Bonds (6) 0.0000
Rating A Credits SGP A (8) 0.0165

Credits Asia A (9) 0.0165
Rating BBB Emerging Market Debt (7) 0.0245

Credits SGP BBB (10) 0.0245
Credits Asia BBB (11) 0.0245

Property Immovable Direct Real Estate (4) 0.30
Infrastructure (5) 0.30

Currency Foreign Markets Equity World (0) 0.12
Private Equity (1) 0.12
Equity Asia excl. Japan (2) 0.12
Direct Real Estate (4) 0.12
Infrastructure (5) 0.12

Table 1: Market risk shocks table.

Equity
Interest
Rate

Credit
Spread

Property Currency

Equity 1 0.5 0.8 0.8 0.1
Interest Rate 0.5 1 0.5 0.25 0.1
Credit Spread 0.8 0.5 1 0.5 0.1
Property 0.8 0.25 0.5 1 0.1
Currency 0.1 0.1 0.1 0.1 1

Table 2: Correlation table market risk.
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To conclude, the RBC framework implemented in this research can be summarized as:

CARt = FRt

TRRt

(29)

= Wt − Lt√
C2

1,t + C2
2,t + ORt

(30)

where:

C1,t = 0.025Lt (31)

C2,t =
√∑

i,j

ρi,jMarketi,tMarketj,t (32)

ORt = min(0.005Lt, 0.1(C1,t + C2,t)) (33)

4.4 Reinforcement Learning model

This subsection is dedicated to the elaboration on the RL model which we employ in this
research.

4.4.1 State definition

The state specification we use is inspired by Fischer (2018), which presents a survey on
RL in financial markets. The first part of the state st consists of the last period nominal
returns of all assets, denoted by the vector xt with length 12. The choice for only using
one lag is based on the study of Corazza and Bertoluzzo (2014), who investigated the use
of employing multiple lags in the state space and conclude that the best performance is
achieved with the inclusion of one lag. Since Corazza and Bertoluzzo (2014) state that
this problem might be problem specific, we tested and confirmed this finding. Moreover,
the asset weights of the previous period πt−1 are included in the state to account for
transaction costs (Jiang et al., 2017). In addition, current wealth Wt, liability value Lt and
the cash flows CFt are used in the state of the agent to calculate the Capital Adequacy
Ratio. Additionally, the CARt itself is used in the state as investment decisions could
depend on the level of the CAR. Lastly, the following macro-economic variables (MEt)
are incorporated into the state of the RL agent: inflation US, inflation Singapore, GDP
Singapore, GDP US and unemployment US. These macro-economic variables are included
since Ndlovu et al. (2018) have found evidence that they could provide information about
stock returns. Moreover, previous research has shown that including macro-economic
variables could result in better performance (Neuneier, 1995). To conclude, the state
representation at time t is given by the vector st with length 34:
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st = (xt, πt−1, Wt, Lt, CFt, CARt, MEt, t) (34)

4.4.2 Reward function

The reward function is crucial in the learning process of the RL agent. Aboussalah et al.
(2022) state that coming up with a reward function is not a difficult task. However, designing
a reward function that results in the desired behaviour, while still being learnable, can be
an inconvenient task. Within literature, it is very common to use a purely profit based
reward function such as the Sharpe Ratio (Fischer, 2018). However, after experimentation,
we quickly found out that using the Sharpe Ratio lead to undesirable results, especially
regarding performance on the CARt. Therefore, we experimented with incorporating RBC
requirements into the reward function. After testing several configurations, the reward
function which best suits our goal is:

RWt = NRt11.75≤CARt≤2.5 − α21CARt≤1 (35)

Note that the reward function in Equation (35) and the objective displayed in Equation
(6a) are almost identical, resulting in the alignment of the preferences of an insurer and
the learning process of the RL agent. The combination of net returns with an indicator
function, which ensures that the net return reward is only given when the CARt is between
a set range, is a novel concept. Additionally, the indicator function which provides a
penalty when the CARt is less than 1 is innovative as well. However, as it is important
for an insurer to be able to minimize the probability that the CARt is lower than 1, it is
intuitive to utilize a penalty to steer the RL agent away from this boundary. Lastly, the
introduction of this penalty did improve the learning process of the RL agent considerably.

4.4.3 Proximal Policy Optimization setup

Within this research, we model both the policy and value function using Neural Networks
(NN), which are denoted as the actor and critic network respectively. The dimension of
these networks are hyper parameters and can be tuned according to performance. In
addition, both activation functions are Rectified Linear Units (ReLU). The ReLU function
can be denoted as f(x) = max(0, x).

The NN of the actor uses the state st as defined in Equation (34) as input. Furthermore,
the output layer has a Softmax function which returns an action-vector of length 12
containing the weights for every asset class. PPO explores the action space, i.e. all
possible asset weights, by sampling its actions from a normal distribution for every action
separately:

ai ∼ N(µi, σi), ∀i ∈ {0, ..., 11} (36)
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Here, the initial value of σi is a hyper parameter and it is assumed that every asset class
has the same starting value. Although the Softmax output function guarantees that the
µi add up to 1, the sampled weights during exploration in the training phase do not have
this guarantee. Therefore, the sampled weights ai are normalized by using:

πi = ai∑11
i=0 ai

(37)

During the evaluation and test phase, there is no exploration and consequently, the asset
weights πi are equal to µi.

The critic network has the same input layer st as the actor network, yet the output
layer is different. Instead of a Softmax output function, the critic network has the so-called
Identity output function which returns a scalar estimate of the state-value function V (st).

4.4.4 Proximal Policy Optimization algorithm

The PPO algorithm which we are using in this research is based on the algorithm introduced
by Schulman et al. (2017). Moreover, the pseudo-code which we use in this research is
inspired by Achiam (2018) and is provided in full detail in Appendix D. In addition, the
implementation of Raffin et al. (2021) served as the inspiration for our implementation of
PPO in Python.

The first step of the PPO algorithm is to randomly split the scenarios in the train set
into batches. The batch size N is a hyperparameter and as stated before, the time horizon
T is 60 months. The number of iterations over the whole data set K is a hyperparameter
as well and is chosen such that the learning curve of the RL has converged.

Then, the algorithm begins with generating the states, actions, rewards and value
function estimates for all t for each scenario in the batch. For all the sampled actions, the
log of the probability density function of the normal distribution can be obtained. All this
information is then stored into the memory of the PPO agent. After completing this for
the whole scenario batch, the memory of the PPO agent contains NT entries of states,
actions, rewards, value estimates and log probabilities of the actions. Now, the advantage
Ât for each t is estimated by using the finite version of Generalized Advantage Estimation
(GAE) as proposed by Schulman et al. (2015b):

Ât = δt + (γλ)δt+1 + ... + (γλ)T −tδT (38)

= δt + γλÂt+1 (39)

With γ ∈ [0, 1] and λ ∈ [0, 1], which are hyperparameters. Additionally, δt is computed by
using the current reward and state-value function estimates of the current and next time
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step:
δt = R̂t + γV(st+1) − V(st) (40)

Hereafter, the parameters of the actor and critic network are updated. To update the
policy parameter θ, we utilize the clipped loss function of Schulman et al. (2017) in our
algorithm:

LCLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât)] (41)

Where rt(θ) denotes the probability ratio which is computed by:

rt(θ) = Pθ(at|st)
Pθold(at|st)

(42)

Moreover, the clipping ratio ϵ ∈ (0, 1) is a hyperparameter. Here, the intuition is to
increase the probability of actions which have a higher advantage. To mitigate excessive
changes to the policy parameter θ, the clip function is introduced to limit the probability
ratio rt(θ) from above at 1 + ϵ if the advantage estimate Ât is positive and from below at
1 − ϵ when Ât is negative.

For both the actor and critic network, mini-batch optimization is used with the Adam
solver first introduced by Kingma and Ba (2014). Note that the mini-batches used for
optimization are different from the scenario batches. More specific, the mini-batches are
randomly sampled without replacement from the NT entries of the agent’s memory.

After the optimization is completed, the agent’s memory is cleared and all steps are
repeated for every scenario batch. Once all scenario batches from the training data have
been used, one training-iteration of the PPO algorithm is completed. However, one can
allow for multiple iterations over the training data if the learning process of the PPO
agent has not been completed. Since the learning curve can be plotted, one can increase
the number of iterations by visual inspection. Note that after every training iteration, all
scenario’s are shuffled to prevent identical scenario batches. In our case, convergence takes
place after 30 iterations.

4.5 Performance evaluation

This subsection is dedicated to the performance evaluation methodology. First, an
elaboration on the benchmark strategies is provided. Then, the used evaluation metrics
are discussed in more detail.

4.5.1 Benchmark strategies

In order to evaluate the performance of the RL model, three benchmark strategies are
used. First, the simplest but most realistic strategy, a Strategic Asset Allocation (SAA) of
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a client of Ortec-Finance is used. The full allocation is presented in table 8(a). As can be
seen, a substantial amount of 66% is invested in Fixed-Income, where Government Bonds
Singapore has the greatest contribution within this class. The SAA is used to ensure that
the RL model outperforms a real-life strategy. Moreover, the benchmark allocation is used
as the starting allocation for the RL model to ensure that both models have the same
Capital Adequacy Ratio at t = 0.

Main asset class Sub asset class Allocation
Equity 29%

Equit World (0) 7%
Private Equity (1) 2%
Equity Asia exl. Japan (2) 9%
Equity Singapore (3) 11%

Property 5%
Direct Real Estate (4) 4%
Infrastructure (5) 1%

Fixed-Income 66%
Bonds Singapore (6) 29%
EMD (7) 1%
Credits SGP A (8) 10%
Credits Asia A (9) 10%
Credits SGP BBB (10) 8%
Credits Asia BBB (11) 8%

Table 3: Strategic Asset Allocation

In addition to the SAA, we employ a basic Dynamic Mean-Variance (DMV) model as well.
Here, the Mean-Variance methodology of Markowitz (1952) and Markowitz (1959) is used.
Both the DAA for a Minimum Volatility strategy (DMV-MV) and Max Sharpe Ratio
strategy (DMV-SR) are considered. Traditionally, the expected returns and covariance
matrix are estimated by using historical data. However, Bielstein and Hanauer (2019)
and Kempf et al. (2015) have shown that using forward looking information to calculate
the expected returns vector and covariance matrix leads to a significant improvement in
performance. Since we are dealing with scenario data, forward looking information can be
used. Therefore, a forward looking DMV is used which utilizes the same training data as
the RL agent. Thus, the expected returns and covariance matrix at time t are estimated
with scenario data for t, ..., t + n, where the best performing value for n is used. More
specific, the value for n is chosen in every setting, such that maximum performance is
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achieved. This implies that for the DMV-MV strategy, the value for n is chosen such that
the variance in the validation set is minimized. Moreover, for the DMV-SR strategy, the
value for n is chosen such that the expected final wealth is maximized in the evaluation
set. For the results, see Tables 5 and 6 in Appendix E. These strategies are introduced
to challenge the RL agent with regard to the average return and volatility of the total
wealth value Wt. However, note that these DMV models do not consider the CAR when
determining the asset allocation.

4.5.2 Evaluation metrics

The evaluation metrics which are used to measure the out-of-sample performance of the
RL model against the benchmark allocations are listed below.

(1) Risk vs Return
Return is measured by the average real portfolio value W̄t over time. Then, risk is measured
by the metrics variance, downward variance and upward variance of the real portfolio
value. The downward and upward variance are defined in Equations 43 and 44:

Vart,down = 1
nt,down − 1

n∑
s=1

min(Ws,t − W̄t, 0)2 (43)

Vart,up = 1
nt,up − 1

n∑
s=1

max(Ws,t − W̄t, 0)2 (44)

where n denotes the number of considered scenarios. Moreover, nt,down = ∑n
s=1 1Ws,t<W̄t

and
nt,up = ∑n

s=1 1Ws,t>W̄t
denote the number of scenarios at time t where Ws,t is respectively

smaller and larger than W̄t.
With regard to the evaluation of the performance, the RL strategy is considered to

outperform a benchmark strategy if the average wealth level is higher and the variance is
lower. However, an RL strategy is also considered to outperform a benchmark strategy if
the downward and upward variance of the RL strategy is respectively lower and higher.
We make this distinction since downward variance is not preferred, while upward variance
is considered to be acceptable.

In addition to the above risk measures measures, an insurer wants to minimize the
risk of having low returns. Therefore, this paper considers the Value-at-Risk (VaR) and
the Conditional VaR (CVaR). The VaRα is the 100α%-quantile of the portfolio value
distribution or more formally, VaRα(Wt) = max{c|P[Wt ≤ c] ≤ α} for α ∈ (0, 1). In this
research we set α = 0.05, implying that the wealth level at time t is greater than the
VaR0.05 with a confidence level of at least 95%. In addition, the CVaRα of portfolio wealth
is considered and defined as CVaRα(Wt) = E[Wt|Wt ≤ VaRα(Wt)].
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Within this paper, the RL strategy is considered to outperform a benchmark strategy
if both the VaR and CVaR of the RL strategy are higher compared to the benchmark
strategy. Thus, this is formalized as:

VaRα(W b
t ) ≥ VaRα(Wt) and CVaRα(Wt) ≥ CVaRα(W b

t ), ∀t ∈ {1, 2, ..., T} (45)

where Wt and Wb
t denote the wealth of the RL and benchmark strategy respectively.

(2) Capital Adequacy Ratio
The CARt, as defined in Equation (22), is used to compare the models based on its
performance regarding the RBC requirements. In order to evaluate whether a model
performs well, the CAR’s for all scenario’s at every time step are measured. First, the
percentage of the scenario’s for which the CARt is between the levels (1.75 − 2.5) is
plotted over time to evaluate the preference fulfillment. Additionally, the percentage of
the scenario’s for which the CARt is below 0 and 1 are plotted over time. The threshold of
1 is considered since an insurer will experience regulatory restrictions and/or interventions
when the CAR is below this level. In addition, the threshold of 0 is considered as this would
imply that the Financial Resources are negative, i.e. Wt < Lt, resulting in bankruptcy.

4.6 Hyperparameter tuning

The PPO algorithm contains multiple hyperparameters which have to be tuned for optimal
performance of the RL model. Appendix F displays the candidate hyperparameters and the
optimal values. The hyperparameter candidates are based on Andrychowicz et al. (2020),
who present an empirical study on hyperparameters within on-policy RL. First, note that
the total amount of potential configurations exceeds 640 million. Due to the substantial
amount of potential configurations, we have performed a random search to determine the
optimal hyperparameter values. More specific, we have performed multiple trials with 32
randomly chosen configurations, where we shrunk the hyperparameter candidate space
according to visual inspection after every trial. To determine the best candidate, we
have both looked at the average final wealth and the RBC violation rate. In total, we
have tested 320 configurations to determine the optimal hyperparameter configuration
for our setting. However, we acknowledge that due the substantial size of the candidate
hyperparameter space, it could be the case that our hyperparameter setting is sub-optimal.
However, time and money restricted us from testing more configurations.

26



Master Thesis Reinforcement Learning to optimize the DAA of an insurer

4.7 Tools and programs

Finally, we give some technical details. All programming is done in Python, version
3.10. Moreover, for the RL implementation we have used the PyTorch package and the
internal ofrl-package from Ortec-Finance. For the implementation of MVO in Python, the
PyPortfolioOpt package is used (Martin, 2021). Lastly, Microsoft Azure is used for the
tuning of the hyperparameters.
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5 Results

This section contains the results of all models that we considered in this research. First,
we consider the setting where transaction costs are included. In this setting, we evaluate
the allocation strategy and performance of all models. Thereafter, a similar study will be
performed in the setting where transaction costs are set to 0. Finally, a robustness test is
performed where only the model performance will be investigated.

5.1 Results including transaction costs

This section is dedicated to the results of the considered strategies while including trans-
action costs. As noted before, the transaction costs are set to 0.15%. As can be seen
in Table 5 in Appendix E, the best performing DMV-SR model bases its allocation on
scenarios from time t, ..., t + 2. Moreover, the best performing DMV-MV strategy bases
its allocation at time t only on the scenarios at time t.

5.1.1 Allocation strategies

Figure 8 displays all asset allocation strategies from the different methods. Subfigure
8(a) displays the SAA, which is the most realistic and basic asset allocation strategy.
Moreover, this asset allocation functions as the initial allocation for all dynamic asset
allocation strategies to ensure a consistent initial CAR0. In addition, Subfigures 8(b) and
8(c) display the Mean-Variance strategies. As can be seen, both strategies significantly
differ from one another. The Sharpe-Ratio strategy fluctuates more heavily compared to
the Minimum-Volatility strategy. When comparing Figures 3 and 8(b), we notice that the
Sharpe-Ratio strategy mimics the estimated market development. More specifically, the
Equity asset classes will perform poorly in the first 15 months and the FI asset classes
perform relatively well, thus allocating more to FI asset classes in the first 15 months seems
trivial. Thereafter, the Equity asset classes show an increase in expected returns while the
FI asset classes remain stable and thus, substituting allocation from FI to Equity asset
classes seems beneficial. Lastly, as can be seen in Figure 29 in Appendix C, the DMV-MV
strategy mainly uses assets which have the least variation, namely Bonds Singapore and
Direct Real Estate.

When looking at the average RL strategies displayed in Subfigures 8(d) and 8(e), we
first notice that both strategies slowly increase the amount invested in Equity asset classes.
This can be explained by the fact that we consider a closed-book insurer, implying that
the insurer does not increase its liabilities over time when it has sufficient wealth. Since
the liability value does not increase and one of the goals is to maximize returns, the RL
agent can slowly increase its allocation to Equity asset classes while still being able to
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comply with the RBC requirements and preferences. Note that this observation does not
necessarily hold when considering an open-book insurer, where the liabilities could increase
over time.

(a) SAA

(b) DMV-SR (c) DMV-MV

(d) RL-0.001 (e) RL-0.2

Figure 8: Asset allocation strategies including transaction costs.

Additionally, we look at the usability of the allocation strategies displayed in Figure
8. As for the SAA in Subfigure 8(a), this strategy is intended to mimic a strategy from
the client of Ortec-Finance and therefore, this is the most practical strategy as well. The
DMV-SR strategy in Subfigure 8(b) might be the least applicable strategies, since the
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allocation substantially differs over time. Especially in the first 20 months of the DMV-SR
model, the allocation strategy varies significantly and at some time points only 2 or 3 assets
are used. Thus, one might question whether this proposed strategy is realistically plausible.
When looking at the DMV-MV strategy in Subfigure 8(c), one notices that very few assets
are used over the whole time horizon. On average, more than 90% is invested in Bonds
Singapore, Direct RE and Equity Singapore. Thus, similar as with the DMV-SR strategy,
one might question the usability of this allocation strategy. When considering the RL
strategies displayed in Subfigures 8(d) and 8(e), one notices that especially the RL-0.001
shows similar behaviour as compared to the SAA in Subfigure 8(a). That is, the allocation
is relatively stable over time compared to the other DAA strategies, which contributes
to the applicability of the strategy. Most of the change in allocation over time is due
to slowly increasing the allocation to Equity Asia excluding Japan and decreasing the
allocation to both Credits BBB asset classes. The RL-0.2 strategy displayed in Subfigure
8(e) has substantially more variation over time compared to the RL-0.001 strategy. This
variation is due to the seasonal effect where there is an exchange in allocation between
Equity Singapore and Equity Asia and between Emerging Market Debt and Credits SGP
A. Therefore, the RL-0.2 is less applicable compared to the RL-0.001 and SAA strategy.

Lastly, another noticeable difference between the RL and benchmark strategies is the
allocation to Bonds Singapore and Equity Asia excluding Japan. While the RL strategies
significantly invest in Equity Asia excluding Japan and less in Bonds Singapore, the
benchmark strategies invest more heavily into Bonds Singapore and significantly less in
Equity Asia excluding Japan. This difference can be explained by on the one hand the
expected return of Equity Asia excluding Japan and on the other hand, the relatively
low required risk capital. When looking at Figure 3, one notes that especially in the
second half of the time horizon, the expected returns of Equity Asia are significantly higher
than other asset classes. In addition, Table 1 shows that Equity Asia is assigned to the
sub-market ’listed, developed’, which implies that relatively little risk capital needs to be
withheld in order to comply with the RBC requirements. Thus, from a RBC perspective,
it seems that Equity Asia excluding Japan is a worthwhile asset class to invest in. On
the other hand, Figure 3 shows that Bonds Singapore has the lowest expected long-run
return. However, Table 1 also shows that Bonds Singapore requires the least amount of
risk capital as well. Thus, although Bonds Singapore requires the least amount of risk
capital, the RL agent does not utilize this asset class because of the low long-run returns.

To conclude, all allocation strategies substantially differ from one another. Moreover,
the DMV-SR strategy is the least applicable strategy since it fluctuates too substantially
over time. On the other hand, the DMV-MV utilizes too little assets to be practicably
feasible. Then, the RL-0.2 strategy shows seasonal fluctuations which questions its practical
applicability. Lastly, the SAA and RL-0.001 strategies are the most applicable since these
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do not fluctuate too heavily over time and utilize a sufficient number of assets. Therefore,
these strategies will be easier to understand for senior management and other stakeholders.

5.1.2 Performance evaluation

The average wealth development of all strategies are displayed in Figure 9. First note that
a kink is visible around 25 months for all strategies. This kink corresponds to the turning
point displayed in Figure 3, where the Equity asset classes start having a higher expected
return compared to the Fixed-Income asset classes. Thus, all portfolio strategies suffer
from the poor performance of the Equity asset classes in the first 25 months. In addition,
note that the DMV-SR model slightly outperforms the SAA and RL strategies in those first
months. However, as the Equity asset classes start to perform better, the RL strategies
start having a higher expected real wealth compared to the DMV-SR strategy. Especially
the RL-0.001 model with more focus on acquiring returns has superior performance over all
other strategies. Lastly, note that the real wealth development of the DMV-MV strategy
is worse compared to all other strategies at all t. Especially in the first 20 months the
DMV-MV strategy does not acquire enough nominal return to outweigh the inflation and
transaction costs, resulting in almost no increase in expected real wealth.

Figure 9: Average real wealth development of all strategies.

The volatility measures are displayed in Figures 10 and 11. When looking at Figure
10(a), which displays the variance of all strategies, one quickly notices that the variance of
the RL strategies are substantially higher compared to the benchmark strategies. Moreover,
especially the DMV-SR strategy has a noteworthy low variance in the first half of the time
horizon. On the other hand, the DMV-MV strategy does not display the expected low
variance one would expect in the first 30 months. However, note that in Subfigure 10(b) the
DMV-MV strategy does have the lowest downward variance at the end of the time horizon.
Moreover, notice that the RL learning strategies do have a slightly higher downward
variance and that especially the upward variance is significantly larger. Thus, the RL
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models are able to find investment opportunities which have relatively low downward
variance and high upward variance.

(a) Variance.

(b) Downward variance. (c) Upward variance.

Figure 10: Variance plots of all strategies.

Now, when looking at Figure 11, we notice that the RL strategies have a similar VaR
and CVaR development compared to the SAA. Thus, although the RL strategies have
larger variance, the higher expected return and similar downward variance ensure that
the VaR and CVaR are not worse compared to the SAA benchmark. Only the CVaR of
the RL-0.001 strategy is slightly worse compared to the SAA and RL-0.2 strategies. In
addition, the VaR and CVaR of the DMV-SR benchmark clearly outperforms all other
strategies in the first 30 months, which is explained by the high expected real return
and low downward volatility in this period. After 30 months, the DMV-SR VaR and
CVaR are comparable to the SAA and RL strategies. Lastly, the DMV-MV strategy has a
significantly worse VaR and CVaR compared to all other strategies, which is explained by
the significantly lower expected net returns of the DMV-MV strategy.

Figure 12 displays the performance of all the strategies regarding the RBC requirements
and preferences. When looking at Subfigure 12(a), we first notice that the preference
violation percentage of the benchmark strategies increase over time, while the RL strategies
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(a) 5% VaR. (b) 5% CVaR.

Figure 11: 5% Value-at-Risk and Conditional Value-at-Risk of all strategies.

do not exhibit this property. Moreover, the RL strategies do violate the RBC preference
boundaries more often in the first 5 months, after which the violation percentage stabilizes.
After 20 months, the violation rate of the RL strategies is significantly lower than the
other strategies. Another noteworthy aspect of Subfigure 12(a) is that the violation rate
of the RL-0.001 is comparable to the RL-0.2 model in the first 30 months and thereafter,
significantly lower. This is the result of the lower value of the preference parameter α1,
which corresponds to letting the RL agent putting more emphasis on staying within the
preference boundaries.

When looking at Subfigure 12(b), one should first realize that one jump corresponds to
only 1 scenario. When considering the performance of the strategies, we conclude that
the performance is similar across all methods. However, one could argue that the RL-0.02
model slightly outperforms the other models, although more scenarios should be considered
to strengthen this statement.

When looking at Subfigure 12(c), one notes that the RL-strategies clearly outperform
all benchmark strategies, especially after 30 months. However, the DMV-SR strategy has
similar performance up until approximately 30 months, which can be explained by the
following. On the one hand, the DMV-SR strategy has relatively high returns and low
variance and therefore, the FRt are high in this period. On the other hand, as can be
seen in Subfigure 8(b), the DMV-SR strategy invests heavily in non-Equity asset classes
in this period and consequently, the TRRt are relatively low. Therefore, the CARt is
relatively high and consequently, the probability of having a CARt which is below 1 is
small. Another noteworthy aspect from Subfigure 12(c) is that all strategies have a very
low probability of having a regulatory intervention in the first 10 months. In addition,
notice that the RL-0.2 strategy outperforms the RL-0.001 strategy, which was expected
since we put more emphasis on minimizing the penalty for violating the RBC requirement.
Lastly, note that the DMV-SR model only outperforms the SAA benchmark in the first 40
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months. This can be explained by the fact that at the end of this period, the DMV-SR
increases its allocation to equities, resulting in more variance and an increased probability
of having a CAR which is lower than 1.

(a) CAR outside preference boundaries.

(b) CAR < 0. (c) CAR < 1.

Figure 12: RBC requirements plots of all strategies.

To conclude, the RL strategies outperform all benchmark strategies in the long-run,
with respect to both the wealth and RBC performance metrics. However, especially the
DMV-SR strategy has superior performance in first 30 months when considering the wealth
performance metrics. In this period, the DMV-SR strategy is able to cope with the poor
performance of the Equity asset classes and to acquire high returns and low volatility
by investing in non-Equity asset classes. Although the DMV strategies do not optimize
over RBC requirements or preferences, the RBC performance of the DMV-SR model over
this period is excellent as well due to investing in non-Equity asset classes. Lastly, the
variance of the RL strategies is significantly higher compared to the benchmark strategies.
However, this higher variance is mainly caused by the higher upward variance, since the
downward variance of the RL strategies is similar to the benchmark strategies.
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5.2 Results excluding transaction costs

This section is dedicated to the results of the considered strategies while excluding
transaction costs. As in the previous subsection, we will first look at the allocation
strategies and afterwards, a performance comparison will be provided.

5.2.1 Allocation strategies

All asset allocation strategies are displayed in Figure 13. First note that to show the
robustness of the RL model, we do not train the model separately for the case without
transaction costs. In addition, as can be seen in Table 6 in Appendix E, the best performing
DMV-SR and DMV-MV strategies are the ones that base their allocation at time t only on
the scenarios at time t. Thus, the SAA and DMV-MV benchmark strategies are equivalent
to the strategies displayed in Figure 8, where transaction costs were included. When
comparing the average RL strategies in Figure 8 and 13, one might seem to notice that
the strategies do not significantly differ from one another, however, the strategies do differ
slightly on a scenario level. Again, when comparing Figure 3 and Subfigure 13(b), the
DMV-SR strategy mimics the expected market development. In addition, as can be seen
in Subfigure 13(b), the DMV-SR model is much more volatile compared to the DMV-SR
strategy presented in Subfigure 8(b), although both strategies exhibit similar patterns.
This volatile DAA is the best performing strategy since reallocation is not penalized by
having transaction costs.

Although the DMV-SR strategy is able to mimic the expected market development,
the applicability of this strategy is even less than the strategy presented in Subfigure 8(b).
That is, the DMV-SR allocation strategy is too volatile to convince senior management
and other stakeholders.

5.2.2 Performance evaluation

The average real wealth development is displayed in Figure 14. First note that as in
Figure 9, a kink is visible around 25 months. Thus, all portfolio’s still suffer from the
poor performance of the Equity asset classes even when transaction costs are excluded. In
addition, note that the DMV-SR portfolio dominates all portfolio strategies in these first
months. Note that the outperformance with respect to the RL strategies is greater than
in Figure 9, where transaction costs were included. This can be explained by the fact that
the DMV-SR strategy benefits the most from the exclusion of transaction costs, since it is
the most volatile strategy. However, similar as when transaction costs were considered, the
RL strategies start dominating all other strategies after 30 months when the Equity asset
classes perform better. Again, the DMV-MV portfolio strategy struggles with acquiring
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(a) SAA

(b) DMV-SR (c) DMV-MV

(d) RL-0.001 (e) RL-0.2

Figure 13: Asset allocation strategies excluding transaction costs in the Dec 2021 OFS
excluding transaction costs.

enough nominal returns to outweigh the inflation in the first 20 months. Note that when
comparing Figures 9 and 14, excluding transaction costs results in a significant increase in
the expected final real wealth. This increase ranges from 0.5 Billion SGD for the DMV-MV
strategy to 1 Billion SGD for the DMV-SR and RL strategies.
The volatility measures of all portfolio strategies are displayed in Figures 15 and 16.
Again, one notices that the variance of the RL strategies is much higher compared to the
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Figure 14: Average real wealth development of all strategies in the Dec 2021 OFS excluding
transaction costs.

other strategies. Similar as with transaction costs, the DMV-SR model has relatively low
variance in the first 30 months. In addition, the DMV-MV model does not display the
expected low variance which one would expect. However, when looking at the Subfigures
15(b) and 15(c), the DMV-MV strategy does have the lowest downward variance in the
long-run. Moreover, the downward variance of the DMV-SR and RL strategies are much
more similar. Especially the RL-0.2 strategy has a similar downward variance, with the
exception of the months 10 − 30 where the DMV-SR dominates. In addition, the upward
variance of the RL strategies displayed in Subfigure 15(c) is significantly higher than all
benchmark strategies. Thus, similar as in the setting with transaction costs, the higher
overall variance of the RL strategies is mainly caused by the higher upward variance and
not by the downward variance.

Now, when looking at Figure 16, again the 5% VaR and CVaR of the RL strategies are
comparable to the benchmark strategies. However, the DMV-SR benchmark still has a
superior VaR and CVaR in the months 10 − 30, caused by the high expected returns and
low downward variance. However, when comparing Figures 11 and 16, one notices that
the RL-0.2 strategy significantly outperforms the other strategies in the long-run when no
transaction are considered.

Figure 17 displays the performance of all strategies regarding the RBC requirements
and preferences. When looking at Subfigure 17(a), one notices that similar as in Subfigure
12(a), the RBC preference violation rate of the benchmark strategies increase over time,
while the RL strategies do not exhibit this pattern. In addition, the RL strategies do
violate the RBC preference boundaries more often in the first 5 months, after which the
violation rate stabilizes. Again, after approximately 20 months the violation rate of the
RL strategies is significantly lower compared to the benchmark strategies. Similar as the
results including transaction costs, Subfigure 17(a) shows that the RL-0.001 strategy has
the lowest violation rate, especially after 30 months. When looking at Subfigure 17(b),
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(a) Variance.

(b) Downward variance. (c) Upward variance.

Figure 15: Variance plots of all strategies in the Dec 2021 OFS excluding transaction costs.

(a) 5% VaR. (b) 5% CVaR.

Figure 16: 5% Value-at-Risk and Conditional Value-at-Risk of all strategies in the Dec
2021 OFS excluding transaction costs.

we conclude that the performance of all strategies is again similar, mainly caused by the
scarcity of the scenarios in which the CARt is below 0. Comparing the Subfigures 12(b)
and 17(b), one denotes that having no transaction costs results in a lower probability of
having a CARt < 0. This is an expected result since having less costs results in higher
expected returns. Consequently, the insurer has higher FRt and thus a higher CARt.
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When looking at Subfigure 17(c), we denote a similar pattern as in Subfigure 12(c). First,
all strategies have a very small probability (< 0.001) to violate the RBC requirements in
the first 10 months. Second, all RL strategies clearly outperform all other strategies after
approximately 30 months. While the DMV-SR and SAA benchmarks perform poorly after
approximately 10 months, the DMV-SR strategy still has similar performance compared to
the RL strategies until month 30. This result is once again explained by on the one hand,
the high expected returns and low downward variance of the DMV-SR strategy in this
period and on the other hand by the relatively high allocation to non-Equity asset classes.
Again, notice that the RL-0.2 strategy, with more preference for a lower probability of
violating the RBC requirements, outperforms the RL-0.001 strategy. Lastly, notice that
the RBC requirement violation rate of the DMV-SR benchmark quickly increases after 30
months, resulting in worse performance compared to the SAA benchmark after 40 months.
This result is explained by the increased allocation to equities as displayed in Figure 13(b)
and consequently, having more downward variance in these periods.

(a) CAR outside preference boundaries.

(b) CAR < 0. (c) CAR < 1.

Figure 17: RBC requirements plots of all strategies in the Dec 2021 OFS excluding
transaction costs.

To conclude, the performance of the RL strategies is comparable to the previous
section in which transaction costs were included. Again, all strategies outperform the
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benchmark strategies in the long-run, regarding both the wealth and RBC performance
metrics. However, an important difference compared to the case including transaction
costs is that the DMV-SR strategy has substantially more expected real wealth. This is
explained by the fact that the DMV-SR strategy is the most volatile strategy and thus,
benefits the most from having no transaction costs.

5.3 Robustness test with transaction costs

This section is dedicated to the robustness test of the RL model. Throughout this section,
we will make use of the May 2022 OFS. As stated in Section 3.2, the May 2022 OFS is
only used for testing, not for training and validation. More specific, we use the RL model
from the previous section which is trained and calibrated on the December 2021 data.
On the contrary, the DMV models will be both trained and tested on the full May 2022
OFS, since these strategies use the actual scenarios at a specific time point to determine
the asset allocation. Note that we will only look at the performance evaluation metrics
in this section. However, the asset allocation strategies are displayed in Appendix G for
completeness.

5.3.1 Performance evaluation with transaction costs

The wealth development of all strategies when considering the May 2022 OFS is displayed
in Figure 18. As can be seen, a similar kink pattern as in Figure 9 is visible. An important
difference however is that due to the high inflation in this period, the DMV-MV strategy
has negative net returns in the first 15 months. Another important difference compared to
Figure 9, is that the DMV-SR strategy outperforms the RL strategies over a longer period.
Moreover, the RL-0.2 is almost completely dominated by the DMV-SR strategy over the
whole time horizon. On the one hand, this result can be explained by the fact that the
RL strategies have not been trained on the May 2022 OFS and thus, the performance of
the RL agent is not optimal. On the other hand, the RL agent only gets a reward for
acquiring returns when the CAR is between the specified preference bounds. Therefore, it
could be the case that the RL agent had to invest in less risky assets to stay within these
preference bounds, resulting in less expected net returns. To conclude, we note that the
RL strategies have more difficulty with determining an asset-allocation which is suitable
for acquiring high net returns in the May 2022 OFS. However, in the long-run it still seems
that both RL strategies outperform all benchmark strategies.

In addition, the volatility measures are displayed in Figure 19, where the overall results
are comparable to the ones displayed in Figure 10. The only noteworthy difference is
that the variance of the DMV-SR strategy is larger in the May 2022 OFS. More specific,
the downward variance displayed in Subfigure 19(b) is significantly higher compared to
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Subfigure 10(b). The upward variance of all strategies displayed in Subfigure 19(c) is
comparable to the December 2021 case.

Figure 18: Average real wealth development of all strategies in the May 2022 OFS including
transaction costs.

(a) Variance.

(b) Downward variance. (c) Upward variance.

Figure 19: Variance plots of all strategies in the May 2022 OFS including transaction
costs.

When looking at Figure 20, one notices that as in the previous sections, the VaR and
CVaR of the DMV-SR strategy is superior to all strategies in the first 25 months. However,
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a noteworthy difference compared to the December 2021 case, as displayed in Figure 11, is
that the RL strategies converge to a similar VaR and CVaR as the SAA benchmark. In
addition, the CVaR of the DMV-SR strategy seems to worsen over time in the long-run.

(a) 5% VaR. (b) 5% CVaR.

Figure 20: 5% VaR and CVaR of all strategies in the May 2022 OFS including transaction
costs.

In addition, the RBC evaluation plots are displayed in Figure 21. The most noteworthy
difference compared to the December 2021 OFS is that Subfigure 21(b) is significantly more
informative, since we are considering substantially more scenarios. Consequently, there are
more cases in which the CAR drops below 0. Similar as in Subfigure 12(b), the probability
of going bankrupt in the first 14 months is small. However, a noteworthy difference
compared to Subfigure 12(b) is that in Subfigure 21(b) the DMV-MV is performing very
poorly, especially at the end of the considered time horizon. Moreover, the probability of
going bankrupt of all other strategies is comparable, although the DMV-SR has a slightly
higher probability between months 30 − 45 and the RL strategies have a slightly higher
probability at the end of the time horizon. When looking at Subfigure 21(c), we draw
the same conclusion as in the December 2021 case. That is, the performance of the RL
strategies is superior compared to all other strategies. Again, the RL-0.2 strategy slightly
outperforms the RL-0.001 strategy in the long-run.

To conclude, most results of the May 2022 OFS are comparable to the December 2021
case. The most noteworthy difference is that the net returns of the DMV-SR strategy are
significantly higher compared to the other strategies in the May 2022 OFS. Consequently,
the DMV-SR strategy outperforms the RL strategies during a substantially longer period.
However, the downward variance of the DMV-SR is significantly higher as well, resulting
in less performance compared to the RL strategies in the long-run. With respect to the
RBC requirements and preferences, the RL strategies still outperform the benchmarks
on all evaluation metrics. Thus, in the case where we include transaction costs, the RL
model trained on the December 2021 economy is considered to be robust when evaluating
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the performance on the May 2022 OFS.

(a) CAR outside preference boundaries.

(b) CAR < 0. (c) CAR < 1.

Figure 21: RBC requirements and preferences plots of all strategies in the May 2022 OFS
including transaction costs.

5.3.2 Performance evaluation excluding transaction costs

The wealth development of all strategies are displayed in Figure 22. Similar as in the
previous section, the DMV-SR strategy outperforms the RL-0.2 strategy up until the end
of the time horizon. Moreover, the DMV-SR strategy outperforms the RL-0.001 strategy
until approximately t = 40. Again, the RL-0.001 strategy clearly dominates all other
strategies in the long-run. Again, note that when comparing Figures 18 and 22, excluding
transaction costs results in a significant increase in the expected final real wealth. This
increase is similar as in Section 5.2.2 and ranges from approximately 0.5 Billion SGD for
the DMV-MV strategy to 1 Billion SGD for the DMV-SR and RL strategies.

The volatility measures are displayed in Figure 23, where the overall results are similar
to the previous volatility results displayed in Figures 10, 15 and 19. Again, the most
noteworthy difference compared to the December 2021 OFS case is that the DMV-SR
strategy has substantially more variance when considering the May 2022 OFS, caused by
the increased downward variance.
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Figure 22: Average real wealth development of all strategies in the May 2022 OFS excluding
transaction costs.

(a) Variance.

(b) Downward variance. (c) Upward variance.

Figure 23: Variance plots of all strategies in the May 2022 OFS excluding transaction
costs.

The 5% VaR and CVaR are displayed in Figure 24. When comparing these risk
measure results to the ones displayed in Figure 16, we again notice the dominance of
the DMV-SR strategy in the first 25 months. However, after approximately 35 months,
both RL strategies start to dominate the benchmark strategies. Moreover, notice that
when comparing the VaR and CVaR in the long-run, the SAA seems to outperform the
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DMV-SR strategy.

(a) 5% VaR. (b) 5% CVaR.

Figure 24: 5% VaR and CVaR of all strategies in the May 2022 OFS excluding transaction
costs.

Figure 25 displays the performance of all strategies regarding the RBC requirements
and preferences. When looking at Subfigure 25(a), one notices that similar as in Subfigures
12(a), 17(a) and 21(a), the RBC preference violation percentage of the benchmark strategies
increase over time, while the RL strategies do not exhibit this property. Again, the RL
strategies have a lower violation rate in the long-run, while having a higher violation
rate in the first months. Moreover, the RL-0.001 strategy has the lowest preference
violation probability in the long-run. When looking at Subfigure 25(b), one notices that
the performance of the SAA, DMV-SR and RL strategies is similar. Only the DMV-MV
strategy clearly deviates from the other strategies and shows significantly less performance
in the long-run. As in Subfigure 21(b), the DMV-SR strategy has a slightly higher
probability of going bankrupt in the months 35 − 50. Subfigure 25(c) displays the expected
probability of having a CARt < 1. Again, all strategies have a very small probability
of not complying with the RBC requirements in the first 10 months. In addition, the
DMV-SR strategy still has similar performance compared to the RL strategies until t = 30,
while the SAA and DMV-SR benchmarks already perform poorly after approximately
10 months. Especially the DMV-MV benchmark has an increased violation probability
compared to the other strategies. As before, the RL-0.2 strategy clearly outperforms all
other strategies, although the difference compared to the RL-0.001 strategy is smaller than
before. Lastly, similar as in the December 2021 OFS, the probability of not complying
with the RBC requirements is less when we exclude transaction costs.

45



Master Thesis Reinforcement Learning to optimize the DAA of an insurer

(a) CAR outside preference boundaries.

(b) CAR < 0. (c) CAR < 1.

Figure 25: RBC requirements plots of all strategies in the May 2022 OFS excluding
transaction costs.

To conclude, the performance of the RL strategies in the May 2022 OFS while excluding
transaction costs are comparable to the performance in the December 2021 OFS. Again,
the most noteworthy difference are the high net returns of the DMV-SR strategy in the
short-run. However, these higher net returns are accompanied by severely more downward
variance. With respect to the RBC requirements and preferences, the RL strategies still
outperform the benchmarks on all evaluation metrics. Lastly, since the RL model is not
trained on the May 2022 economy, the performance of the RL strategies in this section
should be considered as a lower bound of the potential performance.
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6 Discussion

6.1 Conclusion

In this paper, we investigated the possibilities of using a Reinforcement Learning model
to optimize the Dynamic Asset Allocation of an insurer, while extending the traditional
risk-return trade-off. More specifically, two RL models with different preference parameters
for complying with the Risk Based Capital requirements and preferences are proposed. In
addition, we considered two data sets both having 15000 simulated scenarios, one with the
economic outlook of December 2021 and one with the economic outlook of May 2022. In
this setting, we intended to answer the following research question:

How can insurers optimize their Dynamic Asset Allocation, incorporating Risk
Based Capital requirements in addition to the risk-return trade-off?

We answered this research question by introducing an RL model which is able to optimize
over both expected net returns and RBC requirements and preferences. Moreover, we
compared the performance of the RL strategies to three benchmark strategies, namely
a Strategic Asset Allocation and two Dynamic Mean-Variance strategies. This research
found some evidence that the RL agent is able to come up with a DAA which outperforms
all benchmark strategies in the long-run. However, in the first 30 months, the DMV-SR
strategy showed superior performance with respect to the traditional risk-return trade-off
and comparable performance regarding the RBC requirements. We should, however, point
out that the similar RBC performance was accidentally caused by the high allocation to
and performance of the non-Equity asset classes in this period. Moreover, by allocating
more wealth to the non-equity asset classes, the TRR is lower and consequently, the CAR
is higher. Lastly, note that after 30 months, the performance of the DMV-SR strategy
with respect to both the RBC requirements and preferences worsened very quickly in all
considered settings. In this period, the performance of the RL strategies became superior
to all benchmark strategies.

Additionally, this research looked at the applicability of the proposed DAA strategies.
We concluded that the DMV strategies are too volatile or too non-diversified and thus, do
not show potential to be used in practice. On the other hand, the SAA and RL strategies
do show practical applicability.

In addition, the results when including or excluding transaction costs were not signif-
icantly different. The only difference was that the DMV-SR strategy had substantially
higher expected wealth when excluding transaction costs, due to the volatile nature of the
strategy and consequently, having the most benefit from having no transaction costs. In
addition, note that the RL model only has been trained once, using the December 2021
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OFS and including 0.15% transaction costs. We decided to only train the model once
to show the robustness of the RL model in different settings. However, one could have
trained a separate model for every setting to better match the market dynamics in these
different environments. Thus, the performance of the RL models in especially the May
2022 OFS are a lower bound to the potential performance.

Another important finding from this research is that the relationship between the asset
allocation and the CAR is rather complex and time sensitive. On the one hand, adjusting
the asset allocation at time t has a direct impact on the TRR at time t, where the effect
depends on the required risk capital of the new strategy. For example, substantially
substituting the allocation to Equity asset classes for FI asset classes results in a direct
decrease of the TRR. On the other hand however, adjusting the asset allocation at time t

has both short- and long-term effects on the FR. More specifically, allocating more wealth
to more volatile asset classes results in heavier fluctuations in the FR in the short-term.
Therefore, also the CAR experiences heavy fluctuations in the short-term. In the long-run
however, investing in more volatile asset classes usually results in higher expected returns
and therefore, a higher expected FR and CAR.

To conclude, our proposed RL model shows the potential to solve the DAA optimization
problem of an insurer due to the combination of high performance on the evaluation metrics
and the practical applicability of the proposed strategies. In addition, RL has shown to
be capable of optimizing over a complex investment environment, where the traditional
risk-return trade-off is extended by non-linear objectives. However, more research should
be dedicated to these type of problems to confirm the findings in this research and to make
RL more attractable to financial institutions. Therefore, the following and final section of
this research will present possibilities for future research.

6.2 Future research

One of the greatest limitations of this research is that we simplified the calculations for the
Interest Rate market shock. More specifically, we assumed that underneath every FI asset
class, there is a constant mix of different durations which cannot be adjusted by the RL
agent. Consequently, the Interest Rate market shocks displayed in Table 1 are constant
over time and across asset classes. Therefore, a possibility for future research could be to
divide every FI asset class into multiple sub asset classes with different durations. This
way, one would be able to better model the Interest Rate risk market shock. In addition,
this is a relatively easy extension which would contribute to the practical applicability of
this model. Unfortunately, data and time restrictions did not allow us to incorporate it in
this research.

Another interesting opportunity for future research would be to extend the current
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model with currency hedging dynamics. As of now, we assumed that the FI asset classes
are fully hedged and that the other asset classes are exposed to currency risk. However,
currency hedging is accompanied with extra costs which could potentially limit net returns.
Therefore, it would be interesting to extend the current model such that the RL agent is
able to decide whether the currency risk for an individual asset class will be hedged or not.

Another opportunity for future research would be to incorporate asset weight constraints
to the optimization problem. In this research, we only assume that short-selling is not
allowed, but no additional constraints are imposed. Although the average RL strategies are
not as volatile over time as for instance the DMV-SR strategy, it could still be beneficial
to investigate what the consequence of introducing asset weight constraints will be on
the performance of the RL strategies. Introducing asset weight constraints could also be
beneficial for the practical applicability of RL, since one would be assured that the RL
agent will not provide irrational allocation strategies.

Another limitation of this research is that we only consider RBC requirements and
preferences in addition to the traditional risk-return trade-off. However, as pointed out
by the client of Ortec-Finance, liquidity is another crucial aspect which an insurer has to
consider. More specifically, an insurer needs to allocate a sufficient amount of its wealth
to asset classes which can be easily transformed into cash. Although we did not consider
liquidity in this research, it would be interesting to see how the RL strategies would differ
when one would incorporate it in the model. A simple extension would be to add a penalty
to the reward function of the RL agent for asset classes which are very illiquid. This way,
one could force the RL agent to give more preference to liquid asset classes.

Another possibility for future research would be to consider a different time horizon
of for instance 10 or 30 years. Since the RL strategies start dominating the benchmark
strategies at the end of the considered time horizon, it would be interesting to see whether
this would continue to hold. Moreover, one could also consider quarterly or yearly time
steps instead of monthly time steps.

Another limitation of this study is that we used a standard liability structure to
model the liabilities. Therefore, an interesting opportunity for future research would be
to consider liability scenarios or a setting in which the RL agent is able to adjust the
liabilities. For instance, one could consider an RL model in which the agent is able to
increase the liabilities when the CAR is above 2.5.

With regard to general RL, an interesting opportunity for future research would be
to investigate the relationship between the number of iterations over the data set and
the complexity of the reward/objective function. During this research, we have noticed
that as we extended the implementation of the RBC requirements, the RL agent required
more iterations to find an optimal policy. After the final implementation, we needed 30
iterations over the whole data set before convergence in rewards took place. Thus, it would
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be interesting to investigate whether the number of iterations over the data set correlates
with the complexity of the objective function.

Finally, it would be interesting to explore the implementation of RBC (or other solvency
frameworks) into other actor-critic methods such as DDPG or TD3. These methods have
the advantage that they are more sample efficient which might increase the performance
of the RL agent. However, as mentioned in Section 2.1.3, Aboussalah et al. (2022)
have shown that PPO outperforms other actor-critic methods in portfolio management
applications. Nevertheless, it would be interesting to see whether this conclusion still holds
when considering a more complex investment environment, such as incorporating RBC
requirements and preferences.
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Appendix A - Acronyms

Table 4 contains the glossary of the acronyms used throughout this paper.

Abbreviation Description
CAR Capital Adequacy Ratio
CF Cash Flows
CVaR Conditional Value-at-Risk
DAA Dynamic Asset Allocation
DMV Dynamic Mean-Variance
DMV-MV DMV Sharpe Ratio
DMV-SR DMV Minimum Volatility
EMD Emerging Market Debt
ESG Economic Scenario Generator
FI Fixed Income
FR Financial Resources
GAE General Advantage Estimation
MAS Monetary Authority of Singapore
ME Macro-Economic variables
NN Neural Network
OFS Ortec-Finance Scenario set
OR Operational Risk
PPO Proximal Policy Optimization
RBC Risk Based Capital
RL Reinforcement Learning
RL-0.001 RL model with preference parameter set to 0.001
RL-0.2 RL model with preference parameter set to 0.2
SAA Strategic Asset Allocation
SGD Singapore Dollar
SGP Singapore
TRR Total Risk Requirements
VaR Value-at-Risk

Table 4: Alphabetically ordered acronyms used throughout this paper with their descrip-
tions.
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Appendix B - Additional descriptive statistics

Figures 26, 27 and 28 contain additional descriptive statistics of the May 2022 OFS.

Figure 26: Average nominal scenario returns of all asset classes in the May 2022 OFS.

Figure 27: Average change of macro-
economic variables over scenarios in the
May 2022 OFS.

Figure 28: Average level of Unemploy-
ment US over all scenarios in the May
2022 OFS.

A2



Master Thesis Reinforcement Learning to optimize the DAA of an insurer

Appendix C - Fan charts of individual asset classes

This section contains the fan charts of all individual asset classes. The fan charts for the
December 2021 and May 2022 OFS are displayed in Figures 29 and 30 respectively.
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(i) (j)

(k) (l)

Figure 29: December 2021 OFS fan charts.
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(i) (j)

(k) (l)

Figure 30: May 2022 OFS fan charts.
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Appendix D - Pseudo-code

The pseudo-code of our PPO implementation is displayed in Algorithm 1. This pseudo-code
is our extension to the pseudo-code presented by Achiam (2018).

Algorithm 1: Proximal Policy Optimization algorithm pseudo-code.
Input: initial policy parameters θ0, initial value function parameters ϕ0, the total
number of iterations over the training data set K, the batch size B and the time
horizon T. In addition, γ, λ and ϵ are hyperparameters.

Let e denote the number of policy parameter updates (epochs), set e = 0
for k=1,2...,K do

Shuffle scenarios in the train set
for all scenarios batches of size B in the train set do

for i=1,2,...,B do
for t=1,2,...,T do

Run policy πθe to obtain states si,t, actions ai,t and value estimates
V(si,t) and calculate the reward R̂i,t

Add the state, action, log probability of the action, reward and value
estimate to the memory.

end
end
Estimate the advantage Âi,t using the BT data entries in the memory:

Âi,t = δi,t + γÂi,t+1, ∀t ∈ {1, 2, ..., T}, ∀i ∈ {1, 2, ..., B}, (46)

Where:
δi,t = R̂i,t + γVϕe(si,t+1) − Vϕe(si,t+1) (47)

Use mini-batch optimization by sampling from the agent’s memory and
using the Adam solver to update the policy parameters by maximizing the
PPO-clip objective:

θe+1 = arg max
θ

1
BT

B∑
i=1

T∑
t=1

min(ri,t(θ)Âi,t, clip(ri,t(θ), 1−ϵ, 1+ϵ)Âi,t)] (48)

Where:
ri,t(θ) = πθ(ai,t|si,t)

πθold(ai,t|si,t)
(49)

Fit the value function by regression on the mean-squared error:

ϕe+1 = arg max
ϕ

1
BT

B∑
i=1

T∑
t=1

(Vϕ(si,t) − R̂i,t)2 (50)

Clear memory of the agent and set e = e + 1.
end

end
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Appendix E - Benchmark models results

Tables 5 and 6 contain the benchmark model results of the model specification with and
without transaction costs respectively.

Wealth CART

Model Hor. Mean Var Min Max >0 >1 1.75-2.50
SAA na 38413 4.4E+07 953814 351010 0.9987 0.9840 0.3982
SR 1 38964 5.4E+07 1142440 306005 0.9982 0.9724 0.4520

2 39089 5.4E+07 1035313 301611 0.9991 0.9742 0.4524
3 39122 5.4E+07 1015795 295597 0.9991 0.9747 0.4516
4 39122 5.4E+07 1056098 288298 0.9996 0.9747 0.4467
5 39103 5.4E+07 1082680 283068 0.9996 0.9742 0.4462
6 39075 5.4E+07 1084122 277484 0.9991 0.9729 0.4471
12 38782 5.5E+07 1073292 277097 0.9996 0.9693 0.4440
60 37790 5.8E+07 1300747 368181 0.9969 0.9516 0.4569

Min Vol 1 36750 4.3E+07 1243603 280216 0.9973 0.9693 0.4520
2 36796 4.3E+07 1265317 282225 0.9973 0.9693 0.4489
3 36799 4.3E+07 1270726 282830 0.9973 0.9689 0.4480
4 36796 4.3E+07 1280261 283493 0.9973 0.9689 0.4476
5 36792 4.4E+07 1284068 284442 0.9973 0.9689 0.4471
6 36788 4.4E+07 1284073 285613 0.9969 0.9689 0.4489
12 36773 4.5E+07 1320408 289669 0.9969 0.9680 0.4484
60 36761 4.6E+07 1382348 297147 0.9964 0.9671 0.4484

Table 5: Benchmark model results at time T including 0.15% transaction costs.
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Wealth CART

Model Hor. Mean Var Min Max >0 >1 1.75-2.50
SAA na 38500 4.4E+07 959313 352289 0.9991 0.9844 0.3969
SR 1 39767 5.6E+07 1190218 318890 0.9991 0.9813 0.3453

2 39637 5.5E+07 1064282 310288 0.9991 0.9827 0.3502
3 39600 5.5E+07 1042269 302845 0.9991 0.9818 0.3507
6 39445 5.5E+07 1105514 282929 0.9996 0.9800 0.3556
12 39094 5.5E+07 1091346 281562 0.9996 0.9742 0.3569
60 37949 5.9E+07 1313431 370893 0.9969 0.9600 0.3871

Min Vol 1 36972 4.3E+07 1259576 283563 0.9973 0.9693 0.4467
2 36966 4.3E+07 1275341 285238 0.9973 0.9693 0.4440
3 36955 4.4E+07 1282339 285132 0.9973 0.9693 0.4458
6 36930 4.4E+07 1293336 287960 0.9973 0.9689 0.4418
12 36902 4.5E+07 1330201 291619 0.9969 0.9684 0.4462
60 36885 4.6E+07 1393949 298839 0.9969 0.9680 0.4431

Table 6: Benchmark model results at time T excluding transaction costs.
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Appendix F - Hyperparameter tuning

Table 7 displays the hyperparameter candidates and the optimal value.

Hyperparameter Description Candidates Optimal
K Number of loops over all scenarios. (10, 15, 20, 25, 30) 30
N Number of scenarios used per update. (25, 50, 75, 100) 25
ϵ Clipping parameter in PPO objective. (0.05 − 0.2) 0.185
γ Discount factor in value function. (0.99, 1) 0.99
λ Discount factor in GAE function. (0.9) 0.9
νactor Learning rate of the actor. (0.01, 0.005, 0.001, 0.0005, 0.0001) 0.0001
νcritic Learning rate of the critic. (0.01, 0.005, 0.001, 0.0005, 0.0001) 0.005
log(σ) Initial log standard deviation of actions. (−2, −0.7) −2
Activation Activation function for PPO update. (Relu) Relu
Actor epoch Number of epochs for actor update. (1, 2, 3, 4, 5) 3
Actor size Number of hidden layers for the actor NN. (2, 3) 2
Actor width Number of neurons per layer in the actor NN. (64, 128, 256, 512) 128
Critic epoch Number of epochs for actor update. (1, 2, 3, 4, 5) 3
Critic size Number of hidden layers for the critic NN. (2, 3) 2
Critic width Number of neurons per layer in the critic NN. (128, 256, 512) 128
Mini-batch Mini-batch size for Adam optimization. (32, 64, 128, 256) 256

Table 7: Hyperparameter candidates and optimal values of the PPO algorithm.
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Appendix G - Additional asset allocation strategies

Figure 31 and 32 display the asset allocation strategies of the RL model in the May 2022
OFS with and without transaction costs respectively. Note that the RL strategies display
the average allocation across all scenarios. Moreover, notice that the RL strategies in
the case with and without transaction costs differ from one another on a scenario level,
although it might seem from the figures that they do not differ significantly.

(a) SAA

(b) DMV-SR (c) DMV-MV

(d) RL-0.001 (e) RL-0.2

Figure 31: Asset allocation strategies in the May 2022 OFS including transaction costs.

A11



Master Thesis Reinforcement Learning to optimize the DAA of an insurer

(a) SAA

(b) DMV-SR (c) DMV-MV

(d) RL-0.001 (e) RL-0.2

Figure 32: Asset allocation strategies in the May 2022 OFS excluding transaction costs.
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