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DARIO GANDINI

Abstract

Nature is under siege. While human population is constantly grow-
ing, many insect populations have been dropping globally in the last
century and entomologists and environmentalists have recognized
this trend. The connection between climate change and biodiver-
sity is becoming more and more obvious. Deep learning is a good
solution to monitor the insect biodiversity through the analysis of
their sound. Unfortunately, when it comes to environmental audio
data, the amount of data available has always been an issue since
the collection and the labelling can be very expensive and this is a
problem when using deep learning models as they need huge amount
of training data. Therefore, the research question of this thesis is:
“how to create a high-quality insect species recognition model despite
small data using deep learning?”. In order to overcome the problem
of having a small dataset, different types of data augmentation and
transfer learning using an AudioSet pre-trained model have been
implemented which resulted in an increase of accuracy in recognizing
the insect species.



1 INTRODUCTION

1 Introduction

1.1 Context

The evidence for global insect decline is irrefutable. Many insect popula-
tions have been dropping globally in the last century and entomologists
and environmentalists have recognized this trend. As mentioned in Dirzo
et al. (2014), the insect populations in the last 40 years have declined by
45% and in 2020 Wagner, Grames, Forister, Berenbaum, and Stopak (2021)
declared that terrestrial insects were declining at a rate close to 1% per
year. The main factors causing this decline can be attributed to climate
change, deforestation, pollution from light, intense use of pesticides and
fragmentation of habitat that simultaneously cause a decline of the world’s
insect biodiversity. Even though there is an effort in protection of rare and
endangered species, the real problem is the decline of abundant insects
that has consequences in the ecosystem function (Wagner et al., 2021).

Insects have a pivotal role in the world ecosystem. They represent the
highest number in terms of biomass, species and population and have im-
portant functions such as pollinating flowers, disposing of dead organisms
and waste, pest controllers and forming crucial links in food webs. Many
studies have concentrated on specific insect orders or families, despite
substantial evidence from a recent global meta-analysis showing insect
losses are widespread and affect a variety of taxonomic groupings. These
analysis are also limited in scope as such data only focuses on a particular
date and location and therefore it makes it harder to demonstrate the shifts
in insect populations which is the most important aspect when monitoring
the ecosystem (Montgomery et al., 2020). Usually, localization and recog-
nition of species is carried out manually, but this kind of process can be
highly complex as insects live in various and complex environments not
always accessible to people. In addition, these tasks are mostly done by
expert volunteers as they are time consuming and expensive. However,
recent progress in signal processing using computer technology have in-
troduced new automatic methods to identify species by capturing images
and acoustic signals. Generally, identifying insect species through images
has been very challenging due to their small size, high species diversity
and population fluctuation. On the other hand, sound produced by insects
allows the detection and classification in a non-invasive way, particularly in
locations that are hardly accessible (Ganchev & Potamitis, 2007). Ganchev
and Potamitis explain that insect sounds are generated as a mean of com-
munication or generated non intentionally. In general, the emission of a
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1 INTRODUCTION

sound by an insect is usually related to two specific behavior mode. The
tirst mode relates to sounds emitted by insects to attract a female insect
located in the surrounding area or sound produced by females in order
to be located by males or sounds generated to cause congregation of both
males and females (cicadas). The second mode relates to sounds emitted:
to warn other insects of danger, to mark a territory, to signal the presence
of an insect of the same species. (Alexander, 1957) explored the sound pro-
duction mechanism that insects use to produce sounds. In the mentioned
paper it is explained that insects sound is produced in five different ways:
the friction of two body parts (stridulation), by striking some body part
such as the feet, head or abdomen against the substrate usually heard as
tapping or drumming (percussion), by oscillating body parts (vibration),
by contracting and releasing the tymbal muscles or by the ejection of air or
fluid through a body constriction (air explosion).

A recent technology that has been successful in bioacustic audio tasks
that allows to get results in a more efficient and affordable way is deep
learning. Deep learning generally tries to extract the sound characteristics
from a spectrogram generated from an insect raw audio and compares it
to other insect species (Ganchev & Potamitis, 2007). However, the scarcity
of environmental audio labeled data, has impeded the exploitation of
this models as they are dependent on the availability of huge amount
of training data in order to learn a non-linear function that generalizes
well and allows to obtain high accuracy when performing classification on
unseen data. In fact, one of the main disadvantages of deep learning is the
need of huge amount of training data which still represents a challenge in
the data science community as the performance of neural network often
improves with the amount of data available. In simple terms, the amount of
data required is proportional to the number of learnable parameters in the
model and the number of parameters is proportional to the complexity of
the task (Nanni, Maguolo, & Paci, 2020). This problem is generally solved
using data augmentation techniques. Data augmentation is a powerful
tool to artificially create new training data from existing training data
which has the benefits to reduce data overfitting, create variability in data,
increase model generalization and help resolve class imbalance issues in
classification. Another well-known solution for limited data used in deep
learning is transfer learning. Transfer learning has a simple basic premise:
transfer the knowledge obtained from a model trained on a large dataset
to the small dataset. In other words, the model is trained on unrelated
categories in a huge dataset and the extracted knowledge is implemented
on the small dataset model to extract useful features. Even though transfer
learning methods could be used to great effect, the challenges involved
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in making a pre-trained model to work for specific tasks are not always
simple.

1.2 Research Questions

Even though data augmentation and transfer learning are the most com-
mon techniques used in machine learning when dealing with small amount
of data, using these methods with deep learning to classify insect species
sounds has not been investigated. This highlights the relevance and origi-
nality of this thesis. Therefore, the following problem statement is formu-
lated:

How to create a high-quality insect species recognition model despite
small audio data using deep learning?

To answer this question, other 3 sub-questions have been formulated:

RQ1 What are the data augmentation techniques that can be applied to small
insects audio datasets?

The goal is to demonstrate whether data augmentation with such a small
dataset can improve the model in recognizing the different species. Dif-
ferent technics have been implemented directly on the raw waveforms in
order to increase the size of training data available and as a result increase
the generalizability of the classifier.

RQ2 How effective is transfer learning as a solution to small insect audio datasets?

In this sub-question an AudioSet pre-trained model has been used as a
starting point to transfer knowledge to the insect species classification task.

RQ3 How effective are raw waveforms compared to spectrogram based convolu-
tional neural network?

This sub question will demonstrate how effective is using raw audio data
as input to convolutional neural network compared to the spectrogram



2 RELATED WORK

based convolutional neural network which is the most common method
used to analyze audio data. To explore various solutions and make a fair
comparison the raw waveform model has been implemented both with
the initial amount of audio data and with the augmented data obtained
from the first research question. This will also help to understand if
the performance of the raw waveform model has a relevant difference in
accuracy based on the amount of training data.

1.3 Findings

The results obtained from these experiments show that data augmentation
can be a valid technique for small datasets when dealing with insects
sound data. In particular, the accuracy of the model using augmented
data showed an increase in accuracy of about 35% compared to a baseline
model built using only the original data. The same conclusion has been
obtained with transfer learning which led to an increase in accuracy of
around 22%. Since both data augmentation and transfer learning resulted
in an increase of accuracy, a combination of these two techniques has also
been implemented. The combined model, which consists of the transfer
learning model applied on the augmented dataset, resulted in an increase
of 3% above the transfer learning model using the original dataset. Similar
conclusion can be drawn when using raw audio as input to the neural
network without any pre-processing work. Compared to the baseline
model, the accuracy in this case improved by almost 5% when using the
initial limited amount of data and by 17% when implemented on the
augmented dataset. These results indicate that skipping the pre-processing
stage can be a valid alternative especially when the amount of data is large
enough.

2 Related Work

This section serves to give an introduction to related works in the literature.
Initially, the background of environmental sound classification will be
introduced and then previous related works will be described explaining
the methodologies used and the results achieved.

The classification of sound is mainly applied in three different disciplines:
Music Information Retrieval (MIR), Automatic Speech Recognition and
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Environment Sound Classification (ESC) which is the area this thesis is
based on.

2.1 Background

Recently, environmental sound classification projects have received increas-
ing attention from the data science community and to date, many machine
learning techniques have been tested. In particular, convolutional neural
networks have been a popular technique adopted for this kind of tasks
thanks to their ability in capturing energy pattern when using spectro-
grams as input to the neural network. In addition, small filters size are
capable of learning different sound classes based on their spectro-temporal
patterns (Salamon & Bello, 2017). Spectrograms are bidimensional graph
with time on the x-axis and frequency on the y-axis representing sequences
of spectra while the colors represent the strength of the frequency at a deter-
mined time frame. They have the advantage of retaining more information
than hand-crafted features and have a lower dimension compared to raw
waveforms (Wyse, 2017). Researchers working with environmental sound
classification tasks investigated different feature extraction techniques and
machine learning models. To cope with this challenge researchers consider
popular ESC datasets such as: ESC-10 (Piczak, 2015b), ESC-50 (Piczak,
2015b) and Urbansound8k (Salamon, Jacoby, & Bello, 2014). Piczak (2015b)
adopted a convolutional neural network obtaining exceptional results
which have increased the accuracy by 7.8% compared to the baseline ac-
curacy for ESC-10 which consists of only 400 data points with 10 classes.
These results showed how convolutional neural network, which are mostly
known for classifying images, can also be considered when dealing with
environmental audio data. In other words, an audio can be converted into
a two-dimensional spectrum and therefore be considered as an image to
use as input into a convolutional neural network. However, as explained in
the next section, in many deep learning projects on environmental sound
classification, the amount of data available has always been a problem. Ma-
chine learning researchers and practitioners have been working on various
solutions to successfully handle the problem of small datasets.
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2.2 Small dataset problem

The main problem with small datasets is that models don’t have the ability
to adapt to previously unseen data drawn from the same distribution.
In other words, the model doesn’t generalize well from the test set and
therefore the model will suffer from overfitting. In data science, overfitting
is a concept that occurs when a model fits the data too well and learns
in detail the training data to the extent that it has a low performance
on unseen data. As a result, the model will have low bias and high
variance (Vemuri, 2020, p. 50). To overcome overfitting there are several
methods. The simplest include adding a regularization term on the weights
that discourages learning a more complex or flexible model. Another
method consists in adding a dropout layer that randomly drops neurons
at each iteration along with all its incoming and outgoing connections
obtaining a slightly different architecture (Vemuri, 2020, p. 51). Another
popular technique is batch normalization, that reparametrizes the model to
standardize the input in a layer (Perez & Wang, 2017). Data augmentation
is a tool to artificially create new training data from existing training data
which has the benefits to reduce data overfitting, create variability in data,
increase model generalization and help resolve class imbalance issues in
classification. (Burkov, n.d.)

2.3 Data Augmentation

Data augmentation has been proposed also for the audio domain. A key
concept of audio data augmentation is that new synthetic data obtained
with the application of one or more deformation to the data points of
the training data don’t change the semantic meaning of the labels. As a
result, the neural network becomes invariant to these deformations and
will perform better with unseen data. Moreover Salamon and Bello (2017)
applied various data augmentation methods on the UrbanSound8K dataset
and demonstrated how each type of data augmentation influences the
model classification accuracy. In particular, since the considered dataset
had different kinds of classes, (air conditioner, dog bark, siren, street music,
etc.) each audio class accuracy behaved differently based on the augmenta-
tion technique adopted. In Wei, Zou, Liao, et al. (2020) a comparison of the
main data augmentation techniques are explained. In the audio domain,
four types of data augmentation are generally implemented:
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* Noise injection: adding to a recording random noise obtained from
another audio source containing background sounds

¢ Time shifting shifts left (fast forward) or right (back forward) the
audio and replaces the shifted part with silence.

¢ Time stretching speeds up or slows down the audio while keeping
the pitch unchanged. The audio sample is time stretched with values
greater than 1 to speed it up or lower than 1 to slow it down.

¢ Pitch shifting: like stretching, this method raises or lowers the pitch
of an audio sample while keeping the duration unchanged. it uses
semitones as values to shift the pitch of the audio.

Many researchers tried different combination of feature extraction methods,
CNN architectures and data augmentation techniques to help boost the
performance of a classifier for ESC projects. As mentioned by Takahashi,
Gygli, Pfister, and Van Gool (2016) when working with convolutional neural
networks, a large number of training data is fundamental to train such
networks. One of the data augmentation techniques suggested consists in
mixing sounds together coming from the same class, as the resulting sound
will still belong to the same class. One way of doing this is by randomly
mixing two same class with randomly selected timings which will add
more variation in the data. Pandeya and Lee (2018) demonstrated that
accuracy and F1 score of a model when using audio data can be increased
by simply implementing techniques such as: time stretching, pitch shifting,
dynamic range compression and insertion of noise. In general, when using
one to three clones per single audio results in a better performance.

Mushtaq, Su, and Tran (2021) adopts the most used ESC datasets to
demonstrate how data augmentation techniques commonly used for image
classification such as zoom range, width shift, brightness range, rotation
angle, height shift, shear range are inefficient if applied to audio data. On
the other hand applying data augmentation methods that have a physical
meaning and maintain the semantic meaning of the audio can improve the
performance of the model and help overcome the overfitting problem. The
techniques applied by Mushtaq et al. which are similar to the ones adopted
by Pandeya and Lee (2018) increased the accuracy of the classifier by circa
20% compared to the ones commonly applied in image classification.
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2.4 Transfer Learning

Another elegant way of dealing with small datasets and avoid overfitting
is transfer learning. Transfer learning is a machine leaning method where
an already available pre-trained model is reused for another new task. It is
commonly used in deep learning for computer vision and natural language
processing tasks. In particular part or all of the knowledge gained from a
model trained on a huge labeled dataset is transferred to another model.
The benefits of using transfer learning are mainly three: lack of data,
reduces training time and most of the times it increases the accuracy of the
model. As a result, it is often used in environmental sound classification
due to the lack of data (Burkov, n.d.).

Palanisamy, Singhania, and Yao (2020) applies transfer learning on
the ESC-50, UrbanSound8k and the GTZAN datasets and demonstrates
that even transfer learning with a model pre-trained on an image dataset
like ImageNet can boost the model accuracy. Even if audio spectrograms
and images have almost nothing in common, the assumption of transfer
learning still hold firmly. In fact, using ImageNet pre-trained model
allow to achieve state of the art results when fine-tuned on audio datasets.
Moreover, Palanisamy et al. tested different types of audio representations
such as Log-Spectrograms, LogMelspectrograms and MFCC and found
out that Log MelSpectrograms were the best feature representation for
that task. The results of their experiments show that using pre-trained
weights increased accuracy by 20% on the ESC-50 dataset, by 10% on the
UrbanSound8k dataset and 5% on the GTZAN dataset compared to the
baseline model where weights where randomly initialized.

Ntalampiras (2018) proposed the use of a music genre dataset to pre-train
a model in order to transfer the learned weights to a dataset consisting
of the sound of ten species of birds in order to classify them with a
higher accuracy. The paper compares the classification accuracy reached by
the proposed transfer learning framework and the methodology without
transfer learning. The results of the experiment show the superiority of
the model with transfer learning in classifying bird species reaching a
classification accuracy of 92.5% compared to the 81.3% accuracy reached
without transfer learning. This shows how this technique can be useful
also to transfer knowledge between task that are in different but related
domains.

Another related work that uses transfer learning to overcome the difficulty
of lack of sufficient training data is Zhang, Wang, Bao, Wang, and Xu (2019).
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This paper explains the advantage of reusing and fine-tuning pretrained
weights from a problem already solved instead of training the CNN from
scratch which would be computationally expensive and entails a huge
amount of training samples. With transfer learning in fact the low-level
semantic features learned can be reused to solve another problem as they
are constant for many classification tasks in computer vision. On the other
hand, the high level semantic features which are generated in the top
layers need to be tuned to the specific problem. Similarly to Palanisamy
et al. (2020), this paper explores how CNN models pre-trained on images
can be applied to audio classification tasks and also determines that the
best time-frequency feature representation for audio classification are log-
mel features as demonstrated by Huzaifah (2017) . The results obtained
with the pre-trained model showed an increase in accuracy of around 4%
compared to the model trained from scratch.

Bian et al. (2019) demonstrated that using transfer learning with a small
dataset can significantly improve the accuracy of the model but the results
also depends on the architecture adopted and on the number of parameters
of the model. Moreover, according to (Barman et al., 2019) there are
many advantages of applying transfer learning: it requires less data, less
computational power, less time in prediction and it does not require heavy
GPU.

2.5 Raw Waveform

Besides exploring how effective data augmentation and transfer learning
are for small datasets on insects, this thesis will also explore using raw
waveform based convolutional neural network. In fact when working with
audio classification tasks, a valid alternative to spectrograms is to feed
directly the raw audio to the convolutional neural network. Dieleman and
Schrauwen (2014) compares raw waveform based CNN and spectrogram
based CNN demonstrating that using raw audio performs very well but has
the disadvantage of requiring more training data to allow the algorithm
learn the right representations. The main difference of this approach
compared to spectrogram based CNN is that the pre-processing stage of
converting the audio into other forms of input can be completely skipped
as it is done automatically by the classifier. While hand crafted features
are designed by humans considering the auditory perception, the end
to end systems implement feature extraction automatically together with
the classification task which allows the extraction of new features that
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humans are not able to design. As a result, this methods could improve the
classification performance with new features representation information
that are not captured with spectrograms (Tokozume & Harada, 2017).
Recently, many researchers implemented this end to end approach and
compared it to the handcrafted features such as the log-mel feature.

In contrast with spectrogram based CNNs which most of the times achieve
a high performance with only 2 convolutional layers, Dai, Dai, Qu, Li,
and Das (2017) proposes to use deep CNN with up to 34 layers with raw
waveforms as input for speech recognition and other time-series modeling.
They demonstrate that using a CNN with 18 convolutional layers could
outperform a CNN with 3 convolutional layers by around 15% achieving
almost the same accuracy reported by Piczak (2015a) using a CNN with
spectrograms as input. This result was achieved also thanks to the combi-
nation of batch normalization, residual learning, and down-sampling. In
addition, they compared the proposed deep fully convolutional networks
with fully connected layers CNNs. However, fully connected layers CNNs
didn’t improve the accuracy and concluded that having dense layers in the
network might discourage the model to learn, obtaining poor results.

Another related work is (Zhang et al., 2019) which tries to classify whales
vocal calls from a large open-source dataset. This study uses the transfer
learning method on both the 1D raw waveforms and 2D log-mel features
achieving a higher accuracy with the latter. This shows that end to end
CNN are not always better than the spectrogram based CNN but it depends
on the dataset, the task and the model architecture.

Also (Tokozume & Harada, 2017) proposed an end to end system to classify
environmental sounds data and compared the performance to a CNN with
log-mel features. The results showed an increase of performance of 5,1%
using a simplified version of the EnvNet architecture. They also explored
the best architecture to use by changing the number of convolutional layers
and number of filters in the model. The best performance was achieved
using 64 as filter size and 3 convolutional layers.

While most related works used ESC datasets to perform audio classification
and in some cases data augmentation was implemented to increase the
training set size, this thesis will focus on specific type of sound with only
a few recordings available for each class. Data augmentation and transfer
learning will be explored to understand how these methods can improve
the performance with insect sounds and with such a little amount of data.
In addition, compared to most previous related work that used an image
dataset like ImageNet to perform the transfer learning task, this thesis will

11
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show how efficient is using the YAMNet pre-trained deep neural network
which is trained on the AudioSet dataset. Moreover, a comparison with
an end-to-end system will demonstrate if raw waveforms as input are a
valid option in this case. As mentioned, implementing CNN with raw
waveforms is still a challenging problem as it also requires substantial
amount of training data to let the network discover the right features. In
many previous works this approach has achieved an accuracy close to the
traditional CNN with spectrogram. However, most state-of-the-art results
have been obtained using hand crafted features.

3 Method

This section will provide a description of the general approach imple-
mented through the description of the mathematical models and algorithm
implemented.

3.1 Data Transformation

When working with audio data, there are many popular ways to convert
an audio waveform into a feature representation. The most popular way is
to convert the audio to a 2D time-frequency representation. In this thesis
log mel spectrogram representation will be used as input to the CNN
classifiers. Firstly, the audio signal is mapped from a time domain to a
frequency domain through the fast Fourier transformation function. Then,
the frequency is converted to a log scale to generate a spectrogram. A
spectrogram is a way to visualize frequencies spectrum of a signal. A mel
scale is simply a non linear transformation of the frequency scale. Since
humans don’t perceive frequencies on a linear scale the Mel scale mimics
the human ear. As a result, a mel spectrogram is a spectrogram converted
into a mel scale. This approach is part of the pre-processing stage which
allows the data to be transformed into a format similar to images which is
accepted by a convolutional neural network as input (Figure 1).

12
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Figure 1: Convert waveform into log mel-spectrogram. Mel-spectrogram replicates
human ear, with high precision in low frequency band and low precision in high
frequency band. Source: https://arxiv.org/pdf/1802.09697.pdf

Once the data is pre-processed it is ready to be fed into the network. This
study involved 6 models of convolutional neural networks:

1. Baseline model

2. Data augmentation model

3. Transfer Learning model

4. Transfer Learning and data augmentation combined model
5. Raw waveform model

6. Raw waveform and data augmentation combined model

Each of these models have a different CNN architecture based on the
amount of data and if the features are hand crafted or extracted automat-
ically. Since tuning manually the parameters would take a considerable

13
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amount of time and resources, most of the parameters have been tuned
using GridsearchCV, which is a function that allows to automatically loop
through a pre-defined list of values of different parameters and fit the
model in order to obtain the optimal combination of parameters that gener-
ate the best model. Moreover, this function allows to determine the number
of splits for the cross-validation for each set of hyper-parameters to obtain
more robust results. In particular, the hyper-parameters tuned are: the
number of neurons, the activation function, the optimizer, the learning rate,
the regularization term, the dropout value and the number of epochs.

Firstly, a baseline model is built to make comparisons with the data aug-
mentation and transfer learning models. Both the baseline model and the
data augmented model are built based on the LeNet-5 architecture. As
shown in Figure 2, LeNet-5 consists of 2 convolutional layers, each followed
by an averaging pool layer and 2 fully connected layers before using the
Softmax function for classification. Due to the limited amount of data
available the architecture has been modified to fit the data in order to avoid
overfitting. In particular, drop out layers and regularization have been
added and the number of filters has been reduced in order to decrease the
complexity of the model and obtain a model with fewer parameters. These
additional steps increase the generalization ability of the model.

ps=2 ps=2
o1 s=2 s=1 T -2
- T =0 =0 =0
p=0 conv s ° conv P
- m—’[ 6.5.5) Avg pool (16,5.5) Avgpool | B -
120 84 10

(32,32, 1) (28, 28, 6) (14, 14, 6) (10, 10, 16) (5,5, 16)

Figure 2: LeNet-5 architecture. Source: LeNet-5: Summary and Implementation.

Another change made to the architecture is to replace the Tanh activation
function with ReLu in the hidden layers. ReLu is the most popular acti-
vation function used for deep learning used in most of the related works.
The mathematical expression of how ReLu activation function works is
showed below:

Relu(x) = max(0, x) (1)

It is linear for all positive values and zero for all negative values. With
this approach it eliminates the vanishing gradient problem observed in the
earlier types of activation function. It has the advantage of being compu-
tationally cheap which results in less training time and fast convergence.
It also offers a better performance and generalization in deep learning
compared to the Sigmoid and Tanh activation functions. The main disad-

14
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vantage of this function is that it can cause some gradients to die which
doesn’t allow those weights to update during backpropagation (Nwankpa,
[jomah, Gachagan, & Marshall, 2018).

In the last layer the model uses the Softmax function. It is used for
multiclass classification tasks, and it returns the probability of each class
where the highest probability corresponds to the target class. The main
characteristic of this function is that it produces probabilities that are in
a range between o and 1 and the sum of these probabilities is equal to 1
(Nwankpa et al., 2018). The mathematical definition is shown below:

e%i

K .
Y€

(2)

o(z;) =

where sigma is the Softmax, z is the input vector, the numerator is the
standard exponential function for input vector and the denominator is the
sum of standard exponential function for output vector for K classes.

As for the transfer learning task, the YAMNet pre trained model has been
used. YAMNet employs the MobileNet architecture to classify 521 classes
from the AudioSet corpus. The main purpose of YAMNet is to extract high
level features and use this embedding to feed the actual model consisting
of few dense layers. This network consists of 28 layers with learnable
weights: 27 convolutional layers and 1 fully connected layer.

On the other hand, the raw waveform model is based on the EnvNet
architecture also implemented by Tokozume and Harada (2017). This
architecture consists of 2 convolutional layers followed by 3 consecutive
maxpool layers, 2 dense layers and a final Softmax output layer (Figure ??).

3.2 Evaluation

To evaluate the performance of the all the models Adam optimizer and
a categorical cross entropy as loss function have been chosen. Adam is
an optimization algorithm that combines RMSprop which uses squared
gradients to scale the learning rate and Stochastic Gradient Descent with
momentum which moves the average of the gradient instead of gradient
itself. A key factor of Adam is that it uses an adaptive learning rate method
that computes individual learning rate for different parameters (Kingma &

15
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Ba, 2014). The loss function used for multi classification tasks is Categorical
cross entropy loss function. It is computed using the following function:

K
Loss = — Zyi x1og1); (3)
=1

1

where "y is the i*" scalar value in the model output, y; is the corresponding
target value, and output size is the number of scalar values in the model
output. In general, cross entropy builds upon entropy form the information
theory field and measure the difference between two probability distribu-
tions for a given variable. With this loss function each predicted class is
compared to the actual class and based on how far the two values are, it
calculates a score that penalizes the probability (Ho & Wookey, 2019).

4 Experimental Setup

4.1 Dataset description

The dataset used for this thesis is the European orthoptera dataset recorded
by Baudewijn Odé. The European orthoptera is a dataset of sound record-
ings of around 360 species, of which only 9 species consisting of 158
recordings are made publicly available. In Table 1 the name of these 9
species, the number of recordings per species and the average duration of
the recordings per species are shown. The recordings are in their original
resolution and unfiltered state. In most cases hardly any other sound can
be heard in the background and in some species recordings, variation
is present being the result of different temperatures or social conditions
(resulting in aberrant rivalry or courtship songs). This limited dataset is
suitable for this thesis to understand to what extend data augmentation
and transfer learning can improve the model accuracy in identifying the
different species of orthoptera.

4.2 Pre-processing

Before starting to build the CNN models, few pre-processing steps has
been made on the orthoptera dataset using the Librosa library. Firstly, the

16
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Table 1: Dataset description

17

id Species Recordings Average Duration (seconds)
0 Chorthippus biguttulus 20 10
1 Chorthippus brunneus 16 11
2 Gryllus campestris 22 9
3 Nemobius sylvestris 22 30
4 Oecanthus pellucens 15 15
5 Pholidoptera griseoaptera 15 7
6 Pseudochorthippus parallelus 17 6
7 Roeseliana roeselii 13 5
8 Tettigonia viridissima 18 5
“Total: 8

sample rate of the recordings needs to be the same for all the recordings.
Some recordings are in old-school CD-quality with a frequency of 44.1kHz,
but others are in full resolution with frequencies up to about 100kHz. Since
the majority of the recordings (70%) have a frequency of 44.1kHz and the
rest of the recordings have higher or lower frequencies, all the audios have
been standardized to a 44.1kHz sampling rate through Librosa library
when loading the recordings. Moreover, all sound files are converted to
monaural 16-bit WAV files.

Secondly, all recordings have different duration which means that some
recordings had to be cut and others had to be extended in order to have all
audios of the length of 5 seconds.

Thirdly, all recordings have been transformed to log mel spectrograms
which produced images of height 128 and width 431. Finally, a metadata
excel spreadsheet containing all the names of the audios and the insect
species has been created in order to facilitate the manipulation of the
recordings, for the evaluation of the models and to keep track of the
augmentation process. In addition, to reduce the computation complexity
the target feature represented by “species” have been encoded obtaining a
o to 8 range representing the 9 species of orthoptera.

Another crucial step before starting to train the model is to shuffle the data
and split the data into sets. To achieve robust results k-fold cross validation
has been implemented with 5 folds. Once all these steps are completed,
Keras library has been used to build the baseline model.
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4.3 Baseline model

As mentioned, the baseline model has been built taking the LeNet-5 archi-
tecture as a reference. Compared to LeNet-5 few changes have been done
to reduce the total number of trainable parameters to reduce the model
complexity and deal with the small amount of data available. The accuracy
obtained with this model is 75% in the training set and only 55% in the test
set. The summary of the baseline model architecture is shown in Table 2.

Table 2: Baseline Model Architecture

Layer Type Operation Filters Filter Size = Output Shape Parameters
Convolution Layer 1 ReLu, L2(0.001) 2 (3,3) (126, 429, 2) 20
Pooling Layer MaxPooling 1 (2,2) (63, 214, 2) o}
Dropout Layer Dropout 1 0.5 (63, 214, 2) o}
Convolution Layer 2 ReLu, L2(0.001) 4 (3,3) (61, 212, 4) 76
Pooling Layer MaxPooling 1 (2,2) (30, 106, 4) o}
Dropout Layer Dropout 1 0.5 (30, 106, 4) 0
Convolution Layer 3 ReLu, L2(0.001) 8 (3,3) (28, 104, 8) 296
Pooling Layer MaxPooling 1 (2,2) (14, 52, 8) o}
Dropout Layer Dropout 1 0.5 (14, 52, 8) o}
Flatten Layer Flatten - - (5,824) 0
Dense Layer L2(0.001) 16 - (16) 93,200
Dropout Layer Dropout 1 0.5 (16) 0
Output Layer Softmax 9 - (9) 153

Total parameters: 94,017

4.4 Augmented model

Next step is to perform data augmentation on the raw waveforms. To
increase the size of the dataset, time stretch with rates of 0.8 and o.9,
pitch shift with number of steps of -1, 1 and 2 and time shift with a rate
of 0.2 have been implemented on the original dataset. In addition, to
make this experiment more realistic, environmental background noise
has been added using the Audiomentations library. Audios tagged with
“insect” from the ESC-50 dataset has been used to add background noise
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with a probability of 100% to all the original dataset. Once a dataset with
background noise is obtained, time stretch with a rate of 0.8 is implemented
again to increase the size of the data with background noise.

As aresult, the dataset increased to 1,422 recordings which corresponds to 8
times the size of the original dataset with 158 recordings. Also for the data
augmentation model, cross validation with 5 folds has been implemented
to achieve more reliable results.

The architecture used for the augmented data is similar to the baseline
model but in this case another convolutional layer has been added to in-
crease the complexity of the model and extract more features (Table 3). The
hyper-parameters tuned with GridsearchCV to find the optimal parame-
ters are the L2 regularization term (0.001, 0.01 and 0.1) and the optimizer
(Adam and RMsprop). Moreover, the number of units increases in the con-
volutional layers to capture larger combinations of patterns. The accuracy
obtained with the augmented dataset is 95% in the train set and 90% in
the test set.

Table 3: Data Augmentation Model Architecture

Layer Type Operation Filters Filter Size  Output Shape Parameters
Convolution Layer 1 ReLu, L2(0.001) 8 (3,3) (126, 429, 8) 8o
Pooling Layer MaxPooling 1 (2,2) (63, 214, 8) o}
Convolution Layer 2 ReLu, L2(0.001) 16 (3,3) (61, 212, 16) 1,168
Pooling Layer MaxPooling 1 (2,2) (30, 106, 16) 0
Convolution Layer 3 ReLu, L2(0.001) 32 (3,3) (28, 104, 32) 4,640
Pooling Layer MaxPooling 1 (2,2) (14, 52, 32) o}
Convolution Layer 4 ReLu, L2(0.001) 64 (3,3) (12, 50, 64) 18,496
Pooling Layer MaxPooling 1 (2,2) (6, 25, 64) o
Flatten Layer Flatten - - (9,600) o}
Dense Layer L2(0.001) 64 - (64) 614,464
Output Layer Softmax 9 - (9) 585

Total parameters: 639,433
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4.5 Transfer learning model

The third model that answers the third research question consists in imple-
menting transfer learning using the AudioSet dataset for the pre-training
part. AudioSet is an audio event dataset that consists of over 2 million
human annotated Youtube videos of 10 seconds length. These videos are
annotated based on a hierarchical ontology of 632 classes. This dataset
is only used to pre-train the YAMNet network in order to transfer the
knowledge and classify the European orthoptera dataset achieving good
results even without requiring a lot of labeled data. In particular, the
first layers of the network learn the high-level features and output the
embeddings which are used for transfer learning. The YAMNet input
features are then fed into a shallower model, which is used to classify
insects, consisting of one hidden dense layer with 512 neurons and a ReLu
activation function and a dropout layer with o.5 probability. Similarly to
the previous models the last layer consists of a Softmax layer with g output
units totalling 529,417 trainable parameters. With transfer learning the
training accuracy increased to 77% and the test set accuracy increased to

75%.

Since both the data augmentation model and the transfer learning model
resulted in a higher accuracy compared to the baseline model, a combi-
nation of these two models has also been implemented. In other words,
the augmented dataset obtained with the second model consisting of 1,422
recordings has been implemented with the transfer learning model. With
this approach, the test accuracy increased to 80% which corresponds to
an increase of 3% compared to the transfer learning model implemented
on the limited amount of data. This shows the importance of having a
large enough amount of training data in order to get a model that general-
izes better and gives better results and how data augmentation is a valid
solution when the amount of data is limited.

4.6 Raw waveform model

Finally, a comparison between the spectrogram CNN model and the raw
waveform CNN model has been performed. The main difference is that
with raw waveforms the feature extraction step in the pre-processing stage
can be skipped because it is completed automatically by the CNN. To
achieve a good performance, EnvNet architecture used also in (Tokozume
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& Harada, 2017) has been adopted with few changes. The architecture
used for this model consists of two 1D convolutional layers with 8 and 16
neurons and a kernel size of 5. As for the previous models, ReLu activation
function has been used. The convolution layers are followed by 3 maxpool
layers of size 2 and a fully connected layer with 16 neurons (Table 4).

In this case, a Lambda layer has also been added after the dense layer to
decrease the number of parameters, reduce the complexity of the model
and decrease the computational cost by calculating the mean values of the
tensors. In a neural network, a Lambda layer is a layer with its own func-
tion used to transform the data in between the modelling before applying
that data as input to any of the existing layers.

Also in this case GridsearchCV has been applied to select the best pa-
rameters. The hyper-parameter tuned included the optimizer (adam and
RMspop) and the number of units in every convolutional layer (8, 16, 32).
As mentioned before, also for this model categorical cross entropy has been
used as the loss function and accuracy is used to evaluate the performance
of the classifier. The last layer is the Softmax output layer which has as
many neurons as the number of classes.

The last model implemented is a combination of the raw waveform model
and the data augmentation model to understand what are the outcomes
when using a larger training set with an end to end approach. Due to the
higher amount of training data the number of epochs has been increase to
400 to let the model converge. Compared to the raw waveform model this
approach surprisingly increased the test accuracy by 22%.

Table 4: Raw Waveform Models Architecture
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Layer Type Operation Filters Filter Size = Output Shape

Parameters

Convolution Layer 1 ReLu 8 5 (220496, 8)

48

Convolution Layer 2 ReLu 8 5 (220496, 16)

656

Pooling Layer 1 MaxPooling 1 2

(110244, 8)

Pooling Layer 2 MaxPooling 1 2

(55122, 8)

Pooling Layer 3 MaxPooling 1 2 (27561, 8)

Dense Layer - (27561, 8)

Lambda Layer Mean - -

(8)

Output Layer Softmax 9 -

Total parameters: 1,129
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4.7 Software and Hardware

All the experiments are done using the python programming language
with version 3.7 on Windows 10 operating system. The main libraries used
for the implementation of this thesis are Anaconda, Keras and Librosa
which is the most crucial library for this project. Anaconda is an open-
source library used for python which already includes various packages
like NumPy, pandas and matplotlib. It also offers the option to create
different environment for specific tasks using specific packages. Keras is
the library used to build all the CNN models in this thesis by adding layers
on top of each other. Librosa is a python package used for music and
audio analysis. It is mainly used for feature extraction, data augmentation,
plotting and manipulating recordings. In terms of hardware, the thesis
has been conducted with a processor core i5-1035G1 CPU @ 1.00GHz, 1.19
GHz with a RAM of 8 GB and a 512 GB SSD.

5 Results

In this thesis, 6 models have been experimented to classify insect species
sounds with limited amount of data.

The first model is used as baseline and implements a CNN with an archi-
tecture similar to LeNet-5 with the data available in the original dataset
consisting of 158 raw audios on g species of insects.

The second one implements data augmentation with various techniques
such as time shift, pitch shift time stretch and background noise to increase
the training data to 1,422 data points and uses an architecture similar to
the baseline model to understand the effect of data augmentation.

The third model adopts transfer learning with the YAMNet model and an
additional dense layer to train the limited insects data consisting of 158
recordings.

Since both the data augmentation model and the transfer learning model
achieved good results, a combination of these two models has been im-
plemented. This way transfer learning has been applied to the increased
dataset consisting of 1,422 recordings.

The last two model are based on an end to end approach where a raw
waveform model is implemented both using the original size of the or-
thoptera dataset and the augmented dataset on the EnvNet architecture.
The results of these model are shown in Table 5.
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Table 5: Models comparison based on test accuracy
Model Data Size Epochs Train Accuracy Test Accuracy
Baseline 158 30 0.75 0.55
Data Augmentation 1,422 10 0.95 0.90
Transfer Learning 158 30 0.77 0.75
Transfer Learning and Data Aug. 1,422 30 0.80 0.80
Raw Waveforms 158 400 0.66 0.50
Raw Waveforms and Data Aug. 1,422 100 0.75 0.72

As expected, the baseline model performed poorly due to the small amount
of data. In fact, based on the results of the 5-fold cross validation, it appears
that in some cases the class prediction are done quite randomly due to the
lack of data to be trained. The accuracy achieved on the training data was
high obtaining a 75% accuracy but the performance on the test set was poor,
meaning that the model was not able to generalize well (Appendix A).

In terms of class classification, as shown in the confusion matrix in Ap-
pendix A, in the baseline model only two species could be identified with a
high accuracy on the test set (class 2 with 91% and class 8 with 83%) while
all the other species have been misclassified.

On the other hand, the effect of data augmentation is surprising with a
90% accuracy achieved on the test set. Increasing the dataset size by 8
times was enough to obtain a high-performance classifier. The confusion
matrix (Appendix B) shows how each species could be identified accurately
compared to the baseline model. Also in this case the training accuracy was
very high reaching almost 95% accuracy but differently from the baseline
model, this model has a high capacity to generalize which led to a high
accuracy.

Also transfer learning can be considered a good option for insect sounds
classification with an increase of accuracy of 25% compared to the baseline
model. From the accuracy chart (Appendix C), it is possible to see how the
model tends to overfit due to the limited size of the training set. In fact,
only 1 class could achieve a relatively high accuracy of 82% (Appendix C).
The application of this model with the increased dataset obtained with
data augmentation showed an increase in accuracy of about 3%. This
explains the importance of having a large training set and how efficient
is data augmentation when dealing with a small insects audio dataset
(Appendix D).
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As for the raw waveform model, as already mentioned, the data needed
to achieve good results is usually much higher than the spectrogram
based models. This model achieved a training accuracy of 66% and test
accuracy of only 50%, which makes it the worst model of all in terms of
performance. Moreover, compared to the other models the training time
needed to converge for an end to end approach is much higher. This is
why the number of epochs for both the raw waveform models are higher
than the other models (Appendix E).

However, when the raw waveform model is combined with the augmented
dataset, the accuracy increases to 75% on training set and 72% on test set.
Compared to the other models, some classes where classified with very
high accuracy (100%) while other classes are misclassified or have low
accuracy (33% for class 2). (Appendix F)

In conclusion, it is quite clear that for insect species sound classification
data augmentation is a very valuable option when the data available is
small.

6 Discussion

Many insect populations have been dropping globally in the last century
and Deep learning is a good solution to monitor the insect biodiversity
through the analysis of their sound. Unfortunately, the amount of en-
vironmental data available has always been an issue since the collection
and the labelling can be very expensive. The purpose of this thesis is to
understand how to use deep learning to classify insect species when the
amount of data available is limited. Various techniques have been explored
such as data augmentation and transfer learning to overcome this problem.
Moreover, a comparison of performance between spectrogram based CNN
and raw audio CNN have been experimented to understand the effective-
ness of skipping the pre-processing stage, which is automatically done by
the algorithm. All the techniques adopted showed how the small dataset
problem can be solved in an efficient way obtaining a high-quality classifier
compared to the baseline model.

The first model implemented is with the data augmentation technique
which is the model with the highest accuracy compared to all the other
approaches. This method increased by 8 times the original dataset size
and increased the test set accuracy to 9o%. Compared to the related works
where data augmentation increased the classifier performance by 5% to
10%, in this thesis the accuracy increased by around 35%. The reason
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behind this huge improvement can be partially attributed to the fact that
the sounds emitted by the orthoptera insects are very different between
species and data augmentation highlighted this difference by increasing
the number of recordings for each species. In fact, the number of species
adopted in this thesis could be too small to really understand how efficient
data augmentation is. However, the results achieved with this method
are still a representation of reality and based on the performance of this
model, data augmentation can be considered a valid solution when the
data available is limited. An advantage of data augmentation for the
classification of insect species is that it makes the model more applicable
in practical uses. For instance, adding background noise related to the
environment to the audio dataset creates new recordings that are closer
to the real word recording of an insect. As a result, this makes the model
more reliable when new recordings of insect species with background
noise need to be classified.

Also transfer learning can be consider a good solution when dealing with
small insects audio dataset. The results suggest how the relevant features
to classify insect sounds can be also extracted from another dataset like
AudioSet. Moreover, with only 158 data points the accuracy could reach a
test accuracy of 75% which is surprising if compared to the baseline model.
On the other hand, applying transfer learning with the augmented dataset
led only to a small increase of performance of about 3%. This means that
applying transfer learning on an increased dataset is not as effective as
a model trained from scratch. This could be because the weights of the
network are already trained on the AudioSet data and re-used as a starting
point in the training stage and adopted to the insects dataset. In addition,
from the confusion matrix it is possible to notice that only few classes
(class 1 and 2) have been poorly classified while all the other classes have
an accuracy of at least 73% and a maximum accuracy of 96% (Appendix D).
The results obtained with this combined model are very similar to those
obtained by (Palanisamy et al., 2020). The accuracy with transfer learning
increased by 25% above the baseline model. In any case these results
suggest that transfer learning is a valid solution to small datasets.

Similarly to transfer learning, two raw waveform model have been experi-
mented: a model implemented on the initial 158 data points and a model
implemented on the augmented dataset.

The first raw waveform model achieved the lowest performance compared
to all the other models. As reported by Dieleman and Schrauwen (2014),
the end to end approach perform very well for audio classification tasks
but the it has the disadvantage of requiring more training data to allow
the algorithm learn the right representations. This helps to understand

25



7 CONCLUSION

why this model has a lower accuracy than the baseline model which is a
spectrogram based approach.

The effect of increasing the dataset size are explained on the second raw
waveform model which increased the accuracy by 17%. For this classifi-
cation task the raw waveform model combined with data augmentation
achieved an accuracy similar to the transfer learning model applied on
the augmented dataset but Tokozume and Harada (2017) showed how the
performance of an end to end approach can vary based on the dataset size
and type of dataset. This could also mean that since a raw waveform model
needs more training data than a spectrogram based model, with further
data augmentation it might also achieve high-quality performance but
unfortunately, this approach is computationally expensive since the feature
extraction is performed automatically together with the classification task.

7 Conclusion

Since the amount of environmental audio data has always been an issue
because the collection can be very expensive and time consuming, this
thesis suggests some effective methods that can be applied to overcome
this problem. In particular, it explores how to create a high-quality insect
species recognition model despite small audio data using deep learning.
Three sub-questions were formulated to help answer this main research
question:

RQ1 What are the data augmentation techniques that can be applied to small
insects audio datasets?

Different types of data augmentation techniques on the raw audio have
been proposed and compared to the baseline model built on the original
small dataset. Data augmentation techniques such as time shift, pitch shift,
time stretch and environmental noise injection have been implemented.
Then, a convolutional neural network that takes as input spectrograms was
trained, demonstrating that data augmentation can considerably improve
the accuracy performance. Moreover this approach also helps to make
the model more realistic and applicable in real world scenarios thanks to
the injection of background environmental noise. As a results this thesis
suggest data augmentation as a solution to small insects audio dataset.

RQ2 How effective is transfer learning as a solution to small insect audio datasets?
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Transfer learning using AudioSet dataset was experimented with the
YAMNet architecture to transfer knowledge to the insects dataset. This
method has been experimented both with the original limited dataset and
in combination with the augmented dataset. Both models led to an increase
in performance compared to the baseline model but the improvement is not
as significant as the data augmentation approach. Therefore, when classi-
fying insect species using audio data, building a classifier from scratch can
give better results than using a pre-trained model to transfer knowledge.
However, based on the increase of performance of the transfer learning
model it is clear that also this approach is a valid solution.

RQ3 How effective are raw waveforms compared to spectrogram based convolu-
tional neural network?

A raw waveform CNN, which takes as input directly the raw audio,
was trained. This recent method compared to spectrogram based CNN
has the advantage of skipping the pre-processing stage but on the other
hand needs more training data. Also this approach has been experimented
both with the limited dataset and the augmented dataset on the EnvNet
architecture. The results showed that with the small amount of data used
for the first model the performance achieved is even lower than the baseline
model. On the other hand, when the same approach is applied to the
augmented dataset the performance increases considerably. The advantage
of this approach is that the feature extraction is done automatically by
the algorithm but at the same time it can be computationally and time
expensive when the size of the dataset is increased. In addition to a high-
quality insect species recognition model, the amount of data needed would
be higher than a spectrogram based model.

This work can be further developed to understand which type of data
augmentation are more beneficial when dealing with insects data and
which dataset can be used with transfer learning to transfer more knowl-
edge and increase the performance. Also, with enough computational
capacity this work can be extended by investigating the combination of
data augmentation, transfer learning and raw waveform.
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A Appendix: Baseline model
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Figure 3: Baseline 5-folds accuracies
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B Appendix: Data Augmentation model
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Transfer Learning Model
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Figure 11: Transfer Learning confusion matrix
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Figure 14: Transfer Learning and Data Augmentation confusion matrix
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Raw Waveform Model
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Figure 15: Raw Waveform accuracy
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Figure 17: Raw Waveform confusion matrix
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Figure 19: Raw Waveform and Data Augmentation Loss
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