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Abstract
This thesis addresses the design and implementation of a dynamic scheduling
algorithm in the container terminal simulation software of TBA, with the goal
of increasing terminal productivity. A reinforcement learning algorithm that
combines the algorithmic choices of Reward Backpropagation Prioritized Ex-
perience Replay and a Double Deep Q-Network is discussed and implemented.
This algorithm derives scheduling decisions for each of the 144 defined states of
the simulated container terminal and the resulting decisions are merged with
the existing scheduling algorithm of TBA. The Taguchi Method is applied to
determine desirable scheduling parameter settings for each of the defined states
and the resulting dynamic scheduling algorithm yields statistically significant
increases in quay crane productivity for 6 out of 9 conducted experiments.
Statistically significant increased quay crane productivities are mostly found
in experiments with 3 and 3.5 horizontal transport vehicles - vehicles respon-
sible for the transport of containers from quay cranes to the storage yard and
vice versa - per quay crane. Furthermore, the resulting algorithm particularly
increases the productivity of quay crane twin load moves, in which quay cranes
load two containers simultaneously from the quay onto a vessel. Additional
experiments are conducted to test the robustness of the dynamic scheduling
algorithm to a reduction in daily terminal volume and yield a statistically sig-
nificant increase in quay crane productivity for the off-peak experiments with
3 and 3.5 horizontal transport vehicles per quay crane.
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Chapter 1

Introduction

Over the last decades global maritime container trade has grown substantially in size
and importance. In 1980 the total global amount of goods carried by containers was
around 102 million metric tons and in 2017 this amount reached 1.83 billion metric
tons (Nagurney, 2021). This stimulated a large increase in vessel capacities: the
dead-weight tonnage (weight carrying capacity) of container ships has grown from
a maximum of approximately 11 million metric tons in 1980 to over 275 million
metric tons in 2020 (Placek, 2021). A growth rate of this magnitude demands solid
adaptivity of international supply chains, container terminal operators and shipping
lines. But global demand and supply does not always increase: during the finan-
cial crisis of 2008/2009 changes in consumption patterns reduced world container
shipping demand by 12.4% and the COVID-19 crisis in 2020 marked the beginning
of a sequence of supply chain disruptions all over the world, leading to a variety of
operational challenges for all parties involved (Notteboom et al., 2020). Combined
with the strong bargaining position shipping lines have - due to the large number of
container terminals to choose from - this results in a highly competitive market en-
vironment for container terminals. Increasing efforts of container terminal operators
is required to improve the productivity and efficiency of their container terminal,
at a minimal cost. Productivity of a container terminal is often measured by the
turnaround time of vessels (by taking into account the load and size of the vessel) or
by yearly container throughput in TEU (Twenty-foot Equivalent Unit) (Doerr and
Sánchez, 2006). The majority of containers on a typical container terminal arrives
and/or leaves by vessel and therefore has to pass by the quay of the terminal at
least once. Containers at the quay are handled by a quay crane (QC). QCs serve
vessels and barges: they discharge containers from ships onto internal transportation
modes and load containers from these internal transportation modes onto ships. A
QC is very expensive and needs a lot of (costly) space. Therefore, QC productivity
is of high importance; it is the major Key Performance Indicator (KPI) for most
container terminal operators. One of the operations on the terminal that influences
QC productivity is scheduling: the scheduler assigns jobs (container handling or
container moves) to various equipment types. A job could be, for example, picking
up container A at QC 1 and bringing it to a specific place in the yard. If a container
is not at the QC at the time it is required for loading, or if too many discharged con-
tainers are waiting at a QC to be picked up, QC productivity is negatively affected.
The goal of this research is to investigate and implement possible improvements in
the container terminal scheduling algorithm in order to increase QC productivity,
commissioned by and therefore specifically designed for TBA Group in Rijswijk.
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1.1 Company information
TBA Group is a globally operating consultancy and software company that uses
simulation and emulation software to optimize the logistic processes of ports, con-
tainer terminals, airports, manufacturing plants and other logistic systems. It is
a subsidiary of Konecranes, a Finnish company specialized in manufacturing and
service of cranes and lifting equipment. TBA was founded in 1988 in the Nether-
lands and currently has its headquarters in Rijswijk. Other offices are located in
Leicester and Doncaster (United Kingdom), Satu Mare (Romania), and Düsseldorf
(Germany). Local company representatives are active across North and South Amer-
ica and Oceania.
The services provided by TBA range from the early stages in the design phase of a
terminal to live operations, both for new as well as existing terminals with a need for
automation or expansion. Examples of these offered services are: Terminal Design,
Trainings for Terminal Operators, Performance Improvement and Analysis and im-
plementation of the Terminal Operating System (TOS).
In order to find efficient solutions for various types of terminals or warehouses,
TBA develops simulation models for terminal performance studies under different
strategies. These models can be adapted to fit the exact design of any terminal
or warehouse and are used to test the performance of different strategies (like con-
tainer placement, routing and job dispatching), equipment types or specifications.
This thesis focusses on the scheduling algorithm that is used in one of the simulation
programs of TBA: TIMESQUARE. The dynamic scheduling algorithm could later
be implemented in the TBA Scheduler to be applied in real-life settings.

1.2 Problem description
The current scheduling algorithm used by TBA is a relatively straightforward ap-
proach with a scoring mechanism. Central planning generates a list of orders: an
order indicates for a specific container where it is currently located and where it has
to go to. An example for an order could be:

• Container A that is located in stack B must be loaded at quay crane C.

An order can be divided into multiple moves. In the above example the correspond-
ing moves could be:

• A Stack Crane must move container A from stacking location B onto a Ter-
minal Truck.

• Container A must be transported from location B to location C by a Terminal
Truck.

The scheduler is supplied with the complete list of moves and their (approximate)
due times and assigns jobs to the various equipment types. A job consists of an
instruction to one specific machine, for example:

• Get container A at location B and drop it at location C.

The first step of the scheduling algorithm is to match the equipment type to each of
the moves it can theoretically make, resulting in a job list with nxm jobs, where n
is the number of machines on the terminal of the equipment type that is currently

12



under consideration and m is the number of moves that require a machine of that
type.
The next step of the algorithm excludes all jobs that should not be taken into con-
sideration. For example, machines that are currently performing another job cannot
be assigned to the next job.
After reducing the size of the job list only the useful jobs remain and the scoring
algorithm starts: based on k variables xi and parameters αi each job receives a score
with value ∑k

i=1 αixi. Variable x1 could be the driving distance in meters and its
corresponding parameter α1 could have the value 2. Due times of the jobs - based
on the time an order is required to be completed - are also included in the variables
xi. Note that αi ∈ R, which results in an infinite search space of parameter values,
and that different equipment types can have different variables and parameters. The
variables xi can attain binary or continuous values. In the above example of driving
distance in meters x1 ∈ R+, but the variable isdischarging can only be 0 (if the
machine is not discharging) or 1 (if it is). Therefore, a change in parameter values
αi has a different effect on the total score for different variables xi.
In the last step of the algorithm the job with the highest score is scheduled as the
next job and the algorithm starts again. The scheduling algorithm is depicted in
Figure 1.1.

Figure 1.1: Scheduling algorithm TBA.

The objective of the scheduler is to schedule as many useful jobs from the job list
as possible within a given time frame, in order to maximize terminal productivity.
The parameter values αi (i = 1, ..., k) have a large impact on the performance of
the terminal and are currently tuned based on experience of simulation engineers
and extensive experiments. They are, however, set in a static range, which means
that the same parameter settings are used throughout a full range of experiments.
TBA expects that a dynamic parameter setting, in which different scoring parameter
values are considered for different circumstances, could benefit terminal productivity.
The aim of this research is therefore to adapt the current scheduling algorithm
and implement it in TIMESQUARE such that the parameter settings are tuned
dynamically. This requires a thorough investigation of different situations that might
occur during the scheduling cycle that would require different parameter settings. On
top of that, a procedure that reduces the infinitely large search space of parameter
settings is needed to ultimately find the parameter values that provide the largest
increase in terminal productivity for each situation.
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1.3 Research questions
The main topic of this research is to investigate the effect of implementing dynamic
scheduling parameter settings on the productivity of the container terminal. Due
to their location at the quay, high operational costs and large size, QCs are im-
portant bottlenecks of a container terminal and therefore QC productivity is one of
the main drivers of container terminal productivity. We can therefore measure the
performance of the adapted scheduling algorithm by investigating the effect on QC
productivity and formulate the following research question (RQ):

Can QC productivity on container terminals be improved by adapting a static
scheduling parameter setting to a dynamic parameter setting, and thereby

ultimately result in a more productive container terminal?

Five sub questions (SQ) have been formulated to provide guidance in answering the
main research question:

1. Which models and methods have previously been used to optimize container
terminal scheduling and could these be effective in this setting?

2. Which circumstances during the process of container handling on a container
terminal might require a change of parameter setting to improve equipment
productivity?

3. How can the infinite search space of parameter values be reduced without
loosing valuable parameter settings?

4. Is the effect of the improved scheduling algorithm on the computational time
of the scheduler acceptable and/or can this be decreased?

5. What is the expected improvement in QC productivity when the dynamic
parameter setting is implemented?

1.4 Strategy and expected results
The current scheduling algorithm is an uncoordinated, greedy algorithm that is
based on penalties and rewards. Throughout this thesis we refer to this algorithm
as TBAA (TBA’s Algorithm).
In an uncoordinated scheduling algorithm there is no coordination between different
equipment types, which could lead to a decrease in terminal productivity. Note that
this approach decouples the scheduling of different equipment types, but moves that
belong to a specific order always have to be performed according to a predefined
sequence. Therefore, jobs will only be assignable to a certain type of equipment
once the previous equipment type has completed the job that concerns the same
container.
A former intern at TBA has investigated the possibility of integrating a coordi-
nated scheduling algorithm (Jonker, 2018) by scheduling complete orders instead
of separate jobs that belong to the same order. A Simulated Annealing algorithm
was implemented, but did not result in a significant improvement in QC productiv-
ity. Furthermore, the algorithm was computationally too expensive, compared to
TBAA, which is a greedy algorithm that decides for every equipment type on the
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next move one-at-a-time.
This research therefore does not result in the implementation of a complete new
scheduling algorithm, but mainly aims to enhance TBAA by implementing a dy-
namic strategy and improving the existing parameter settings.
Previous research (discussed in Chapter 3) shows promising results of reinforcement
learning (RL) algorithms when applied to scheduling problems in a wide variety of
logistic operations. RL is an area of machine learning in which digital agents are
trained in an environment to take specific actions with the goal of maximizing some
notion of cumulative reward.
After defining a suitable environment, actions and rewards for the setting in this
thesis, a reinforcement learning algorithm that decides on the job scheduling at the
container terminal will be implemented. In this thesis, we refer to this algorithm as
RLA (Reinforcement Learning Algorithm). The effect of the adapted schedules on
QC productivity will be assessed and the schedules will undergo a thorough analy-
sis. Since integration of RLA - and any machine learning based algorithm - in the
simulation program of TBA is computationally too exhaustive, parameter settings
will be derived from the actions that are taken by the reinforcement agent in specific
situations. The Taguchi Method will be used to efficiently assess the performance
of different parameter settings and to derive the optimal setting. Afterwards, the
dynamic parameter settings will be implemented in TBA’s simulation model and
the effect on QC productivity and computational time will be analysed. The final
scheduling algorithm algorithm is referred to as DSA (Dynamic Scheduling Algo-
rithm).
We expect the performance of RLA to be highly dependent on the defined state
and action space. A complex state and action space will presumable improve the
current TBAA schedules, but make the final implementation in TIMESQUARE
more demanding. A smaller state and action space captures less information of the
simulation model and might therefore decrease QC productivity when compared to
TBAA. The computational complexity of the algorithm will, however, decrease and
the interpretation of the results will be more straight-forward. A balance between
the two situations is therefore the most desirable methodology. Deriving suitable
parameter settings and implementing these in the current algorithm results in an
educated combination of TBAA and RLA and is therefore expected to increase QC
productivity when compared to the currently used schedules, as created by TBAA.
Hence, due to its dynamic nature and the fact that the current parameters are set
by trial-and-error we expect an improvement in QC productivity over TBAA after
the implementation of DSA.
Since it is of large interest for TBA that the adapted algorithm does not increase
computational time substantially, the choice was made to implement the dynamic
parameter settings and the situations they apply to and not RLA into their software.
The final result then still is a greedy algorithm that will not be computationally too
exhaustive. A slight increase in computational time will be caused by the dynamic
implementation: depending on the number of situations in which a parameter set-
ting has to be revised, the parameter settings have to be updated. It is anticipated
that this is computationally not demanding and that these efforts will be surpassed
by the benefits of an increased QC productivity.
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1.5 Outline
This introductory chapter concludes with an outline of this thesis: Chapter 2 con-
sists of an introduction to the design of and operations on a container terminal,
in order to provide sufficient support to understand the context and scope of this
thesis. Chapter 3 contains a literature study on the topic of this thesis, divided
into three parts: planning and scheduling algorithms for container terminals, rein-
forcement learning algorithms that were applied in comparable settings and various
methods that concern (hyper-)parameter tuning. In Chapter 4 we provide the the-
oretical background for the processes that form the basis for reinforcement learning
algorithms: Markov Decision Processes. In Chapter 5 the connection with reinforce-
ment learning is made: we gradually build towards the existing algorithms that are
combined in the implementation of RLA. The defined state space, action space and
reward function of RLA are specified in Chapter 6, along with the details of the
implementation of the algorithm. Chapter 7 introduces the Taguchi Method and
discusses its application in the context of this thesis with the goal of merging TBAA
with RLA into the final algorithm: DSA. Chapter 8 provides an extensive analysis
of the results of both RLA as well as DSA and compares these to TBAA. Additional
experiments that test the performance of DSA on off-peak simulation days are dis-
cussed in this chapter as well. The final chapter of this thesis, Chapter 9 starts with
a brief summary, followed by concluding remarks and recommendations for future
research. Figure 1.2 indicates which research sub questions (SQs) are addressed in
which chapter of this thesis.

Figure 1.2: Thesis outline with specification of the research question (RQ) and sub questions
(SQ) that are addressed in each of the chapters.
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Chapter 2

Container terminal: an
introduction

In this chapter we introduce the reader to the most important operations that take
place on a container terminal, as well as discuss the terminal design and different
equipment types that can be used. This way, sufficient support is provided to under-
stand the details and scope of this thesis. The knowledge was acquired by following
TBA’s internal container terminal course. Section 2.1 discusses terminal design,
operations and trends and Section 2.2 addresses the different types of containers
that are commonly used. Section 2.3 introduces the processes at the waterside of
a container terminal and Section 2.4 discusses the function of horizontal transport
vehicles and the specific type that is used in the experiments of this thesis: the
Shuttle Carrier. Section 2.5 addresses the layout and function of the storage yard
and Section 2.6 briefly discusses the operations that take place at the landside of a
container terminal. The chapter concludes with Section 2.7 by addressing the main
subject of this thesis: the scheduling decisions on a container terminal, along with
the challenges that a scheduler faces.

2.1 Design, operations and trends
Marine container terminals form an important link in intercontinental container
flows, by providing transshipment from large deep-sea vessels to smaller barges for
inland waterways, trucks, trains and vice versa. Furthermore, container terminals
provide valuable storage space to hold containers both long- as well as short-term,
which allows for the decoupling of intercontinental and continental container flows
in time. Direct transshipment - without the storage capacity - would be too complex
and just-in-time delivery of containers barely possible (van Zijderveld, 1995). Con-
tainer terminals sometimes provide additional services: repairs, cleaning, inspection
and/or cargo consolidation (when the contents of one container do not share the
same origin or destination).
Figure 2.1 provides a simplified, schematic side view of the general design of a con-
tainer terminal. From left to right the operations consist of the following:

• Vessels and/or barges berth at the waterside (also called quayside or seaside).
Generally, multiple vessels can berth at one terminal simultaneously and some-
times barges are handled at a specific barge facility instead of the deep-sea
quay.
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• Quay cranes (QCs) discharge containers from vessels and barges onto horizon-
tal transport vehicles (HTVs, also called internal transportation modes) and
load containers from these HTVs onto the vessel.

• HTVs transport containers from the (storage) yard to the QCs and vice versa.
Depending on the type, HTVs are able to pick up and place containers them-
selves or need to wait for an available crane to assist them in these procedures.

• Yard cranes (YCs) load and discharge containers onto and from the HTVs or
place them in buffers (small areas where containers can wait for a short time
period), where they can be picked up by HTVs.

• Containers are (temporarily) stored in the yard (also called storage yard or
stack). They can be placed on top of each other and are handled by YCs.

• On the landside of the terminal YCs load and discharge containers onto and
from HTVs or directly on external trucks.

• Trains are loaded and discharged by cranes and HTVs transport these con-
tainers to the yard.

• Trucks arrive through the gate to pick-up and/or drop-off containers at the
landside of the terminal.

Figure 2.1: Side view general container terminal, not true to size (Steenken et al., 2004).

Note that these operations do not need to take place in the order they were discussed,
depending on the origin and destination of a container. We distinguish four types
of container flows:

• Import: containers arrive by vessel and leave by truck, train or barge.

• Export: containers arrive by truck, train or barge and leave by vessel.

• Transshipment: containers arrive by vessel and leave by vessel.

• Domestic: containers arrive by truck, train or barge and leave by truck, train
or barge.
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Some container terminals are devoted to one specific type of container flow, while
others are capable of performing each of the discussed operations in both directions.

As stated in the introductory chapter, increasing demand for global maritime con-
tainer trade has led to large increases in vessel capacities and demands solid adap-
tivity of container terminal operators. Furthermore, the highly competitive market
demands a large degree of innovation, while costs must be kept minimal (Notteboom
et al., 2020). As a consequence, an important trend in container terminal design
is automation: ranging from fully-automated terminals to (partly) automated ter-
minal equipment. Integrating automation is a complex task, not in the least with
regards to safety of people working on or interacting with a (semi-)automated ter-
minal. This requires thorough testing, preferably outside of the real terminal or
- even better - before the terminal is built. Simulation provides a safe, thorough
and relatively cheap alternative to real-life testing, by helping container terminal
operators make educated decisions on terminal design, equipment, expansion and
capacity. Furthermore, simulation tools are essential in determining the robustness
of a proposed terminal design to possible future changes in global and regional econ-
omy, equipment types, environmental regulations and demand fluctuations (Saanen,
2004). Since the average process time from the first ideas until commissioning takes
six to seven years (Saanen, 2004) and requires a significant amount of money, the
design must account for future scenarios in the best way possible.

2.2 Containers
The intermodal containers that we know today were first introduced in the 1950s and
are ISO standardized steel boxes constructed to transport cargo and to be efficiently
stacked on top of each other. Twistlocks at each of the eight corners of a (regular)
container provide the opportunity to safely secure containers that are stacked on
top of each other. On vessels, these twist locks are combined with lashing rods to
keep the containers in place (see Figure 2.2).

Figure 2.2: Standard containers secured with lashing rods (TBA Training Portal).

The ISO standardization allows for a global stacking efficiency, safety and general-
ization in the specifications of various equipment types all over the world. Different
types of containers exist, each for specific types of cargo. An overview of the most
commonly used container types is given in Figure 2.3. Most come in two sizes: 20
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feet and 40 feet, with external dimensions of (length × width × height in feet’inches)
20’0 × 8’0 × 8’6 and 40’0 × 8’0 × 8’6, respectively. Container capacity and volume
is measured in Twenty-Foot-Equivalent Units (TEUs), expressing the equivalence
with the number of 20 ft containers. Due to the different-sized containers it is un-
clear what is meant by a vessel with a capacity of 1000 containers; holding only 20
ft containers (a TEU-factor of 1) would require a significantly smaller vessel than
one with only 40 ft containers (a TEU-factor of 2). Therefore, TEU is used for all
capacity and volume related container descriptions.

Figure 2.3: Different types of intermodal containers (TBA Training Portal).

We briefly discuss the different container types that are depicted in Figure 2.3:

• Standard containers are the most commonly used containers. If cargo permits,
these container types are preferred.

• High-cube containers are standard containers with a length of 40 feet and an
increased height of 9 feet and 6 inches.

• Open top containers have a larger capacity than standard containers, because
the cargo can stick out the top of the container. This is especially useful for
large machinery or construction materials. Lashing rings are used to keep the
cargo stable.

• Flatrack containers only have walls on the short side of the container and
therefore allow the cargo to stick out the side of the container. These contain-
ers are used to transport trucks and boats that do not fit in regular containers.
The collapsible version can be shipped more efficiently when empty, but can
endure slightly smaller top loads than the fixed end flatrack containers.
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• Platform containers do not have any side walls and are used for extremely large
and/or heavy cargo such as airplane parts and heavy, odd-shaped machinery.

• Refrigerated containers (also called reefers) possess an interal refrigeration
unit and are therefore capable of transporting temperature-sensitive, perish-
able cargo, like meat or fruits. Reefers rely on external power and therefore
often have specifically assigned places on vessels and container terminal yards.
Reefers do have ISO standardized dimensions (mostly 40 feet) and can there-
fore be handled by regular container terminal equipment types.

• Bulk containers are only produced with a length of 20 feet and are designed for
the transport of bulk goods, such as corn, pet food and grain. The containers
have manholes on the top and hatches on the doors to load and unload the
bulk goods.

• Tank containers transport liquid, gases and powders and consist of a vessel
made of stainless steel, surrounded by a protective layer and a steel frame.
The containers have a manhole and at least one valve on the top and another
valve on the bottom. Both hazardous as well as non-hazardous goods can be
transported with tank containers. Dangerous goods should always be reported
and clearly marked on the outside of the container, and will generally be
handled and stowed separately.

2.3 Waterside
At the waterside (also called quayside or seaside) vessels and barges berth alongside
the terminal. Vessels transport containers overseas and barges transport containers
through inland waterways. The size and the number of vessels that can be serviced
simultaneously is bounded by the size of the quay, by the QCs that load and discharge
containers onto and from vessels and by the water depth. Shipping lines generally
want to minimize the time their vessels spend at a container terminal, making it
crucial for terminal operators to minimize the turnaround time of vessels (the time
frame between the arrival and departure) and to avoid congestion of vessels that
are waiting to be serviced. To save costly space at the quay, barges are sometimes
handled at a specific barge facility, where the water depth or handling equipment is
not suited for large deep-sea vessels.
QCs are among the most expensive equipment types on a container terminal and
require a lot of space alongside the quay. Since QCs are responsible for loading
and discharging vessels and minimizing the turnaround time of vessels has a high
priority for container terminal operators, QC productivity needs to be as high as
possible. A QC can only discharge a container from a vessel when there is a place
to drop the container at the quay or onto another type of equipment, and can only
load a container on a vessel when this container is ready to be picked up. Loading
QCs need to follow the bayplan of the vessel: a plan that describes which container
should be placed at which location on the vessel.
Some vessels have on-board cranes that are capable of loading and discharging the
vessel without the need for appropriate handling equipment at the quay. Further-
more, Mobile Harbour Cranes - cost-attractive, smaller cranes that are easily repo-
sitioned and capable of handling all types of cargo - can be used to replace or
complement regular QCs. In this thesis we focus solely on QCs that can lift one
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(single-lift) or two (twin-lift) containers at the same time. These twin-lift QCs carry
two 20 feet containers as if they are one 40 feet container (end-to-end). Obviously,
a QC that is performing twin-lift operations can achieve a higher productivity when
measured in the number of containers handled, compared to a QC that performs
single-lift operations. QCs with a tandem-lift function can carry two (20 or 40 feet)
containers side by side, but these are not considered in the experiments of this the-
sis.
Each of the QCs places the containers directly in a QC transfer point (TP) that
is either located right underneath the QC or at the back of the QC (backreach).
The difference between these two placements is indicated in Figure 2.4, where a
screenshot of TIMESQUARE depicts three QCs. HTVs arrive through the green
rectangles (QC buffers) and wait there until the desired container is at the QC TP.
They then drop/pick-up containers underneath or at the back of the QC at the TP,
and leave through the blue rectangles.

Figure 2.4: Three QCs (in black, with a vessel below and the yard above). The two outer
QCs have a TP underneath, with buffers closer to the vessel. The middle QC performs
backreach moves with a TP and buffers closer to the yard (Screenshot TBA Simulation
model TIMESQUARE).

A QC with backreach needs more time to move a container from the vessel to the
buffer and vice versa, and can therefore achieve a slightly lower productivity than
a QC with a TP closer to the vessel. On the other hand, HTV driving distance
decreases when QC buffers are located closer to the yard. This has a smaller impact
on terminal productivity than QC productivity but cannot be ignored.

2.4 Horizontal transport vehicles
HTVs are responsible for container transport from the quay to the storage yard and
vice versa. Depending on the terminal layout and functionality they can also be
deployed at the landside of the terminal to - for example - transport containers from
the storage yard to the train facility. In this thesis we do not include a train facility
and the only area where this internal transportation mode is considered is between
the quay and the storage yard.
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HTV types vary considerably, ranging from fully-automated to human-operated
equipment with different functionalities. All HTV types are capable of transporting
containers horizontally over the container terminal, while only some of them can
also perform (twin-)lifting operations. HTVs that are not equipped with a spreader
cannot lift containers themselves and always need another type of handling equip-
ment to assist them.
In this thesis we consider Shuttle Carriers (ShCs) (see Figure 2.5): relatively fast
vehicles that are able to pick-up and drop containers autonomously. Both manual-
operated as well as fully-automated ShCs exist. ShCs can carry 1-over-1 (or - equiv-
alently - 2 high), meaning that they can carry one container over another container.
They can also stack one container on top of one other container and therefore do
not need additional equipment to assist them in picking up or dropping containers
at QC TPs, in the storage yard or even from and to road trucks.

Figure 2.5: Shuttle Carrier (ShC) (TBA Training Portal).

2.5 Yard
The storage yard consists of a number of rectangular stack modules or blocks, sepa-
rated from each other by roads or small land openings for terminal equipment. The
precise location of a container within a module is called a slot and a number of
slots that is located on top of each other is called a pile. Each slot is specified by
three dimensions: a bay, row and tier, as becomes clear from Figure 2.6. One could
address the number of bays as the length, the number of rows as the width and the
number of tiers as the height of the module.
The layout of the storage yard is generally either in parallel (the stack modules and
quay are parallel) or perpendicular (a 90◦ angle between the stack modules and
quay). The difference becomes clear from Figures 2.7 and 2.8. A clear separation
between the waterside and the landside of the yard is made by the perpendicular
layout, while the parallel layout allows HTVs to drive to both sides of the terminal.
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Figure 2.6: Structure of a stack module or block. Each slot is a unique combination of a
bay, row and tier number (Luo et al., 2011).

There exists a wide variety of equipment types for container handling in the storage
yard: yard cranes (YCs). We briefly discuss the two types in Figure 2.7 and Fig-
ure 2.8. Figure 2.7 shows a container terminal with Rubber Tyred Gantry Cranes
(RTGs) and in Figure 2.8 Rail Mounted Gantry Cranes (RMGs) are used. Both
types are capable of driving along the module; the first on wheels and the second
on a specifically built railway. RTGs are cheaper than RMGs, but their produc-
tivity is typically slightly lower (10 containers per hour versus 15 containers per
hour). In all experiments of this thesis RMGs are responsible for container han-
dling in the storage yard. Depending on the layout of the terminal and equipment
types containers are first placed in buffers - as in Figure 2.8 - or placed directly on
the HTVs, either at the head of a module or at small transfer roads between modules.

Figure 2.7:
PTP Tanjung Pelepas in Malaysia. Paral-
lel yard and zero, one or two RTGs (blue)
per module (yellow) (TBA Training Por-
tal).

Figure 2.8: Container terminal in Ham-
burg. Perpendicular yard with two
RMGs (blue) per module (yellow) and in-
terchange buffers (white) (TBA Training
Portal).
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Each of the containers in the storage yard must be reachable by the yard equipment,
either to be picked-up for transport, or to be reallocated to another spot in the yard.
When a container that is not on the highest tier of its pile is needed for transport,
the top container has to be moved to reach the needed container. This is called a
rehandle or shuffle move. When containers are reallocated to different piles in order
to anticipate leaving and arriving containers (usually off-peak) these moves are called
housekeeping or prepositioning moves. The number of rehandle and housekeeping
moves should be kept at a minimum, since no payment is received for any of them
and it keeps the yard equipment from executing more profitable moves.
Containers are generally grouped together based on similar characteristics, like type,
size, weight class and destination, to avoid rehandles as much as possible. For the
same reason pile heights are to be kept as equal as possible. Sometimes - for empty
containers - the shipping company is indifferent between containers; any empty
container of the correct shipping line is allowed to board the vessel, hence grouping
empty containers together results in zero rehandles for empty containers. Some
container types require separate slots in the yard. Reefers, for example, need a
power supply to keep them at the right temperature. Usually (part of) a separate
module or a specific place in the yard is reserved for these container types. The
same holds for odd-sized containers (like open top containers or flatrack containers,
as introduced in Section 2.2) that are not suited for stacking. Tank containers and
containers with dangerous or hazardous cargo are also treated with special care and
on special yard slots. Depending on their degree of hazard these containers should
be stored with a specified minimum distance between each other, to ensure safety
on the terminal.

2.6 Landside
At the landside of the terminal trucks and trains arrive to drop-off and/or pick-up
containers. Trains arrive at a special railway facility, where containers are loaded
and discharged with the aid of cranes and/or HTVs. Trucks arrive through the gate,
where various procedures have to take place before the truck driver can pick-up
and/or drop-off a container. Most procedures concern (driver, chassis and container)
identification, cargo and customs checks, cargo classification, empty container checks
and damage detection in order to ensure safety and avoid illegal activities. At some
container terminals these procedures can (almost) all be performed automatically,
while other terminals perform manual checks. To provide acceptable service levels,
congestion at the gate and truck service times must be kept minimal. Since this
thesis addresses HTV scheduling at the waterside of the terminal, we assume an
acceptable service level at the gate and sufficient hourly truck arrivals to prevent
the yard from emptying by lack of drop-off trucks and from overflowing by lack of
pick-up trucks. Furthermore, we do not include train arrivals in our experiments,
and consider a perpendicular yard with a clear separation between the land- and
waterside and can therefore exclude a deeper analysis of the landside processes.
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2.7 Scheduling
The scheduler at a container terminal faces the important job of assigning container
moves to equipment types at specific points in time with the goal of minimizing the
number of rehandles, the turnaround time of vessels, the cost of (unnecessary) equip-
ment use and the driving distance of HTVs, while maximizing the productivity of
various equipment types and - ultimately - container terminal profit. Next to these
objectives, the scheduler faces a large number of challenges due to uncertain arrival
times of trucks and vessels, possible equipment breakouts and weather disruptions.
Furthermore, rolling containers - containers of which the destination changes while
already in the storage yard - can ruin schedules that were made in advance. It is
therefore not possible to address the scheduling problem at a real-life container ter-
minal in an off-line manner (where all job information is known beforehand): it has
to be scheduled in a flexible, on-line way (where jobs arrive during the scheduling
process).
It is under debate whether better solutions can be found when addressing the mul-
tiple scheduling problems of the container terminal scheduler simultaneously (coor-
dinated scheduling) or separately (uncoordinated scheduling). This is further dis-
cussed in Chapter 3, but - as pointed out in Chapter 1.4 - the implementation of
a coordinated approach by Jonker (2018) led to no significant increase in terminal
productivity in the simulation models of TBA. Therefore this thesis addresses the
on-line, uncoordinated scheduling problem of HTVs at the waterside of a perpen-
dicular simulated container terminal. More specifically, we consider the scheduling
of unload moves (from QCs to buffers located in the yard) and load moves (from
buffers in the yard to QCs) on varying numbers of ShCs. In the isolated version of
this scheduling problem it can be assumed that the RMGs always place the required
container in the buffer before it is needed by a ShC and that container locations
and destinations are pre-defined. Furthermore, QCs can only be productive when
a slot is available in the QC TP (when the QC is discharging) or when the correct
container is waiting for pick-up in the QC TP (when the QC is loading and needs to
obey the vessel’s bayplan). ShCs are responsible for both situations and therefore
the scheduling decisions of ShCs have a direct effect on QC productivity and hereby
container terminal productivity.
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Chapter 3

Literature review

This chapter highlights previously done research in fields related to the topic of
this thesis, divided into three parts: the first part in Section 3.1 concerns container
terminal planning and scheduling for various equipment types. The effectiveness of
simulation models is discussed, and uncoordinated as well as coordinated scheduling
approaches are reviewed. Section 3.2 focusses on reinforcement learning algorithms
that are used to improve logistic operations and the last part in Section 3.3 addresses
the topic of parameter tuning: multiple methods and their applications are discussed.

3.1 Container terminal planning and schedul-
ing

During the past decades, the literature on container terminals has grown substan-
tially, simultaneously with the increasing importance of maritime container trade.
Container terminal operators find themselves in a competitive market environment,
where constant improvement is crucial for survival. This requires a thorough inves-
tigation of terminal requirements, constraints, operations and design, which in turn
gives rise to a number of researchers that design, implement or optimize a wide vari-
ety of algorithms. Testing these algorithms on real terminals is very time-consuming,
costly and sometimes even dangerous, which is why simulation techniques are often
used.

3.1.1 Simulation
Carpenter and Ward (1990) are two of the first researchers to create a flexible model
to reproduce most operations on a container terminal, including the effect of traffic
interactions. This allows for thorough testing of important decisions in the terminal
planning processes, and is used by various researchers and companies up until today.
Gambardella et al. (1998) address the relevance of simulation, not only for the de-
sign of terminals before they are built, but also for operational decisions at container
terminals. They point out that most scheduling decisions are usually solved by the
terminal manager, only using his or her experience. Introducing new approaches
becomes much more reliable when validation by means of a simulation model of the
terminal is possible. Thus, the simulation tool also becomes a means at introducing
new approaches into traditional settings. The simulation technique was constantly
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improved over the years and enabled a number of researches to improve new and
existing algorithms to increase terminal productivity and/or decrease costs: Said
et al. (2014) achieve a 51% reduction in ship service time when compared to real
data at El-Dekheilla port in Egypt and Leriche et al. (2016) reduce the cost of a
new logistic system for Le Havre port in France by 16%.
Simulation models are extensively used to test the performance of newly created or
adapted scheduling algorithms. Container terminal scheduling consists of four ma-
jor components, that can be addressed simultaneously (coordinated) or separately
(uncoordinated): Berth, QC, YC and HTV scheduling. We first discuss the un-
coordinated approaches to solve these four scheduling challenges and then address
the coordinated approaches to schedule one or more equipment types simultaneously.

3.1.2 Uncoordinated scheduling
The Berth Scheduling Problem (BSP) concerns the sequencing of vessels that are
to be served at each berth, with the aim of minimizing the service time of vessels.
Dulebenets (2018) discusses two evolutionary algorithms, based on the Genetic Al-
gorithm (GA): one with a mutation operator that is adapted based on feedback
from the search and one with a constant mutation operator. Both versions show
promising results with an optimality gap that does not exceed 0.80%. The algo-
rithm with an adapted mutation operator results in an average saving in terms of
the total weighted vessel service cost of 5.4% and 8.5% for medium and large in-
stances, respectively, without a significant increase in computational time. Kavoosi
et al. (2019) elaborate on this evolutionary algorithm by introducing a Universal
Island-based Meta-heuristic Algorithm (UIMA) that divides its population in four
sub-populations (islands). Each island uses a different meta-heuristic algorithm to
solve the BSP, which outperforms the UIMA approaches that uses the same algo-
rithm on each island, and various single-solution-based meta-heuristic algorithms
like Tabu Search and Simulated Annealing.
In the Quay Crane Scheduling Problem (QCSP) a sequence of handling jobs has to
be assigned to a number of QCs with the goal of minimizing vessel handling times.
The problem is shown to be NP-complete by Lee et al. (2008). Kim and Park (2004)
implement a Branch and Bound algorithm (B&B) that is able to find optimal solu-
tions and also perform a Greedy Randomized Adaptive Search Procedure (GRASP)
that is computationally less exhaustive. The GRASP objective values do not exceed
the B&B objective values by more than 10% and reduce the computational time to
3% of the B&B computational time for larger instances. Lee et al. (2008) propose
an effective GA for the version of the QCSP where multiple QCs are allowed to
work on one ship, but have to keep a distance of at least one ship-bay to prevent in-
terference: the Quay Crane Scheduling with Non-Interference Constraints Problem
(QCSNIP). They find near-optimal results with an average gap of 0.41% between
the lower bounds and the solutions of GA.
YCs are responsible for container handling in the storage yard: they store, stack,
relocate and retrieve containers in the storage yard and interchange containers by
interacting with external trucks and HTVs. Due to their relatively slow operations
they often form bottlenecks in terminals. Kim et al. (2003) formulate a problem
that minimizes the service delay cost for arriving trucks and implement various se-
quencing methods: a modified Dynamic Programming (DP) approach, well-known
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heuristic methods like first-come-first-served and shortest-processing-time and a RL
approach that selects the most suitable sequencing rule at every decision point.
Interestingly, the DP approach does not perform better than the straight-forward
heuristics and the RL sequencing decisions outperform the heuristic methods when
the container arrival locations do not follow a uniform distribution. Ng and Mak
(2005) propose a B&B algorithm with improved lower and upper bounds that mini-
mizes the sum of job waiting time and is able to solve the YC scheduling problem to
optimality. According to Seyedalizadeh Ganji and Javanshir (2010) the B&B algo-
rithm ”has no sufficient efficiency to solve this models and becomes perfectly useless
when the problem size increases.” They therefore implement GA and compare its
performance to B&B on small instances and find the same (optimal) solutions for
both approaches with shorter run times for GA. GA is also applied on larger in-
stances, but is not compared to B&B and therefore the solution quality remains
unknown.
HTVs are the vehicles that transport containers to, from and within the yard and
to/from different crane types. Generally, a large number of HTVs is driving around
the container terminal and the scheduler aims to assign jobs to each of the vehicles
with the objective of completing as many (useful) jobs as possible within a given
time frame. Different terminal operators might have different expectations of HTV
efficiency and productivity and an automated vehicle requires different constraints
than manually operated HTVs. Therefore various objectives have been discussed in
the literature, as well as a combination of those in what is called multi-objective
optimization. Cai et al. (2013) focus on Autonomous Straddle Carriers (ASCs)
and apply B&B combined with a column generation method to solve a weighted
multi-objective function that consists of minimizing ASC travelling time, ASC wait-
ing time and the finishing time of high-priority container-transferring jobs. The
algorithm is able to solve small instances to optimality when minimizing the sum
of weighted objectives, as well as when one objective at a time is considered. Hu
et al. (2019) create clusters of containers and assign Terminal Trucks (TTs) to spe-
cific clusters by means of an adapted version of GA, where mutation and crossover
operators are adapted based on the calculated fitness values. These fitness values
are calculated based on a multi-objective function that consists of minimizing the
non-loaded travelling distance and makespan of the TTs. Rashidi and Tsang (2011)
define and formulate the scheduling problem of Automated Guided Vehicles (AGVs)
as a Minimum Cost Flow (MCF) model and apply a state-of-the-art algorithm that
is called the Network Simplex Plus Algorithm (NSA+). MCF models the scheduling
problem as a connected network and NSA+ maintains a feasible spanning tree at
each iteration until an optimal tree is found. Global optimal solutions are found for
3000 jobs and 10 million arcs within two minutes, which is significantly faster than
the previously discussed versions of B&B. For larger instances or for when compu-
tational time is limited Rashidi and Tsang (2011) propose a Greedy Vehicle Search
(GVS) method that assigns each job to a vehicle that minimizes a combination of
waiting time, travelling time and job lateness. GVS is able to solve instances with
3000 jobs and 10 million arcs within five seconds, but with higher total costs than
NSA+.
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3.1.3 Coordinated scheduling
So far we have discussed various methods that are used to assign jobs to specific
equipment types at container terminals. These methods can be applied sequentially
in an uncoordinated manner, which breaks down the complete set of terminal oper-
ations into a series of decisions but ignores existing interrelations between different
levels. One might therefore want to consider all terminal operations within one
optimization problem in a coordinated manner, but in practice this would result
in models that are ”much too huge to be solvable at all” (Bierwirth and Meisel,
2010). Therefore, various researchers address the integration of a smaller number
of operations at a time. When applied to scheduling operations we refer to this
integration as coordinated scheduling, but different terms can be found in the liter-
ature: synchronized scheduling (Ahmed et al., 2021) or - more generally applicable
- integrated optimization (Geoffrion, 1999). The latter states that the integration of
multiple problems can either be done by function or by applying deep integration.
In functional integration a top-level decision is made that determines the sequence
for solving base-level subproblems. This decision is based on interaction between
the top- and base-levels. Deep integration merges two or more subproblems into
one problem formulation and solves the problem simultaneously. Integration of as-
signment and scheduling problems can be a very efficient use of deep integration, as
was shown by Diabat and Theodorou (2014). They formulate a model that assigns
QCs to vessels and sequences the QC operations simultaneously and point out that
the integrated approach leads to a significant reduction in handling time, especially
for large instances. GA is used to solve the integrated problem and near-optimal
solutions are found. Safaeian et al. (2021) add multiple constraints to the same
problem, resulting in a more real-life-based representation of a container terminal.
They implement a Teaching-Learning-Based-Optimization (TLBO) algorithm that
seems especially efficient for large instances.
Cao et al. (2010) integrate the QC and Yard Truck scheduling problems and formu-
late the combined problem as a mixed integer programming model with the objective
of minimizing the maximum makespan of all jobs. They implement GA and a John-
son’s Rule-based heuristic algorithm and compare the objectives with a computed
lower bound. The largest gap between the objective values and the lower bound is
10% and 44% for GA and the Johnson’s Rule-based heuristic, respectively. The same
problem is studied by Skaf et al. (2021) and GA is compared with the actual perfor-
mance of the port of Tripoli-Lebanon. GA reduces the makespan of processing all
containers by 13-18% when compared to the real data on the considered instances.
To conclude, the scheduling problems of QCs, YCs and TTs are integrated by Zeng
and Yang (2009), Chen et al. (2007) and Chen et al. (2013), leading to more efficient
solutions but larger computational times. Zeng and Yang (2009) formulate a Hybrid
Flow Shop (HFS) scheduling problem that minimizes the maximum completion time
of all jobs. GA combined with two heuristics that sort jobs on shortest and longest
processing time, respectively, is implemented and a connection with simulation is
made to assess the performance. The authors use machine learning to avoid long
computational times: a Neural Network (NN) is trained to compute expected objec-
tive values and filter out bad solutions to prevent the simulation model from taking
too long to provide results on the solution quality. Chen et al. (2007) implement a
Tabu Search (TS) algorithm and show that a good initial solution is important for
the efficiency of the algorithm. Chen et al. (2013) improve on the solution quality
of TS by implementing a three-stage algorithm that first generates crane schedules,
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then solves a multiple-truck routing problem and ultimately uses a disjunctive graph
to construct a complete solution. The three stages are iteratively performed, which
facilitates the search for a good solution. The authors claim that the results are
”suitable for large real-world problems” (Chen et al., 2013).

3.2 Reinforcement learning in logistic opera-
tions

Reinforcement learning (RL) is a machine learning method that is based on learning
from trial-and-error. An agent is trained to take actions in specific states of the
world and investigates which actions eventually generate the best results, by trying
instead of by being told (Wuest et al., 2016). The method is originally based on
a Markov Decision Process (MDP) and therefore used to be limited to processes
that can be modelled by discrete-time MDPs. Bradtke and Duff (1994) extend this
domain to Semi-Markov Decision Processes (SMDPs). In a SMDP the time spent in
each state of the world can follow any continuous distribution instead of the expo-
nential distribution that is considered in MDPs. This extension resulted in a rising
interest in RL from researchers in different fields of work.
Fotuhi et al. (2013) model YCs as reinforcement agents with the goal of solving the
yard crane scheduling problem. They define the current state of the world by a
combination of 10 numeric values that consists of the location of the yard crane and
detailed information about the number of trucks that is waiting in specific blocks.
In each state the agent can choose one of four actions: stay idle, serve the closest
truck, serve the longest waiting truck that is close to the Yard Crane or serve the
longest waiting truck that has exceeded the specified waiting time threshold. The
reward value for an action is defined by the average truck waiting time of all pre-
viously served trucks and therefore changes with every truck that is served. The
results show a significant decrease in average truck waiting time when compared to
a method in which the YC always chooses the next truck that maximizes a specific
utility function. Hirashima et al. (2004) and Hirashima (2018) apply RL to con-
tainer marshalling: the process that rearranges container placements on the yard.
The number of container movements is decreased, when compared to the use of con-
ventional methods.
RL also shows to be effective in determining near-optimal inventory policies (Gian-
noccaro and Pontrandolfo, 2002) and in scheduling decisions in the field of supply
chain management (Stockheim et al., 2003). The latter only include two possible
actions for the reinforcement agents: accept or reject the current job offer in a state
that depends on the current queue, the value of the job offer and the penalty cost
for delivering the job after its due date.
Production scheduling that translates detailed process plans into a shop floor sched-
ule is one of the most important processes in manufacturing systems and especially
the Job-Shop Problem (JSP) has attracted a lot of attention (Wang and Usher,
2005). Several RL approaches have been implemented to solve different versions of
this scheduling problem: Wang and Usher (2005) have a reinforcement agent decide
on the best dispatching rule for a single machine and Wang and Usher (2007) extend
this model to two and three machines, while still using a single agent to decide on
the best dispatching rule for all machines.
Csáji et al. (2006) create a multi-agent model for the dynamic JSP, in which the
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number of jobs and the time of entering the system is not known in advance. The au-
thors construct a model with two types of agents: order agents and resource agents.
Order agents are associated with scheduling one specific job and they can communi-
cate with other order agents to create a sequence of operations (consisting of one or
multiple jobs). The resource agents gather information about the possible costs of
executing that sequence and can then bring out a bet. The agent with the best bet
gets the job and both the resource agent as well as the order agent are rewarded.
Zhao et al. (2021) use a single-agent model for the same problem, but extend the
state characteristics in such a way that it contains all information about average
machine utilization, average machine work load rates, completion rates of jobs and
remaining process waiting rates of jobs at specific points in time. The action set of
the agent consists of nine different heuristics (including a random job pick) and the
reward for each action reflects the processing urgency in order to minimize delay
time of the jobs. By using average values of machine utilization and work load rates
for the state specification the number of states is not as large as when taking into
account these values per machine, which is what Zhang et al. (2012) do: they in-
clude eight state features - each consisting of different values for a specific job and/or
machine - which results in 3m + 8n state features in total, where m is the number
of machines and n the number of jobs. Increasing the number of state features has
an increasing effect on the learning time of the reinforcement agent, but does yield
state-specific reliable results (Zhang et al., 2012).
Most of the discussed models apply a Q-learning algorithm (Fotuhi et al. (2013), Hi-
rashima (2018), Stockheim et al. (2003), Wang and Usher (2005), Wang and Usher
(2007), Zhang et al. (2012)), that approximates the state- (s) and action- (a) de-
pendent value Q(s, a) directly and updates it at each time step. At every decision
moment a probability ϵ determines whether a random action is chosen or the ac-
tion that minimizes (or maximizes, depending on the implementation) the value of
Q(s, a) (Li et al., 2012).
Zhao et al. (2021) implement a Deep Q-Network (DQN) algorithm, which combines
the Q-learning algorithm with a Deep Neural Network in order to handle high-
dimensionality and continuity of the defined states: DQN is able to effectively fit
the value of Q(s, a), even when the number of states s is very large.

3.3 Parameter tuning
Each model and algorithm has its own parameters and since they all are completely
different, there is no best known way to generally tune parameters. Just like there
is no ’best algorithm’ that can solve each optimization problem, as stated in vari-
ous ”no-free-lunch” theorems (Wolpert and Macready, 1997). Parameters do have a
common property: each parameter can take on multiple values and a set of param-
eters therefore can have many different possible settings. We discuss a number of
techniques that are used to deal with and/or reduce the search space of parameter
settings.
The ”one-factor-at-a-time” method has been considered for a long time as the only
correct way to perform experiments (Bartz-Beielstein and Markon, 2004). This
method varies the factors (parameters) one at a time, while keeping all other factors
constant. This immediately excludes interactions between the factors, which is not a
realistic assumption in most applications. Box et al. (1978) discuss a 2k full factorial
design approach, in which the experimenter picks two levels for each factor and per-
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forms the required optimization method for each of the 2k factor level combinations.
Bartz-Beielstein and Markon (2004) state that 2k−p fractional factorial designs are
sufficient, when k is large and/or when computational resources are limited. Rules
for constructing these fractional factorial designs are presented in Box et al. (1978).
Bartz-Beielstein and Markon (2004) also propose a tree-based regression method in
which each branch of the tree corresponds to the level of one factor. Each node of
the tree denotes the average objective or fitness value of all factor level combinations
that are possible in that part of the tree. The advantage of this method is that it
allows the experimenter to test whether changing a specific factor has a significant
effect on the fitness values.
In machine learning algorithms the tuning of hyperparameters that are used to
control the learning process is of great practical importance. Bergstra and Bengio
(2012) compare the effect on the learning process of using random search and grid
search for parameter values. Random search is a method that selects a value for
each hyperparameter independently by means of a specified probability distribution.
In grid search one searches exhaustively through a manually specified subset of the
hyperparameter space of the targeted algorithm. Both approaches evaluate the effi-
ciency and/or result of the algorithm for each of the generated hyperparameter sets
(Chan et al., 2013). Bergstra and Bengio (2012) find that - despite its simplicity -
random search yields better results for the machine learning algorithms and claim
that this result can mainly be ascribed to the fact that not all hyperparameters are
equally important to tune: the effect of changing (some of) these parameters on the
learning process of the machine learning algorithm might be negligible.
Sequential Parameter Optimization (SPO) is a search-method that adapts the pa-
rameter settings and fits a new model at every iteration. SPO starts with an initial
population of parameter values that are tested to determine their utility or fitness.
Then a model (this could be a regression model, but can be generalized to any other
model) is fitted to represent the relation between the parameter settings and the
results. Afterwards, new parameter values are generated (manually, randomly or by
any other search method) and tested using this model. The most promising param-
eter values are added to the population and the algorithm starts again (Smit and
Eiben, 2009). The authors show that any algorithm that is used to tune parameters
of evolutionary algorithms outperforms both parameter setting conventions as well
as individual intuition.
Alibrahim and Ludwig (2021) compare the performance of GA on the accuracy of
a machine learning algorithm against grid search and a Bayesian algorithm. The
Bayesian algorithm attempts to predict how untested combinations of parameter set-
tings will perform and consists of two key components: the probabilistic surrogate
model and the acquisition function. At each iteration the surrogate model is fitted
to all current observations of the target function and then the acquisition function
searches for possibly improving parameter settings (Alibrahim and Ludwig, 2021).
GA starts with an initial population of parameter settings and selects the best in-
dividuals by assessing their fitness values. Crossover and mutation operators define
the creation of new individuals, whose fitness values are also assessed. The authors
find GA to be the fastest and most accurate algorithm among the three discussed
algorithms.
A RL approach, where an agent is trained to decide on parameter values is pro-
posed by Jomaa et al. (2019) for hyperparameters in machine learning algorithms
and Semendiak (2020) for evolutionary algorithm parameters. Both approaches yield
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promising results, outperforming each of the assessed conventional strategies.
Note that the effectiveness of the previously discussed algorithms is highly dependent
on the problem at hand: if it is costly to calculate fitness values and/or objective
values at every iteration fewer parameter settings can be tested within reasonable
time. Furthermore, when the number of parameters and/or their possible values
are large the algorithms’ effectiveness might decrease. In those cases it is necessary
to reduce the search space in a (more) efficient way. For this purpose Wang et al.
(2014) propose the use of the Taguchi Method for parameter design. The Taguchi
Method can be used to find the minimum number of experiments to be performed
within the allowed limit of factors and levels and makes use of orthogonal array
techniques to guide experiments with the goal of maximizing test convergence while
minimizing the number of cases that have to be tested (Wang et al., 2014).

34



Chapter 4

(Semi-)Markov Decision Process

This chapter contains an introduction to Markov Decision Processes (MDPs) in
Section 4.1, Semi-Markov Decision Processes (SMDPs) in Section 4.2 and Partially
Observable Markov Decision Processes (POMDPs) in Section 4.3. The former is
the main ingredient for many reinforcement learning algorithms, while SMDPs and
POMDPs are generalizations of MDPs to which reinforcement learning algorithms
have recently been applied as well. The main elements and assumptions are discussed
in order to be applied in Chapter 5 where we introduce several reinforcement learning
algorithms that lead to RLA: the reinforcement learning algorithm that we use to
derive scheduling decisions for the ShCs on the simulated container terminal.

4.1 Markov Decision Process
Markov chains are an important class of discrete-time stochastic processes and are
characterized by the Markov property that the future behaviour, given past and
present behaviour, only depends on the present and not on the past. The Markov
property is formally described in Definition 4.1.1 (van Handel, 2016).
Definition 4.1.1 (Markov Chain)
Let {Xn}n≥0, be a random process where each Xn takes values in a finite set D.
{Xn}n≥0 is called a Markov chain if the following holds:

P{Xn+1 = xn+1|Xn = xn, ..., X0 = x0}
=P{Xn+1 = xn+1|Xn = xn}

for all n ≥ 0 and x1, ..., xn+1 ∈ D

The continuous-time equivalent of a Markov chain is called a Markov process. The
formal definition is given in Definition 4.1.2 (van Leeuwaarden, 2020).
Definition 4.1.2 (Markov Process)
A continuous-time stochastic process {X(t), t ≥ 0} with state space S is a Markov
process if

P{X(t + s) = j|X(s) = i, X(u) = x(u), 0 ≤ u < s}
=P{X(t + s) = j|X(s) = i}

for all s, t ≥ 0 and all i, j, x(u) ∈ S, 0 ≤ u < s.
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The notion of a Markov Decision Process (MDP) was first introduced by Bellman
(1957) in the form of a theory - the Markovian Decision Process - that could solve
sequential decision problems numerically. He considers observations of a system over
both finite and infinite time horizons that are split up into different stages. At each
stage, the current state of the system is fully observed and a decision is to be made,
which influences the state that is observed at the next decision stage. Note that it
is not necessary that a specific decision in a specific state always leads to the same
subsequent state. Transition probabilities p(s′|s, a) define the probability of reaching
state s′ when taking decision a in state s for all s and s′ in the state space and all
possible decisions a. These transition probabilities also need to obey the Markov
property, hence can only depend on the current state and decision and not on the
previous states and/or decisions. Depending on the state and the decision that was
made, a reward is gained. The formal definition - as proposed by Kaelbling et al.
(1998) - of a MDP is given in Definition 4.1.3.

Definition 4.1.3 (Markov Decision Process)
The tuple (S,A, T ,R) describes a Markov Decision Process with the following prop-
erties:

1. State space S: a finite, observable set of states of the world.

2. Action space A: a finite set of decisions/actions. If not all actions are valid
in every state of the world, we refer to the action space as A(s)

3. Transition probability distribution T : defines the probability of transitioning
to a certain state, when the current state and action are known.

4. Reward function R: the expected immediate reward, defined for every combi-
nation of action and state.

Both the transition probability distribution and the reward function obey the Markov
property as defined in Definition 4.1.1.

The total (cumulative) expected reward from the current stage until the end of
the time horizon can be expressed by a value function. The functional equation
expresses the relation between the value function at the present stage and the value
function at the following stage. By backwards recursively maximizing the functional
equation optimal decisions that depend on the stage and state can be determined.
This method of optimizing a policy is based on the principle of optimality as defined
by Bellman (1957) and stated in Definition 4.1.4. More detailed formulations are
provided in Chapter 5.

Definition 4.1.4 (Principle of Optimality)
An optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the
state resulting from the first decision.

The sequential approach that maximizes some form of reward over multiple stages of
a decision process is very suitable for a wide variety of optimization problems, from
robot motion control (Ding et al., 2012) to image processing (Petrov and Kharina,
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2018) and portfolio allocation (Jilani et al., 2019). In the specific context of con-
tainer terminal scheduling we can define a state space based on various attributes
(the number of assignable vehicles, crane placement, the number and/or types of
containers that are to be moved), depending on what is deemed important in the de-
cision making. Scheduling decisions can consist of different (heuristic) methods that
decide which container is to be handled next by which equipment type and rewards
(QC productivity, number of performed jobs, idle time of equipment) ultimately de-
termine which scheduling decision performs best in each state of the terminal. One
could also address the different machines as separate entities and consider multiple
MDPs simultaneously. In that case the state space would be based on machine-
specific attributes (location, previous job, idle time), the scheduling decision defines
the next container to be handled and rewards are machine-specific, as proposed and
implemented by (Brauer and Weiss, 1998) for relatively small instances of a multi-
machine scheduling problem.

4.2 Semi-Markov Decision Process
Depending on the definition of the state space a Markov Decision Process can be
generalized to a Semi-Markov Decision Process (SMDP). Where MDPs only allow
decision-making at predetermined discrete points in time, in SMDPs these decisions
can be made at any time the system state changes (Giannoccaro and Pontrandolfo,
2002). Furthermore, in both MDPs and SMDPs state changes occur according to
the Markov Property, but for MDPs the sojourn time in a state is a discrete random
variable independent of the next state (van Leeuwaarden, 2020). For SMDPs the
sojourn time in a state is a continuous random variable with a distribution that
depends on both the current state as well as the next state. A formal definition, as
proposed by Baykal-Gürsoy and Gürsoy (2007), is given in Definition 4.2.1.

Definition 4.2.1 (Semi-Markov Decision Process)
Consider the continuous-time stochastic process {X(t), t ≥ 0} with values in the
finite state space S. Also consider m decision moments with m ∈ N.
We can then define the state process by {Xm, m ∈ N}. At each epoch m a decision
Am is chosen from the action space A.
We refer to the sojourn time between epochs (m-1) and m as the random variable
Γm and assume the initial state is fixed and given. The underlying sample-space
Ω = {S × A × (0,∞)}∞ consists of all possible realizations of states, actions and
transition times and will be equipped with the σ-field that is generated by the random
variables {Xm, Am, Γm+1 : m ≥ 0}.
Let Pxay, x ∈ S, a ∈ A, y ∈ S define the probability measure for all policies u and all
epochs m in the following way:

Pu{Xm+1 = y|X0, A0, Γ1, ..., Xm = x, Am = a} = Pxay

Conditional on the event that the next state is y, Γm+1 has distribution function
Fxay(.):

Pu{Γm+1 ≤ t|X0, A0, Γ1, ..., Xm = x, Am = a, Xm+1 = y} = Fxay(t)
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We assume that Fxay(0) < 1 and can then refer to the process {St, Bt : t ≥ 0} where
St is the state at time t and Bt the decision that was made at time t as a Semi-
Markov Decision Process.
Let Tn = ∑n

m=1 Γm denote the time of the n-th transition. Then for t ∈ [Tm, Tm+1)
we have:
St = Xm and Bt = Am.

4.3 Partially Observable Markov Decision
Process

While MDPs mandate full observability of the environment in which the decisions
are made, Partially Observable Markov Decision Processes (POMDPs) allow for
partial observability (Kaelbling et al., 1998). In this setting, the decision maker
makes an observation that does not fully capture the underlying environment. This
underlying environment is a MDP, but the partial observations are not necessarily
so. A formal definition, as proposed by Kaelbling et al. (1998) is given in definition
4.3.1.
Definition 4.3.1 (Partially Observable Markov Decision Process)
The tuple (S,A, T ,R, Ω,O) describes a Partially Observable Markov Decision Pro-
cess with the following properties:

1. S,A, T ,R: The underlying, not completely observed MDP.

2. Observations Ω: a finite set of observations that a decision maker can experi-
ence from the underlying environment. with A(s)

3. Observation function O: the probability distribution over possible observations
for each action. We define O(s′, a, o) as the probability of experiencing obser-
vation o when action a was taken and state s′ was reached.

Reinforcement learning (RL) is a machine learning method that evolves around train-
ing one or multiple agents to take actions that maximize some form of cumulative
reward in specific states of the world and is therefore particularly suitable for solving
MDPs and even SMDPs, as was shown by Bradtke and Duff (1994). Recent research
involves the applicability of RL to POMDPs (Sutton and Barto (2018), Meng et al.
(2021)). A major advantage of RL is its ability to handle complex (S)MDPs with
large state and action spaces. These complex problems require huge computational
effort when applying traditional approaches such as value iteration, policy iteration
and linear programming (Giannoccaro and Pontrandolfo, 2002).
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Chapter 5

Reinforcement learning

This chapter describes the general framework of reinforcement learning and Q-
learning algorithms, that rely heavily on the concept of MDPs that was discussed
in the previous chapter. Note that the goal of this thesis is to improve the schedul-
ing algorithm of TBA. Providing a complete overview of all RL algorithms and the
underlying theory - even though this is an interesting and continuously expanding
research field - would be beyond its scope. This chapter focusses on the theoretical
foundation of most RL algorithms and sequentially builds towards three explicit al-
gorithms that were proposed by renowned researchers: Deep Q-Network with Expe-
rience Replay, Reward Backpropagation Prioritized Experience Replay and Double
Deep Q-Network with Experience Replay. Section 5.1 provides a general overview
of the main elements of reinforcement learning algorithms, Section 5.2 introduces
the state-value and action-value functions and Section 5.3 discusses the general pol-
icy evaluation and iteration algorithm. Section 5.4 introduces the Q-value algorithm
and Section 5.5 briefly discusses the main component of machine learning algorithms:
the Artificial Neural Network (ANN). In Section 5.6 the methodology that is used
to update the weights of this ANN is discussed and the last three sections of the
chapter describe the algorithms that are combined into RLA: Section 5.7 introduces
the Deep Q-Network with Experience Replay and Section 5.8 extends the notion of
experience replay to Reward Backpropagation Prioritized Experience Replay. The
chapter concludes with Section 5.9 by introducing the Double Deep Q-Network with
Experience Replay.

5.1 General overview of reinforcement
learning

The goal of a reinforcement learning algorithm is to train one or multiple agents in
an environment that consists of a finite number or infinitely many states. We focus
on the single-agent version of the algorithm, in which one agent makes decisions or
performs specific actions and receives rewards. These rewards can be given after
each decision moment, when the last state has been visited and/or at any moment
in between.
Since RL is based on (S)MDPs it consists of the five main elements that were dis-
cussed in the previous chapter:

1. Decision epochs; moment in time when the agent makes a decision. These are
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predetermined discrete time points for MDPs and continuous random variables
for SMDPs.

2. State space S; all possible states of the system. Can be infinitely large or
of finite size, which highly affects computational time of the algorithm. Each
state can be described by a vector with multiple entries, or be one-dimensional.

3. Decision/action space A; all possible actions that can be taken by the agent
in any state of the world.

4. Transition probabilities; the probability of transitioning from state s to state
s′, defined for all s, s′ ∈ S.

5. Rewards; positive or negative real numbers that define the quality of the
decisions that were made. Rewards can be given after each decision epoch, at
the end of the time horizon or at any time point in between. Rewards that
are not given regularly are called sparse rewards.

5.2 State-value functions and action-value
functions

The reinforcement agent is trained to determine a policy π: a mapping from states
to probabilities of selecting each possible action in each of the states belonging to
the state space S. This policy generates a sequence of rewards {Rk} and the goal of
the agent is to learn the optimal policy π∗ that maximizes a value function V of this
sequence of rewards: the optimality criterion. The most commonly used optimality
criterion is the maximization of the cumulative expected future discounted reward,
that directly follows Bellman’s recursive equation (Bellman, 1957). Inspired by
Sutton and Barto (2018) we define the cumulative expected future discounted reward
as in Definition 5.2.1.
Definition 5.2.1 (Cumulative expected future discounted reward)
Let {Rk} be the sequence of rewards and 0 ≤ γ ≤ 1 a discount rate. Then the
cumulative expected future discounted reward at time t for all (infinitely many) time
steps ahead is given by:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...

=
∞∑

k=0
γRt+k+1 (5.1)

= Rt+1 + γGt+1 (5.2)

By Definition 5.2.1 a reward that is received k time steps in the future is worth γk−1

times its value when received at the current moment in time. As γ approaches 0 the
agent is mostly concerned with maximizing immediate rewards, while for γ close to
1 future rewards are more valuable. Even though the cumulative expected future
discounted reward Gt in Equation 5.1 sums infinitely many terms, for a bounded
and nonzero reward sequence {Rk} and γ < 1 it attains a finite value (Sutton and
Barto, 2018). In order to find the optimal policy π∗ the reinforcement agent needs
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to learn to estimate the value of being in state s and the value of taking action
a in state s under policy π (Hare, 2019). In line with the formulation of Sutton
and Barto (2018) we refer to the former as the state-value function νπ (as given
in Definition 5.2.2) and to the latter as the action-value function qπ (as defined in
Definition 5.2.3). The value functions hence specify which actions and states are
desirable in the long run.

Definition 5.2.2 (MDP State-value function for policy π)
Let s be the state at time step t, Gt be the expected discounted future reward and
0 ≤ γ ≤ 1 be the discount rate. Furthermore, let {Rk} be the sequence of future
rewards and let Eπ[·] denote the expected value of the term in between the brackets
given that the agent follows policy π. We can then define - for MDPs - the state-value
function for policy π by:

νπ(s) = Eπ[Gt|St = s]

= Eπ

[ ∞∑
k=0

γkRt+k+1
∣∣∣St = s

]
, for all s ∈ S

Definition 5.2.3 (MDP Action-value function for policy π)
Let s, Gt, γ and {Rk} be as defined in Definition 5.2.2. For MDPs, the action-value
function for policy π is given by the expected value of the future discounted reward
of taking action a in state s and subsequently following policy π and can be defined
as:

qπ(s, a) = Eπ[Gt|St = s, At = a]

= Eπ

[ ∞∑
k=0

γkRt+k+1
∣∣∣St = s, At = a

]
, for all s ∈ S and a ∈ A

The state- and action-value functions can be estimated from the agents experience by
exploiting the recursive relationship that is defined by Bellman’s recursive equation
Bellman (1957). We first define p(s′, r|s, a) as the probability of reaching state s′ ∈ S
and receiving reward r ∈ R, given particular values of the previous state s and action
a. Formally:

p(s′, r|s, a) ≡ P[St+1 = s′, Rt = r|St = s, At = a] (5.3)
∀s′, s ∈ S, r ∈ R, a ∈ A(s)∑

s′∈S

∑
r∈R

p(s′, r|s, a) = 1 (5.4)

∀s ∈ S, a ∈ A(s)

Note that, even though the reward r ∈ R is received when state s′ ∈ S is reached,
it is commonly notated by Rt = r instead of Rt+1 = r. Furthermore, when some
actions cannot be performed in specific states, the notation A(s) is used for the
action space in state s. Since the reinforcement agent of our experiments can take
any action from the action space in any state of the world, we will simply refer to the
action space as A for all s ∈ S. It is the tuple (s, a, s′, r) that defines the transition
from state s ∈ S to state s′ ∈ S by taking action a ∈ A and receiving reward r ∈ R.
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Then the state-value function satisfies the following recursive relationship that is
used in both reinforcement learning and dynamic programming:

νπ(s) = Eπ[Gt|St = s] (5.5)
= Eπ[Rt+1 + γGt+1|St = s] (5.6)

=
∑
a∈A

π(a|s)
∑
s′∈S

∑
r∈R

p(s′, r|s, a)
[
r + γEπ[Gt+1|St+1 = s′]

]
(5.7)

=
∑
a∈A

π(a|s)
∑

s′∈S,r∈R
p(s′, r|s, a)

[
r + γνπ(s′)

]
,∀s ∈ S (5.8)

Equation 5.6 follows from Equation 5.5 by applying Equation 5.2 and Equation 5.7
follows from Equation 5.6 by conditioning on St+1 = s′ and applying the Law of
Iterated Expectations. Note that Equation 5.8 expresses the relationship between
the value of being in state s and in the successor states s′ and is called the Bellman
self consistency equation for the value function, as proposed by Bellman (1957).
Similarly, the action-value function qπ(s, a) satisfies the self-consistency Equation
5.12.

qπ(s, a) = Eπ[Gt|St = s, At = a] (5.9)
= Eπ[Rt+1 + γGt+1|St = s, At = a] (5.10)

=
∑
s′∈S

∑
r∈R

p(s′, r|s, a)
[
r + γEπ[Gt+1|St+1 = s′, At+1 = a′]

]
(5.11)

=
∑

s′∈S,r∈R
p(s′, r|s, a)

[
r + γ

∑
a′∈A

π(a′|s′)qπ(s′, a′)
]
, ∀s ∈ S (5.12)

We can now define the policy that achieves the highest cumulative expected future
discounted reward over the long run: the optimal policy π∗. Definition 5.2.4 states
explicitly when one policy is considered better than another policy.

Definition 5.2.4 (Better policy π∗)
A policy π∗ is better than or equal to a policy π if the cumulative expected future
discounted reward is greater than or equal to that of π for all states s ∈ S:

π∗ ≥ π ⇔ νπ∗(s) ≥ νπ(s) ∀s ∈ S

The optimal policy π∗ optimizes both the state-value function vπ(s) as well as the
action-value function qπ(s, a), hence the following equations hold:

vπ∗(s) = max
π

[νπ(s)] ∀s ∈ S (5.13)

qπ∗(s, a) = max
π

[qπ(s, a)] ∀s ∈ S, a ∈ A (5.14)

Since the state-value function νπ∗(s) maximizes the cumulative expected future dis-
counted reward of being in state s under the optimal policy π∗ and the action-value
function qπ∗(s, a) maximizes the cumulative expected future discounted reward of
taking action a in state s under policy π∗ the two value functions have to attain the
same maximum value:
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νπ∗(s) = max
a∈A

qπ∗(s, a)

= max
a∈A

Eπ∗ [Rt+1 + γGt+1|St = s, At = a] (5.15)

By using the relation between the state-value and action-value function we can derive
the famous two forms of the Bellman optimality equation for νπ∗ and qπ∗ as stated
in Definition 5.2.5 and proposed by Bellman (1957). Note that - since it concerns
the optimal value function - maximizing with respect to a automatically yields the
optimal policy π∗ and we could therefore omit the reference to a specific policy π∗.
Intuitively, these equations state that the value of a state under an optimal policy
is equal to the cumulative expected future discounted reward for the best action in
that state.
Definition 5.2.5 (Bellman optimality equations for νπ∗ and qπ∗)

νπ∗(s) = max
a∈A

E[Rt+1 + γνπ∗ [(St+1)|St = s, At = a] (5.16)

= max
a∈A

∑
s′,r

p(s′, r|s, a)[r + γνπ∗(s′)] (5.17)

qπ∗(s, a) = E[Rt+1 + γmax
a′

qπ∗(St+1, a′)|St = s, At = a] (5.18)

=
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

qπ∗(s′, a′)] (5.19)

For finite MDPs - with a finite number of |S| states in the state space, a finite
number of actions and a finite set of rewards the Bellman optimality equation νπ∗(s)
consists of a system of |S| nonlinear equations and |S| unknowns. Even when the
set of rewards is infinitely large, existence and uniqueness of solutions was proven
by Rincón-Zapatero and C. (2003).
Once νπ∗(s) is found one can determine the optimal policy π∗ by assigning nonzero
probabilities to the action(s) for which the maximum of νπ∗ is attained, looking
one timestep ahead each time. Or one could first determine qπ∗ to find the optimal
actions without looking at possible successor states and values.

5.3 Policy evaluation and iteration
If not the entire state space S is known, or if there is a large number of states and/or
actions, these computations can become time-consuming and costly, which is why
approximations for the value functions are needed. The basis for reinforcement
learning - and for dynamic programming - are iterative solution methods based
on the self-consistency equation as defined in Equation 5.8. We first consider an
approximative, iterative solution method to compute the state-value function νπ for
any policy π, also referred to as the policy evaluation or prediction problem. It starts
with an initial approximation ν0 (note that the terminal state, if it exists, attains
value 0) that is chosen arbitrarily and each subsequent value for νk+1(s) is computed
as in Equation 5.21, where k refers to the iteration number of the algorithm.
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νk+1(s) = Eπ[Rt+1 + γνk(St+1)|St = s] (5.20)

=
∑

a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γνk(s′)

]
∀s ∈ S (5.21)

Combining the Bellman equation for νπ (Equation 5.8) and Equation 5.21 shows
that νk = νπ satisfies both equations. Generally, the sequence {νk} converges to
νπ as k → ∞ (Sutton and Barto (2018)), as long as νπ exists. The algorithm for
estimating the state-value function ν is generally called iterative policy evaluation,
since it evaluates policy π in an iterative manner over the state space S, as denoted
in the first part of the pseudocode in Algorithm 1.

We can use the approximated state-value function νπ for policy π to find better
policies (policies that yield higher values for ν than policy π). That is where the
action-value function qπ(s, a) is of use. Equations 5.22 and 5.23 state the action-
value function qπ(s, a) in terms of the state-value function of the subsequent state.

qπ(s, a) = E[Rt+1 + γνπ(St+1)|St = s, At = a] (5.22)

=
∑
s′,r

p(s′, r|s, a)
[
r + γνπ(s′)

]
(5.23)

Suppose there exists a policy π′, that is different from π only in the state s, so
π′(s) = a ̸= π(s). We can then show that the new policy π′ is better than the old
policy π if and only if qπ(s, π′(s)) > νπ(s)) for that specific state s. The proof - a
special case of the more general policy improvement theorem, as shown by Sutton
and Barto (2018) - is given in Theorem 1.
Theorem 1 (Policy improvement theorem)
Let π and π′ be two policies that only differ in the action chosen in state s∗. So for
s∗ ∈ S: π′(s∗) = a ̸= π(s∗) and for s′ ∈ S, s′ ̸= s: π′(s′) = a = π(s′).
For all states s ∈ S we have:

νπ(s) ≤ qπ(s, π′(s)) (5.24)
= E[Rt+1 + γνπ(St+1)|St = s, At = π′(s)] (5.25)
= Eπ′ [Rt+1 + γνπ(St+1)|St = s] (5.26)
≤ Eπ′ [Rt+1 + γqπ(St+1, π′(St+1))|St = s] (5.27)
= Eπ′ [Rt+1 + γE[Rt+2 + γνπ(St+2)|St+1, At+1 = π′(St+1)]|St = s] (5.28)
= Eπ′ [Rt+1 + γRt+2 + γ2νπ(St+2)|St = s] (5.29)
≤ Eπ′ [Rt+1 + γRt+2 + γ2Rt+3 + γ3νπ(St+3|St = s] (5.30)

... (5.31)
≤ Eπ′ [Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + ...|St = s] (5.32)
= νπ′(s) (5.33)

Here Equation 5.25 follows from Equation 5.23.
For all states s′ ∈ S, s′ ̸= s∗ we have ν ′

π(S) = νπ(s) = qπ(s, π(s)) = qπ(s, π′(s)) and
hence the inequalities hold as equalities. For all states s∗ ∈ S for which π′(∗s) = a ̸=
π(∗s) strict inequalities hold, hence νπ(s) < qπ(s, π′(s)) and therefore νπ(s) < νπ′(s)
if policy π′ is an improvement over policy π.
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We can then find this new policy π′ that is at least as good as the current policy
π by finding the action that maximizes the state-value function ν at one timestep
ahead, by applying Equation 5.36.

π′(s) = argmaxaqπ(s, a) (5.34)
= argmaxaE[Rt+1 + γνπ(St+1)|St = s, At = a] (5.35)

= argmaxa

∑
s′,r

p(s′, r|s, a)
[
r + γνπ(s′)

]
(5.36)

Similarly as we did for the state-value function we can iteratively approximate the
policy π(s) by applying Equation 5.36 until no better policy is found. This process
is called policy iteration. Combining the processes of policy evaluation and policy it-
eration as in Algorithm 1, following Sutton and Barto (2018), yields approximations
for the optimal policy and state value functions of a MDP.

Algorithm 1: Policy iteration with iterative policy evaluation
Initialize V (s) ∈ R, π(s) ∈ A arbitrarily for all s ∈ S
Initialize discount factor γ
V (terminal) ← 0
Initialize small threshold θ > 0 that determines accuracy of estimation
Policy Evaluation
∆← 0
for s ∈ S do

ν ← V (s)
V (s)← ∑

s′,r p(s′, r|s, π(s))[r + γV (s′)]
∆← max(∆, |ν − V (s)|)
until ∆ < θ

Policy iteration
policy stable← true
for s ∈ S do

old action ← π(s)
π(s)← argmaxa

∑
s′,r p(s′, r|s, a)[r + γV (s′)]

if old action ̸= π(s) then
policy stable← false

if policy stable then
stop and return V ≈ ν∗

πand π ≈ π∗

else
go to Policy Evaluation
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5.4 Q-learning
One of the drawbacks of the implementation of Algorithm 1 is the large number of
operations required when the state space and/or action space is large. The need for
methods that can learn without using a specific model of the environment gave rise
to the implementation of Monte Carlo methods and temporal-difference learning to
create experience-based learning methods instead of model-based learning methods.
Sutton and Barto (2018) refer to the former as model-free methods, since exact initial
knowledge of the underlying model and the transition probabilities is not needed but
will be learned from experience. The concept of temporal-difference learning is based
on Equation 5.20 and uses the updating rule in Equation 5.37 to update the state-
value function after each transition, without the need to wait for the experiment
to end. In order to distinguish between the (approximative) updating rules of RL
and the previously discussed Bellman Equations, we will from here on denote the
state-value function with a capital V and the action-value function by a capital Q,
as opposed to the lowercase ν and q.

V (s)← V (s) + α
[
r + γV (s′)− V (s)

]
(5.37)

In this equation α is a step size parameter (α ∈ (0, 1]). This concept was used by
Watkins (1989) when introducing Q-learning, one of the major early breakthroughs
in reinforcement learning, and the step size parameter α is later referred to as the
learning rate. In Q-learning the action-value function Q approximates the optimal
action-value function qπ∗ by means of the updating rule from temporal-difference
learning applied on the action-value function. The pseudocode is given in Algorithm
2, following the definition as defined by Watkins (1989):

Q(s, a)← Q(s, a) + α
(
Y Q −Q(s, a)

)
(5.38)

Y Q ≡ r + γmax
a′

Q(s′, a′) (5.39)

Note that an episode is a sequence of transitions from the initial state until the
terminal state. Generally, a large number of episodes is required to complete the
Q-learning algorithm.
It is common practice to refer to the entire table with Q-values as the Q-table and
to the values Y Q as the target values. Note that the above updating rule, as well
as the previously discussed action-value and state-value functions can be extended
from MDPs to SMDPs, as was done by Bradtke and Duff (1994) in great detail.
This increased the scope of reinforcement learning, since the discussed methods and
algorithms could then also address SMDPs.
The Q-tables initially were manageable tables, but as data environments and the
action and state spaces grew larger managing Q-tables became very inefficient and
they are more and more often replaced by artificial neural networks (ANNs) that
approximate these Q-values by using Stochastic Gradient Descent (SGD) to update
the network weights.
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Algorithm 2: Q-learning
Initialize learning rate α ∈ (0, 1]
Initialize small ϵ > 0
Initialize Q(s, a)∀s ∈ S, a ∈ A arbitrarily
Q(terminal, a)← 0 ∀a ∈ A
for each episode do

Initialize first state s1
for each transition do

Apply ϵ-greedy policy to choose action a using policy derived
from Q

Perform action a, observe reward r and new state s′

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)]
s← s′

Until s′ is a terminal state

5.5 Artificial Neural Networks
An ANN is a network of interconnected units or nodes that are called artificial
neurons. Their properties are derived from the (non-artificial) neurons that form
the main components of our nervous systems. The first computational model for
ANNs was introduced by McCulloch and Pitts (1943), but Minsky and Papert (1969)
pointed out that any useful application of neural networks would require higher com-
putational power than available at that moment. This induced a brief stagnation in
the research field of ANNs, but the field resurged nearly two decades later, when both
computational power as well as internet growth yielded new opportunities (Mead
and Ismail (1989), Schmidhuber (1992)).
Currently, ANNs in different forms are widely used for nonlinear function approxi-
mations and are particularly useful for machine learning algorithms like RL. Figure
5.1 depicts a generic ANN with four input units, two hidden layers and two out-
put units. The black solid lines indicate links between the layers, each having a
real-valued weight and the circles correspond to the artificial neurons. The arrows
point from left to right, meaning that data only flows through the neural network
in a feedforward manner and the output of one neuron cannot influence its input.
Networks with one or multiple loops are called Recurrent Neural Networks (RNNs),
but these will not be addressed in this thesis.
The example in Figure 5.1 - when applied in the context of RL - would require a
four-dimensional state as an input and outputs the approximated action-value for
two actions. In other words, when the input is the observed (four-dimensional) state
s ∈ S, two Q-values are predicted: Q(s, a1) and Q(s, a2), with actions a1 and a2
∈ A.
In order to make these predictions the artificial neurons compute a weighted sum of
their input signals and then apply an activation function to produce their output.
This activation function is a non-linear and typically S-shaped, sigmoid or a logistic
function (Sutton and Barto, 2018).

The ANN is trained by adjusting the weights that correspond to each of the links in
the network, with the goal of improving the performance of the network, measured
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Figure 5.1: Generic feedforward ANN with four input units, two output units, and two
hidden layers (Sutton and Barto, 2018).

by the minimization or maximization of a defined objective function. A commonly
used objective function is the expected error or loss function, which can be optimized
by Stochastic Gradient Descent (SGD). The partial derivatives of the objective func-
tion with respect to each of the weights of the network need to be calculated (or
estimated). This is often done by alternating forward and backward passes through
the ANN. First, a forward pass computes the activation of each unit and then a
backward pass computes a partial derivative for each weight. This vector of partial
derivatives is then used as estimate for the true gradient and thereby defines the
direction of steepest descent of the objective function.

5.6 Deep Q-Network Stochastic Gradient
Descent

In the context of RL an ANN with one or multiple hidden layers is referred to as
a Deep Q-Network. Let us denote weights of the network by θ such that we can
denote the Q-values that correspond to this Deep Q-Network (DQN) by Q(s, a; θ).
Furthermore, in this thesis we consider algorithms with two Q-networks: an eval-
uation network Q(s, a; θ) and a target network Q(s, a; θ′). The evaluation network
is trained on the data, while the target network regularly updates the weights θ′

in accordance with the weights of the evaluation network. These updating rules
and algorithmic choices will be discussed in the next sections. This section focusses
on the SGD algorithm that is used to train the evaluation network. By using the
distinction between the evaluation and target network we can rewrite the updating
rule from Equation 5.38 as follows:
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Q(s, a; θ)← Q(s, a; θ) + α
(
Y DQN −Q(s, a; θ)

)
(5.40)

Y DQN ≡ r + γmax
a′

Q(s′, a′; θ′) (5.41)

Notice that Equation 5.41 uses the next state to predict the maximum Q-value
that can be acquired by using the target network, while Equation 5.40 adjusts the
weights of the evaluation network by calculating the difference between Y DQN and
the Q-value that is predicted by the evaluation network. After training, we want the
evaluation network to correctly predict the Q-values and therefore we want update
the weights θ such that the term (Y DQN−Q(s, a; θ)) is minimized. A commonly used
metric in RL algorithms is the mean squared error, which results in minimization of a
loss function at every step i of the learning algorithm. Multiple transitions (s, a, s′, r)
are sampled from the reinforcement agent’s history D (the specific sampling strategy
is discussed in Section 5.8) in order to minimize the loss function in Equation 5.42.

Li(θi) = Es,a,s′,r∼D
(
Y DQN

t −Q(s, a; θi)
)2

(5.42)

As discussed in Section 5.5 the vector of partial derivatives with respect to each
weight is computed to minimize the objective: the loss function Li(θi) (Mnih et al.,
2013). Notice that we can omit the constant (−2) in Equation 5.44.

∇θi
Li(θi) = ∇θi

Es,a,s′,r∼D
(
Y DQN

t −Q(s, a; θi)
)2

(5.43)

= ∇θi
Es,a,s′,r∼D

(
Y DQN

t −Q(s, a; θi)
)
∇θi

Q(s, a; θi) (5.44)

Most RL algorithms avoid computing the full expectations in the above gradient - as
this can be computationally exhaustive - and instead optimise the loss function by
SGD (Mnih et al., 2013). Several variations of SGD methods have been proposed, of
which most can easily be implemented in most programming languages. A thorough
comparison of the proposed methods is beyond the scope of this thesis, but the
general SGD updating rule for the vector of weights θ of the evaluation network
makes use of the step-size parameter α, as in Equation 5.40, and is given in Equation
5.45 (Sutton and Barto, 2018) for every weight update moment i.

Q(s, a; θi+1)← Q(s, a; θi) + α
(
Y DQN −Q(s, a; θi)

)
∇θi

Q(s, a; θi) (5.45)

5.7 Deep Q-Network with Experience Replay
One of the issues that arise when using neural networks to predict the Q-values
is correlation between consecutive observations. Since subsequent observations in
many different environments are rarely independent and identically distributed, us-
ing the above updating rule on subsequent observations can lead to instability or
even divergence, as was shown by Mnih et al. (2013) and Mnih et al. (2015). They
address these issues by introducing a new reinforcement learning algorithm that is
based on a Deep Q-Network (DQN).
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The DQN algorithm, as proposed and implemented by Mnih et al. (2013), combines
the target and evaluation neural networks with the biologically inspired mechanism
termed experience replay. The use of experience replay in reinforcement learning
was first introduced by Lin (1992) and involves remembering past experiences to
increase the learning speed of the reinforcement agent and to prevent inefficient use
of data. In the Q-learning algorithm experiences are used to update the neural net-
work only once and are then forgotten. The DQN algorithm by Mnih et al. (2013)
- as stated in Algorithm 3 - saves past experiences for a specified amount of time
(or memory) and uniformly samples a batch of these observations to update the
evaluation network Q(s, a; θ). This reduces the correlation incurred by only learn-
ing from subsequent observations and - as the authors state - averages the behavior
distribution over many of its previous states, smoothing out learning and avoiding
oscillations or divergence in the parameters. The target network with weights θ′

copies the evaluation network every τ time steps of the algorithm. Only at τ = t
the two Q-networks are equal: Q(s, a; θ) = Q(s, a; θ′). Periodically updating the
Q-values that are used to calculate the target values reduces correlation between
the Q-values in Equation 5.38 and the target values in Equation 5.39. Furthermore,
updating the Q-values with a batch of observations at each time step allows the
agent to learn faster as it processes more data in each learning step. Notice that it
is not necessary to update the Q-values at every state transition: learning moments
can but do not have to be performed after each transition. The uniform sampling
method ascribes equal probabilities to sampling each of the transitions in the re-
play buffer, but depending on the problem more sophisticated sampling strategies
can be implemented. These strategies emphasize transitions that are deemed more
important or useful in training, as proposed by Moore and Atkeson (1993) and re-
ferred to as prioritized sweeping. This method assigns priority weights to each of
the transitions according to their importance in the learning process and samples
each transition with a probability proportional to this priority weight. Combining
the notion of prioritized sweeping and experience replay results in an algorithm that
Schaul et al. (2015) call Prioritized Experience Replay (PER).

5.8 Reward Backpropagation Prioritized
Experience Replay

One of the possible frequently used metrics to define the importance of a transition
in the learning process is (some function of) the error between the target values and
the estimated Q-values. In a sparse reward environment, however, this error might
not be a suitable candidate for the priority weights, as Zhong and Wang (2017)
point out. Consider a sparse reward environment where approximately one in one
hundred transitions yields a non-zero reward. Obviously, most can be learned from
the one transition that yields a non-zero reward and the errors corresponding to the
zero reward transitions may be small. Their sum, however, can become very large,
which would lead to a higher probability of sampling a transition with a zero reward
than sampling the one transition with the non-zero reward. Therefore Zhong and
Wang (2017) introduce an algorithm that is specifically designed for environments
where rewards are sparse and/or delayed. The Reward Backpropagation Prioritized
Experience Replay algorithm also assigns priority weights to transitions, but gives
transitions with non-zero rewards higher priority weights in the very beginning. Once
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Algorithm 3: Deep Q-learning with Experience Replay
Initialize learning rate α, mini-batch size n
Initialize replay memory D with capacity N
Initialize evaluation network Q with random weights θ and target
network Q with weights θ′

Initialize target network replacement frequency τ
for each episode do

Initialize state s1
for each transition do

Draw u ∼ Unif(0, 1)
if u < ϵ then

select random action a
else

select a = max
a

Q(s, a; θt)
Execute action a and observe reward r and state s′

Store transition (s, a, s′, r) in D
Sample random mini-batch of size n with transitions (s, a, s′, r)
from D

for j=1,...,n do
if s′

j = terminal then
Set yj = rj

else
set yj = rj + γmax

a′
Q(s′

j, a′; θ′)

Perform a gradient descent step by minimizing the loss
L(θ) = 1

n

∑n
j=1(yj −Q(sj, aj; θ))2

Replace target network parameters θ′ with θ every τ timesteps

they have been sampled, these priority weights are propagated backwards to the
previous transitions. That way, the entire learning process is repeated in a backward
manner. Two additional parameters are introduced: a priority weight β that is
assigned to a transition with a non-zero reward at the moment it is received and a
priority decay rate λ that defines the importance of the transition after every round
of backpropagation. Each observation that enters the replay memory is assigned
a priority weight p. If the transition is a terminal transition or a transition with
non-zero reward p = β, where β ≫ 1 and otherwise p = 1. At every learning step
a batch of transitions is sampled with probabilities proportional to their priority
weights and once a transition that has priority weight p > 1 is sampled, that weight
is backpropagated to the previous transition in the memory. The current transition
then gets a normal priority of 1 until the backpropagation procedure reaches the
previous non-zero reward. In that case, one round of backpropagation is completed
and the first transition with a non-zero reward receives a priority weight of λiβ,
where i is the number of backpropagation rounds that have been completed. A
simplified schematic overview is provided in Figure 5.2, for β = 100, λ = 0.1, a
memory capacity of 7 and a mini-batch size of 3.
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Figure 5.2: Reward Backpropagation Prioritized Experience Replay with β = 100, λ = 0.1,
a memory capacity of 7 and mini-batches of size 3. In this illustration, no new transitions
are added after step 1. Blue transitions are sampled in each step and red denotes a change
in priority weight p. Changes occur when a transition with higher priority was sampled in
the previous step and at every round of backpropagation the priority weight p is multiplied
by λ.

Zhong and Wang (2017) claim that a good performance is reached by setting β equal
to the ratio of the non-zero to the zero reward transition frequency (i.e. 100 when 1
in 100 transitions yields a non-zero reward) and that λ should be chosen such that
each transition is included in 2 or 3 rounds of backpropagation before its priority
weight reaches value 1.0. The pseudocode for the RBPER is given in Algorithm 4.
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Algorithm 4: Reward Backpropagation Prioritized Experience
Replay

Initialize replay memory D with capacity N
Initialize evaluation network Q with random weights θ and target
network Q with weights θ′

Initialize target network replacement frequency τ
Initialize non-zero reward priority weight β and priority decay rate λ
for each episode do

Initialize state s1
for each transition do

Draw u ∼ Unif(0, 1)
if u < ϵ then

select random action a
else

select a = max
a

Q(s, a; θ)
Execute action a and observe reward r and state s′

if r ̸= 0 or s′ is terminal then
p = β

else
p = 1

Store transition (s, a, s′, r, p) in D
Sample mini-batch of size n with transitions (s, a, s′, r, p) with
probabilities proportional to p from D

for j=1,...,n do
(s, a, s′, r, p)j−1 ← transition prior to transition j in replay
memory D

if s′
j = terminal then
Set yj = rj

else
set yj = rj + γmax

a′
Q(s′, a′; θ′)

if rj−1 = 0 and pj > 1 then
pj−1 ← pj in replay memory D

else if rj−1 ̸= 0 and pj > 1 or s′
j = terminal and pj > 1

then
(s, a, s′, r, p)k ← first transition after (s, a, s′, r, p)j in D
with s′

k =terminal or rk ̸= 0
pk ← max(λpj, 1) in replay memory D

pj ← 1 in replay memory D
Perform a gradient descent step by minimizing the loss
L(θ) = 1

n

∑n
j=1(yj −Q(sj, aj; θ))2

Replace target network parameters θ′ with θ every τ timesteps
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5.9 Double DQN
One of the pitfalls of applying Equation 5.39 is caused by the overestimation of ac-
tion values, due to a positive bias that is also referred to as the Optimizer’s Curse,
as proven by Smith and Winkler (2006). They state that decision makers that con-
sistently choose alternatives that seem best based on their estimated values should
expect to be disappointed in the long run. In other words: uncertainty in value
estimates for picking the best action is positively biased. A proof - as proposed by
Smith and Winkler (2006) is provided in Theorem 2.

Theorem 2 (The Optimizer’s Curse)
Let V1, ..., Vn be estimates of µ1, ..., µn such that E[Vi|µ1, ..., µn] = µi,∀i. Hence the
estimates are conditionally unbiased. Let i∗ denote the alternative with the maximal
estimated value V ∗

i = max[V1, ..., Vn]. Then

E[µi∗ − Vi∗ ] ≤ 0

Furthermore, if there is a chance of selecting the ”wrong” alternative: µi∗ is not the
maximum of µ1, ..., µn then

E[µi∗ − Vi∗ ] < 0

Proof First consider a set of true values µ = µ1, ..., µn with uncertain value es-
timates V = V1, ..., Vn. Let j∗ be the alternative with the maximum true value:
µj∗ = max[µ1, ..., µn]. Since µ is fixed and V uncertain, j∗ is a constant and i∗ a
random variable. For any V we have:

µi∗ − Vi∗ ≤ µj∗ − Vi∗ ≤ µj∗ − Vj∗ (5.46)

The first inequality follows from the definition of j∗ and the second from the defini-
tion of i∗. If we then take expectations and condition on µ we get:

E[µi∗ − Vi∗ |µ] ≤ E[µj∗ − Vj∗ |µ] = 0 (5.47)

The last equality follows from the assumption that the value estimates are condi-
tionally unbiased. Since E[µi∗ − Vi∗ |µ] ≤ 0 for all µ, integrating over the uncertain
µ yields E[µi∗ − Vi∗ ] ≤ 0. If i∗ = j∗ with probability one all inequalities become
equalities and E[µi∗−Vi∗ ] = 0, but if there is some chance that i∗ ̸= j∗ the equalities
will be strict and E[µi∗ − Vi∗ ] < 0

van Hasselt (2010) applies this proof to the situation of the Q-learning algorithm.
The maximization operator in the target value uses the same values to select as well
as evaluate an action, based on an approximation that is made by the Q-learning
algorithm. This becomes clear when we rewrite Equation 5.41 as follows:

Y DQN = r + γQ(s′, argmaxa′Q(s′, a′; θ′); θ′)

The author states that this approximation leads to overoptimistic value estimates
and proposes to decouple the selection and evaluation procedure with an extra Q
network:

Y DoubleQ ≡ r + γQ(s′, argmaxa′Q(s′, a′; θ); θ′)

Note that in the initially proposed Double-Q algorithm the distinction between an
evaluation and target network as in the DQN algorithm was not used. Only in a
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later article (van Hasselt et al., 2016) the author and his colleagues combine the
two, since they claim that the evaluation network is perfectly suitable to replace
the extra Q-network that was proposed in van Hasselt (2010). The combined algo-
rithm is called Double DQN and provides improved results when compared to the
DQN algorithm that was proposed by Mnih et al. (2013), without the need for any
additional networks or parameters. The improved updating rule is then as follows:

Q(s, a)← Q(s, a) + α
(
Y DoubleDQN −Q(s, a; θ)

)
(5.48)

Y DoubleDQN ≡ r + γQ(s′, argmaxa′Q(s′, a′; θ); θ′) (5.49)

The only difference with the DQN algorithm is that the evaluation network with
weights θ is used for the action selection with the argmax operator. Still, the target
network is used to estimate the target value. The pseudocode for the algorithm is
given in Algorithm 5. Note that this algorithm does not make use of the RBPER
algorithm that was discussed in Section 5.8, but randomly samples the mini-batches
from the replay memory, as described in Section 5.7 and proposed by Mnih et al.
(2013). The algorithms are combined in the next chapter, when we introduce the
methodology that is used for RLA.

Algorithm 5: Double DQN with Experience Replay
Initialize replay memory D with capacity N
Initialize evaluation network Q with random weights θ and target
network Q weights θ′

Initialize target network replacement frequency τ
for each episode do

Initialize state s1
for each transition do

Draw u ∼ Unif(0, 1) if u < ϵ then
select random action a

else
select a = max

a
Q(s, a; θ)

Execute action a and observe reward r and state s′

Store transition (s, a, s′, r) in D
Sample random mini-batch of size n with transitions (s, a, s′, r)
from D

for j=1,...,n do
Define amax(s′

j; θ) = argmaxa′Q(s′
j, a′; θ)

if s′
j = terminal then
Set yj = rj

else
set yj = rj + γQ(s′

j, amax(s′
j; θ); θ′)

Perform a gradient descent step by minimizing the loss
L(θ) = 1

n

∑n
j=1(yj −Q(sj, aj; θ))2

Replace target network parameters θ′ with θ every τ timesteps
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Chapter 6

RLA for container terminal
scheduling

In this section we present a detailed description of the reinforcement learning algo-
rithm that we have implemented in order to improve TBA’s scheduling algorithm for
ShCs on a simulated container terminal. The algorithm is based on a combination
of the previously discussed algorithms, but has been adapted to fit the container
terminal environment and characteristics. Modelling and algorithmic choices are
discussed in this chapter and the results are presented in Chapter 8. Section 6.1 and
Section 6.2 introduce the state and action space, respectively. Section 6.3 discusses
the reward function and Section 6.4 places the created algorithm in the (PO)MDP
framework. Section 6.5 provides a detailed description of RLA.

6.1 State characteristics
Consultation of several simulation experts at TBA led to the establishment of a
number of terminal situations that might require a different parameter setting of
the current scheduling algorithm. We are specifically interested in the cumulative
expected future discounted reward of taking scheduling actions in these situations
and have therefore created a state space with 4 different attributes, consisting of 144
states. The following parameters are used to define the state space:

• PLoad: Percentage of the total number of QCs that is currently performing
(twinlift) loading operations.

• PBusy: Percentage of containers that have to be moved to or from a busy
module or QC. A module or QC is defined as busy when 4 or more jobs have
that location as their origin or destination. We keep track of all m containers
that correspond to a job that can currently be assigned to a ShC. Then, for
each module and buffer, we sum the total number of containers that have this
location as their origin or destination. Let Li be the number of containers
that have location i as their origin or destination for i = 1, ..., n, where n
is the total number of modules and QCs on the container terminal. Then∑n

i=1 Li1Li≥4 is the total number of containers that are to be moved to or
from a busy module or buffer and PBusy =

∑n

i=1 Li1Li≥4
m .
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• AssJobs: Number of currently assignable jobs. These jobs - as described in
Section 1.2 - consist of a specific container (with a unique number), its current
location (origin) and the location it has to be delivered to (destination). Notice
that unloading jobs (jobs that have to be picked up at a QC and moved to the
yard) only receive their destination when they are picked up at a QC, since
they always pick the first container that is ready. This way, a vehicle at a
discharging QC never has to wait for another vehicle that was assigned first,
but had to drive longer.

• NumV : Number of currently assignable (idle) vehicles. A vehicle is idle as
soon as it has dropped off the container of its previous job at the specified
destination. When no new job is assigned immediately, the vehicle will go to a
parking place somewhere on the container terminal until a new job is assigned.
On its way to this parking and when parked the vehicle remains assignable.

• Cl: Number of QC clusters. Two QCs are in the same cluster when the
distance between them is smaller than twice the cranewidth (36 meters).

• NumQC : Number of QCs that is currently active on the container terminal.

Attribute 1 Attribute 2 Attribute 3 Attribute 4
1 0 ≤ PLoad ≤ 25 0 ≤ PBusy ≤ 25 AssJobs

NumV
≤ NumV Cl > 0.8NumQC

2 25 < PLoad ≤ 50 25 < PBusy ≤ 50 NumV < AssJobs
NumV

≤ 2.5NumV 0.5NumQC ≤ Cl < 0.8NumQC
3 50 < PLoad ≤ 75 50 < PBusy ≤ 75 AssJobs

NumV
> 2.5NumV Cl < 0.5NumQC

4 75 < PLoad ≤ 100 75 < PBusy ≤ 100

Table 6.1: RLA state attributes and values.

Table 6.1 defines the values of each of the states of the terminal. Due to their
definitions the states never overlap and there is zero probability that a non-defined
state is visited during the container terminal simulation and learning process. We
abbreviate Attribute by A when we refer to a state description. For example, state
[A1 = 4, A2 = 3, A3 = 1, A4 = 2] is the state in which:

• 75 − 100% of the total number of QCs is currently (twinlift) loading. That
means that 0− 25% of the total number of QCs is currently (twinlift) unload-
ing.

• 50− 75% of the containers that currently have to be moved share an origin or
destination with at least 3 other containers that have to be moved.

• The ratio of the number of assignable jobs over the number of assignable
vehicles is smaller than the total number of assignable vehicles. In other
words: there are more vehicles than needed at this moment.

• If there are 8 active QCs there at least 4 and at most 6 clusters.
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6.2 Action set and selection
Every time a vehicle becomes idle a new action in the form of a scheduling decision
is required. The assignable jobs and the current state of the terminal are sent to
the reinforcement agent. When the state did not change since the last scheduling
decision was made, the same action is used to assign the next job to the idle vehicle.
In case the state did change, a (possibly) different action is picked by applying an
ϵ-greedy policy. A random number u between 0 and 1 is drawn from the uniform
distribution function. If u < ϵ a random action is chosen from the action space and
if u > ϵ the action that yields the highest cumulative expected future discounted
reward a = argmaxaQ(s, a; θ) is selected. The value for ϵ decreases as the algorithm
proceeds and thereby allows for more exploration in the beginning and exploitation
in the end.
The action space consists of 14 actions, each based on a specific ordering of the
currently assignable jobs, matched with the currently assignable vehicles. Depending
on the number of idle vehicles one or more jobs are then dispatched. We briefly
discuss the parameters that are used to define the scheduling heuristics:

• Duetime is the time at which the container is planned at its destination. There
is no real penalty when this duetime is not exactly met, but once multiple
containers arrive late congestion or delay of vessels might occur.

• Driving distance is the distance in meters that the vehicle has to drive from
its current location to the origin of the job. The job itself also requires the
vehicle to drive a certain distance, but this is not included in the parameter
as it is exactly equal for each of the vehicles.

• MaxToQC and MaxFromQC are parameters that define how many vehicles
are allowed to drive to and from QCs, respectively. By respecting MaxToQC
we mean that no more than the specified amount of vehicles can drive to
or from QCs at the same time. No MaxToQC means that more than the
specified amount of vehicles can drive to or from QCs at the same time. This
is included in the action space in order to determine whether or not including
this parameter is desirable in each of the states of the state space.

• The busiest buffer is the (module or QC) buffer that is the origin or destination
for the largest number of containers that currently need to be moved, out of
all modules or buffers at the terminal, as defined in Section 6.1 by Li for
i = 1, ..., n. The busiest buffer hence maximizes Li.

• The quietest buffer is the (module or QC) buffer that is the origin or desti-
nation for the smallest number of containers that currently need to be moved
and therefore minimizes Li.

• Load moves are containers that need to be loaded onto a vessel, and therefore
have their origin in the storage yard and their destination at a QC;

• Sequence numbers define the order in which containers will be placed onto a
vessel. Loading jobs (where containers have to be picked up at a buffer on
the yard and brought to a QC TP) always have a sequence number. Since a
number of containers can be placed near a QC at the same time, it is not vital
nor necessary that they are brought to the QC in exactly that sequence. It
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can, however, cause problems when multiple containers with higher sequence
numbers are delivered before the one with a lower sequence number. There-
fore, for all the actions in the action space, after ordering according to the
specified method, the jobs are ordered according to sequence number.

The actions are defined below.

1. ESR: Earliest duetime, shortest driving distance, respect MaxToQC.

2. ESN. Earliest duetime, shortest driving distance, no MaxToQC.

3. SER. Shortest driving distance, earliest duetime, respect MaxToQC.

4. SEN. Shortest driving distance, earliest duetime, no MaxToQC.

5. BBR. Busiest buffer, shortest driving distance, respect MaxToQC.

6. BBN. Busiest buffer, shortest driving distance, no MaxToQC.

7. QBR. Quietest buffer, shortest driving distance, respect MaxToQC.

8. QBN. Quietest buffer, shortest driving distance, no MaxToQC.

9. LSS. Load moves, sequence number, shortest driving distance, respect Max-
ToQC.

10. LSR. Loading* QC first, shortest driving distance, respect MaxToQC.

11. LSN. Loading* QC first, shortest driving distance, no MaxToQC.

12. USR. Unloading* QC first, shortest driving distance, respect MaxToQC.

13. USN. Unloading* QC first, shortest driving distance, no MaxToQC.

14. Random: Pick a random job from the list.

* For these actions we first order the loading and unloading QCs in increasing or-
der of the currently assigned vehicles. Therefore, the jobs to or from QCs with the
smallest number of currently assigned vehicles are assigned first.

6.3 Reward function
As discussed in Chapter 1, the main goal of adapting the scheduling algorithm
of TBA is to increase QC productivity. This therefore has to be included in the
reward function, but after performing a specific job the effect on this productivity
is not immediately visible. Containers first have to pile up before a discharging QC
becomes idle and the piles have to be eliminated before it can become productive
again (and vice versa for loading QCs). The rewards are therefore only given once
per simulation hour. Since - generally - multiple state changes have taken place
within this hour we are dealing with sparse rewards. State transitions in between
this hourly reward receive a reward of 0. At every simulation hour - except for the
first one, since then most processes are still starting up - the QC productivity of
that preceding hour is calculated. For each of the functions (loading, discharging,

59



twinlift unloading and twinlift discharging) the number of boxes that was handled
and the time spent performing that functionality is saved. As it proved effective to
also incur negative rewards we then compare this QC productivity with a base case:
a scenario with exactly the same terminal settings and the scheduling algorithm of
TBA. We subtract 80% of the QC productivity for each of the functions separately,
taking into account the time a QC has spent performing that functionality. We
train the reinforcement on scenarios that differ in the placement of the QCs and in
the number of ShCs that are working on the terminal and therefore also distinguish
between these scenarios in the definition of the reward function. More ShCs on
a terminal generally lead to higher QC productivities, hence without making this
distinction the reinforcement agent would think his moves are worse or better than
they actually are. In addition, we do not want to specify the exact integer number of
ShCs in the state space in order to provide results that are as generally applicable as
possible, with a reasonable amount of states for the final algorithm. By comparing
the received reward with the base case of every scenario, we can avoid the need to
do so.
Let Bij be the average number of moves of functionality i that is performed in one
hour by one QC in the base case with scenario j, let RLik be the total number of
moves that is performed in the last hour by QC k with functionality i and let Tik be
the fraction of the last hour QC k has spent performing functionality i during the
last hour. We can then define the hourly reward for scenario j as

Rewardj =
4∑

i=1

NumQC∑
k=1

RLik − 0.8 ∗
4∑

i=1

NumQC∑
k=1

TikBij

6.4 MDP framework
The previously discussed definitions of the state and action space and reward func-
tion require additional explanation in order to be placed in the MDP - and therefore
- RL framework. It should be noted that the true underlying environment - the
container terminal simulation program TIMESQUARE - contains a large number
of complex processes that are not all of interest for the goal of this thesis. These
processes all follow a certain distribution function which results in - among many
other uncertainties - different truck arrival times at the landside of the terminal
for each experiment. Including each of these processes and all uncertainties in the
state space would result in an infinitely large state space and would prevent us from
extracting useful scheduling decisions from the RLA output. These processes do,
however, influence the state transitions of our model. We could therefore address
the problem as a POMDP, where our agent only observes the states and rewards,
by means of communication with the simulation program. The complete container
terminal environment could be seen as a MDP (as was done in different forms by
Fotuhi et al. (2013) and Hirashima (2018)). Even though this area is still being
extensively researched and the authors also propose a novel automata algorithm,
Gaon and Brafman (2019) claim that the use of a replay memory combined with
DQN might still yield desirable results for the POMDP, since the external memory
essentially learns an extended state representation and hereby learns information
about the unobserved parts of the environment.
Additionally, following the formal definition as in Definition 4.1.3, the reward func-
tion needs to obey the Markov property as well. In this setting - as in many real-
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world settings - this is not the case. Each state-action combination in the simulation
hour preceding the reward is responsible for the QC productivity in that hour and
we could therefore refer to the reward function as non-Markovian. This does not
necessarily mean that RL is not a proper solution-method for the problem. Many
RL models with sparse or delayed rewards actually include non-Markovian reward
functions. In fact, a delayed reward is by definition non-Markovian, since it is not
directly attached to the transition that is mainly responsible for the reward. Walsh
et al. (2007) address this issue in various ways and state that treating the delayed
problem as a regular MDP and using the memoryless policy can produce reasonable
policies, especially if the delay is relatively small compared to the magnitude of the
state transitions. We furthermore claim that repeatedly sampling the full trajectories
will help our agent to remember which actions ultimately resulted in higher rewards
and therefore RLA could lead to desired results in the form of a Q-table that predicts
the action that yields the highest cumulative expected future discounted reward in
each of the defined states of the terminal. We therefore implement the algorithm in
order to use the results to dynamically tune the scheduling parameters of TBAA.

6.5 Reward Backpropagation Prioritized
Experience Replay Double DQN

The Double DQN algorithm - as discussed in Section 5.9 - was previously tested by
van Hasselt et al. (2016) on a testbed with a number of Atari 2600 games. Most
of these games only incur a reward of +1 for winning the game or -1 for losing
and therefore the reinforcement agent has to handle sparse rewards. The Double
DQN algorithm yields new state-of-the art results on the games when compared
to other reinforcement learning methods, which is why we adopt the algorithm
and implement it in order to train a reinforcement agent on the container terminal
simulation. The simulation program runs significantly slower than the Atari 2600
games, which is one of the reasons why we adapt some of the parameters of the
algorithm. Furthermore, we combine the Double DQN algorithm with the RBPER
algorithm of Zhong and Wang (2017). To the best of our knowledge, this combination
has not been studied before (Schaul et al. (2015) combine PER with Double DQN
and Zhong and Wang (2017) combine RBPER with a DQN, both on a number of
Atari 2600 games), but due to the sparsity of the rewards, their delay and the limited
amount of data (limited by the runtime of the simulation program) our reinforcement
agent has to train on the combination seems appropriate. The experience replay
buffer allows the agent to combine learning trajectories of multiple simulation models
simultaneously, while the reward backpropagation method aims to deal with the
delayed and sparse rewards. The use of Double DQN - as explained in Section
5.9 - prevents against autocorrelation. The input of both the neural networks (the
evaluation and the target network) is a 4-dimensional array (one dimension for each
of the four state attributes). The two hidden layers are fully-connected and consist
of 128 rectifier units. The output layer is again a fully connected linear layer with
one output for each action. Each of the layers applies the rectified linear activation
function (ReLU). Furthermore, we use Adam optimizer (introduced by Kingma and
Ba (2015)) with learning rate α = 0.001 and its default settings for β1, β2 and ϵ (β1 =
0.9, β2 = 0.999, ϵ = 10−8). A brief discussion of these default parameters is provided
in 8.1.1 and the pseudocode of the Adam optimizer is presented in Appendix A.1.
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We set the discount rate γ = 0.999 and the number of learning steps between target
network updates τ = 1000. A total of 105 transitions is saved in the memory and
learning takes place in batch sizes of 64. Preliminary experiments that led to these
parameter settings are discussed in Section 8.1. The exploration parameter ϵ starts
with a value of 1.0 and decreases by a factor of 0.996 at every 100 learning steps,
to allow for sufficient exploration of the algorithm. The minimum value for ϵ is
0.01, when this value is reached the parameter remains constant and the algorithm
performs the action with the highest cumulative expected future discounted reward
with probability 0.99. The pseudocode of the Reward Backpropagation Prioritized
Experience Replay Double DQN algorithm for the container terminal scheduling
problem is stated in Algorithm 6 and a schematic overview is provided in Figure
6.1. Note that Zhong and Wang (2017) assign higher priority weights to transitions
with non-zero rewards and transitions that lead to a terminal state. Since the
reinforcement agent in our setting receives a non-zero reward every simulation hour
it always receives a non-zero reward in the terminal state (at the eighth simulation
hour) and we therefore do not have to distinguish between these cases.
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Algorithm 6: RLA: Reinforcement learning algorithm container ter-
minal scheduling with Reward Backpropagation Prioritized Experi-
ence Replay and Double DQN

Initialize learning rate α, mini-batch size n
Initialize replay memory D with capacity N
Initialize evaluation network Q with random weights θ and target
network Q with weights θ′

Initialize target network replacement frequency τ
for each episode do

Initialize state s1
for each transition do

Draw u ∼ Unif(0, 1)
if u < ϵ then

select random action a
else

select a = max
a

Q(s, a; θ)
Execute action a and observe reward r and state s′

if r ̸= 0 or s′ is terminal then
p = β

else
p = 1

Store transition (s, a, s′, r, p) in D
Sample mini-batch of size n of transitions (s, a, s′, r, p) with
probabilities proportional to p from D

for j=1,...,n do
(s, a, s′, r, p)j−1 ← transition prior to transition j in replay
memory D

Define amax(s′
j; θ) = argmaxa′Q(s′

j, a′; θ)
if s′

j = terminal then
Set yj = rj

else
set yj = rj + γQ(s′

j, amax(s′
j, θ); θ′)

if rj−1 = 0 and pj > 1 then
pj−1 ← pj in replay memory D

else if rj−1 ̸= 0 and pj¿1 then
(s, a, s′, r, p)k ← first transition after (s, a, s′, r, p)j in D
with s′

k =terminal or rk ̸= 0
pk ← max(λpj, 1) in replay memory D

pj ← 1 in replay memory D
Perform a gradient descent step by minimizing the loss
L(θ) = 1

n

∑n
j=1(yj −Q(sj, aj; θ))2

Replace target network parameters θ′ with θ every τ timesteps
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Figure 6.1: RLA: Reinforcement Learning Algorithm container terminal scheduling with
Reward Backpropagation Prioritized Experience Replay and Double DQN.
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Chapter 7

Taguchi Method

This chapter introduces the Taguchi Method: a experimental design method that
can be used to test different levels of parameter settings within a minimal number
of experiments. In order to efficiently combine the results of RLA and TBAA into
DSA, we apply the Taguchi Method to an adapted version of TBAA. The theoretical
background, algorithmic choices and results of the method are discussed in this
chapter and the results of the produced algorithm DSA are provided in Section
8.2. Section 7.1 introduces the Taguchi methodology and Section 7.2 discusses its
application to the setting in this thesis.

7.1 Taguchi Experimental Design Method
Dr. Genichi Taguchi (1924-2012) was a Japanese statistician and engineer who
devoted his life to continually evolving his philosophy of quality engineering. He de-
veloped a method - consisting of five steps - that was shown to improve the quality of
manufactured goods, while reducing costs (Taguchi et al., 2004). The method - first
referred to as the Experimental Design Method, and later as the Taguchi Method -
has been applied to a wide variety of processes and experiments, ranging from me-
chanical component design in automotive applications (Shim and Kim, 2009) and
meta-heuristic parameter optimization (Candan and Yazgan (2014), Wang et al.
(2014)) to the optimization of process parameters for the production of liquid fuel
from waste (Agboola et al., 2017).
As in most applications full factorial design - testing of each possible combination of
parameter settings - is computationally too exhaustive, the Taguchi Method inves-
tigates only a subset of all possible parameter settings. Therefore it is a fractional
factorial design method, but with additional general guidelines that aim to reduce
the variance of the experiments. The Taguchi Method consists of five main steps
(Woolf et al., 2020).
The first step is to define the objective: the desired outcome of the process or set
of experiments. This can be a minimum or maximum objective value, or an exact
target value, completely depending on the problem at hand. In line with the nota-
tion of Taguchi et al. (2004) we refer to this objective or target value as τ and to
the observed objective value as y.
In the second step the design parameters that affect the process are determined and
the number of levels that the parameters can attain are specified. In-depth under-
standing of the process, parameters and possible interactions between parameters is
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crucial for this step and for a successful implementation of the Taguchi Method.
The third step selects the appropriate orthogonal array with the number of exper-
iments and the parameter settings for each experiment. An orthogonal array is
suitable for this purpose since it obeys two important properties: any two columns
contain each level combination for an equal number of times and the arrays are
balanced. Balanced arrays contain each combination of parameter levels with equal
frequency when compared to any other combination of parameter values. Therefore,
orthogonal arrays determine the minimum number of experiments that need to be
conducted for an equal comparison of the effects of different parameters and levels.
The general representation of these orthogonal arrays is Ld(a)k, where L is the type
of orthogonal array, d the total number of trials, k the number of parameters and a
the (maximum) number of levels per parameter (Uray et al., 2022). Figure 7.1 shows
(a subset of) the possible choices of orthogonal arrays, which can be read in the fol-
lowing way: assume we want to conduct experiments with four parameters, that can
each attain three different levels (k = 4 and a = 3). We then look up orthogonal
array L9 in - for example - Hedayat et al. (1999) and conduct 9 experiments.

Figure 7.1: Orthogonal arrays Ld(a)k, where L is the type of orthogonal array,
d is the total number of trials that is needed, k is the number of parameters
and a the (maximum) number of levels per parameter (Uray et al., 2022).

Table 7.1 denotes orthogonal array L9. The rows represent the experiment numbers
and the columns the four different parameters A, B, C and D. The first experi-
ment hence sets all four parameters to their first level. Notice that it is advisable
to conduct multiple replications of each experiment in random order, to increase
the accuracy of the results and diminish the effects of possible correlation between
experiments (Taguchi et al., 2004).

Experiment A B C D
1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

Table 7.1: Orthogonal array L9, with 9 experiments (rows), four parameters
(columns) and three different parameter levels that are specified for each of
the experiments in the table. Copied from Hedayat et al. (1999).
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The fourth step consists of conducting the experiments that are indicated in the
orthogonal array and collecting the data on the process objective. This results in
objective values yij for each experiment i and replication j.
In the last step of the method the researcher conducts a complete data analysis to
determine the effect of the different parameters on the process objective. Taguchi
et al. (2004) advise to first calculate the signal-to-noise ratio (SN): a performance
measure that evaluates the effect of each parameter setting on the output. The
signal-to-noise ratio - in this context - is the ratio between the effect of a param-
eter setting (the desired information, or the signal) and other processes affecting
the experiment (the undesired signal, or background noise). A larger SN ratio in-
dicates a larger effect of the parameter setting when compared to the noise and is
therefore more desirable than a lower SN ratio. Taguchi et al. (2004) also provide
the possibility to add controlled noise factors by employing an additional orthogonal
array. In that case, the previously discussed orthogonal array is the inner orthogonal
array, and the controlled noise factors (e.g. environmental changes or adjustments
in the setup of the experiment that are not caused by a change in the parameters
under consideration) are specified in an outer array. Since in our experiments the
noise factors are induced by the numerous processes with probability distributions
that are defined in the simulation program TIMESQUARE, we will not vary those
manually and therefore do not consider any outer arrays in this thesis. Krishnaiah
and Shahabudeen (2012) point out that most traditional techniques in experimental
design focus solely on identifying parameters that affect the mean of the objective
values, while the SN ratio considers both the mean as well as the standard deviation
of the objective values corresponding to the conducted experiments. This results in
the selection of a parameter setting that is more robust to the effects other (un-
controlled) processes might have on the considered objective values than when only
mean objective values are assessed.
Taguchi et al. (2004) introduce three equations to calculate SN : one for the setting
in which the objective value y is maximized (Equation 7.1), one for the setting in
which there is a target value τ (Equation 7.2) and one for the setting in which the
objective value y is minimized (Equation 7.5). In these equations Ni is the number
of replications for experiment i and ȳi and si are the sample mean and standard
deviation of the observations belonging to experiment i.

SNi = −10log10
[ 1
Ni

Ni∑
j=1

1
y2

j

]
(7.1)

SNi = 10log10
ȳ2

i

s2
i

(7.2)

ȳ2
i = 1

Ni

Ni∑
j=1

yi,j (7.3)

s2
i = 1

Ni − 1

Ni∑
j=1

(yi,j − ȳi) (7.4)

SNi = −10log10
[ 1
Ni

Ni∑
j=1

y2
j

]
(7.5)

Notice that Equation 7.2 explicitly calculates the sample standard deviation of each
of the experiments, while Equations 7.1 and 7.5 do not. The SN ratios for these
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equations, however, are still higher for experiments with the same mean but smaller
standard deviations than for experiments with the same mean and larger standard
deviations.
The SN ratio is first determined for each experiment (SNi) and then the average for
each combination of parameter and level is calculated, resulting in a× k SN ratios.
For each parameter, the level that corresponds to the largest of the a SN -values is
chosen as the final parameter setting. For a complete analysis Taguchi et al. (2004)
propose to conduct an Analysis of Variance (ANOVA): a collection of statistical tools
that determine the statistical significance of and differences between the results.
Candan and Yazgan (2014) and Krishnaiah and Shahabudeen (2012) propose to
include at least - per parameter - the sum of squares, the percent contribution, F-
values and p-values. We elaborate on these terms in Section 7.2, when we apply the
Taguchi Method in order to optimize the parameter settings of DSA.

7.2 DSA parameter design by Taguchi Method
The scoring algorithm TBAA is relatively simple to understand, but has a large
number of parameters (approximately 60, of which 30 are used in the model under
consideration) that affect the scoring of each job. The actions that can be chosen
by the reinforcement agent, as described in Section 6.2, consist of combinations of
less than 10 parameters in total. Some parameters - like duetime or driving dis-
tance - are already present in TBAA, but others - like whether a buffer is quiet
or busy - need to be implemented. We want to refrain from deleting all original
parameters and their settings, since these are based on long expertise of simulation
consultants. We therefore aim to merge the results of RLA and the existing TBAA
in such a way that the two algorithms complement each other. RLA provides us
with the most suitable action in each of the 144 states of the terminal, hence we
adapt the scoring algorithm in such a way that the scoring parameters correspond-
ing to this action attain different values. These values should not be much higher
than any of the other (existing) scoring parameters in order to be effectively merged
with TBAA, but neither should they be lower since the RLA decisions would then
have little to no effect. The exact value of the parameters is to be determined by
the Taguchi Method, that we perform in the exact order as prescribed in Section 7.1.

As we are maximizing QC productivity a straightforward objective would be to
maximize the hourly QC productivity on the terminal. This is easily determined
for different parameter settings after implementation in the simulation program
TIMESQUARE, which allows for a thorough comparison of the various experiments.
RLA results (elaborate results are provided in Section 8.1) indicate that 6 out of
the proposed 14 actions provide the highest cumulative expected reward in at least
one of the 144 states. In other words: in any of the states one of these 6 actions is
the optimal one. We therefore need to establish suitable parameter settings for the
parameters corresponding to each of these 6 actions:

• Action 3: SER. Shortest driving distance, earliest duetime, respect MaxToQC.

• Action 6: BBN. Busiest buffer, shortest driving distance, no MaxToQC.

• Action 8: QBN. Quietest buffer, shortest driving distance, no MaxToQC.
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• Action 9: LSS. Load moves, sequence number, shortest driving distance, re-
spect MaxToQC.

• Action 10: LSR. Loading QC first, shortest driving distance, respect Max-
ToQC.

• Action 12: USR. Unloading QC first, shortest driving distance, respect Max-
ToQC.

Three scoring parameters were added to TBAA: one that increases the score for jobs
that correspond to loading QCs, one that increases the score for jobs that correspond
to discharging QCs and one that penalizes jobs according to the number of contain-
ers that need to be moved to or from its origin and destination (the busiest buffer).
The latter can be multiplied by a negative number to promote jobs with busy buffers
(action 6) and with a positive number to promote jobs with quiet buffers (action 8).
Preliminary experiments led to a base level for all three parameters, in which they
have a minor, but non-zero effect on the final scores of each job.
Recall that - after ordering on the specified parameters - the reinforcement agent
orders the jobs in increasing order of sequence number to prevent containers from
being picked up or delivered in an unfavourable order. Furthermore, actions 10 and
12 were designed to first assign the jobs to or from QCs with the smallest number of
currently assigned vehicles. MaxToQC does not require a specific value: we either
respect the number of vehicles that is allowed to drive to or from a QC or we do
not. The exact number of vehicles that corresponds to this parameter was tuned
beforehand and is therefore not considered in these experiments. Each action hence
consists of three parameters, except for actions 10 and 12, that consist of four pa-
rameters.
For the Taguchi Method to be effective, the different parameters should be as un-
correlated as possible. Correlated parameters have different effects on the objective
values when their values are altered separately and would therefore require addi-
tional experiments. We therefore choose to combine all three (and four, for actions
10 and 12) parameters into one tuple that defines the factor by which all correspond-
ing scoring parameters of TBAA should be multiplied. For example: one parameter
level that corresponds to action 3 is [2, 1.5, 1]. Then the scoring parameter corre-
sponding to the driving distance is doubled, the scoring parameter that corresponds
to the due time is multiplied by 1.5 and the scoring parameter corresponding to
the sequence number remains at its original level. By doing so, we do not have to
take into account the correlation between the different parameters within one action
when constructing the Taguchi experiments. Correlation between actions does still
affect the reliability of the method, but as these actions are never chosen at the same
time and each correspond to a separate state of the terminal we assume their corre-
lation is negligible. Preliminary experiments were conducted to specify the range in
which the parameter settings would influence TBAA and five levels per parameter
were determined. The parameters and their levels (the multiplication with the base
parameter levels) are provided in Appendix A.3.
The appropriate orthogonal array for a model with six parameters that can each
attain five levels is L25(5)6 or L25, according to Hedayat et al. (1999). Comparing
these 25 experiments to the total number of required experiments for a full facto-
rial design (56 = 15625) indicates the significant reduction in computational time
of applying the Taguchi Method. The orthogonal table that specifies for each of
the 25 experiments which parameter settings must be used is provided in Appendix
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A.2. Notice that the first experiment (with all parameters at their first levels) cor-
responds to the parameter settings of TBAA, with the exception of the three added
parameters at their base levels. We conduct the experiments that are indicated in
the orthogonal array and collect the data on the process objective. For each of the 25
experiments we conduct 8 replications for 3 different QC placements on the terminal
with 24 ShCs. The differences between the QC placements are specified in Chapter
8. This results in 600 objective values in the form of hourly QC productivity per
replication. The results are provided in Appendix A.4.
In order to conduct a complete data analysis to determine the effect of the different
parameters on the process objective we first calculate the SN ratio for each experi-
ment by applying Equation 7.1. The results are provided in the last column of the
table in Appendix A.4. We then calculate the average SN ratio for each combination
of parameter and level. For example, the SN ratio corresponding to parameter A
and level 1 is the average SN ratio over all experiments where parameter A attains
level 1: 30.50+30.47+30.38+30.46+30.39

5 = 30.44. Table 7.2 denotes the results (with four
decimals for a more thorough comparison, as the differences are relatively small).
The parameter-level combinations with the highest SN ratio should be considered
best. As explained in Section 7.1 these settings provide results that are robust to
other, (in these experiments) uncontrolled factors that influence the QC productivity
on the simulated container terminal, while maximizing the mean QC productivity.
In this case that is parameter A with level 4, parameter B with level 4, parameter
C with level 1, parameter D with level 2 and parameters E and F with level 1. The
range denotes the difference between the maximum and the minimum SN ratio of
that parameter and the parameter with the largest range is the parameter for which
a change in level has the largest effect on the objective values. The rank orders the
parameters in decreasing order of this range and therefore in decreasing order of the
effect that a change in level has on the objective value.

Parameter Level 1 Level 2 Level 3 Level 4 Level 5 Range Rank
A 30.4399 30.4244 30.3974 30.4458 30.409 0.0484 3
B 30.4332 30.4297 30.4311 30.4547 30.3693 0.0854 1
C 30.4366 30.4266 30.3956 30.4320 30.4257 0.0410 4
D 30.4264 30.4318 30.4300 30.4305 30.3978 0.0340 5
E 30.4487 30.4366 30.3970 30.3982 30.4359 0.0517 2
F 30.4358 30.4248 30.4029 30.4199 30.4331 0.0329 6

Table 7.2: Average SN ratios Taguchi experiments. The range is difference between the
minimum and maximum SN ratio and the rank orders the parameters in decreasing order
of range.

Notice that - in this set of experiments - selecting the parameter setting with the
largest mean objective value would result in the exact same parameter setting as
the current selection that is based on the maximum SN ratio.
For the sake of completeness we include an ANOVA analysis on the SN ratios in Ta-
ble 7.3 and adopt the methodology that is proposed by Krishnaiah and Shahabudeen
(2012). Calculations were done in RStudio version 1.2.5042. The Sum of Squares
(SS) measures the variability in the data that is caused by each of the parameters
and is calculated for parameter i, i = 1, ..., 6 as follows:

SSi = 1
J

J∑
j=1

(Yij − Ȳi)2
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In this equation Yij is the SN ratio of parameter i at level j and Ȳi is the average
SN ratio of parameter i over all 5 levels. J is the total number of SN ratios that
are used to calculate the average SN ratio at level j (5 for each level). Then we
can calculate the percentage effect each parameter has on the objective value: the
factor effect. This is calculated by dividing the Sum of Squares by the total Sum of
Squares. It becomes clear from both Table 7.2 as well as Table 7.3 that parameters
D and F have the smallest effect on the objective value, when compared to the
other parameters. We therefore exclude this parameter when we perform a linear
regression and test the significance of the other parameters. Leaving all parameters
in the model refrains us from calculating the F-test statistics, since we would then fit
a model using all the model terms, leaving zero degrees of freedom for the residual
error. Krishnaiah and Shahabudeen (2012) propose to pool the parameters with the
smallest factor effect into the error term, up to a maximum of half the total degrees
of freedom of the experiment. The degrees of freedom for each parameter are the
number of levels it can attain minus one. Therefore, the degrees of freedom of the
pooled error term is 8: 4 from parameter D and 4 from parameter F . The Mean
Squares (MS) is calculated as SS

DF and can be used to conduct an F-test that tests
the null hypothesis that the parameter has no significant effect on the outcome of
the experiment. Rejecting this null hypothesis would mean that the parameter does
have a significant effect on the objective values and selecting the optimal level by
means of the SN ratio is then advised (Krishnaiah and Shahabudeen, 2012). The
F-test statistic is calculated by dividing the Mean Squares of a parameter by the
Mean Squares of the (pooled) error and the null hypothesis is rejected when the
F-test statistic is larger than the critical F-value Fα,DF1,DF2 , where α is the desired
confidence level, DF1 the degrees of freedom of the parameter and DF2 the degrees of
freedom of the error term. Table 7.3 shows that not all parameters have a significant
effect on the outcome of the experiment. Depending on the significance level one
could state that parameters B (significance level α = 0.05, critical F-value 3.84) and
E (significance level α = 0.10, critical F-value 2.81) have a significant effect on QC
productivity. Notice that we could have pooled parameter C into the error term
as well. This would have resulted in an increase in the degrees of freedom of the
error term and therefore a decrease in the critical F-value. In that case, parameter
E would have a significant effect on the outcome of the experiment at a confidence
level of α = 0.05. The other parameters at these 5 specified levels do not seem to
have a significant effect on the outcome of the experiment, but still need to attain
a certain level. We therefore adopt the parameter levels with the largest SN ratio
per parameter in order to adapt TBAA into DSA.

Source of variation SS FE (%) DF MS F-test statistic
A 0.000332 15.68 4 0.000083 2.20
B 0.000814 38.49 4 0.000204 5.40
C 0.000208 9.83 4 0.000052 1.38
D* 0.000165 7.81
E 0.000460 21.75 4 0.000115 3.05
F* 0.000136 6.44
Pooled error 8 0.000038

Table 7.3: ANOVA results on SN ratios of the 25 Taguchi experiments. The Sum of
Squares (SS), factor effect (FE), degrees of freedom (DF), Mean Squares (MS) and the F-
test statistic are reported, except for the parameters D and F since these are pooled into the
error (denoted by an asterisk). The critical F-values are F0.05,4,8 = 3.84 and F0.10,4,8 = 2.81.
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Chapter 8

Comparative analysis

In this chapter we provide a thorough analysis of the results after implementation of
the algorithms. Section 8.1 concerns the results of the reinforcement learning algo-
rithm RLA and compares those with the simulation results of the existing algorithm
TBAA. This section also provides results on the preliminary experiments that led to
the parameter settings of RLA. Section 8.2 provides the results of the final algorithm
DSA, with dynamic scheduling parameter settings that were determined by means
of the Taguchi Method as discussed in Chapter 7. Section 8.3 shows the robustness
of the results by discussing the performance of DSA on off-peak simulations.

8.1 Results RLA
All experiments in this thesis were conducted on a Lenovo Thinkpad laptop with an
Intel i7 processor of 2.7 GHz and 16 GB RAM. The simulation program TIMESQUARE
makes use of the software eM-Plant and runs on external TBA servers. As eM-Plant
- with programming language SimTalk - does not provide any additional packages
that involve artificial neural networks the reinforcement learning model was im-
plemented in Python 3.10.5 with TensorFlow 2.8.0 and one Nvidia Quadro T1000
GPU. Communication between the Python code and eM-Plant made use of a SQL
database, by continuously updating information about the terminal and the required
scheduling decisions. The simulated terminal is a smaller version of the Hadarom
Container Terminal (HCT) in Israel, with 20 yard modules and 8 QCs. Three dif-
ferent QC placements and models with 20, 24 and 28 ShCs are used to train the
reinforcement agent in order to visit as many states as possible and to ensure ro-
bustness of the results. Varying the number of ShCs per quay crane (2.5, 3 and
3.5) is a technique that is commonly used by TBA simulation experts to identify
bottlenecks on the terminal and to decide on the most desirable setting for every
simulation model. Notice that we refer to 2.5, 3 and 3.5 ShCs per quay crane, but
we do not assign ShCs to specific QCs: each ShC can service any QC. The referral
to the number of ShCs per QC is employed for clarity and in order to compare the
results to experiments with a different number of QCs.
Since the reinforcement agent is required to make real-time decisions on the simu-
lated terminal the amount of data that can be progressed is bounded by the com-
putational time of the simulation model. In the original model, one simulation day
of 8 hours takes approximately 1.5 hours to complete. This computational time
increases to 2-2.5 hours after implementing RLA. In order to process more data we
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adjust the Python code such that it is able to train on up to 5 models simulta-
neously: 5 models in eM-Plant run at the same time and one reinforcement agent
in Python makes all of the scheduling decisions, while training the neural network.
Adding more models is possible, but increases computational time since the Python
code can only make one scheduling decision at a time and the simulation models
then have to wait longer for their turn. The computational time that is needed to
update the neural network is negligible when compared to the computational time
of the simulation model. The data we can use to train the neural network is limited,
when compared to the implementation of the DQN algorithm of Mnih et al. (2013).
For comparison: Mnih et al. (2013) process 10 million state transitions in 50 hours,
while we process approximately 50000 state transitions in the same amount of time.
As there is no time nor enough resources to run the algorithm for several months
we slightly adjust the parameter settings that were proposed by Mnih et al. (2013)
- and adopted by Mnih et al. (2015), Zhong and Wang (2017) and van Hasselt et al.
(2016) for the discussed algorithms.

8.1.1 Parameters RLA
Preliminary experiments are conducted to determine parameter settings that are
most suitable for the problem at hand. Ideally, each of the following parameters
would be thoroughly tested and their performance analysed:

• Mini-batch size n: the number of transitions that are sampled from the expe-
rience memory at each learning moment in order to train the neural network.
Too small, as well as too large mini-batch sizes decrease accuracy of the re-
sults, as shown by Masters and Luschi (2018). The authors furthermore state
that the optimal mini-batch size depends on the learning rate and vice versa,
hence these are best tuned simultaneously.

• Experience replay memory size N : the number of transitions that is saved in
the experience memory. Once this number is reached, the oldest transitions
are removed. For larger memory sizes it is less likely to sample correlated
transitions and training will be more stable. Smaller memory sizes require
less memory, which could speed up the learning process.

• Discount rate γ: a reward that is received k time steps from now is worth
γk−1 times its value at the current moment in time. A value for γ closer to 1
makes future rewards more valuable, while for a value closer to 0 the agent is
mostly concerned with maximizing immediate rewards.

• Learning rate α: at each learning moment the weights of the neural network
are updated by a fraction α of the prediction error. Larger learning rates incur
bigger changes to the the network weights at each learning moment, which
could lead to quicker learning processes. They can, however, also prevent
convergence due to the large variability in Q-values between different learning
moments. With smaller learning rates, smaller changes are made to the neural
network at each learning moment and one might need more data to train on.

• Exploration rate ϵ: the exploration rate defines the probability of picking
a random action at each decision moment. Generally ϵ starts at 1, so the
reinforcement agent always picks a random action in the beginning of the
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algorithm to allow for exploration. During the learning phase ϵ is gradually
decreased by a specified rate until it reaches a minimum level. The minimum
level should be reached before the end of the learning process, preferably
leaving sufficient decision and learning moments at its minimal level to allow
for exploitation near the end of the algorithm.

• Target network update frequency τ : the frequency at which the target neural
network is updated with the weights of the evaluation network. Larger values
of τ can decrease the accuracy of the results, since changes in the network
weights between the update moments might not be accounted for. Smaller
values of τ decrease the benefit of using a target network, which is reducing
correlation between the Q-values (as discussed in Chapter 5). In the specific
context of Double DQN it also reduces the benefit of using the target network
to estimate the target value and the evaluation network to select the optimal
action. As both networks will be very similar for a small value of τ the
overestimation of action values will not be reduced.

• Design neural network: the number of hidden layers, their connection (fully-
connected or not) and the number of rectifier units. In general, more com-
plicated models require a larger number of hidden layers and rectifier units
and less complicated models (with fewer variables) require smaller neural net-
works. Using too many hidden layers and/or rectifier units on a less compli-
cated model induces the risk of overfitting, while too few hidden layers and/or
rectifier units might underfit a more complicated model.

• Priority weight β: the priority weight that is assigned to a transition with non-
zero reward when it enters the experience memory. Transitions with larger
priority weights have a higher probability of being sampled at each learning
moment.

• Priority decay rate λ: the rate at which the priority weight decreases when one
round of backpropagation is completed. For higher values of λ, the priority
weights approach 1 more quickly and fewer rounds of backpropagation are
ensured. Smaller values of λ ensure higher priority weights from the second
round of backpropagation and therefore more rounds will be completed.

• TensorFlow settings: in Python, TensorFlow provides a wide variety of op-
tions. One needs to choose an activation function: a function that defines
how the output of each artificial neuron is calculated from its input signal.
Furthermore, an optimizer defines the exact implementation of the gradient
descent step at each learning moment. For example: Stochastic Gradient de-
scent, Adagrad, RMSProp and Adam. Each of the optimizers have their own
hyper-parameters that can be tuned in order to optimize their performance.

The computational time of RLA does not allow for many and lengthy preliminary
experiments to test each of the parameters extensively. We therefore conduct five
experiments of 48 hours each and collect the results. The first experiment is a
benchmark experiment and at each of the other four experiments we test the effect
of changing one parameter to a different value. We are aware of the fact that chang-
ing one parameter at a time ignores possible correlation between parameter settings
(as indicated by Masters and Luschi (2018) for the learning rate α and mini-batch
size n). Furthermore, 48 hours is not enough for our algorithm to provide the most
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desirable results as more transitions are needed to thoroughly train the reinforcement
agent. We therefore rely on the decisions that were made by Mnih et al. (2013), van
Hasselt et al. (2016) and Zhong and Wang (2017) for the benchmark experiment,
with four adjustments: instead of a neural network with 2 hidden layers and 256
rectifier units we implement a neural network with 2 hidden layers and 64 rectifier
units, because our state space is significantly smaller than the state spaces in their
experiments (144 states with dimension 4 instead of 84 × 84 × 4 grey-scale images)
and we want to reduce the risk of overfitting. Furthermore, as we have limited data
to learn from we increase the learning rate α from 0.00025 to 0.001 and decrease the
target network update frequency τ from 10000 to 1000 in order to have sufficient
updates for experiments with fewer transitions. We can also decrease the experi-
ence replay memory size N from 106 to 105, since 106 state transitions require more
computational time than we can afford (approximately 40 days). The parameters
for the benchmark experiments are denoted in Table 8.1. We set the initial value for
ϵ to 1.0 and decrease it every 100 transitions by a factor of 0.988 in order to reach
the minimum value of 0.1 after approximately 75% of the designated time of 48
hours. To perform the gradient descent step that updates the neural network we use
the Adam (adaptive moment estimation) optimizer that was developed by Kingma
and Ba (2015), since it combines the advantages of two other optimizers: AdaGrad
(adaptive gradient algorithm) and RMSProp (root mean square propagation), both
extensions of existing SGD algorithms. As stated in Section 6.5, the pseudocode for
the Adam optimizer - provided by Kingma and Ba (2015) - is presented in Appendix
A.1. Kingma and Ba (2015) claim that Adam is a relatively stable optimizer that
requires little memory and can handle noisy datasets. Furthermore, they state that
the default hyperparameter values perform well on most problems. We therefore
adopt these default values: β1 = 0.9 (the exponential decay rate for the first mo-
ment estimates), β2 = 0.999 (the exponential decay rate for the second moment
estimates) and ϵ̂ = 10−8 (a small constant for numerical stability). We use the
rectified linear activation function ReLu that decides whether an artificial neuron
should be activated or not. For any input x ∈ R, ReLu outputs max(0, x). This
is a very straightforward mathematical operation that requires little computational
effort and it became the most commonly used activation function after AlexNet won
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 by using
ReLu on a Convolutional Neural Network (Krizhevsky et al., 2012).
We decide to vary four parameters that presumably have the largest effect on the
performance of the algorithm: n, α, γ, and the number of rectifier units of the
neural network. We conduct four additional experiments of 48 hours: one with a
mini-batch size of 64, one with a learning rate α of 0.01, one with a discount rate γ
of 0.999 and one with a neural network consisting of 2 hidden layers and 128 rectifier
units. We present the rewards (one per simulation hour, except for the first hour
of each simulation day) in Figure 8.1, the loss (of every learning moment) in Figure
8.2 and the average and maximum Q-values (calculated every 100 state transitions)
in Figure 8.3 and Figure 8.4, respectively.
Rewards in the form of QC productivity per hour are compared to the QC produc-
tivity of TBAA, as described in 6.3. Therefore, a reward that exceeds zero corre-
sponds to one simulation hour of RLA with a higher QC productivity than 80% of
the average QC productivity of TBAA. Similarly, rewards below zero correspond
to simulation hours of RLA with a lower QC productivity than 80% of the average
QC productivity of TBAA. Due to many different processes at the terminal, each
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Parameter Value
Mini-batch size n 32
Experience replay memory size N 105

Discount rate γ 0.99
Learning rate α 0.001
Exploration rate ϵ 1.0 → 0.1 with a rate of

0.988 every 100 transitions
Target network update frequency τ 1000
Number of hidden layers neural network 2
Number of rectifier units neural network 64
Priority weight β 100
Priority decay rate λ 0.1
Activation function ReLu
Optimizer Adam, with default parameters

β1 = 0.9, β2 = 0.999, ϵ = 10−8

Table 8.1: Parameter settings for the benchmark experiment. Derived from Mnih et al.
(2015) and Zhong and Wang (2017), with slight adjustments.

Benchmark experiment.

Mini-batch size increased to n =
64.

Learning rate increased to α =
0.01.

Discount rate increased to γ =
0.999.

Number of rectifier units increased
to 128.

Figure 8.1: RLA rewards per simulation hour for preliminary experiments.

with specified distribution functions, QC productivity fluctuates. The reinforcement
agent therefore needs to process a significant amount of data in order to determine
whether his actions result in a negative reward due to this degree of randomness, or
because the chosen actions are not suitable for the state. Rewards below −100 only
occur when one or more QCs did not perform any move in the corresponding sim-
ulation hour, either because the reinforcement agent has sent too many vehicles to
the same place and congestion occurred or because a bug in the simulation program
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resulted in an unresponsive crane or vehicle. We have spent a lot of time removing
as many bugs from the model as possible, but approximately one in every 20-30
simulation days yields a low reward that is not necessarily caused by the decisions
of the reinforcement agent. We therefore do not compare the rewards of the five
preliminary experiments in Figure 8.1 based on their most negative rewards. We
prefer to pick a parameter setting that allows our reinforcement agent to learn to
take actions that yield higher rewards in the majority of the experiments. In each
of the five graphs in Figure 8.1 we see a slight increase in rewards from simulation
hour 350-400 onwards, except for the experiment with α = 0.01. There, maximum
rewards are lower and no improvement is visible within 700 simulation hours. The
highest rewards are found in the experiments with γ = 0.999 and with a larger
neural network.

Benchmark experiment.

Mini-batch size increased to n =
64.

Learning rate increased to α =
0.01.

Discount rate increased to γ =
0.999.

Number of rectifier units increased
to 128.

Figure 8.2: RLA Mean Squared Error (loss per learning moment) for preliminary experi-
ments.

As proposed by Zhong and Wang (2017) the weights of the neural network are up-
dated after each transition that is added to the experience memory. Therefore, the
number of learning moments in Figure 8.2 coincide with the number of state transi-
tions. It is clear that the algorithm did not converge (yet), since the mean squared
error mostly seems to increase and varies significantly. A decrease is only visible in
the graph that depicts the experiment with a larger neural network. Possibly, since
the environment is only partly observable to the reinforcement agent, a more com-
plicated neural network is able to capture more information about the underlying
MDP. Furthermore, increasing the mini-batch size clearly reduces the mean squared
errors. At every learning moment more transitions are sampled from the experience
memory and the average loss over more transitions is calculated. Therefore, big
outliers have a smaller impact on the average loss and the mean squared errors are
lower. They do, however, increase over the course of the preliminary experiment.
Since convergence of the algorithm is not guaranteed, Mnih et al. (2013) and Zhong
and Wang (2017) do not report the loss of every learning moment, but focus on the
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Benchmark experiment

Mini-batch size increased to n =
64.

Learning rate increased to α =
0.01.

Discount rate increased to γ =
0.999.

Number of rectifier units increased
to 128.

Figure 8.3: RLA average predicted Q-values (calculated every 100 transitions) for prelimi-
nary experiments

predicted average and maximum Q-values. We report the average and maximum
Q-values of the evaluation network that is calculated every 100 transitions. Notice
that we did not pick the target network, since that network only updates every 1000
transitions. The evaluation network leads to more data points, but its weights are
expected to vary more. Figure 8.3 and Figure 8.4 depict the differences between
the five experiments in average Q-values and maximum Q-values, respectively. The
benchmark experiment shows a large increase in average and maximum Q-values
in the first 5000 transitions, but a decrease after 18000 transitions. This experi-
ment also has fewer large negative rewards in the first 100 transitions than the other
experiments, which could explain the steeper ascent. The only experiments that
show persistently increasing average Q-values are the experiments with γ = 0.999
and with the larger neural network. The former graph is the most smooth and has
significantly higher values than the latter. A larger discount rate adds more value to
future rewards, which can lead to larger Q-values. The graph corresponding to the
experiment with a network with 128 rectifier units indicates that larger neural net-
works can have the tendency to overfit the data, since this graph is less smooth than
the other ones. Each network update seems to have a larger effect on the network
weights. Lastly, a decrease in average and maximum Q-values is not necessarily a
bad sign. Once the values seem to stabilize, the predicted Q-values can be used to
derive conclusions. As long as the Q-values are still being updated heavily it is wise
to continue the reinforcement learning algorithm, since there is no guarantee that
the current Q-values provide the desired results. We therefore aim to run the final
experiment of RLA significantly longer than the preliminary experiments.
On the basis of these preliminary experiments we choose to increase the mini-batch
size to n = 64, since the maximum rewards are higher than the maximum rewards
of the benchmark experiment and they seem to increase more towards the end of the
algorithm. The average and maximum Q-values also seem slightly more stable. We
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Benchmark experiment

Mini-batch size increased to n =
64.

Learning rate increased to α =
0.01.

Discount rate increased to γ =
0.999.

Number of rectifier units increased
to 128.

Figure 8.4: RLA maximum predicted Q-values (calculated every 100 transitions) for prelim-
inary experiments

do not increase the learning rate α, since there is no visible increase in rewards, which
could be a sign that the reinforcement agent is unable to learn from his experience.
We do increase the discount factor γ to 0.999, since the steady and stable increase in
Q-values of this experiment could indicate stability in the learning process. Lastly,
even though it is hard to tell whether the higher maximum rewards are due to
randomness or to the design of the neural network, we increase the number of rectifier
units to 128. The graphs with the average and maximum Q-values are slightly less
smooth than the other experiments, but increase more steadily. Furthermore, it
is the only experiment that is able to decrease the loss during the course of the
preliminary experiment. The final parameter settings that are used for RLA are
provided in Table 8.2. Notice that we increase the decay rate of ϵ to 0.996 for the
final run of RLA, since we run a significantly longer experiment and we do want to
allow for a similar balance in exploration and exploitation.

8.1.2 Results
The final run of RLA with the parameter settings as in Table 8.2 processed 253683
state transitions in approximately 14 days (not all five models were running simul-
taneously for the entire time period). A total of 800 simulation days with 7 non-zero
rewards each, provided the agent with 5600 non-zero rewards. The agent trained on
models of the same container terminal with three different QC placements and 20,
24 and 28 vehicles. Figures of the three different QC placements on the simulated
terminal are provided in Appendix B.1. We refer to the first scenario (where the
QCs are spread over the quay and only two of them are close together) as CL1,
the second scenario (where QCs are placed close together on the right side of the
terminal and further apart on the left) as CL2 and the last scenario (where there
are two groups of three QCs and one of two QCs) as CL3. For all experiments the
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Parameter Value
Mini-batch size n 64
Experience replay memory size N 105

Discount rate γ 0.999
Learning rate α 0.001
Exploration rate ϵ 1.0 → 0.1 with a rate of

0.996 every 100 transitions
Target network update frequency τ 1000
Number of hidden layers neural network 2
Number of rectifier units neural network 128
Priority weight β 100
Priority decay rate λ 0.1
Activation function ReLu
Optimizer Adam, with default parameters

β1 = 0.9, β2 = 0.999, ϵ = 10−8

Table 8.2: Parameter settings for the final version of RLA. Derived from Mnih et al. (2015)
and Zhong and Wang (2017), with slight adjustments after conducting preliminary experi-
ments.

storage yard consists of 20 modules and there are 8 active QCs.
The graph in the top left of Figure 8.5 depicts the non-zero rewards that were re-
ceived during the training of the reinforcement agent. Similarly as in the preliminary
experiments, these rewards fluctuate significantly. We do, however, see an increase
in average and maximum rewards towards the end of the experiment. During that
phase of the training the agent rarely explores actions that are not expected to give
the highest cumulative future discounted reward, but exploits the current best ac-
tions. During the last phase of the training we see fewer large negative rewards than
during the first phase. Presumably, the large negative rewards that are received
from simulation hour 4000 onwards are caused by the previously discussed bugs in
the simulation model. The larger amount of negative rewards in the beginning of
the algorithm could be caused by the decisions of the reinforcement agent.
The upper right graph in Figure 8.5 depicts the loss per learning moment. These val-
ues seem to increase towards transition 150000 and decrease slightly afterwards, but
remain considerably large. The average Q-values (bottom left of Figure 8.5) and the
maximum Q-values (bottom right of Figure 8.5) have increased significantly, when
compared to the preliminary experiments. From - approximately - transition 22500
the average seems to stabilize, but there is no way of knowing what would happen
if RLA would have the opportunity to continue running. The predicted Q-values
are provided in Appendix B.3, combined with the ’best action’ per state: the action
that is expected to yield the highest cumulative future discounted reward among all
possible actions in that state. Combined with the number of state visits - provided
in Appendix B.2 - we can derive a number of notable results:

• The predicted Q-values are relatively large (an average of 192 and a maximum
of 370). One might expect that with the possibility of negative rewards, at
least some of the state-action combinations could yield a negative Q-value.

• Each of the states has been visited, but states with a larger number of visits
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have larger differences in Q-values. For states with fewer visits, the agent
might not have had the opportunity to experiment with enough different ac-
tions and is therefore still approximately indifferent between some of them.

• Action 14, the action that picks a random job, is - in almost all states - the
action that provides the lowest cumulative future expected reward.

These results indicate that the reinforcement agent could benefit from an (even)
longer training time, in order to provide more convincing distinctions between the
different actions in each of the states. On the other hand, states that have not been
visited often in these 800 simulation days will also have a small probability of being
visited in another simulation experiment and therefore presumably have a minor
effect on our final algorithm. We therefore choose to adopt the six best actions
without focussing extensively on the exact differences between the - surprisingly
high - Q-values.
By assessing the actions that yield the highest Q-values in each of the state we can
derive a number of conclusions that concern decision-making on the terminal:

• Actions 3 and 12 are chosen in the large majority of states. Action 3 schedules
the job that corresponds to the shortest driving distance and is deemed best
in 42 out of the 144 states. Action 12, that focusses on unloading QCs with
the fewest number of currently assigned vehicles, seems the best action in 58
states. Together, action 3 and 12 cover 69% of the states.

• Actions 9 and 10 are chosen in the minority of states. Action 9 focusses on
load moves and has the highest Q-value in 4 states, while action 10 focusses
on loading QCs with the fewest number of currently assigned vehicles and is
chosen in 9 states.

• Action 8, that schedules the job that shares an origin or destination with the
fewest other jobs (the quietest buffer), is mainly chosen when the percentage
of containers that have to be moved to or from a busy place on the terminal is
high. In other words: when most containers currently are on - or have to be
moved to - busy locations, it seems wise to first schedule containers that do not
have to be moved to or from these locations. This preference is independent
of varying QC placements.

• When less than 25% of the containers that have to be moved within the
time horizon has a busy origin or destination actions 3 and 12 are chosen
the most. Action 12 (focus on discharging QCs) is more important when a
larger percentage of QCs is currently discharging (state attributes A1 = 1 and
A1 = 2), while for smaller percentages of unloading QCs actions 12 and 3
(shortest driving distance) are chosen in approximately the same number of
states.

• QC clusters diminish the number of states where action 12 is the best action.
For the states with attribute A4 = 1, where almost all QCs are further than
two cranewidths apart from another QC, action 12 is chosen for 30 out of 48
states. In states with attribute A4 = 2 and A4 = 3 this action is chosen 18
and 9 times, respectively. In these states actions 3 and 6 are more prominent.
This indicates that it is less desirable to focus on specific QCs when most QCs
are placed in close proximity of each other. Actions 3 and 6 focus on more
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general terminal characteristics and driving distance, which might decrease
the probability of congestion at QCs that are placed in a cluster.

• The parameter MaxToQC can be violated in actions 6 and 8 only. This
happens in 31 states, mainly when the percentage of containers that need to
be moved to or from a busy module or QC exceeds 25. Action 6 dominates
when most QCs are loading, while action 8 dominates when most QCs are
discharging. It makes sense to assign jobs to the quietest buffer (action 8) when
most QCs are discharging, since an unloading job concerns the transport of a
container from a discharging QC to a buffer in the yard. After the container is
delivered to the buffer, a RMG needs to transport it from the buffer to a place
in the storage yard. Sending too many ShCs to a buffer where many unloading
jobs are to be delivered to increases the probability that a ShC needs to wait
for an RMG to remove a container from the buffer to the storage yard. For
loading jobs - that occur more often when more QCs are loading - the RMG
has already placed the container in the buffer before it can be assigned to
a ShC. Therefore, even though the buffer is defined as busy, the RMGs will
not disrupt the pick-up of containers by ShCs and focussing on a busy buffer
(action 6) is the best action.

After training the reinforcement agent we run 9 validation experiments for QC place-
ments CL1, CL2, CL3 with 20, 24 and 28 vehicles and 20 replications each. The
simulation results on net QC productivity per QC placement are provided in Ap-
pendix B.4. The QC productivities are compared with TBAA in order to derive
intermediate conclusions about the decision-making of the reinforcement agent. The
Figures in Appendix B.4.1 provide information about the net QC productivity per
hour: the main objective of this thesis. The net QC productivity is the number of
containers that is handled by an active QC per hour, averaged over all conducted
experiments (7 productive simulation hours). The only experiments in which RLA
outperforms TBAA are the experiments with 24 and 28 vehicles for QC placement
CL2 and the experiment with 28 vehicles and QC placement CL3. The other RLA
experiments yield a lower net QC productivity than TBAA. This does not mean
that RLA is not successful: the derived scheduling decisions can still prove valu-
able when implemented in TBAA. RLA makes use of fewer parameters and might
thereby miss out on opportunities that TBAA does provide. Combining the best
of the two algorithms into DSA can provide desirable results, without the need for
implementation of a much more complicated action or state space in RLA.
The Figures in Appendix B.4.2 provide a more detailed description of the net QC
productivity per function. A clear difference between RLA and TBAA becomes
visible: the twin load QC moves of RLA outperform the twin load moves of TBAA,
while the twin discharge QC moves of TBAA outperform the twin discharge QC
moves of RLA in each of the experiments. The single load and discharge moves
do not differ as much. It is true that RLA picks actions 9 (4 times) and 12 (58
times) that focus on load moves considerably more often than action 10 (9 times)
that focusses on unload moves. Generally, loading QCs are bottlenecks as they need
to receive the containers in approximately the correct sequence in order to be pro-
ductive. Discharging QCs do not have to wait for specific containers, but only for
a free spot at the TP to place the container they are discharging. It is therefore
imaginable to focus more on loading QCs than on discharging QCs. The question
remains whether the reinforcement agent (or our defined action space) focusses too
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little on discharging QCs or whether the optimal parameter settings as derived by
the Taguchi Method will provide improved results. These results are discussed in
the next section.

Reward per simulation hour. Mean Squared Error (loss) per learning moment.

Average predicted Q-values per 100 transitions. Maximum predicted Q-values per 100 transitions

Figure 8.5: RLA results after 253683 state transitions.

8.2 Results DSA
DSA is the final algorithm that is constructed by implementing the scheduling de-
cisions that were found by RLA in the original scheduling algorithm TBAA. The
optimal scheduling parameter settings that were derived by the Taguchi Method,
as described in Chapter 7, are implemented and therefore DSA is able to set the
scheduling parameters dynamically: for each of the 144 states a specific parameter
setting adjusts the scoring algorithm and every state change can hereby result in
different job assignments. The additional computational time of DSA when com-
pared to TBAA is negligible, since there are only two minor adjustments: the state
needs to be determined and 3 to 4 scoring parameters need to be adjusted. The
determination of the state is done by using already existing tables and methods in
TIMESQUARE and therefore only requires calculations over relatively small table
entries. Multiplying 3 or 4 real numbers is computationally undemanding. The
running time of both DSA and TBAA is approximately 1.5 hours for one simulation
day consisting of 8 simulation hours.
Similarly as for the validation of RLA we run 9 validation experiments for QC place-
ments CL1, CL2 and CL3 with 20, 24 and 28 ShCs and 20 replications each. We
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compare these results to experiments with the same settings for TBAA in Appendix
B.5. The graphs in Appendix B.5.1 depict the net QC productivity per hour for
each of the three QC placements. It becomes clear that DSA outperforms TBAA in
terms of net QC productivity in each of the experiments. Minor increases are seen at
QC placement CL1 with 20 ShCs (0.2 containers per hour), 24 ShCs (0.4 containers
per hour) and at CL3 with 20 ShCs (0.3 containers per hour). Larger increases are
found at QC placements CL1 with 28 ShCs (1.4 containers per hour), CL2 with 28
ShCs (1.7 containers per hour) and CL3 with 24 ShCs (1.8 containers per hour) and
28 ShCs (2.1 containers per hour). Even though it is understandable that a terminal
operator would prefer an algorithm that - without any additional cost, except for the
implementation - increases net QC productivity by 2.1 or maybe even by 0.4 con-
tainers per hour on average, we test the statistical significance of these results. We
conduct a two-sided Welch’s t-Test that tests the null hypothesis that the difference
between the means of the two compared experiments is zero. The Welch’s t-Test, as
opposed to the Student’s t-Test, does not require the assumption that the variances
of the two experiments are approximately equal. As some experiments may include
much more twinlift operations than other experiments the average net QC produc-
tivities per hour can differ per experiment. The probability that this happens is
equal for both algorithms, but it is hard to distinguish between this effect and the
effect DSA itself might have on the variance of the objective values with a sample as
small as 20. An F-test that tests the null hypothesis that the variances of the two
(independent) experiments are equal also would not be able to distinguish between
these causes of different variability and even if it would - as Rasch et al. (2011) point
out - this is not recommended. Pre-testing by using the same set of observations
possibly lead to type I and type II errors (falsely rejecting a true null hypothesis
and failing to reject an incorrect null hypothesis, respectively) and it is preferable
to use the Welch’s t-Test for all experiments, with or without equal variances. The
same holds for pre-testing on the normality assumption. We did, out of curiosity,
conduct a Shapiro-Wilk test on a number of experiments and always failed to reject
the null hypothesis that the data is normally distributed with a confidence level of
0.05. Without using any further pre-tests we calculate the Welch’s t-Test statistics
and corresponding p-values in R and provide the results in Table 8.3.

QC Placement # ShCs t-Test statistic p-value
CL1 20 1.2024 0.2378
CL1 24 1.5289 0.1356
CL1 28 5.0036 0.0001
CL2 20 4.4667 0.0001
CL2 24 2.2684 0.0318
CL2 28 4.9976 0.0000
CL3 20 1.6325 0.1102
CL3 24 3.1973 0.0044
CL3 28 2.9552 0.0157

Table 8.3: Welch’s t-Test for equality of means, without assuming equal variances among
the experiments. The test statistics and p-values are reported, and the null hypothesis that
the difference between the mean net QC productivities of DSA and TBAA is zero is rejected
in 6 out of 9 experiments (with a confidence level of α = 0.05).
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With a confidence level of α = 0.05 we can reject the null hypothesis that the
differences between the mean net QC productivities of TBAA and DSA are zero for
6 out of 9 experiments. The only experiments that do not result in a statistically
significant increase in QC productivity are the experiments with QC placement
CL1 and 20 and 24 ShCs and the experiment with QC placement CL3 and 20
ShCs. This indicates that DSA outperforms TBAA when the number of ShCs is
larger, which was a clear result of RLA (Appendix B.4) as well. It also indicates
that the implementation of the Taguchi Method in order to combine TBAA and
RLA in an efficient way had a positive effect on the final results: DSA does not
only outperform TBAA, but also RLA and therefore seems capable of combining
the desirable properties of both algorithms. This becomes even more clear when
inspecting the results in Appendix B.5.2, where we depict the net QC productivity
per function for each of the experiments. As discussed in Section 8.1, RLA seems
to outperform TBAA in twin load moves, while it underperforms in twin discharge
moves. DSA is capable of diminishing this effect: while still outperforming TBAA in
twin load moves, it rarely - and if so, only slightly - underperforms in twin discharge
moves. The differences between DSA and TBAA in productivity of twin load moves
is larger for experiments with 3 and 3.5 ShCs per QC than for experiments with
2.5 ShCs per QC. Appendix B.5.3 depicts the average ShC status as a percentage
of time for each of the experiments. It becomes clear that ShCs in DSA spend
a slightly smaller fraction of the time driving empty in QC placements CL1 and
CL3. Interestingly, they spend a slightly larger fraction of the time driving empty
in QC placement CL2. The graphs in Appendix B.5.4 depict the average QC status
as a percentage of time. The graphs in B.5.1 already indicate an increase in net
QC productivity when comparing DSA to TBAA. A higher net QC productivity is,
however, not always a clear indicator of QC productivity. If, for example, all QCs in
one experiment only perform twinlift operations and in another experiment they only
perform single lift operations the first experiment would yield a twice as large net
QC productivity, even when all QCs in both experiments were productive for 85%
of the time. We safeguard against these differences by conducting 20 experiments
and by specifying the probability distribution of each functionality for all QCs in
TIMESQUARE. Each of the QCs performs twin load operations with a probability
of 0.315, single load operations with a probability of 0.185 and twin discharge and
single discharge operations with probabilities 0.315 and 0.185, respectively. After
running 20 experiments we inspect the results and remove and/or add experiments
when the desired distribution was not yet reached. Therefore, net QC productivity
is a reliable indicator of an improved algorithm, which is underlined by the results
in Appendix B.5.4: QC productivity as a percentage of time increases for each of
the experiments when comparing DSA to TBAA. Furthermore, QCs wait a smaller
fraction of time during loading, when comparing DSA to TBAA. This underlines the
results in Appendix B.5.2, where we see an increase in net QC productivity, especially
for twin load moves and slightly for load moves. Furthermore, TBA considers QCs
with a productivity of 80− 85% as highly productive: this is their target level when
conducting experiments. We reach this target level in most experiments with 3 and
3.5 ShCs per QC, but not in experiments with 2.5 ShCs per QC. This could indicate
that 20 ShCs for 8 QCs is not enough to reach a higher QC productivity as the
ShCs are already working on their maximum productive level and seem to be the
bottleneck in the corresponding experiments, impossible to overcome by both DSA
as well as TBAA.
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8.3 Sensitivity analysis
In order to test whether the scheduling decisions that were derived by RLA and
implemented in DSA still yield improved QC productivities for situations that the
reinforcement agent has not trained on we conduct additional experiments with an
off-peak simulation in which the terminal volume is heavily decreased. In this off-
peak simulation 4 QCs are active, the yard density decreases from 65% to 50% and
the number of trucks that arrive at the landside of the terminal decreases by 50%.
We conduct 20 experiments with 10, 12 and 14 ShCs for both TBAA as well as
DSA. This corresponds to 2.5, 3 and 3.5 ShCs per quay crane, similarly as in the
previously discussed experiments. The runtime of these simulations is 40 minutes
per simulation day of 8 simulation hours. A figure of the simulated container termi-
nal is provided in Appendix B.1 and the results in Appendix B.6.
In Appendix B.6 the results of the off-peak simulation indicate that DSA outper-
forms TBAA in terms of QC productivity for the experiments with 12 and 14 ShCs
with an increase in net QC productivity of 0.9 containers per hour. The experi-
ment with 10 ShCs yields the same net QC productivity for TBAA and DSA when
rounded to one decimal. The results on QC productivity per function show simi-
lar results as in Section 8.2: the increased QC productivities are mainly the result
of an increased twin load QC productivity of DSA. In these off-peak experiments,
however, twin discharge moves of DSA slightly outperform twin discharge moves of
TBAA as well, but only for the experiments with 3 and 3.5 ShCs per QC. The ShC
status for both algorithms are comparable: there are no large differences in laden
and empty driving statuses between the two algorithms, except for the experiment
with 14 ShCs. In this experiment, ShCs of DSA seem to spend a larger fraction
of their time driving (both laden and empty) than ShCs of TBAA. They do spend
less time at a QC, but wait slightly more before they can approach a QC. The QC
status, however, does show larger differences between the two algorithms. QCs are
productive 84.2% (12 ShCs) and 87.3% (14 ShCs) of the time after implementing
DSA, compared to 81.0% and 85.9% for TBAA. Note that these QCs productivities
are considered very high, both for DSA as well as TBAA. Even though the increases
in net QC productivities are smaller than in the scenarios the reinforcement agent
has trained on, productivities of this magnitude are highly unlikely to be surpassed
by a change in ShC schedules. We do see that the ShCs are rarely idle for any of
the off-peak experiments. When we inspect the ShC status of the peak simulations
in Appendix B.5.3 we do see that the ShCs are idle for a small fraction of time in
experiments with 3.5 ShCs per QC. This could indicate that employing more ShCs
might be beneficial in this off-peak scenario, but - as previously stated - an average
QC productivity of 87% is unlikely to increase significantly.
We do see a higher QC productivity in the experiment with 10 ShCs for TBAA than
for DSA, even though the rounded net QC productivities were exactly the same. It
should be noted that TBAA outperformed DSA by 0.04 containers per hour. This
- combined with slightly more twin-lift moves in the DSA experiments and more
single-lift moves in the TBAA experiments - results in a slightly higher QC produc-
tivity. On the basis of these results we can therefore conclude that TBAA slightly -
but possibly statistically insignificantly - outperforms DSA in terms of QC produc-
tivity for the off-peak experiments with 10 ShCs.
Similarly as in Section 8.2 we assess the statistical significance of the results on net
QC productivity and conduct a two-sided Welch’s t-Test that tests the null hypoth-
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esis that the difference between the mean net QC productivities of TBAA and DSA
The resulting test statistics and p-values are provided in Table 8.4 and indicate that
the increase in QC productivity for the off-peak experiments with 12 and 14 ShCs
is statistically significant at a confidence level of α = 0.05.

# ShCs t-Test statistic p-value
10 0.2007 0.8422
12 2.0601 0.0490
14 2.1398 0.0388

Table 8.4: Welch’s t-Test for equality of means, without assuming equal variances among
the experiments. The test statistics and p-values are reported, and the null hypothesis that
the difference between the mean net QC productivities of DSA and TBAA for the off-peak
experiments is zero is rejected in 2 out of 3 experiments (with a confidence level of α = 0.05).

To conclude we can therefore state that DSA is robust to the considered change
in daily terminal volume and significantly outperforms TBAA in terms of net QC
productivity in experiments with 3 and 3.5 ShCs per QC. The increase in net QC
productivity is smaller than on peak simulation days but a productive status of
87.3% is considered extremely high and possibly impossible to increase by employing
different ShC scheduling decisions.
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Chapter 9

Conclusion

In this final chapter we provide a brief summary of the algorithms and results that
were discussed in this thesis in Section 9.1, followed by a description of our main
conclusions in Section 9.2. The last section of this thesis, Section 9.3 focusses on
recommendations for future research.

9.1 Summary
The goal of this thesis was to implement a dynamic scheduling algorithm in the
container terminal simulation software of TBA in order to increase QC - and thereby
container terminal - productivity. The current algorithm, TBAA, applies the exact
same scoring algorithm throughout an entire simulation experiment and is therefore
considered a static algorithm. A dynamic algorithm would involve adjusting this
scoring mechanism to different situations that occur on the container terminal. The
choice was made to focus on the scheduling of ShCs at the waterside of a simulated
version of the Hadarom Container Terminal (HCT) in Israel, but RLA can - with
minor adjustments - be implemented in simulation models with other terminal types
as well.
After preliminary inspection of TBAA, along with extensive consultation of several
simulation and scheduling experts at TBA, a number of situations (states) and pos-
sible corresponding parameter adjustments (actions) were defined. These formed
the basis for RLA: a reinforcement learning algorithm that learns to take actions
that yield the highest cumulative expected future discounted reward in each of the
defined states. Since the effect of an action on QC productivity is not immediately
visible rewards are given once per simulation hour, resulting in delayed and sparse
rewards. Furthermore, due to the relatively long computational time of the simula-
tion program, the amount of data that could be processed was limited. A thorough
literature research on these two challenges resulted in the selection of three exist-
ing reinforcement learning algorithms: Deep Q-Network with Experience Replay,
Reward Backpropagation Prioritized Experience Replay and the Double Deep Q-
Network with Experience Replay. The existing algorithms were combined into RLA
and the reinforcement agent was trained on the simulated container terminal with
three different QC placements and different numbers of ShCs in order to ensure
robustness of the results.
By itself, RLA does not outperform TBAA in terms of net QC productivity in most
experiments, as it mostly focusses on additional scheduling decisions for the spec-
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ified states without taking into account the already acquired knowledge that the
simulation experts of TBA implemented in TBAA. Therefore, the Taguchi Method
was used to merge the results of RLA into the already existing algorithm TBAA. By
conducting 25 experiments with different scoring parameters for each of the exper-
iments, the parameter settings with the highest signal-to-noise ratio were selected
and implemented in the final algorithm DSA.
With negligible additional computational time, DSA outperforms TBAA in terms of
net QC productivity in each of the conducted experiments. Statistically significant
increased QC productivities are mostly found in experiments with 3 and 3.5 ShCs
per QC, and especially (twin) load QC moves experience an increased productivity
when comparing DSA to TBAA.
Additional experiments were conducted to test the robustness of DSA to a decrease
in daily container terminal volume and the results indicate that DSA significantly
outperforms TBAA in terms of net QC productivity for experiments with 3 and 3.5
ShCs per QC on off-peak simulation days.

9.2 Conclusions
The three scheduling algorithms that are considered in this thesis are:

• TBAA: the existing scheduling algorithm of TBA, that uses approximately 30
parameters in the simulation model under consideration to score jobs (each job
is a combination of a ShC and a container that needs to be transported from
the yard to a QC or vice versa). The job with the highest score is assigned.

• RLA: the reinforcement learning algorithm that was implemented especially
for this thesis and uses approximately 10 parameters in order to decide which
of the 14 specified actions to take in each of the 144 defined states of the
terminal.

• DSA: similar to TBAA, but with the implementation of the derived scheduling
decisions by RLA. According to the actions that were specified by RLA the
scheduling parameters of TBAA (with three additional scoring parameters)
are dynamically updated in each of the 144 states.

The simulation results of the validation experiments of RLA indicate a decrease
in net QC productivity in most experiments, when compared to TBAA. The only
experiments in which RLA outperforms TBAA are 1 out of 3 experiments with 24
ShCs and 2 out of 3 experiments with 28 ShCs (3 out of 9 experiments in total).
A possible reason for this decrease in QC productivity is that RLA does not take all
scoring parameters of TBAA into account and could thereby miss out on valuable
differences between jobs. This issue might be solved by expanding the state and/or
action space of RLA such that the underlying MDP of the container terminal is no
longer partially observable - or slightly more observable, but a computationally less
exhaustive and therefore possible more efficient solution is to merge the results of
RLA and TBAA.
The scoring parameters are adjusted in order to give both RLA and TBAA the
opportunity to influence the scheduling decision making and hereby extract the best
of the two algorithms. By applying the Taguchi Method on multiplications of the
(existing and added) scheduling parameters the final parameter settings for each of
the states were found within 25 experiments of 24 replications each.
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The results of DSA indicate a statistically significant increase in net QC productivity
for 6 out of 9 experiments, particularly for experiments with 3 and 3.5 ShCs per
QC. The increases in QC productivity range from 0.2 containers per hour for an
experiment with 2.5 ShCs per QC to 2.1 containers per hour for an experiment with
3.5 ShCs per QC. In 5 out of the 9 experiments QC productivities of 80 − 85%
were reached: productivities that are considered (near-)optimal by TBA simulation
consultants.
The performance of DSA is shown to be robust to a decrease in daily terminal volume
and significantly outperforms TBAA in experiments with 3 and 3.5 ShCs per QC on
off-peak days. TBAA slightly - but statistically insignificantly - outperforms DSA
in terms of net QC productivity for the off-peak experiment with 2.5 ShCs per QC.
Generally, the experiments with 2.5 ShCs per QC do not result in improved QC
productivities, which could indicate that the number of ShCs is too small to provide
the required service and form a bottleneck that cannot be overcome by TBAA nor
DSA.
We cannot exclude the possibility that a different parameter setting and/or state and
action space for RLA results in different scheduling decisions and considerably higher
or lower QC productivities, but as QC productivities of 80 − 85% are considered
sufficiently high by TBA simulation consultants we can safely assume that in 8
out of 12 experiments DSA performs satisfactory. We can therefore conclude that
the combination of RLA with the Taguchi Method into DSA produces desirable
results. The implemented dynamic scheduling decisions show an increased QC - and
therefore terminal - productivity, while adding negligible computational time.

9.3 Recommendations for future research
On the basis of the experiments discussed in this thesis we can define a number of
recommendations for both TBA as well as other researchers that could be of interest
for future research.
First of all, it should be noted that the results of the reinforcement learning algorithm
in this thesis are highly dependent on the algorithmic and parametric choices that
were made. As this was the first attempt to implement a reinforcement learning
algorithm - and any machine learning algorithm - to make scheduling decisions on
the simulated container terminal in TIMESQUARE, future research could include a
more thorough analysis of the parameters of the algorithm and save time by making
use of our written codes.
Furthermore, neural networks are capable of dealing with larger state spaces than
the 144 states we addressed, which could influence the final results in a beneficial
manner. There is, however, a trade-off between increasing the state space and the
simplicity of the final algorithm. As TBA’s simulation experts still want to be able
to influence the scheduling decisions it might not be desirable to have much more
than 144 states to take into account.
The sensitivity analysis in this thesis includes one set of experiments with off-peak
simulations, but additional experiments should be conducted in order to thoroughly
analyse the final performance of DSA on different versions of the simulation model.
In the construction of RLA three different QC placements and various numbers of
ShCs were taken into account, but it could be of interest to test larger versions
of the simulated container terminal. This would require significant changes to the
simulation model in terms of routing, size of the storage yard and an additional
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side quay for extra QCs and is therefore omitted for this thesis. We advise TBA to
conduct these experiments before implementing DSA in their simulation models.
The Python codes for the reinforcement learning algorithm were written as gener-
ically as possible and can therefore relatively easily be implemented in different
container terminal models. It would be interesting to train the reinforcement agent
on a model with different types of HTVs or a different lay-out in order to derive
model-specific scheduling decisions.
Both TBAA as well as DSA are uncoordinated scheduling algorithms: the scheduling
decisions of different equipment types are decoupled. By implementing a (possibly
multi-agent) reinforcement model that addresses the different scheduling problems
simultaneously scheduling decisions might experience an increased efficiency. Fur-
thermore, including more information in the state space of the reinforcement learn-
ing algorithm would move the framework from a POMDP in the direction of an
MDP, where reinforcement learning is mostly applied and convergence of the results
often guaranteed. Note, however, that the implementation of the scheduling deci-
sions that result from such a coordinated scheduling algorithm in the simulation
program of TBA would be more complicated than the implementation of uncoordi-
nated scheduling decisions, as was done in this thesis. It could therefore be more
desirable to initially apply the methods in this thesis to another scheduling problem
on the same simulated container terminal, like for example the scheduling of RMGs
in the storage yard. Slight adjustments in the state and action space would be suf-
ficient to run the experiments in this thesis in order to optimize a different part of
the container terminal.
The Taguchi Method was applied on experiments with 24 ShCs, in order to limit
the number of replications needed for each of the 25 experiments. Furthermore - as
becomes clear from the results of both DSA and RLA - varying the number of ShCs
in an experiment has a significant effect on net QC productivity and would therefore
increase the variance of each of the experiments. Including different numbers of ShCs
in one Taguchi experiment might therefore not be desirable, but one could conduct
additional experiments with different numbers of ShCs on the terminal. In other
words, the Taguchi Method could be applied three separate times in order to find
the most desirable parameter settings for each of the scenarios. That might improve
the performance of DSA in experiments with 2.5 ShCs per QC - the experiments in
which DSA currently shows no significant improvement when compared to TBAA.
Furthermore, combining three to four scheduling parameter settings into one of the
six parameters that are assessed by the Taguchi Method eliminates the relative ef-
fect these scoring parameters might have on each other. The levels were determined
by preliminary inspection of the schedules that resulted of various changes to the
scheduling parameters, but in fact an additional Taguchi experiment could include
an analysis of the relative effects of these scoring parameters.
Lastly, all experiments in this thesis concern a simulated container terminal in
TIMESQUARE, but a connection to the real-life setting at the HCT terminal in
Israel, where the TBA Scheduler makes the scheduling decisions, already exists. In
order to investigate whether the derived dynamic scheduling decisions in this thesis
still hold in real-life, DSA could be implemented in the TBA Scheduler.
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Appendix A

Auxiliary Figures and Tables

A.1 Pseudocode Adam optimizer

Figure A.1: Pseudocode Adam optimizer, as proposed by Kingma and Ba (2015). Notice
that the authors refer to α as the stepsize parameter instead of the learning rate. The only
difference is the terminology, the function of α remains as discussed in this thesis.
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A.2 Orthogonal array L25

Experiment A B C D E F
1 1 1 1 1 1 1
2 1 2 2 2 2 2
3 1 3 3 3 3 3
4 1 4 4 4 4 4
5 1 5 5 5 5 5
6 2 1 2 3 4 5
7 2 2 3 4 5 1
8 2 3 4 5 1 2
9 2 4 5 1 2 3
10 2 5 1 2 3 4
11 3 1 3 5 2 4
12 3 2 4 1 3 5
13 3 3 5 2 4 1
14 3 4 1 3 5 2
15 3 5 2 4 1 3
16 4 1 4 2 5 3
17 4 2 5 3 1 4
18 4 3 1 4 2 5
19 4 4 2 5 3 1
20 4 5 3 1 4 2
21 5 1 5 4 3 2
22 5 2 1 5 4 3
23 5 3 2 1 5 4
24 5 4 3 2 1 5
25 5 5 4 3 2 1

Table A.1: Orthogonal array L25, with 25 experiments (rows), six parameters (columns)
and five different parameter levels that are specified for each of the experiments in the table.
Copied from Hedayat et al. (1999).
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A.3 Parameters Taguchi Method

Parameter Label Level 1 Level 2 Level 3 Level 4 Level 5
Action 3: SER A [1, 1, 1] [1.25, 1.125, 1.0625] [1.5, 1.25, 1.125] [2, 1.5, 1.25] [100, 50, 25]
Action 6: BBN B [-1, 1, 1] [-1.25, 1.125, 1.0625] [1.5, 1.25, 1.125] [2, 1.5, 1.25] [100, 50, 25]
Action 8: QBN C [1, 1, 1] [1.25, 1.125, 1.0625] [1.5, 1.25, 1.125] [2, 1.5, 1.25] [100, 50, 25]
Action 9: LSS D [1, 1, 1] [1.25, 1.125, 1.0625] [1.5, 1.25, 1.125] [2, 1.5, 1.25] [100, 50, 25]
Action 10: LSR E [1, 1, 1, 1] [1.25, 1.125, 1.0625, 1.03125] [1.5, 1.25, 1.125, 1.0625] [2, 1.5, 1.25, 1.125] [100, 50, 25, 12.5]
Action 12: USR F [1, 1, 1, 1] [1.25, 1.125, 1.0625, 1.03125] [1.5, 1.25, 1.125, 1.0625] [2, 1.5, 1.25, 1.125] [100, 50, 25, 12.5]

Table A.2: Six parameters with five levels that each correspond to a specific multiplication
of the base level scoring parameters. The parameters and levels are used to conduct the
Taguchi experiments.
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A.4 Objective values and SN ratio per Taguchi
experiment

Experiment R1 R2 R3 R4 R5 R6 R7 R8 SN
1 33.643 33.339 33.429 34.929 34.536 32.804 35.107 33.589 30.5026

33.964 34.089 33.857 33.464 31.893 33.339 31.875 33.518
32.625 32.750 33.446 34.607 33.768 34.357 32.625 33.339

2 33.982 32.679 33.643 34.554 33.125 34.571 32.893 33.429 30.4729
30.821 33.804 33.196 31.554 32.768 32.786 33.964 34.464
33.321 34.018 33.750 33.946 33.554 33.982 33.768 33.679

3 34.339 34.089 32.946 33.375 32.125 31.446 32.875 34.268 30.3800
30.125 33.446 33.768 34.429 33.393 32.946 33.429 33.643
33.036 32.714 32.589 32.661 32.964 33.714 32.518 33.036

4 33.804 33.768 32.982 33.036 34.250 34.161 34.628 35.143 30.4587
33.500 31.857 33.518 32.911 33.161 33.982 33.839 32.661
33.304 32.732 33.196 33.375 32.518 32.339 32.821 33.196

5 33.393 33.161 33.786 34.161 32.554 33.429 33.286 33.643 30.3853
32.750 34.250 32.768 33.304 32.786 33.518 31.786 33.625
31.964 32.036 33.000 32.839 32.911 31.589 33.893 33.482

6 33.643 32.000 34.804 33.929 33.893 33.196 32.679 32.821 30.4275
33.143 34.464 31.214 31.143 33.321 33.339 33.964 32.143
33.071 34.143 34.304 33.839 32.929 33.911 33.500 32.786

7 33.018 34.964 34.661 32.929 33.268 33.018 32.839 33.857 30.4353
32.607 32.393 31.339 34.429 33.214 33.518 33.939 33.054
33.643 33.964 32.339 33.429 34.982 33.339 31.768 32.339

8 33.518 32.696 34.946 31.196 33.786 33.268 34.411 34.321 30.4424
32.804 33.911 32.357 32.893 34.018 33.268 34.054 33.893
32.000 32.250 32.071 33.839 32.679 33.607 34.821 32.939

9 33.464 33.375 34.661 34.500 34.375 32.946 34.500 33.482 30.4543
33.625 34.536 32.339 33.071 34.464 32.696 33.625 33.607
33.804 32.375 34.571 32.089 33.179 32.857 34.000 29.161

10 33.714 33.071 33.089 30.946 33.768 32.946 33.018 33.214 30.3625
33.393 32.964 33.054 32.000 32.661 33.982 33.939 33.232
33.125 31.429 32.643 33.000 33.821 33.071 32.750 33.021

11 34.589 31.804 33.357 33.679 33.429 34.750 33.321 33.339 30.3624
31.768 34.893 33.714 33.071 34.589 33.804 33.875 26.589
33.125 31.518 33.161 33.286 33.589 32.036 33.429 34.071

12 33.696 35.054 33.946 33.536 32.500 32.286 35.196 33.643 30.3991
33.411 32.946 33.321 33.375 33.429 33.089 31.089 32.089
32.518 34.179 31.500 33.161 33.232 33.911 32.286 32.250

13 32.939 33.143 33.214 33.089 33.821 31.839 34.411 35.214 30.4035
32.786 34.196 32.643 33.536 32.393 33.679 33.054 32.304
32.386 32.839 34.036 32.804 32.732 32.518 32.607 33.464
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Experiment R1 R2 R3 R4 R5 R6 R7 R8 SN
14 34.339 33.232 34.000 32.518 33.589 34.250 34.518 34.464 30.4629

35.304 31.911 32.625 33.518 32.536 32.321 33.500 33.143
31.375 34.214 33.732 33.804 32.304 34.054 32.804 33.375

15 31.946 32.589 33.054 32.714 32.518 33.518 34.125 33.393 30.3589
34.857 33.107 33.054 31.339 33.554 34.107 33.357 33.714
32.446 32.643 30.036 33.554 33.214 32.750 33.018 33.375

16 34.071 33.607 34.250 33.661 34.268 34.821 34.768 32.786 30.4636
33.714 33.643 33.411 32.107 33.071 34.339 34.089 33.054
33.250 32.214 33.768 32.500 33.214 32.536 34.196 30.304

17 34.018 34.143 34.107 34.750 33.321 33.143 34.268 33.607 30.4833
33.143 34.071 33.054 33.679 32.071 32.518 32.589 33.375
33.304 33.732 33.179 33.411 33.893 32.750 33.286 33.357

18 34.750 34.143 34.125 34.589 32.536 32.982 33.607 34.125 30.4972
32.518 33.696 35.125 33.643 33.446 33.696 32.500 33.607
33.446 32.929 33.196 33.875 32.464 33.250 33.036 32.911

19 34.125 32.214 33.036 32.821 34.750 33.125 33.893 35.643 30.4412
29.964 32.893 34.054 34.839 32.911 33.911 34.000 32.946
32.857 32.429 34.161 31.911 32.911 32.000 34.554 34.089

20 33.893 31.893 33.750 33.482 33.518 32.804 32.964 33.857 30.3437
32.350 32.911 32.304 30.286 31.304 33.500 32.768 33.732
33.250 33.232 33.018 33.071 33.357 32.661 32.911 33.554

21 33.357 34.000 33.054 33.179 32.125 31.929 34.143 33.839 30.4022
32.929 32.500 35.393 33.946 32.768 31.911 32.714 32.893
32.589 34.071 33.071 34.232 33.571 31.964 32.804 32.696

22 31.661 34.500 33.964 33.143 33.661 34.125 34.750 33.232 30.3578
30.500 33.929 34.107 34.196 32.786 33.571 33.000 32.054
33.107 33.464 31.018 30.821 33.750 32.571 31.732 32.732

23 33.911 34.232 34.500 34.375 33.714 34.446 33.304 32.411 30.4325
33.089 33.018 32.982 34.696 30.107 34.161 32.696 33.554
33.464 32.446 34.071 31.214 33.125 31.732 33.964 33.839

24 33.714 32.250 33.375 33.429 33.696 31.982 33.482 33.339 30.4563
33.946 33.750 33.929 33.911 34.571 33.321 33.339 34.179
32.089 33.625 32.732 33.696 32.607 32.750 33.607 33.018

25 34.250 33.196 34.089 33.196 32.786 33.875 32.893 32.982 30.3963
35.036 33.000 31.464 34.071 32.661 32.054 31.321 32.839
32.518 33.661 33.339 32.696 33.446 33.375 34.107 32.321

Table A.3: Objective values of 8 replications (R) for each of the three QC placement scenar-
ios. As specified by the Taguchi Method, 25 experiments were conducted. The last column
denotes the SN ratio for each of the experiments.
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Appendix B

Results

B.1 Figures of the simulated terminal

Figure B.1: QC placement CL1: the QCs are spread over the quay and only two QCs form
a cluster (Screenshot TBA Simulation model TIMESQUARE).
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Figure B.2: QC placement CL2: on the right side of the quay the QCs are placed closer
together (1 cluster of 3 QCs and one of 2 QCs), whereas the left side of the quay consists of
three clusters with one QC each (Screenshot TBA Simulation model TIMESQUARE).

Figure B.3: QC placement CL3: each of the QCs is placed within two cranewidths of at least
one other QC. There are three clusters: two with 3 QCs and one with 2 QCs (Screenshot
TBA Simulation model TIMESQUARE).
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Figure B.4: The off-peak simulated terminal with 4 QCs and a highly decreased throughput
(Screenshot TBA Simulation model TIMESQUARE).

106



B.2 State visits RLA

State State visits State State visits State State visits State State visits
1111 250 2111 500 3111 1665 4111 435
1112 120 2112 985 3112 2248 4112 868
1113 200 2113 120 3113 100 4113 203
1121 125 2121 195 3121 1121 4121 666
1122 99 2122 510 3122 1750 4122 585
1123 101 2123 220 3123 202 4123 133
1131 2130 2131 5420 3131 6305 4131 2215
1132 3960 2132 13315 3132 12260 4132 2545
1133 120 2133 1415 3133 200 4133 225
1211 99 2211 230 3211 105 4211 205
1212 150 2212 120 3212 109 4212 33
1213 177 2213 143 3213 200 4213 245
1221 142 2221 144 3221 120 4221 1555
1222 131 2222 205 3222 144 4222 145
1223 52 2223 200 3223 143 4223 33
1231 1795 2231 2325 3231 4550 4231 730
1232 2140 2232 11445 3232 10950 4232 875
1233 101 2233 365 3233 220 4233 155
1311 122 2311 305 3311 554 4311 75
1312 133 2312 210 3312 460 4312 210
1313 120 2313 190 3313 103 4313 12
1321 99 2321 199 3321 270 4321 265
1322 89 2322 255 3322 315 4322 970
1323 141 2323 188 3323 180 4323 92
1331 1700 2331 7395 3331 6390 4331 750
1332 3935 2332 18495 3332 15930 4332 5905
1333 645 2333 535 3333 9 4333 85
1411 505 2411 495 3411 1960 4411 250
1412 510 2412 735 3412 870 4412 440
1413 150 2413 202 3413 300 4413 550
1421 1385 2421 655 3421 1675 4421 1080
1422 333 2422 935 3422 1300 4422 2285
1423 101 2423 110 3423 66 4423 45
1431 2080 2431 8710 3431 6975 4431 2540
1432 5005 2432 21255 3432 16755 4432 810
1433 205 2433 500 3433 33 4433 555

Table B.1: Number of visits to each state in the final run of RLA. The state abbreviation
1111 denotes the state with attributes [A1 = 1, A2 = 1, A3 = 1, A4 = 1].

B.3 Predicted Q-values after RLA
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B.4 Simulation results RLA
B.4.1 Net QC productivity per hour

Figure B.5: Net QC productivity in number of containers per hour for QC placement CL1
with 20, 24 and 28 ShCs. Comparing simulation results of RLA (pink) and TBAA (blue).

Figure B.6: Net QC productivity in number of containers per hour for QC placement CL2
with 20, 24 and 28 ShCs. Comparing simulation results of RLA (pink) and TBAA (blue).

Figure B.7: Net QC productivity in number of containers per hour for QC placement CL3
with 20, 24 and 28 ShCs. Comparing simulation results of RLA (pink) and TBAA (blue).
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B.4.2 Net QC productivity per function

Figure B.8: Net QC productivity per function in number of containers per hour for QC
placement CL1 with 20, 24 and 28 ShCs. Comparing simulation results of RLA and TBAA.

Figure B.9: Net QC productivity per function in number of containers per hour for QC
placement CL2 with 20, 24 and 28 ShCs. Comparing simulation results of RLA and TBAA.

Figure B.10: Net QC productivity per function in number of containers per hour for QC
placement CL3 with 20, 24 and 28 ShCs. Comparing simulation results of RLA and TBAA.

113



B.5 Simulation Results DSA
B.5.1 Net QC productivity per hour

Figure B.11: Net QC productivity in number of containers per hour for QC placement CL1
with 20, 24 and 28 ShCs. Comparing simulation results of DSA (yellow) and TBAA (blue).

Figure B.12: Net QC productivity in number of containers per hour for QC placement CL2
with 20, 24 and 28 ShCs. Comparing simulation results of DSA (yellow) and TBAA (blue).

Figure B.13: Net QC productivity in number of containers per hour for QC placement CL3
with 20, 24 and 28 ShCs. Comparing simulation results of DSA (yellow) and TBAA (blue).
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B.5.2 Net QC productivity per function

Figure B.14: Net QC productivity per function in number of containers per hour for QC
placement CL1 with 20, 24 and 28 ShCs. Comparing simulation results of DSA and TBAA.

Figure B.15: Net QC productivity per function in number of containers per hour for QC
placement CL2 with 20, 24 and 28 ShCs. Comparing simulation results of DSA and TBAA.

Figure B.16: Net QC productivity per function in number of containers per hour for QC
placement CL3 with 20, 24 and 28 ShCs. Comparing simulation results of DSA and TBAA.
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B.5.3 ShC status

Figure B.17: ShC status as a percentage of time for QC placement CL1 with 20, 24 and 28
ShCs. Comparing simulation results of DSA and TBAA.

Figure B.18: ShC status as a percentage of time for QC placement CL2 with 20, 24 and 28
ShCs. Comparing simulation results of DSA and TBAA.

Figure B.19: ShC status as a percentage of time for QC placement CL3 with 20, 24 and 28
ShCs. Comparing simulation results of DSA and TBAA.
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B.5.4 QC status per container

Figure B.20: QC status as a percentage of time for QC placement CL1 with 20, 24 and 28
ShCs. Comparing simulation results of DSA and TBAA.

Figure B.21: QC status as a percentage of time for QC placement CL2 with 20, 24 and 28
ShCs. Comparing simulation results of DSA and TBAA.

Figure B.22: QC status as a percentage of time for QC placement CL3 with 20, 24 and 28
ShCs. Comparing simulation results of DSA and TBAA.
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B.6 Off-peak simulation

Figure B.23: Net QC productivity in number of containers per hour for off-peak simulation
experiments with 10, 12 and 14 ShCs. Comparing simulation results of DSA (yellow) and
TBAA (blue).

Figure B.24: Net QC productivity per function in number of containers per hour for off-peak
simulation experiments with 10, 12 and 14 ShCs. Comparing simulation results of DSA and
TBAA.
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Figure B.25: ShC status as a percentage of time for off-peak simulation experiments with
10, 12 and 14 ShCs. Comparing simulation results of DSA and TBAA.

Figure B.26: QC status as a percentage of time for off-peak simulation experiments with
10, 12 and 14 ShCs. Comparing simulation results of DSA and TBAA.
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