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ABSTRACT

The application of statistical methods for financial fraud detection often appears to be
hampered by label scarcity and existing class imbalance within the utilized dataset. Now,
semi-supervised learning has shown to be potentially effective in mitigating negative out-
comes originating from these data properties. This study investigates the performance
of semi-supervised learning method, self-training within the context of financial fraud
detection. To this end, we apply a customized self-training algorithm called SelfTrain on
input classifiers logistic regression, linear discriminant analysis, random forests and linear
support vector machines. We evaluate the improvement ability of SelfTrain with regard
to the classifier’s supervised baseline results for a low, medium and high label scarcity
scenario. Moreover, we specifically address class imbalance by investigating the impact
of data augmentation method SMOTE on the performance results in the medium label
scarcity scenario. In this study, we find that for linear discriminant analysis, random
forests and linear SVM, SelfTrain is consistently able to improve upon supervised base-
lines, where the most robust improvement is observed for random forests. Lastly, we find
that SMOTE is not able to significantly boost the performance of SelfTrain.

Keywords: Class imbalance, label scarcity, supervised learning, semi-supervised learning,
self-training, input classifier, data augmentation
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1. Introduction

Nowadays, financial fraud detection plays a major role in countering financial crime.
Financial fraud can be defined as “the intentional use of illegal methods or practices for
the purpose of obtaining financial gain” and can be divided into three subcategories: bank
fraud, corporate fraud, insurance fraud and cryptocurrency fraud [41]. Over the years,
manual financial fraud detection has become more and more superfluous due to upcoming
automated processes. Whereas manual fraud detection is mainly characterized by audit
practices, new automated processes predominantly include statistical and computational
methods. Especially the interest in statistical methods has increased significantly due to
the rise of big data. According to Quah and Sriganesh [32], the use of statistical methods
in fraud detection has many advantages when it is applied in a framework that classifies
suspicious transactions for further investigation. They [32] argue that this approach
results in reduced time, complexity and costs for processing a transaction. The majority
of these statistical methods are supervised classification methods utilized to determine
the likelihood of a transaction being fraudulent or genuine based on class labels and
classifying it as such [41].

A problem that often arises in fraud detection in combination with supervised classifica-
tion is label scarcity, which refers to a situation where only a small fraction of the data
is actually labeled [26]. This scarcity occurs due to the fact that labeling data is an
expensive and time-consuming exercise [24]. Label scarcity can make supervised learn-
ing challenging, due to the limited size of the training data, which may deteriorate the
generalization ability of the classifier. This problem may be amplified when the financial
fraud data is high-dimensional, due to the curse of dimensionality, referring to a situation
where the data contains too many features relative to amount of observations [18].

Another typical problem in fraud detection is a skewed class distribution of the data,
where one class is over-represented compared to the other class, also referred to as class
imbalance [15]. In general, the under-represented class is called the minority class, while
the dominant class is called the majority class [20]. First of all, it is argued by Ling
and Sheng [23] that class imbalance is not problematic in itself. However, the assump-
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tions underneath a specific classification application can make it a problem. Note that a
traditional classifier is built upon the assumption of maximizing accuracy with equal mis-
classification costs among both classes, making the classifier biased towards the majority
class in case of imbalance [31]. Yet, in financial fraud detection, the minority (fraudu-
lent) class happens to be the class of interest. This imposes the risk of making costly
misclassifications when using a traditional cost-insensitive classifier.

A relatively new type of statistical learning, called semi-supervised learning (SSL), seems
to have the potential to tackle the problem of label scarcity and class imbalance simulta-
neously. Zhu and Goldberg [43] define semi-supervised learning as the learning paradigm
concerned with the study of how computers and natural systems learn in the presence
of both labeled and unlabeled data. SSL combines the unlabeled data with the labeled
data in a specific learning method, mitigating the need for labeling all the data. Recent
study suggests that exploiting unlabeled data trough SSL might also improve class imbal-
anced learning [42]. Furthermore, SSL can be combined with other methods to address
both problems at the same time. These methods include among others over-sampling,
under-sampling and cost-sensitive learning [40].

Through the recent years, several studies focused on the application of SSL in financial
fraud detection and explicitly addressed the combination of label scarcity and class imbal-
ance. Casalino et al. [4] proposed a clustering based algorithm in which an incremental
semi-supervised fuzzy C-means was used to detect credit card fraud. Dzakiyullah et al.
[11] implemented the use of T-SNE, a statistical method for visualizing high-dimensional
data, and improved it with autoencoders. Furthermore, Melo-Acosta et al. [25] investi-
gated balanced random forests through a SSL approach called co-training. Lastly, Salazar
et al. [34] constructed a three stage SSL framework including a Fourier transform-based
class balancing method in the first stage and a SSL model called self-training in the sec-
ond and third stage. Even though these studies have shown promising results, the topic
is still relatively under-examined.

In this study, we propose an exploratory investigation of the performance of self-training
complemented with data re-balancing applied in a financial fraud detection context. Self-
training is a supervised-wrapper method that uses its predictions on unlabeled data to
teach itself through an iterative process of training, testing and label updating with
pseudo-labels which stops whenever convergence is attained [43]. Logically, self-training
depends on a supervised learning method that is selected as input. The main goal of
this study is to evaluate whether self-training can improve upon supervised baselines. In
addition, we want to investigate how separately addressing class imbalance by means of
data re-balancing may affect the performance results. As a corollary of addressing these
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goals, a new detailed and operational SSL framework can be established, which may serve
as a foundation for further research.

In the first stage of the framework, a data preprocessing step is executed in order to
make the data suitable for SSL. Subsequently, synthetic minority oversampling technique
(SMOTE) is applied as data re-balancing method. SMOTE creates synthetic minority
datapoints based on the original minority datapoints and their K-nearest neighbours [5].
Within the domain of financial fraud detection, SMOTE has proven to be an effective
method. SMOTE was applied in addition to varying machine learning models in order
to solve financial fraud detection problems [21, 27, 37]. They concluded that utilizing
SMOTE as an oversampling technique can result in a significant improvement in predic-
tive power of the machine learning models. In the second stage, input classifiers linear
discriminant analysis (LDA), quadratic discriminant analysis (QDA), logistic regression,
linear support vector machines (linear SVM) and random forests are trained and tested
as a initialization and benchmarking step for the self-training algorithm. First of all,
logistic regression is selected because of its widespread use in the industry [41]. LDA and
QDA are chosen since they have shown to be effective in combination with self-training
for improving upon supervised baseline results within credit card fraud detection [34].
Lastly, SVM and random forests are generally perceived as high-performing models for
detecting financial fraud and are therefore included as competing models [41]. In the third
stage, the self-training algorithm is executed in an iterative way. The implementation
of the algorithm is based on [34], from which the fundamental elements of self-training
are incorporated. Moreover, some extensions are implemented in the algorithm. First,
an extension on pseudo-label selection is adopted from [29]. Second, a gradual learn-
ing option is implemented, which enables the algorithm to gradually adapt to the label
updates. Lastly, a performance metric maximizer is constructed that selects the classifica-
tion model at the point where the highest metric score is attained during the self-training
algorithm. The metric to be maximized is referred to as the principal performance metric.
For convenience, we denote our constructed self-training algorithm by SelfTrain.

In this study, the SSL framework is applied on a credit card fraud dataset, consisting of
284,807 transactions of which 492 are labeled as fraudelent. This implies that the data
distribution is heavily skewed, which is in accordance with the earlier mentioned class
imbalance property of financial fraud data. The performance of SelfTrain is evaluated
and compared among the input classifiers by means of three different performance met-
rics for three different scenarios of label scarcity: low, medium and high. In addition,
supervised baseline results, referred to as SL-base, are reported and compared with the
SelfTrain results. Lastly, the impact of SMOTE is evaluated in order to gain insight on
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how re-balancing the data with SMOTE affects the results. In this study, the perfor-
mance evaluation is based on assessing the models ability of detecting true fraudulent
transactions, while limiting the amount of detected false fraudulent transactions. Under
a fixed discrimination threshold, the first ability can be reflected by the metric recall,
whereas the latter ability can be captured by the metric precision [35]. However, the
relative importance of both recall and precision strongly depends on the business related
context, which makes it difficult to fix the discriminant threshold at a certain value. For
this reason, the principal performance metric is chosen to be the threshold-free metric av-
erage precision (AP), which is characterized by its ability to properly summarize precision
against recall under different thresholds by a single number. For the sake of comparison,
area under the receiver operating characterstic curve (ROC AUC) is included as a second
metric, which has the same summarizing property as AP, albeit for recall against false
positivity rate (FPR). Lastly, Brier score is included as the third metric in order to assess
the accuracy of the predicted probabilities. Finally, a sensitivity analysis is conducted, in
which the robustness of the SelfTrain is assessed on the basis of optimized SelfTrain pa-
rameters. These parameters include sample size (to be selected from the unlabeled data),
confidence threshold (above which a pseudo-labeled datapoint is added to the training
data) and a boolean paramater for implementing gradual learning.

The study is structured in the following way. In Chapter 2, the methodology framework
is set out consisting of three stages which are elaborated in the subsequent subsections.
Next, Chapter 3 outlines the selected performance metrics and the rationale behind this
selection. In Chapter 4, the utilized financial fraud dataset is analyzed and an explanation
of the data composition for results generation is provided. The evaluation of the results
and sensitivity analysis are presented in Chapter 5. Lastly, Chapter 6 concludes the
study by summarizing and interpreting the results, discussing the study’s limitations and
providing suggestions for further research.
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2. Methodology

The purpose of this study is to investigate the performance of SSL with the scope of
addressing the two problems related to financial fraud data: class imbalance and label
scarcity. As mentioned in the introduction, the study will be conducted on the basis of
a three stage SSL framework illustrated in Figure 2.1. The first stage includes a data
preprocessing step, in which the data is scaled. Then, the full preprocessed dataset is
partitioned into a labeled training set, unlabeled training set and test set. In the last
step of this stage, synthetic data is created using SMOTE, which is a data augmentation
method that can be used to re-balance the data to a specified degree. SMOTE is solely
applied on the labeled training data, since it is believed that this resembles most with
real-world applications.

Figure 2.1 A three stage semi-supervised learning framework.

The second stage can be considered as a preparatory stage for SelfTrain. It contains a
supervised training and testing procedure using the set of input classifiers that will be
integrated into SelfTrain. The set of selected input classifiers consists of logistic regression,
LDA, QDA, random forests and linear SVM. The supervised learning results (SL-base)
from this stage are used both as an initialization and a benchmark for SelfTrain. In the
third and final stage, SelfTrain is executed in an iterative manner until convergence1 is

1Note that in this context, convergence is not specifically defined and can refer to any stopping criterion of the
algorithm.
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reached, after which the results are obtained.

The following sections will cover some deeper insights on the most comprehensive steps
within the framework in a logical order. First, we elaborate on how synthetic data is
created with SMOTE. Next, SSL is further explained where the main focus lies on self-
training and the construction of our specific SelfTrain algorithm. Finally, the supervised
input classifiers which are used as input for SelfTrain are set out.

2.1 SMOTE

SMOTE is an over-sampling based data augmentation technique in which synthetic dat-
apoints of the minority class are created using interpolation between real datapoints that
are close in the feature space [5]. It can be used to restore the balance within a data set
to a specific desired degree. The procedure of SMOTE is as follows. Initially, the amount
of synthetic datapoints to be created is determined by choosing a value for N such that
it is an integer multiple of 100. Then an iterative process starts. First, a datapoint xi is
randomly selected from the set of minority class datapoints T , after which its K nearest
minority class neighbors (KNN) are determined. Subsequently, a nearest neighbour nnR

of xi is randomly selected such that a line segment can be constructed between xi and this
randomly selected neighbour nnR. On this line segment, a random convex combination
can be derived. For each minority class datapoint xi, this process is repeated N

100 times
such that one obtains N

100 random convex combinations . Eventually, the output consists
of N

100 ∗T synthetic datapoints. The formal SMOTE procedure is captured in Algorithm
1 proposed in [17]. Note that in lines 1-4 of Algorithm 1 the case of N being lower than
100 is handled. In this situation, the output must be less than T and so the parameters
must be defined accordingly. To this end, the T minority class datapoints are put in a
random order after which T is set to T ∗ (N/100), such that T becomes a fraction of its
previous value. Furthermore, N is set to 100 in line 4 and then becomes equal to 1 by
line 5. The reason for this step is that per minority class datapoint that we visit, we
want to extract exactly one synthetic minority class datapoint. Furthermore, the process
deriving convex combinations for each of the minority class datapoints in lines 6 - 11 of
Algorithm 1 can be explained more clearly on the basis of Figure 2.2. Note that point
xi represents the i-th minority class datapoint that is selected. As can be seen in Figure
2.2a, nearest neighbours of xi are determined (denoted by {nn1, ...,nn5}) and connected
with xi by different line segments. Subsequently, convex combinations can be constructed
on these line segments, of which 5 examples are given by the red dots. The effect of one
such procedure on the data can be observed in Figure 2.2b.
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Algorithm 1: SMOTE
Input: Amount of minority class datapoints T

Synthetic datapoints factor N (as multiple of 100)
Amount of nearest neighbours K

Output: Array Synthetic consisting of (N/100)*T synthetic minority class
datapoints

1 if N ≤ 100 then
2 Randomize the T minority class datapoints
3 T = (N/100)∗T

4 N = 100

5 N = (int)N/100
6 KNNarray[][]: array for saving KNN for each minority class datapoint
7 Synthetic[][]: array for saving N synthetic datapoints for each minority class

datapoint
8 for i = 1,...,T do
9 Determine KNN for minority class datapoint xi, save KNN in KNNarray[i]

10 while N ̸= 0 do
11 Generate a random number R out of {1, ...,K}
12 Choose the R-th element from KNNarray and call it nnR

13 Make convex combination between xi and nnR and save it in Synthetic[i]
14 Let N = N −1

Figure 2.2 A graphical representation of SMOTE showing a minority class datapoint, 5
nearest neighbours and 5 potential convex combinations (a) and the re-balancing effect
of SMOTE (b).

(a) (b)
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2.2 Semi-supervised learning

In a lot of real-world applications of statistical learning such as financial fraud detection,
only a small part of a dataset is labeled, such that one ends up with a (possibly large)
amount of unlabeled data [24]. This is often perceived as a problem, since it is a gener-
ally accepted understanding that training (complex) statistical learning models on small
but high-dimensional datasets results in models with high variance which often leads to
poor prediction performances [18]. This phenomenon is also known as ‘overfitting’. The
case of having (much) more unlabeled data than labeled data available raises the ques-
tion whether one could exploit this unlabeled data together with the small portion of
labeled data in order to improve prediction performance of a specific learning method.
Semi-supervised learning (SSL) is a learning paradigm that addresses this question. SSL
operates on the cutting edge of supervised and unsupervised learning in the sense that
it extends one learning paradigm, either supervised or unsupervised, with another one
[43]. Conventionally, statistical learning is only applied within either a supervised or
unsupervised paradigm. It is crucial to first understand these concepts in order to get
a grasp on the concept of SSL itself. In short, supervised learning represents learning
through labeled datapoints, where the goal is to fit a model that relates feature values
to labels such that labels can be predicted with future observations of features (a more
detailed explanation of supervised learning can be found in Section 2.4). On the other
hand, unsupervised learning can be considered as a form of pattern recognition of unla-
beled datapoints in order to identify structures in the data, without the involvement of
any supervising target label [2].

SSL combines these two learning paradigms by exploiting both the availability of labeled
as well as unlabeled data. More specifically, it takes advantage of the unlabeled data by
adding labels to unlabeled data observations based on the structure of the unlabeled data
and knowledge that is obtained from the small amount of labelled data. By doing so, an
improved statistical learning model can be build, without the need for manually labeling
additional data, which may to be a very costly and time consuming exercise [24]. The
working of this process can be explained on the basis of Figure 2.3. In Figure 2.3a, it can
be seen how a supervised learning method would set the decision boundary based on one
positive (black dot) and one negative (white dot) datapoint. If in addition, unlabeled
data would become available, an unsupervised learning method named clustering could be
used to separate regions. Clustering divides a set of unlabeled datapoints into a specific
amount of clusters, such that the datapoints within the seperate clusters are similar to a
certain extent. Finally, pseudo-labels could be added to the created clusters in accordance
with the location of the original labeled data (Figure 2.3b).
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Figure 2.3 Example of semi-supervised learning in which both labeled and unlabeled
data (grey dots) is exploited to find an improved decision boundary.

(a) (b)

SSL can be employed based on two different goals. The first goal is to assign the right
pseudo-labels to the unlabeled data, which is also known as transductive2 learning. The
second goal is to fit a classifier in order to accurately predict future data, also referred to
as inductive3.

In this study, semi-supervised classification is of relevance, with the aim of training a
classifier using both labeled data {(xl

i,y
l
i)}n

i=1 and unlabeled data {(xul
i ,yul

i )}n+u
i=n+1, with

{yul
i }n+u

i=n+1 being unknown. Naturally, the use of SSL only makes sense when the distri-
butions of labeled data and unlabeled are approximately the same. Otherwise, we would
be building a biased classification model which often leads to a poor prediction perfor-
mance [6]. Note that randomly selecting an SSL method will not necessarily lead to an
improved performance compared to supervised learning. Moreover, it can even lead to
a worsened performance. Indeed, the effectiveness of SSL is largely determined by how
well underlying assumptions for SSL are met [43]. While each SSL method has its own
unique assumptions, some general assumptions can be identified [38]. The first one is
the smoothness assumption, which states that for two nearby datapoints in the predictor
space, the corresponding labels are also nearby. The second assumption is the low-density
assumption, implying that the decision-boundary of a classifier lies in a low-density region
of the predictor space. Note that here, the true distribution of the data is considered.
The third assumption is called the manifold assumption and it is based on the fact that
predictor space can be decomposed into multiple lower-dimensional manifolds that con-

2Transduction refers to inference from observed examples to specific examples [14].

3Induction refers to inference from observed examples to general rules [14].
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tain all the datapoints. The assumption states that datapoints on the same manifolds
share the same label. The final assumption is the cluster assumption and is argued to
be a generalization of the previous assumptions. It states that datapoints from the same
cluster tend to belong to the same class as well.

Some well-known SSL methods include self-training, co-training, Gaussian mixture mod-
els (GMM) and semi-supervised support vector machines (S3VM). In the next section,
we elaborate on self-training as it serves as the principal method in our proposed SSL
framework.

2.3 Self-training

Self-training4 is one of the oldest existing SSL methods and it was first introduced by
Scudder [36]. This method uses prediction results from a specific supervised learning
method on an unlabeled set of data as additional training data. By applying this concept
in an iterative way the learning method teaches itself based on the supervised learning
results [43]. First, the supervised learning method is trained with labeled training data.
Next, unlabeled data points are labeled as pseudo-labels and added to the original training
data. This procedure is then repeated iteratively. A formal representation of the above
mentioned process is given by Algorithm 2.

Algorithm 2: Self-training
Input: Supervised learning method f
Data: Training data {( xi,yi)}n

i as TR

Unlabeled data {xi}n+u
i=n+1 as U

1 Repeat
2 Train f with TR

3 Apply classifier f to U and obtain pseudo-labels P

4 Take subset S from U and add UPS = {(x,f(x)) |x ∈ S)} to TR

Apart from the general SSL assumptions, a specific underlying assumption for self-
training is that the initial predictions, originating from the supervised learning method
that is used, are correct. From this assumption, a drawback of the method becomes
immediately clear: a bad performing supervised learning method may result in a bad
performing self-training algorithm, since the wrong predictions from the supervised learn-
ing method are reinforced within the self-training algorithm. The phenomenon in which

4In the literature also referred to as self-learning or pseudo-labeling.
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the data is overfitted with incorrect pseudo-labels is referred to as confirmation bias by
[1]. Second, a potentially problematic aspect of self-training is convergence. From now
on, with convergence in the context of self-training, we mean a sequence of performance
values that approaches an improved and fixed performance value. To our best knowledge,
the literature does not provide any mathematical proof for this type of convergence to
occur within self-training. In fact, it is mathematically not yet proven when and why
self-training algorithms work in general [28].
A self-training algorithm can be implemented in various ways. In this study, the algo-
rithm developed in [34] is chosen as a conventional implementation and can be observed
in Algorithm 3.

Algorithm 3: Self-training
Input: Classifier f
Data: Training data {( xi,yi)}n

i=1 as TR

Testing data{(xi,yi)}n+m
i=n+1 as TE

Unlabeled data{(xi,yi)}n+m+u
i=n+m+1 as U

1 Let C = False

2 while C = False do
3 Train classifier f with TR
4 Apply classifier f to U and obtain pseudo-labels P
5 Take subset S from U
6 Add UPS = {(x,f(x)) |x ∈ S)} to TR
7 Check convergence:
8 if convergence is True then
9 C = True

Since we are dealing with a classification problem, the supervised learning method that
is used within the algorithm has to be some classifier f. Then, classifier f is trained with
the training set TR, after +which the unlabeled data U is labeled and a set of pseudo-
labels P is obtained. This set P in combination with the corresponding subset U can be
considered as the semi-supervised data set UP . Finally, a subset S is taken from U and
this set and the corresponding pseudo-labels which together form UPS are then added to
TR. This process can be repeated until convergence is attained.

While all the steps are coherently formulated, two important elements in the algorithm
remain ambiguous and must be clarified before implementing our self-training algorithm
based on Algorithm 3. First, it does not become clear in what way a subset S is selected
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from the unlabeled set U during an iteration. Therefore, we select subsets based on a
predefined sample size, where the samples with the most reliable pseudo-labels are then
added the training set. This procedure is based on the algorithm introduced in [29].
Second, it is assumed that the algorithm is convergent. As mentioned earlier, assuming
self-training to be convergent may not always be valid. Therefore, we implemented a max-
imum iteration criterion and a maximizer that selects the classifier that scores highest on
a prespecified performance metric, which we refer to as the principal performance metric.
By applying the above mentioned modifications on Algorithm 3, we obtain Algorithm 4.

Algorithm 4: Self-training
Input: Classifier f

Principal performance metric m
Sample size z
Confidence threshold ϵ

Gradual learning option w

Data: Training data {( xi,yi) }n
i=1 as TR

Testing data {(xi,yi)}n+m
i=n+1 as TE

Unlabeled data {xi}n+m+u
i=n+m+1 as U

Output: classifier f∗ corresponding to principal performance metric score b∗
m

1 Let i = 0, C = False and I = |U |
z|U | .

2 Bm[]: array for saving metric scores in each iteration
3 while i < I do
4 i = i+1
5 Train classifier f with TR

6 Apply classifier f to TE and save metric score bm in Bm

7 Apply classifier f to U and obtain probabilities PRU

8 Sort probabilities PRU and obtain PRsorted
U

9 Select z|U | highest probabilities above ϵ; obtain PRhigh
U

10 Select partition S from U corresponding to PRhigh
U

11 Add UPS = {(x,f(x)) |x ∈ S)} to TR

12 Determine maximum metric score b∗
m from Bm

Initially, sample size z and confidence threshold ϵ and gradual learning option w are
chosen as input parameters and f is selected as input classifier. Next, The cardinality
of U is divided by the product of sample size z and the same cardinality of U in order
to obtain the maximum number of iterations I. Then an iterative process starts. First
classifier f is trained with the training set TR and subsequently applied on the testset TE
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and on the unlabeled data U. The application on TE results in a performance score bm

based on the principal performance metric that is chosen. This score can be deduced using
the predicted output and real output of test set TE. As mentioned in the introduction,
average precision is selected as the principal performance metric for this study and is
further explained in Chapter 3. Now, the application from f on U results in a set of
pseudo-label probabilities PRU , which are the probabilities that a classifier assigns to
the unlabeled observations in U , representing the likelihood of an observation belonging
to a certain class. These pseudo-label probabilities are then sorted and the z|U | highest
probabilities are selected resulting in PRhigh

U . Now, a partition S is selected from the
unlabeled data U (without replacement), such that the datapoints in S correspond to
the probabilities in PRhigh

U . Then this set S is labeled with classifier f accordance with
PRhigh

U and added to the training set. If the maximum number of iterations I is not
yet reached, a new iteration is started by training classifier f with the new training
set. Eventually, when the maximum number of iterations I is attained, the maximum
principal performance metric score b∗

m is determined and the corresponding classifier f∗

is returned. The maximizer is constructed in such a way that it neglects the score in
the first iteration, where the model is trained without pseudo-labels. Note that the first
iteration of the algorithm is in fact the second stage in the SSL framework (see Figure
2.1) which serves as an initialization providing supervised baseline scores SL-base.

Every iteration within the self-training algorithm must have an associated loss function
to minimize a specified fitting error corresponding to the selected input classifier f . Lee
[22] defines the general loss function for self-training as

Loss(i) = 1
n

n∑
j=1

Loss(yj ,fj)+S(i) 1
u

n+u∑
j=n+1

Loss(y′
j ,f

′
j)(2.1)

The first part of the function represents the original loss function for fitting a labeled
batch of data, while the second part represents the loss function for fitting the unlabeled
batch of data with pseudo-labels (with j denoting an observation). The weight parameter
S(i) can be adjusted in every iteration to define the impact of the pseudo-labels on the
total loss function. It is suggested in [22] that slowly increasing the weight parameter S(i)
in the loss function might help to avoid ending up in local minima during optimization
process of an iteration’s loss function. Therefore, an additional simple gradual learning
option is included in the algorithm which gradually increases S(i) in every iteration such
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that the pseudo-labels slowly gain importance during the algorithm:

S(i) = i

I
(2.2)

where i denotes the current iteration and I the maximum number of iterations in the
self-training algorithm. This will only be used as a parameter in combination with input
classifiers logistic regression, linear SVM and random forests, due to implementation
limits.

SelfTrain can be optimized using three hyperparameters. The first parameter is
sample size z, which determines the portion of the unlabeled dataset U selected for
semi-supervision in each iteration. The second parameter is the confidence threshold ϵ

above which samples are selected from the unlabeled dataset to be potentially added to
the training data. Finally, the gradual learning option from (2.2) is implemented as a
boolean parameter w.

2.4 Supervised Learning

Supervised learning is a statistical learning paradigm characterized by learning through
example with a training set in which each datapoint consists of prediction measurement
and a corresponding output measurement [18]. The goal of supervised learning is to fit a
model that captures the relationship between observed prediction measurements and out-
put measurements, such that future output measurements can be predicted based on new
observations. Within the domain of supervised learning, classification is the method for
predicting qualitative outputs, also referred to as classes. These classes are labeled with
specific numerical codes, depending on the classification method that is used. As this
study focuses on the application of financial fraud detection where we want to correctly
classify fraudulent and genuine transactions, we are dealing with a binary classification
problem. Hence, we have two classes of interest which are the fraudulent and genuine
classes, labeled by the numerical codes 1 and 0, respectively. We denote the class variable
by Y , where Y ∈ L with L = {0,1}. Furthermore, each financial transaction has certain
characteristics, e.g. customer ID, transaction amount or country. These characteristics
are the features of an observed transaction and serve as prediction measurements. The
set of feature variables is denoted by X, where X ∈ IRK and K ≥ 1. Taking this all to-
gether, a training set that consists of observed financial transactions can be represented
by {(xi,yi)}n

i=1, where xi and yi represent the i-th observed transaction with correspond-

14



ing feature values (transaction characteristics) and class label (fraudulent or genuine)
and where n represents the total number of observations (transactions). By applying
a specific classification method on the training set, we can fit a model that relates the
transaction features to the classes fraudulent and genuine. Note that a distinction can be
made between probabilistic and non-probabilistic classification methods. The first assigns
classes to observations based on probabilities and it depends on a so called discrimina-
tion threshold, which is a value that dichotomizes the result of a classifier to a binary
decision. A non-probabilistic classification rather separates the feature space and assigns
a class to an observation based on its location in this space. In the next subsections, the
classification methods which are used as input for SelfTrain are discussed.

2.4.1 Logistic regression

Consider feature variable X ∈ IRK and the label variable Y ∈ {0,1}. In logistic regression,
the goal is to predict Y based on conditional probability p1(x) = p(Y = 1|X = x), with an
output between 0 and 1 [18]. Logistic regression models this probability based on odds.
Odds can be interpreted as a substitute for probabilities and are calculated as the ratio
of the number of expected events resulting in Y = 1 and Y ̸= 1. For example, the odds
of p1(x) = 0.1 is 1/9, indicating a 1 out of 10 expected occurrence of Y = 1 under the
condition of X = x. Logistic regression defines the odds as

p1(x)
1−p1(x) = eβ0+βT x.(2.18)

where scalar β0 and vector β ∈ RK are the model coefficients to be estimated using
training data. Now, writing (2.18) in logarithmic form gives

log( p1(x)
1−p1(x)) = β0 +βT x.(2.19)

Clearly, the log odds are linear in x, so one unit change in xk results in a log odds
change of βk. By taking the exponent on both sides of equation (2.19) and doing some
manipulation, we get the logistic function

p1(x) = eβ0+βT x

1+ eβ0+βT x.
(2.20)

Since the rate of change of p1(x) now depends on the current value of x, the relationship
between p1(x) and x is now non-linear. However, with β > 0⃗, an increasing x still results
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in an increasing p(x). In order to turn the logistic function into a classifier, the coefficients
β0 and β ∈ RK are estimated by fitting the logistic function to the training data using
the method of maximum likelihood. This results in β̂0 and β̂ ∈ RK with a corresponding
predicted probability function p̂1(x). After applying logistic regression on a training set,
a new set of test observations {xi}n+m

i=n+1 can be plugged into the model. The model then
returns a set of probabilities and allocates observation xi to class 1 if p̂1(xi) is larger than
the discrimination threshold and to class 0 otherwise.

2.4.2 Linear discriminant analysis

Linear discriminant analysis (LDA) is a supervised learning method based on a generative
model in which Bayes’ theorem is employed to find label probabilities. Bayes’ theorem
states that the probability of event A to occur given that event B has occurred can be
calculated as follows:

P (A|B) = P (B|A)P (A)
P (B) .(2.4)

The posterior probability P (A|B) is considered as the element of interest, which can be
calculated using prior knowledge in the form of the so-called likelihood P (B|A), denoting
the probability that B occurs given that A has occured, and prior probability P (A) [3].
Furthermore, note that one can rewrite P (B) as the sum of prior probabilities times its
likelihood, that is

P (B) =
∑
i∈I

P (B|A = i)P (A = i).(2.5)

LDA models the distribution of the features X, given that it belongs to a certain class
y [18]. This distribution is denoted by fl(x) = P (X = x|Y = l) and can be considered
as the likelihood function. The prior probabilities are denoted by θl = P (Y = l). Bayes’
theorem is then used in combination with the likelihood function and prior probability
to estimate the posterior probability

P (Y = l|X = x) = P (X = x|Y = l)P (y = l)∑
j∈L P (Y = j)P (X = x|Y = j) .(2.6)

In order to do so, the prior probabilities θl and the likelihood functions fl(x) are estimated.
For the prior probabilities this is done by taking the training set {(xi,yi)}n

i=1 and dividing
the number of observations belonging to class y = l by the total amount of observations
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in the training set

θl = |{Y |Y = l}|
n

.(2.7)

For the estimation of the likelihood functions, it is first assumed that X has a multivariate
Guassian distribution, X ∼ N(µ,Σ). An important remark is that mean µ is assumed to
be class specific, while the covariance matrix Σ is assumed to be equal among the classes
in L. This results in the following notation of the likelihood function:

fl(x) = 1
2π|Σ| 1

2
exp

(
− 1

2(x−µl)T Σ−1(X −µl)
)

.(2.8)

Since µl and Σ are not known beforehand, these parameters are estimated from the
training data giving µ̂l and Σ̂. The estimated posterior probability P (y = l|X = x) is
then denoted by p̂l(x), such that we get

p̂l(x) =
θl

1
2π|Σ̂|

1
2

exp
(

− 1
2(x− µ̂l)T Σ−1(x− µ̂l)

)
∑

j ∈Lθl
1

2π|Σ̂|
1
2

exp
(

− 1
2(x− µ̂l)T Σ̂−1(x− µ̂l)

) .(2.9)

Taking the log and rewriting equation (2.9) results in a so called linear discriminant
function

α̂l(x) = xT Σ̂−1µ̂l − 1
2µT

l Σ̂−1µ̂l + log θl.(2.10)

In fact, by equating (2.10) with both classes, we can obtain a linear decision boundary
due to the function being linear in x. Figure 2.4 shows an example of such a linear
decision boundary derived from 20 training observations (for the 1-dimensional case)
which is compared with the true Bayes decision boundary which is determined using the
true distribution of the data5.

5One-dimensional Guassian distribution and 20 training observations with dashed line representing Bayes decision
boundary and solid line representing LDA decision boundary. Reprinted from An Introduction to Statistical
Learning: with Applications in R (p. 140), G. James et al., 2013, Springer.
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Figure 2.4 One-dimensional Guassian distribution and 20 training observations with
dashed line representing Bayes decision boundary and solid line representing LDA decision
boundary.

Finally, when the LDA classifier is fitted using a training set, a new set of test observa-
tions {xi)}n+m

i=n+1 can be plugged into the model. The LDA classifier then returns a set
of probabilities and allocates observation xi to class for which probability p̂l(xi) is the
largest. That is

l(x) = argmax
l∈L

p̂l(xi).(2.11)

2.4.3 Quadratic discriminant analysis

quadratic discriminant analysis (QDA) is built upon the same foundation as linear dis-
criminant analysis. More specifically, QDA employs Bayes’ theorem, prior probabilities
θl = P (Y = l) and likelihood functions fl(X = x) = P (X = x|Y = l) in the same way as
LDA in order to estimate posterior probabilities pl(x) = P (Y = l|X = x) [18]. However, as
opposed to LDA, the coveriance matrix Σ is now assumed to be class specific. Replacing
Σ by Σl in equation (2.9) gives

p̂l(x) =
θl

1
2π|Σ̂l|

1
2

exp
(

− 1
2(x− µ̂l)T Σ̂−

l
1(x− µ̂l)

)
∑

j ∈Lθl
1

2π|Σ̂j |
1
2

exp
(

− 1
2(x− µ̂l)T Σ̂−

j
1(x− µ̂l)

) .(2.12)

Taking the log and rewriting equation (2.12) results in the following equivalent quadratic
discriminant function

α̂l(x) = −1
2xT Σ̂−

l
1x+xT Σ̂−

l
1µ̂l − 1

2xT Σ̂−
l

1µ̂l − 1
2 log|Σ̂l|+ log θl.(2.13)
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After fitting the QDA classifier using a training set, a new set of test observations
{xi}n+m

i=n+1 can be plugged into the model. The QDA classifier then returns a set of
probabilities and allocates observation xi to class for which probability p̂l(xi) is largest.
That is

l(x) = argmax
l∈L

p̂l(xi).(2.14)

Due to the fact that QDA estimates seperate coveriance matrices for each class, it tends
to be more flexible and therefore has a higher variance compared to LDA.

2.4.4 Random forests

Random forests is a non-parametric tree-based ensemble method [18]. In short, tree-
based methods break up the feature space IRK in set of (distinct) K-dimensional regions
{R1, ...,Rj}, which are based on splitting-rules for each feature k. Using training data
{(xi,yi)}n

i=1, a model can be fitted that forms the regions in the feature space, while
minimizing a specific error measure E(·). In case of classification, a future observation
will eventually be assigned to the class with the highest share of training observations in
the region to which the future observation belongs.

For the fitting procedure it is practically infeasible to evaluate every possible partition of
the feature space, so a greedy algorithm is applied [16]. Consider observation variable X,
feature k and split point s so that we can define the following two half-planes representing
the regions of the feature space where Xk is larger or smaller than s:

R1(k,s) = {X|Xk < s} and R2(k,s) = {X|Xk > s}.(2.21)

Each step of the algorithm occurs at a so-called leaf in the tree, which is denoted by v. To
each v, a region Rv is connected that can be separated into two new regions Rv,1(kv,kv)
and Rv,2(kv, sv). At each leaf v, the objective is to split region Rv while minimizing the
value of the error measure E(·) over all the possible splitting features k and splitting
points s using the training data {(xi,yi)}nv

i=1 (training observations left at leaf v). The
optimal combination (k∗

v , s∗
v) can be found by solving the following minimization problem

(k∗
v , s∗

v) = argmin
kv,sv

E(Rv,1(kv, sv),Rv,2(kv, sv)).(2.22)

Note that there are multiple options for choosing the error measure in case of classification.
One of the most frequently used measures is the Gini index and is characterized by its
ability to measure class purity in a region. The Gini index will also be used in this study
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and is defined as

G =
L∑

l=1
p̂m,l(1− p̂m,l).(2.23)

Within this definition, p̂m,l represents the proportion of class l ∈ L training observations
{(xi,yi)}nv,m

i=1 in region Rv,m(k,s) (m ∈ {1,2}) and can be derived by

p̂m,l = 1
nv,m

∑
xi∈Rv,m(k,s)

I(yi = l).(2.24)

As the Gini index only needs one region as input, (2.22) can in this case be interpreted as
a minimization problem of a weighted Gini index of two regions. These weights depend
on the number of training observations nv,m in each of the two regions.

While the above is just an explanation of creating one decision tree, random forests
employs an ensemble method called bagging by building multiple decision trees on boot-
strapped training observations, after which the set of predictions obtained from these
trees are averaged in order to obtain a single low-variance classifier. However, random
forests differs from bagging with regard to the way that the features are selected at a
splitting step. Instead of considering the full set of features, which is the case for bag-
ging, only a (small) random sample of the full set is chosen as the set of candidates. The
rationale behind this sampling step is reducing the correlation between decision trees.

2.4.5 Linear support vector machines

The final method, linear support vector machines (linear SVM), is a non-probabilistic
classifier and is based on finding an optimal hyperplane to separate the data. A support
vector can be considered as a datapoint that lies closest to a separating hyperplane
H = {x | wT x + b = 0} that splits up the training data {(xi,yi)}n

i=1 (y ∈ {−1,1}) into
two areas, A+ and A− [39]. Since there exits two areas, one can define two hyperplanes:
H+ = {x | wT x+b = 1} in A+ and H− = {x | wT x+b = −1} and A−. These hyperplanes
are both parallel to the median hyperplane H. Now, let the shortest distance between
H+ and H− be denoted by margin M . The theoretical goal of linear SVM is then to
find an optimal separating hyperplane H∗ = {x | w∗T x + b∗ = 0} such that margin M is
maximized, while ensuring that all positive labeled datapoints in A++ = {x | w∗T x+b∗ ≥
1} and all negative labeled datapoints are in A−− = {x | w∗T x + b∗ ≤ −1}. Hence, the
support vectors in both A++ and A−− are exactly located on the hyperplanes H∗

+ and
H∗

− and one obtains a perfect maximum margin classifier, which is illustrated in Figure
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2.56. Note that the hyperplane functions corresponding to H+ and H− are equated to 1
and -1 in order to simplify the problem and to be in line with the values that y can take.
However, any combination {−δ,δ} would have been valid.

Figure 2.5 Linear SVM in an optimal setting on a two-dimensional dataset.

Assume that xH
+ denotes any datapoint on a hyperplane H+ and xH

− is the datapoint
on hyperplane H+ closest to xH

+ . Then, it is known that (1) xH
+ = xH

− + δw and (2)
M = ||xH

+ − xH
− ||. Rewriting (2) using (1) results in M = 2

||w|| . Now, the goal of linear
SVM can be captured by the following optimization problem:

max
w,b

M = 2
||w||

(2.15)

s.t. wT (yixi)+yib ≥ 1 ∀i ∈ {1, ...,n}.

Solving this optimization problem is very complex due to the nature of the objective
function. This issue can be mitigated by converting it into an equivalent quadratic

6Note that A+ and A− still apply even though these are not included in Figure 2.5 due to visual limitations.
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minimization problem that can be efficiently solved:

min
w,b

1
2 ||w||2(2.16)

s.t. wT (yixi)+yib ≥ 1 ∀i ∈ {1, ...,n}.

An issue that may arise is that the data is only non-linearly separable. This problem can
be mitigated by introducing a trade-off parameter P and a slack variable αi representing
the distance between a misclassified datapoint and the hyperplane H+ or H− (depending
on the value of yi). The objective function now contains a trade-off between maximiz-
ing the margin and minimizing the sum of all slack variables αi which can be tuned
with P . By allowing misclassifications to occur in the constraints, we get the following
minimization problem:

min
w,b

||w||2 +P
n∑

i=1
εi(2.17)

s.t. wT (yixi)+yib ≥ 1− εi ∀i ∈ {1, ...,n}

εi ≥ 0 ∀i ∈ {1, ...,n}.

Note that by employing the concept of Lagrangian duality, it becomes possible to apply
kernel functions which are used to map data into high-dimensional spaces in which it
becomes linearly separable. However, since only linear SVM is applied in this study,
kernel functions are out of scope.

The linear SVM classifier is fitted using a training set resulting in a decision function
f(x). A new set of test observations {xi}n+m

i=n+1 can be plugged into the model. Then for
each observation xi, f(xi) returns a decision value. Now, for performance generalization
purposes, these decision values are transformed into probabilities using a classifier cali-
bration tool based on the Platt-scaling method introduced by [30]. The procedure of this
method is as follows. First a linear SVM classifier is trained on a subset of the training set
resulting in a specific decision function f(x). Subsequently, a transformation is applied
to f(x) such that a logistic function is obtained which is fitted to the counterpart of the
training set with logistic regression. This is repeated for multiple splits of the training
set, such that multiple calibrated classifiers are obtained. Finally, probabilistic output is
generated by averaging the probability predictions from the separate calibrated classifiers
on the test set.
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3. Performance Metrics

For the evaluation of the performance of SelfTrain, it is important to choose appropriate
performance metrics. More specifically, we want to find a suitable principal performance
metric, along with corresponding metrics complementary to the principal metric. In this
chapter, an overview of and justification for the selected performance metrics is given. we
say that a fraudulent transaction belongs to the positive class and a genuine transaction
to the negative class. Furthermore, it is assumed that the testing data contains the same
degree of class imbalance as the training data and that the positive class is of significantly
higher importance than the negative class.

A performance metric that is widely used in detection problems to visualize the perfor-
mance of a binary classifier is the receiver-operating characteristics curve (ROC curve)
and it is shown to be insensitive to class imbalance in the test set. This was done by
running experiments in which the ROC curves of the same predictor were compared on
different test sets with varying degrees of class imbalance [13]. The ROC curve plots the
true positive rate (TPR) against the false positive rate (FPR) under varying discrimina-
tion thresholds using linear interpolation. TPR represents the fraction of total positives
in a test set which are correctly classified as such, whereas FPR is the fraction of total
negatives in a test set which are incorrectly classified as positive. TPR and FPR can be
calculated as follows:

TPR = True Positives
Total Positives ,(3.1)

FPR = False Positives
Total Negatives .(3.2)

The area under the ROC curve (ROC AUC) can be calculated to deduce a single value
from the ROC curve that represents the performance. It has a range between 0 and 1
(since it is a portion of a square) and a higher area implies a better performing classifier.
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Figure 3.1 Illustrations of the ROC curve (a) and the precision recall curve (b).

(a) (b)

The ROC AUC can be interpreted as the probability that the corresponding classifier will
rank a random positive datapoint higher than a random negative datapoint in terms of
prediction probability. In Figure 3.1a, examples of ROC curves are illustrated, including
a perfect classifier with a TPR of 1 and a FPR of 0 (1), an intermediate classifier with
skill (2) and a random classifier with an AUC of 0.5 (3).

According to [19] it is possible that the ROC curve is overoptimistic and masks a low
classifier performance in the case of class imbalance. More specifically, when a negative
class dominates a positive class, the FPR may not be able to capture the impact that
false positives have on the performance, due to the relatively high number of negative
instances in the denominator. To address this issue, the precision recall curve (PR curve)
can be employed. Recall is equal to TPR and denotes the fraction of true positives which
are retrieved by the classifier, which is consistent with (3.1). Furthermore, precision rep-
resents the fraction of total classified positives that are truly positive and it is calculated
by

Precision = True Positives
True Positives + False Positives .(3.3)

Due to the exclusion of true negatives in (3.3), precision is expected to be a more suitable
metric for capturing the impact of false positives compared to FPR in case of class
imbalance with a dominant negative class. The PR curve plots precision against recall
under different discrimination thresholds and like ROC, it is shown by [33] to be robust
against class imbalance in the test set. Figure 3.1b shows examples of PR curves, including
a perfect classifier with a precision and recall of 1 (1), an intermediate classifier with skill
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(2) and a random classifier (3). In contrast with the ROC curve, the PR curve cannot
be constructed using linear interpolation, since a linear relation between precision and
recall does not necessarily exist [8]. Therefore, linear interpolation could provide an
overly optimistic picture of the performance. As an alternative, the construction of an
empirical PR curve can be avoided by using average precision (AP) to derive a value that
summarizes the PR curve [12]. AP is a weighted mean of precision values corresponding
to different discrimination thresholds, where each threshold weight reflects the increase
in recall compared to the recall from the previous threshold. AP can be defined by

AP =
∑
n

(Rn −Rn−1)∗Pn,(3.4)

where Rn and Pn denote recall and precision for the nth threshold.

Taking the above into account, we have chosen to select AP as the principal performance
metric since we argue that it provides the most relevant performance information with
respect to the models overall ability of identifying true positive cases while limiting the
amount of false positives. Furthermore, the ROC AUC is included as the second perfor-
mance metric, primarily in order to assess how FPR influences the performance compared
to precision and to evaluate how ROC AUC behaves in comparison with AP. Although
AP and ROC AUC provide a comprehensive indication of the performance in terms of re-
call and precision, the values on itself are not very intuitive. However, in order to present
operational recall and precision values, we have to decide upon a specific discrimination
threshold, which is rather cumbersome since we are not representing a decision-makers
perspective in any sense.

Finally, because all the input classifiers are constructed such that they provide proba-
bilistic prediction values, we also want to measure the accuracy of those probabilistic
values. For this purpose, the Brier score is included as the third performance metric.
Considering a test set {(xi,yi)}n+m

i=n+1, it computes the average squared deviation between
the predicted probability of the positive class p̂i1(xi) and the observed class yi ∈ L [9].

Brier score = 1
n

m∑
i=1

(p̂i1(xi)−yi)2.(3.5)

The Brier score is always a number between 0 and 1, where a lower score indicates a
higher accuracy.

Summarizing, the three performance metrics that are selected include AP, ROC AUC
and Brier score of which AP is the principal performance metric that is to be maximized
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in SelfTrain. The other metrics serve as additional performance indicators in order to
put the performance in a broader perspective. In the next chapter, an analysis of the
dataset that is used in this study is presented.
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4. Results

In the first part of this chapter, a basic analysis of the utilized financial fraud dataset is
presented, with a focus on structure, features and separability of the data. Moreover, a
clear overview of the data composition for generating results is provided, in which data
splitting procedures are elaborated for the sake of appropriately training and testing
SelfTrain with the selected dataset. In the second part, the results of applying SelfTrain
on the chosen dataset are presented and evaluated. First, the results on the real-data set
are set out based on the label scarcity scenarios low, medium and high. Subsequently,
the effect of SMOTE is assessed by analyzing the results of SelfTrain applied on SMOTE-
data within a medium label scarcity scenario. Finally, a sensitivity analysis is conducted
to assess the robustness of SelfTrain with regard to its corresponding hyperparameters.

4.1 Data

The dataset that is used in this study is derived from Kaggle1 and consists of anonymized
credit card transactions labeled as fraudulent or genuine. It consists of 284,807 transac-
tions made by credit cards in september 2013 by European cardholders. Out of the
284,807 transactions, 492 are labeled as fraudulent, implying an imbalance ratio of
(0.17%). Furthermore, the classes fraudelent and genuine are indicated with a 1 and
0, respectively. The raw feature data is a result of dimensionality reduction applied in
the form of a principal component analysis (PCA) such that the feature space has been
shrunk to 30 numerical features. 28 features are represented as principal components,
whereas the 2 features ‘Time’ and ‘Amount’ were not included in the PCA and kept
their original label and values. The values of the principal components are already nor-
malized, whereas the features ‘Time’ and ‘Amount’ still contain their original values as
stated before. Although ‘Time’ is included as a feature, it is still assumed that the data
is static. Treating the data as a dynamic time-series would bring up additional factors
that have to be taken into account, such as trend, seasonality, cyclicality and random

1https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
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variability [7]. Moreover, the SelfTrain would have to be radically changed with respect
to the sampling strategy of the unlabeled data, since the current strategy would impair
the temporal order of the data. For the sake of completeness, the most important de-
scriptive statistics of the data are included in the Appendix A.1 Table A.1. Finally, a
‘SVM-trick’ is applied to assess the linear separability of the data. This trick involves
instantiating a linear SVM classifier with a sufficiently high penalty parameter, making
misclassifications sufficiently expensive to guarantee the data to be linearly separated if
possible. Then, this classifier is fitted and subsequently tested on the full data set, re-
sulting in an accuracy of 99.86%. Note that this accuracy only gives an indication about
the total linear separability, however it does not provide us with information about the
distribution of the separated classes following from this separation.

In order to train and validate our models, the data is split up into a training and testing
set. Dobbin and Simon [10] argue that in general, the fraction of training data should
be within the range of 40% - 80%. Since the labeled fraction of the training set is rather
low, we have chosen a training/testing split of 75%/25% to compensate for this. Since
all datapoints in the dataset are labeled, there is no initial label scarcity in the training
set, nor is there an unlabeled data set available. However, since we want to address
the problem of label scarcity with SelfTrain which is built upon the use of unlabeled
data, it becomes necessary to artificially mimic label scarcity. This is done by removing
labels from a major part of the training set such that this part becomes the unlabeled
training set and the counterpart becomes the labeled training set. We distinguish three
different scenarios of label scarcity: low label scarcity representing 10% labeled and 90%
unlabeled data, medium label scarcity representing 20% labeled and 80% unlabeled data
and high label scarcity representing 30% labeled and 70% unlabeled data. For the sake
of comparability, we have decided that for each scenario of label scarcity, the imbalance
ratio of the corresponding labeled training set must lie within a range of 0.0002 around
the original imbalance ratio of 0.0017. See Figure 4.1 for a structured overview of the
data composition.
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Figure 4.1 Structured overview of the data composition for the generation of results.

To sum up, we are dealing with an imbalanced static dataset which is linearly separable
for 99.86% with mostly non-interpretable features. To mimic label scarcity and simul-
taneously create unlabeled data, three splits of unlabeled and labeled training data are
used corresponding to low, medium and high label scarcity scenarios. In the following
section, the performance results of applying the SSL framework on our selected dataset
are analyzed.

4.2 Empirical analysis

In order to analyze the permance of SelfTrain, each of the selected input classifiers were
evaluated by means of three performance metrics: AP, ROC AUC and Brier score, where
AP functions as the principal performance metric. SelfTrain is constructed in such a
way that it selects the maximum value of the principal performance metric considering
all iterations within the algorithm. Hence, for each input classifier, the maximized AP
(barring exceptions) corresponds to a different set of pseudo-labeled data that is added
to the original training set. This implies that each input classifier is (possibly) fitted
on a different training set including its unique set of pseudo-labeled datapoints. The
optimal maximized AP scores and the corresponding SelfTrain hyperparameter settings
are determined using a manual grid search, which is a parameter tuning method that
performs an exhaustive search over a specified set of parameter values to find the best
model (with respect to a given performance metric). Our grid search is conducted over the
parameter ranges denoted in Table 4.1. Gradual learning parameter w is only applicable
for logistic regression, random forests and linear SVM.
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Table 4.1 Manual grid search ranges for SelfTrain parameters sample size z, confidence
threshold ϵ, and gradual learning option w.

hyperparameter Range
Sample size z {0.05, 0.01, 0.005}
Confidence threshold ϵ {0.6, 0.7, 0.8, 0.9, 0.99}
Gradual learning option w {True, False}

All input classifiers are implemented with library Scikit-learn 1.0.2. As this study specif-
ically focuses on SelfTrain paramaters, the hyperparameters of the input classifiers are
set on default (See Appendix A.2 for an overview of these settings per input classifier).
implementing and running SelfTrain is executed on a Windows computer in Python 3.8.8.
The CPU times for running SelfTrain with the input classifiers and optimal parameter
settings and label scarcity scenarios are shown in Table 4.2. Clearly, random forests and
linear SVM require the most computational power for the application of SelfTrain. On
the contrary, LDA and QDA clearly require the least amount of computational power.
Generally, the CPU time appears to decrease with increasing label scarcity, which can
be attributed to a shrinking training set. The ROC AUC and Brier score are determined
on the basis of the optimized SelfTrain algorithm and correspond to the maximized AP,
meaning that these score metrics do not necessarily represent maximized results. For
this reason, AP represents the performance, while ROC AUC and Brier score provide
additional performance information. Hence, in the performance analysis, AP is lead-
ing, unless another metric is specifically mentioned. SelfTrain was first applied on the
real-data for the three different label scarcity scenarios. As a baseline, initial supervised
learning results are included, which are in fact the results of solely applying an input
classifier on the labeled training set. We denote these supervised learning baselines by
SL-base.

Table 4.2 CPU time for running SelfTrain with optimized parameter settings for input
classifiers logistic regression, LDA, QDA, random forests and linear SVM considering all
three label scarcity scenarios.

Scenario
Model Low Medium High
Logistic regression 12m 48.8s 9m 5.6s 7m 2.2s
LDA 4m 1.2s 3m 16.9s 3m 19.7s
QDA 6m 3.7s 4m 39.5s 4m 45.7s
Random Forests 243m 32s 201m 55s 123m 15.7s
Linear SVM 223m 12.3s 164m 9.6s 92m 50.4s
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4.2.1 Performance analysis: real-data

In this subsection, the performance results on real-data for all label scarcity scenarios
are presented and evaluated. Table 4.3 shows the results of SL-base and SelfTrain on
real-data in the low (a), medium (b) and high (c) label scarcity scenario for the input
classifiers logistic regression, LDA, QDA, random forests and linear SVM. The imbalance
ratios corresponding to the labeled training sets with low, medium and high label scarcity
scenarios are 0.1516%, 0.1614% and 0.1735% respectively, meaning that they fall within
the imbalance ratio boundaries mentioned in Section 4.1. First, the initial SL-base results
are analysed. Thereafter, the mutations in performance by SelfTrain are evaluated.

Based on the initial SL-base performance, it can be stated that random forests is the most
favourable input classifier, outperforming the other classifiers in the low and medium label
scarcity cases, and being a close second in the high label scarcity case. Moreover, these
performances are in all cases accompanied by the lowest Brier score, meaning that random
forests has the most reliable predictions. In contrast, the corresponding ROC AUC scores
are relatively on the low end. For the high label scarcity scenario, it is linear SVM that
outperforms the other input classifiers. Lastly, QDA stands out in a negative manner,
due to its low performance accompanied by a high corresponding Brier score. A reason
for this low performance could be that QDA is overfitting the data due to the degree of
linear seperability of the data (99.86%) in combination with the relatively high flexibility
of QDA. Another possible factor could be that the estimated covariance matrices for both
classes are equal, whereas QDA assumes the covariance of classes to be non-equal.

Considering performance improvement, it can be seen that for each label scarcity scenario,
SelfTrain is able to (at least marginally) improve upon SL-base with input classifiers
LDA, random forests and linear SVM, of which SelfTrain with random forests has the
most robust improvement. For these input classifiers, the corresponding ROC AUC and
Brier scores remain approximately the same, whereas for ROC AUC mainly inconsistent
mutations can be observed. Furthermore, SelfTrain with random forests attains bigger
improvements in scenarios with higher label scarcity, suggesting that random forest as
input classifier has a leveling effect on the scores regarding the different label scarcity
scenarios. To a lesser extent, this effect is also visible for LDA and Linear SVM. Focusing
on the specific label scarcity scenarios, it can be observed that in low label scarcity
scenario, the biggest improvement is achieved by SelfTrain with linear SVM, accompanied
by a minor decrease in ROC AUC. The development of AP and class imbalance ratio
(CIR) during SelfTrain with linear SVM can be observed in Figure 4.2a.
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Table 4.3 Optimized maximum AP scores with corresponding ROC AUC and Brier
scores for all input classifiers on real-data for SL-base and SelfTrain.

(a) Low Label Scarcity

SelfTrain
Model AP* ROC AUC Brier score
Lgistic regression 0.7595 0.9701 0.0008
LDA 0.7349 0.9781 0.0008
QDA 0.1106 0.9634 0.0282
Random forests 0.8243 0.9426 0.0005
Linear SVM 0.8071 0.9665 0.0007

SL-base
Model AP* ROC AUC Brier score
Logistic regression 0.7595 0.9701 0.0008
LDA 0.7263 0.9825 0.0007
QDA 0.1577 0.9625 0.0213
Random forests 0.8153 0.9418 0.0005
Linear SVM 0.7741 0.9736 0.0007

(b) Medium Label Scarcity
SelfTrain

Model AP* ROC AUC Brier score
Logistic regression 0.7259 0.9661 0.0008
LDA 0.7369 0.9824 0.0006
QDA 0.1701 0.9530 0.0199
Random forests 0.8099 0.9387 0.0005
Linear SVM 0.7983 0.9700 0.0007

SL-base
Model AP* ROC AUC Brier score
Logistic regression 0.7259 0.9661 0.0008
LDA 0.7308 0.9823 0.0006
QDA 0.2020 0.9555 0.0158
Random forests 0.7812 0.9295 0.0006
Linear SVM 0.7727 0.9724 0.0006

(c) High Label Scarcity
SelfTrain

Model AP* ROC AUC Brier score
Logistic regression 0.6801 0.9500 0.0009
LDA 0.7313 0.9820 0.0007
QDA 0.4781 0.9050 0.0017
Random forests 0.7708 0.9106 0.0006
Linear SVM 0.7775 0.9562 0.001

SL-base
Model AP* ROC AUC Brier score
Logistic regression 0.6801 0.9500 0.0009
LDA 0.7174 0.9820 0.0007
QDA 0.4780 0.9005 0.0018
Random forests 0.7471 0.9296 0.0006
Linear SVM 0.7752 0.9562 0.0008
* denotes the principal performance metric
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The beginning of the course is increasing, after which the graph shows an oscillating
pattern with a downward trend. With regard to class imbalance ratio, an exponentially
decreasing pattern is observable with a total decrease of roughly 70% in ratio. In the
medium and high label scarcity case, SelfTrain with random forests achieves the biggest
improvement. Figure 4.2b shows the AP and CIR pattern for SelfTrain with random
forests in the medium label scarcity case. For roughly the first 160 iterations, an oscilla-
tory pattern with an increasing trend is observable. As for SelfTrain with linear SVM, the
class imbalance ratio is exponentially decreasing with again approximately 70%. Lastly,
an illustration of the development of AP and CIR for SelfTrain with LDA can be found
in Appendix A.3 Figure A.3.

Figure 4.2 Development of AP and Class Imbalance Ratio over 200 iterations in the
SelfTrain for input classifiers linear SVM (a) and random forests (b).

(a) (b)

SelfTrain with logistic regression or QDA is never able to (significantly) improve upon
SL-base performances. For SelfTrain with QDA, there is even a degraded performance
visible in the low and medium label scarcity case. In Figure 4.4a it can be seen that
for SelfTrain with logistic regression, AP is strictly decreasing until approximately 175
iterations, after which the it starts to increase until the end. However, the maximal AP
remains at the first iteration. The same holds for SelfTrain with QDA in Figure 4.4b,
although a small increase in AP can be observed between the 25th and the 50th iteration.
Furthermore, note that the class imbalance ratio tremendously increases with QDA and
decreases with logistic regression. This implies that within SelfTrain, QDA assigns a
relatively high portion of unlabeled data to the positive class, while the reverse is true
for logistic regression, even though it is to a much lesser extent.

33



Figure 4.3 Development of AP and Class Imbalance Ratio over 200 iterations in the
SelfTrain for input classifiers logistic regression (a) and QDA (b).

(a) (b)

Summarizing, we can state that random forests is the most interesting input classifier for
SelfTrain regarding the performance improvement it entails. Moreover, the corresponding
probability predictions remain reliable based on the corresponding Brier score mutations.
However, it should be noted that the corresponding ROC AUC scores for both SL-base
and SelfTrain are consistently in the low end relative to the other input classifiers. QDA
clearly is the least interesting classifier in terms of performance improvement. Based on
the corresponding Brier scores, it also has the least reliable probability predictions, which
is even enforced by SelfTrain. In Figure 4.4, the PR curves for SL-base and SelfTrain
are shown for both random forests and QDA in the medium label scarcity scenario.
For random forests, the increase in AP by SelfTrain can be mainly attributed to the
elevated precision values at recall values between 0.1 and 0.7, approximately (Figure 4.4a).
Moreover, in case that a recall above 0.7 is required (e.g. from a business perspective),
no significant advantage can be gained from the improvement in AP. For QDA on the
other hand, a drop of the (already low) precision values can be observed after SelfTrain
at recall values 0 to roughly 0.8 (Figure 4.4b). Outside this range, the precision values for
SL-base and SelfTrain do not differ significantly. Note that the PR curves in Figure 4.4
are approximated based on a trapezoidal method as an alternative for linear interpolation
between points which is not valid for PR curves which is explained in Chapter 3. This
explains the angular structure of the curves.
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Figure 4.4 PR curves corresponding to SL-base and SelfTrain for random forests (a)
and QDA (b) in the medium label scarcity scenario.

(a) (b)

4.2.2 Performance analysis: SMOTE

In this subsection, the effect of re-balancing the data with data augmentation method
SMOTE is evaluated. SMOTE is solely applied on the training set, due to the fact
that this set would be the only data available in practice. The amount of K nearest
neighbours to visit at each minority class datapoint is fixed at 5. Furthermore, for
each input classifier, the amount of synthetic minority class datapoints is determined
by optimizing the AP score of SelfTrain over the following ratios: 0.2, 0.4, 0.6, 0.8 and
1, where the ratios represent the number of datapoints in the minority class over the
number of datapoints in the majority class after resampling. For comparability reasons,
we have chosen to apply the optimized SelfTrain parameter settings from the previous
section on SelfTrain with SMOTE, which we denote by SelfTrain-S. Table 4.4 shows the
supervised baseline results denoted by SL-base-S and the optimized SelfTrain-S for the
input classifiers logistic regression, LDA, QDA, random forests and linear SVM in the
medium scarcity scenario.

It can be seen that for input classifiers logistic regression, random forests and QDA,
SL-base-S and SelfTrain-S outperform SL-base and SelfTrain, where SelfTrain-S with
random forests again has the best performance. Moreover, for logistic regression and
QDA, SL-base-S even already outperforms SelfTrain. Note that for logistic regression,
the corresponding Brier scores are significantly higher after applying SMOTE, implying an
impaired accuracy of the probability predictions. Furthermore, for LDA and Linear SVM,
a degraded performance from SL-base to SL-base-S and from SelfTrain to SelfTrain-S can
be observed. Regarding performance improvement by SelfTrain-S compared to SL-base-
S, input classifier LDA achieves an increase of 0.1279 in AP, which is by far the biggest
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Table 4.4 Optimized maximum AP scores with corresponding ROC AUC and Brier
scores for all input classifiers on SMOTE-data for SL-base-S and SelfTrain-S.

SelfTrain-S
Model AP* ROC AUC Brier score
Logistic regression 0.7528 0.9506 0.0163
LDA 0.7144 0.9815 0.0008
QDA 0.2459 0.9483 0.0184
Random forests 0.8152 0.9708 0.0006
Linear SVM 0.7512 0.9519 0.0089

SL-base-S
Model AP* ROC AUC Brier score
Logistic regression 0.7513 0.9511 0.0163
LDA 0.5865 0.9744 0.0015
QDA 0.2457 0.9483 0.0181
Random forests 0.8044 0.9621 0.0006
Linear SVM 0.7401 0.9512 0.0049
* denotes the principal performance metric

improvement attained by self-training in both the real-data and SMOTE-data context.
The other input classifiers are only able to slightly improve SL-base-S with SelfTrain-S.
Hence, the performance degradation from Selftrain to Selftrain-S can therefore only be
fully attributed to the performance degradation from SL-base to SL-base-S in the LDA
case.

4.2.3 Sensitivity analysis

This subsection covers a sensitivity analysis of the SelfTrain parameters z, ϵ and w in
order to assess how robust SelfTrain is against changes in the values of these parameters.
Naturally, within the analysis, the maximized AP generated by SelfTrain is chosen as the
dependent variable, whereas the parameters are considered as the independent variables.
As a beginning point, we have selected the optimized SelfTrain parameter values for each
input classifier. Then for these parameters, a five-point-interval is formed around these
values.

In Figure 4.5 the sensitivity of SelfTrain to sample size z in the medium label scarcity
scenario is graphically shown. Around optimized sample size z∗ = 0.005 we constructed
the interval [0.004,0.0045,0.005,0.0055,0.006]. For the sake of interpretability, the values
in the interval are converted into their corresponding number of iterations by dividing
the amount of unlabeled samples by the product of z and the amount of unlabeled
samples. For all input classifiers except QDA, AP remains fairly constant as the number
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of iterations increases (i.e. z decreases), proving that SelfTrain is considerably robust
against sample size z in the specified interval. However, for SelfTrain with QDA, AP
appears to be slightly increasing with an increasing number of iterations (i.e. decreasing
z). This might indicate that for QDA, the AP can be considerably increased when running
SelfTrain with a greater amount of iterations. Note that when we apply the analysis in
the low and high label scarcity scenario, we obtain a comparable picture of the robustness.
Therefore, these figures are left out.

Figure 4.5 Sensitivity analysis of SelfTrain showing the impact of the number of itera-
tions on AP in the medium label scarcity scenario for all input classifiers.

Figure 4.6 graphically shows the sensitivity of SelfTrain to confidence threshold ϵ in the
medium label scarcity scenario. Around optimized confidence threshold ϵ∗ = 0.99 we con-
structed the interval [0.982,0.986,0.990,0.994,0.998]. It can be easily seen that for all
input classifiers, SelfTrain is completely robust against the varying confidence thresholds
in the specified interval. This insensitivity indicates that the probability outputs corre-
sponding to the predictions are generally very close to 1, suggesting that the classifiers
are very confident about the predictions for the unlabeled data. The same robustness
results are observed for the low and high label scarcity case and are therefore left out.
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Figure 4.6 Sensitivity analysis of SelfTrain showing the impact of the confidence thresh-
old on AP in the medium label scarcity scenario for all input classifiers.

In Figure 4.7, the sensitivity of SelfTrain to gradual learning (parameter w) is shown
by means of a bar chart. For each of the label scarcity scenario, a comparison is made
between the AP generated with gradual learning (w = True) and the AP generated
without gradual learning (w = False). It can be seen that for both linear SVM (Figure
4.7a) and random forests (Figure 4.7b), SelfTrain only benefits from gradual learning in
the low label scarcity scenario. In the other scenarios, SelfTrain without gradual learning
performs slighlty better. SelfTrain with logistic regression does not show any sensitivity
with respect to gradual learning and the bar chart is therefore not included in the figure.
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Figure 4.7 Sensitivity analysis of SelfTrain showing the impact of applying gradual
learning on AP in each of the label scarcity scenarios for input classifiers linear SVM (a)
and random forests (b).

(a) (b)
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5. Conclusion

In this study, we proposed to investigate the performance of self-training on real-data
and SMOTE-data within the context of financial fraud detection by means of integrating
self-training algorithm SelfTrain in a structured three stage SSL framework and applying
it on input classifiers logistic regression, LDA, QDA, random forests and linear SVM.
The justification for this study is based on identified data related problems in financial
fraud detection. The roots of these problems lie in the imbalanced structure and limited
(label) availability of financial fraud data, which, according to previous studies, can be
mitigated with the use of SSL and additional data re-balancing techniques. The main goal
of this study was to draw a comparison between the prediction performance of SelfTrain
and SL-base for each of the input classifiers. An additional goal was to assess the effect
that re-balancing the data with SMOTE has on both the SL-base and SelfTrain results.
The performance is measured by the principal performance metric AP and additional
information is provided by performance metrics ROC AUC and Brier score. For the
evaluation of the results, low, medium and high label scarcity scenarios are considered,
representing labeled/unlabeled ratios of 30%/70%, 20%/80% and 10%/90%, where in
each scenario, the class imbalance ratio fluctuates around 0.17%.

Findings on real-data show that SelfTrain is always able to improve the prediction perfor-
mance in terms of AP when applied with LDA, random forests and linear SVM, where the
improvement with random forests is most robust and accompanied by the most accurate
prediction probabilities in terms of Brier score. In contrast, SelfTrain with logistic regres-
sion or QDA never achieves an improved performance, where more detailed inspection
shows decreasing AP scores within the algorithm. A possible explanation for these de-
creasing AP scores is that logistic regression and QDA suffer from confirmation bias, such
that inaccurate pseudo-labels are being over-fitted. Especially for QDA this phenomenon
is likely to occur, due to its poor SL-base performance. In general, the results on real-data
suggest that SelfTrain is an effective method for improving upon SL-base performance
for classifiers LDA, random forests and linear SVM in financial fraud detection. More-
over, SelfTrain appears to be the most effective when applied with random Forests, due
to the robust performance improvements and sustained accurate prediction probabilities
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observed in all label scarcity scenarios. In the medium label scarcity scenario, SMOTE
improves the performance of both SL-base and SelfTrain for logistic regression, QDA and
random forests. However, the foundation of the improvement on SelfTrain appears to be
mainly rooted in the supervised baseline results (SL-base-S), which can be attributed to
the direct effect that SMOTE has on the initial data. Moreover, for the mentioned input
classifiers SelfTrain is only able to slightly improve upon the SL baselines, indicating that
applying SMOTE has a damping effect on the performance improvement of SelfTrain for
these classifiers. This suggests that there might exist a ceiling for the performance that
can maximally be achieved with SelfTrain.

This study has several limitations regarding study design, data and proposed method-
ology that should be taken into account while interpreting the study results. First of
all, for testing the classification performances of SL-base and SelfTrain only one initial
training/testing split is utilized. It is generally perceived that with a large dataset, the
training and testing datasets sufficiently approach the true distribution of the data such
that significant variations in testing results are not expected to occur. Although it is as-
sumed that our dataset is large enough, it is important to note that we transform labeled
training data into unlabeled training data for the sake of creating different label scarcity
scenarios. This substantially decreases the amount of initial training data, which im-
poses the risk of overfitting such that different training/testing splits may give different
results. Next, just one set of financial fraud data is considered for evaluating the SL-
base and SelfTrain performance. Naturally, drawing conclusions about the effectiveness
of SelfTrain in financial fraud detection based on one dataset is premature. Therefore
study results must be interpreted as suggestive rather than conclusive. Moreover, due to
the fact that the selected dataset ensues from a PCA transformation, (the majority of)
features are principal components and are not interpretable. This implies that we are
actually dealing with ‘black box’ classification, since we do not know how raw features
interact with the output of generated by any of the input classifiers in both SL-base and
SelfTrain. This lack of interpretation may be problematic in real-world applications of
our proposed framework. Finally, A drawback of using random rorests and Linear SVM
as input classifiers for SelfTrain is that it requires a lot of computing power, which re-
sults in high CPU running times. Therefore, the degree of performance improvement
should be carefully weighed against the running time of the input classifier in real-world
applications.

Taking both the results of this study and its limitations into account, we conclude that
in some cases, SelfTrain is suggestive of being an effective method for improving upon
supervised baseline performances when applied within the context of financial fraud de-
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tection. Even though the same can be stated for SMOTE, this method does not show
to be particularly complementary to SelfTrain. From the limitations of this study, it
becomes clear that further research is necessary to turn the above mentioned suggestions
into conclusions.

The first suggestion for further research builds on the above mentioned limitations and it
involves applying the proposed SSL framework with SelfTrain on multiple other financial
fraud datasets to assess the robustness of this study’s results. In addition, performing
multiple training/testing splits and averaging out the corresponding performance scores
might give more robust and thus more reliable results. However, note that this takes
significantly more CPU time, which can be especially problematic in combination with
time-intensive input classifiers like random forests and linear SVM. Next, as this study
utilizes data augmentation method SMOTE as a data re-balancing method to address
class imbalance, a next step of research could be to compare the use of SMOTE with other
data re-balancing methods like oversampling, undersampling or cost-sensitive learning in
combination with SelfTrain. Finally, it could be interesting to select other metrics as
principal performance metric (e.g. ROC AUC or Brier score) in order to investigate the
consistency of classifier rankings with respect to the principal performance metric scores.
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A. Appendix

A.1 Data: descriptive statistics

Table A.1 Basic descriptive statistics of the feature variables.

mean std min max
Time 9.481386e+04 47488.145955 0.000000 172792.000000
V1 3.918649e-15 1.958696 -56.407510 2.454930
V2 5.682686e-16 1.651309 -72.715728 22.057729
V3 -8.761736e-15 1.516255 -48.325589 9.382558
V4 2.811118e-15 1.415869 -5.683171 16.875344
V5 -1.552103e-15 1.380247 -113.743307 34.801666
V6 2.040130e-15 1.332271 -26.160506 73.301626
V7 -1.698953e-15 1.237094 -43.557242 120.589494
V8 -1.893285e-16 1.194353 -73.216718 20.007208
V9 -3.147640e-15 1.098632 -13.434066 15.594995
V10 1.772925e-15 1.088850 -24.588262 23.745136
V11 9.289524e-16 1.020713 -4.797473 12.018913
V12 -1.803266e-15 0.999201 -18.683715 7.848392
V13 1.674888e-15 0.995274 -5.791881 7.126883
V14 1.475621e-15 0.958596 -19.214325 10.526766
V15 3.501098e-15 0.915316 -4.498945 8.877742
V16 1.392460e-15 0.876253 -14.129855 17.315112
V17 -7.466538e-16 0.849337 -25.162799 9.253526
V18 4.258754e-16 0.838176 -9.498746 5.041069
V19 9.019919e-16 0.814041 -7.213527 5.591971
V20 5.126845e-16 0.770925 -54.497720 39.420904
V21 1.473120e-16 0.734524 -34.830382 27.202839
V22 8.042109e-16 0.725702 -10.933144 10.503090
V23 5.282512e-16 0.624460 -44.807735 22.528412
V24 4.456271e-15 0.605647 -2.836627 4.584549
V25 1.426896e-15 0.521278 -10.295397 7.519589
V26 1.701640e-15 0.482227 -2.604551 3.517346
V27 -3.662252e-16 0.403632 -22.565679 31.612198
V28 -1.217809e-16 0.330083 -15.430084 33.847808
Amount 8.834962e+01 250.120109 0.000000 25691.160000
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A.2 Hyperparameter settings

A.2.1 Logistic Regression

Table A.2 Relevant hyperparameter settings for application of logistic regression in
Scitkit-learn package.

Parameter Setting
penalty ‘l2’
dual False
tol 1e-4
C 1.0
fit_intercept True
intercept_scaling 1
class_weight None
random_state None
solver ‘lbfgs’
max_iter 100
multi_class ‘auto’
verbose 0
warm_start False
n_jobs None

A.2.2 Linear Discriminant Analysis

Table A.3 Relevant hyperparameter settings for application of LDA in Scitkit-learn
package.

Parameter Setting
solver ‘svd’
shrinkage None
priors None
n_components None
store_covariance False
tol 1e-4
covariance_estimator None
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A.2.3 Quadratic Discriminant Analysis

Table A.4 Relevant hyperparameter settings for application of QDA in Scitkit-learn
package.

Parameter Setting
priors None
reg_param 0.0
store_covariance False
tol 1e-4

A.2.4 Random Forests
Table A.5 Relevant hyperparameter settings for application of random forests in Scitkit-
learn package.

Parameter Setting
n_estimators 100
criterion ‘gini’
max_depth None
min_samples_split 2
min_samples_leaf 1
min_weight_fraction_leaf 0.0
max_features ‘sqrt’
max_leaf_nodes None
min_impurity_decrease 0.0
bootstrap True
oob_score False
n_jobs None
random_state None
verbose 0
warm_start False
class_weight None
max_samples None

50



A.2.5 Linear SVM
Table A.6 Relevant hyperparameter settings for application of linear SVM in Scitkit-
learn package.

Parameter Setting
penalty ‘l2’
loss ‘squared_hinge’
dual True
tol 1e-4
C 1.0
fit_intercept True
intercept_scaling 1
class_weight None
verbose 0
random_state None
max_iter 1000
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A.3 Performance analysis

Figure A.1 Development of AP and Class Imbalance Ratio over 200 iterations in the
SelfTrain for LDA.
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