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Abstract

Combining a unique data set of futures order book data and trade execution data from a hedge fund
across 50 global futures markets over a 9-months period with a total transaction value of 2.3 billion
dollars, we measure and benchmark the actual transaction costs incurred by a large trader. Building
on Perold (1988), we define total costs as the sum of trading cost and delay cost in our research
and derive a futures-specific categorization of transaction costs. Our results on trading costs are an
order of magnitude smaller than previous studies on execution in equities suggest and we observe
limited evidence of a buy-sell asymmetry. Finally, we present unique insights into how trading costs
vary across asset classes globally and apply the quantile regression approach to estimate the impact
of several trade- and market-specific characteristics on trading costs. This model outperforms the
homoskedastic OLS model often suggested in the literature and we observe that trade duration and

market-specific volatility are the most important variables in explaining variation in trading costs.
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1 Introduction

Nowadays, a wide range of assets can be traded electronically. Stocks, bonds and a variety of derivatives
like futures are actively traded on many exchanges throughout the world (Hull, 2014) and can all be
bought and sold at the push of a button. With the proliferation of computer technology, investors are
demanding faster, cheaper, more reliable, and smarter access to financial markets. As a consequence,
algorithmic execution has become an important part of modern financial markets. Banks and hedge
funds are taking advantage of this trend and have begun an arms race to find the best electronic trading

systems and execution algorithms.

The theoretical basis for algorithmic execution is found mainly in the fields of financial econometrics
and market microstructure. Following Easley and O’Hara (1995), "market microstructure research fo-
cuses on the interaction between the mechanics of the trading process and its outcomes, with the specific
goal of understanding how actual markets and market intermediaries behave". Due to the rapid devel-
opment of algorithms and electronic trading, market microstructure analysis is still one of the fastest

growing fields in financial research.

Within market microstructure research, transaction cost analysis is one of the key areas. According
to Pedersen (2018), transaction costs are an unavoidable and crucial part of implementing any invest-
ment strategy, including "passive" ones like index strategies. In practice, a theoretically profitable trading
strategy may not be profitable because transaction costs outweigh expected profits. Empirical evidence
indicates that transaction costs significantly impact investment performance and suggests these costs

should be carefully managed.

To date, extensive research has been devoted to analyzing the magnitude and determinants of trans-
action costs. While recent studies' examine proprietary trade data from institutions, most studies have
relied solely on publicly available data.? In these publicly available datasets, individual trades are not
reliably classified as buyer- or seller-initiated and, more importantly, each trade typically exists in isola-
tion; there is no information on sequences of trades that form part of a large order (Almgren et al., 2005).
Overall, most studies use limited data in terms of breadth, typically only covering trades in the United

States and a small cross-section of stocks.

Furthermore, much of the existing work analyzes transaction costs in equity markets, whereas comparable
research in futures markets is scarce. There are no studies that we are aware of that have available propri-
etary execution data and corresponding order book data to measure transaction costs in futures markets.
Although some research based on clearing house settlement data is available, these studies generally cover
a small cross-section of stock index or bond futures.® The scarcity of research based on futures markets is
surprising, given the importance of futures as a mechanism for obtaining market exposure to underlying
assets. In addition, there are several distinctions between equity and futures markets, raising questions
about the applicability of equity market findings to futures markets. For instance, futures markets are
generally more liquid in nature than equity markets, have a lower probability of private information? and

are not constrained by short-selling restrictions.

IBikker et al. (2007); Fraenkle et al. (2011); Frazzini et al. (2018)

2Rydberg and Shephard (2003) have, for instance, worked with the trade and quote (TAQ) tick record from the NYSE.
3Frino & Oetomo (2005); Frino et al. (2007)

4Gorton & Pennacchi (1991); Subrahmanyam (1991)



To summarize, due to a lack of access to both order book and execution data, measuring and analysing
trading costs thoroughly has been an empirical challenge in academia, especially for futures markets. We
intend to fill this gap by utilizing proprietary execution data from a hedge fund across 50 global futures
markets over a 9-months period with a total transaction value of 2.3 billion dollars to quantify a large
money manager’s actual transaction costs. The data includes a significant number of trade- and market-
specific characteristics for each order, providing a unique opportunity to analyze algorithmic execution

in futures markets.

Building on the Implementation Shortfall definitions proposed by Perold (1988), we first redefine the
total transaction costs incurred in futures trading. Moreover, since our data set allows us to quantify
both the delay cost and trading cost, it allows for a richer measurement than is common in the literature.
Furthermore, we present unique insights into how trading costs vary across asset classes. Even though the
mean trading cost for the different asset classes is shown to be similar, we observe a substantial difference
in terms of outliers. To the best of our knowledge, we obtain the most comprehensive examination to

date on the transaction costs incurred by trading a real portfolio of futures contracts.

In addition, we have access to underlying order book data from the broker for each executed trade.
This provides us variables like the average spread during the trading horizon, enabling us to measure
costs in terms of spreads and compare their values across different contracts. Moreover, it allows us to
evaluate the performance of the specific execution algorithm used, by comparing the execution prices
against two (intraday) benchmarks. As a result, we obtain a more comprehensive picture of the order

execution itself as well.

Finally, previous research has already defined some variables related to trade execution that could ex-
plain trading costs. In this study, we assess to which extent the variables examined in previous research
explain the variation of trading costs in our sample and whether these variables affect each part of the
cost distribution in a similar way. While most studies generally apply the homoskedastic OLS to analyze
the average impact of several characteristics on trading costs, we apply the quantile regression approach
to estimate the impact of trade- and market-specific characteristics on orders with the 1000% highest
trading cost, where 6 can take any value in the range (0,1). Overall, we find the quantile regression to
better capture the relationship between trading costs and various factors than the homoskedastic OLS.
In conclusion, our results show that trade duration and market-specific volatility are the most important
variables in explaining variation in trading costs. Furthermore, we find momentum to have an amplifying

effect on the likelihood of incurring significant trading costs.

The remainder of this thesis is structured as follows. Section 2 starts by presenting general theory
on futures contracts. After that, we provide a literature review of the important studies that have paved
the way for algorithmic execution. Specifically, Section 3 describes the theory behind market microstruc-
ture, Section 4 addresses transaction cost analysis (TCA) and Section 5 discusses issues related to cost
optimization. Subsequently, Section 6 presents the data used in this research and provides descriptive
statistics. Section 7 outlines the methodology for measuring implicit costs from the execution data and
compares the measured costs to those found in previous studies. Furthermore, the performance of the ex-
ecution algorithm is analyzed by applying several benchmarks. Section 8 describes the quantile regression

approach and discusses the estimation results. Finally, Section 9 summarizes and concludes.



2 Futures

Over the last 40 years, derivatives such as futures have become increasingly important in finance (Hull,
2014). A derivative is a financial instrument whose value is determined by the values of other underlying
variables or is derived from them. Futures are listed derivatives, which are standardized contracts traded
on an exchange. The following subsection reports the most important specifications of such a contract
and closely follows the definitions in Hull (2014).

2.1 Specification of a Futures Contract

A futures contract is a legally binding agreement between two parties to buy or sell a particular asset
at a certain time in the future at a predetermined price (Hull, 2014). A futures exchange, such as the
CME (Chicago Mercantile Exchange), facilitates this transaction. Depending on the underlying asset,
different types of futures contracts are available for trading. Stock index futures, for example, are futures
contracts that track stock market indexes. The quality, quantity, (physical) delivery time, and location
are all specified in an exchange-traded futures contract, making the contract’s specifications the same
for all participants. Using these standardized features of the futures contract, contract ownership can be

easily transferred to another party.

2.1.1 Contract Size & Value

As an example of a contract specification, the contract size indicates the quantity of the asset that has
to be delivered for a single contract. Contract sizes like 'Treasury bonds with a face value of $50,0007,
"100 ounces of Gold’ or '5,000 bushels of Soybeans’ are all defined in the futures contract specification.
Related to this, the contract notional value, also known as contract value, is the financial expression of
the contract size and the current futures price, which is calculated by multiplying the contract size by

the price at time ¢ of the underlying future i:
Contract value;; = Contract Size; - Futures Price;;

Hence, assuming March 2022 E-mini S&P500 futures are trading at $4778.50,> whose contract size is 50,
the contract value of one ESH2 contract (at that specific time) is equal to 50 - $4778.50 = $238, 925.

2.1.2 Tick Size

A tick is the smallest price fluctuation, which is also part of a futures contract’s specifications. The
exchange determines tick sizes, which vary based on the underlying contract. Tick sizes are chosen to

ensure maximum liquidity and narrow bid-ask spreads.

2.1.3 Futures Trading Hours

Each type of futures contract (e.g., interest rate or stock index) has its own trading hours, which are
generally different from the spot market hours of the underlying asset. While the stock market in the
United States, for instance, is most active from 9:30 am to 4:00 pm Eastern time, stock index futures
trade nearly 24 hours a day, six days a week. The E-mini S&P500 Futures on the CME exchange, for

instance, start trading at 5 pm Eastern time and close at 4 pm Eastern, both on weekdays and Sundays.

5Last quoted price at the CME Exchange on 3 January 2022 10:00 AM UTC +1.



2.1.4 Clearing Houses

Whenever two traders have reached an agreement on a trade, the clearing house validates and finalizes
(clears) it. In futures transactions, a clearing house acts as an intermediary, standing between the two
traders and managing the risks. Hull (2014) provides a clear description of how a trade or transaction is
typically implemented. Say, for instance, that a specific trader (trader 1) has reached an agreement to
buy 200 ounces of gold from another trader (trader 2) at some date in the future for $1,800 per ounce. As
a consequence, trader 1 will actually have a contract to buy 200 ounces of gold from the clearing house
at $1,800 per ounce, while trader 2 will have a contract to sell 200 ounces of gold to the clearing house
at the same price. The clearing house then manages credit risk by forcing each trader to deposit funds

(known as margin) with the clearing house in order to guarantee that both parties meet their obligations.

Overall, it is the clearing house’s job to settle accounts and clear trades; collect and maintain margin
funds; regulate delivery; and report trading data. By ensuring that all parties comply with the system
and procedures, transactions can proceed smoothly, which increases the confidence of market participants
and thus the liquidity of the market.

2.1.5 Lifespan of a Futures Contract

The lifespan of a futures contract is limited, which will affect trading results and the exit strategy. The
expiration date of the contract is the final day the contract can be traded. In fact, every futures contract
is identified by its delivery month, which is represented by contract display codes or expiry date codes.
These are usually one- to three-letter codes that identify the product, followed by characters that indicate
the expiration month and year. The format of an expiry date code varies per asset class and trading
platform. As an example, the CME Globex expiry date code for the E-mini S&P500 (ES) futures contract
expiring in March 2022 is ESH2.

Specifically, the exchange specifies when a contract’s delivery will take place within the month, as well

as when it will start and end trading. As a result, prior to expiration, traders typically have three options:

Offsetting or closing out a position

Due to the fact that most traders prefer to close out their positions before the expiry date stated in the
contract, a predominant part of futures contracts does not result in delivery (settlement). Closing out or
offsetting a position refers to entering into a trade that is the exact opposite of the original one, which is
also known as neutralizing the trade. When a trader offsets a position, he or she is able to realize all of

the profits or losses associated with the closed position.

Rollover

When a trader transfers his position from the current month’s contract to a futures contract that is
further in the future, this is called a rollover or roll. In order to roll forward, the trader closes out his
current position while additionally establishing a new position in another contract month further in the
future. A trader who is long two S&P500 futures contracts that expire in March 2022, for example, will
sell two ESH2 contracts and purchase two ESM2 (expiring in June 2022) or further distant ES contracts

at the same time.



Settlement /Delivery

The contract will expire if a trader has not closed out or rolled his or her position before the contract
expiry date, and the trader will be obliged to settle. The trader with a short position is now required to
deliver the underlying asset in line with the original contract’s terms. This delivery may take the form of
physical delivery of the underlying asset for some contracts (mostly commodity futures). However, due
to the fact that only a tiny fraction of all (commodity) futures contracts are physically delivered, the
majority of deliveries will result in cash settlements. In the case of a cash-settled contract, settlement

occurs in the form of a credit or debit based on the contract value at the expiration date of the contract.

2.1.6 First & Last Notice Day

Lastly, for a contract, the first notice day, the last notice day, and the last trading day are the three most
important days. The first notice day is the first day on which notices of intent to deliver are authorized,
whereas the last notice day is the last day to submit such a notice. Generally, the last trading day is a
few days before the last notice day, but investors with long positions who do not wish to be at risk of

taking delivery should close out their positions before the first notice day.

2.2 Futures Pricing

Since the above-mentioned contract specifications are standardized, price is the only contract variable.
As previously stated, relatively few futures contracts result in the delivery of the underlying asset; the
majority of them are offset early. Nonetheless, the price of futures is determined by the possibility of
delivery at expiration. Moreover, we know that the value of a futures instrument is derived from the
price of its underlying asset and moves in synchronization with it. That is, if the underlying asset’s
price drops, so will the futures price, and vice versa. In fact, in a well-functioning futures market, the
futures price at expiration equals the price of the underlying asset, i.e, the spot price, which is due to the
spot — future parity (Hull, 2014). However, before expiration, the spot price and the futures price may
differ. We typically distinguish between two situations: mnormal backwardation and contango. Normal
backwardation is the situation where the futures price is below the expected future spot price, while

contango is when the futures price is above the expected future spot price. This is shown in Figure 1.

A \

Spot

Futures price
price

Futures

price
Spot
price

Time Time
(a) (b)

Figure 1: Relationship between futures price and spot price as the time to expiry decreases: (a) contango;
(b) normal backwardation. Retrieved from Hull (2014)



The difference between spot and futures prices is driven by variables like interest rates, dividends, and
time to expiry. In general, there is a mathematical equation that equates the spot price of the underlying
asset and its futures price. This equation is often referred to as the futures pricing formula, which is pre-
sented for several asset classes below,% using the definitions in Hull (2014) and Baltas (2017). Throughout
this subsection, we will assume that 7, is the annual, continuously compounded (zero-coupon) risk-free

interest rate, for an investment maturing at the delivery date, that is, in 7' — ¢ years.

Stock Index Futures

A stock index can be thought of as an investment that pays dividends based on the underlying stock
portfolio of the index. The dividends paid by the investment asset are the dividends that would usually
be paid to the holder of the underlying portfolio of stocks. However, rather than providing a known cash
income, the dividends are assumed to provide a known dividend yield. Hence, the futures price F; of a

stock index is given by
F, = Ste(Tt—Qt)(T—t)

Here, S; is the spot price of the underlying index and g¢; is the dividend yield. In practice, the dividend

yield ¢; on the underlying portfolio of an index fluctuates over time.

Currency Futures

The underlying asset here is the foreign currency. Assuming the local currency is USD, we can define S
as the spot price of one unit of the foreign currency (in USD) at time ¢ and F; as the futures price of
one unit of the foreign currency (in USD). The futures pricing formula for currency futures then looks as

follows:
F, = Ste(n—Tf)(T—t)_

The idea behind this formula is that the holder of the foreign currency can earn interest at the risk-free
interest rate r; prevailing in the foreign country. Moreover, 7; is simply the risk-free rate when investing
money in local currencies for the time period T' — ¢. Hence, the futures price increases with the time to
maturity T'—t of the futures contract at a rate of the difference in interest rates between the foreign and

local country (i.e., rt — 77).

Commodity Futures

In the absence of storage costs and income, the futures price of a commodity is simply given by
Ft = Stert(T_t)7

where S; is the spot price of the commodity (in USD) at time ¢, r; is the risk-free interest rate at time ¢
and T — t is the time to maturity. However, some commodities incur significant storage costs, which can

be treated as negative income. This leads us to two additional ways of pricing commodity futures.

Firstly, the futures price may be expressed as
Fy = (S +U)em ™,

where U is the present value of all storage costs (net of income) during the lifespan of the contract.

SMore asset classes for futures exist in general, but the ones mentioned here correspond to the actual futures contracts

traded by Varick Capital. See Table 14 in the Appendix for a complete overview.



Secondly, storage costs are often assumed to be proportional to the price of the commodity, that is,

F, = Ste(?”tJrut)(T*t)’

which implies that storage costs are basically treated as "negative yield". Consumption commodities,
such as crude oil, are examples of commodities that typically generate no income but might incur con-

siderable storage costs.

In general, however, owning a physical asset might enable a specific company to keep their production
process operating and maybe even profit from (transitory) local shortages. Owning a futures contract,
on the other hand, does not allow for this and, for this reason, the benefits from holding the physical
asset are often included in a variable known as the commodity’s convenience yield. Assuming the storage

costs per unit are a constant proportion u, we may define the futures price as

F, = Selretu—u)(T=),

Here, y; is the convenience yield, which reflects the market’s expectations concerning the future avail-

ability of the commodity: the greater the likelihood of shortages, the higher the convenience yield.

Bond Futures

Generally, a bond futures contract is a contract where the asset to be delivered is a (government or) Trea-
sury bond. Following Hull (2014), we can state that such contracts can be interpreted as contracts on a
traded asset (the bond) that provide the holder with known income.” Hence, the relationship between

the futures price F; and the spot price S; is defined as
Fy = (S; — Dem(T=1),

where I is the present value of the coupons during the lifespan of the contract, T' — ¢ is the time until

expiration (maturity), and r; is the risk-free interest rate for the time period T — t.

Price Discovery

Using the futures pricing formula above, the fair value of futures can be calculated. However, the actual
market price is discovered by quoting, that is, bidding and asking until a match (trade) is found. If we,
for instance, assume that on January 1st, the February futures price of gold is quoted at $1,800, this
implies that traders can agree to buy or sell gold for February delivery at this specific price.® It is worth

emphasizing that this price is simply determined by the laws of supply and demand.

"This assumes that the cheapest-to-deliver bond and delivery date are both known.
8This price is exclusive of commissions.



3 Market Microstructure

Generally, asset-pricing theory tends to separate itself from the underlying mechanics of trading and
concentrates purely on fundamental values (Johnson, 2010). Despite the elegance and simplicity of the
Modern Portfolio Theory (MPT) and Capital Asset Pricing Model (CAPM), the theory on which they
are based - the Efficient Market Theory - is too simplistic and idealistic in comparison to real-world
market conditions. The following section will expand on this by introducing the concepts behind market
microstructure, a competing field of study. Following that, some key aspects of a modern electronic

market are covered, before delving into the specifics of futures markets.

3.1 Basic Concepts of Market Microstructure Theory

As expressed in Labadie and Lehalle (2010), one of the hypotheses of Efficient Market Theory is the exis-
tence of a single market price, which reflects the fundamental value of the asset. However, as mentioned
in their paper, the concept of price itself is ambiguous, as there are typically numerous different prices
in any market, such as the ask price, bid price, mid price, and last traded price. Furthermore, Labadie
and Lehalle (2010) argue that assuming the existence of a single market price ignores the price formation
process, which is dependent on the nuances of each market and explains why prices differ between mar-
ketplaces. Furthermore, one of the main assumptions of the famous CAPM is that markets are perfect,
implying that all assets are perfectly liquid and there are no transaction costs, which clearly does not
hold in real markets, as we will see later on. The field of study that seeks to comprehend these effects is

known as market microstructure.

In contrast to the vast majority of macro-based theory, market microstructure literature concentrates
on the actual trading process and examines how specific trading mechanisms impact both observed prices
and traded volumes (Johnson, 2010). Market microstructure is defined by Easley and O’Hara (1995)
as "the study of the process and outcomes of exchanging assets under explicit trading rules". It helps
understand why asset prices may differ from their fundamental values. According to micro-based models,
trading is not an auxiliary market activity that can be ignored when examining price behavior. Rather,

trading is a critical element of the price formation process.

Following Johnson (2010), market microstructure theory can generally be broken down into three key
areas: 1) market structure and design, ii) trading mechanism research and iii) transaction cost measure-
ment and analysis. The subsections that follow provide an introduction to market (micro)structure and

design, while Section 4 discusses transaction costs.

3.2 Mechanics/Dynamics of a Modern (Futures) Market

We follow Johnson (2010) by first discussing some of the fundamental elements of trading and markets
before delving deeper into the major principles of market microstructure. First of all, markets generally
exist to facilitate trade. Its fundamental purpose is to bring together buyers and sellers. Although there
are several approaches to establishing an electronic market, financial markets all boil down to allowing
participants to indicate their intent to trade and having a matching mechanism connect potential buyers
and potential sellers. In order to provide a basic understanding of the organization of a market, we now

first survey the different types of markets and orders.



Order types

Orders play an important role in market structure. Following the definitions in Hull (2014), an electronic
market, in its basic configuration, has two types of orders: market orders and limit orders. Market or-
ders are generally considered aggressive orders that seek to execute a trade immediately. With a market
order, a trader expresses its intent to buy or sell a certain amount of an asset at the best available price,
which (usually) results in an immediate trade. On the other hand, limit orders are considered passive
orders, which specify a particular limit price. As a result, the order will only be executed at this price
or at a price that is either lower (for buy orders) or higher (for sell orders). For example, for an investor
who wants to buy at a limit price of $50, the order will only be filled at a price of $50 or less. How-

ever, since the limit price may never be attained, there is no certainty that the order will be executed at all.

Using specific conditions and incorporating additional special behaviours has enabled venues to offer a
wide range of order types. For example, hybrid orders such as market-to-limit orders actually have some

of the properties of both market orders and limit orders. In this research, we shall not cover these though.

The Limit Order Book

According to market microstructure theory, any market’s price formation processes and trade dynamics
are determined by that market’s unique organization. In modern electronic marketplaces, the limit order
book (LOB) is the primary market mechanism. Buy and sell orders are listed in the limit order book at

varying prices and for varying quantity levels.

Limit order to sell is added
to the queue

$25.14
Ask Side
w 925.12 R - Ask Price
,§ «—— Mid Price ISpread
8 $25.10 FESEEEERREREEE - Bid Price
Bid Side
$25.08
$25.06

0 100 200 300
Volumes

Figure 2: Visualization of the LOB structure. Retrieved from Vyetrenko and Xu (2019)

Figure 2 visualizes an example of a LOB structure. In this specific case, buying 200 contracts at $25.08
or less, or selling 150 contracts at $25.14 or higher, would be examples of limit orders. The best bid (buy
order) and the best ask (sell order) at any particular time can be determined by combining all of these

orders into a single system, such as an exchange.

Spread
The mid price is defined as the average of the best current bid and ask prices being quoted, whereas the

difference between the bid and the ask price is referred to as the full spread.



Following Hedayati et al. (2018), another common spread measure is the difference between the exe-
cution price and the prevailing mid price prior to execution, which is often referred to as the effective
spread. When a trader is willing to cross the spread, that is, to purchase at someone else’s ask price or
sell at someone else’s bid price, a trade occurs. The market is typically anonymous, and trade can only

take place based on price and quantity. This is referred to as a continuous auction.

N
(]
.Q
a
Prevailing Ask 102
Executed Price 101 Ha|‘fISpread =2
Effective Spread = 1
Mid =——— 100
Full Spread = 4
Prevailing Bid a8

Figure 3: Prevailing market prices and spreads. Retrieved from Hedayali et al. (2018)

Figure 3 illustrates the prevailing market prices and spreads for a buyer that has executed a trade at an
average price of 101. The difference between the execution price of 101 and the prevailing mid price of
100, is the effective spread and is equal to 1. Evidently, the mid price itself is halfway between the bid
and ask prices of 98 and 102, respectively, so that the prevailing full spread is equal to 4.

3.3 Liquidity, Price Discovery and Volume

The liquidity or effectiveness of a market can be described by determining the number of active market
participants and the quantity of a particular asset that these participants are ready to trade at any given
time. Defining and quantifying liquidity is one of the main aspects of market microstructure research
and an important step in minimising transaction costs. Overall, a well-functioning market has many
participants who trade significant amounts of an asset with one another on a continuous basis. At any
given point in time, the price of the asset being quoted will thus reflect what many participants believe it
should be. Otherwise, some of the orders would be filled, and the market would either move up or down
in the order book. This is known as price discovery. As a result, the spread, or the difference between

the bid and ask price, is a general indicator of liquidity.

Another indicator that is frequently used to determine how liquid a trading environment will be is
volume. However, liquidity and volume are not interchangeable. Liquidity refers to how easily assets can
be traded, while volume represents how much trading occurs for a given instrument, or set of instruments,
over a given time period. Hence, volume is a related but indirect proxy for liquidity. In general, the higher
the volume, the lower the relative size of the investor’s trade and the larger the probability of executing a
trade quickly and with minimal trade cost. However, despite the fact that volume is crucial to liquidity,

there are cases where high volume is accompanied by low liquidity.

10



3.4 Futures Markets Specifics

We conclude this section by stating a number of differences between futures markets and, for instance,

equity markets, which bring into question the applicability of equity market findings to futures markets.

Firstly, futures markets are generally more liquid in nature than equity markets, since futures are stan-
dardized contracts traded on regulated exchanges. Note the emphasis on ’in nature’, since it is not
necessarily true that, for instance, commodity futures markets are more liquid than equity markets.
However, there has been some research indicating a large difference in absolute spreads between, for
instance, the nearby contract of stock index futures and its constituent stocks. As an example, Fleming
et al. (1996) find that the average absolute bid/ask spread for the nearby contract of S&P500 futures is
$0.0558, while the average absolute spread for the constituent S&P500 stocks is $0.2185.

Secondly, there is typically a low probability of private information in most futures markets. The fact that
futures are standardized contracts and traded on regulated exchanges makes them highly transparent.
Moreover, information asymmetry due to stock-specific private information is typically diversified away
in stock index futures, resulting in lower adverse selection costs for trades in stock index futures than
in underlying equity markets (Gorton & Pennacchi, 1991; Subrahmanyam, 1991). Similarly, it is less
likely that trades in bond futures contain private information. For instance, Ederington and Lee (1993)
document price reaction on Treasury bond futures at and following, but not prior to, macroeconomic

announcement releases by the U.S. Treasury.
Thirdly, some equity markets can place restrictions on the short positions that investors may take.

Futures markets, by contrast, are not constrained by such short-selling restrictions. Hence, unlike equity

markets, futures markets are as likely to facilitate purchases as sales.
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4 Transaction Costs

As reported by Pedersen (2018), transaction costs are an unavoidable and crucial part of implement-
ing any investment strategy, including "passive" ones like index strategies. Each time a certain asset is
traded, transaction costs are incurred and, for this reason, transaction costs are a key area for market
microstructure research. By carefully measuring and analysing transaction costs, one can try to minimise
these. Recently, as a result of the proliferation of algorithmic execution, transaction cost analysis (TCA)
has regained a newfound interest in the financial community (Kissell, 2013). However, performing such

a TCA requires complete knowledge and understanding of the underlying elements.

This section, therefore, starts by providing an overview of the transaction cost components. Based on
these components, TCA is then classified into three categories: i) cost measurement, ii) cost estimation,
and iii) trade cost optimization. In this section, cost measurement is covered by discussing studies that
have quantified transaction costs and examined a relationship between the observed costs and some ex-
planatory factor(s) ex-post. Furthermore, this section briefly covers cost estimation by providing a review
of the model proposed by Almgren and Chriss (1997), which serves as the foundation for all regression

models that attempt to estimate costs ex-ante. Section 5 covers trade cost optimization.

4.1 Categorization of Transaction Costs

Prior research has already thoroughly investigated transaction costs. Perold (1988), for instance, intro-
duces Implementation Shortfall (IS) as the total cost of executing an investment idea. As pointed out in
Perold’s paper, the Implementation Shortfall is generally calculated as the difference between a portfo-
lio’s paper return, which assumes all contracts are traded at a benchmark price, and the portfolio’s real

return, which takes into account actual execution prices and the number of contracts traded. That is,
Implementation Shortfall = Paper Return — Actual Return

Perold (1988) breaks down this total cost into trading cost, opportunity cost and fixed fees. The trading
cost component represents the cost that is incurred in the market by trading, which he refers to as
price impact. Wagner and Edwards (1993) expand on Perold’s Implementation Shortfall methodology by
splitting out the trading costs into specific components (timing, delay, impact and opportunity costs), in
order to more accurately identify and classify total trading costs based on where, when, and how they
occur within the investment cycle (Johnson, 2010). These components can be even further expanded
by breaking the total transaction costs down into nine distinct components, following Johnson (2010).
Moreover, we find that there are several ways of classifying these constituents. By slightly altering
Johnson’s (2010) classification to design a futures specific categorization of transaction costs, we obtain

Table 1. Each of the components is presented in detail below, following the definitions in Kissell (2006).
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Explicit Implicit Fixed Variable

Investment Taxes v v
Delay Cost v v
Taxes v v
Commission v v

Trading Fees v v
Spreads v v
Market Impact v v
Price Trend v v
Timing Risk v v
Opportunity Cost v v

Table 1: Categorization of transaction costs (futures specific)

Distinguishing between investment and trading related costs is helpful in determining at which phase
these costs can be controlled. All costs that occur before ¢y (the time the order starts executing) may
be classified as investment related costs, while the remainder is classified as trading related costs. As
expressed in Kissell (2006), these components can be further divided into fixed and variable components

as well as explicit and implicit costs.

Fized cost components reflect all costs that remain constant regardless of the execution strategy. These
costs cannot be controlled or minimized during execution. Variable cost components, on the other hand,

may vary depending on the asset, the order, market conditions and the execution strategy.

Furthermore, transaction costs are usually divided into explicit and implicit cost components. Faxplicit
costs are those for which the cost or fee structure is known beforehand. Explicit costs are clearly identified
and quantifiable and may, for instance, be specified as a percentage of the value traded. Implicit transac-
tion costs, on the other hand, are costs for which the cost or fee structure is not known beforehand with
any certainty. These costs are generally less readily visible than explicit costs and hence more difficult to
quantify. For instance, until the order is initiated, it is not known exactly what the market charges for

executing large orders (e.g., market impact costs).
An illustration of an in-depth transaction cost breakdown is provided by Johnson (2010), as shown

in Figure 4. The following subsections provide more detailed descriptions for each of the individual cost

components and, as indicated before, closely follow the definitions in Kissell (2006).
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Figure 4: Detailed transaction cost breakdown for an example buy order. Retrieved from Johnson (2010)

4.1.1 Investment Related Costs

Following Kissell et al. (2004), investment related costs are "implicit byproducts of investment deci-
sions", which arise between the time the decision to invest is made (¢;) and the time the order execution
is initiated (o). These costs, which include delays and taxes, can account for a significant portion of the

overall transaction costs.

Delay Cost

As expressed by Labadie and Lehalle (2010), delay cost is caused by any price change between the initial
decision to invest (t4) and the time the order is released to the market (¢y). This is depicted as the shaded
region in Figure 4. Clearly, delay cost arises during the investment decision phase prior to commence-
ment of trading. Delay cost is an implicit variable transaction cost component and is in a way a penalty

associated with waiting to trade.

Taxes

Investment related tazes are charges placed on funds based on their realized profits. Tax rates differ
depending on the investment and type of return. For example, capital gains, long-term profits, dividends,
and short-term earnings typically have varying tax rates. Since tax rates are typically known in advance,
but the cost quantity is determined by the execution price, investment related taxes are an explicit and

variable cost component.

4.1.2 Trading Related Costs

Commissions and fees are the explicit trading related costs. Often, these will be quoted in advance of
trading as percentages of the traded value. The most significant costs, however, are the implicit trading

costs, which include spread, market impact and timing risk, as well as price trend, and opportunity cost.
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These costs make up the majority of transaction costs, and while they cannot be totally eliminated, they
can be minimized by choosing the right execution strategy. As a result, traders (or algorithms) must be
especially aware of these components. They can make a great investment opportunity become marginally
profitable and a rather profitable opportunity to turn out poorly if not properly quantified and controlled
(Kissell, 2006). Figure 4 shows the breakdown of these costs for an example buy-order.’

Taxes
For U.S. futures, there is an additional duty on contracts traded. For every contract traded, an additional
2¢ of taxes is charged by the CFTC/NFA. Hence, for completeness, taxes should be included as a fixed

and explicit trading related component of transaction costs when considering U.S. futures.

Commissions

Commissions are the explicit fees charged by the broker for handling orders and executing the trades.
These costs are usually calculated in cents per contract. Hence, commissions are categorized as a fixed
and explicit component of transaction costs. It is worth noting that, while commission costs are fixed

and known in advance, their value might fluctuate from broker to broker.

Fees
Fees represent the actual charges during execution, charged by brokers for clearing and settlement costs
and are typically incorporated into total commissions by the broker. Fees are a fixed and explicit com-

ponent of the transaction costs.

Spread Cost

Spread cost represents the difference between the best offer (ask) and best bid price at any particular
time. Spread cost is an implicit and variable transaction cost component; spreads can be easily measured
and observed, but must be recorded each time an order is split in order to determine the spread costs.
In addition, spreads vary considerably across markets, assets, and even throughout the day. For some

assets, spreads, for example, tend to be wider around the open and close.

Market Impact

Market impact is defined as the price movement caused by a particular trade or order. In general, it has
an adverse effect, for instance, driving up prices when placing a buy order. The exact market impact
cost of a trade or order is the difference between the price trajectory of the stock with the order and the
hypothetical price trajectory that would have occurred if the order had not been released to the market
(Kissell, 2006). Unfortunately, one cannot observe both price trajectories at the same time; one can
either observe the price evolution with the order or the price evolution without the order. As a result,

market impact has often been described as the Heisenberg uncertainty principle of finance.

Market impact is usually broken down into two components: temporary and permanent impact. Ac-
cording to Kissell (2006), temporary impact reflects the cost of demanding liquidity, while permanent or
persistent impact corresponds to the long-term effect of the order, representing the information content
that it has exposed to the market. This is generally caused by the market reevaluating the true intrinsic

value of the asset based on the newly arrived information.

9Note that for convenience, the time related costs are often grouped together as an overall timing cost:
Timing Cost = Price Trend + Timing Risk.

15



Price Trend

Price trend represents the natural price movement of an asset. Asset prices sometimes exhibit broadly
consistent trends, which are also referred to as drift or momentum. Typically, an upward trend implies
that costs will increase when buying an asset, whilst savings will be made if selling. Conversely, the
opposite is true for a downward price trend. In Figure 4, the trend line is shown as the dashed line. Price

trend is an implicit, variable transaction cost component.

Market or Timing Risk

Kissell and Glantz (2003) use timing risk to represent the uncertainty of the transaction cost estimate,
where the two main sources of uncertainty are volatility of the asset price and traded volume. However,
according to Kissell (2006), timing risk is also dependent upon intra-day trading patterns, cumulative
market impact cost caused by other participants, and the underlying execution strategy. Timing risk is

an implicit variable cost component.

Opportunity Cost

Opportunity cost represents the cost of failing to (completely) execute the investment decision. The reason
this cost arises is usually due to insufficient liquidity or prices moving away. Either way, it represents a
missed opportunity, since after the trading horizon prices may move even further away. Note that unlike
the other cost components, opportunity cost represents a ’virtual’ loss rather than an actual one. The
loss is only realised when a new order makes up the remainder at a less favourable price. Opportunity

cost is an implicit, variable transaction cost component.

Conclusion

The classification scheme described above is essential for understanding transaction costs. Clearly, trans-
action costs encompass much more than just fixed costs. In fact, as Table 1 shows, the majority of
transaction costs are categorized as implicit and variable. Hence, our discussion for measuring and esti-
mating transaction costs and cost optimization will focus on the implicit variable costs, since these are
the costs that can actually be attempted to be minimized. It is worth noting, however, that since these
cost structures are implicit, they usually have to be estimated using statistical inference or some other

estimation technique. The next subsection will elaborate on this.

Moreover, following the expanded IS methodology devised by Wagner and Edwards (1993), it follows

that for futures trading, the total transaction costs for order i consist of

IS, = ij (po — pa) +ijpj — ijpo + 1 X - Z:cj (pn — po) + Explicit Costs
J J J J

Delay Cost Trading Cost Opportunity Cost

Execution Cost

Here, po is the futures price when the order was released to the market, py is the manager’s decision
price, py is the futures price at the end of execution and p; is the price of the jth trade. Moreover, X
is the total number of contracts, multiplied by the contract size, with X > 0 for a buy, and X < 0 for
a sell. Lastly, z; is the number of contracts executed in the jth trade, multiplied by the contract size.
Hence, Zj z; and X — Zj x; are the total number of erecuted and unexecuted contracts, respectively,

multiplied by the contract size.

16



4.2 Transaction Cost Analysis

Transaction cost analysis (TCA) is a tool used by investors to strive to get the best possible execution
and primarily comprises pre-trade and post-trade analysis. Following the definitions in Kissell (2013),
pre-trade analysis occurs prior to the commencement of trading and primarily consists of cost estimation.
Post-trade analysis, on the other hand, does not include any form of trading decision, either pre-trade or

intraday and consists of two parts: measuring costs and evaluating performance.

Measurement /Estimation

Before we can continue our transaction cost analysis, it is first important to distinguish between mea-
suring and estimating transaction costs. Costs are measured after execution (ex-post) to determine the
portfolio slippage due to trading (Kissell et al., 2004). On an ex-post basis, we simply measure the aggre-
gate of the trading cost quantities, since there is no way to distinguish between these components. On the
other hand, costs are estimated before execution (ex-ante) and are used to develop a suitable execution
strategy (Kissell et al., 2004). Hence, with regards to cost estimation, it is necessary to estimate each of
the components. For instance, there need to be separate estimates for market impact, price trend and
volatility. This is due to the fact that the actual order only affects the market impact cost, price trend
will occur with or without the order, and volatility is the corresponding uncertainty surrounding actual

market conditions and executions.

4.2.1 Cost Estimation

The following part will present an example of a cost estimation model. Even though cost estimation
models are generally referred to as market impact models, they often incorporate other components such
as price trend and price volatility, whilst they were mentioned as separate components before. Therefore,

we can state that these models actually try to estimate the total expected implicit trading costs.

In 1997, Almgren and Chriss provided the financial sciences with a seminal paper to estimate trade related
transaction costs (Kissell et al., 2004). Their work is based on a random walk model, which incorporates
both permanent and temporary impact as well as price drift and serves as the foundation for many
transaction cost models. Cost is computed as the difference between the actual transaction value and the
transaction value that would have occurred had all the trades been executed at the arrival price. The
market impact model proposed by Almgren and Chriss implements four transaction cost components and

looks as follows:
MIg(zi) = thpt -5 P,
t

with
t

t t t
Pt :P0+ ZAPJ + Zk(l’j)e_(t_j)c + Zf(x]) + ZEj
Jj=1 Jj=1 j=1

N -
Price Trend ~ Temporary Market Impact ~Permanent Market Impact  Price Volatility
Here, P, is the price of the nth transaction, P is the price at commencement of trading, Ap; is the
expected price change between the (j — 1)th and jth trade. In addition, k(z;) is the temporary impact
function, f(z;) is the permanent impact function, e~ (t=9)¢ is the temporary impact dissipation function,

¢ > 0 is the rate of temporary impact decay and ¢; is a random noise bl N(0,02).
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This model poses a problem, because it requires accurate estimation of temporary and permanent impact,
and temporary dissipation functions at the trade level (Kissell et al., 2004). As already stated earlier in
this section, numerous researchers have documented the difficulty of determining an approximate market
impact function at the trade level, because, as stated by the Heisenberg Uncertainty Principle of Trading,
it is impossible to simultaneously observe price evolution with and without the order. Nevertheless,
since 1997, many cost estimation models have been proposed in the literature, of which most focus on
determining an approximate market impact function and attempting to estimate market impact cost by

utilizing order attributes.

4.2.2 Cost Measurement

As stated before, a cost measure is an ez-post or after the fact measure (Kissell, 2013). The aforementioned
Wagner’s Expanded Implementation Shortfall, for example, is a measure that represents the total cost of

executing the investment idea:

IS; = Zfﬂj (po — pa) + ijpj - ijpo + X - Z%‘ (PN — po) + Explicit Costs
J J J J

Delay Cost Trading Cost Opportunity Cost

Execution Cost

As reported by Kissell (2013), the trading cost component is generally measured as the difference between
the average execution price and the price of the asset at the time the order was entered into the market, pg
(arrival price). However, in most cost measurement studies, trading costs are typically reported relative

to po, either in percentages or basis points. We will elaborate on this way of measuring trading costs later.

Cost Measurement Studies

Quantifying trading costs has been the subject of a large number of studies, the majority of which focus
on equity trading. For instance, Chan and Lakonishok (1997) and Keim and Madhavan (1997) examine
the trading costs of packages of trades that are executed by identifiable institutional investors. Further-
more, Chiyachantana et al. (2004) investigate the features of institutional trading in international stocks
from 37 countries between 1997 and 2001.

While most of these studies use publicly available data, Bikker et al. (2007) examine the equity trading
costs incurred by ABP, one of the world’s largest pension funds, using a proprietary execution data set.
More recently, Frazzini et al. (2018), for example, utilize trade execution data from AQR Capital - one of
the largest institutional wealth managers in the world - across 21 developed stock markets over a 19-year

period.

Frino and Oetomo (2005) provide empirical evidence of the trading costs of institutional trades in futures
markets. By examining various stock index and bond futures contracts traded on the Sydney Futures
Exchange, their research shows that for these specific contracts, (i) the trading costs are significantly
smaller than previously documented for equity markets, and (ii) there is no evidence of an asymmetry
between the trading costs of buy and sell orders. Berkman et al. (2005) find similar results for the
FTSE100 stock index futures traded on the ICE exchange.
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Relevant Order Attributes
In addition to measuring trading costs, cost measurement studies typically examine the relationship
between trading costs and some explanatory factor(s) ex-post. These factors may then be used for de-

termining an approximate market impact function and attempting to estimate costs ex-ante.

Trading costs have already been shown to be affected by a variety of trade and market-specific vari-
ables. Based on a review of some relevant cost estimation studies,'® we can conclude that the order
attributes which are most commonly linked to trading costs are: i) relative order size, ii) volatility, iii)
trading style/intensity, and iv) liquidity-related variables.!! Based on empirical findings and following

Kissell (2013), we explicitly find the following main properties for trading costs:

P1. Trading costs increase with size. Larger orders will incur a higher cost than smaller orders in
the same asset and with the same strategy.

P2. Trading costs increase with volatility. Volatile assets incur higher costs for the same number
of shares (contracts) than less volatile assets.

P3. Trading cost and its risk depend on the trading strategy. Trading at a fast rate will incur higher
expected cost but less market risk. Trading at a slower rate will incur less expected cost but more
market risk. This is known as the trader’s dilemma, which we will elaborate on later.

P4. Trading costs are inversely related to liquidity. Assets with wider bid-ask spreads, which
typically indicates lower liquidity, have higher trading costs than assets with narrow spreads (all
other factors held constant). Moreover, large cap assets or assets with high volume generally have

lower trading costs than small cap or low volume assets (holding all other factors constant).

Another variable that is less often incorporated in cost estimation models, but may be important as well,
especially for trend-following strategies, is momentum. Generally, positive momentum indicates a buying
trend, whereas negative momentum indicates a selling trend. Following the reasoning by Bikker et al.
(2009), one would expect that as momentum rises, so will the liquidity costs of buy orders (in order to
persuade more futures contracts owners to sell their contracts). In a similar way, as momentum declines,
liquidity costs are expected to decrease, making it more appealing for market participants to purchase
futures contracts. Furthermore, Bikker et al. (2009) conclude that an upward (downward) market trend
may signal the presence of positive (negative) news, thus an increase (decrease) in momentum usually
translates to an increase in the information content of a buy (sell) order as well. Hence, aside from the

properties stated above, we add the following additional property:

P5. Trading costs increase with the magnitude of momentum. Buy orders for assets with a strong
upward trend are expected to incur higher costs than buy orders for assets with a weaker upward
trend, holding other factors constant. On the other hand, sell orders for assets with a strong down-
ward trend are expected to incur higher costs than sell orders for assets with a weaker downward

trend, holding other factors constant.

There are several examples of existing studies that investigate the relationship between momentum and
trading costs. Korajczyk and Sadka (2004), for instance, assess whether momentum-based strategies
that have been previously demonstrated to yield significant returns are profitable after accounting for
trading costs. They find that accounting for trading costs results in a significant decrease in the apparent
profitability of several previously examined momentum-based strategies, particularly equally weighted

ones.

10 An overview of these studies can be found in Table 12.
11 Market capitalization, volume, and bid-ask spreads are examples of liquidity-related variables.
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4.2.3 Benchmarking

Finally, performance analysis is a key tool for comparing trader/algorithm performances on an ex-post
basis, with benchmarking being the most widely used method. This boils down to selecting an appro-
priate benchmark and then comparing the average execution price with it. Choosing an appropriate
benchmark is critical since it serves as the measuring stick for determining whether an execution strategy
is profitable or not. As stated by Labadie and Lehalle (2010), a good benchmark "should be easy to

track, verifiable, and provide an accurate performance measurement".

Generally, we distinguish between three types of benchmarks: pre-trade, intraday and post-trade. Post-
trade benchmarks will not be known until after the trade has been fully executed. Pre-trade benchmarks,
on the other hand, are known before the trading even starts. Lastly, intraday benchmarks need to be
recalculated as the day progresses. Table 2 shows the various benchmarks grouped in terms of when they

may be determined.

Pre-trade Intraday Post-trade
Previous Close OHLC Close
Opening Price TWAP Future Close
Decision Price VWAP

Arrival Price

Table 2: Three types of benchmarks

Pre-trade benchmarks are readily observable prices, which may be used to directly measure performance.
Post-trade benchmarks are generally based on closing prices, either for the same trading day as the spe-

cific trades or some time in the near future.

Intraday benchmarks, on the other hand, use average prices to reflect the intraday market conditions.
As an example, the OHLC (Open High Low Close) average has often been used as a proxy for the mean

market price. However, as an average of only four data points, extreme values can easily distort it.

The Time Weighted Average Price (TWAP) benchmark is a time-weighted average of observed transac-
tion prices. Since the TWAP incorporates a new price to the existing ones for each new trade and updates
the average, it is referred to as a dynamic benchmark. Given a certain time period t; € [t1,ta, ..., t1],

with a specific price p; (e.g., the mid price), the time-weighted average price is simply defined as
TWAP; = L}p :

Because all TWAP values are weighted in the same way, extreme prices can have a significant impact on

the average.

The Volume Weighted Average Price (VWAP) benchmark is arguably the most accurate indicator of
market price movement over time. Given N trades in a certain period, each with a specific price p; and

traded volume v;, the volume-weighted average price is defined as

VWAPy = ZEPU”

Small trades at extreme prices are smoothed out, while the largest trades dominate the average. As a

result, large trades have a greater impact on the benchmark price than small trades.
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5 Algorithmic Execution

The automated programs that implement strategies to execute (large) orders in markets with electronic
access are widely referred to as execution algorithms (EAs). As the trading environment has become more
competitive, investors have turned to such algorithms (Kissell, 2006). Moreover, under the current macro-
economic environment, with COVID-19 still present, a higher adoption rate of algorithmic execution is
observed, in order to assist traders in achieving best execution. A report by the IMARC Group (2021)
states that in March 2020, more than 60% of trades for ticket sizes over $10 million were executed via
an algorithm, while this number was less than 50% in 2019. Moreover, a survey by The TRADE (2021)
reveals that hedge funds in Europe and the United States are increasingly relying on execution algorithms;

over half of the hedge funds surveyed use algorithms to execute the majority of their total value traded.

5.1 Objective Function

The optimal execution strategy is generally obtained via an optimization process. Using the knowledge
obtained in Section 4 and Lillo (2016), we are now able to define the optimization problem. An investor
wants to trade (buy or sell) a given number of contracts and wants to minimize costs by trading incre-
mentally. Hence, suppose for order i an investor has X futures contracts to trade in T time periods,
where all the X contracts have the same trade direction. Next, let v; (¢t = 1,...,T) be the (signed)
number of contracts to be traded in interval ¢, p; be the price at which the investor trades at interval ¢
and pg be the price before the start of the execution. A very often used objective function for order i is
then defined as

T
Ci('Ut) = thpt — Xpo,
t=1

that is, the difference between the actual cost and the cost in an infinitely liquid market, which is very
similar to how we defined trading cost before. Generally, this cost is a stochastic variable, so one typically

wants to minimize E [C;(v¢)]. Note that this assumes a risk-neutral profile.

Trader’s Dilemma

However, traders are generally not risk-neutral and, therefore, need to balance the trade-off between cost
and risk. According to Kissell and Malamut (2005), a trader generally faces a dilemma of trading quickly
(aggressively) and trading slowly (passively). Mandes (2016) expands on this, explaining that, at one
extreme, a market order can be used to immediately execute an order, resulting in a high expected trading
cost (i.e., a lower execution price due to market impact). Moreover, Mandes (2016) states that, on the
other hand, the order can be equally split and set to execute at a consistent rate throughout the execution
period. This strategy is often referred to as a TWAP strategy. It typically has the lowest impact but
an inherent price risk, that is, the difference between the effective execution price and the arrival price
benchmark as a result of random price changes (shortfall). The optimal execution rate generally lies
somewhere in-between this range, which is bounded on one side by the least variance strategy and on the

other by the minimum impact strategy.

Problem Formulation
Almgren and Chriss (2001) provide a mathematical formulation of this problem. As expressed in their
paper, the objective is to compute a trajectory function z(t), representing the remaining number of con-

tracts to be executed at time ¢.
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Here, the initial target is x(0) = Xy, that is, the number of contracts at trade initiation, and the
completely executed order at the end of the execution period is referred to as z(7T") = 0. Next, we define
v(t) = x(t — 1) — z(t) as the corresponding execution rate (i.e., the number of contracts to be executed
in one time interval). For a specified level of risk aversion A, an optimal trading strategy may then be
determined via the following cost minimization:

min (E[Cj(z)] + X - Var[C;i(x)]),

T

where C;(x) is the trading cost for order ¢ and Var[C;(z)] is the trading cost variance as a proxy for risk.

5.2 Solving The Problem

Solving the optimization problem described above for various levels of risk will result in numerous optimal
trading strategies. Each strategy has the lowest cost for a specific level of risk as well as the lowest risk
for the specified cost. The solution of the cost minimization for all values of A constitutes the Efficient
Trading Frontier (ETF), which was first introduced by Almgren and Chriss (2001).
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Figure 5: Efficient Trading Frontier as introduced by Almgren and Chriss (2001)

Figure 5 shows an example of the ETF, produced by Algmren and Chriss (2001). Each point on the
frontier represents a unique strategy for executing the same order in an optimal way. The tangent line
represents the best solution for a specific risk parameter . Strategy A is chosen by a risk-averse trader
wishing to buy or sell quickly to reduce exposure to market risk, despite incurring transaction costs in
doing so. Strategy B is called the "naive" strategy, since it represents the optimal strategy corresponding
to simply minimizing expected trading costs without regard to variance. Strategy C would be chosen
only by a trader who prefers risk. The trader postpones execution, thus incurring both higher expected

trading costs and higher variance during the extended period in which the order is executed.

5.3 Execution Algorithms

As the trading environment has become more complex and competitive, investors have turned to “effi-
cient” algorithms for order execution, in order to solve the optimization problem formalized above (Kissell,
2006). These algorithmic execution strategies are mainly driven by a style of trading and their objective

is to minimize either absolute or risk-adjusted costs relative to a benchmark.
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The investors specifically need to define input parameters, such as the start time of the order and the
urgency (participation rate). The execution algorithms are then generally based on a stochastic market
impact model, which represents both the volatile price evolution of assets and the market impact during
execution (Gatheral & Schied, 2013). The cost criterion has to incorporate both the liquidity costs arising
from market impact and the price/timing risk resulting from late execution. We have already seen such
a framework in Section 4.2.1. Optimal trading trajectories, which are the basis for execution algorithms,
are then obtained as minimizers of the cost criterion among all trading strategies that liquidate a given

asset position within a given time frame, as was discussed in Section 5.2.

It is worth emphasizing that the main purpose of execution algorithms is, without a doubt, to achieve op-
timal execution. This concept, however, has numerous conflicting aspects and will be defined differently
for various users based on their specific objective functions. While different types of execution algorithms
can accommodate several options for execution, no single execution algorithm can optimize all aspects of

concurrency.
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6 Data Description

The underlying data sample contains all algorithmic trades originated from the trading activity of Varick
Capital at several exchanges via their broker, combined with tick data for each specific trade. The fol-

lowing section describes the data, provides a definition of the variables and presents descriptive statistics.

6.1 Portfolio Construction and Trade Execution

With respect to trading at Varick Capital, we distinguish three types of potential trading orders. The
first category relates to the so-called rebalancing activities of the hedge fund. Rebalancing is defined as
adjustment of the portfolio weights by selling and buying futures. The second category of trading orders
are referred to as signal orders, which originate from an underlying investment system. The third and last
category are rolls, which are orders to roll a position by closing the current contract and (simultaneously)
establishing the same position in another contract month further in the future. Roll orders are excluded
from the analysis though to avoid any bias in measuring trade costs caused by transactions associated

with rolling over a position from near to deferred contracts.

The implied (trading) orders are uploaded into an execution management system, where each futures
market has an associated execution algorithm. The objective of the execution algorithms is to minimize
trading costs and not to make any explicit portfolio decisions. Hence, the portfolio construction process
is separate from the execution process (Frazzini et al., 2018). The execution algorithm uses electronic
exchanges to directly obtain market liquidity and dynamically breaks up (parent) orders into smaller
(child) orders to minimize trading costs. Given a start time and urgency (participation rate) parameter,
the goal ultimately is to solve the trader’s dilemma at the specified level of urgency (as a proxy for risk
aversion M), starting at a predefined time. Specifically, the algorithm used by Varick Capital attempts to

strategically attract passive fills while participating with volume.

6.2 Data

The execution data is drawn from the post-trade analysis data maintained by Varick Capital and covers
all orders executed algorithmically, except for the rolls. The remaining data set consists of 681 worldwide
futures orders, executed between January and September 2021, with a total transaction value of $2.26
billion. The fund’s futures contracts universe consists of 50 worldwide futures on stock indices, bonds,
commodities and currencies. For all of these futures contracts, the data set provides specifications like
tick size and contract size, which were taken from Bloomberg. Table 14 provides a complete overview of

the contracts traded and their specifications.

Moreover, what distinguishes our data set from others is that, in addition to execution data, we have
access to tick data collected by the broker. Tick data is the most granular intraday data and is the
sequence of each executed trade or bid/ask quote. This specifically includes transaction prices, time
stamps, quantities, as well as the best bids and best asks derived from the order book and allows us to
extract intraday data on spreads, volumes, and prices for all of the orders. As a result, we are able to
extract the mid price at the exact start time of the order, calculate several benchmark prices and measure

all costs and performances in terms of spreads.
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6.2.1 Data Constituents and Definitions

The data set unambiguously classifies each order as either buyer- or seller-initiated, so that proxies for
trade direction are not required. In addition, the data set contains fields that document the date and
time at which the order was executed, the expiry date code, the exchange on which the order was ex-
ecuted, the number of contracts traded, and the asset class of the traded futures contract. Lastly, the
data provides several relevant prices and detailed information on a variety of trade- and market-specific
characteristics, which are discussed below. A complete overview of the variables in the data set, as well

as their definitions, can be found in Table 13.

Prices

For each order, the data provides the execution price, the arrival price and the decision price. The
ezecution price is defined as the volume-weighted average price of all child fills of the particular order
throughout the execution period. The arrival price is defined as the futures mid price at the time the
order was initiated. The decision price is the futures price when the decision to buy or sell the asset was
made. Together, these prices allow us to capture the costs incurred at different phases of the investment
cycle. Cost measured against the decision price, for example, captures all price changes from the moment
the decision is made, while cost measured against the arrival price captures price movements from the
start of the execution (Hedayati et al., 2018). Lastly, the data sample provides two benchmark prices:
the interval TWAP and interval VWAP, which will be explained in more detail in Section 7.4.

Characteristics

Moreover, in Section 4.2.2, we concluded that the order attributes that are expected to have the most
influence on trading costs are i) relative order size, ii) volatility, iii) trading style/intensity, iv) liquidity-
related variables and v) momentum. The variables utilized in this analysis are based on these order

attributes and are described below.

Market-Specific Characteristics

According to market microstructure theory, the price formation process is dependent on the distinctive
characteristics of each futures market. Hence, regarding market-specific characteristics, we distinguish
the daily trading volume, momentum, volatility and spread. The daily trading volume is defined as the
total volume (in contracts) of the relevant market on a specific date, taking into account the expiry
date code. The annualized volatility is calculated based on the closing prices (in local currencies) of the
last thirty trading days prior to execution'? and is expressed in % per year. Similar to the definition
used by Bikker et al. (2007), momentum is calculated as the average daily return of a specific futures
contract over the last five trading days prior to execution and is again expressed in %. Like for volatility,
these returns are based on the closing prices of the specific trading days. Typically, momentum indicates
whether there is an upward or a downward trend for a particular futures contract. The quantities above
are all calculated using data from Bloomberg. Lastly, using the best bid and ask prices from the tick
data, the volume-weighted average bid-ask spread during the life of the order is calculated. The spread
is recorded for each child fill of the specific order and is subsequently weighted by the volume of that

specific fill to obtain a volume-weighted average.

12Following the methodology used by Bikker et al. (2007), we choose a period of thirty days to ensure that recent price

fluctuations are incorporated in the measure of volatility.
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Trade-Specific Characteristics

Regarding trade-specific characteristics, we first distinguish the relative size of the order. Since there is
no definition of what a large order in futures markets constitutes, we construct 2 order-size classes based
on their (relative) executed size. See Appendix A.l for a precise definition of these relative order-size
classes. The idea behind these size classes is that orders in size class 1 are generally not expected to move
the market even if executed as a market order. Orders in size class 2, on the other hand, are expected
to cause significant impact even if executed gradually. Moreover, the data provides information on the
duration of the trade. Similar to Bikker et al. (2007), we define duration as the time elapsed between the
moment the order was initiated and the moment it was fully executed. Trade duration may be regarded
as a proxy for liquidity, since trades that are executed quickly generally indicate that the algorithm had
little difficulty in finding liquidity without having to accept a significant price change. Lastly, one way
for the execution algorithm to minimize trading costs is to split each parent order into smaller child
orders and submit them as separate trades. Therefore, the number of separate trades executed is directly

represented by the variable child fills.

6.3 Sample Properties of Varick’s Trades

Market-Specific
The 681 orders in total consist of 100 stock index orders, 118 currency orders, 242 commodity orders
and 221 bond orders. Table 3 provides information on the variety of futures traded by Varick Capital in

terms of their characteristics by presenting the aggregate results for the entire data sample.

Volatility Daily volume Contract value Spread

(%) (10%) ($100,000) (bps)
Mean 13.59 2.24 1.16 2.02
St. dev. 11.78 3.49 0.71 1.82
Median 10.92 0.98 1.18 1.22
5% Quantile 0.37 0.14 0.25 0.35
95% Quantile 33.9 8.69 2.21 5.83

Table 3: Descriptive statistics of futures contracts traded

As we would expect, we observe a wide variation in characteristics between the markets in our sample.
We will use this variation to estimate the coefficients in the quantile regression of Section 8. Even though
there exist differences in characteristics between markets belonging to the same asset classes as well, the
following part will focus on the differences across the asset classes. Table 15 in the Appendix illustrates
where these discrepancies may come from by presenting the distribution of characteristics across the asset

classes.

From Table 15, we can, for instance, see that while the bond futures have an average annualized volatility
of 2.91%, the commodity futures have an average annualized volatility of 25.89%. This could point to
significant differences in the price formation process. Moreover, daily volumes vary widely, which could
indicate large differences in liquidity. While the average daily volumes for the commodity and currency
orders are approximately 86,000 and 100,000 contracts, respectively, the average daily volume for the

bond orders is nearly 5 times higher.
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Looking within markets, the average daily volume (in contracts) for the S&P500 futures contracts in our
data sample is approximately 1.4 million, which is equivalent to approximately $287 billion in traded
value.'® As a comparison, the average daily volume in Apple stocks - a constituent of the S&P500 and

one of the most actively traded stocks in the US stock market - over the past year was about $11 billion.'*

Moreover, the volume-weighted average spread during the life of the order, relative to the arrival price, is
reported in basis points. Again, we observe a clear variation in relative spreads, confirming the hypothesis
that there are substantial differences across the markets in terms of liquidity. While the average spread
for the bond futures contracts is 0.75 bps, the average spread for the commodity futures contracts is 3.69
bps. Moreover, Table 15 shows that the average relative spread for the stock indices contracts in our data
sample is 1.76 bps. Comparing this to other research, Frazzini et al. (2018) report an average bid-ask
spread at arrival of 21.33 bps for their sample of trades from 21 developed equity markets and conclude
that the average spread found for their sample of stocks is consistent with spreads quoted in other studies
from TAQ data. Altogether, this confirms the conjecture that stock indices futures markets are generally

more liquid than equity markets (Fleming et al., 1996).

Trade-Specific

Table 4 reports sample statistics of several trade characteristics such as trade duration and trade size.
The trade or transaction value of an order is calculated by multiplying the arrival price of each order by
the number of contracts executed and the contract size of the specific contract.!®> Among the 681 orders,
415 are buy orders, with a transaction value of $1.24 billion, and 266 are sell orders, with a transaction
value of $1.02 billion.

Duration No. of No. of Trade value Rel. trade

(mins) contracts child fills (8 million)  size (bps)

Buy Orders
Mean 1.91 24.22 6.12 3.00 3.16
St. dev. 5.36 41.94 7.53 6.35 7.56
Median 0.05 10.00 3.00 0.79 1.07
5% Quantile 0.00 1.00 1.00 0.13 0.05
95% Quantile 7.34 87.30 22.00 11.04 12.14

Sell Orders

Mean 1.85 29.39 5.79 3.84 3.14
St. dev. 3.89 45.42 6.34 7.87 4.99
Median 0.23 11.5 3.00 0.86 1.26
5% Quantile 0.00 1.00 1.00 0.08 0.07
95% Quantile 7.34 113.00 17.75 11.91 10.17

Table 4: Trade-specific characteristics of buy and sell orders

13Here, we used the volume-weighted average arrival price of all the S&P500 futures contracts in our sample and multiplied

by the contract size to calculate the traded value in USD.
14Obtained from Bloomberg.
15Since we want to obtain the USD value of the trade in this research, the arrival price is first converted from a foreign

currency to USD. For some of the traded futures contracts, prices are denominated in a foreign currency, as can be seen
from Table 14.
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From Table 4, we observe that, on average, trade durations are similar for sell and buy orders; the average
trade takes about 2 minutes to be completed. The average trade size for buy (sell) orders is 24.22 (29.39)
contracts, with an average trade value of $3.00 ($3.84) million. Expressed as a fraction of daily trading

volume, average trade size equals 3.16 bps for buy orders and 3.13 bps for sell orders.'6

Lastly, we conclude that the execution algorithm has split the total 681 parent orders into 4081 smaller
child orders in order to minimise trading costs. As a result, Table 4 reports that the average order was
broken up into approximately 6 separate trades, or stated differently, it on average took 6 child fills in

order to fully execute the order.

16We used a slightly smaller sample size to compute the relative size sample statistics than we did for the other trade-
specific sample statistics. This is due to the fact that, for some orders, we did not have any data on the daily volume.

Eventually, we calculated the statistics based on 672 (parent) orders.

28



7 Quantifying/Measuring The Implicit Transaction Costs

This section digs deeper into the data presented in Section 6 in order to quantify the cost of Varick
Capital’s trades. As stated in the conclusion of Section 4.1, we will specifically quantify the implicit
variable costs, since we are mainly interested in (relative) price changes, and not fixed costs such as
commissions. In this section, we describe our methodology for measuring costs. Moreover, we present
our results in detail and compare our findings with previous research. The last part of this section covers

benchmarking.

7.1 Implicit Cost

In Section 4.2.2, we defined the total transaction costs (Implementation Shortfall) for order ¢ as

IS; = foj (Po — pa) +Z9ijj - ijpo + X - ij (pv — po) + Explicit Costs
J J J J

Delay Cost Trading Cost Opportunity Cost

Execution Cost
Hence, total transaction cost (IS) is equal to the sum of all implicit and explicit costs. Since all trades in
our sample were fully executed, opportunity costs are negligible. This is consistent with the findings of
Keim and Madhavan (1997), who discovered a 95% completion rate in institutional trades. As a result,
the total transaction cost (IS) in this research is equal to the sum of execution cost and explicit cost. As
defined in Kissell (2013), execution cost represents the costs incurred as a result of executing contracts
at a less favorable price than the original decision price. It can be further broken down into delay cost
and trading cost, which are the components of interest in the upcoming part; Subsection 7.2 will focus

on delay costs, while Subsection 7.3 will concentrate on trading costs.

7.2 Delay Cost

Following the definitions in Kissell (2006), the (implicit) delay cost component of order ¢ is measured as

the difference in price between the initial decision to invest (¢;) and the time the order is initiated (¢o):

Delay Cost; = Z z; | (po — pa)
J

where pg is the arrival price and pg is the decision price. In this analysis, the investment decision is
based on the closing price of the previous trading day. This decision is subsequently implemented the
next trading day at a time determined by the start time parameter that is provided to the execution
algorithm. Hence, the delay cost is defined as the price change from the previous close (¢4) to the start
time of the trade (¢9) and the decision price py is the closing price of the last trading day before ¢y. By
setting the start time parameter, the investor cannot participate in this price change, resulting in a sunk
cost in the case of an adverse price change or a savings in the case of a favorable price change (Kissell,

2006). In this analysis, we measure the relative delay cost for order i in the following way:

Relati _ P? ~ P%i 4
elative Delay Cost; (bps) = d; - ——— - 107,

i
where py and py are the arrival price and decision price for order 7, respectively, and the direction d; is
1 for all buy orders and -1 for all sell orders. By using this definition, a positive number implies that a
trade has been initiated at a worse price than the prevailing price at the moment the investment decision

was made, both for buy and sell orders.

29



7.2.1 Results

Table 5 reports sample means, standard deviations, and quantiles of delay costs for both buy and sell
orders. Moreover, it reports the volume-weighted average cost to account for the volume effect and
minimize data noise, which is obtained by weighting each observation by the volume of the specific

contract at the specific date.

Relative Delay

Cost (bps)

Buy Orders
Volume-weighted average 32.05
Mean 33.23
Standard deviation 87.00
Proportion > 0 0.67
Median 16.35
5% Quantile -76.37
95% Quantile 187.13

Sell Orders
Volume-weighted average -17.59
Mean -27.44
Standard deviation 115.55
Proportion > 0 0.45
Median -0.60
5% Quantile -250.36
95% Quantile 103.36

Table 5: Sample statistics of relative delay cost (in bps)

For the buy orders, the volume-weighted average relative cost of investment delay is approximately 32
basis points. This implies that for the buy orders, due to the time gap between the investment decision
and initiation of the order, there has been an average adverse (upward) price change of approximately
32 basis points, relative to the decision price py. This number reflects the average penalty or sunk cost
associated with waiting to trade. Interestingly, for the sell orders, we observe something different. The
negative sign implies that, on average, prices have actually increased between the investment decision
and initiation of the sell orders. Hence, due to the gap between the investment decision and trade ini-
tiation, on average, there has been a favorable relative price change of approximately 18 basis points.
Consequently, for the sell orders, waiting to trade has on average resulted in a savings relative to the

decision price py.

Although the average delay cost is positive for buy orders and negative for sell orders, there is a sig-
nificant disparity in delay costs between orders in the left and right tails of the cost distributions. In
particular, 33% of the buy orders have actually incurred a negative delay cost, whereas 45% of the sell
orders have incurred a positive delay cost. Hence, further study may be required to determine which

asset classes or specific markets contribute the most to these averages.
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7.3 Trading Cost

Referring back to Section 4.1’s Implementation Shortfall methodology, the (implicit) trading cost com-

ponent for order ¢ is generally measured as

Trading Cost; = Z T;pj — ijpo,
J J
where p; is the executed price of the jth child fill and pg is the arrival price. Using this equation, the
(absolute) dollar value of costs incurred during the execution of a specific order might be measured.
However, analogous to the previous subsection, we will use a slightly different definition to measure the
relative trading cost and its relation to market impact, as we will see in the next subsections. Defining

the trade cost in this way is mainly to be able to compare our results with previous research.

7.3.1 Relative Trading Cost

We specifically follow Fraenkle et al. (2011) by defining the relative trading cost for parent order i as the

exre

relative price change (in bps) between the average execution price p°*® and the arrival price p°:

pgwe _ pO
Relative Trading Cost; = d; - ’70’

i

- 104,

where pege is the average execution price for order ¢, pg is the arrival price and the direction of the order
d; is 1 for all buy orders and -1 for all sell orders. For each order executed, our data set provides both of
these prices. By using this definition, for both buy and sell orders, positive trading cost implies that an

order has been executed against a worse price than the arrival price.

To acquire some further insights, we also measure the relative trading costs in terms of spreads and
ticks. As indicated in Section 4.1, spreads may vary considerably across markets, assets, time and even
throughout the day. In fact, Table 15 showed a substantial difference in spreads across the markets in our
sample. Hence, if we are averaging costs (performance) across different futures contracts we should allow
for differences in (absolute) spread by measuring in terms of spreads instead of bps. This allows us to
distinguish between cost due to spread and cost due to other components. Moreover, following Frino and
Oetemo (2005), the cost of executing an order may be measured in price ticks, which is the convention

used in futures markets. In conclusion, we write

pgme — pO
Relative Trading Cost; (spreads) =d; - %
p?‘”e — po
Relative Trading Cost; (ticks) =d; - —————,
elative Trading Cost, (ticks) T

J

where S; represents the volume-weighted average bid-ask spread during the life of order i and MTj

represents the minimum tick of the underlying futures contract j.

7.3.2 Trading Cost and Market Impact

Given the objective of this research, trading costs are quantified in a manner that corresponds closely to
market impact measures used in previous examinations in, for instance, equity markets. Market impact
is generally defined as the interaction of the specific order with the market, that is, how large is the price
change influenced by this order (Fraenkle et al., 2011). As a result, market impact is often defined as
the price difference between a benchmark price, which should be influenced by the specific order as little

as possible, and a price incorporating the full impact, which is basically what we do here as well.
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What is neglected in many of these studies, however, is that the (relative) price change may also contain
price movements which are not attributable to the market impact of the own order, which Fraenkle et al.
(2011) refer to as externally triggered movements. As stated in Section 4.2, on an ex-post basis, we can
only measure the aggregate of the implicit trading cost component, since there is no way to distinguish
between its constituents.!” One can, for instance, never be sure that the price change was caused by the
market impact of the own order and was not due to the impact of other trades, a price trend, or other
market movements that caused the price to change. For simplification, we may write the relative price

change for order i as a sum of two components here:

Relative Trading Cost; = Price Move; + Impact;
= I‘f + Ii

The component I is the market impact, while the other components are bundled together as one compo-
nent here, which we refer to as the price move r.. Note that this component is assumed to be induced

by external influences.

Next, we define the market impact as the mean value of the distribution of the relative trading cost.
The advantage of this definition by Fraenkle et al. (2011) is that the mean value of the r, distribution
is assumed to be zero. This implies that the mean value of the relative trading cost distribution is an
unbiased estimator of the empirical market impact. Given the relatively short durations of the trades
and the fact that external price movements might have both an adverse and favorable effect on prices,
we expect that, on average, market movements'® do not affect E[C]. To summarize, we can define the

market impact of a trade as
E[C] = E[re] + E[I] = E[I].

This implies that, in expectation, trading costs are assumed to be equal to the actual market impact of
the orders. However, although the external price movements do not contribute to the average impact
E[I], these movements may significantly increase the variance of the trading costs (Fraenke et al., 2011).

The consequences of this will be discussed in Section 7.3.3.

7.3.3 Results

Following previous studies, Table 6 reports sample means, standard deviations, medians and quantiles of
trading costs for both buy and sell orders. Moreover, following Bikker et al. (2009), this table reports
the principal-weighted average cost, which is obtained by weighting each observation by the USD value
of the trade,'? so that smaller orders contribute less to the average trading costs than larger ones. In this
way, we account for the size/volume effect and try to minimize data noise. This approach is standard in
the investment industry and allows for the evaluation of the overall dollar amount of the relative price
change. Table 6 also includes standard deviations, to give an indication of the significance of the average
relative trading costs estimates. However, it is worth noting that these standard deviations have been

calculated under the assumption that observations are mutually uncorrelated (Bikker et al., 2007).

17 As stated before, spread cost is the only component that can be measured separately, which will be shown later on.
18 External market movements might, for instance, result from a daily upward drift in prices or market impact caused by

other participants.
19The price used for calculating the USD value of the trade is the arrival price, after converting it to USD from the local

currency.

32



Relative Trading Cost Relative Trading Cost Relative Trading Cost

(bps) (spreads) (ticks)
Buy Orders
Principal-weighted 0.15 0.25 0.27
Mean 0.07 0.18 0.20
Standard deviation 4.13 1.44 4.03
Proportion > 0 0.51 0.51 0.51
Median 0.07 0.05 0.06
5% Quantile -4.78 -1.50 -3.82
25% Quantile -0.79 -0.50 -0.50
75% Quantile 0.79 0.50 0.50
95% Quantile 4.91 2.39 4.46
Sell Orders

Principal-weighted 0.16 0.34 0.24
Mean 0.06 0.13 0.10
Standard deviation 4.34 1.58 3.76
Proportion > 0 0.50 0.50 0.50
Median 0.04 0.03 0.04
5% Quantile -4.98 -1.95 -3.00
25% Quantile -0.67 -0.50 -0.50
75% Quantile 0.47 0.50 0.50
95% Quantile 6.73 2.77 3.97

Table 6: Sample statistics of relative trading costs (in bps, spreads and ticks)

From Table 6, we find that the principal-weighted average trading costs are 0.15 basis points (bps) for
buy orders and 0.16 bps for sell orders. These numbers tell us how far the execution price is from the
arrival price. A positive number indicates an adverse price change, that is, prices moving against the
trader. Hence, in this case, on average, execution prices have moved away 0.15 bps from the arrival price
for the buy orders and 0.16 bps for the sell orders. As indicated in Section 7.3.2; this might be either due
to market impact, market movement (the market as a whole is moving) or a combination of both, but

we expect these values to on average reflect the real market impact of the orders.

We would generally expect trading costs to be positive since, all other things being equal, any trad-
ing tends to push the price in the direction traded by the investor. Table 6 shows that this is indeed the
case, on average. However, by testing the deviation of the mean trading costs (in bps) from zero with the
use of a t-test (adjusted for sample size), we conclude that the means for both buy and sell orders are
indistinguishable from zero at any reasonable significance level.?° Moreover, we see that approximately
half of the orders executed result in profits rather than losses, both for buy and sell orders. The costs
for the 5% and 25% quantiles are negative, whereas from the median these numbers become positive. As
stated before, this might be due to idiosyncratic price movements and does not necessarily imply the or-
ders had a negative impact on the prices. Looking at the quantiles in more detail, we notice a substantial
difference in trading costs between orders in the left and right tails of the cost distribution. However,
the trades that really matter in terms of trading costs, are the ones in the right tail of the distribution.

These are crucial in cost management and will play a key role in the remainder of this research.

20The statistics of the t-test for buy and sell orders are 0.36 and 0.24, with a p-value of 0.72 and 0.81, respectively.
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Furthermore, the median costs are similar to the mean costs, suggesting that trading costs are neither
positively nor negatively skewed. In addition, in all of the measures used, the unweighted average price
effects for buy and sell orders are of similar magnitude to the principal-weighted ones. This indicates
that it is not necessarily the largest orders that lead to the highest trading costs,?! which is an interesting

observation to which we will return later.

Lastly, analyzing the results in terms of spreads, we observe that the principal-weighted average trading
costs are 0.25 spreads for buy orders and 0.34 spreads for sell orders. Hence, following the same reasoning
as before, on average, execution prices have moved away 0.25 spreads from the arrival price for the buy
orders and 0.34 spreads for the sell orders. Clearly, the quantiles are much smaller in terms of spreads,
suggesting that a substantial part of trading cost is attributable to spread cost. In Section 7.4, we will
investigate these numbers more thoroughly and examine their implications for the execution algorithm’s

performance.

Comparison with Previous Research

It is interesting to compare our findings with previous research. As mentioned in Section 4.2.2, Bikker et
al. (2007) examine the equity trading costs incurred by ABP, one of the world’s largest pension funds.
For an average trade value of approximately 1.5 million euros, the paper reports average trading costs of
20 bps for buy orders and 30 bps for sell orders. More recently, Frazzini et al. (2018) examine trading
costs incurred using a proprietary execution algorithm across 21 developed stock markets over a 19-year
period. For an average trade value of $607,200, value-weighted mean costs of 16 basis points are reported.

Keep in mind that the average trade value in this research was shown to be over $3 million.

Even though we are considering a variety of futures from different asset classes and cannot compare
the costs incurred in trading, for example, commodity futures with equity trading, we can conclude that
the order of magnitude of the average trade costs in our study is significantly lower than the average
costs reported above. Even the 95% quantile values in our results are significantly lower than the average
costs reported in those studies. As stated in Section 3.4, there is typically a low probability of private
information in futures markets. The low probability of private information translates to low information
asymmetry and therefore, low adverse selection costs in futures markets. In turn, this implies that orders

executed in futures markets are likely to have a relatively small effect on prices.

Indeed, studies like Frino and Oetomo (2005) and Frino et al. (2007) report substantially lower trading
costs. More specifically, we can compare the costs incurred for the S&P500 index futures orders in our
sample to the numbers reported in, for instance, Frino et al. (2007). The volume-weighted average cost
for the orders in S&P500 contracts in our sample is 0.60 bps. In comparison, Frino et al. (2007) report
a volume-weighted trade cost for buy orders of 0.46 bps?? for trades initiated by institutional clients
in S&P500 index futures. These findings back up previous research showing a significant difference in
absolute spreads between the S&P500 futures contract and its constituent stocks (Fleming et al., 1996),

which typically indicates a substantial difference in liquidity (and thus we expect costs to be lower).

21We also calculated principal-weighted standard deviations, medians, and quantiles to test this hypothesis. However,
the weighted quantiles are actually lower in magnitude than the unweighted ones, confirming our initial thought: there is

no evidence that a few large orders with high costs dominate the weighted average.
22There are no sell orders for the S&P500 in our sample, so we can only compare buy orders. Moreover, for the comparison,

we assumed that orders are categorized as Group 3 based on their size (i.e., 11 up to 20 contracts), since the average number

of contracts traded for the S&P500 orders in our sample is 11 contracts.
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In addition, Frino and Oetomo (2005) examine orders executed on the Sydney Futures Exchange (SFE)
and report their results in terms of ticks. In particular, for orders executed in the SP1200 futures mar-
kets with a size of 9-29 contracts, average trading costs of 0.64 ticks are reported for buy orders. In
comparison, for the buy orders in SPI200 contracts in our sample, the volume-weighted average cost is
2.19 ticks, which is slightly higher. In addition, for 10-year Australian bond futures, Frino and Oetomo
(2005) report trading costs of 0.76 ticks for buy packages and 0.73 ticks for sell packages. In comparison,
the volume-weighted average trading cost for the 10-year Australian Bond orders in our sample is 0.24
ticks for buy orders and 0.32 ticks for sell orders. Hence, despite the fact that we employed a limited
number of orders, our results appear to be consistent with earlier findings in futures markets in terms of

cost magnitude.

Overall, it is clear that the relative trading costs found in this research are of a similar magnitude as
the corresponding costs documented in previous studies of the S&P500 index futures and SFE markets,
but significantly lower than the costs documented in previous studies for equity markets. These findings
confirm conjectures in previous research that we expect a low probability of private information in futures
markets. Moreover, futures markets are generally liquid in nature and trading costs are inversely related

to market liquidity.

Thirdly, in contrast to the findings from equity markets, this research finds limited evidence of a buy-sell
asymmetry in trading costs in futures markets. As stated in Section 3.4, futures markets are not con-
strained by short-selling restrictions. Hence futures markets typically are as likely to facilitate purchases
as sales. This implies that the systematic difference in trading costs of buy and sell orders documented
in equity markets is unlikely to occur in futures markets. As concluded by Chan and Lakonishok (1993),
the buy-sell asymmetry found in equity studies "is due to the high cost of short selling and the general
reluctance of traders to short sell on stock markets". Our results are consistent with the findings in other
futures markets studies, for instance, those reported in Frino and Oetomo (2005) and Berkman et al.
(2005).

7.3.4 Analysis of Orders with 1% Highest Cost

Summarizing, average trading costs are shown to be insignificantly different from zero, implying that the
average impact of Varick Capital’s trades on prices seems rather small. However, analyzing the quantiles,
we observed a substantial difference in costs, which prompts us to investigate which orders lead to the
highest cost (in relative terms) and how significant the impact of these orders is in terms of absolute costs
for the hedge fund. Table 7 shows the orders with the 1% highest trading cost (in basis points).

Name Code Side Contracts Size Class Po Trade Value ($) Cost (bps) Cost ($)
Sugar No 11  SBH1 Buy 19 1 16.04 341,225 25.76 879.20
Cotton No2 CTN1  Buy 10 1 84.08 420,375 25.45 1070.00
Cocoa CCN1 Sell 19 1 2394.50 454,955 24.07 1095.00
Cotton No 2 CTZ1 Buy 8 1 88.55 354,180 23.15 820.00
Lean Hogs LHZ1 Sell 17 2 79.98 543,830 20.04 1090.00
Soybeans SU1 Sell 7 1 1323.00 463,050 17.82 825.00
Corn CZ1 Sell 13 1 531.13 345,231 15.03 518.75

Table 7: 1% most expensive orders in terms of relative trading costs
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From Table 7, we find the average trading cost for the 1% most expensive orders to be 21.6 bps, which
seems to have limited implications at first glance. However, taking into account the dollar value of the
order, the average dollar cost of these orders is approximately $900 per order. Hence, the magnitude of
trading cost for the 1% most expensive orders could have significant implications for the profitability of
the trading strategy. Analyzing Table 7, two other interesting observations stand out. Firstly, except for
the Lean Hogs order, all orders belong to size class 1. This confirms the conjecture in Section 7.3.3: it is
not necessarily the largest orders (in relative terms) that lead to the highest trading costs. We will come
back to this in Section 8. Secondly, all orders in Table 7 belong to the commodity futures class, which
suggests a potential difference in costs across the different asset classes. The next subsection elaborates

on this.

7.3.5 Cost Distribution

Another question yet unanswered is how the trading costs are distributed and whether there is indeed a
substantial difference in costs across the various asset classes, as suggested in the previous subsection.

From the results in Table 6, we concluded that the average relative trading cost is indistinguishable from
zero, indicating that the average Varick order seems to have little or no effect on prices. The distribution
of trading costs, on the other hand, reveals that the costs of the trades vary substantially. As mentioned
before, Fraenkle et al. (2011) state that the externally induced market movement r. does not contribute
to the average impact E[I], but it significantly raises the variance of the relative price change (and thus
of the trading costs). As a result, the externally generated price movements dominate the width of the

trading cost distribution.
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Figure 6: Distribution of relative trading costs (in bps) for the entire data sample

Figure 6 shows the distribution of relative trading costs (in bps) for the full data set. We observe a
relatively high peak around 0, confirming our conjecture that the average impact of Varick’s trades on
prices seems small, but we also detect outliers. Just like we observed in Table 6, the graph shows that a
substantial part of the orders has incurred negative costs (left tail), apart from the orders with positive
costs in the right tail. This indicates that a substantial part of the executed orders has resulted in profits
rather than losses. However, the orders in the right tail of the distribution are the ones that really
matter in terms of trading costs and play an essential role in cost management (Bikker et al., 2009).
These contribute significantly to the dispersion of trading costs around the median (mean) and play an

important role in the quantile regression of Section 8.
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Figure 7: Distribution of relative trading costs (in bps) for different asset classes

Figure 7 shows a more detailed distribution of the relative trading costs for each separate asset class.
The vertical dashed line indicates the mean cost (in basis points) for each asset class. Clearly, there is a
significant difference between these figures; although the mean trading costs in the graphs are similar and
close to zero for all of the asset classes, there is a substantial difference in terms of outliers. For instance,
the cost distribution for bonds seems to be less centered around the mean at first sight, but its variation

in costs is substantially smaller than for the other asset classes, especially when compared to commodities.

Linking this to market microstructure theory, we know that the price formation process is dependent
on the distinctive characteristics of each (futures) market. Moreover, in Table 15, each asset class was
shown to have its own characteristics in terms of, for instance, volatility and liquidity. These features seem
to have a considerable influence on how expenses are dispersed. The more intriguing question, though,
is which of these factors is most essential in explaining these outliers. This will be the focus of Section
8, which employs quantile regression to evaluate which variables increase the likelihood of incurring high

trading costs.
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7.4 Benchmarking

Using the methodology above to measure costs in terms of basis points, spreads and ticks already provides
a quantification of the implicit trading costs of Varick Capital’s orders. In fact, the trading cost measure
defined earlier is the most comprehensive and complete as the aggregate of implicit trading costs is cap-
tured. However, this measure is not without shortcomings; it generally has a relatively large variance,
since it incorporates all price changes during the execution period, some of which may be completely
unrelated to the specific execution. For instance, if a buy order is executed while the market as a whole is
rising, the trading cost measure will exhibit a higher cost than is attributable to the price change caused
by the order itself. In contrast, if the market as a whole is falling while a buy order is being executed,

the cost measurement could be negative as well.

Hence, in evaluating execution performance, it seems advisable to consider a broad range of cost mea-
sures, rather than a single number, in order to obtain a more reasonable determination of the transaction
costs incurred by Varick Capital. In this research, we compare the execution price to two additional
benchmarks, which we can apply across the entire sample of available trades. The idea behind these
benchmarks is that by combining the considered trades with all other trades over the corresponding time

period, we can assess what contribution the execution algorithm is making underneath.

7.4.1 Interval VWAP

We first compare the execution price with the VWAP of the corresponding order execution period. This
benchmark is often referred to as the interval VIWAP and is defined as the volume-weighted average of

all transaction prices in the same futures contract during the life of the order.
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Figure 8: Analysis of a real Cotton order: benchmarking vs. interval VWAP and arrival price. Based on
Hedayati et al. (2018)
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Figure 8 shows the execution of a Cotton futures buy order on 3 June 2021. The parent order consists of
buying ten July 2021 contracts and is split into seven separate trades (child fills). The order accounts for
0.08% of the daily trading volume and takes 7 minutes and 15 seconds to be executed. Based on order
book data, the graph plots the various prices at which the execution algorithm has submitted each sep-
arate trade and the volume-weighted average market price throughout the trading interval. Aggregating
all trades, the volume-weighted average of the executed prices determines the average execution price.
By comparing this to the arrival price ($84.08) we measure the total trading cost, which in this case is

$0.21 or 25.5 bps in relative terms.

In addition, the graph shows the execution price of the order compared against the interval VWAP.
As Figure 8 illustrates, the execution price is closer to the interval VWAP: it is $0.03 away from this
benchmark price, or 3.6 bps in relative terms. Generally, for an order which executes in a relatively short
period of time we would expect cost measured against the arrival price to be similar to cost measured
against the interval VWAP. However, as an order takes longer to execute, market risk may cause the
arrival price to significantly deviate from the interval VWAP and cost measured against the arrival price

will mostly reflect this risk.

Conclusion

In conclusion, using different benchmarks clearly results in different views on trading costs. While the
interval VWAP accounts for all price changes over the execution period, the arrival price does not take
into account subsequent market movements, since it is a pre-trade benchmark (Hedayati et al., 2018).
In the case of Varick Capital, where the orders make up a small percentage of total trading volume,

benchmarking against the interval VWAP seems to be appropriate as well.

7.4.2 Aggregate Results

For the sake of completeness, we also benchmark against the interval TWAP, the time-weighted average
mid price during the life of the order.?? Using the metric below we can compare the execution price to
the different benchmarks for each order:

_ g P
- 1

Performance; (spreads) 5 ,

where p? is either of the two benchmark prices for order i and S; represents the average bid-ask spread
during the life of order i. Note that we use units of spreads here, since different futures contracts may
have different absolute spreads. Hence, if we are averaging performance across different contracts we need

to account for this.

In contrast to our trading cost definition, when evaluating performance, a negative number indicates
that an order has been executed against a worse price than the benchmark, both for buy orders and
sell orders. Calculating the two benchmark prices across all of the orders, we obtain an aggregate per-
formance, as reported in Table 8. The table specifically reports the volume-weighted average, mean,

standard deviation and quantiles of the performance metric for all orders.

23FEach mid price is prevailing for a certain period of time, up until the order book data quotes a new mid price. Hence,

in order to obtain a time-weighted average mid price, we use the length of time until the mid-price is updated as weights.
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Arrival Price Interval TWAP Interval VWAP

(spreads) (spreads) (spreads)

All data
Volume-weighted -0.22 -0.15 -0.15
Mean -0.16 -0.05 -0.09
Standard deviation 1.52 0.76 0.79
5% Quantile -2.43 -1.06 -1.00
95% Quantile 1.64 0.80 0.84

Table 8: Performance measured against interval TWAP and interval VWAP (in spreads)

The table shows that the volume-weighted average performance measured against the arrival price is
about -0.22 spreads, whereas immediate execution at market prices would generally have lead to a perfor-
mance of (at most) -0.5 spreads. As a result, the algorithm has reduced costs when compared to placing
a market order at the time of arrival. Moreover, we see that, as expected, the performance measured
against the arrival price has a larger standard deviation than the performance measured against the

interval benchmarks.

Moreover, from Table 8, we find that the volume-weighted average performance against both the interval
TWAP and interval VWAP benchmark are similar, which is generally to be expected when considering

a limited time period and a full and balanced order book.

Specifically, the results in Table 8 imply that, on average, execution has lead to an underperformance of
0.15 spreads relative to the VWAP of all trades executed within the trading interval. Moreover, we observe
that, on average, the order execution has lost 0.15 spreads relative to the average mid price during the
execution period (the interval TWAP). Broadly speaking, an average performance of -0.5 spreads would
imply aggressive execution and an average performance of +0.5 spreads would imply passive execution.

Hence, the average performance of -0.15 spreads we observe here would imply
-0.15=-0.5-p+ 0.5 (1 —p),

which is equivalent to p = 0.65, or an average of 65% aggressive execution. This indicates that, on aver-

age, the algorithm managed to pick up 35% of passive execution instead of buying (selling) at the ask (bid).

Discussion

It is worth noting that performance measured against the interval VWAP and interval TWAP will gen-
erally be smaller (closer to zero on either side) than performance measured against the arrival price.
However, performance measured against the arrival price is based on the actual trades and measures the
actual trading costs, while performance measured against the interval benchmarks is based on all trades
over the trading interval and tells us how the algorithm has behaved relative to other trades. It would be
quite possible to have a strong performance of 4-0.5 spreads versus the interval TWAP, indicating passive
execution, and have a performance of -10 spreads versus the arrival price, due to adverse price movements
during the trading interval. The converse is possible as well. Hence, in analysing performance, both types

of benchmarks should be taken into account.
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8 Quantile Regression

From Section 6.3, we observed a significant variation in characteristics of the markets in our sample. A
question yet unanswered, however, is which of these variables are most important in explaining differences
in costs between the 681 orders in our sample. This section employs quantile regression to evaluate which
factors increase the likelihood of incurring high trading costs. It starts by briefly introducing the concept
of quantile regression, followed by estimation results, formal testing and goodness-of-fit. In addition, the
interpretations of the estimation results are discussed. Finally, the relative importance of the regression

variables is examined.

8.1 Introduction

Following the definition of Koenker and Hallock (2001), the (observed) trading cost for a specific order is
at the 6*" (0 < @ < 1) quantile of the trading cost distribution if its value is higher than the proportion
f and lower than the proportion 1 — #. Hence, exactly half of the orders have a higher cost than the
median and half have a lower cost. The quantiles, or percentiles, refer to the general case: if the number
of quantiles is n, then the quantiles divide the population into n + 1 equally sized groups in a data set.
For a more formal explanation of quantiles and the differences between unconditional and conditional

quantiles, we refer to Appendix B.1.

Quantile regression, as shown by Koenker and Bassett (1978), aims to extend the concept of quan-
tiles to the estimation of conditional quantile functions, models in which the conditional distribution of
the response variable is expressed as a function of covariates (Koenker & Hallock, 2001). Compared to
the traditional homoskedastic OLS, which focuses on the conditional mean, quantile regression may be
used to examine the variables influencing the orders with the 1006% highest cost, where 6 € (0, 1). Hence,
it provides a more complete picture of the conditional distribution, since it does not produce a single es-

timate but rather provides a series of estimates covering the whole range of trading costs from low to high.

Formally, using the notation by Bikker et al. (2009), we can state that, given a K-dimensional vec-
tor of covariates X, the classical least squares (homoskedastic OLS) model assumes that the conditional
expected trading cost C equals X« (where « is a K-dimensional vector of coefficients). On the other
hand, the quantile regression model assumes that, given the same covariates X, the 8" conditional quan-

tile of C' equals X 3y (where By is a K-dimensional vector of coefficients).

Aside from the fact that the quantile regression method allows for direct examination of the complete
range of trading costs, it is also more flexible than the homoskedastic OLS model in capturing how
market- and trade-specific characteristics impact the distribution of trading costs. According to the ho-
moskedastic OLS model, any trading cost determinant impacts these costs exclusively through the mean.
The quantile regression technique, on the other hand, allows the effect of market- and trade-specific char-
acteristics on trading costs to be dependent on the level of trading costs. Lastly, Koenker and Hallock
(2001) conclude that another benefit of quantile regression is its robustness to outliers in the dependent
variable (i.e., trading costs), which are prevalent in our data set. Appendix B.1 provides a more technical

discussion on quantile regression.
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8.2 Estimation Results

The quantile regression process is estimated by applying iteratively reweighted least squares. Following
the procedure in Greene (2008, p. 414-416), heteroskedasticity robust standard errors are used to calculate
the variance-covariance matrix.?* The estimation results are displayed in Figure 9. These charts show
the impact of trade- and market-specific variables on the trading cost distribution as a function of the
quantile 8, where 6 ranges from 0.05 to 0.95 (solid red curve) and 95% confidence bands (shaded red
area). In addition, to enable visual comparison of the quantile regression with the homoskedastic OLS
estimates, these graphs plot the OLS coefficients (solid black line) and corresponding 95% confidence

intervals.
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Figure 9: Estimated quantile regression coefficients with 95% confidence bands

24This is the default setting in statsmodels’ QuantReg class in Python, which is used to estimate the quantile regression
here. As Greene (2008) proposes, we use kernel density estimation for estimating the asymptotic covariance matrix. For the
density estimation, we use the Epanechnikov kernel and apply the bandwidth selection method proposed by Hall-Sheather
(1988). These are again the default settings.
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While existing equity studies typically evaluate buy and sell orders separately, we do not make that
distinction in our research, since we found no clear evidence of buy-sell asymmetry. Analyzing Figure 9,
our first observation is that quantile regression better explains the relationship between trading costs and
the various factors than the homoskedastic OLS. It particularly illustrates the effect of the considered
variables on the risk of incurring significantly higher trading costs. Overall, we can conclude that the
effect found in the cost distribution’s tails differs considerably from the mean effect; except for the
momentum and child fills coefficients, the estimated quantile regression coefficients generally lie outside
the confidence intervals of the homoskedastic OLS regression in Figure 9. This suggests that the effects
of these characteristics may not be constant across the conditional distribution of the dependent variable.

Formal testing of this hypothesis is done in the next subsection.

8.3 Formal Testing

According to the graphs in Figure 9, the relationship between trading costs and most of its determinants
varies significantly over the range of low-cost to high-cost trades. The majority of quantile regression
estimates fall outside of the classical regression model’s confidence intervals, which demonstrates that the
homoskedastic OLS model is insufficiently robust to reflect the distribution of trading costs across the
entire range of low-cost to high-cost trades. To support this finding, we use the Khmaladze (1982) test?®
provided by Koenker and Xiao (2002) to compare the quantile regression process to the homoskedastic
OLS (location shift) model. For a more extensive explanation of why this model is referred to as the

location shift model and a derivation of the Khamaladze (1982) test statistic, see Appendix B.2.

Variable Test Statistic
Volatility 2.50
Duration 0.44
Relative size 1.82
Child fills 0.32
Momentum 0.57
Joint Effect 8.44

Table 9: Tests of the Location-Shift Hypothesis

Table 9 displays the results for testing the location-shift hypothesis. As expressed in Koenker and Xiao
(2002), the null hypothesis of the location shift model is rejected when the joint test statistic exceeds
the joint critical value. The bottom of Table 9 reports a joint test statistic value of 8.44. This indicates
a rejection of the null hypothesis of the location shift model at any reasonable significance level, since
for p = 5 covariates the 5% and 1% critical values are 6.64 and 7.64, respectively.? We can further
investigate which variables contribute most to the joint significance of our test statistic and thus to the
rejection of the location shift model; Table 9 also reports marginal test statistics corresponding to the
same null hypothesis. In a similar way as before, a variable’s coefficient is of a significantly different form
than in the location shift model if the marginal test statistic exceeds the marginal critical value (Koenker
& Xiao, 2002). However, Koenker and Xiao (2002) note that these marginal statistics should only be
interpreted as formal tests, due to the possible dependence of covariates. Hence, formally, volatility

contributes most to the joint significance of the test statistic.?”

25This test is implemented in the Quantreg package in R.
26 This test statistic is based on the asymptotic critical values in Koenker and Xiao (2001), where we set the truncation

interval equal to 7 = [0.05,0.95].
27The critical values for these coordinate-wise tests are 2.140 at 5%, and 2.721 at 1% significance level. Hence, volatility
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8.4 Goodness-of-fit

In traditional regression models, the R? is a frequently used goodness-of-fit statistic. For quantile regres-
sion models, Koenker and Machado (1999) introduce a general goodness-of-fit process that is similar to
the traditional R? statistic, which they refer to as R'(#). A special case of this statistic is the so-called
pseudo R?. The pseudo R? assesses the relative goodness-of-fit of two quantile regression models at a
certain quantile in terms of an "appropriately weighted sum of absolute residuals”" (Koenker & Machado,
1999), while the traditional R? measures the relative goodness-of-fit of the respective models for the
conditional mean function. For a more technical definition of the pseudo R? and its differences to the
traditional R?, we refer to Appendix B.3. Overall, the pseudo R? constitutes a local goodness-of-fit

measure, rather than applying a global measure to the whole conditional distribution, such as the R2.
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Figure 10: Pseudo R? for different quantiles

To acquire an indication of the quantile regression process’ goodness-of-fit, we compute the pseudo R?
as a function of @ for the estimated quantile regression model. Interestingly, Figure 10 shows a parabola-
shaped curve, with a minimum of 0.005 attained at approximately the 0.6th quantile. The pseudo R?
reaches its maximum value of approximately 0.39 when 6 approaches 0. Evidently, the best fit is achieved
in the tails of the distribution, suggesting that a larger part of the variation in trading costs is explained
by the trade- and market-specific variables as the quantiles get more extreme. In comparison, using the
same variables as in the quantile regression model, the R? of the location shift (OLS) model equals 0.004,
implying that the variables used here explain only 0.4% of variation in mean trading costs. This confirms
our conjecture that the homoskedastic OLS model is insufficiently robust to capture the trading cost

distribution across the entire range of low-cost to high-cost orders.

8.5 Interpretation of Results

This subsection provides the (economic) implications of the quantile regression model’s estimation results.
We start by briefly explaining how to interpret the plots in Figure 9. For each covariate, the point
estimates in the graphs may be interpreted as the impact of a one-unit change of the variable on trading
costs, starting on the left with the lowest quantile and ending on the right with the highest quantile, ceteris
paribus. In the subsection that follows, our focus will be on the covariates that impact the right tail,
since our main objective is examining the features that influence the probability of incurring relatively

high trading costs.

is the only variable whose marginal Khmaladze statistic exceeds the critical value at 5% significance level.
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Volatility

First of all, market-specific volatility has a strong/substantial effect on the trading costs: the tight
confidence bands around the volatility coefficients indicate a high significance level. Secondly, whereas
volatility has a moderate effect on the quantiles in the middle of the distribution, it has a considerable
impact on its lower and upper tails. Specifically, an increase in volatility implies a reduction in costs
in the bottom half of the cost distribution while the opposite is true in the upper third. Furthermore,
market-specific volatility has the largest effect on the most extreme quantiles of the cost distribution. A
one-unit increase in volatility can result in as much as -0.17 bps in trading cost in the lower tail and more
than 0.2 bps in the upper tail, ceteris paribus. Overall, we agree with Bikker et al. (2009) by concluding
that volatility seems to have a scale effect on trading costs; the cost distribution is more spread in more
volatile markets/periods. More volatile futures contracts typically have more idiosyncratic price fluctua-

tions, resulting in larger trading cost dispersion.

Duration

The tight confidence bands around the duration coefficients imply a high significance level. Following the
reasoning by Bikker et al. (2009), we can conclude that duration, like volatility, seems to have a scale
effect on trading costs; when orders take longer to execute, the distribution of trading costs becomes more
dispersed. A one-unit increase in duration implies a decrease in trading costs in the lower three-tenths
and a decrease in costs in the upper third of the cost distribution. Again, trade duration has the greatest
impact on the highest and lowest quantiles in these areas of the cost distribution. A one-unit increase in
duration can result in as much as -0.4 bps in the lower tail and around 0.6 bps in the upper tail, ceteris
paribus. This pattern can be explained from the theory in Sections 5.1 and 5.2, where we observed the
trade-off between trading quickly (aggressively) and trading slowly (passively), as expressed by Kissell
and Malamut (2005). Executing an order quickly is generally associated with a higher expected trad-
ing cost, but lower intrinsic price risk, whereas the opposite is true when an order takes longer to be
completed. The longer the order takes to be completed, the more likely events unrelated to the orders’
own market impact will influence the price of the contract being traded, resulting in more risk and, as a

result, a more dispersed cost distribution.

Relative Trade Size

The tight confidence bands around the relative trade size coefficients of the quantile regression estimates
indicate a high level of significance. As stated in Section 6.2.1, orders in size class 1 are generally not
expected to move the market, while orders in size class 2 are expected to cause significant impact even if
executed gradually. The omitted category is size class 1, so the quantile coefficients may be interpreted
relative to this category. The difference in trading costs between orders in size class 2 and orders in size
class 1 is substantial; at the quantiles in the left tail of the distribution, the coefficients of the relative
trade size variable are significantly negative, while they are significantly positive in the right tail. This
result suggests that, when compared to orders in size class 1, ’large’ orders have a significant risk of
incurring higher trading costs as well as a significant risk of incurring lower trading costs. In turn, this

implies that size mainly exerts a scale effect: the variance of trading costs increases with relative trade size.

Interestingly, the OLS coefficients show an insignificant effect of relative size on trading costs. As stated
in Section 4.2.2, usually a positive relationship between trading costs and trade size is observed from
literature. For the quantile regression results, this would imply that trade size would mainly have a

location effect on the conditional cost distribution.
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However, Jones et al. (1994), for instance, conclude that "the size of trades (or volume) reflects the extent
of disagreement among traders about a security’s value". This would suggest that the variance of trading
costs may also increase with trade size. Furthermore, and perhaps more importantly, we stated before
that larger orders will only incur a higher cost than smaller orders in the same asset and with the same
strategy. In this case, however, we are considering a wide variety of futures markets from different asset
classes. Evidently, when considering a variety of futures from different asset classes, it is not necessarily
true that larger orders (in relative terms) lead to higher costs. Furthermore, even though we observed
that size has a significant effect on the cost distribution, the information contained in size is possibly
already contained in other variables, such as the order’s duration, making these variables inter-correlated.
This would imply that the proportion of variance in costs purely explained by relative size is small when

compared to duration. We will come back to this conjecture in Subsection 8.6.

Number of Child Fills

Clearly, the confidence bands around the coefficients of the number of child fills are substantially wider
than the confidence bands of the other coefficients. This indicates a relatively low significance level.
Although one would generally expect the number of child fills to be a proxy for the difficulty of executing
an order and thus expect the number of fills to have a positive effect on trading costs, the effect is found

to be insignificant in this analysis.

Momentum

From Section 4.2.2, we would expect momentum to have a positive effect on the trading costs of buy
orders and a negative effect on the trading costs of sell orders. For this reason, contrary to the previous
coefficient interpretations, we perform a separate analysis for buy and sell orders here. Firstly, the effect
of a one-unit increase in momentum is substantially overestimated by the homoskedastic OLS model,
both for buy and sell orders. This is most likely due to extreme observations in the right and left tails
having a disproportionately large influence. By analyzing the quantile regression results we obtain some

additional insights.

For buy orders, the effect of momentum on trading costs is found to be insignificant over the major
part of the distribution, except at the highest quantiles. From approximately the 70% quantile, the mo-
mentum coefficient tends to become more significant: in the upper tail, a one-unit increase in momentum
shows an effect of more than 3 bps, ceteris paribus. The plot’s convex shape suggests that during periods
of strong positive momentum (i.e., a buying trend), buy orders could potentially incur higher trading

costs, while lower (negative) costs are less likely.

For sell orders, momentum has a significant negative effect over a larger part of the cost distribution,
especially at the highest quantiles. In the upper tail, the negative effect is the strongest: a one-unit
decrease in momentum increases trading costs by more than 4 bps, ceteris paribus. The graph’s concave
shape illustrates that, for sell orders, during times of strong negative momentum (a selling trend), rela-

tively high trading costs are more likely than relatively low (negative) costs.
Overall, our findings show that when momentum prior to execution (as measured by the 5-day aver-

age return) increases, the probability of incurring significant trading costs tend to increase as well. This

is consistent with findings in other studies, such as Bikker et al. (2009).
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Conclusion

In conclusion, volatility, duration and relative size have a significant effect on a substantial part of the
trading cost distribution, as we would expect from the literature in Section 4.2.2. Moreover, although
momentum was shown to have an insignificant effect over the major part of the distribution, especially
for buy orders, we conclude that the probability of incurring significant trading costs is higher during

periods of strong (positive or negative) momentum.

8.6 Relative importance of variables

The charts in Figure 9 show which variables have a significant impact on the distribution of trading
costs. However, an unsolved question is which of these variables best explains (variation in) trading
costs. What complicates addressing this issue, is the fact that not all factors affect each fraction of the
trading cost distribution in the same way. The literature on classical regression models provides several
methods to measure the relative importance of explanatory variables. For instance, Frino and Oetomo
(2005) calculate the Adjusted R? of the model with and without a specific variable and conclude that the
most explanatory power comes from the variable that leads to the greatest reduction in Adjusted R2.
We will use a similar approach here, except for the fact that we evaluate the relative importance of a
variable over different quantiles of the trading cost distribution. The squared partial correlation (SPC)
tells us which fraction of variance in the dependent variable (Y) has been left unexplained by other
variables, but is explicitly explained by X;. For a more detailed description of the theory behind SPC,
we refer to Appendix B.4.

SPC

Variable

left tail  median  right tail
Volatility 0.1959 0.0167 0.1685
Duration 0.1131  0.0002 0.1439
Relative size 0.0561 0.0001 0.0168
No. of child fills  0.0008 0.0000 0.002
Momentum 0.0031 0.0005 0.0066

Table 10: Most important determinants based on squared partial correlations

The SPCs for each variable used in the quantile regression model are reported in Table 10. These squared
partial correlations show that the variables barely affect the median, but volatility and duration substan-
tially influence the tails of the cost distribution.?® Furthermore, the SPCs show that some variables like
momentum and relative size - although both statistically significant in the tails - have limited explanatory

power.

Conclusion

Despite the fact that relative size and momentum increase the dispersion of trade costs, these variables
alone cannot explain a substantial part of the variation in costs between the observations in our sample.
The two key factors in explaining differences in trading costs for a portfolio of futures contracts from
different asset classes are shown to be market-specific volatility and duration as a proxy for liquidity.

Furthermore, none of the variables has a significant impact on the median of the cost distribution.

28By calculating the average SPC over the quantiles # = {0.01,...,0.1} as a proxy for the left tail and 6 = {0.9,...,0.99}
as a proxy for the right tail, we get an indication of the contribution of each variable to the left and right tail of the cost

distribution.
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In addition, as the plots in Figure 7 demonstrate, the mean trading costs were shown to be similar
and close to zero for all asset classes, with a significant difference in terms of cost dispersion. Given
the results above, we can now deduce that this is mostly due to the differences in volatility and trade

duration between orders in different asset classes.
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9 Conclusion & Discussion

9.1 Conclusions

Combining a unique data set of futures order book data and trade execution data from a hedge fund
across 50 global futures markets over a 9-months period with a total transaction value of 2.3 billion
dollars, this research measures and benchmarks the actual transaction costs incurred by a large trader.
Order executions for futures contracts in four different asset classes are examined: stock indices, curren-

cies, commodities and bonds. We have obtained several interesting results.

Firstly, we have redefined total transaction costs specifically for futures trading based on Perold (1988).
This research calculates total transaction costs as the sum of delay costs and trading costs. To the best
of our knowledge, this is the first study to measure delay costs. We find that for the buy orders, due to
prices moving away from the decision price, the average cost associated with waiting to trade (i.e., the
delay cost) is approximately 32 basis points. Surprisingly, we observe the opposite when it comes to sell
orders. Waiting to trade has actually resulted in an average savings of approximately 18 basis points

relative to the decision price for these orders.

Secondly, we find the average impact of Varick Capital’s trades on prices to be rather small; average
trading costs equal 0.15 bps for buy orders and 0.16 bps for sell orders. We find trading costs in our
study to be of a similar magnitude to the corresponding costs documented in previous studies of S&P500
index futures and SFE futures markets. However, we find the magnitude of costs to be substantially
lower than previously documented in equity studies. Thirdly, in line with Frino and Oetomo (2005), we
conclude that there is no clear evidence of an asymmetry between the trading costs of buy and sell orders.
Our findings confirm conjectures in previous research that i) we expect low information asymmetry and
therefore low adverse selection costs in futures markets and ii) futures markets are generally liquid in

nature and trading costs are inversely related to market liquidity.

Furthermore, we find a substantial difference in trading costs between trades in the left and right tails of
the cost distribution. Although average trading costs are shown to be relatively small in terms of market
disruption, this is not necessarily true in terms of absolute costs for the hedge fund.

In addition, the results show substantial differences in trading costs across the different asset classes.
Even though the mean trading cost for the different asset classes is shown to be similar and close to zero,
we observe a substantial difference in terms of outliers. As we would expect from market microstructure
theory, the wide variation in characteristics among the markets in our sample seems to have a consider-

able influence on the dispersion of costs.

Moreover, since we have access to order book data, we can extract intraday data for all of the exe-
cuted trades. This specifically enables us to evaluate the performance of the execution algorithm used,
by comparing the execution prices against two additional (intraday) benchmarks. We particularly find
that the execution algorithm has on average outperformed immediate execution at market prices by 0.28

spreads and managed to pick up 35% of passive execution instead of buying (selling) at the ask (bid).
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Furthermore, we analyze to which extent trade- and market-specific variables from previous research im-
pact trading costs using the quantile regression approach. We find the majority of variables to impact the
conditional cost distribution in ways that are poorly reflected by the homoskedastic OLS model, which is
typically used in transaction cost analysis. The quantile regression model is shown to better capture the
relationship between trading costs and the various factors, especially at higher quantiles. Moreover, by
estimating the impact of variables on the orders with the 1000% highest trading cost, where 6 can take
any value in the interval (0,1), our study particularly finds volatility and trade duration to be important
risk factors. Furthermore, we find momentum to have an amplifying effect on the likelihood of incurring

significant trading costs.

Overall, this thesis demonstrates that quantile regression may significantly contribute to transaction
cost management, particularly when applied to a real-world portfolio of futures from several asset classes.
It is a useful tool for analyzing the determinants of high-cost trades and understanding trading costs,

which is particularly beneficial for transaction cost management.

9.2 Discussion & Future Research

Similar to Bikker et al. (2009), we would like to start by emphasizing that the current research is limited
to a particular hedge fund during a specified time period. As a result, the findings of this study may
or may not apply to other funds. However, we argue that the framework we use is generalizable to
other funds and managers trading futures or other instruments. The measured costs are exogenous to
the portfolios being traded (Frazzini et al., 2018), since our data analyzes trade execution data without

making any assumptions on the portfolio construction process.’

In terms of data restrictions, our data sample spans a limited time period and includes a relatively
small number of orders as compared to other studies. The current data sample, for instance, does not
enable us to fit a different regression model for each separate market and hence does not allow us to
test which variables are the most important in explaining differences within a specific market. Moreover,
it may be interesting to investigate to what degree results remain consistent over a longer time period.
Also, we would expect an increase in assets under management to result in higher trading costs, because
of higher trading volumes. In addition, since all of the data is from 2021, we are unable to stratify our
sample into bullish and bearish markets, as proposed by Chiyachantana et al. (2004). According to Chou
et al. (2011), an asymmetric pattern in trading costs of large buy and sell orders depends on the number
of bullish versus bearish periods in the entire sample period. Chou et al. (2011) find that in bearish
markets, the trading costs of sell orders are greater than the costs of buy orders, and in bullish markets,

and observe the opposite pattern in bullish markets.

Our findings suggest a number of possible future research directions. Firstly, while the focus of our
research is on trading costs, we discovered that, in our sample, delay costs are actually the larger compo-
nent of overall transaction costs. Besides, while the average delay cost for buy orders was positive and the
average delay cost for sell orders was negative, we observed a significant variation in delay costs between
orders in the left and right tails of the cost distribution. Hence, identifying which markets contribute the

most to these costs might be an interesting future research topic.

29The universe of futures included in our data set is the only endogenous asset selection decision made with regard to

trading costs: Varick Capital excludes futures with low daily trading volume.
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In addition, we analyzed the performance of the execution algorithm using a variety of benchmarks.
While benchmarking against the interval TWAP and interval VWAP provides us an indication of the
performance of the algorithm relative to trades executed in the same time interval, it does not tell us
whether the algorithm might have performed better with different algorithmic settings. This gives poten-
tial to more research in the future. Furthermore, by analyzing performance using benchmark prices, we
solely concentrate on the absolute performance of the algorithmic orders, rather than comparing those

orders with samples containing orders completed by alternative means such as other algorithms.

Finally, one of the major incentives for developing transaction cost estimation models is to use them to
predict future costs. As a consequence, future research might investigate the quantile regression model’s
accuracy in predicting trading costs using the variables defined in this study. According to Bikker et al.
(2009), quantile regression significantly outperforms the homoskedastic OLS model in terms of predictive

power, which seems a promising addition to our research.
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A Appendix A: Definitions

A.1 Definition order-size classes

Orders may be split into various size categories based on their executed size in the following way:

Size Category Definition

LessThanTCH Executed sizes equal to or smaller than the aggressive touch size at the start time for the order

MoreThanTCH  Executed sizes larger than the aggressive touch size at the start time for the order but smaller
or equal to half the sweep book size at the start time for the order

Medium Executed sizes between half of the sweep size and the sweep size

Large Executed sizes larger than the sweep size

Table 11: Size categories and their definitions

Here, the sweep size is defined to be the total volume on the visible order book at the start time of the
order. Typically 10 order book levels are stored historically, so the total volume is calculated based on the
first 10 levels of the book only. For some particular contracts, there may be fewer book levels available.
Furthermore, the aggressive touch size is defined to be the quantity available to take at the first price
level on the aggressive side. Hence, for a buyer that would be the size at the lowest ask price and for a
seller that would be the size at the highest bid price.

Overall, these size categories are a simple attempt to separate orders into categories based on their
expected impact on prices; a LessThanTCH order is generally not expected to move the market even if
executed as a market order; a Large order might be expected to cause significant impact even if executed
quite gradually. Based on these categories, we define two relative size classes in our analysis: size class
1 includes orders that belong to size category LessThanTCH or MoreThanTCH; size class 2 includes
trades that belong to size category Medium or Large. These two size classes allow us to test in which

way trading costs are related to relative trade size in futures markets.
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B Appendix B: Quantile Regression

This appendix on quantile regression briefly addresses some issues that are relevant to this thesis. It uses
the theory by Koenker and Bassett (1978), Koenker and Hallock (2001) and Koenker and Xiao (2002)
to mathematically explain the main properties behind the quantile regression technique. We focus on
trading costs as the dependent variable and trade and market-specific characteristics as the covariates to

simplify the explanation.

B.1 Introduction

Following the definition of Koenker and Hallock (2001), the (observed) trading cost for a specific order is
at the 0" (0 < 6 < 1) quantile of the trading cost distribution if its value is higher than the proportion 6
and lower than the proportion 1— 6. Technically speaking, the §** quantile of trading costs (C) is defined
as

Qe(9) = nf{c: Fo(c) > 0}, (1)

where Fc(c) = P[C < c] denotes the distribution function of C. The equation above states that the !
quantile is equal to the smallest value ¢ for which F(c) is larger than or equal to 6. Figure 9 illustrates

this for the standard normal density, in which the point y = 1.645 indicates the 95% quantile.
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Figure 11: Standard normal curve with 95% quantile
However, in this specific case, our focus will be on conditional quantiles rather than unconditional ones,

since we observe trading costs (the response variable) in combination with trade and market-specific

characteristics (the covariates). For instance, we might want to know what the trading costs will be given

ath

a certain level of volatility. Hence, we may define the conditional quantile of C' given X = x as

Qc(f|x) zirgf{c:FC|X(c|z) > 0}, (2)

where Fe | x(c|z) = P[C < c¢| X = z] denotes the conditional distribution function of C' given X = x.
The quantile regression model assumes that the 6" conditional quantile of C' given the covariates X

equals X’Sy. Using this information, we can formulate the quantile regression model as
C=XBy+e, QuO]X)=0. (3)
Hence, in the quantile regression model, the ** conditional quantile is given by

Qc(0]z) = X'By. (4)
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Interpretation of §y coefficients

Given specification (4), the partial derivative of C' with respect to regressor X; equals Bg and represents

the change in the " conditional quantile due to a one-unit change in X, ceteris paribus.

Relation with traditional models

Given trading costs (C) and its covariates (contained in the vector X of dimension k+1), the homoskedas-

tic OLS or location shift model is formulated as
C=Xa+oe, ElX]=0, E[ZX]=1, (5)

where « is a vector of coefficients of dimension k41 and ¢ > 0. Since this model only allows covariates to
affect the conditional mean (i.e., the term X'«) of the trading costs, it is rather restrictive. As a result, a
change in covariates primarily ’shifts’ the conditional distribution of the dependent variable C', as shown
in the left panel of Figure 12. For this reason, this type of model is often referred to as the location
shift model. On the other hand, models like the heteroskedastic OLS allow covariates to influence the
conditional variance of trading costs. This implies that the covariates are possibly stretching (increasing
variance) or squeezing (decreasing variance) the distribution, as depicted in the right panel of Figure 12.
However, in this research, we use the more flexible quantile regression approach to test whether trading

costs are affected in more complex ways.
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Figure 12: Location shift vs. scale
Now let us suppose the regression model contains an intercept. We may then write X' = [1 Z'], a =

(oo, 1) and By = (Bp,0,80,1). Applying equation (4) to the conditional quantiles in the location shift

model, we find that the conditional quantiles are given by
Qc(0|X)=X'a+oF 1 0) =ap+ Z'ar + o F71(6), (6)

where F, denotes the distribution function of €. As a result, the homoskedastic OLS or location shift in

equation (5) model imposes some constraints on the coefficient of the conditional quantiles:
Boo = o+ aF1(0) (7)
Bo1 = (8)

From this, we can clearly see the difference between the location shift and the quantile regression model:
in the former model, covariates have the same effect on all quantiles, but in the latter model, the effect

of covariates on the " quantile is dependent on 6.
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B.2 Formal Testing

Khmaladze Test
In this subsection, we use the theory by Koenker and Xiao (2002) to shortly describe the Khamaladze
(1982) test. We focus on the special case of the location-shift model

Qc(0]X)=X'a+aF(9),
which was shown to be equivalent to the classical homoscedastic OLS model
C = X'a+ oe,

where € has distribution function F..

Although this model underlies much of classical econometric inference, it posits a very narrowly cir-
cumscribed role for the covariates in X. Hence, we want to test whether the sequence of linear quantile

regression alternatives
Qc(0]z) = X'By

takes the location shift form.

Specifically, the location shift hypothesis may be expressed in standard form as

RB(G) =T (9)

where R = [0,I,-1],7 = (a2,...,q,)T. This simply asserts that the quantile regression slopes are con-

stant, independent of 6.

Test Statistics
We consider the test statistic

K, = suIT) |95(0) — 00 (00)1]/ /01 — o, (10)

oc

where ¥, is the Khmaladze transformation of the empirical quantile process. Understanding what empiri-
cal processes are and how they are transformed requires requires quite some involved theory, so we do not

discuss it any further at this point. Note, though, that this test statistic is asymptotically distribution free.

Besides, it may be of some independent interest to investigate which of the covariates contribute most to
the joint significance of the K,, statistic. Note that the covariates are not necessarily independent, but
we plunge ahead nevertheless. In place of the joint hypothesis, we can consider univariate sub-hypotheses
for each "slope" coefficient. In effect, this replaces the matrix standardization defined earlier by a scalar
standardization. We construct the test statistics

Ky = sup [0,i(0) — 0ni(00)|/ V01 — 6o (11)

0eT

for each of the covariates.
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B.3 Goodness-of-fit

Following Koenker and Machado (1998), in the quantile regression model, the so-called pseudo R? can
be constructed, a statistic that is similar to the classical R?. For any quantile 0 < # < 1, the pseudo R?

is defined as ) n
ming, g, 21:1 PQ(Cz - ﬂl - Z{BQ)
ming, > i po(Ci — B1) ’

where the function pg is the tilted absolute value function. Hence, for a specific quantile 8, the pseudo

pseudo R3 =1 — (12)

R? measures the success of the quantile regression model relative to the unconditional quantile in terms
of an asymmetrically weighted sum of absolute residuals. The ordinary R?, on the other hand, assesses

the goodness-of-fit of a model in terms of residual variance:

ming, g, 11 (Ci — 1 — Z{B2)?
ming, >3, (C; — B1)?

Just like the ordinary R?, the pseudo R? lies between 0 and 1. However, the pseudo R? is a local

R?=1-

(13)

goodness-of-fit measure for a specific quantile, while the R? only provides a global indication of the

goodness-of-fit.

B.4 Relative Importance of Variables

One way to assess the relative importance of explanatory variables is the well-known partial R?, which
reflects the proportion of unexplained variation of the dependent variable that becomes explained by
adding a covariate to the model. Because we examine a range of models over the quantiles in the interval
(0,1), the problem is more challenging with quantile regression. Hence, it seems reasonable to measure
the relative importance of a covariate over a range of quantiles of the trading costs. Hence, we might

apply a generalized version of the squared partial correlation (SPC) to the quantile regression framework.

In a linear regression model, the SPC represents how much of the variation in the dependent variable that
is not related with any other predictors is caused by the variance in a certain covariate. It is calculated
as

SPC=(R*-R*))/(1-R%), (14)

where R? is the adjusted R? of the full model (containing all covariates) and R?; is the adjusted R?

K2

corresponding to the model without covariate 1.

By defining this measure in terms of the pseudo R2? (denoted by R?), it can be used to analyze the
relative importance of variables in the quantile regression model. Specifically, the SPC is calculated as a

function of the quantile § € (0,1):

SPC(0) = (R(e)? ~RO)? ) /(1 - R(e)ii) . (15)

Using this equation, we can calculate the SPCs over a specific range of quantiles for each explana-
tory variable in the quantile regression model. By calculating the average SPC over the quantiles
60 = {0.01,...,0.1} as a proxy for the left tail and 6 = {0.9,...,0.99} as a proxy for the right tail,
we get an indication of the contribution of each variable to the left and right tail of the cost distribution.
Moreover, we calculate the SPC at the median (6 = 0.5) to analyze the contribution of each covariate to
the center of the cost distribution. The results for the specific trading cost example in this research can
be found in Table 10.
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Additional Tables

Study

Factors

Chan and Lakonishok (1997)

Keim and Madhavan (1997)

Bertsimas and Lo (1998)

Almgren and Chriss (2001)

Breen, Hoodrisk, and Korajczyk (2002)
Kissell and Glantz (2003)

Lillo, Farmer, and Mantegna (2003)

Size, Volatility, Trade Time, Log(Price)

Size, Mkt Cap, Style, Price

Size, Market Conditions, Private Information
Size, Volume, Sequence of Trade

14 Factors - Size, Volatility, Volume, etc.

Size, Volatility, Mkt Conditions, Seq. of Trades
Order Size, Mkt Cap

Table 12: Overview of cost estimation studies

Variable

Definition

Prices
Arrival Price (P)

Execution Price (Pege)

Decision Price (Py)

Benchmark Prices
Interval TWAP
Interval VWAP

Market-specific Characteristics
Momentum

Volatility

Trade-specific Characteristics

Duration

Child Fills

Relative Size

mid price of the contract absent any information about the incoming trade
volume-weighted average price of all child fills of the specific order during
the trading period

futures closing price when the decision to buy or sell the asset was made

time-weighted average mid price during the life of the order
volume-weighted average of all transaction prices in the same futures contract

during the life of the order

5-day average return prior to trading (in %)

30-day annualized volatility prior to trading (in %)

time elapsed between the moment the order was initiated and the moment
it was fully executed
number of the number of separate trades needed to fully execute a specific order

0/1 variable for trades belonging to size class 2

Table 13: Overview of variables and their definitions
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Contract name BLB Ticker Currency Exchange Contract size Tick size
Stock Indices

AEX EO EUR Euro Amst 200 0.05
CAC 40 CF EUR Euro Paris 10 0.50
DAX GX EUR EUREX 25 1.00
eMini Dow ($5) DM USD CME 5 1.00
eMini NASDAQ 100 NQ UsSDh CME 20 0.25
eMini S&P 500 ES USD CME 50 0.25
Euro STOXX 50 VG EUR EUREX 10 1.00
FTSE 100 Z GBP ICE 10 0.50
FTSE/MIB Index SW EUR IDEM 5 5.00
Hang Seng HI HKD HKFE 50 1.00
Mini Russell 2000 RTA USD CME 50 0.10
Nikkei 225 NK JPY OSE 1000 10.00
S&P/TSX 60 PT CAD Montreal 200 0.10
SPI 200 XP AUD SFE 25 1.00
Stockholm OMX300 QC SEK OMX 100 0.25
Currencies

Australian Dollar AD USD CME 100000 0.00005
British Pound BP USD CME 62500 0.0001
Canadian Dollar CD UsSDh CME 100000 0.00005
EUR/USD EC USD CME 125000 0.00005
Japanese Yen JY USD CME 12500000 0.0000005
Mexican Peso PE USD CME 500000 0.00001
New Zealand Dollar NV UsSD CME 100000 0.0001
Commeodities

Gold (8$/o0zt) GC USD CME 100 0.10
Silver ($/ozt) SI UsSDh CME 5000 0.005
Lean Hogs ($/1bs) LH USD CME 40000 0.025
Live Cattle ($/1bs) LC USD CME 40000 0.025
Corn ($/bu) C USD CME 5000 0.25
Soybeans ($/bu) S USD CME 5000 0.25
Cocoa ($/mt) cC USD ICE 10 1.00
Coffee ($/1bs) KC USD ICE 37500 0.05
Cotton #2 ($/1bs) CcT USD ICE 50000 0.01
Sugar #11 ($/1bs) SB UsDh ICE 112000 0.01
Brent Crude ($/bbl) CcO USD ICE 1000 0.01
Crude Oil ($/bbl) CL USD CME 1000 0.01
Gasoil ($/mt) QS USD ICE 100 0.25
Heating Oil ($/gal) HO USD CME 42000 0.0001
Natural Gas ($/btu) NG USD CME 10000 0.001
RBOB Gasoline ($/gal) XB USD CME 42000 0.0001
Bonds

US Ultra T-Bond WN USD CME 100000 0.03125
10Y Australia T-Bond XM AUD SFE 100000 0.005
10Y Canadian Govt Bond CN CAD Montreal 100000 0.01
10Y Japan Govt Bond JB JPY OSE 100000000 0.01
10Y T-Note TY USD CME 100000 0.015625
2Y T-Note TU USD CME 200000 0.0078125
5Y T-Note FV UsSDh CME 100000 0.0078125
Euro Bobl OE EUR EUREX 100000 0.01
Euro Bund RX EUR EUREX 100000 0.01
Euro Schatz DU EUR EUREX 100000 0.005
Long Gilt G GBP ICE 100000 0.01
US Long T-Bond US USD CME 100000 0.03125

Table 14: Overview of traded futures contracts
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Panel A: Volatility

All Data Stock Indices Currencies Commodities Bonds

(%) (%) (%) (%) (%)
Mean 13.59 14.35 7.73 25.89 2.91
St. dev. 11.78 4.23 2.83 9.94 2.99
5% Quantile 0.37 8.88 4.60 12.59 0.23
95% Quantile 33.9 21.84 13.84 48.46 10.52

Panel B: Daily Volume

All Data Stock Indices Currencies Commodities Bonds

(10%) (10%) (10%) (10%) (105)
Mean 2.24 2.68 1.00 0.86 4.27
St. dev. 3.49 0.42 0.76 1.07 4.63
5% Quantile 0.14 0.15 0.23 0.01 0.24
95% Quantile 8.69 12.47 2.22 3.02 13.51

Panel C: Spreads

All Data Stock Indices Currencies Commodities Bonds

(bps) (bps) (bps) (bps) (bps)
Mean 2.02 1.76 1.21 3.69 0.75
St. dev. 1.82 1.18 0.86 1.91 0.43
5% Quantile 0.35 0.69 0.45 1.04 0.35
95% Quantile 5.84 4.24 2.85 6.99 1.85

Table 15: Descriptive statistics of market-specific characteristics for each asset class

63



	Introduction
	Futures
	Specification of a Futures Contract
	Futures Pricing

	Market Microstructure
	Basic Concepts of Market Microstructure Theory
	Mechanics/Dynamics of a Modern (Futures) Market
	Liquidity, Price Discovery and Volume
	Futures Markets Specifics

	Transaction Costs
	Categorization of Transaction Costs
	Transaction Cost Analysis

	Algorithmic Execution
	Objective Function
	Solving The Problem
	Execution Algorithms

	Data Description
	Portfolio Construction and Trade Execution
	Data
	Sample Properties of Varick's Trades

	Quantifying/Measuring The Implicit Transaction Costs
	Implicit Cost
	Delay Cost
	Trading Cost
	Benchmarking

	Quantile Regression
	Introduction
	Estimation Results
	Formal Testing
	Goodness-of-fit
	Interpretation of Results
	Relative importance of variables

	Conclusion & Discussion
	Conclusions
	Discussion & Future Research

	References
	Appendix A: Definitions
	Definition order-size classes

	Appendix B: Quantile Regression
	Introduction
	Formal Testing
	Goodness-of-fit
	Relative Importance of Variables


