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Abstract

Pairs trading strategies are market-neutral trading strategies which are used
by investors to take hedged positions using co-movement of asset prices. We
study the pairs trading strategy in the foreign exchange rate markets consid-
ering 26 different forex pairs using 1-hour intraday observations. We find that
several pairs trading strategies in the forex markets are able to generate posit-
ive returns even after considering transaction costs. There are two formation
methods used, one based on minimal distance and one based on cointegration
of time-series. Trading models consist of thresholds for trading signals and
we study the use of recurrent neural networks for forecasting signals that are
supplied to the trading models. The results suggests that the trading model
consisting of cointegration as formation method with thresholds trading sig-
nals is the most optimal strategy and generates a cumulative net return of
16.48% over a six year out-of-sample time horizon from 2015 to 2021. After
filtering out the Swiss Franc and the Japanese Yen pairs from the dataset,
we find that the same strategy performs better with a net cumulative return
of 42.53% over the same out-of-sample period.
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1. Introduction

Pairs trading originates back to the 80s where investment banks and hedge
funds looked for market neutral trading strategies. Pairs trading can be con-
sidered as statistical arbitrage. It involves first finding a pair of assets that
have been shown to move together historically. When the spread between the
two assets is large enough, a trade is initiated: long the undervalued asset
and short the overvalued asset. So a trader speculates on the reversion of
prices of the two assets taking both long and short positions.

Prior literature has not fully studied the most liquid financial market
that being the traditional currencies. Furthermore, existing research in pairs
trading is heavily focused on equities, commodities and derivatives markets
using daily data. So, the main focus in prior work is related to different
markets and time-frames. This thesis will study the profitability of the pairs
trading method in the forex markets on an hourly time-frame.

Therefore, the contribution of this thesis to the field of pair trading is two-
fold: first, verify whether pairs trading in the current forex (FX) markets is
profitable on an 1-hour intraday time-frame due to prior research suggesting
declining profitability of the strategy in recent years. Second, we are going
to study different trading strategies that could be applied to pairs trading.
Two of these strategies involve the use of neural networks forecasts.

Furthermore, the distance method and cointegration method will be used
as formation methods, where the distance method will serve as benchmark.
Moreover, the cointegration method has been studied thoroughly and it has
been shown by several authors that is an effective and profitable method for
forming pairs.

In conclusion, this thesis studies pairs trading in forex markets by using
intraday hourly data where the pairs will be formed using minimal distances
and cointegration. Statistical thresholds and neural network forecasting will
be used for trading models. Note that cointegration tests will be carried out
using Engle-Granger’s method.

Overall, we find that cointegration as formation method along with a
threshold pairs trading model is profitable in recent years.

This thesis is structured as follows. First, a literature review is given in
Section 1.1 followed by a brief overview of the data used in Section 2. In
Section 3, the formation methods (Sections 3.1.1 and 3.1.2), neural networks
(Section 3.3) and trading models (Section 3.4) will be discussed. Lastly, we
will discuss the performance of the trading strategies in Section 4.
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1.1 Literature Overview
Classical pairs trading strategies have been documented by Gatev, William
and Rouwenhorst (2006) which has been one of the most cited papers in
the field of pairs trading. Pairs trading has been studied in many differ-
ent financial markets: equities, commodities, derivatives, currencies but also
cryptocurrencies (Fil & Kristoufek, 2020; Lintilhac & Tourin, 2016).

Research suggests that pairs trading is sensitive to financial stability (Rad
et al. 2016). Baronyan et al. (2010) have shown that pairs trading during the
financial crisis in 2008 is more profitable compared to standard economic
regimes and argued that less competition in the markets during financial
turmoil is the key driver. Moreover, the performance of the strategy also
depends on which time-frame the method is deployed. Stübinger and Endres
(2017) have shown that using 1-minute data from S&P 500 oil companies
yield 60.61% annualized return after transaction costs, which is substantially
higher compared to the excess returns found using daily data in existing
literature. Profitable pairs trading using high frequency data and Euclidean
distance is suggested by the findings of Stübinger and Bredthauer (2017).

There are several formation methods to find suitable pairs with the dis-
tance method and cointegration method being the most researched ones.

First, the method of minimum distance studied by Gatev et al. (2006)
is a logical approach for finding pairs. They found pairs by minimising the
sum of squared differences between two normalized asset prices using daily
CRSP US equities data. Their trading strategy simply involved waiting for
the spread between the pair to go exceeds two standard deviations to initiate
the trades. Yet, Do and Faff (2010) showed that the distance method became
less profitable in recent years. Specifically, they show that in the sub-periods
1962-1988, 1989-2002 and 2003-2008 the mean excess returns generated by
this pairs trading strategy was 1.24%, 0.66% and 0.35%, respectively.

Second, the method of cointegration has been studied by Vidyamurthy
(2004) and is one of the pioneers of the method. The main concept of cointeg-
ration is to test whether a pair of assets have a stationary and mean-reverting
time series. This test is generally done by using the Engle-Granger test. In-
dications of cointegration implies that these assets should form a pair in
the trading period. Moreover, Rad et al. (2016) have studied the method
of cointegration but also the Distance Method on US stocks. Interestingly,
they found that these two methods perform better in times of increased
market volatility. Chen et al. (2018) studied pairs trading in Chinese com-
modity futures markets using daily data and showed that the cointegration
approach yield profitable returns in Chinese commodity markets and thus
also in emerging markets. Caldeura and Moura (2013) used cointegration
methods in Brazilian equity markets and found excess returns of 16.38% per
year also using daily closing prices. In addition, cointegration methods and
distance methods have been compared in stock markets. Results suggests that
cointegration methods outperform and generate high excess returns, whereas
distance methods generate insignificant excess returns, controlling for trans-
action and various costs (Huck & Afawubo, 2016). In conclusion, previous
studies have shown the effectiveness of cointegration method.
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Furthermore, other methods for the formation of pairs have been studied
as well. Discussions on copula methods can be found in, Xie et al. (2016) and
Liew and Wu (2013). As this copula method is still not used frequently in
pairs trading studies, we will focus on the most effective formation methods
that have been documented by several sources in the field of pairs trading,
which is the distance and cointegration method.

Lastly, after the formation of pairs, different trading strategies can be
deployed. One classical strategy is the strategy proposed by Gatev et al.
(2006), where they opened trades if the spread of a pair exceeds K standard
deviations and closed trades as soon as the prices would cross (when the
spread is equal to zero). Second, Chen et al. (2018) have used a rolling window
to test cointegration spread. The rolling window is a fixed time window used
for formation of pairs prior to the trading period. Specifically, they enter a
position if the spread is K standard deviations above the mean and close
the position if the spread is K standard deviations below the long term
mean, where the long term mean and standard deviations are derived from
the rolling window. This strategy attempts to maximize return by holding
trades for a longer period compared to the strategy by Gatev et al. (2006).
Interestingly, they also studied a strategy using a stop-loss order to attempt
to minimize losses, yet they found that the returns are worse in terms of
return and risk trade off (Chen et al., 2008).

Introducing machine learning methods like Principal Component Analysis
to reduce dimensionality has been studied by Sarmento and Horta (2020).

The use of (recurrent) neural networks have also been implemented in
pairs trading strategies. Dunis et al. (2006) have shown profitability of pairs
trading when using a multilayer perceptron (MLP), also known as neural
networks, to predict the future spread returns. Their trading strategy consist
of entering trades if the predicted spread change by the neural network is
above some threshold filter K and close the position when the spread forecast
is in between K and −K, similar to other classical pairs trading strategies.
Note that they used in-sample data to determine the optimal threshold K.

Flori and Regoli (2021) and Fischer and Krauss (2018) have shown success
of implementing recurrent neural networks for financial time-series prediction
which could be supplied to all sorts of trading strategies, including the pairs
trading strategy.

Furthermore, Kim and Kim (2019) adopted an advanced reinforcement
learning algorithm called DQN-learning to pairs trading. The idea is to for-
mulate pairs trading as a game where the agent has to optimize stop-loss
and entry boundaries using deep neural networks. The agent interacts with
the states, being the spread, and gets rewarded determining profit and stop-
loss boundaries and gets punished for sub-optimal decisions. This strategy,
however, will not be used in this thesis because the goal of this thesis is to
verify whether pairs trading will work in FX markets in general. The latter
strategy could be an extension for future research.

Lastly, there is a strategy class which involves using a stochastic spread
method and it has been documented frequently in the field of pairs trading
(Göncü & Akyildirim, 2016; Yang et. al, 2016; Elliott et al., 2005; Stübinger
& Endres, 2017). The method involves modelling the co-movement of asset
prices as a mean-reverting stochastic model like the Ornstein-Uhlenbeck pro-
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cess and entering long and short positions whenever the spread exceeds some
bound.

Note that both the stochastic spread method and neural networks both
attempt to forecast spread movements. Yet, it is decided that in this thesis
the neural networks will be studied, as we believe that financial spread time
series are complex which require models with a high number of parameters
such as neural networks.

This thesis will apply and study four different strategies on forex pairs,
where the benchmark strategy will be the one by Gatev et al. (2006) using a
minimal distances for formation and thresholds for trading.

The second strategy will be similar to the industry standard mentioned
in the literature above using cointegration for formation and thresholds for
trading. Next, a recurrent network is used to predict the returns of the coin-
tegrated spread time-series, similar to the approach used by Dunis et al.
(2006). Lastly, a new strategy in the forex pairs trading field will be studied
which involves using a recurrent neural network to predict the spread itself
acting as a regression model and executing trades based on thresholds.
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2. Data

The foreign exchange rates are retrieved from the openly available database of
Dukascopy Bank SA. This thesis will use hourly closing bid prices, although
the data contains open, high, low, close and volume data. The sample spans
from January 3, 2006 until November 1, 2021 containing 94,713 hourly clos-
ing bid prices per foreign exchange rate pair of which a total of 26 rates will
be used. This sample is chosen since it captures many periods of financial
currency volatility. To name a few examples, the crisis in 2008, interventions
by central banks, like the Swiss National Bank and Bank of Japan, and the
COVID-19 stock crash. It should also be noted that only the observations
when all foreign exchange rate pairs are traded are considered here. In other
words, the data is removed when at least one pair does not have an obser-
vation for that date. Below are the descriptive statistics for all time series
in the dataset. Moreover, plots of the spot prices and their differenced series
can be found in Appendix A and B. One can clearly see that the crisis in
2008 and the financial shock caused by the COVID-19 pandemic affected all
pairs. In the CHF pairs, we see volatile returns due to interventions by the
central bank to regulate the value of the currency.

Table 2.1: Descriptive statistics for the return series using 1-hour closing bid
prices for the 26 FX pairs from January 3 2006 until November 1 2021.

Forex pair observations mean std. dev. min. max.
AUDCAD 94713 0.9553 0.0581 0.7242 0.9553
AUDCHF 94713 0.8247 0.119 0.5384 0.8247
AUDJPY 94713 84.5107 8.8567 55.655 84.5107
AUDUSD 94713 0.8304 0.1214 0.5552 0.8304
CADCHF 94713 0.8656 0.1346 0.6614 0.8656
CADJPY 94713 88.6017 9.5619 68.875 88.6017
EURAUD 94713 1.5294 0.1568 1.161 1.5294
EURCAD 94713 1.4538 0.0887 1.2134 1.4538
EURCHF 94713 1.2555 0.1914 0.9752 1.2555
EURGBP 94713 0.8289 0.0673 0.6566 0.8289
EURJPY 94713 128.7794 15.3509 94.209 128.7794
EURNZD 94713 1.7512 0.2008 1.3893 1.7512
EURUSD 94713 1.257 0.1273 1.0356 1.257
GBPAUD 94713 1.8585 0.2574 1.4389 1.8585
GBPCAD 94713 1.7639 0.1659 1.484 1.7639
GBPCHF 94713 1.5339 0.3311 1.113 1.5339
GBPJPY 94713 157.3459 30.0238 116.949 157.3459
GBPNZD 94713 2.1278 0.3113 1.6718 2.1278
GBPUSD 94713 1.5282 0.2137 1.1433 1.5282
NZDCAD 94713 0.8369 0.0768 0.6155 0.8369
NZDCHF 94713 0.7166 0.0712 0.5331 0.7166
NZDJPY 94713 74.0693 9.5029 44.257 74.0693
NZDUSD 94713 0.722 0.0732 0.4912 0.722
USDCAD 94713 1.1683 0.1364 0.9076 1.1683
USDCHF 94713 0.9976 0.0989 0.716 0.9976
USDJPY 94713 103.0905 12.739 75.679 103.0905
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3. Methodology

Let us discuss the approaches that we use for the study of the pairs trading
strategies in the foreign exchange rate markets. Training the trading models is
carried out as follows. The full dataset is split into the following in-sample and
out-of-sample set in a 60/40 ratio. The in-sample period spans from January
3, 2006 00:00:00 up to April 1, 2015 00:00:00 containing approximately 53,000
observations and the out-of-sample set spans April 1, 2015 01:00:00 up to
November 1, 2021 23:00:00 containing approximately 41,000 observations.
Then in the in-sample period, we use a rolling-window scheme where we do
the formation and trading periods through the dataset and choose the para-
meters that maximize cumulative trading returns through out the whole in-
sample period. These parameters are then fixed for the out-of-sample period
for assessing the strategies.

First, one needs to define formation and trading windows as hyper para-
meters for the strategies. Note that in convention with machine learning
fields we denote the formation and trading windows also as train and test
windows, respectively. The trading window is always half the length of the
formation window and the trading period follow directly after the formation
as in line with the approach of many other authors. The window sizes will
range from 1000, 2000, 3000, 4000, 5000 and 6000 hourly observations. All
of these windows are then applied to each strategy and we will use the one
optimal window that maximizes the cumulative return over the in-sample
period.

In the formation period we first min-max scale the prices and then find
the top 3 pairs based on the formation methods. Also, during the formation
period we train our models, for example to find the trading thresholds or train
the neural networks. For the formation we will use two different formation
methods, one based on minimal distances and one based on cointegration.

During trading periods we first normalize the spread of the pairs by sub-
tracting the mean and dividing by the standard deviation found during form-
ation. Then, we use two different types of trading signals, one based on
thresholds and one based on neural network output for trading. Note that
we only allow one active trade at a time and we close all position by the end
of the trading period.

We will now discuss in depth the formal definitions of the formation and
parameter optimization methods. Then we will conclude with a discussion of
the trading models.
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3.1 Pairs formation methods
In this thesis we define the spread St between foreign exchange rate i and j
at time t as

(3.1)St = P
(i)
t − P

(j)
t ,

where P
(i)
t and P

(j)
t denote the spot prices for foreign exchange rates i and

j. During the formation phase we min-max scale the spot prices. In the
trading phase we normalize the spread into z-scores by subtracting the mean
and dividing by the standard deviation to generate trading signals for the
trading models.

The formation period is the first step in our trading model. In this period
we attempt to find the best three co-moving asset price pairs using the dis-
tance method (Section 3.1.1) and cointegration method (Section 3.1.2). We
min-max scale all foreign exchange rates where the minimum and maximum
are found in the formation period. This ensures that all prices are on a scale
from 0 to 1. Scaling the prices is needed due to high variation in price scales
in for example JPY currency pairs which are on a scale of around 100 while
most currency pairs trade around 1. The stability of the min-max scaling
is assumed to be sufficiently stable for this study with the use of a rolling
window scheme as explained in Section 3.3. One could argue that over long
periods of time the scaling might not be able to correct for large shifts in the
exchange rates. However, since price scaling is generally accepted to be part
of pairs trading by other authors, this scaling is still applied in this thesis.

In addition, during the formation period we store the mean and stand-
ard deviation of the spread pair used for the normalization in the trading
period which follows directly after the formation. Normalization is required
for the thresholds in the trading strategies which are going to be covered
in Section 3.4. This process is repeated for all forex pairs considered in this
study. Therefore, per formation period we need to test

(
26
2

)
= 325 different

pairs for potential candidates for trading.

3.1.1 Distance method approach
The distance method is the benchmark pairs formation method due to its
simplicity. The approach used here will be identical to the one used by Gatev
et al. (2006). In each formation period we find for each scaled FX rate a
corresponding FX rate that minimizes the sum of squared deviations, hence
the name. Let di,j denote the distance between scaled foreign exchange rates
i and j, then we have

(3.2)di,j =
1

T

T∑
t=0

(P̃
(i)
t − P̃

(j)
t )2,
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where P̃
(i)
t and P̃

(j)
t denote the min-max scaled prices for foreign exchange

rates i and j. T denotes the total amount of observations in the formation
period.

Lastly, we pick the top 3 pairs with the minimal distances, in line the
benchmark strategy by Gatev et al. (2006).

3.1.2 Cointegration approach
Weak Stationarity

First we need to define the concepts of a weakly stationary process in order to
apply cointegration. A stochastic process Xt is weakly stationary (hereafter
referred to as stationary) if the process has a finite and constant mean and
variance. Stated more formally:

Definition 1. Let Xt be a stochastic process. Then Xt is a weakly stationary
process if

(3.3)
µX(t) = µX < ∞ constant,

σX(t) = σX < ∞ constant,

Cov(Xt, Xs) = Cov(Xt+r, Xs+r),

for all integers r, s and t.

As an example, Figure A.24 suggests that the USDCAD spot price is not
stationary as the mean for the years 2006 and 2008 is not the same as the
mean price in 2020 to 2022. Note that the differenced version in Figure B.24
suggests a stationary process. The stationarity of this USDCAD spot price
and returns are only suggested by means of illustration but one needs to
formally test whether a series is stationary. Testing for stationarity can be
done by carrying out the Augmented Dickey-Fuller (ADF) test (Dickey &
Fuller, 1979). Consider the following model

(3.4)∆yt = α + ϕyt−1 + β1∆yt−1 + · · ·+ βp∆yt−p + ϵt,

where ∆ is the time difference operator so that ∆yt = yt−yt−1. The ADF-test
tests whether ∆yt in (3.4) has a unit root. The Augmented Dickey-Fuller test
statistic τ is defined as

(3.5)τ =
ϕ̂

s.e.(ϕ̂)
,

where ϕ̂ is the estimated ϕ as in (3.4) and s.e. denotes the standard error.
Note that this test statistic has its own Dickey-Fuller distribution which
causes the hypothesis test to be asymmetrical. So, we test the following
hypothesis for stationarity

(3.6)H0 : ϕ = 0 H1 : ϕ < 0.

In the ADF test, the number of lags denoted by p is generally found em-
pirically. Therefore, in this thesis we will resort to Information Criteria by
minimizing the Akaike Information Criterion (AIC) which in essence penal-
izes the use of more parameters in competing models. For more discussions
on the AIC, one can consult Akaike (1974). The AIC is defined as
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(3.7)AIC = 2k − 2 log L̂,

where k denotes the number of parameters which is the number of lags p
in our case. L̂ denotes the maximum likelihood value which is obtained by
maximizing the likelihood function

(3.8)L(θ|x) = fθ(x),

where f denotes the density function of the random variable X with para-
meters θ.

We will use the Python statsmodels package function adfuller on default
settings to carry out the tests at the significance level of 5%. Default settings
of the package include:

• Constant only and no trend in the ADF regression in (3.4)

• AIC on 5% significance

• Maximum number of lags is 12∗ ( T
100

)
1
4 , where T denotes the size of the

formation window

• ADF test on 5% significance.

Cointegration

Intuitively, cointegration means that the difference between two time-series
Xt and Yt is relatively constant. It is a way of measuring whether the differ-
ence of two time-series is stationary. We can test for cointegration by using
the two-step Engle-Granger method (Engle & Granger, 1987). The first step
in the method includes running a regression of Yt on Xt and test whether
the residuals are stationary. We will consider the window sizes of 1000, 2000,
..., 6000 hourly observations as formation and thus as testing periods for car-
rying out the cointegration tests prior to the trading phases. More formally,
we run the following regression

(3.9)Yt = β0 + β1Xt + εt.

Then in the second step we test whether the residuals ε̂t are stationary using
the ADF-test.

During the formation period, we only qualify pairs that have an ADF
statistic τ which is smaller than the 5% critical value of the Dickey-Fuller
distribution. Next, we will pick the top three pairs ranked by the smallest
three ADF test statistics for the trading period, since the ADF-test is one-
tailed. This approach is a slight adaptation of Gatev et al. (2006). Similar
to the distance method approach, by filtering to just 3 pairs, we attempt to
limit the Type I error (mistakenly rejecting a true null hypothesis) we include
in the study.
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3.2 Neural Networks
Neural networks refer to a class of machine learning methods that are complex
function approximates. These models are also called black box methods since
the user supplies the model with an input and gets the corresponding output,
without knowing why the model produces this output.

Their usage is versatile with notable performance in classification to re-
gression problems. For instance, neural networks find their uses in finance
by fitting non-linearities which are inherently apparent in financial data like
stock prices. In a pairs trading context, Dunis et al. (2006) fit the spread
returns by using neural networks to predict the future spread returns that
is then used for the entry triggers for the pairs trading strategies. In this
thesis we will follow a similar approach, where we will use neural networks
to forecast the spread change ∆St between two foreign exchange rates. In
addition, trading signals from forecasted spot spread prices St from a neural
network will also be used.

The most basic form of neural networks are Multilayer Perceptron (MLP)
networks. These feed-forward networks consist of three layers: input, hidden
and the output layer. In short, the input can be thought of as the explanatory
variables and in our case we will be using lagged spread (change) values as
explanatory variables. Next, each input is mapped using a weight and bias,
which are similar to the coefficients and intercept of a standard regression, to
a node in the next layer. This process is then repeated for each hidden layer
that is in the neural network. Lastly, the information that is passed through
the network is passed through an activation function which yields the output,
Ŝt (or ∆Ŝt). A schematic of such network is depicted in Figure 3.1.

Figure 3.1: Example of a MLP structure using the previous L lags as input
with two hidden layers of equal node size and output node. yt could for
example denote the one step ahead forecast output of the model.
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Let us now delve deeper in what happens between the layers of a MLP.
Formally, let j be the number of nodes in a hidden layer. Then, the output
of each previous node is taken as a dot product with trainable weights vector
Wj adjusted by a scalar bias bj. Let h(j) denote the output of node j, then
we have that

h(j) = g(j)(Wjx+ bj),

where x denotes the output vector of the previous layer and g(j) denotes the
activation function of layer j. The activation function acts as an intermediary
to produce the output from one node to the other and the choice of activation
function highly depends on the type of modelling problem. For instance, in
binary classifications problems, the sigmoid function

g(u) =
1

1 + e−u
,

produces output between 0 and 1 (which then provides a probability distri-
bution of both classes). A simple linear function

g(u) =
∑
j

uj,

can also act as an activation function. In this thesis we will only use the linear
activation function for between hidden and output layers. Later in Section
3.2.1 we will use different activation functions in a more advanced class of
MLP networks.

The training procedure of a neural network is as follows. In our trading
strategies, we are dealing with a regression problem which is also known as
supervised learning because we tell the network what the output should be.
First, we initialize random weights and biases at each of the nodes. Then, we
feed a batch of training samples through the network and choose a measure
of error which generally is the mean squared error MSE. The optimization is
then to minimize

(3.10)MSE =
1

T

T∑
t=0

(yt − ŷt)
2,

where yt denotes the observed value and ŷt denotes the fitted value by our
neural network.

Lastly, a so-called back-propagation algorithm is performed to adjust the
weights and biases of the nodes to minimize this error. Essentially, this al-
gorithm is a steepest descent algorithm which propagates the error backwards
using partial derivatives, starting from the output layer into the hidden lay-
ers to the input. More in depth discussions and formal mathematics can be
found in Svozil et al. (1997).

3.2.1 Long Short-Term Memory Networks
Long Short-Term Memory (LSTM) networks are an adaptation to the MLP
networks originally developed by Hochreiter and Schmidhuber (1997). The
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general idea is that the LSTM layers have a mechanism that is able to carry
information from previous time steps through the nodes of the hidden layers
acting as a short-term memory, hence the name. Note that the LSTM net-
works are part of a larger class of Recurrent Neural Networks which use past
information in its network. This property makes these models particularly
attractive to apply in a time-series forecasting. Univariate based LSTM mod-
els tend to perform well in stock price prediction (Mehtab et al., 2021). In
a pairs trading context, Chang et al. (2020) have trained a LSTM model to
predict stock price spreads to use as input for pairs trading models, yielding
positive returns.

Figure 3.2 illustrates an example of a LSTM network. Similar to the MLP
regression networks, the LSTM networks used in this study will have the same
activation layer as final output as a MLP network mentioned in Section 3.2.
However, compared to the MLP network we have that the LSTM takes each
input separately per node and there is a connection between the nodes in
a LSTM layer. Note that this structure memory hidden layer structure can
happen at more layers but for illustration purposes of this example model it
is only a single layer.

Figure 3.3 shows roughly how such LSTM memory cell works. The in-
formation is passed through each node in a layer where the red trajectory
depicts the short-term memory. This short-term memory is then modified by
concatenating the previous cell’s output with the current cell’s input using
a forget gate, input gate and output gate onto the next memory cell in the
LSTM layer. Each of these gates have separate activation functions. Lastly,
each node produces an output used for the next layer. In summary, the LSTM
memory cell interacts with its previous cell, current input and its memory to
produce output for the next cells and layer.

12



Figure 3.2: Example of a LSTM structure using the previous L lags as input
with one LSTM layer connected to a standard layer and output layer. Note
that the red arrow illustrates how past information is passed through a LSTM
layer. Note that this structure can happen at more layers but for illustration
purposes of this example it is a single layer.
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Figure 3.3: Schematic of one memory LSTM cell showing its interconnections
in relation with its previous, next and output cells along with the modification
gates. The red line shows the cell state which is passed through the LSTM
layer memory cells.

In Figure 3.4 we illustrate the technical workings of such LSTM cell.

Figure 3.4: In-depth schematic of one memory LSTM cell illustrating the
gates and their connections through the cell. The ”sigm” and ”tanh” stand
for the sigmoid and tanh activation functions, respectively. Lastly, the ⊗ and
⊕ denote concatenations using multiplication and addition, respectively.

Each cell consists of the following gates:

(3.11)ft = σ(Wf [ht−1, xt] + bf )
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(3.12)it = σ(Wi[ht−1, xt] + bi)

(3.13)ot = σ(Wo[ht−1, xt] + bo)

(3.14)C∗
t = tanh(WC [ht−1, xt] + bC)

(3.15)Ct = ft · Ct−1 + it · C∗
t

(3.16)ht = ot · tanh(Ct).

The trainable weights are denoted by Wf ,Wi,Wo,WC and the trainable bias
parameters are denoted by bf , bi, bi, bC . Also, σ denotes the sigmoid activa-
tion function and tanh denotes the tanh function. Ct is the cell state which
contains the LSTM’s memory over time. The information processed is then
concatenated using addition or multiplication inside the cell. For complete
formal derivations and mechanics of the LSTM network, one can consult
Hochreiter and Schmidhuber (1997).

The weights are trained in a similar fashion as the MLP networks. After
supplying the LSTM network a training batch, the weights are tuned using
a similar back-propagation algorithm for each gate in the model minimizing
error between the output and true value. The training is done based on the
MSE criterion using the adam optimizer. The specific model structure and
training criterion used will be further discussed in Section 3.3.

In this thesis, we attempt to use LSTM networks to fit financial time-
series data as we suppose that these networks are able to capture complex
time-series. Moreover, the structure of the model is constructed using the
Tensorflow keras package.

3.3 Optimizing trading parameters
Firstly, one needs to determine the optimal window sizes for the formation
and trading periods. Let ω denote the window size of the formation period.
These windows are crucial for the pairs strategy’s profitability, because too
small or large ω may fail to capture intricacies of long-term or recent time-
series behaviour of the spread. The formation window ω is used to perform
the formation methods and find the required statistics like mean and stand-
ard deviation for trading. The optimization for the parameters will occur in
the in-sample period of the dataset in order to prevent data-snooping when
evaluating the strategies’ returns.

Secondly, we need to construct trading thresholds K and find the most
optimal threshold for trading. The construction of the threshold is done by
normalizing the spread by calculating the z-score in the trading period by
subtracting the mean and dividing by the standard deviation of the spread.
These statistics are found in the formation period.

Following the approach of Kim and Kim (2019) and Wang et al. (2009),
we consider multiple combinations of window sizes for the formation period
and parameters K per window size. The ω will range from 1000, 2000, 3000,
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4000, 5000 and 6000 hourly closing prices and we let K take the values 1, 2
and 3, as these are the most commonly used values for the threshold. Note
that the trading window will follow directly after the formation period and
the trading period is half of the length of the formation window size, as this
is the general practice in the literature.

To the best of my knowledge, in most research focused on pairs trading,
the criterion for selecting optimal window and trading parameters, is the
cumulative return of the strategies and therefore this criterion will also be
used here.

The formation window ω and corresponding trading windows will be
so-called rolling windows. To be more precise, we shift the window by the
length of the trading period in such a way that the trading periods are non-
overlapping. Below in Figure 3.5, the whole mechanism of the methodology
used is summarised, where the train windows denote the formation period
and test windows illustrate trading phases. This notation is used in general
literature. The following 60/40 dataset split is used:

• In-sample: January 3, 2006 00:00:00 - April 1, 2015 00:00:00, approx.
53,000 observations

• Out-of-sample: April 1, 2015 01:00:00 - November 1, 2021 23:00:00,
approx. 41,000 observations.

The train and test (formation and trading) sets are constructed in a 2:1
ratio since the training period is twice as large as the testing period by
construction.

Figure 3.5: The methodology used for finding optimal trading parameters
using the training and test split. The Train and Test segments illustrate the
length of the formation and trading period respectively.
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LSTM training and model structure

The training of the neural networks is similar to finding the trading thresholds.
Firstly, we use cointegration as formation method. In this thesis we will use
two types of regressions. One is based on the returns (difference) of the spread
and the other regression is based on the spot spread.

Secondly, we assume that the spread of each cointegrated pair behaves
similarly so that one LSTM model is able to predict all time-series regardless
of the pair found in the formation period. So, in each formation period, we
will train the network on cointegrated pairs only. This method relies on one
main LSTM model used for trading all pairs considered in this thesis.

The LSTM network will use the past 24 hourly lagged spread (differences)
of each formation pair to predict the next hourly spread (return) of that
particular formation pair. Therefore, in each formation period we construct
training samples consisting of 24 observations as input to forecast one hourly
observation ahead. The first step in training consists of finding cointegrated
pairs. Then we train the model on the cointegrated pairs only over the whole
training period. After training, we will fit the model on the full formation
period and calculate the mean and standard deviation of the model output.
Next, in the trading periods we scale the model’s output by this mean and
standard deviation to get z-scores for the trading signals and then we can go
into trading.

Lastly, the parameters for the window size ω and K are optimized using
the highest net cumulative return. In-sample, formation window sizes ω will
range from 1000, 2000, 3000, 4000, 5000 and 6000 observations and will be
used along with thresholds values 1, 2 and 3 for K. Also here we let the
trading period be half of the window size, and therefore a 2:1 train-test split
will also be deployed here. The windows are shifted in the same procedure
as in Figure 3.5.

The LSTM networks are constructed and trained using the Python tensorflow
keras package using an Intel(R) Core(TM) i7-8750H CPU @ 2.21GHz and
NVIDIA GeForce GTX 1050Ti GPU. The LSTM network uses 24 lags of the
spread (change) as input and consists of a single LSTM layer of 64 nodes.
The output node consists of a single node which is connected using a Dense
layer (MLP conntected layer). The optimizer used is Adam with a learning
rate of 0.001. Batch size is fixed at 32. The number of epochs is fixed at 50
per pair and the training samples are shuffled to reduce overfitting.

3.4 Trading Models
Lastly, let us cover the trading models used for pairs trading in the foreign
exchange rate markets. In this thesis we use four different trading strategies
that differ from formation method and trading signals:

• Distance Method Threshold (DM-THRESHOLD): Open positions when
the spread closes above (below) K standard deviations above (below)
the long-term mean. Close positions if when the spread reverts to zero
(when the spot prices cross), for the first time after the trade. Pairs are
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formed using minimum distance. This strategy is similar to the classical
pairs trading strategy introduced by Gatev et al. (2006).

• Cointegration Method Threshold (COINT-THRESHOLD): Open pos-
itions when the spread closes above (below) K standard deviations
above (below) the long-term mean. Close positions if spread closes be-
low (above) K standard deviations below the long-term mean. Pairs
are formed using cointegration.

• Cointegration Method differenced LSTM (COINT-DIF-LSTM): This
strategy attempts to predict the spread change ∆Ŝt using a recurrent
neural network. Let P̃t

(i) and P̃t
(j) be the min-max scaled prices of

foreign exchange rates i and j at time t of the formation pair, then the
spread change ∆St is defined as

∆St =
P̃

(i)
t − P̃

(i)
t−1

P̃
(i)
t−1

−
P̃

(j)
t − P̃

(j)
t−1

P̃
(j)
t−1

.

The forecasted spread change is normalized using the mean and stand-
ard deviation of the predictions by the network in the formation period.
Then, the trader opens a long (short) position when the forecasted
spread change, ∆Ŝt, is above (below) a threshold K (−K). Positions
are closed when the spread is in between −K and K, similar to the
approach by Dunis et al. (2006). The neural network is trained only on
cointegrated pairs and is used for predicting all price spreads qualified
for trading.

• Cointegration Method Regression LSTM (COINT-REG-LSTM): This
strategy attempts to predict the spread using a recurrent neural net-
work. The strategy is similar to the COINT-THRESHOLD strategy
but with the extra condition that the trader only enters a position if
the LSTM network predicts that the spread is going to revert below
(above) the threshold K in the next hour.

Note that in all three strategies, remaining open positions will be closed at the
end of the trading periods. Lastly, we do not enter multiple positions, so we
wait until the position is closed out by the trading rules or we hold until the
end of the trading period. The analysis of the strategies also involves the min-
max scaling of prices in the formation period and Z-score normalization for
the trading period. The minimum, maximum, mean and standard deviation
are derived in the formation period.

The general idea of the trading strategies in a trading phase is shown in
Figure 3.6 where the COINT-THRESHOLD strategy is illustrated. The first
blue rectangle illustrates the entry of a long position in the spread, since the
normalized spread is below the trading thresholds K (which is 1 in this case).
The following blue rectangle shows the time of long position close. Similarly,
the first red box depicts a short position in the spread since we are now above
the threshold. Finally, the position is closed in a profit since the spread went
down and we close all positions at the end of the trading period. The distance
method is slightly different since we close the position at the crossing of the
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prices, i.e. when the spread reverts to zero. For the trading strategies we will
pick the top 3 pairs found by either minimum distance or the top 3 smallest
test statistics to limit the amount of trading due to trading costs.

Figure 3.6: Out-of-sample trading period example showing the normalized
spread and the thresholds (K = 1) for the COINT-THRESHOLD strategy.
The blue boxes show opening and closing of the long position taken. The
red boxes show the opening and the closing of the short position taken. Note
that the last short is closed due to reaching the end of the trading period.

3.4.1 Transaction costs and returns
The trading strategies deployed here are based on intraday closing prices
which implies a relatively high trading frequency. In addition, due to the
nature of pairs trading, a trader needs to take two positions, one long and
one short, which doubles the transactions costs per round lot. Also, the cost
of the bid and ask spread needs to be taken into account for robust results.
Bowen et al. (2010) show the sensitivity of intraday pairs trading returns
to transaction costs. We will follow their estimates of 30 bps for two round
trips. Then the return total return R on the pairs trading strategy in a trading
period is

(3.17)R =
N∑

n=1

rn,

(3.18)rn = θ

(
P

(i)
n,close − P

(i)
n,open

P
(i)
n,open

−
P

(j)
n,close − P

(j)
n,open

P
(j)
n,open

)
− 0.0030,

where θ = 1 if we long the spread and θ = −1 if we short the spread. P (i)
n,open

and P
(i)
n,close denote the spot prices of the n-th pairs trade at the time of

opening the position and closing the position for FX pair i, respectively. We
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denote the total number of pairs trades taken in the trading period by N .
Also, the position size is scaled such that the position size in each pair found in
the formation is equal. In other words, we divide the returns in (3.18) by the
number of pairs found, which is at most three for the cointegration method.
Note that the distance method will always yield three pairs by construction.
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4. Empirical Results

Firstly, let us discuss the results for the in-sample performance of the four
strategies. As mentioned in Section 3, the in-sample period is used to find the
best parameters for the strategies which are then deployed in the testing out-
of-sample period for final assessment of the trading strategies. In this thesis,
the optimal parameters are determined by the highest cumulative net return.
The in-sample trading results are shown in the Tables 4.1 to 4.4 below. Pair
formation statistics of the cointegration method can be found in Appendix
C.

4.1 In-sample trading parameter optimization
On the one hand, from the DM-THRESHOLD strategy’s results in Table
4.1, we can see that the only positive gross return of 0.0247 is generated with
parameters ω = 4000, K = 1. Interestingly, we find that after taking into
account transaction costs, the strategy fails to generate positive returns in-
sample and the highest cumulative net return of -0.0771 is achieved using the
optimal trading parameters ω = 4000 and K = 3. The difference is caused by
the high transaction costs of the frequent trading that is done when setting
low values for K.

On the other hand, the COINT-THRESHOLD strategy shows better per-
formance in-sample. To be more precise, both the gross of 0.461 and net
returns of 0.352 are highest when setting the formation period to 5000 and
K to 1. Also, compared to DM-THRESHOLD, the COINT-THRESHOLD
strategy has a higher win rate of 69%.

For the neural network strategies let us first focus on the COINT-DIF-
LSTM strategy. Although the strategy is performing well in terms of cumulat-
ive gross returns, which is comparable to the COINT-THRESHOLD strategy
performance, more than the whole starting balance is lost for all parameter
settings. As mentioned before, this is due to the high number of executed
trades as can be seen in the number of trades in the table. Despite this, we
will still choose the optimal trading parameters ω = 1000 and K = 3, as in
accordance with the rest of the strategies.

Note that the Mean Squared Error (MSE) column shows the average
forecasting MSE for all traded pairs over the whole in-sample dataset.

Lastly, the COINT-REG-LSTM shows similar but slightly worse results
compared to the COINT-THRESHOLD strategy. The optimal parameters
are when ω = 5000 and K = 1, with gross returns of 0.3899 and net returns
of 0.2909. Interestingly, the win rate of 0.70 is slightly higher compared to
the win rate of the COINT-THRESHOLD method.
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Now that the parameters are optimized in-sample, one can now evaluate
each strategy in an out-of-sample period for a more realistic assessment of
the performance of the strategies covered in this thesis.
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4.2 Out-of-sample trading performance
Now let us discuss the trading results in the period of April 2015 to Novem-
ber 2022 which acts as the out-of-sample period in this thesis. Table 4.5
and Figures 4.1 to 4.4 show the cumulative returns and other statistics of
the trading results over the whole out-of-sample period. Note that the re-
maining statistics are calculated based on the net returns. Firstly, we see
that the benchmark DM-THRESHOLD strategy is able to generate positive
returns even after transaction costs of 0.0372. The COINT-THRESHOLD
strategy performs the best, showing a 0.1648 return after transaction costs.
The COINT-DIF-LSTM, does not perform well as it show negative gross
returns. More importantly, after accounting for trading costs, this strategy
loses more than the starting balance due to the high frequency of trade ex-
ecutions. This performance was also noted in the in-sample training phase.
Lastly, the COINT-REG-LSTM is able to generate positive returns, but the
strategy does not beat the COINT-THRESHOLD strategy. We can there-
fore conclude that the COINT-THRESHOLD method is the best performing
strategy considered in this study.

As discussed in the literature review, pairs trading returns in stock mar-
kets can yield around 60% return annually (Stübinger & Endres, 2017) using
1-minute data. The performance of the pairs trading strategy considered in
this thesis on an hourly data time frame are mediocre compared to their
results. However, research have shown declining profitability of pairs trading
in the stock markets using daily data of around 1% net return over a five
year horizon. In that regard, the intraday pairs trading results in the forex
markets show more optimism for pairs trading. In addition, the COINT-
THRESHOLD pairs trading strategy is tested on recent data showing that
pairs trading can still be profitable. Hedge funds and investors may indeed
consider the pairs trading methods of this thesis to use as investment strategy
but they need to keep in mind that the pairs trading returns can be volatile
and its performance is not comparable with pairs trading in other financial
markets. Furthermore, the pairs trading strategy could also be implemented
in currency hedging strategies.

Table 4.5: Out-of-sample cumulative trading results for each strategy. Note
that no MSE is calculated for the DM and COIN strategies.

Strategy ω K gross return net return mean std. dev. skew trades win rate long wins long loss short wins short loss MSE
DM-THRESHOLD 4000 3 0.0832 0.0372 0.0421 0.0276 -0.2124 46 0.57 17 11 9 9 NA
COINT-THRESHOLD 5000 1 0.2288 0.1648 0.1289 0.0343 -0.2357 64 0.59 22 12 16 14 NA
COINT-DIF-LSTM 1000 3 -0.0356 -1.5486 -0.6959 0.5029 -0.3592 1508 0.48 255 260 475 518 1.3598
COINT-REG-LSTM 5000 1 0.112 0.049 0.0495 0.0212 0.9296 63 0.59 22 12 15 14 0.7348
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Figure 4.1: Out-of-sample cumulative returns of the distance method over
the period of Apr-2015 to Nov-2021.

Figure 4.2: Out-of-sample cumulative returns of the cointegration method
over the period of Apr-2015 to Nov-2021.

Figure 4.3: Out-of-sample cumulative returns of the D-LSTM method over
the period of Apr-2015 to Nov-2021.
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Figure 4.4: Out-of-sample cumulative returns of the R-LSTM method over
the period of Apr-2015 to Nov-2021.

4.2.1 LSTM performance
As for both LSTM strategies, one could argue that these strategies would per-
form at least as well as the simple strategies such as the COINT-THRESHOLD
strategy. The reason is that these models attempt to fit the spread behaviour
using a high number of parameters versus two paramaters that are needed
for the COINT-THRESHOLD strategy. However, we find sub-optimal results
from these models.

On the on hand, the COINT-DIF-LSTM strategy does not perform well,
due to the mediocre fitting of the network on the stationary returns. One
can conclude that predicting financial returns is rather challenging which
can be explained by the Random Walk Theory of asset prices. As Figure 4.5
illustrates, one can observe that the model is not able to fit the sporadic
volatility of the observed spread returns.

Figure 4.5: LSTM fit on differenced return time-series of the cointegrated
pair EURCHF/GBPNZD.

On the other hand, the COINT-REG-LSTM fit against the observed spread
in the formation periods show that for some pairs, the spread behaves in
a different regime and therefore the network does not fully capitalize on
this new behaviour. This can be seen in Figures 4.6 and Figure 4.7. The left
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and right illustrations show the COINT-REG-LSTM fit in the formation and
trading periods, respectively. One can clearly see that in some trading periods
there is a form of regime shift in time-series behaviour that the network fails
to capture. In the training periods, the model seems to overfit. The Figures
show that the spread moves outside the threshold into a high level of standard
deviation which the model does not expect. All the figures below are from
the out-of-sample dataset. We also see that these shifts tend to happen in
JPY pairs.

(a) (b)

Figure 4.6: COINT-REG-LSTM fitting performance on CADJPY/GBPUSD.
Exhibit (a) illustrates the fitting during formation and Exhibit (b) illustrates
the fitting in the trading period.

(a) (b)

Figure 4.7: COINT-REG-LSTM fitting performance on EURJPY/USDJPY.
Exhibit (a) illustrates the fitting during formation and Exhibit (b) illustrates
the fitting in the trading period.

4.2.2 Trading model robustness
In Section 4.2.1 we noted that the trading models might be sensitive to the
data. More precisely, we suppose that the trading models are being affected
by outliers due to significant interventions by central banks or financial crises.
Therefore, we will remove the Swiss Franc and the Japanese Yen because it
can be seen in the time-series plots in Appendix A and B that the time-
series of these currency pairs contain outliers. Similarly, we will evaluate
the trading models after they have been trained on data after 2010 while
keeping the out-of-sample data set the same as before. Note that mainly
the training of both LSTM trading models will be affected by this filter and
not the DM-THRESHOLD and COINT-THRESHOLD strategies. The latter
two strategies will therefore not be evaluated on the financial crisis filter data
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after 2010. Lastly, for the robustness analysis we will fix the optimal trading
parameters as found on the full dataset and evaluate the robustness on the
out-of-sample period.

Swiss Franc and Japanese Yen pair filter

We attempt to remove CHF and JPY pairs from the data in this Section. The
underlying reason could be significant interventions by the central banks that
can be seen in the returns plots of the dataset (Appendix B). So, we trained
the COINT-REG-LSTM model on the same data but filtered out all CHF
and JPY pairs. The Figures 4.8 and 4.9 still show that the model is still
not robust to regime shift of the time-series as these Figures are comparable
with the fitting on the full dataset. However, Table 4.6 show the results of
the robustness filters, which show that on average the LSTM forecast is bet-
ter in terms of MSE. Interestingly, we find that the the DM-THRESHOLD,
COINT-THRESHOLD and the COINT-REG-THRESHOLD strategies per-
form significantly better than on the full dataset. Furthermore, the MSE
for the LSTM strategies is also lower, which suggests that the strategy is
sensitive to volatile prices of foreign exchange rates. But, the returns of the
COINT-REG-LSTM strategy are still lower than the COINT-THRESHOLD
strategy which still suggests that the use of the LSTM network might not be
necessarily better compared to using a simple threshold parameter.

(a) (b)

Figure 4.8: COINT-REG-LSTM fitting performance on EURAUD/GBPNZD.
Exhibit (a) illustrates the fitting during formation and Exhibit (b) illustrates
the fitting in the trading period.

(a) (b)

Figure 4.9: COINT-REG-LSTM fitting performance on
EURAUD/GBPCAD. Exhibit (a) illustrates the fitting during forma-
tion and Exhibit (b) illustrates the fitting in the trading period.
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Financial crisis filter

Lastly, let us investigate whether the training procedure of the LSTM models
are affected by financial turmoil while keeping the trading parameters un-
changed. To be exact, we start training the models using shorter in-sample
horizon spanning 00:00:00 January 2010 until 01:00:00 April 1, 2015 which
contains roughly 30,000 observations. The out-of-sample is not altered to the
methodology mentioned in Section 3.3. In other words, we keep the trading
parameters as found in Section 4.1 and re-estimate the LSTM parameters on
this filtered dataset.

Interestingly, we find that the LSTM network behaves in the same way as
in the full dataset. Financial crises do not seem to affect the fitting perform-
ance of the neural networks. Instead, from all of these results mentioned in
Section 4.2.1, we suppose that the nature of this fitting behaviour is mostly
explained by the model structure and not necessarily the data.

(a) (b)

Figure 4.10: COINT-REG-LSTM fitting performance on CAD-
JPY/GBPUSD. Exhibit (a) illustrates the fitting during formation
and Exhibit (b) illustrates the fitting in the trading period.

(a) (b)

Figure 4.11: COINT-REG-LSTM fitting performance on EURJPY/USDJPY.
Exhibit (a) illustrates the fitting during formation and Exhibit (b) illustrates
the fitting in the trading period.

From the results in Table 4.6, one can observe a number of interesting find-
ings. First, filtering out specific pairs that are highly volatile due to inter-
ventions seems to improve the trading results for all trading models. The re-
turns for the DM-THRESHOLD strategy are similar to the returns achieved
by the strategy on unfiltered data. For the COINT-THRESHOLD strategy
we can see significant improvements with more than double the cumulative
net return of 0.4253 compared to the return achieved in the unfiltered data-
set. Both the COINT-THRESHOLD and the COINT-REG-LSTM strategies
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have a better win rate of 73% compared to the full dataset. The COINT-
DIF-LSTM model still applies takes too many costly trades and therefore
the performance is comparable to the performance in the standard dataset.
The MSE for the COINT-DIF-LSTM increases slightly, with similar results as
in the full sample. Furthermore, the COINT-REG-LSTM strategy improves
by roughly 28 percentages points in net cumulative return. Note that the
forecasting error drastically decreases from 0.7348 to 0.0816 after removing
CHF and JPY pairs for the COINT-REG-LSTM model and hence better
trading performance. In conclusion, the filtering of volatile pairs suggests an
improvement in the cointegration method for formation but not necessarily
for the distance method.

Secondly, altering the training set to filter out the financial crisis of 2008
seems to decrease returns of both strategies. The MSE for the COINT-
DIF-LSTM increases slightly while the MSE for the COINT-REG-LSTM
decreases. There seems to be no clear advantage of filtering out the financial
crisis in our dataset. This phenomenon is partly suggested by the use of a
smaller training set while keeping the out-of-sample dataset the same size
(unfiltered) for comparing measures.

Table 4.6: Out-of-sample pairs trading results using two different filters: (i)
Swiss Franc and Japanese Yen pairs removed and (ii) only training the neural
networks on data after 2010.

CHF and JPY filter

ω K gross return net return mean std. dev. skew trades win rate long wins long loss short wins short loss MSE
DM-THRESHOLD 4000 3 0.0838 0.0418 0.042 0.0386 -0.3786 42 0.55 14 12 9 7 NA

COINT-THRESHOLD 5000 1 0.5003 0.4253 0.3146 0.0904 -0.2569 75 0.73 26 9 29 11 NA
COINT-DIF-LSTM 1000 3 -0.0354 -1.5424 -0.787 0.4486 0.0131 1398 0.5 395 415 298 290 1.589

COINT-REG-LSTM 5000 1 0.3992 0.3292 0.2237 0.0812 -0.6421 70 0.73 24 10 27 9 0.0816

Financial Crisis filter

COINT-DIF-LSTM 1000 3 -0.0027 -1.2017 -0.6117 0.345 0.0502 1198 0.49 287 319 300 29 1.8574
COINT-REG-LSTM 5000 1 0.0256 -0.0354 -0.0256 0.0299 0.7136 61 0.57 20 12 15 14 0.5398
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5. Conclusion

Interest in exploiting financial market inefficiencies has been a popular field of
study. In particular, market-neutral investment strategies are studied due to
their risk return profile. One of these strategies is the pairs trading strategy.
The pairs trading strategy involves finding a co-moving asset price pair, fol-
lowed by taking a position in the spread between the two assets when anom-
alies are found, speculating on a reversion of the spread.

In this thesis we studied the strategy applied in the foreign exchange rate
markets. For the formation method we have used the distance and cointegra-
tion method. Additionally, we studied four different trading strategies, two of
which used LSTM recurrent neural networks. One strategy used the distance
method as formation and threshold boundaries to enter trades and we the
close position when prices crossed. The second strategy used the cointegra-
tion method for formation and uses thresholds to open and close positions.
Also, one LSTM strategy focused on fitting returns which tends to be used
in other studies in the field of pairs trading. Lastly, the other LSTM strategy
attempted to fit the spread itself. All trades taken in these strategies were
closed if the trading period ended and at most one trade was open during
trading.

The objective of this thesis was to verify whether pairs trading in the
foreign exchange rate markets can be profitable and to study the performance
of different trading models in the pairs trading framework.

Firstly, the results show that some of these strategies are able to yield
a positive net return over a six year out-of-sample time horizon of 2015 to
2021. This indicates that pairs trading strategies can be deployed in the
forex markets to some extent. Yet, the performance of the pairs trading
strategies considered in this thesis are still under performing compared to
the pair strategies in other financial markets. Conclusively, the use of the
pairs trading strategy in the foreign exchange rate markets as an investment
strategy might be sub optimal and requires further parameter optimization
in order to compete with existing strategies.

Secondly, we have found that the COINT-THRESHOLD strategy works
best, yielding a net return of 0.1648. The COINT-REG-LSTM strategy per-
formed sub optimally with a net return of 0.049 followed by the DM-THRESHOLD
strategy net return of 0.0372. Lastly, the COINT-DIF-LSTM strategy was
not even able to generate profits before transaction costs. Moreover, this
strategy lost more than the starting balance after trading due to entering
a high number of trades without covering the transaction costs per trade.
Lastly, filtering out the Swiss Franc and the Japanese Yen pairs improved
results of the trading models significantly. The removal resulted in a net
cumulative return of 0.4253 for the COINT-THRESHOLD model, outper-
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forming the other strategies with the same filtering. The CHF and JPY pairs
were filtered out due to the volatile time-series resulting from interventions
from their central banks. Filtering out the financial crisis from the training
set did not improve the trading models. So, the results from this robustness
test suggests that currencies considered in pairs trading models should be
carefully selected in the dataset for optimizing the trading models as we
have found the relevance of the choice of exchange rates to be traded.

Future research can extend these trading models in several ways. These
strategies could be studied on different time frames with larger or smaller
than the hourly frequency considered in this thesis. Also, the pairs formation
method could be optimized by imposing alternative ways of qualifying pairs
for trading. This thesis simply took the top three smallest ADF statistics
as it is the general practice in similar studies. The trading strategies could
be improved by using different trading entry and exit criteria, like stop-loss
orders to prevent large losses. Additionally, the neural network strategy could
be improved by using a collective group of networks to prevent overfitting,
as well as venturing into different network structures.
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Appendix A. Time-series plots
H1 spot prices

Figure A.1: 1-hour AUDCAD spot price

Figure A.2: 1-hour AUDCHF spot price
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Figure A.3: 1-hour AUDJPY spot price

Figure A.4: 1-hour AUDUSD spot price

Figure A.5: 1-hour CADCHF spot price
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Figure A.6: 1-hour CADJPY spot price

Figure A.7: 1-hour EURAUD spot price

Figure A.8: 1-hour EURCAD spot price
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Figure A.9: 1-hour EURCHF spot price

Figure A.10: 1-hour EURGBP spot price

Figure A.11: 1-hour EURJPY spot price
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Figure A.12: 1-hour EURNZD spot price

Figure A.13: 1-hour EURUSD spot price

Figure A.14: 1-hour GBPAUD spot price
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Figure A.15: 1-hour GBPCAD spot price

Figure A.16: 1-hour GBPCHF spot price

Figure A.17: 1-hour GBPJPY spot price
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Figure A.18: 1-hour GBPNZD spot price

Figure A.19: 1-hour GBPUSD spot price

Figure A.20: 1-hour NZDCAD spot price
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Figure A.21: 1-hour NZDCHF spot price

Figure A.22: 1-hour NZDJPY spot price

Figure A.23: 1-hour NZDUSD spot price
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Figure A.24: 1-hour USDCAD spot price

Figure A.25: 1-hour USDJPY spot price
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Appendix B. Time-series plots
H1 returns

Figure B.1: AUDCAD hourly returns

Figure B.2: AUDCHF hourly returns
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Figure B.3: AUDJPY hourly returns

Figure B.4: AUDUSD hourly returns

Figure B.5: CADCHF hourly returns
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Figure B.6: CADJPY hourly returns

Figure B.7: EURAUD hourly returns

Figure B.8: EURCAD hourly returns
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Figure B.9: EURCHF hourly returns

Figure B.10: EURGBP hourly returns

Figure B.11: EURJPY hourly returns
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Figure B.12: EURNZD hourly returns

Figure B.13: EURUSD hourly returns

Figure B.14: GBPAUD hourly returns
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Figure B.15: GBPCAD hourly returns

Figure B.16: GBPCHF hourly returns

Figure B.17: GBPJPY hourly returns
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Figure B.18: GBPNZD hourly returns

Figure B.19: GBPUSD hourly returns

Figure B.20: NZDCAD hourly returns
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Figure B.21: NZDCHF hourly returns

Figure B.22: NZDJPY hourly returns

Figure B.23: NZDUSD hourly returns
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Figure B.24: USDCAD hourly returns

Figure B.25: USDJPY hourly returns
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Appendix C. Pair formation stat-
istics

Table C.1: Statistics of the cointegration formation method. The min. and
max. values refer to the minimum and maximum number of eligible significant
pairs found in one formation period during the whole sample.

ω Total number of pairs formed mean std. dev. min. number of pairs max. number of pairs
1000 10154 54 35 3 163
2000 5352 58 36 1 163
3000 3736 61 39 4 163
4000 2564 57 36 4 174
5000 2021 58 43 11 197
6000 1805 62 50 9 189
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