
Predicting Bitcoin price using technical
indicator data features in Long

short-term Memory models

Ruud van der Hagen
STUDENT NUMBER: 2031321

THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN DATA SCIENCE & SOCIETY
DEPARTMENT OF COGNITIVE SCIENCE & ARTIFICIAL INTELLIGENCE

SCHOOL OF HUMANITIES AND DIGITAL SCIENCES
TILBURG UNIVERSITY

Thesis committee:

Tilburg University
School of Humanities and Digital Sciences

Department of Cognitive Science & Artificial Intelligence
Tilburg, The Netherlands

May 2021

Dr. Gonzalo Napolès
Dr. Bruno Nicenboim







Predicting Bitcoin price using technical
indicator data features in Long short-term
Memory models
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Crypto currency has seen tremendous growth over the last few years. Growing to a near multi
trillion dollar asset market, it is starting to become an asset class of its own. However, while
predicting bitcoin price accurately can be very profitable, getting accurate predictions is difficult
due to the volatile nature of the price action. This research attempts to leverage a Long short-term
memory model to predict bitcoin prices. By using hourly price data, volume data and technical
indicators as features, the best performing model outperformed the baseline model significantly.
However, price predictions made by the model still are not overly accurate. This is largely due to
imbalance in the data set caused by a recent surge in growth.

1. Introduction

Bitcoin and crypto currency has gained a lot of attention as an asset class over the last
years. These digitised assets have created new financial channels through which peer
to peer transactions can be constructed without the need of a centralized third party
(Hileman and Rauchs 2017). Furthermore, they have introduced a new way of storing
value. While originally designed as a digital currency meant for usage in transactions,
bitcoin is often seen more as a speculative investment instrument nowadays (Yermack
2015). This change in use case is largely due to high price volatility. Inherently, bitcoin as
an asset does not have value. It is not backed by any institution, nor is it pegged to any
other inherently valuable asset. Its’ price reflects the investors’ confidence in the asset
(Chen, Li, and Sun 2020). This attribute in turn leads to volatility. Being a measure of
risk, volatility is a key variable when designing investment or trading strategies (Chun,
Cho, and Ryu 2020). Being able to predict highly volatile price fluctuations can be very
valuable.

Using machine learning and neural networks for asset price prediction has seen a
rise in popularity over the last decade. In traditional stock markets, previous studies
have shown that using these models outperform traditional linear models (Hiransha
et al. 2018; Pang et al. 2020). However, there are some key differences between tra-
ditional markets and bitcoin. Firstly, bitcoin can be traded 365 days a year, 24 hours
a day. Secondly, research has shown that Bitcoin can act as a hedge against equities
and currencies or commodities (Bouri et al. 2017). Lastly, bitcoins’ strong multifractality
leads to the market being more inefficient than traditional equities (Al-Yahyaee, Mensi,
and Yoon 2018). These differences imply that machine learning applications used for
predicting traditional markets cannot simply be copied and used for bitcoin.

Due to the nature of bitcoin price data, recurrent neural networks such as long short-
term memory perform better than traditional machine learning models such as multi
level perceptrons (Pawar, Jalem, and Tiwari 2019).
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An important aspect of using any machine learning application is feature selection.
In traditional stock market prediction tasks, features such as volatility indices, interest
rate spreads and foreign exchange rates are used (Chun, Cho, and Ryu 2020). In other
research, technical indicators were used. Technical indicators are price data calculated
by mathematical formulas during technical analysis, some of which have been proven
to be solid indicators of price movement (Dai et al. 2020). In this paper, several different
LSTM models are trained using a wide variety of technical indicators. Results are then
compared to find which technical indicators are most robust when attempting bitcoin
price prediction.

The main question this thesis answers is "What data features are most impactful
when predicting Bitcoin price using time series data?". To assist in answering this ques-
tion, several sub questions are formulated. Firstly, the Related Work section discusses
several types of data features commonly used in financial prediction tasks. Using this
information, experiments can be designed to determine which features are most useful
for the problem of predicting bitcoin price movements. Secondly, literature is studied
to find the most suitable prediction model for this task. As discussed earlier, recurrent
neural networks are expected to perform best on this type of problem (Pawar, Jalem,
and Tiwari 2019). This is dissected further in the Related Work section. Lastly, to find
the most suitable time frame for this task, experiments are conducted using different
time frame settings. This is discussed in the Experimental Setup section.

2. Related Work

As stated before, price prediction for publicly traded assets is nothing new. Several
researches from the nineties show usage of neural networks and back propagation
networks to predict stock prices (Kimoto et al. 1990; Freisleben 1992; Mizuno et al. 1998;
Schumann and Lohrbach 1993). Since then, machine- and deep learning models have
gotten a lot more complex and capable. Recent studies use high-dimensional data and
features to predict future price movements (Pang et al. 2020). Furthermore, they use
more than just historical price data. Features such as market conditions and sentiment,
news articles, social media data and technical indicators are used to predict prices more
accurately (Chun, Cho, and Ryu 2020; Vargas et al. 2018; Dai et al. 2020).

Technical indicators are derived from technical analysis. Technical analysis is a
method of predicting future price movements using historical price data such as open-
ing price, closing price and trading volume (Nazário et al. 2017). Previous research has
shown that technical analysis can in fact be used to add value to investment strategies,
and can outperform a simple buy-and-hold strategy (Lo, Mamaysky, and Wang 2000;
Dai et al. 2020; Shynkevich et al. 2017). This method of analysing historical price move-
ments can be used to form data features that in turn can be used as inputs for prediction
models (Shynkevich et al. 2017). In essence, technical indicators are mathematically
derived tools that for example indicate whether an asset is in a strong up or down trend,
or whether it is overbought or oversold (Shynkevich et al. 2017).

Technical indicators can generally be divided in 5 main categories (Barone and
Potters 2021). Firstly, trend indicators show in which way the asset is trending. Secondly,
mean reversion indicators attempt to show when a price trend will reverse. Thirdly,
trend strength indicators measure how strong a price trend is. This is done through
calculating oscillations in price activity (Barone and Potters 2021). Momentum indica-
tors measure how fast prices are changing over a certain time period. Lastly, volume
indicators indicate whether there are more sellers or buyers. Some examples of often
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used indicators include relative strength index (RSI), simple and exponential moving
averages (SMA, EMA) and stochastic %K and %D (Nazário et al. 2017).

Bitcoins’ rise in popularity has logically brought along more interest in solving
the problem of price prediction. Previous research has attempted to predict bitcoin
price using historical price data, blockchain features or both (Ji, Kim, and Im 2019;
Chen, Li, and Sun 2020). Huang, Huang, and Ni (2019) used several high-dimensional
technical indicators, however they exclusively used a classification tree-based model for
predictions. This choice of model is in conflict with findings from previous studies, all
of which state a significant difference in performance between tree-based models and
RNN models (Chun, Cho, and Ryu 2020; Pawar, Jalem, and Tiwari 2019; Nabipour et al.
2020). Other researches aimed at predicting traditional asset prices also show significant
difference in performance between LSTMs and other architectures (Selvin et al. 2017; Li,
Shen, and Zhu 2018; Roondiwala, Patel, and Varma 2017). Therefore, this paper will
compare LSTMs with different hyper parameter settings and data features in order to
predict bitcoin price movements.

3. Experimental Setup

For this research, bitcoin price data was gathered from the exchange Binance. Binance is
the largest crypto currency exchange by volume and they offer a free API for registered
users. Using the API, historical price data can easily be retrieved for many different
crypto currencies (Bin 2021). The data is explored in section 3.1. Then, extra features are
engineered from this data. This process and the resulting features are further discussed
in section 3.2.

3.1 Data

As stated before, all price data was gathered from the crypto currency exchange Bi-
nance. In particular, historical bitcoin price data was gathered starting from the 17th of
October 2017 up to the 22nd of March. Using the API, it is possible to select different
time frames for the data. For experimental purposes, data was gathered per 1 minute,
5 minutes, 1 hour and 1 day. The number of instances in the data set thus depends on
the chosen time unit. For reference, retrieving hourly data from Binance between the
above dates results in 31411 instances. The features for each instance are shown in Table
(1). After experiments with different time frames, the hourly data was chosen for the
definitive training. Lower time frames produced much bigger data sets which made it
impossible to train enough models for comparison due to time constraints. Daily data
in turn created a smaller data set, which performed worse than hourly data.
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Table 1: Data features

Data feature Description

Open time Encoded timestamp of the start of the time frame
Open price Price in United States Dollar at the start of the time frame

Highest price Highest observed price in USD in the time frame
Lowest price Lowest observed price in USD in the time frame
Closing price Price in USD at the end of the time frame

Close time Encoded timestamp of the end of the time frame
Quote asset volume Volume in quote asset (USD)
Number of trades Total number of executed trades

Taker buy base asset volume Volume of taker in base asset (BTC)
Taker buy quote asset volume Volume of taker in quote asset (USD)

3.1.1 Data exploration. At first glance, it is clear that Bitcoin has seen strong growth
over the past 4 years. Figure (1a) shows an explosive growth in asset pricing. Trading
volume and raw number of trades also see a lot of growth over the same time period.
Figure (1b) shows a very large peak in volume around march 2020. A likely explanation
is the large covid-19 related sell-off, which also occurred in traditional markets (Daube
2020). Much like the bitcoin price graph however, growth is the clear trend with volume.
The same goes for the number of trades as seen in Figure (1c). This growth does lead to
a seemingly unbalanced data set, however. Most of the rapid movements in price occur
in the last year.
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(a) Bitcoin price in USD (b) Volume in Bitcoin

(c) number of Trades per hour

Figure 1: Data exploration graphs

3.2 Feature engineering

A number of features are engineered from the historical price data above. These features
are all technical indicators as discussed in the Related Work section. The technical
indicators that are used are found in Table (2). The features were extracted from the
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data set with the TALib python library. Section (3.3) discusses how the indicators work
and how they are engineered from the data.

Table 2: Technical indicators

Abbreviation Description

SMA Simple Moving Average
EMA Exponential Moving Average

RSI Relative Strength Index
StochK Stochastic Oscillator
StochD Moving average of Stochastic Oscillator

AD Chaikin Accumulation Distribution line
CCI Commodity Channel Index

MACD Moving Average Convergence/Divergence

3.3 Technical indicator features

In this section, the aforementioned engineered features are further explained. All tech-
nical indicators are mathematically derived from the price data (Nazário et al. 2017). For
some indicators, more than just price values are required. For example, trading volume
and differences between opening and closing price are used.

A commonly used simple trading strategy involves use of moving averages. Using
this strategy, an investor is supposed to buy an asset whenever its price is above its
average price over a given time frame (Zhu and Zhou 2009). In this research, two types
of moving averages are used. Firstly, the Simple Moving Average (SMA) is an arithmetic
moving average, calculated according to Formula (1) (Ilomäki, Laurila, and McAleer
2018).

SMA =
C1 + C2 + ...+ Cn

n
(1)

where C is the close price and n is the time period. The second type of moving average
used in the training of the models is the Exponential Moving Average (EMA). The EMA
is similar to the SMA, however smoothing is applied giving more recent data points
more weight. Because of this, the EMA is more sensitive to recent price movements
(Nakano, Takahashi, and Takahashi 2017). The EMA(n) is calculated as shown in
Equation (2).

EMA(n)t =
2

n+ 1
× (Ct − EMAt−1) + EMAt−1 (2)

where Ct is the closing price on day t, n is the number of time periods. For the first EMA
calculation , SMAn is taken instead as there is no initial value for EMAt−1.

One of the most widely used technical indicators is the Relative Strength Index
(RSI). The RSI is an indicator which shows the relative strength of an asset relating to the
market it is traded on (Taran-Morosan 2011). In order to determine the RSI value, firstly
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the increase (I) or decrease (D) of the closing price for each day have to be calculated.
This is done with Formulas (2) and (3) respectively.

Iclose = closetoday − closeyesterday (3)

Dclose = closeyesterday − closetoday (4)

When the price goes up for a certain day, I will be positive while D will be negative.
In this case, D is set to 0. At the same time, when the price decreases, I will be set to 0
(Taran-Morosan 2011). Secondly, the EMA of I andD is required to calculate the relative
strength (RS). These EMAs are calculated using Formula (2). The RS is then calculated
using Formula (5).

RS =
EMAIncrease

EMADecrease
(5)

Lastly, this value is converted to an index which has values ranging from 0 to 100. This
is done with Formula (6).

RSI = 100− 100× 1

1 +RS
(6)

When interpreting RSI values, there are two main levels to look for. Generally, when the
RSI value of an asset goes above 70, it indicates that said asset is overbought. This in
turn means that it is expected that the assets’ price will come down. Secondly, if the RSI
value goes below 30, it means that the asset is oversold. Logically, it is then expected
that the asset price will go up (Gumparthi 2017).

The stochastic oscillator is another type of momentum indicator, which in essence
gives an indication of an assets’ closing price relative to a range of recent price range
(Ijegwa et al. 2014). Similar to the RSI, the stochastic oscillator returns an index value
between 0 and 100. Unlike the RSI however, the overbought and oversold values are 80
and 20 respectively. The stochastic oscillator is measured with two values, %K and %D
where %K is calculated as shown in Formula (7).

%K = 100× C − Ln

Hn − Ln
(7)

where C is the closing price, Ln is the lowest observed price in the past n time periods
and Hn is the highest observed price in the last n time periods. %D, being a 3 day
moving average of %K, is calculated with Formula (8) (Thorp 2000).

%D = 100× H3

L3
(8)

where H3 is the highest observed price value in the last 3 time periods and L3 is the
lowest observed value in the last 3 time periods.

Chaikin’s accumulation/distribution, part of the Chaikin Money Flow indicator, is
based on the principle that if an assets price closes above its midpoint, that there was
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accumulation of the asset that day. Vise versa, if the asset closes below the mid point, the
asset was distributed (Kannan et al. 2010). The AD is calculated as shown in Formula
(9).

AD =M(t− 1) +M(t) (9)

where M is the money flow multiplier, defined as

M = N ∗ V (t)

and N is the money flow volume, defined as

N =
(C − L)− (H − C)

H − L

where t is the time period, V is the trading volume, C is the close price, L is the lowest
price and H is the highest price.

The commodity Channel Index, or CCI, is a momentum indicator that aims to
identify trend reversals (Maitah, Prochazka, and Cermak 2016). Similarly to the RSI
and Stochastic %K and %D, the CCI is an oscillator which identifies overbuying and
overselling. Unlike the other two oscillators, the CCI is an unbound index which means
that historic price action has to be taken into account when identifying overbought and
oversold areas. Formula (10) illustrates how the CCI is calculated.

CCI =
TP − SMA

.015×MD
(10)

where TP is the Typical Price, defined as

TP =

n∑
i=1

((H + L+ C)÷ 3),

where H , L and C are the highest, lowest and close price per time period respectively,
n is the number of time periods, and where MD is the mean deviation, defined as

MD = (

n∑
i=1

|TP − SMA|)÷ n.

The constant value .015 is chosen for stability according to Maitah, Prochazka, and
Cermak (2016).

Moving average convergence divergence, or MACD, is another popular technical
indicator often used to identify buy or sell signals. It is calculated using 2 EMAs with
different time periods (Hung 2016). The MACD value represents the distance between
the two used EMAs. In general, when the MACD line crosses above 0, this generates a
buy signal and vise versa. The MACD is calculated as:

MACDt = EMA(s)t − EMA(l)t (11)
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where s is the short term EMA and l is the long term EMA. Default values for s and l
are 12 and 26 respectively (Hung 2016).

3.4 Method / Models

As found in the literature review, a long short-term memory model is expected to
perform best on bitcoin price data, as it is sequential in nature (Chun, Cho, and Ryu
2020; Pawar, Jalem, and Tiwari 2019; Nabipour et al. 2020). Other than an LSTM, a
recurrent neural network was considered. Similarly to LSTM, RNNs perform well on
time series data. However, RNNs run into the problem of gradient vanishing (Wang
et al. 2019; Sherstinsky 2020). This problem arises due to the short term memory nature
of the RNN. Information processed early on in the data set will not be remembered
(Chen, Li, and Sun 2020).

To combat this problem, LSTMs have memory cells that store valuable information
for the longer term, but forget less relevant information. The internal memory cell, or
its’ long term memory, is the most important (Wang et al. 2019). What information gets
stored in the long term memory cell is decided by 3 different gates (Sherstinsky 2020).

Firstly, the forget gate decides what information in the model is kept from the last
block ht−1. The mathematical formula for the forget gate is illustrated in Equation (12).

ft = σ(wf [ht−1, xt] + bf ) (12)

where ft represents the forget gate, σ is the sigmoid function, wf represents the weight
for forget gate f , ht−1 is the output from the LSTM block at t− 1, xt is the current
input and bf represents the bias for forget gate f . By passing wf [ht−1, xt] + bf through
sigmoid σ, ft outputs values between 0 and 1 where 0 represents forget and 1 represents
remember. Jozefowicz, Zaremba, and Sutskever (2015) found that an increased bias of
the forget gate leads to a generally increased performance of the model.

The input gate works in a similar way to the forget gate. The weights are different
from the ones used in the forget gate, however (Yu et al. 2019; Sherstinsky 2020).
The input gate decides what fresh information gets added to the long term memory.
Equation (13) shows the mathematical representation of the input gate.

it = σ(wi[ht−1, xt] + bi) (13)

where it is the input gate, σ is the sigmoid function, wi represents the weights for
input gate i, ht−1 is the output from the previous block at t− 1, xt is the current input
and bi is the bias for input gate i.The input gate only sees information from the short
term memory ht−1 and the current input xt. Similarly to the forget gate, the output of
wi[ht−1, xt] is passed through a sigmoid function σ. As before, by having values between
0 and 1 the gate either allows information to pass through or not according to how close
the value is to 0 or 1 (Wang et al. 2019). In order to determine what information actually
gets put through to the long term memory cell, a vector of new candidate values C̃t is
generated with Equation (14).

C̃t = tanh(WC [ht−1, xt] + bC) (14)

where tanh is the activiation function, WC is the weight for layer C̃t, ht−1 and xt are the
previous output and current output respectively, and bC is the bias for layer C̃t.
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With the above formulated filters, the old long term memory or cell state Ct − 1 is
updated to Ct via Formula (15).

Ct = ft ∗ Ct−1 + it ∗ C̃t (15)

where ft is the forget gate as defined in Equation (12), Ct−1 is the cell state from the
previous step, it is the input gate as defined in Equation (13), and C̃t is the filter layer
as defined in Equation (14). In essence, the previous cell state is filtered by multiplying
it by ft, and the new information which is filtered by the input gate it is added.

Lastly, the cell state is filtered one more time before it becomes the output. Firstly,
the cell stateCt is put through another sigmoid activation function σ. This sigmoid layer
is the output gate, as defined in Formula (16).

ot = σ(Wo[ht−1, xt] + bo) (16)

where σ is the sigmoid activation function, Wo represents the weights for the output
gate ot, ht−1 and xt are the previous output and current output respectively, and bo is
the bias for output layer ot. With the the output gate as defined in Equation (16), the
final output ht is generated as illustrated in Formula (17).

ht = ot ∗ tanh(Ct) (17)

3.5 Baseline

A baseline model was used to compare the results of the LSTM models to. This model
is represented by

pt =
pt−1 + pt−2 + pt−3

3
(18)

where pt is price at time step t. In essence, the baseline model predicts the next price
value by taking the mean of the previous 3 prices. The predicted values on the test
set are plotted in Figure (2). Using the root mean square error metric to evaluate, the
baseline model achieves a value of 19199. The LSTM models will also be evaluated by
RSME. This metric will then be compared with the baseline RMSE.
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Figure 2: Baseline prediction plot. The red vertical line represents the start of the test
data.

3.6 Model architecture

While training the models in order to find the optimal parameter and feature settings,
the same general architecture is used. This architecture is illustrated in Table (3).

Table 3: Model architecture

Layer type Description

LSTM Long Short-Term Memory layer with n nodes
Dense Fully connected dense layer with x nodes and l2 kernel regularisation

Dropout Dropout layer with d dropout rate
Activation ReLU activation layer

Other tested architectures had multiple LSTM layers. However, this lead to over
fitting issues due to the model being too complex for the data set. Furthermore, archi-
tectures without normalization were also trained. This also led to the model over fitting
and having little to no predictive power and RMSE values on the test set that were
higher than the baseline. Before settling on L2 regularisation, batch normalisation was
also applied in an experiment. This led to the model not learning anything from the
data, as the training error stayed flat during the training process. Training models with
multiple dense layers led to similar issues as using multiple LSTM layers did. The dense
layer has a set number of dense nodes, which is 1. The reason for this parameter setting
is that the model is trying to predict a single value, which is the closing price.

At the start of the process of fine tuning the architecture, a dropout layer was
introduced to combat over fitting (Baldi and Sadowski 2013). Section (3.6) discusses
the different parameter settings used for this layer. Lastly, an activation layer with the
ReLU activation function is implemented. ReLU was chosen due to its reputation as a
well performing activation function for LSTM networks (Ang-bo and Wei-wei 2018).
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3.7 Hyperparameters and features

As stated before, this research is aimed at predicting bitcoin price using long short-term
memory models. In order to find the optimal parameters and features to achieve this,
numerous models were trained with different hyper parameter settings and different
sets of features. The tested hyper parameter settings are stated in Table (3). All features
are compiled in Table (4).

Table 4: Hyperparameter tuning

Hyperparameters Description Tested values

Time step Number of n data points to predict n+ 1 20, 30, 40, 50
LSTM nodes Number of nodes in LSTM block 7, 14, 21, 28

Batchsize Number of training examples per iteration 3, 5, 10, 15
Dropout Dropout for dropout layer 0.1, 0.15, 0.2, 0.3

Table 5: Features

Features

Open price
Highest price
Lowest price
Closing price

Quote asset volume
Number of trades

Taker buy base asset volume
Taker buy quote asset volume

SMA
EMA
RSI

StochK
stochD

AD
CCI

MACD

The hyper parameter tuning process was done on hourly data as stated in the Data
Exploration section. Furthermore, the model used the features as formulated in Table
(5). The model was trained with 4 settings for each of the 4 hyper parameters. This
means that 256 models were trained in total during hyper parameter tuning. Each model
is trained for 30 epochs, while no early stopping rule is used. The optimizer used is
Adam with a learning rate of 0.0005 , one of the most popular training algorithms (Bock
and Weiß 2019). Each model is then evaluated using MSE, where the model with the
lowest MSE performs best.
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The tested values for time step are arbitrarily chosen. While LSTM models are
very suitable for training on sequences of data, they also take relatively long to train
(Sherstinsky 2020). Due to time constraints, only the 4 values as formulated in Table
(3) were tested. Given more time, other time step values could be tried as well. As for
the number of nodes in the LSTM layer, multiples of 7 were chosen as the first model
was being trained with 7 features initially. The chosen batchsizes are relatively small, as
lower batch size allows networks to train better (Kandel and Castelli 2020). Lastly, the
values for the dropout layer are chosen based on common practise (Baldi and Sadowski
2013).

After training the model with the above mentioned hyper parameter values, the
optimized settings in Table (6) were found. The model with these settings achieved the
lowest test MSE score of all the trained models.

Table 6: Hyperparameter optimization

Hyperparameters Values

Time step 40
LSTM nodes 28

Batchsize 10
Dropout 0.2

4. Results

With the above mentioned hyper parameter settings, models with different sets of
features were trained and compared. The RMSE is used to evaluate all the hyper
parameter optimized models. As stated in the Baseline section, each model is then
compared to the baseline RMSE. The features for each model are visible in Table (7).
Feature abbreviations can be found in Tables (1) and (2).
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Table 7: Tested models

Included features Normalization RMSE Number

Close, volume None 18153.33 1

Close, volume, rsi, sma, ema, stochk, stochd None 24292.86 2

Close, volume, rsi, sma, ema, stochk, stochd L2 15596.44 3

Close, volume, rsi, sma, ema, stochk,
stochd, ad, cci, macd L2 18290.07 4

Close, volume, quote av, trades, tb base av,
tb quote av, rsi, sma, ema, stochk, stochd L2 12835.51 5

Close, volume, quote av, trades, tb base a,
tb quote av, rsi, sma, ema L2 13390.82 6

Close, volume, quote av, trades, tb base av,
tb quote av, rsi, sma, ema, stochk, stochd, ad, cci, macd L2 13042.53 7

Close, volume, quote av, trades, tb base av,
tb quote av, rsi, sma, ema, stochk, stochd, ad, cci, macd None 22602.08 8

The simplest model in Table (7) is one that only takes the close price and the volume
as features. This model achieved a RMSE of 18153.33 on the test set, which slightly
outperforms the baseline RMSE which is set at 19199. Models (2) and (3) are the first to
have technical indicators implemented as features. When not using normalization, this
leads to a higher RMSE on the test set than model (1). Furthermore, this model does
worse than the baseline. Implementing L2 normalization for the same model leads to a
lower RMSE, however. Model (3) achieves an RMSE of 15596.44, beating both model (1)
and the baseline. Including rsi, sma, ema and the stochastic oscillators like in model (3)
improve the models’ predictive power.

Model (4) saw the addition of more technical indicator features. Seemingly, adding
the ad, cci and macd indicators did not improve the models’ performance. While trained
on mostly the same features as model (3), it achieved a higher RMSE of 18290.07.
The model did have L2 normalization. Adding more of the base price data features
alongside close and volume decreases the RMSE of the model, however. Model (5)
has the same features as model (3), with quote av, trades, tb base av and tb quote av
as extra features. This model performs better than model (4), achieving an RMSE of
12835.51. This makes it the best performing model in this series. Model (5) also had
L2 normalization implemented in the model. Model (6) implemented the same features
as (5), however without stochastic oscillators. This led to a slightly higher RMSE of
13390.82. Model (6) also had L2 normalization implemented.

The last two models have all of the available features included. Model (7) did have
L2 normalization, while model (8) did not. There is a clear difference in RMSE scores
for these models. The model with normalization performed significantly better with
an RMSE of 13042.53, while the model without any normalization achieved a score
of 22602.08. The latter fails to improve over the baseline, while the former shows a
significant increase in performance. Similarly to the difference in performance between
models (3) and (4) however, model (8) does not perform better than model (5).
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As stated in the experimental setup section, models with batch normalization were
also trained. However, these results are not included in the research due to extremely
bad performance compared to models with L2 normalization. Furthermore, an attempt
was made to train a binary classification LSTM model. The goal for this model would be
to predict an increase or decrease in price for time step t+ 1 instead of predicting a price
value. Experiments with this setup produced bad results, often no better than a coin flip.
Partly due to time constraints, and to stay within the scope of this research, no further
experiments into binary classification for this problem were conducted. Some other
model architectures were also experimented with, however these models produced
more results not worthy of mentioning. Lastly, models were trained on a larger data
set. This data set included 2 more years of data, starting from 2015 up to 2021. However,
the training process for the models became unpractical when taking time constraints
into account. Furthermore, these models showed no significant increase in predictive
performance.

5. Discussion

In the introduction, several sub research questions were introduced to assist in answer-
ing the main research question "What data features are most impactful when predicting
Bitcoin price using time series data?". These questions are answered in this section,
starting with "What data features are commonly used in financial prediction tasks?".
In the Related Work section, it was found that several different data features are used
in predicting asset prices. Firstly, historical price data is often used as the base data
(Chun, Cho, and Ryu 2020; Vargas et al. 2018; Dai et al. 2020). Often however, more
features are introduced. These other features include but are not limited to market
sentiment, news articles, social media data and technical indicators. Only technical
indicators fell into the scope of this research, however future research could include
a wider variety of variables to predict asset prices. While use of technical indicators
do improve performance, they are inferred from price data. This price data is already
fed to the model, limiting their usefulness. Utilizing other mentioned features such
as sentiment analysis or social media data could improve predictability. Due to time
constraints however, this was not possible for this research.

As discussed in the Related Works section, technical indicators have proven to
be solid features for prediction tasks (Lo, Mamaysky, and Wang 2000; Dai et al. 2020;
Shynkevich et al. 2017). A handful of technical indicators used in previous research
were selected for this prediction task. Not all indicators improved model performance,
however. From experiments it is evident that the Chaiking accumulation/distribution,
the commodity channel index and the moving average convergence/divergence do not
offer an increase in performance. Other technical indicator features such as the simple
moving average, exponential moving average, relative strength index and the stochastic
oscillators did show a significant increase in performance. Not every single possible
combination of features was tested due to time constraints, however. Furthermore, a
lot more technical indicators exist that were not included in this research. In order to
fully understand the predictive power of technical indicators, more research has to be
conducted. This was not possible for this research due to both time constraints and
computational limitations. Outside of the scope of this research, models can be trained
utilizing both technical indicator as well as other aforementioned features.

The answer to the second sub question, "Which prediction model is most suitable
for financial price prediction tasks?" was answered through literary review. It was
found that LSTM models are expected to perform best on financial prediction tasks
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due to their sequential nature. Other options were multi level perceptron, decision tree
and a recurrent neural network. Through literary review it was found that MLPs and
decision trees almost always under performed LSTMs. Therefore, during this research,
these models were not tested. Given more time, these models could be trained on the
same set of features and compared to the LSTM performance. This could give more
insight into how big the difference between these architectures truly is. It was also
concluded that there was little reason to try recurrent neural networks, due to their
inherent problem of vanishing gradient (Wang et al. 2019; Sherstinsky 2020). Another
architecture that could be compared to the currently used LSTM are gated recurrent
units (GRU). Future research can compare performance of this model with LSTMs for
this prediction problem.

Most literature reviewed in the Related Works section was research done in the
traditional finance sector. Here, it was found that LSTM models offer a significant
advantage over other architectures (Chun, Cho, and Ryu 2020; Pawar, Jalem, and Tiwari
2019; Nabipour et al. 2020). Previous research aimed at predicting bitcoin price used
tree-based models instead, which as stated in the Related Works section is in conflict
with earlier mentioned results. This is another reason why this research utilized an
LSTM model instead of other options.

The last sub question, "Which time frame is most suitable for financial asset price
prediction tasks?", was answered with experiments. This was made possible with the
flexibility of the Binance API, which allows for different time frames when extracting
price data. As stated in section (3.1), creating data sets on lower time frames such as
1 or 5 minutes leads to a very bloated data set with a lot of instances. This in turn
causes model training times to heavily increase. Higher time frames such as 4 hours or
1 day lead to data sets that are too small, however. The hourly data proved to be a good
equilibrium, creating a manageable data set with sufficient instances for training.

According to the results of the research, numerous added data features add pre-
dictive power to the LSTM model. Especially comparing to a model only trained on
close price and volume, models trained with more features perform notably better. In
correspondence with the literature, technical indicator features increase the predictive
power of the model significantly. However, seemingly not all of the indicators lead to
better performance. Models which include original data features other than pure price
data also perform better than models which do not. Number of trades and the taker buy
base and quote asset volumes lead to better performance. The best performing model
outperforms the baseline model by a significant amount.

6. Conclusion

From the results of the experiments, model (5) as seen in Table (7) performs best accord-
ing to RMSE score. There is a significant difference in accuracy between models that
have technical indicator features and models that do not. Findings from the experiments
suggest that RSI, moving averages and stochastic oscillators increase model perfor-
mance. This is in agreement with the reviewed literature. The best performing model
also significantly outperforms the baseline model. However, the predictions made by
the model are not great. This is clearly visible when plotting the predicted price and
comparing it to the real data. The prediction plot can be seen in Figure (3).
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Figure 3: BTC Price prediction in USD. The blue line is the true price, the orange line is
the prediction on the training set, the green line is the prediction on the test set.

As is visible in Figure (3), predictions on the test set are not very accurate. This could
be accounted to imbalance in the data set. As is also visible in Figure (3), the test set does
not represent the training set very well. As mentioned before, models were trained on
more data as well. However, this did not increase performance of the model. Model
performance could be increased by including more data features, either more technical
indicators or other aforementioned features. With the results of the experiments, the
conclusion can be made that making use of technical indicators in training can improve
predictive performance of LSTM models. As for the other features such as sentiment
or news articles, models can also be trained having these in addition to the tested
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features. The results showed that data that is not inherently related to the price value
also increases model performance. Examples of these features include amount of trades
and different volume data.

One of the limitations of this research is that only a small number of technical indi-
cators were tested. Given more time and computational resources, more models could
be trained with a higher number of combinations of technical indicators. This could give
a better indication of the predictive power of technical indicators as a whole. Another
limitation in this research is the data. As discussed before, the data seems imbalanced.
Future research could attempt to modify the data with re balancing strategies. Due
to time constraints, this was not included in this research. Future research could also
attempt to create a trading strategy according to model results, in order to make results
useful in practical scenarios. This was not in the scope of this research.
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