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Abstract 

Response styles, the tendency of participants to respond to items regardless of the item 

content, have frequently been found to decrease the validity of Likert-type questionnaire results. 

While many models have been proposed to compensate for and model these response styles, it is 

still not entirely clear how these response styles relate to each other. Specifically, it is not always 

clear whether endpoint responding (the tendency to endorse only the extreme responses in a 

questionnaire) is the opposite of midpoint responding (the tendency to endorse only the middle 

responses in a questionnaire), or whether these response styles are two separate dimensions in a 

given dataset. How these response styles are modelled influences the estimation complexity, 

parameter estimates, and detection of and correction for response styles in IRT models.  In this 

paper, we thus examine if it is possible to distinguish endpoint and midpoint responding as being 

either two separate dimensions, or being two opposite sides of a single dimension in any given 

dataset using the AIC and BIC. Furthermore, we assess under what circumstances (factors 

sample size, test length, number of substantive dimensions, response style strength, and response 



 
 

style correlation) this assessment is possible and what the degree of error of this assessment is. 

Results indicate good performance for the AIC and BIC in a null condition and with extreme and 

midpoint responding as a single dimension, but worse performance for extreme and midpoint 

responding as two dimensions, depending on the considered factors. Additionally, interactions 

between factors are found. 

Keywords: Response styles, endpoint response style, midpoint response style, item response 

theory, multidimensional nominal response model, simulation study 

 

 The use of Likert scales (e.g., answer scales from 1 to 5) throughout questionnaires in 

social science is widespread (Croasmun & Ostrom, 2011; Sullivan et al., 2013; Van Vaerenbergh 

& Thomas, 2013). It is however uncertain whether all participants utilize Likert response options 

in the same manner (Plieninger & Meiser, 2014). For example, some people may prefer to 

answer questions using only the ends of the scale, while others tend to answer with the middle 

response. These tendencies of participants to answer items a certain way regardless of content 

are referred to as response styles (Plieninger & Meiser, 2014; Van Vaerenbergh & Thomas, 

2013). A variety of response styles exist, for example tending to use endpoints of the scale 

(extreme response style; ERS), often using the midpoint of the scale (midpoint response style; 

MRS), often agreeing with items (acquiescent response style; ARS), and many more. 

Participants exhibiting these response styles have repeatedly been found to reduce the validity of 

results obtained from Likert questionnaires in two ways (Van Vaerenbergh & Thomas, 2013). 

First, means and variances of results may be affected. If participants for example show ARS, 

agreeing with most items, means will be increased and variance will be decreased. Second, and 

perhaps more importantly, systematic error can be introduced into results if some participant 



 
 

groups differ in their response style. For instance, a study by Moors (2012) found that a higher 

amount of ERS in women than men led to a spurious relation between gender and leadership 

styles. It is thus important to identify and correct for response styles to prevent unwarranted 

conclusions from being drawn. The following sections covers two often studied response styles, 

characteristics of participants and questionnaires that influence their occurrence, and research 

into their consequences in more detail (Batchelor et al., 2013; Greenleaf, 1992; He et al., 2014; 

Hui & Triandis, 1989; Morren et al., 2011; Naemi et al., 2009; Wetzel et al., 2013). 

ERS 

 ERS is defined as the tendency of participants to favour answering extremely on rating 

scales, independent of the item content (Greenleaf, 1992). Since ERS causes participants to 

respond in a certain way regardless of item content, it has received much attention as a possible 

source of bias in questionnaire data (Greenleaf, 1992; Hui & Triandis, 1989; Morren et al., 2011; 

Naemi et al., 2009; Wetzel et al., 2013). ERS can bias results in three important ways. First, it 

may result in bias concerning measurement and relations to other variables (Batchelor et al., 

2013), as exemplified earlier by the spurious correlation between gender and leadership styles 

(Moors, 2012). Second, ERS adds construct-irrelevant variance to the results. By adding 

construct-irrelevant variance, within group variance is increased and power decreases. Third, the 

addition of construct-irrelevant variance also reduces the magnitude of associations between 

constructs, analogous to the attenuation of correlations that occurs when introducing random 

measurement error. For example, one study found that ERS reduced the explained variance from 

69.5% to 53.5% (Lau, 2007). Note that ERS can thus both lead to spurious correlations as found 

in Moors (2012), and to attenuation of correlations as found in Lau (2007).  

 Due to the various negative effects of ERS on questionnaire results, many studies have 



 
 

attempted to link ERS to various person characteristics, such as personality (Naemi et al., 2009), 

culture (Hui & Triandis, 1989), race, gender, education, and intelligence (Batchelor et al., 2013). 

In addition, properties of the questionnaire have been found to affect ERS, such as response 

format (Lau, 2007), and remarkably even the visual distance between response options and 

whether the questionnaire options were presented vertically or horizontally (Weijters et al., 

2021). While much research has been done on the predictors of extreme responding, the question 

of how well extreme responding can be detected in a dataset remains relatively unanswered. 

Simulation studies done on extreme responding instead tend to focus more on the impact of 

extreme responding on outcomes and correcting for the extreme response styles (Plieninger, 

2017; Wetzel et al., 2016 for examples). One notable exception is a study by Jin and Wang 

(2014), which examines the accuracy of the DIC for detecting ERS as a secondary question. 

While this study offers encouraging results in establishing the presence of ERS, the amount of 

replications (20) should be increased before definitive conclusions are drawn (Jin & Wang, 

2014). The following section covers the current research for midpoint response styles. 

MRS 

 MRS is defined as the tendency of participants to favour the middle response option of a 

scale, regardless of item content (Van Vaerenbergh & Thomas, 2013). Just as ERS, MRS has 

received attention as a possible source of bias. Similar to ERS, MRS may result in invalid 

measurement of participants, and lead to artificially lowered or heightened correlations between 

variables. The effect of MRS on the variance is however quite different from ERS. Where ERS 

generally adds construct irrelevant variance, MRS generally deflates variance by making 

participants more often choose the midpoint of the scale. The deflated variance that may result 

from this can lead to an increased magnitude of relationships between variables, increasing the 



 
 

risk of spurious findings (Van Vaerenbergh & Thomas, 2013).  

 Several studies have attempted to explain causes for MRS. Person characteristics that 

have been linked to MRS include evasiveness (not wanting to reveal one’s true opinion), 

indecision, and indifference (Baumgartner & Steenkamp, 2001). In addition, some research has 

established the relation between MRS and socioeconomic development, religious denomination, 

Hofstede values, Schwartz values and traditionalism at the country level (He et al., 2014). Again, 

while research has explored the impact of MRS on obtained results, and the causes of MRS have 

been studied, the detection of MRS has received surprisingly little research. The following 

section describes various viewpoints and models present in the literature of how ERS and MRS 

relate to each other. 

ERS and MRS 

 While the influences of ERS and MRS response styles on questionnaire data are 

relatively clear, the relation of ERS and MRS to each other is not. ERS and MRS are sometimes 

modelled as opposite ends of a single dimension, and other times modelled as two separate, 

independent dimensions (Falk & Cai, 2016). The decision to model ERS and MRS as two 

separate or one singular dimension has various consequences. First of all, this modelling choice 

will result in a more or less complex model, with different item and person parameters. Second, 

the ease of identifying the response style may be influenced.  Finally, the correction for the 

response style will take a different form depending on which operationalization is used. Since the 

choice between these operationalizations has various important consequences, this paper aims to 

answer the following research question: Is it possible to empirically distinguish endpoint 

responding and midpoint responding as separate dimensions or as opposite points of a single 

dimension in a given dataset, and if so, under what conditions and with what degree of error? In 



 
 

order to answer this question, a simulation study will be conducted in R. Since various 

approaches to modelling response styles exist, the following section gives an overview of these 

approaches and explains the approach used here. 

Modelling response styles 

 A variety of approaches to modelling, measuring, and correcting for response styles 

exists. For example, ERS can be modelled using extensions of the rating scale, partial credit, 

generalized partial credit, and graded response model (Jin & Wang, 2014; Johnson, 2003; Wang 

et al., 2006; Wang & Wu, 2011). In addition, both mixed Rasch models and unfolding models 

have been proposed to model ERS and ERS + ARS respectively (Javaras & Ripley, 2007; Wetzel 

et al., 2013). Besides these models, various approaches using the multidimensional nominal 

response model exist (Takane & de Leeuw, 1987). In the multidimensional nominal response 

model, the probability of a participant endorsing an item category is calculated using Equation 1: 

 
𝑃(𝑌 = 𝑘|𝒙, �̃�, 𝒄) =

exp(�̃�𝑘
′ 𝒙 + 𝒄𝑘)

Σm=1
k exp(�̃�𝑚

′ 𝒙 + 𝒄𝑚)
 (1)  

 

 Where �̃�𝑘
′  is the k’th (with subscript k denoting the item category) element of �̃�, the 

vector of slopes (1 per dimension),  𝒙 is the vector of participant scores on the dimension(s) (1 

per dimension), and 𝒄𝑘 is the k’th element of 𝒄, the vector of item intercepts (1 per item 

category). Some of the approaches utilizing the multidimensional nominal response model add 

discrete latent traits to represent ERS (Moors, 2003; Morren et al., 2011) and ERS and ARS 

(Kieruj & Moors, 2013). Response style classes (Van Rosmalen et al., 2010) and continuous 

latent traits for ERS are also used (Bolt & Johnson, 2009).  

 While these models are valuable additions to the literature, they are often somewhat 



 
 

limited in the ability to compare continuous ERS and MRS response styles in a single model. 

The models utilizing discrete latent traits or response style classes do not model response styles 

as continuous traits (Kieruj & Moors, 2013; Moors, 2003; Morren et al., 2011; Van Rosmalen et 

al., 2010). While some other approaches do model response styles as continuous traits, they 

either do not model both ERS and MRS at the same time, or do not model ERS and MRS as both 

separate dimensions and opposite points of a single dimension (Bolt & Johnson, 2009; Jin & 

Wang, 2014; Thissen-Roe & Thissen, 2013). In order to model ERS and MRS both as separate 

and combined continuous dimensions, an extension of the multidimensional nominal response 

model  is used in this study (Falk & Cai, 2016). We chose this model due to its flexibility in 

modelling various response styles. The use of a single, flexible model to generate the data 

facilitates a straightforward and fair test for the presence of different possible response styles. In 

the extension of the multidimensional nominal model, the probability of a participant endorsing a 

item category is calculated using Equation 2 (Falk & Cai, 2016): 

 
𝑃(𝑌 = 𝑘|𝒙, 𝒂, 𝑺, 𝒄) =

exp([𝒂⊙ 𝒔𝑘]
′𝒙 + 𝒄𝑘)

Σm=1
k exp([𝒂⊙ 𝒔𝑚]′𝒙 + 𝒄𝑚)

 (2)  

 

where 𝒂 is vector of slope parameters (1 for each dimension), 𝒔𝑘 is the k’th column (with 

subscript k denoting the item category) of 𝒔, the matrix containing the scoring functions (1 row 

per dimension, 1 column per item), ⊙ denotes Schur/Habermard component wise multiplication, 

𝒙 is a vector of participant score(s) on the latent variable (1 per latent variable), and 𝒄𝑘 is a the 

k’th column of 𝒄, the vector of item intercepts (1 per item category). The present model gives a 

great deal of flexibility in modelling data, since any response style or combination of response 

styles can be modelled using the scoring function matrix 𝒔. For instance, if we want to create a 



 
 

model where no response style is present (null model), there are five answer options, and there is 

only one substantive dimension, we could use the following scoring function (Falk & Cai, 2016): 

 𝒔𝑚 = [0 1 2 3 4] (3)  

 

Note that the multidimensional nominal response model given in Equation 2 reduces to the 

partial credit or graded partial credit model when we use the scoring function defined in 

Equation 3 (Falk & Cai, 2016; Masters & Wright, 1997; Muraki, 1992). In the same model with 

ERS and MRS added as a single dimension with ERS and MRS being modelled as opposites 

(ERSMRS), we could use the scoring function: 

 𝒔𝑚 = [
0 1 2 3 4
2 1 0 1 2

] (4)  

 

with the first row representing the scoring function of the first dimension (i.e., the dimension that 

relates to the latent trait of interest), and the second row representing the scoring function for the 

ERSMRS dimension (Falk & Cai, 2016). With this scoring function, participants with a positive 

score on the second dimension will show ERS and anti-MRS (Falk & Cai, 2016). Participants 

with a negative score on the second dimension will show the reverse pattern. 

 Finally, with ERS and MRS added as two separate dimensions (ERS + MRS), we would 

use the scoring function: 

 
𝒔𝑚 = [

0 1 2 3 4
1 0 0 0 1
0 0 1 0 0

] (5)  

 

with the first row representing the scoring function for the content factor, the second row 



 
 

representing the scoring function for ERS, and the third row representing the scoring function of 

MRS (Falk & Cai, 2016). Due to each response style having its own row in the scoring function, 

a negative score on ERS does not necessarily entail a positive score on MRS, unlike the previous 

scoring function presented in Equation 4. The following section illustrates how these scoring 

functions and the extension of the multidimensional nominal response model will be 

implemented to answer the research question in this study. 

Methods 

 The present study is conducted using R 4.0.4 (R Core Team, 2020). First, five-option 

Likert-scale data for participants are generated according to the extension of the 

multidimensional nominal response model (Falk & Cai, 2016), as given in Equation 2. To start, 

participant scores on the latent trait of interest are drawn from a normal distribution with a mean 

of zero and a standard deviation of one. For the condition where ERSMRS is modelled, 

participant’s response style trait scores are drawn from a normal distribution with a mean of zero 

and a variable standard deviation. For the condition where ERS + MRS are modelled, response 

style trait scores are drawn from a bivariate normal distribution with a vector of zeros as the 

mean and a variable covariance matrix. This enables a correlation between response styles to be 

modelled. Note that the response style dimensions are always modelled as independent from the 

substantive dimensions (i.e., the dimension(s) corresponding to the trait(s) of interest). 

Depending on the model, one of the scoring functions described in Equations 3, 4 or 5 is used. 

The slope vector 𝜶 is set to a vector of ones, while the item intercepts 𝒄 are set to -2, -1, 0, -1, -2. 

These values were chosen to ensure a symmetrical distribution of the answer probabilities (i.e., 

the distribution is mirrored, with for example the probability of endorsing category 1 with a trait 

score of -1 being equal to the probability of endorsing category 5 with a trait score of 1), with a 



 
 

participant having a maximal probability of answering in the middle category when they have a 

score of zero on the substantive trait of interest. The answer probabilities resulting from entering 

the person parameters, scoring functions, slope vectors and intercept vectors into Equation 2 are 

then converted into answers. 

 To examine the research question in this study, several conditions will be examined. 

First, null models with no response styles present will be generated. Second, models with 

ERSMRS as a single dimension will be generated. Finally, models with ERS and MRS as two 

separate dimensions will be generated. All of these models will be evaluated using the mirt R 

package (Chalmers, 2012) as originating from one of three models; a model with no response 

styles present, a model with ERS and MRS as two dimensions, or a model with ERS and MRS as 

a single dimension. The fitted model with the lowest AIC (Akaike, 1998) or BIC (Schwarz, 

1978) is chosen as the preferred model for each respective criterion. In this way, we obtain an 

overview of how often each criterion chooses the correct model under various conditions. The 

following section describes how the data are generated and evaluated under the null condition. 

Null condition 

This condition examines whether we can establish the absence of a response style in the 

data, and our degree of error in doing so under varying conditions. Since we are interested in a 

model with no response styles present, we use the scoring function from Equation 3 in 

combination with the person and item parameters discussed in the previous section to generate 

data. In addition, several factors are varied. First of all, the sample size and the test length are 

known to influence the accuracy of IRT model estimates (Akour & AL-Omari, 2013; Şahin & 

Anıl, 2017; Stone & Yumoto, 2004). Based on these previous studies, we expect higher sample 

sizes and higher test lengths to lead to greater accuracy. Sample sizes of 250, 500, and 1000 will 



 
 

be used, with test lengths of 10 and 20 items. Second, the number of substantive dimensions (i.e., 

dimensions concerning a substantive trait rather than a response style) may influence the ease of 

detecting response styles such as ERS and MRS (Plieninger, 2017). We thus expect a higher 

number of substantive dimensions to lead to greater model classification accuracy. For this 

reason, the model will be run with 1 and 2 substantive dimensions. Note that substantive traits 

are independent of each other in conditions where two are modelled. The number of items per 

dimension will be equal to the test length divided by the number of dimensions. For the null 

condition, this leads to a total of 3 ∗ 2 ∗ 2 = 12 data generating conditions. 

 After generating data with the scoring function from Equation 3 using the procedure and 

conditions described earlier, the mirt R package (Chalmers, 2012) is used to obtain parameter 

estimates for the data generated. The mirt package requires a model, an itemtype, and expected 

scoring functions as input. If these are provided in the following format (model = expected 

dimensions and which items they load on, itemtype = “gpcm”, gpcm_mats = expected scoring 

matrix), mirt is able to use the extended multidimensional nominal response model to obtain 

parameter estimates (Falk & Ju, 2020). Since the gpcm_mats argument enables us to specify an 

expected scoring matrix, we can utilize the scoring matrices specified in Equation 3, 4, and 5. 

This allows mirt to evaluate all three models of interest. Evaluating the models with mirt results 

in multiple fit indices, including the AIC and BIC. Using these model fit indices, the model with 

no response styles as the expected scoring matrix should (in the vast majority of cases) be 

preferred over a model with ERS and MRS as two dimensions, or ERS and MRS in a single 

dimension as expected scoring matrices. Every data-generating condition is evaluated by mirt for 

all three possible scoring functions, resulting in 3 BIC’s and 3 AIC’s per iteration. For both 

criteria, the model with the lowest estimated criterion is selected as the preferred model. The 



 
 

following section describes this process for the condition with ERS and MRS as a single 

dimension. 

ERSMRS 

The data-generating scoring function for ERSMRS is given in Equation 4. The approach 

for this scenario is similar to the approach for the null model. The only difference is that because 

of the inclusion of a response style dimension one condition is added. Specifically, the strength 

of the response styles present is likely to affect results, with more extreme response styles being 

more easily detectable (Cho, 2013). The standard deviation of the response styles will thus vary 

between values 0.6, 1 and 1.5. These values were specifically chosen in order to create an 

influence of response styles that is weak, normal and strong respectively, while still maintaining 

realistic influences (considering the influences of the response style for being +1/-1 SD from the 

mean, while keeping the substantive dimension constant). We expect higher values of the 

response style standard deviation to lead to higher model classification accuracy. This results in 

3 ∗ 2 ∗ 2 ∗ 3 = 36 data-generating conditions. As in the null condition, we expect the model that 

generated the data (ERSMRS) to be preferred in the majority of cases over the other models, 

especially for higher sample sizes, test lengths and number of substantive dimensions. In 

addition, we expect that it will be easier to identify models in conditions with a more extreme 

response style, leading to a lower degree of model selection error for higher response style 

standard deviations.  The following section describes this process for the scenario with ERS and 

MRS as two separate dimensions. 

ERS + MRS 



 
 

The data-generating scoring function for ERS and MRS being two separate dimensions is 

given in Equation 5.  This scenario differs from the ERSMRS condition in two ways. First, we 

now model two response style dimensions instead of one. Second, a correlation between 

response styles is modelled. This is done by drawing the response style scores from a bivariate 

normal distribution as opposed to a univariate normal distribution. Correlations between 

response styles vary between -.5, 0 and .5. We expect a negative correlation between response 

styles to lead to a lower probability of the ERS + MRS response style being detected, while a 

positive correlation leads to a higher probability of the ERS + MRS response style being 

detected. All other hypotheses remain identical. The following section describes the results of the 

simulation procedure described here.  

 

Results 

Null condition 

 First, we describe the results of the null condition. To compare the performance of 

the BIC to the AIC, we utilized McNemar’s tests (McNemar, 1947). McNemar’s test is a test 

applied to 2x2 contingency tables to determine whether row and column marginal frequencies 

are equal (i.e., whether the AIC correct classification rate is equal to the BIC correct 

classification rate). These tests were conducted to compare both the overall performance of the 

AIC compared to the BIC (i.e., by aggregating all AIC results and all BIC results), and the 

performance of the AIC and BIC in each condition separately. In Table 1, the percentage of cases 

the BIC selects the correct model (i.e., the data are generated as having no response styles, and 

the BIC of the model with no response styles is lowest) is shown for each combination of the 



 
 

factors test length (Number of items), sample size (N) and number of substantive dimensions 

(𝜃𝑁). Note that all percentages are based on 500 observations per factor combination. Conditions 

where the BIC significantly outperforms the AIC are marked with a *. These results for the AIC 

are displayed in Table 2. 

Table 1 

Percent of Cases Correct Model is Chosen When Using the BIC in the Null Condition 

𝜃𝑁 Number of items = 10  Number of items = 20 

 N = 250 N = 500 N = 1000  N = 250 N = 500 N = 1000 

𝜃𝑁 = 1 100* 100* 100*  100* 100* 100* 

𝜃𝑁 = 2 100* 100* 100*  100* 100* 100* 

* = significantly different from the AIC at the 0.05 level using McNemar’s test. Percentages are based on 500 

observations per table cell. 

Table 2 

Percent of Cases Correct Model is Chosen When Using the AIC in the Null Condition 

𝜃𝑁 Number of items = 10  Number of items = 20 

 N = 250 N = 500 N = 1000  N = 250 N = 500 N = 1000 

𝜃𝑁 = 1 86.2* 88.2* 90.4*  90.4* 92.6* 94.6* 

𝜃𝑁 = 2 87.2* 88.2* 92.2*  93.2* 93.2* 96.0* 

* = significantly different from the BIC at the 0.05 level using McNemar’s test. Percentages are based on 500 

observations per table cell. 



 
 

As can be seen in Table 1, the BIC perfectly indicates the correct model in the null 

condition for every combination of factors. Additionally, the BIC significantly outperforms the 

AIC in every condition. Table 2 shows that the AIC does not select the right model in all cases. 

Especially for low test length and low sample size, model classification accuracy decreases. 

While the overall classification accuracy of the AIC is not poor in and of itself, remaining above 

85% in all cases, it is clear the BIC is to be preferred in this condition. Overall, the BIC 

significantly outperformed the AIC in the null condition (100% vs 91.03% correct, 𝜒2 =

536, 𝑑𝑓 = 1, 𝑝 < .001). 

 To clarify the effects of the factors on the model classification accuracy, Table 3 displays 

main effects of the factors on the probability of the correct model being chosen. 

Table 3 

Main Effects of the Factors on the Probability of the Correct Model Being Chosen for the Null 

Condition 

Factors Percent correct BIC Percent correct AIC 

N = 250 100 89.2 

N = 500 100 90.6 

N = 1000 100 93.3* 

Number of items = 10 100 88.7 

Number of items = 20 100 93.3* 

𝜃𝑁 = 1 100 90.4 

𝜃𝑁 = 2 100 91.7 



 
 

* = significant at the 0.05 level using dummy coded logistic regression analysis. Reference categories were: N = 

250, Number of items = 10, and 𝜃𝑁(number of dimensions) = 1. Significance thus indicates a significant difference 

in model classification accuracy compared to the reference category. Percentages are based on 500 observations per 

table cell. 

 

 Dummy coded logistic regression was used to obtain significance tests of main effects in 

Table 3. To prevent estimation problems in the form of infinite logits for the logistic regression, 

no conditions should have only correct or only incorrect classifications. We ensured this by 

subtracting 0.002 from the proportion correct if all classifications in a condition were correct, 

and adding 0.002 to the proportion correct if all classifications in a condition were incorrect 

(equivalent to changing one incorrect observation to correct, or vice versa). This was done for all 

conditions. The adjustments are purely to facilitate estimation, and these adjusted values are thus 

not displayed in any of the main effect tables (the tables always display the percentages correct 

obtained in the data). The results of the dummy coded logistic regression analysis without any 

correction can be found in Appendix A. Besides main effects, possible interactions between 

factors were examined. Adding interactions between factors to the model did not significantly 

increase model fit for the BIC or the AIC in the null condition, so they were not included in the 

model (BIC: 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = 0, 𝑑𝑓 = 7, 𝑝 = 1, AIC: 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = 2.371, 𝑑𝑓 = 7, 𝑝 = .937.  

 Concerning main effects, none are detected for the BIC. This is due to the model 

classification accuracy always being 100%, regardless of condition. For the AIC, three trends are 

visible. For increasing the sample size (250 vs 1000, 𝑧 = 4.515, 𝑝 < .001) and test lengths (10 

vs 20, 𝑧 = 6.183, 𝑝 < .001), the correct model is chosen more often. Increasing the number of 

substantive dimensions from 1 to 2 has no significant effect on model classification accuracy 

(𝑧 = 1.725, 𝑝 = .085). The following section describes these results for the ERSMRS condition. 



 
 

ERSMRS condition 

For the conditions where data were generated using the ERSMRS model, Table 4 

displays the percentage of correct model choice with all combinations of the factors test length 

(Number of items), sample size (N), response style strength (𝜎𝑅𝑆) and number of substantive 

dimensions (𝜃𝑁) is displayed for the BIC. Table 5 depicts these results for the AIC.  

Table 4 

Percent of Cases Correct Model is Chosen When Using the BIC in the ERSMRS Condition 

Factors Number of items = 10  Number of items = 20 

N = 250 N = 500 N = 1000  N = 250 N = 500 N = 1000 

𝜎𝑅𝑆 = 0.6 𝜃𝑁 = 1 95.2* 100 100  100 100 100 

𝜃𝑁 = 2 97.2* 100 100  100 100 100 

𝜎𝑅𝑆 = 1 𝜃𝑁 = 1 100 100 100  100 100 100 

𝜃𝑁 = 2 100 100 100  100 100 100 

𝜎𝑅𝑆 = 1.5 𝜃𝑁 = 1 100 100 100  100 100 100 

𝜃𝑁 = 2 100 100 100  100 100 100 

* = significantly different from the AIC at the 0.05 level using McNemar’s test. Percentages are based on 500 

observations per table cell. 



 
 

Table 5 

Percent of Cases Correct Model is Chosen When Using the AIC in the ERSMRS Condition 

Factors  Number of items = 10  Number of items = 20 

  N = 250 N = 500 N = 1000  N = 250 N = 500 N = 1000 

𝜎𝑅𝑆 = 0.6 𝜃𝑁 = 1 99.2* 100 100  100 100 100 

𝜃𝑁 = 2 99.8* 100 100  100 100 100 

𝜎𝑅𝑆 = 1 𝜃𝑁 = 1 100 100 100  100 100 100 

𝜃𝑁 = 2 100 100 100  100 100 100 

𝜎𝑅𝑆 = 1.5 𝜃𝑁 = 1 100 100 100  100 100 100 

𝜃𝑁 = 2 100 100 100  100 100 100 

* = significantly different from the BIC at the 0.05 level using McNemar’s test. Percentages are based on 500 

observations per table cell. 

 As can be seen in Table 4, the BIC performs very well in this condition. Only for weak 

response styles in combination with low sample sizes and short test length, accuracy drops below 

99%. Table 5 displays these results for the AIC. In this condition, the AIC also performs very 

well. Again, only for a combination of lower sample sizes, low response style strength, and low 

test length a very slight drop in accuracy occurs. In these conditions, the AIC significantly 

outperforms the BIC. In the ERSMRS condition overall, the AIC significantly outperforms the 

BIC (99.78% vs 99.97% correct, 𝜒2 = 24.976, 𝑑𝑓 = 1, 𝑝 < .001). While this effect is 

statistically significant, the practical significance of this 0.2% difference in favour of the AIC is 

limited.  



 
 

 To give a clear overview of the factor effects, Table 6 displays the main effects of factors 

on accuracy of model selection. 

Table 6 

Main Effects of the Factors on the Probability of the Correct Model Being Chosen for the 

ERSMRS Condition 

Factors Percent correct BIC Percent correct AIC 

N = 250 99.4 99.9 

N = 500 100* 100 

N = 1000 100* 100 

Number of items = 10 99.6 99.9 

Number of items = 20 100* 100 

𝜃𝑁 = 1 99.7 100 

𝜃𝑁 = 2 99.8 100 

𝜎𝑅𝑆 = 0.6 99.4 99.9 

𝜎𝑅𝑆 = 1 100* 100 

𝜎𝑅𝑆 = 1.5 100* 100 

* = significant at the 0.05 level using dummy coded logistic regression analysis, with the model including possible 

interactions between factors for the BIC. Reference categories were: N = 250, Number of items = 10, 𝜃𝑁 (the 

number of substantive dimensions) = 1, and 𝜎𝑅𝑆 (the response style standard deviation) = 0.6. Significance thus 

indicates a significant difference in model classification accuracy compared to the reference category. Percentages 

are based on 500 observations per table cell. 

 Again, dummy coded logistic regression analysis was used to obtain significance 

estimates of the main effects. First, BIC effects will be discussed. For the BIC, including 



 
 

interactions between factors significantly improved model fit (𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = 35.188, 𝑑𝑓 =

13, 𝑝 < .001), so interactions were added to the model. Several main effects appear in the model 

containing interactions. Higher sample size (250 vs 500, 𝑧 = 4.125, 𝑝 < .001, and 250 vs 1000, 

𝑧 = 4.125, 𝑝 < .001), higher test length (10 vs 20 items, 𝑧 = 4.231, 𝑝 < .001), and higher 

response style strengths (0.6 to 1, 𝑧 = 4.125, 𝑝 < .001, and 0.6 to 1.5, 𝑧 = 4.125, 𝑝 < .001) 

lead to higher model selection accuracy, but only slightly. In addition, an interaction emerges 

between the sample size and response style strength. Increasing both the sample size and 

response style strength at the same time leads to a somewhat lower increase in model 

classification accuracy than would be expected based on the main effects alone (𝑧 =

−2.107, 𝑝 = .035 for all possible interactions between the sample size and the response style 

standard deviation). It has to be noted that the practical significance of these results is rather 

limited, given that the BIC displays imperfect performance in only 3 out of 36 conditions. 

Generalizing trends that occur outside these three specific imperfect cells is thus difficult to do. 

 For the AIC, adding interactions to the model did not significantly increase model fit 

(𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = 2.138, 𝑑𝑓 = 13, 𝑝 = 1). In addition, none of the main effects are significant. This 

is likely due to the very high performance of the AIC in all conditions. The following section 

displays these results for the ERS + MRS condition.  

ERS + MRS condition 

For the conditions where data were generated using the ERS + MRS model, Table 7 

displays the percentage of correct model choices with all combinations of the factors test length 

(number of items), sample size (N), response style strength (𝜎𝑅𝑆), number of substantive 

dimensions (𝜃𝑁), and response style correlations (𝑟𝑅𝑆) is displayed for the BIC. 



 
 

Table 7 

Percent of Cases Correct Model is Chosen When Using the BIC in the ERS + MRS Condition 

Factors   Number of items = 10  Number of items = 20 

   N = 250 N = 500 N = 1000  N = 250 N = 500 N = 1000 

𝑟𝑅𝑆 = −0.5 𝜎𝑅𝑆 = 0.6 𝜃𝑁 = 1 0.0* 0.0* 0.0*  0.0* 0.0* 0.0* 

𝜃𝑁 = 2 0.0* 0.0* 0.2*  0.0* 0.0* 0.0* 

𝜎𝑅𝑆 = 1 𝜃𝑁 = 1 0.2* 3.0* 6.6*  1.4* 13.2* 56.8* 

𝜃𝑁 = 2 1.0* 3.0* 7.4*  1.4* 12.4* 52.6* 

𝜎𝑅𝑆 = 1.5 𝜃𝑁 = 1 25.6* 54.6* 86.6*  69.8* 99.2 100 

𝜃𝑁 = 2 22.8* 50.4* 88.8*  68.8* 97.4* 100 

𝑟𝑅𝑆 = 0 𝜎𝑅𝑆 = 0.6 𝜃𝑁 = 1 0.0* 1.0* 19.6*  0.0* 15.4* 91.0* 

𝜃𝑁 = 2 0.0* 1.2* 22.0*  0.2* 18.0* 88.4* 

𝜎𝑅𝑆 = 1 𝜃𝑁 = 1 66.2* 99.4 100  98.0* 100 100 

𝜃𝑁 = 2 66.4* 99.0 100  98.8* 100 100 

𝜎𝑅𝑆 = 1.5 𝜃𝑁 = 1 100 100 100  100 100 100 

𝜃𝑁 = 2 100 100 100  100 100 100 

𝑟𝑅𝑆 = 0.5 𝜎𝑅𝑆 = 0.6 𝜃𝑁 = 1 0.0* 0.8* 52.2*  0.2* 51.0* 100 

𝜃𝑁 = 2 0.0* 1.6* 50.8*  0.4* 39.0* 100 

𝜎𝑅𝑆 = 1 𝜃𝑁 = 1 96.6* 100 100  100 100 100 

𝜃𝑁 = 2 98.2* 100 100  100 100 100 

𝜎𝑅𝑆 = 1.5 𝜃𝑁 = 1 100 100 100  100 100 100 

𝜃𝑁 = 2 100 100 100  100 100 100 



 
 

* = significantly different from the AIC at the 0.05 level using McNemar’s test. Percentages are based on 500 

observations per table cell. 

 Table 7 shows a very strong contrast between conditions, with correct model choice 

varying between 0% and 100%. Conditions with low response style strength, negative response 

style correlations, low test lengths and low sample sizes lead to especially poor performance. 

Table 8 displays these results for the AIC. 

Table 8 

 Percent of Cases Correct Model is Chosen When Using the AIC in the ERS + MRS Condition 

Factors   Number of items = 10  Number of items = 20 

   N = 250 N = 500 N = 1000  N = 250 N = 500 N = 1000 

𝑟𝑅𝑆 = −0.5 𝜎𝑅𝑆 = 0.6 𝜃𝑁 = 1 15.0* 18.8* 14.4*  11.8* 19.8* 28.0* 

𝜃𝑁 = 2 12.2* 13.2* 13.2*  14.8* 20.8* 24.4* 

𝜎𝑅𝑆 = 1 𝜃𝑁 = 1 35.0* 47.8* 56.2*  67.0* 87.2* 99.0* 

𝜃𝑁 = 2 33.0* 40.4* 58.4*  62.8* 86.0* 98.8* 

𝜎𝑅𝑆 = 1.5 𝜃𝑁 = 1 77.6* 92.2* 98.2*  99.2* 100 100 

𝜃𝑁 = 2 74.2* 90.8* 99.0*  99.2* 100* 100 

𝑟𝑅𝑆 = 0 𝜎𝑅𝑆 = 0.6 𝜃𝑁 = 1 61.8* 85.6* 99.0*  88.6* 100* 100* 

𝜃𝑁 = 2 60.0* 84.6* 98.6*  87.0* 100* 100* 

𝜎𝑅𝑆 = 1 𝜃𝑁 = 1 99.6* 100 100  100* 100 100 

𝜃𝑁 = 2 98.6* 100 100  100* 100 100 

𝜎𝑅𝑆 = 1.5 𝜃𝑁 = 1 100 100 100  100 100 100 



 
 

Factors   Number of items = 10  Number of items = 20 

   N = 250 N = 500 N = 1000  N = 250 N = 500 N = 1000 

𝜃𝑁 = 2 100 100 100  100 100 100 

𝑟𝑅𝑆 = 0.5 𝜎𝑅𝑆 = 0.6 𝜃𝑁 = 1 76.4* 98.8* 100*  99.6* 100* 100 

𝜃𝑁 = 2 76.8* 98.6* 100*  99.6* 100* 100 

𝜎𝑅𝑆 = 1 𝜃𝑁 = 1 100* 100 100  100 100 100 

𝜃𝑁 = 2 100* 100 100  100 100 100 

𝜎𝑅𝑆 = 1.5 𝜃𝑁 = 1 100 100 100  100 100 100 

𝜃𝑁 = 2 100 100 100  100 100 100 

* = significantly different from the BIC at the 0.05 level using McNemar’s test. Percentages are based on 500 observations per 

table cell. 

 Overall, the results for the AIC seem to follow the same pattern as the BIC. The AIC 

does tend to be less variable in its model selection success, with percentage of correct choices 

varying between 11.8% and 100% rather than 0% and 100%. The AIC is the very clear winner in 

the ERS + MRS condition, significantly outperforming the BIC by a large margin (59.2% vs 

84.4% correct, 𝜒2 = 13613, 𝑑𝑓 = 1, 𝑝 < .001). 

 To enhance interpretability of the factor effects on ERS + MRS model classification 

accuracy, Table 9 displays main effects of the factors. 



 
 

Table 9 

Main Effects of the Factors on the Probability of the Correct Model Being Chosen for the ERS + 

MRS Condition 

Factors Percent correct BIC Percent correct AIC 

N = 250 47.7 79.2 

N = 500 57.2* 85.7* 

N = 1000 72.9* 88.5* 

Number of items = 10 52.3 80.1 

Number of items = 20 66.2* 88.8* 

𝜃𝑁 = 1 59.4 84.8 

𝜃𝑁 = 2 59.1 84.2 

𝜎𝑅𝑆 = 0.6 18.1 67.3 

𝜎𝑅𝑆= 1 68.9* 88.0* 

𝜎𝑅𝑆 = 1.5 90.7* 98.1* 

𝑟𝑅𝑆 = -0.5 28.4* 58.6* 

𝑟𝑅𝑆= 0 74.7 97.4 

𝑟𝑅𝑆 = 0.5 77.5* 98.6* 

* = significant at the 0.05 level using dummy coded logistic regression analysis, including possible interactions between factors 

for the BIC and AIC. Reference categories were: N = 250, Number of items = 10, 𝜃𝑁 (the number of substantive dimensions) = 1, 

𝜎𝑅𝑆 (the response style standard deviation) = 0.6, and 𝑟𝑅𝑆 (the correlation between response styles) = 0. Significance thus 

indicates a significant difference in model classification accuracy compared to the reference category. Percentages are based on 

500 observations per table cell. 



 
 

 Clear main effects of factors emerge from Table 9 for both the BIC and AIC. First, the 

BIC results are discussed. Adding interactions between factors significantly increased model fit 

for the BIC (𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = 889.83, 𝑑𝑓 = 25, 𝑝 < .001). Increasing the sample size (250 to 500, 

𝑧 = 9.255, 𝑝 < .001 , and 250 to 1000, 𝑧 = 14.958, 𝑝 < .001), the test length (10 to 20 items, 

𝑧 = 8.223𝑝 < .001), the response style standard deviation (0.6 to 1, 𝑧 = 19.005, 𝑝 < .001, and 

0.6 to 1.5, 𝑧 = 22.719, 𝑝 < .001), and the response style correlation (0 to .5, 𝑧 = 4.775, 𝑝 <

.001) leads to more accurate model selection. Decreasing the response style correlation leads to 

less accurate model selection (0 to -.5, 𝑧 = −6.591, 𝑝 < .001). There is no significant effect of 

the number of substantive dimensions (𝑧 = 1.210, 𝑝 = .226). Since several significant 

interaction effects are present, the full logistic regression model including interactions for the 

BIC is presented in Table 10.  

Table 10 

Results of the Dummy Coded Logistic Regression Model in the ERS + MRS Condition for the 

BIC 

Factor Estimate std. error z-value p-value 

Intercept -9.286 0.530 -17.541 < .001 

N = 500 4.685* 0.506 9.255 < .001 

N = 1000 7.858* 0.525 14.958 < .001 

Number of items = 20 2.003* 0.244 8.223 < .001 

𝜃𝑁 = 2 0.220 0.182 1.210 . 226 

𝜎𝑅𝑆 = 1 10.012* 0.527 19.005 < .001 

𝜎𝑅𝑆 = 1.5 13.808* 0.608 22.719 < .001 



 
 

Factor Estimate std. error z-value p-value 

𝑟𝑅𝑆 = -0.5 -4.221* 0.640 -6.591 < .001 

𝑟𝑅𝑆 = 0.5 2.200* 0.461 4.775 < .001 

N = 500 : Number of items = 20 1.078* 0.181 5.944 < .001 

N = 500 : 𝜃𝑁 = 2 -0.150 0.128 -1.170 . 242 

N = 500 : 𝜎𝑅𝑆 = 1 -1.348* 0.474 -2.843 . 004 

N = 500 : 𝜎𝑅𝑆 = 1.5 -1.928* 0.538 -3.582 < .001 

N = 500 : 𝑟𝑅𝑆 = -0.5 -1.380* 0.368 -3.748 < .001 

N = 500 : 𝑟𝑅𝑆 = 0.5 -1.451* 0.414 -3.505 < .001 

N = 1000 : Number of items = 20 1.639* 0.226 7.248 < .001 

N = 1000 : 𝜃𝑁 = 2 -0.086 0.152 -0.569 . 570 

N = 1000 : 𝜎𝑅𝑆 = 1 -3.612* 0.588 -6.144 < .001 

N = 1000 : 𝜎𝑅𝑆 = 1.5 -3.816* 0.672 -5.679 < .001 

N = 1000 : 𝑟𝑅𝑆 = -0.5 -0.949* 0.465 -2.042 . 041 

N = 1000 : 𝑟𝑅𝑆 = 0.5 -0.660 0.454 -1.454 . 146 

Number of items = 20 : 𝜃𝑁 = 2 -0.176 0.099 -1.784 . 074 

Number of items = 20 : 𝜎𝑅𝑆 = 1 0.719* 0.287 2.504 . 012 

Number of items = 20 : 𝜎𝑅𝑆 = 1.5 1.691* 0.429 3.939 < .001 

Number of items = 20 : 𝑟𝑅𝑆 = -0.5 -1.602* 0.278 -5.765 < .001 

Number of items = 20 : 𝑟𝑅𝑆 = 0.5 0.692* 0.220 3.151 . 002 

𝜃𝑁 = 2 : 𝜎𝑅𝑆 = 1 -0.082 0.186 -0.442 . 659 

𝜃𝑁 = 2 : 𝜎𝑅𝑆 = 1.5 -0.220 0.276 -0.795 . 427 



 
 

Factor Estimate std. error z-value p-value 

𝜃𝑁 = 2 : 𝑟𝑅𝑆 = -0.5 0.029 0.197 0.147 . 883 

𝜃𝑁 = 2 : 𝑟𝑅𝑆 = 0.5 -0.205 0.122 -1.682 . 093 

𝜎𝑅𝑆 = 1 : 𝑟𝑅𝑆 = -0.5 -2.348* 0.510 -4.608 < .001 

𝜎𝑅𝑆 = 1 : 𝑟𝑅𝑆 = 0.5 0.616 0.439 1.405 . 160 

𝜎𝑅𝑆 = 1.5 : 𝑟𝑅𝑆 = -0.5 -1.452* 0.674 -2.156 . 031 

𝜎𝑅𝑆 = 1.5 : 𝑟𝑅𝑆 = 0.5 -1.902* 0.568 -3.350 . 001 

Reference categories used: 250 for the sample size, with N=500 representing the 250 to 500 sample size increase, and N=1000 

representing the 250 to 1000 sample size increase. 10 for Number of items, with number of items = 20 representing the increase 

from 10 to 20 items. 1 for dimensions, with 𝜃𝑁 = 2 representing the increase of 1 to 2 dimensions. 0.6 for the response style 

standard deviation, with 𝜎𝑅𝑆 = 1 representing the increase from 0.6 to 1 response style standard deviation, and 𝜎𝑅𝑆 = 1.5 

representing the increase from 0.6 to 1.5 response style standard deviation. Finally, 0 for the response style correlation, with 𝑟𝑅𝑆 = 

-.5 representing the decrease from 0 to -.5 response style correlation, and 𝑟𝑅𝑆 = .5 representing the increase from 0 to .5 response 

style correlation. : between variables refer to interactions, and * behind estimates refer to significance at the 0.05 level. 

 Since the main effects originating from the model in Table 10 are already discussed 

above, this part will focus on the interactions between factors. Several interactions emerge in 

Table 10. First of all, a clear interaction between the test length and the sample size appears. 

Increasing both the test length and the sample size simultaneously leads to a bigger increase in 

model classification accuracy than one would expect based on the main effects alone. In 

addition, an interaction between the sample size and the response style correlation appears. The 

positive main effect of increasing the sample size from 250 to either 500 or 1000 is reduced 

when the response style correlation drops from zero to -.5. Similarly, the positive effect of 

raising the sample size from 250 to 500 is reduced if the correlation between response styles is 

increased from 0 to .5. This trend also occurs for increasing the sample size from 250 to 1000, 

but is not significant. Notably, the effect of raising the sample size from 250 to 500 in 



 
 

combination with increasing the response style correlation from 0 to .5 is reversed from the 

interaction effect for the AIC appearing later. An explorative post hoc analyses (described in 

Appendix C) revealed the differing direction of this interaction for the AIC and BIC to be a 

consequence of the high rate of completely correct and completely incorrect model 

classifications occurring in the AIC and BIC data cells, where the statistical correction applied to 

these cells may have had an impact on the estimated effect. While this makes the effect of the 

sample size interaction with positive response style correlations difficult to interpret, the 

interaction of the sample size with negative response style correlations is clear, since the same 

trends occur for the AIC and BIC. A final interaction concerning the sample size emerges. 

Increasing the sample size from 250 to 500 or 1000 has a lower positive effect on correct model 

classification accuracy if the response style standard deviation is simultaneously increased from 

0.6 to either 1 or 1.5. Notably, this interaction is in a different direction than the interaction for 

the AIC appearing later. The same post hoc analysis as described earlier revealed the direction of 

this interaction for the BIC to be another artefact. 

 Second, several interactions concerning the test length appear. A positive interaction 

between the test length and the response style standard deviation emerges. Raising the test length 

from 10 to 20 items, in combination with raising the response style standard deviation from 0.6 

to either 1 or 1.5 leads to a substantially higher increase in model classification accuracy than 

one would expect based on the main effects of the test length and the response style standard 

deviation alone. Additionally, there is an interaction between the test length and the response 

style correlation. Increasing the test length while simultaneously decreasing the response style 

correlation from 0 to -.5 leads to a greatly reduced increase in model classification accuracy. For 

positive correlations, the reverse pattern appears, where the longer test leads to better model 



 
 

classification than can be expected by main effects alone. 

 Finally, two interactions appear involving the response style standard deviation. 

Increasing the standard deviation from 0.6 to 1 or 1.5 leads to a lower increase in model 

classification accuracy than would be expected based on main effects if the response style 

correlation is also lowered from 0 to -.5. The reverse pattern appears for positive correlations, 

where the increase in model classification accuracy is bigger than what would be expected given 

the main effects, but only for raising the standard deviation from 0.6 to 1.5. The combination of 

raising the response style standard deviation from 0.6 to 1 and increasing the response style 

correlation does not result in a significant effect. The following paragraphs discuss the results for 

the AIC. 

 For the AIC, adding interactions to the model also significantly increased model fit 

(𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 = 874.53, 𝑑𝑓 = 25, 𝑝 < .001). Several main effects emerged from the model 

containing interactions. These main effects are comparable to the BIC main effects discussed 

previously. Increasing the sample size (250 to 500, 𝑧 = 12.506, 𝑝 < .001 , and 250 to 1000, 𝑧 =

14.643, 𝑝 < .001), the test length (10 to 20 items, 𝑧 = 13.146, 𝑝 < .001), the response style 

standard deviation (0.6 to 1, 𝑧 = 15.242, 𝑝 < .001, and 0.6 to 1.5, 𝑧 = 13.282, 𝑝 < .001), and 

the response style correlation (0 to -.5, 𝑧 = −20.325, 𝑝 < .001, and 0 to .5, 𝑧 = 6.482, 𝑝 <

.001) leads to more accurate model classification. The full logistic regression for the AIC, 

including interactions between factors, is presented in Table 11. 



 
 

Table 11 

Results of the Logistic Regression in the ERS + MRS Condition for the AIC 

Factor Estimate std. error z-value p-value 

Intercept 0.530 0.079028 6.706 < .001 

N = 500 1.409* 0.112651 12.506 < .001 

N = 1000 3.360* 0.229479 14.643 < .001 

Number of items = 20 1.514* 0.115143 13.146 < .001 

𝜃𝑁 = 2 −0.119 0.094213 −1.268 . 205 

𝜎𝑅𝑆 = 1 3.699* 0.242657 15.242 < .001 

𝜎𝑅𝑆 = 1.5 4.050* 0.304899 13.282 < .001 

𝑟𝑅𝑆 = -0.5 −2.377* 0.117 −20.325 < .001 

𝑟𝑅𝑆 = 0.5 0.8267* 0.128 6.482 < .001 

N = 500 : Number of items = 20 0.541* 0.102 5.281 < .001 

N = 500 : 𝜃𝑁 = 2 −0.053 0.089 −0.591 . 554 

N = 500 : 𝜎𝑅𝑆 = 1 0.296* 0.113 2.615 . 009 

N = 500 : 𝜎𝑅𝑆 = 1.5 0.808* 0.162 4.981 < .001 

N = 500 : 𝑟𝑅𝑆 = -0.5 −1.158* 0.137 −8.461 < .001 

N = 500 : 𝑟𝑅𝑆 = 0.5 1.105* 0.245 4.512 < .001 

N = 1000 : Number of items = 20 1.100* 0.123 8.908 < .001 

N = 1000 : 𝜃𝑁 = 2 0.088 0.103 0.856 . 392 

N = 1000 : 𝜎𝑅𝑆 = 1 1.138* 0.126 9.055 < .001 

N = 1000 : 𝜎𝑅𝑆 = 1.5 2.418* 0.245 9.854 < .001 



 
 

Factor Estimate std. error z-value p-value 

N = 1000 : 𝑟𝑅𝑆 = -0.5 −3.382* 0.247 −13.700 < .001 

N = 1000 : 𝑟𝑅𝑆 = 0.5 −0.307 0.374 −0.821 . 412 

Number of items = 20 : 𝜃𝑁 = 2 0.081 0.083 0.970 . 332 

Number of items = 20 : 𝜎𝑅𝑆 = 1 1.612* 0.010 16.156 < .001 

Number of items = 20 : 𝜎𝑅𝑆 = 1.5 2.750* 0.233 11.823 < .001 

Number of items = 20 : 𝑟𝑅𝑆 = -0.5 −1.662* 0.137 −12.088 < .001 

Number of items = 20 : 𝑟𝑅𝑆 = 0.5 1.057* 0.260 4.068 < .001 

𝜃𝑁 = 2 : 𝜎𝑅𝑆 = 1 0.004 0.092 0.047 . 962 

𝜃𝑁 = 2 : 𝜎𝑅𝑆 = 1.5 0.032 0.139 0.232 . 816 

𝜃𝑁 = 2 : 𝑟𝑅𝑆 = -0.5 −0.044 0.118 −0.369 . 712 

𝜃𝑁 = 2 : 𝑟𝑅𝑆 = 0.5 0.120 0.157 0.762 . 446 

𝜎𝑅𝑆 = 1 : 𝑟𝑅𝑆 = -0.5 −2.522* 0.251 −10.051 < .001 

𝜎𝑅𝑆 = 1 : 𝑟𝑅𝑆 = 0.5 −0.557 0.382 −1.459 . 145 

𝜎𝑅𝑆 = 1.5 : 𝑟𝑅𝑆 = -0.5 −0.844* 0.312 −2.705 . 007 

𝜎𝑅𝑆 = 1.5 : 𝑟𝑅𝑆 = 0.5 −0.966* 0.421 −2.293 . 022 

Reference categories used: 250 for the sample size, with N=500 representing the 250 to 500 sample size increase, 

and N=1000 representing the 250 to 1000 sample size increase. 10 for Number of items, with number of items = 20 

representing the increase from 10 to 20 items. 1 for dimensions, with 𝜃𝑁 = 2 representing the increase of 1 to 2 

dimensions. 0.6 for the response style standard deviation, with 𝜎𝑅𝑆 = 1 representing the increase from 0.6 to 1 

response style standard deviation, and 𝜎𝑅𝑆 = 1.5 representing the increase from 0.6 to 1.5 response style standard 

deviation. Finally, 0 for the response style correlation, with 𝑟𝑅𝑆 = -.5 representing the decrease from 0 to -.5 response 

style correlation, and 𝑟𝑅𝑆 = .5 representing the increase from 0 to .5 response style correlation. : between variables 

refer to interactions, and * behind estimates refer to significance at the 0.05 level. 



 
 

 Interaction effects for the AIC are by and large similar to the BIC. Since the effects of the 

two indices are similar, only the AIC interaction effects that are different will be discussed here. 

First of all, increasing the sample size and the response style standard deviation simultaneously 

leads to a larger increase in model classification accuracy than would be expected based on main 

effects alone for the AIC, while the opposite is true for the BIC. Second, increasing the sample 

size from 250 to 500 while the response style correlation is raised to .5 from 0 leads to a negative 

interaction effect for the BIC, while the AIC shows a positive interaction effect. Note that both of 

these effects that differed for the AIC and BIC were discovered to be due to artefacts, as was 

discussed earlier in the BIC interaction results. For all other interactions involving the AIC, the 

direction is the same as the BIC.  

Discussion 

 The present study set out to establish whether it is possible to empirically distinguish 

endpoint responding and midpoint responding as separate dimensions or opposite points of a 

single dimension in a given dataset using the AIC and BIC, and if so, under what conditions and 

with what degree of model classification error this is possible. Data were generated under three 

conditions to answer this question. These conditions will be discussed below in order of 

appearance.  

 In the null condition, the absence of a response style present in the data could be 

established well by both the AIC and BIC. The sample size and the test length were established 

to have a positive influence on model selection accuracy, but only for the AIC. The BIC 

performed perfectly in this condition. The AIC obtained a respectable 91.03% overall correct 

model classification. Despite this performance by the AIC, the BIC is the better fit index to 

establish the absence of response styles in data. This makes sense, as the BIC naturally selects 



 
 

more parsimonious models, and the null model is the most parsimonious model of the three 

possible models considered.  

 Both the BIC and the AIC were excellent in detecting the presence of ERSMRS in a 

dataset under nearly all conditions. Only when the response style strength is weak, the sample 

size is small, and the test length is low, slightly lower model classification accuracy occurs. The 

test length, the sample size and response style strength influenced model selection accuracy, but 

only for the BIC. While the AIC formally outperforms the BIC in this condition, the 0.2% 

difference between the two is of minimal if any practical significance. Both fit indices are well 

suited to detecting this particular response style. 

 The condition with ERS and MRS as two separate dimensions was the place where both 

the difference between the fit indices and the effects of the factors were most pronounced. For 

negative response style correlations and weak to middling response style strengths, the BIC was 

almost completely unable to correctly identify the model that generated the data, instead often 

preferring the simpler null and ERSMRS models. Even for the zero or positive response style 

correlations, weak response style strengths decreased the BIC’s model selection accuracy to 

great extents. The AIC’s performance generally followed the same trend as the BIC, although its 

overall performance was substantially higher.  Both fit indices were strongly affected by the 

sample size, the test length, the response style standard deviation and the response style 

correlation for correct model classification. The effect of the response style correlation on the 

model classification accuracy can be explained by the fact that a -.5 response style correlation in 

the ERS + MRS condition makes the ERS + MRS model more similar to the ERSMRS model. 

Conversely, a .5 response style correlation in the ERS + MRS condition makes the model less 

similar to the ERSMRS model. It must be noted that the effect of the number of substantive 



 
 

dimensions on the correct model classification was not observed in this and all other conditions. 

Overall, the AIC was most definitely the better fit index in the ERS + MRS condition. 

 In addition to the main effects of factors discussed above, the interacting effects of 

several factors were established. Of particular note here are the interactions involving the sample 

size and the test length, since these are the only factors researchers can readily influence. 

Generally, raising the sample size increases the positive effect of other variables on model 

classification accuracy, as can be seen in the interactions with the test length and the response 

style standard deviation. The negative response style correlations are a notable exception to this 

rule. Researchers must thus take note that simply increasing the sample size may have less effect 

than desired if negatively correlated response styles are present. Raising the test length follows 

the same pattern as raising the sample size.  

 Several limitations are present in this study. First of all, conducting a simulation requires 

various simplifying assumptions to be made. These assumptions are unlikely to hold in practice, 

and may influence the results obtained. For example, the item slopes and intercepts were the 

same for all items, which will not occur with a real questionnaire. In addition, all participant trait 

and response style scores were drawn from a normal distribution with a mean of zero and a 

standard deviation of one. In practice, it is likely participants will not all draw from the same 

distribution, especially if groups differ in age, gender, race, and other predictors of response 

styles. Furthermore, the response styles are thought to affect each item equally, which is also 

unlikely to hold in practice. Since midpoint responding has been found to be affected by 

participant fatigue, later items may for example be more affected by it than earlier items. Finally, 

only two response styles were modelled in this study, while more may be present in real-life 

data. The addition of other response styles to a dataset might complicate the process of 



 
 

identifying which response styles exactly are present. Future research can expand on this study 

by experimenting with different participant trait score distributions, varying item parameters, 

varying effects of response styles on items, adding other response styles, and other variations on 

this study design. 

 Second, the number of replications in this study was limited to 500 to reduce the 

computational time. Ideally, at least 1000 replications would be conducted for such a study. 

While it is unlikely increasing the number of replications will greatly change the results, some of 

the computational problems with the logistic regression encountered here may have been avoided 

this way.  

 From the findings of this study, several recommendations for practical research arise. 

First of all, the use of the AIC or BIC seems to make quite a difference in some conditions when 

attempting to detect response styles. Which index is best to use will thus depend on research 

aims and hypotheses. If a researcher wants to have a high degree of accuracy in determining the 

absence of response styles, use of the BIC is the safest choice. In contrast, if a researcher expects 

a response style but wishes to distinguish between ERSMRS or ERS + MRS, the AIC performs 

better. Another approach that may be considered is a combined approach, where the BIC is used 

to establish the presence of response styles, and the AIC is used to establish which response style 

is present. Results of this approach are presented in Appendix B, and appear promising. Based on 

the results in this appendix, both the use of the AIC alone or the combination of the AIC and BIC 

is defensible. The AIC performs better than the combined approach in the ERS + MRS 

condition, but the combined approach is better at detecting the absence of any response style in 

the data. Which approach is used must thus be determined by weighing the cost of detecting a 

response style that is not present against the cost of not detecting a response style that is present. 



 
 

Using the BIC alone is not recommended, as this results in inferior or equal performance in 

every condition compared to the combined approach.  

 Besides the choice between the AIC and BIC, the role of factors must also be discussed. 

The sample size and the test length must be sufficient, especially for the more complex 

multidimensional response style models. While the response style standard deviation and the 

response style correlation are not readily influenced, they must nevertheless not be neglected. As 

is visible in the ERS + MRS condition, these factors have substantial impacts on the sample size 

and the test length required to obtain accurate model classification, and a negative response style 

correlation can even reduce the effects of raising the sample size and the test length. Researchers 

may make use of the estimated parameters of models containing response styles to gain insight 

which condition they are most likely in. For illustration, a short example is provided. A 

researcher could a priori choose to use the AIC based on his aversion to not detecting a response 

style that is present. If the AIC selects the ERSMRS model as the preferred model, the researcher 

could additionally check the estimated parameters of the ERS + MRS model (i.e., the response 

style standard deviation and the response style correlation) and compare them to Table 8 to get 

some insight into how often the AIC would pick the ERS + MRS model if the ERS + MRS 

response style was present in reality. If the researcher had a sample size of 250, a test length of 

10 items, a single substantive dimension and the estimated response style standard deviation and 

the estimated response style correlation were 0.6 and -.5 respectively, the ERS + MRS response 

style is difficult to detect (15% of 500 replications in this study). The researcher could use this 

information to note that while the AIC displays a preference for an ERSMRS model, a complex 

response style such as ERS + MRS is unlikely to be detected in current conditions, even if it was 

present. 



 
 

 Overall, the question of whether it is possible to distinguish ERS and MRS from 

ERSMRS can be answered with a yes. Only when a negative response style correlation occurs 

for the ERS + MRS condition in combination with a low response style standard deviation do we 

really run into problems distinguishing ERSMRS from ERS + MRS that cannot be solved by 

simply increasing the test length or the sample size. A researcher utilizing a test with twenty 

items and around 500 participants should thus not anticipate major problems in the vast majority 

of cases when attempting to distinguish ERSMRS from ERS + MRS. If a sample size of 500 

participants is not possible, even sample sizes of 250 often suffice for this goal. It should again 

be noted that we do not recommend using a BIC-only approach here, as this can lead to poorer 

performance even under the conditions outlined above.  

 Summarizing, the current study establishes the possibility of empirically distinguishing 

between ERSMRS and ERS + MRS utilizing the AIC and the BIC. In addition, the current study 

further charts the effects of conditions and factors, including interactions, on the model 

classification accuracy. Finally, an alternative approach to only using the BIC is proposed, where 

the AIC is added as a second step.  
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Appendix A 

Results of the logistic regression analyses without the correction for only incorrect or only 

correct classifications within conditions 

Null condition 

Table A1 

Main Effects of the Factors on the Probability of the Correct Model Being Chosen for the Null 

Condition 

Factors Percent correct BIC Percent correct AIC 

N = 250 100 89.2 

N = 500 100 90.6 

N = 1000 100 93.3* 

Number of items = 10 100 88.7 

Number of items = 20 100 93.3* 

θN = 1 100 90.4 

θN = 2 100 91.7 

* = significant at the 0.05 level using dummy coded logistic regression analysis. Reference categories were: N = 

250, Number of items = 10, and θN(number of dimensions) = 1. Significance thus indicates a significant difference 

in model classification accuracy compared to the reference category. 

 For the null condition, no changes in significance of effects appear. 

ERSMRS condition 



 
 

Table A2 

Main Effects of the Factors on the Probability of the Correct Model Being Chosen for the 

ERSMRS Condition 

Factors Percent correct BIC Percent correct AIC 

N = 250 99.4 99.9 

N = 500 100 100 

N = 1000 100 100 

Number of items = 10 99.6 99.9 

Number of items = 20 100 100 

θN = 1 99.7 100 

θN = 2 99.8 100 

σRS = 0.6 99.4 99.9 

σRS = 1 100 100 

σRS = 1.5 100 100 

* = significant at the 0.05 level using dummy coded logistic regression analysis, with the model including possible 

interactions between factors for the BIC. Reference categories were: N = 250, Number of items = 10, θN (the 

number of substantive dimensions) = 1, and σRS (the response style standard deviation) = 0.6. Significance thus 

indicates a significant difference in model classification accuracy compared to the reference category. 

 Without the correction, no effects are significant for the BIC. Results for the AIC remain 

identical. 

ERS + MRS condition 



 
 

Table A3 

Results of the Dummy Coded Logistic Regression Model in the ERS + MRS Condition for the 

BIC 

Factor Estimate std. error z-value p-value 

Intercept -8.044 0.8377 -9.603 < .001 

N = 500 3.806 0.832 4.574 < .001 

N = 1000 6.600 0.8359 7.896 < .001 

Number of items = 20 0.871 0.2703 3.223 . 001 

θN = 2 0.301 0.2015 1.494 . 135 

σRS = 1 8.661 0.8404 10.306 < .001 

σRS = 1.5 31.605 2439.114 0.013 . 990 

rRS = -0.5 -1.380 1.4019 -0.984 . 325 

rRS = 0.5 -0.774 0.9874 -0.784 . 433 

N = 500 : Number of items = 20 1.775 0.2182 8.134 < .001 

N = 500 : θN = 2 -0.194 0.140 -1.385 . 166 

N = 500 : σRS = 1 0.510 0.875 0.582 . 560 

N = 500 : σRS = 1.5 0.830 0.929 0.893 . 372 

N = 500 : rRS = -0.5 -3.259 0.454 -7.175 < .001 

N = 500 : rRS = 0.5 0.299 0.943 0.317 . 751 

N = 1000 : Number of items = 20 2.805 0.256 10.940 < .001 

N = 1000 : θN = 2 -0.140 0.166 -0.839 . 402 

N = 1000 : σRS = 1 0.828 1.527 0.543 . 587 



 
 

Factor Estimate std. error z-value p-value 

N = 1000 : σRS = 1.5 1.965 1.552 1.267 . 205 

N = 1000 : rRS = -0.5 -5.354 1.380 -3.880 < .001 

N = 1000 : rRS = 0.5 2.330 0.986 2.362 . 018 

Number of items = 20 : θN = 2 -0.206 0.104 -1.985 . 047 

Number of items = 20 : σRS = 1 2.714 0.369 7.362 < .001 

Number of items = 20 : σRS = 1.5 4.751 0.528 9.003 < .001 

Number of items = 20 : rRS = -0.5 -3.517 0.355 -9.912 < .001 

Number of items = 20 : rRS = 0.5 2.049 0.329 6.223 < .001 

θN = 2 : σRS = 1 -0.187 0.225 -0.832 . 406 

θN = 2 : σRS = 1.5 -0.380 0.336 -1.131 . 258 

θN = 2 : rRS = -0.5 0.130 0.237 0.548 . 584 

θN = 2 : rRS = 0.5 -0.238 0.128 -1.859 . 063 

σRS = 1 : rRS = -0.5 -3.950 1.378 -2.863 . 004 

σRS = 1 : rRS = 0.5 3.860 0.996 3.875 < .001 

σRS = 1.5 : rRS = -0.5 -23.374 2439.114 -0.010 . 992 

σRS = 1.5 : rRS = 0.5 1.168 3706.520 0.000 1 

Reference categories used: 250 for the sample size, with N=500 representing the 250 to 500 sample size increase, 

and N=1000 representing the 250 to 1000 sample size increase. 10 for Number of items, with number of items = 20 

representing the increase from 10 to 20 items. 1 for dimensions, with θN = 2 representing the increase of 1 to 2 

dimensions. 0.6 for the response style standard deviation, with σRS = 1 representing the increase from 0.6 to 1 

response style standard deviation, and σRS = 1.5 representing the increase from 0.6 to 1.5 response style standard 

deviation. Finally, 0 for the response style correlation, with rRS = -.5 representing the decrease from 0 to -.5 



 
 

response style correlation, and rRS = .5 representing the increase from 0 to .5 response style correlation. : between 

variables refer to interactions, and * behind estimates refer to significance at the 0.05 level. 

 For the BIC, several effects differ. Most notably, the huge standard deviation of the 

strong response style factor makes the main effect and interaction effects of this factor 

nonsignificant. This incredibly large standard error is a consequence of the estimation problems 

that occur given only correct or only incorrect observations in a cell. In addition, the main effects 

of the response style correlation are no longer significant. 

Table A4 

Results of the Logistic Regression in the ERS + MRS Condition for the AIC 

Factor Estimate std. error z-value p-value 

Intercept 4.453 7.999 5.574 < .001 

N = 500 1.501 1.161 12.932 < .001 

N = 1000 4.030 3.017 13.34 < .001 

Number of items = 20 1.677 1.206 13.914 < .001 

θN = 2 -1.197 9.670 -1.238 . 216 

σRS = 1 4.481 3.431 13.062 < .001 

σRS = 1.5 2.387 3.452 0.007 . 994 

rRS = -0.5 -2.009 1.161 -17.309 < .001 

rRS = 0.5 7.337 1.301 5.638 < .001 

N = 500 : Number of items = 20 8.328 1.071 7.779 < .001 

N = 500 : θN = 2 -6.482 9.074 -0.714 . 475 

N = 500 : σRS = 1 5.107 1.144 4.464 < .001 



 
 

Factor Estimate std. error z-value p-value 

N = 500 : σRS = 1.5 1.307 1.687 7.748 < .001 

N = 500 : rRS = -0.5 -1.527 1.420 -10.752 < .001 

N = 500 : rRS = 0.5 1.682 3.077 5.466 < .001 

N = 1000 : Number of items = 20 1.599 1.316 12.151 < .001 

N = 1000 : θN = 2 7.987 1.074 0.743 . 457 

N = 1000 : σRS = 1 1.509 1.301 11.602 < .001 

N = 1000 : σRS = 1.5 3.515 3.015 11.661 < .001 

N = 1000 : rRS = -0.5 -4.464 3.166 -14.097 < .001 

N = 1000 : rRS = 0.5 1.908 3.668 0.005 . 996 

Number of items = 20 : θN = 2 7.255 8.645 0.839 . 401 

Number of items = 20 : σRS = 1 1.881 1.028 18.296 < .001 

Number of items = 20 : σRS = 1.5 4.291 3.728 11.51 < .001 

Number of items = 20 : rRS = -0.5 -2.199 1.448 -15.185 < .001 

Number of items = 20 : rRS = 0.5 2.638 5.186 5.087 < .001 

θN = 2 : σRS = 1 -4.842 9.468 -0.051 . 959 

θN = 2 : σRS = 1.5 1.663 1.512 0.11 . 912 

θN = 2 : rRS = -0.5 -2.689 1.244 -0.216 . 829 

θN = 2 : rRS = 0.5 1.327 1.715 0.774 . 439 

σRS = 1 : rRS = -0.5 -3.567 3.492 -10.215 < .001 

σRS = 1 : rRS = 0.5 1.910 4.520 0.004 . 997 

σRS = 1.5 : rRS = -0.5 -2.110 3.452 -0.006 . 995 

σRS = 1.5 : rRS = 0.5 -1.247 4.467 0 1 



 
 

Reference categories used: 250 for the sample size, with N=500 representing the 250 to 500 sample size increase, 

and N=1000 representing the 250 to 1000 sample size increase. 10 for Number of items, with number of items = 20 

representing the increase from 10 to 20 items. 1 for dimensions, with θN = 2 representing the increase of 1 to 2 

dimensions. 0.6 for the response style standard deviation, with σRS = 1 representing the increase from 0.6 to 1 

response style standard deviation, and σRS = 1.5 representing the increase from 0.6 to 1.5 response style standard 

deviation. Finally, 0 for the response style correlation, with rRS = -.5 representing the decrease from 0 to -.5 

response style correlation, and rRS = .5 representing the increase from 0 to .5 response style correlation. : between 

variables refer to interactions, and * behind estimates refer to significance at the 0.05 level. 

 Effects for the AIC are similar to the BIC. 

  



 
 

Appendix B 

Results if BIC is used to establish presence of response styles, and AIC to establish which 

response style is present 

Table B1 

Percent of Cases the Correct Model is Chosen When Using the BIC to Establish the Presence of 

a Response Style, then the AIC to Establish Which Response Style is Present in the ERSMRS 

Condition 

Factors  Number of items = 10  Number of items = 20 

  N = 250 N = 500 N = 1000  N = 250 N = 500 N = 1000 

𝜎𝑅𝑆 = 0.6 𝜃𝑁 = 1  94.6 100 100  100 100 100 

𝜃𝑁 = 2  97.0 100 100  100 100 100 

𝜎𝑅𝑆 = 1 𝜃𝑁 = 1 100 100 100  100 100 100 

𝜃𝑁 = 2 100 100 100  100 100 100 

𝜎𝑅𝑆 = 1.5 𝜃𝑁 = 1 100 100 100  100 100 100 

𝜃𝑁 = 2 100 100 100  100 100 100 

* = significantly different from the BIC at the 0.05 level using McNemar’s test. Percentages are based on 500 

observations per table cell. 

As can be seen in Table 16, performance of the combined BIC/AIC approach leads to a 

slight decline in performance compared to both the AIC and BIC. Compared to using just the 

AIC, performance drops from 99.2% to 94.6% in the low sample size, low response style 

strength, low test length and one substantive dimension condition, while dropping from 99.8% to 

97% in the two substantive dimensions condition. Compared to the BIC only approach, the first 



 
 

cell drops from 95.2% to 94.6%, and the second from 97.2% to 97.0%. The combined approach 

thus performs worse than both approaches individually in this condition. It must be noted that 

this decrease in performance only occurs in two cells, and is not very large. The overall 

performance in this approach is 99.76%. 

Table B2 

Percent of Cases the Correct Model is Chosen When Using the BIC to Establish the Presence of 

a Response Style, then the AIC to Establish Which Response Style is Present in the ERS + MRS 

Condition 

Factors   Number of items = 10  Number of items = 20 

   N = 250 N = 500 N = 1000  N = 250 N = 500 N = 1000 

𝑟𝑅𝑆 = −0.5 𝜎𝑅𝑆 = 0.6 𝜃𝑁 = 1 8.80 18.6 14.4  11.4 19.8 28.0 

𝜃𝑁 = 2 6.2 13.2 13.2  14.2 20.8 24.4 

𝜎𝑅𝑆 = 1 𝜃𝑁 = 1 35.0 47.8 56.2  67.0 87.2 99.0 

𝜃𝑁 = 2 33.0 40.4 58.4  62.8 86.0 98.8 

𝜎𝑅𝑆 = 1.5 𝜃𝑁 = 1 77.6 92.2 98.2  99.2 100 100 

𝜃𝑁 = 2 74.2 90.8 99.0  99.2 100 100 

𝑟𝑅𝑆 = 0 𝜎𝑅𝑆 = 0.6 𝜃𝑁 = 1 6.8 50.6 98.6  48.6 98.8 100 

𝜃𝑁 = 2 6.8 59.8 98.4  45.8 99.8 100 

𝜎𝑅𝑆 = 1 𝜃𝑁 = 1 99.6 100 100  100 100 100 

𝜃𝑁 = 2 98.6 100 100  100 100 100 

𝜎𝑅𝑆 = 1.5 𝜃𝑁 = 1 100 100 100  100 100 100 



 
 

Factors   Number of items = 10  Number of items = 20 

   N = 250 N = 500 N = 1000  N = 250 N = 500 N = 1000 

𝜃𝑁 = 2 100 100 100  100 100 100 

𝑟𝑅𝑆 = 0.5 𝜎𝑅𝑆 = 0.6 𝜃𝑁 = 1 0.0 2.0 54.0  0.2 51.6 100 

𝜃𝑁 = 2 0.0 3.0 52.8  0.6 40.2 100 

𝜎𝑅𝑆 = 1 𝜃𝑁 = 1 96.8 100 100  100 100 100 

𝜃𝑁 = 2 98.8 100 100  100 100 100 

𝜎𝑅𝑆 = 1.5 𝜃𝑁 = 1 100 100 100  100 100 100 

𝜃𝑁 = 2 100 100 100  100 100 100 

 As can be seen in Table 17, the performance of the AIC/BIC combined approach is in-

between that of the BIC and AIC by themselves. Especially for the low sample size, the low 

response style strength, and the low test length, performance decreases compared to the AIC-

only approach. The approach does yield better results than the BIC only approach. Overall, this 

combined approach leads to 75.06% overall correct model classification, compared to 59.2% for 

the BIC and 84.4% for the AIC. If we arbitrarily assume that the probability of being in the null 

condition, ERSMRS condition, or ERS + MRS condition are equal (
1

3
), we would thus arrive at 

the following model classification accuracies: 

BIC only: 1 ∗
1

3
+ 0.9978 ∗

1

3
+ 0.592 ∗

1

3
= 0.863267 

AIC only: 0.9103 ∗
1

3
+ 0.997 ∗

1

3
+ 0.844 ∗

1

3
= 0.9171 

AIC/BIC combined: 1 ∗
1

3
+ 0.9976 ∗

1

3
+ 0.7506 ∗

1

3
= 0.916067 



 
 

From these results, it is clear both the AIC and the combined approach are both 

defensible. The choice of which of these to use must be based on a researcher’s aversion to type I 

or type II errors, with the conservative researcher preferring the combined approach and the 

liberal researcher preferring the AIC. Alternatively, one could take a more Bayesian approach 

and shift around their prior beliefs about the response style condition they are in to obtain the 

index best suited to them, with a heavier weight on the null condition resulting in a preference 

for the combined approach, and a heavier weight on the ERS + MRS condition resulting in a 

preference for the AIC. This use of priors must naturally be well reasoned and justified. The BIC 

only approach leads to almost identical or severely inferior performance to the AIC/BIC 

combined approach in all conditions, and we would thus recommend to at least not use this 

approach. 

  



 
 

Appendix C 

Explorative Post-hoc Analysis 

The explorative post-hoc analysis described in the results section consisted of changing 

the data to reflect 50.000 observations rather than 500 replications. This reduced the impact of 

the correction for perfect and imperfect cells, where perfect cells had one correct observation 

replace by an error, and completely wrong cells had one error replace by a correct observation. 

The post-hoc analysis was conducted to make sure effects contradictory interaction effects 

between the AIC and BIC were not caused by the correction. 


