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Abstract

Predicting voluntary employee attrition is valuable for a firm
as it may proactively act to retain a focal component of the staff.
This thesis explores the potential of survival analysis in forecast-
ing deliberate workforce turnover. In particular, the current work
compares the predictive performance of state-of-the-art Cox (1972)
Proportional Hazard (Cox PH) model with novel survival machine
learning methods as the Random Survival Forest (Ishwaran, Kogalur,
Blackstone, Lauer, et al., 2008), DeepSurv (Katzman et al., 2018), and
DeepHit (C. Lee, Zame, Yoon, & van der Schaar, 2018). The compari-
son revealed that DeepSurv outperformed the traditional Cox PH in
foreseeing deliberate employee attrition on synthetic workforce data
(IBM, 2017). The length of an employee’s career, the total number of
companies in which the employee worked, and extra hours spent at
work were observed to be the most relevant features for DeepSurv to
predict the churn.

1 introduction

Employees may voluntarily or involuntarily leave the company they are
working for (Alduayj & Rajpoot, 2018). For example, an employee who
decides to change organizations because she/he is unsatisfied with the
monthly wage is voluntary attrition. On the contrary, an employer dis-
missing an employee who was often late at work is involuntary employee
attrition (Al Mamun & Hasan, 2017). This thesis will also refer to an
employee who voluntarily decides to quit a corporation as a churner em-
ployee.
Voluntary employee attrition causes direct and indirect costs for a firm
(Madariaga, Oller, & Martori, 2018). Indeed, an outgoing employee directly
affects an organization as it will need to invest both time and resources
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1 introduction 2

to recruit and train a new member of the staff (Sumathi, Balakrishnan,
Naveen, Hariharan, & Rahul Iniyan, 2021). Further, a churner employee
indirectly costs the company since it influences the state of open projects.
This potentially leads to customers’ discontent if deadlines are not met and
hence damages the business’ image (Căplescu, Ilie, & Strat, 2019). If the
leaving employee is a focal or talented component of the working team, a
company will face high direct and indirect costs from the attrition (Jin et
al., 2020).
Predicting deliberate workforce turnover and understanding its prevalent
driving factors through data analysis may benefit the employers and the
employees. For instance, if the prevailing cause of churn is overtime, the
employer may proactively reduce extra working hours to retain workers
at risk and save attrition costs. Consequently, employees may be more
satisfied with their current position, hence deciding to remain in the corpo-
ration and not stress themselves with the task of finding another job. As
such, human resources analytics may positively impact even staff members’
lives.
Given the societal benefits described, this research aims at predicting vol-
untary employee attrition and investigates the predominant causes that
motivate the churn. To do so, we will use survival analysis, which is a
statistical technique that models the time up to a target event (Kleinbaum
& Klein, 2012). As data collection is limited in time and information on
whether a subject has experienced an event may be unobserved, survival
analysis has developed mechanisms to deal with censored data (P. Wang,
Li, & Reddy, 2019). In survival analysis, censoring refers to the incom-
plete observation of an event being studied (Moore, 2016). In the specific
case of voluntary employee attrition, right-censored information is present:
the fact that an employee has not left the company at the time of data
acquisition does not imply that she/he has not quit the organization later
on. Traditional machine learning algorithms do not deal with censoring
(P. Wang et al., 2019), and estimating whether an employee will leave a
job without taking censored information into account may lead to biased
results (McCloy, Purl, & Banjanovic, 2019). Moreover, survival analysis
offers the advantage of modeling the probability of surviving an event over
time. In contrast, traditional machine learning techniques could be used
to binary classify whether or not an employee will quit an organization
concerning a specific time point (Madariaga et al., 2018; Willett & Singer,
1991). Since traditional machine learning does not deal with censoring
and does not model attrition probabilities over time, we opted for survival
analysis methods to conduct our study.
This project encloses a novel methodology to predict deliberate work-
force turnover. Indeed, several machine learning algorithms have recently
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been extended to perform survival analysis and deal with censored data
(P. Wang et al., 2019). However, novel techniques have not been utilized
for employee attrition prediction yet (for this, see the related work section
below). Here, we will compare the performances in predicting voluntary
employee churn of the state-of-the-art Cox (1972) Proportional Hazard
(Cox PH) model with three newly developed machine learning approaches:
the Random Survival Forest (Ishwaran et al., 2008), DeepSurv (Katzman
et al., 2018), and DeepHit (C. Lee et al., 2018). Hence, we will use the
best-performing survival model to determine why employees leave an
organization, thus enabling the employer to act proactively and produce
the societal benefits discussed.
To predict voluntary employee churn and investigate its main driving
factors, we will use the “IBM HR Analytics Employee Attrition & Per-
formance” dataset (IBM, 2017), composed of synthetic recordings about
each employee in the company, and fictitious survey data. The motivation
behind utilizing this data frame in the context of survival analysis is that
it contains both an event (Attrition) and a time (YearsAtCompany) variable.
Indeed, survival analysis requires both an event and time feature in a
dataset to model the time to the event being studied (Kleinbaum & Klein,
2012). Furthermore, we opted for this data frame as the total number of
covariates it holds is suited for getting insights into the predominant causes
of deliberate employee turnover.
In this context, the current paper will investigate the following general
research question, from which two sub-research questions RQ1 and RQ2

are derived:

How well can voluntary employee attrition be predicted using survival
analysis?

RQ1 What is the predictive performance of state-of-the-art and novel survival
analysis algorithms for voluntary employee attrition data?

RQ2 Which predictors are most relevant for predicting voluntary employee attri-
tion?

This thesis follows the following structure: Section 2 offers a literature
background on employee attrition and survival analysis studies; Section
3 explains the survival analysis methods and the evaluation scores we
applied, specifically dedicating subsection 3.1 to algorithms, 3.2 to metrics,
and 3.3 to methods to assess the most relevant predictors; Section 4 illus-
trates the dataset we used and the experiments we conducted; Section 5

reports our findings that will be discussed in detail in Section 6. The last
section 7 draws the conclusion of this paper.
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2 related work

Previous research used traditional machine learning techniques to predict
whether an employee will quit a job. For example, Rombaut and Guerry
(2018) modeled workforce attrition through the usage of Logistic Regres-
sion. By interpreting the output of the fitted Logistic Regression model,
they found that gender, seniority, and marital status was among the most
significant predictors of employee churn. Liu et al. (2018) compared the
performances in forecasting workforce turnover of a Logistic Regression
model with other supervised learning algorithms such as Random For-
est, AdaBoost, and Support Vectors Classifier. Their results indicate that
Random Forest and AdaBoost achieved the best predictive performance
and that the factors driving the churn were career experience and high
job skills. Alduayj and Rajpoot (2018) compared a collection of models,
including Random Forest and K-Nearest-Neighbours, on balanced and
unbalanced datasets to analyze their performances in foreseeing workers’
attrition. They found that extra working hours and years of career were the
most relevant predictors in predicting employee churn through balanced
data.
Researchers also applied methods different from traditional machine learn-
ing techniques to forecast whether or not an employee will leave a company.
For instance, Emadi and Staats (2020) modeled workers turnover through
econometrics approaches, observing that managers played a focal role in
predicting the employee’s decision to quit a job. Fang et al. (2018) fitted a
conditional semi-Markov model to forecast workforce attrition over time.
By interpreting the probabilities’ output by their model, they concluded
that the years worked by the employee in the current position was a relevant
factor for predicting her/his churn. Further, graph embedding techniques
were applied and compared with machine learning methods by Cai et al.
(2020) to foresee staff members’ attrition. They found that employee’s job
level and educational background were the prominent causes influencing
worker’s turnover.
Recently, a number of studies have started exploring the potential of sur-
vival analysis in the domain of employee attrition. E. Lee (2019) estimated
the survival functions of nurses in South Korea using both the Kaplan-
Meier (KM) and the Cox PH method. They reported that gender and job
satisfaction were among the principal factors motivating employee churn.
Cox PH was also utilized by Assefa, Mariam, Mekonnen, and Derbew
(2017) to investigate why medical professors in Ethiopia quit their job.
They found that academic level and age significantly affected attrition.
Similarly, W. Wang (2019) explored staff member’s turnover by analyzing
the results of a fitted Cox PH. They observed that job position and gender
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were two of the main causes driving the churn. Madariaga et al. (2018)
fitted both a Cox PH and a Logistic Regression model on employee data to
examine the prevalent factors leading to worker’s turnover. Through an
interpretation of the output of the fitted models, they concluded that either
the Cox PH and the Logistic Regression were concordant in indicating that
employee’s income, gender, age, and marital status were the predominant
causes of employee attrition. However, they observed that survival analysis
methods were more appropriate in examining employee churn than logistic
regression due to their capacity of estimating survival probabilities over
time and not only at a specific time point (Madariaga et al., 2018). Silva,
Vieira, Pimenta, and Teixeira (2018) modeled employee attrition using a
Cox PH, with the particular focus of predicting low-income employee
churn. Their results showed that gender, age, level of education, and years
spent at the company were among the most relevant factors influencing the
churn. Moreover, they pointed out that survival analysis was more suited
than other methods in forecasting employee attrition due to its ability to
deal with censored data, hence not biasing the results as other techniques
would have done (Silva et al., 2018).
As the literature review on employee attrition clarified, different methods
have been applied for predicting employee churn. Among them, survival
analysis should be preferred when forecasting employee attrition (McCloy
et al., 2019). In fact, in contrast with survival analysis, traditional machine
learning does not model deliberate employee turnover in a longitudinal
time manner and does not take censoring into account (Madariaga et al.,
2018; Willett & Singer, 1991). Further, for instance, although a semi-Markov
model deals with censoring and could output survival probabilities over
time (Abner, Charnigo, & Kryscio, 2013; Zhao & Hu, 2013), it is not easy
to implement, and it could output imprecise results in the presence of
rare events’ instances (Abner et al., 2013). Due to its capacity in dealing
with censored information in a dataset with relatively straightforward
implementation and output survival probabilities over time, survival anal-
ysis offers more advantages than other methods for modeling voluntary
employee churn.
Even though prior studies (Madariaga et al., 2018; Silva et al., 2018; Willett
& Singer, 1991) pointed out the convenience of using survival analysis
in the domain of employee attrition, the current literature on workforce
turnover has only explored traditional survival analysis methods such as
KM and Cox PH thus far. Moreover, previous papers on employee attri-
tion based on survival analysis have mainly focused on investigating the
causes that drive the churn without comparing the predictive capabilities
of survival models. In particular, this contrasts with precedent studies on
workforce turnover based on machine learning, where different algorithms
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are compared and the main factors influencing the churn explored.
This thesis aims at contributing to the literature by comparing the predictive
performances of novel survival analysis algorithms with state-of-the-art
Cox PH while still examining the predominant causes of employee churn.
Indeed, novel survival machine learning techniques have recently been
proposed and are predominantly utilized in the medical field (P. Wang et
al., 2019). For example, Hathaway, Yanamala, Budoff, Sengupta, and Zeb
(2021) compared the performances of a Cox PH model with other survival
methods, including a Random Survival Forest (RSF) and a survival deep
neural network (DeepSurv), in predicting atherosclerosis. They found that
both RSF and DeepSurv outperformed the traditional Cox PH. Further,
they interpreted the most relevant factors influencing atherosclerosis ac-
cording to RSF and DeepSurv through permutation importance. Nakagawa
et al. (2020) performed a comparison between Cox PH, a survival deep
neural network (DeepHit), and Weibull survival deep neural network in
forecasting Alzheimer’s in patients using extracted features from brain
images. They concluded that either DeepHit and the Weibull deep neu-
ral network achieved a better performance than Cox PH in predicting
Alzheimer’s in patients. Kantidakis et al. (2020) compared a RSF model
and a Partial Logistic Artificial Neural Network (PLANN) method with
Cox PH to forecast liver transplantation. They observed that Cox PH
was outperformed by novel survival methods. In addition, they explored
the predominant predictors in predicting liver transplantation retrieving
features’ importance through the RSF.
To address the lack in the usage of novel survival machine learning algo-
rithms in the workforce attrition literature, we decided to compare a Cox
PH model used as a baseline with a RSF, DeepSurv, and DeepHit model in
forecasting employee churn. In particular, given that precedent studies in
the survival analysis background reported an increase in predictive perfor-
mance while utilizing novel survival procedures, we will investigate how
well we can predict voluntary employee attrition using survival analysis
approaches.
Furthermore, the performance comparison offered by this study will not
affect the ability to get insights into the most relevant features for pre-
dicting employee attrition. Indeed, as the literature review conducted on
survival analysis specified, previous studies in the medical field explored
the focal factors utilized by novel survival methods for making predictions.
In the domain of employee attrition, precedent papers shared the task of
examining the fitted models by retrieving the importance of the variables
they used. Overall, studies on employee turnover observed career length,
gender, job level, overtime, and age as the prominent causes of employee
churn. Since retrieving the main turnover predictors is common in the
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employee attrition literature and novel methods will not affect the ability
to do so, we will use our best-performing survival model to investigate the
predominant factors for predicting employee churn.

3 methods

In this study, we decided to use survival analysis to model voluntary em-
ployee attrition. In particular, we chose to use survival analysis methods
as they offer the opportunity to deal with censored data, whereas other
techniques such as traditional machine learning don’t. In a dataset, censor-
ing refers to the incomplete observation of an event being studied (Moore,
2016). In the specific circumstances of deliberate workforce turnover, right-
censoring is present. Indeed, although the event of employee attrition is not
observed in the data for a given individual does not signify that the same
individual has not left the company after the data collection. To include
censored information in our estimates, we opted to use survival analysis
over other approaches. In this section, we present the survival algorithms
that will be implemented for predicting deliberate workforce turnover.

3.1 Survival algorithms

Before specifying the algorithms that will be utilized in this thesis, we de-
termine here some survival analysis’ terms beneficial for their description.
One of them is the survival function. Precisely, it conveys the probability
of a subject not encountering an event until T, which exceeds a chosen
time t (In & Lee, 2018). It is denoted as:

S(t) = Pr(T > t) (1)

Another one is the hazard function. Specifically, conditioning on the fact
that so far a particular event has not happened, it indicates the ratio of the
examined event manifesting when the next time interval (δt) tends towards
zero (Kleinbaum & Klein, 2012). Formally, it is characterized as:

λ(t) = lim
δt→ 0

Pr(t ≤ T ≤ t + δt|T ≥ t)
δt

(2)

By calculating the integral from 0 to t over the hazard function, the cumu-
lative hazard function Λ(t) is derived (Kleinbaum & Klein, 2012):

Λ(t) =
∫

0

t
λ(t)δt (3)
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3.1.1 Cox PH

It is a semi-parametric survival model proposed by Cox (1972), which
assumes the hazards to be proportional (PH) (Kleinbaum & Klein, 2012).
Given a set of n covariates x = (x1, x2, ...xn), Cox (1972) denoted the
hazard function at time t by multiplying the hazard at time t where each
covariate is equal to 0 - called baseline hazard, λ0(t) - with the exponential
of the sum from i = 1 to n between the product of the covariates with
their coefficients - denoted as risk term, e∑n

i=1 βixi . In this way, Cox (1972)
formulated the hazard function λ(t|x) as:

λ(t|x) = λ0(t)e∑n
i=1 βixi . (4)

By dividing the hazards for an observation with covariates values x∗ in a
given dataset by the hazards for another observation with covariates values
x, Cox (1972) obtained:

λ(t|x∗)
λ(t|x) =

λ0(t)e∑n
i=1 βix∗i

λ0(t)e∑n
i=1 βixi

. (5)

As a result of Eq. 5, the ratio between the hazards for observation with
covariates values x∗ and another with covariates values x is not time-
dependent. Consequently, it does not change with the changing of time,
which is the meaning of the PH assumption (Kleinbaum & Klein, 2012).
Following Cox (1972), the values of the coefficients β in Eq. 4 are computed
by maximizing of the given partial log-likelihood, L(β) (Kleinbaum &
Klein, 2012). Specifically, L(β) is obtained by taking the product at every d
out of k times of the likelihood of an observation p experiencing the event
of interest among a set of j observations being at risk (Katzman et al., 2018):

L(β) =
k

∏
d=1

e∑n
i=1 βixp , i

∑n
j∈R(d)

e∑n
i=1 βixj , i

(6)

with R(d) being a set containing j observations at risk of experiencing the
event at time d out of k times, p the observation chosen, n the total amount
of covariates in the dataset and i their current number.
Since the baseline hazard λ(t) in Eq. 4 does not assume a determined
shape compared to parametric survival models, Cox PH is referred to as
being semi-parametric (Kleinbaum & Klein, 2012).

3.1.2 DeepSurv

It is a feed-forward neural network extension of the Cox PH, and it has
been advanced by Katzman et al. (2018). Indeed, similarly to the Cox PH,
DeepSurv relies on the assumption of the proportionality of the hazards
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(Katzman et al., 2018). However, if Cox PH presumes the hazards to
be linearly proportional, DeepSurv allows the proportionality to occur
in a non-linear manner thanks to its neural architecture (Katzman et al.,
2018). Hence, DeepSurv accounts for more variability than a Cox PH while
modeling the data (Katzman et al., 2018).
DeepSurv is composed of a series of fully connected layers, each of them
being followed by drop-out (Katzman et al., 2018). The last layer is linearly
activated to output the sum of the product between the input covariates and
the network weights θ: ĥθ(x) = ∑n

i=1 θixi (Katzman et al., 2018). As such,
DeepSurv output ĥθ(x) is equivalent to the natural logarithm of the risk
term in Eq. 4 with the difference being in the coefficients used (Katzman et
al., 2018). While training DeepSurv, the loss function to optimize is derived
from the log-likelihood formula used in Eq 6 by taking its mean and
changing its sign, and by summing it to a penalty term (λ||θ||22) (Katzman
et al., 2018):

l(θ) = − 1
Nd=1

k

∑
d=1

(
n

∑
i=1

θxp,i − log
n

∑
j∈R(d)

e∑n
i=1 θxj , i) + λ||θ||22 (7)

where Nd=1 is the total number of observations exposed to the event being
studied at time d out of k times, θ the network weights, n the total number
of covariates and i their current number, p the individual being considered,
j the person chosen among those who are at risk in the set R(d), and x the
covariates in the dataset.

3.1.3 Random Survival Forest

Unlike Cox PH and DeepSurv, it does not assume the ratio between the
ratio of the hazards to be time-invariant. Hence, RSF allows for more
flexibility while modeling the data as compared to Cox PH and DeepSurv.
The RSF proposed by Ishwaran et al. (2008) is obtained by bootstrapping
B data points from the dataset and growing B number of trees. Each tree
is built using the seventy percent of data available, and the other thirty
percent remains outside the bag (Ishwaran et al., 2008). Given x randomly
chosen covariates, each parent node in a tree is divided into child nodes by
the covariate that produces the highest difference in surviving among the
children nodes (Ishwaran et al., 2008). Once a stopping criteria has been
met, each of the trees returns a cumulative hazard function Λb(t|x). By
taking the sum of every cumulative hazard function obtained by each of
the trees and dividing it by the total number of trees B, the RSF returns
the cumulative hazard function of the forest as:

Λe(t|xi) =
1
B

B

∑
b=1

Λb(t|xi). (8)
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Since the exponential of the cumulative hazard function with a negative
sign is equal to the survival function, given a set of covariates x the RSF
estimates the survival function Ŝ(t|x) as:

Ŝ(t|x) = exp
(
−Λ̂e(t|x)

)
. (9)

3.1.4 DeepHit

DeepHit is a feed-forward survival neural network that has been proposed
by C. Lee et al. (2018). Differently from both Cox PH and DeepSurv,
DeepHit does not assume the hazards’ ratio to be time-invariant (C. Lee et
al., 2018). Moreover, in contrast with the RSF introduced by Ishwaran et al.
(2008), DeepHit also offers the opportunity to be applied to tasks in which
individuals are at risk of experiencing not only a single event, but also
non-independent events (C. Lee et al., 2018). Nonetheless, as our project
only deals with one event of interest (employee attrition), we considered
DeepHit into its single-event framework.
DeepHit architecture is composed of a number of fully connected layers
(C. Lee et al., 2018). Before entering the network, the time variable T need
to be divided m into equal-distant times τ0, τ1, ...τn as DeepHit treats time
in a discrete manner (Kvamme, Borgan, & Scheel, 2019). Given a set of
covariates x as input, the last layer of a single-event DeepHit is activated
by a softmax function to output a vector y(x) of estimated probabilities at
times 0, 1...n (Kvamme et al., 2019):

y(x) = [y0(x), y1(x), ...yn(x)]T (10)

Following Kvamme et al. (2019), given a set of covariates x, the estimate
of the survival function at τj discrete times for a one-event DeepHit is
computed by subtracting to one the sum from k to j discrete times of the
estimated probabilities y(x) output by the model at each time k:

Ŝ(τj|x) = 1−
j

∑
k=1

yk(x). (11)

The objective function Ltot to minimize while training DeepHit is obtained
by calculating the sum of two different losses:

Ltot = L1 + L2. (12)

L1 handles right-censored information by extending the log-likelihood of
the joint distributed event e and times, considering an individual i, with Di
being an uncensoring indicator (Kvamme et al., 2019; C. Lee et al., 2018). In
particular, L1 is composed of a term Di log(yei(xi)) that brings information
about non-censored observations i experiencing the event e being studied,
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and another term (1− Di) log(Ŝ[Ti|xi]) that provides information about
censored persons i in the dataset (C. Lee et al., 2018; Roblin, Cournede, &
Michiels, 2020). By taking the negative sum from one to the total number
of individuals N of both censored and uncensored observations in the data
frame, L1 is derived as:

L1 = −
N

∑
i=1

[
Di log(yei(xi)) + (1− Di) log(Ŝ[Ti|xi])

]
. (13)

On the other hand, L2 tries to avoid the discordance of observations’
pairs (Kvamme et al., 2019; C. Lee et al., 2018). Indeed, considering every
observation i that experienced the event at time Ti, and each observation j
that did not experience the event at time Tj (with Ti being less or equal to Tj),
L2 penalizes the pairs (i, j) incorrectly predicted by DeepHit dividing the
difference of the estimated survival functions for i and j (Ŝ[Ti|xi]− Ŝ[Ti|xj])
by a penalizer term σ, and taking the exponential of this division (Pawley,
2020). Hence, L2 is multiplied by an hyperparameter α, which determines
how much the loss L2 is taken into account with respect to the total
DeepHit loss (Ltot = L1 + L2) (Pawley, 2020). As such, L2 is formally
defined as:

L2 = α ∑
i,j
[Di1{Ti ≤ Tj} exp

( Ŝ[Ti|xi]− Ŝ[Ti|xj]

σ

)
] (14)

where both the relative importance hyperparameter α and the penalizer σ

are to be optimized.

3.2 Survival Metrics

To evaluate the algorithms mentioned above, we will use the metrics
described in this subsection.

3.2.1 Concordance Index

It was proposed by Harrell, Califf, Pryor, Lee, and Rosati (1982). To evaluate
the model performance, it considers all the comparable pairs of observa-
tions (x, y) in a dataset and their survival period as recorded in the data
frame (Longato, Vettoretti, & Di Camillo, 2020). In particular, a pair (x,
y) is comparable if the event occurred for at least x or y, and if only x or
y has experienced the event the other observation in the pair survived
for a longer recorded time (Harrell Jr, Lee, & Mark, 1996; Longato et al.,
2020). To clarify this statement, consider the examples reported in Table
1. Looking at the first row, the pair (a, b) is not comparable as neither
the individual a nor the individual b experienced the event being studied.



3 methods 12

Table 1: Harrell’s concordance index: examples of comparable pairs.

Pair Event Observed Survival Time Comparable

a 0 4

no
b 0 5

c 1 5

yes
d 0 8

e 0 5

no
f 1 8

g 1 6

no
h 1 6

i 1 6

yes
j 1 9

Indeed, it is true that the dataset reports a survival time of four years for
observation a, and of five years for observation b. However, since both a
and b are censored, the model’s predictions for the pair (a, b) can not be
compared as it is unknown for how long they did not experience the event
after the data collection (Longato et al., 2020). As it can not be determined
whether a or b survived the event for longer, the pair (a, b) is excluded
from Harrell’s concordance index computation. In contrast, the pair (c, d)
in the second row is comparable as the individual c who experienced the
event survived for a shorter observed time than the censored subject d. In
this way, it is possible to compare the model’s prediction for the pair as it is
observed that the censored subject d survived for a longer time than c. On
the contrary, the pair (e, f ) in the third row, with the event occurring for
the individual f and e being censored at a shorter observed survival time
than f , is not comparable. In fact, since the subject e is censored at five
years and f experienced the event at eight years, it is unknown whether e
experienced the event before or after f . Furthermore, as the fourth row of
Table 1 shows, a pair (g, h) experiencing the event at the same time is not
comparable as it can not be determined who survived for longer (Harrell Jr
et al., 1996). Conversely, if the event occurred for both the individuals in
the pair but at different survival times, the pair is comparable (Harrell Jr et
al., 1996). As indicated in the last row of Table 1, in fact, it is established
that in the pair (i, j), the observation i experienced the event before the
individual j.
A comparable pair is also concordant if the model predicts the survival time
(rank score) for the observation in the pair with the highest observed survival
time to be higher than the predicted survival time for the other observa-
tion (Harrell Jr et al., 1996). To better illustrate this concept, consider the
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Table 2: Harrell’s concordance index: examples of concordant pairs.

Comparable Pair Observed Survival Time Rank Score Concordant

c 5 0.6
yes

d 8 0.75

i 6 0.90

no
j 9 0.5

examples in Table 2. The comparable pair (c, d) is also concordant since
the individual with the highest observed survival time d was predicted
by the model to have a rank score higher than c. On the other hand, the
comparable pair (i, j) in the second row of Table 2 is not concordant as the
model predicted the observation with the highest observed survival time j
to have a lower rank score than i.
Once the comparable and concordant pairs are determined, Harrell’s concor-
dance index is obtained by dividing the number of concordant pairs by the
quantity of all the pairs in a dataset that are comparable:

C-index =
concordant pairs
comparable pairs

(15)

with a concordant pair counting 1 (or 0.5 if the fitted model predicts the
same survival time for both the observations in the pair) (Harrell Jr et al.,
1996).
In this project, we used Harrell’s concordance index to evaluate PH mod-
els. For RSF and DeepHit, however, we utilized the concordance index as
modified by Antolini, Boracchi, and Biganzoli (2005). Indeed, as C. Lee
et al. (2018) noted, for a non-proportional hazards model it is relevant to
compute how the model captures modifications in risks with the changing
of time (Kvamme et al., 2019). Further, Antolini’s concordance index offers
the advantage to be still comparable to the method proposed by Harrell,
given that Harrell’s concordance index is computed to evaluate a PH model
in the framework of a single event of interest (C. Lee et al., 2018).
Antolini et al. (2005) modified the notion of concordant pairs with respect
to Harrell’s definition of the concordance index while maintaining the
notion of comparable, leaving Equation 15 unaltered. To present Antolini’s
modifications to the concordance index, consider a comparable pair (xi,
xj) where at least xi experienced the event with observed survival times
Ti < Tj. According to Antolini et al. (2005), the comparable pair (xi, xj) is
also concordant if the model predicts the survival function for the observation
in the pair with the highest observed survival time xj to be higher than the
predicted survival function for the other observation xi. Specifically, each
survival function is estimated at the lowest observed survival time in the
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pair Ti. Hence, for the comparable pair (xi, xj) to be concordant it should
result that Ŝ(Ti|xj) > Ŝ(Ti|xi). Since both the survival functions predicted
by the model depend on Ti, where Ti varies per each comparable pair (xi,
xj) being considered, Antolini’s concordance index diverges from Harrell’s
definition of concordance as only the former takes different times into
account (Antolini et al., 2005). Consequently, Antolini’s concordance index
is referred to as being time-dependent.
For both versions of the concordance index, a model predicting naïvely
would result in a concordance score of 0.5, while an optimal model in a
concordance score of 1. The concordance index has the advantage of deal-
ing with censored information in the dataset, of being easily interpretable
and of being suited for discriminating between correctly and incorrectly
predicted risk of experiencing an event in observations’ pairs (Vickers &
Cronin, 2010). However, it has the disadvantage of not evaluating the
model’s calibration (Alba et al., 2017). That is, the concordance index
does not capture whether the model overestimated or underestimated the
observed risk of an event occurring (Alba et al., 2017).

3.2.2 Integrated Brier Score

It is a metric that extends the Brier score calculated at one time t to a range
of time δt = (t1 − 0) (Kantidakis et al., 2020; Kvamme et al., 2019). In fact,
the integrated Brier score (IBS) is obtained by integrating from 0 to t1 and
multiplying the integral by one over a range of time δt:

IBS =
1
δt

∫ t1

0
BS(t)dt (16)

where the Brier score (BS) computed at a specified time t, following
Kvamme et al. (2019) and Graf, Schmoor, Sauerbrei, and Schumacher
(1999) is:

BS(t) =
1
n

n

∑
i=1

[1{Ti ≤ t, Di = 1}+ Ŝ(t|xi)
2

Ĝ(Ti)
+
1{Ti > t}(1− S(t|xi))

2

Ĝ(t)

]
(17)

with Di = 1 indicating the occurrence of the event and Ĝ(t) being an esti-
mate of the Ŝ(t|x) obtained by using the Kaplan-Meier method (Kvamme
et al., 2019).
An ideal model with perfect predictions would return an IBS = 0, while
a model predicting everything wrong would result in an IBS of 1. The
integrated Brier score has the advantage of dealing with censored informa-
tion in the dataset while assessing the fitted survival model’s performance
and of capturing both the model’s calibration and discrimination (Kattan
& Gerds, 2018). Nevertheless, it is sensitive to the choice of the time range
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over which the Brier score is integrated. In fact, for example, the integrated
Brier score computed using a range of time equal to ten years could be
different from the integrated Brier score calculated over a time range of
eleven years. Thus, the range of time δt in Eq. 16 should be determined
carefully. To do so, prior studies in the survival analysis’ literature (Haider,
Hoehn, Davis, & Greiner, 2020; Kantidakis et al., 2020) suggested utilizing
a time range from zero to the maximum observed survival time in the
dataset. Further, another drawback of the integrated Brier score is that it is
not an easily interpretable metric (Kattan & Gerds, 2018).

3.3 Methods to assess the most important predictors

The method that we will use to assess the most relevant factors for predict-
ing voluntary employee attrition will depend on which model will have
the best predictive performance.
If the Cox PH results in the highest C-index and the lowest IBS, we will uti-
lize the absolute value of Wald’s test statistic z-score output by the model.
Indeed, in the case of a considerable absolute value of a z-score, there is
not enough evidence to retain the null hypothesis that the coefficient β is
equal to 0 (Moore, 2016), hence indicating that the covariate has relevance
in the model.
If the RSF has the best results, we will utilize the variable importance
score. In particular, the RSF computes the importance of a feature by first
introducing into the fitted trees the samples that were not used to grow
that tree (Ishwaran et al., 2008). Then, the feature’s values are randomly
allocated at every child node division for the variable they meet (Ishwaran
et al., 2008). Every tree output is thus evaluated, and the variable impor-
tance score for that tree is obtained by subtracting the error computed
without randomization to the score obtained while randomizing the feature
(Ishwaran et al., 2008). Hence, the importance score is the average of the
feature importance scores across the trees (Ishwaran et al., 2008).
If DeepSurv or DeepHit results in being the best performing survival mod-
els, we will use the permutation importance score as previously done by
Hathaway et al. (2021) for investigating DeepSurv most relevant predictors.
To achieve this, we will adopt the permutation importance score provided
by Python’s library eli5 (Korobov & Lopuhin, 2021). Specifically, permu-
tation importance is retrieved by monitoring the decrease in the model
predictive performance while shuffling the values of each variable at times
in the test set: the more the reduction in the model performance while
noising a feature, the more that variable is considered influential (Korobov
& Lopuhin, 2021).
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4 experimental setup

4.1 Data

To predict voluntary employee attrition with survival analysis methods and
investigate its prevalent causes, we used the “IBM HR Analytics Employee
Attrition & Performance” dataset (IBM, 2017). We accessed it through
Kaggle, where it was published in 2017.
The IBM data frame consists of a csv file of synthetic data, which holds
1470 rows and 35 columns. Specifically, the 35 features characterizing the
workforce in the dataset provide information regarding employee’s demo-
graphics (such as MaritalStatus, Gender, DistanceFromHome, or Education),
employee’s job position (as MonthlyIncome, JobRole, PerformanceRating, or
JobInvolvement), and employee’s gratification for her/his current workplace
(for example, Environmental, Job, or Relationship satisfaction data). More-
over, the IBM dataset indicates whether the event of an employee leaving
the company occurred (Attrition) and how many years passed since the
employee joined the corporation (Years At Company), hence being suitable
for time-to-event analysis.
Exploring the IBM dataset, we found that 237 employees out of 1470 left the
company. Since 1233 employees did not experience attrition, the presence
of right-censoring in the data was in the order of 1233 individuals. Further,
we observed that, on average, employees were in the company for 7.01

years (SD = 6.13).

4.2 Cleaning Process

The IBM dataset contained neither missing values nor duplicates into its
observations. However, we noticed that the covariates Over18, Standard-
Hours, and EmployeeCount reported the same value per employee in the data
frame. Indeed, each person in the company was over eighteen years old,
every individual was working for forty hours a week, and each counted as
one. Further, we observed that every employee had a unique associate id
number through the covariate EmployeeNumber. Since staff members’ ids
and constant features did not provide insights towards the attrition event,
we decided to remove the covariates Over18, EmployeeCount, StandardHours,
and EmployeeNumber from the dataset.
When a variable in a data frame carries a valuable quantity of informa-

tion about another independent feature, they are said to be multicollinear
(Vatcheva, Lee, McCormick, & Rahbar, 2016). Multicollinearity needs to
be addressed to allow the regression model to estimate coefficients in a
trustable manner (Vatcheva et al., 2016). To do so, we measured the correla-
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Figure 1: Pearson’s correlations between numerical covariates

tions between the numerical features using the Pearson’s pairwise method
and plotting them through the the R ggcorrplot package (Kassambara,
2019) as reported in figure 1. Examining Pearson’s correlations, we no-
ticed that collinearity in our data was present with severe strength mainly
among duration variables and JobLevel covariate. For JobLevel, we observed
almost a perfect correlation with MonthlyIncome (r = 0.95) and a very strong
collinearity with TotalWorkingYears (r = 0.78). Among duration features, we
found that our time covariate YearsAtCompany was severe correlated both
with YearsWithCurrManager (r = 0.77) and with YearsInCurrentRole (r = 0.76).
Further, YearsWithCurrManager and YearsInCurrentRole suffered of a very
strong collinearity (r = 0.71). Overall, other variables in the data frame such
as JobSatisfaction or JobInvolvement did not show very strong correlations be-
tween them excepting for PercentSalaryHike and PerformanceRating (r = 0.77).
To address multicollinearity, we did not include in our analysis the features
JobLevel, YearsInCurrentRole, YearsWithCurrManager, and PercentSalaryHike.
A new correlation plot between the numerical variables utilized in this
project can be found in appendix A (page 34).

In our cleaning process, we also decided to check for multicollinearity
in categorical data. For this purpose, we plotted with ggcorrplot a cor-
relation matrix obtained using the Cramer’s V method through the R’s
creditmodel package (Dongping, 2021), where perfect collinearity is indi-
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Figure 2: Cramer’s V correlations between categorical covariates

cated with the value of 1 and its absence with a value of 0. In analyzing
the plot reported in figure 2, we observed that the covariate Department
was almost perfectly correlated with JobRole (V = 0.94). Indeed, they carry
similar information as a JobRole depends on the department an employee
is assigned to. Moreover, a strong Cramer’s V correlation was noticed
between Department and EducationField (V = 0.59). Other features did not
present severe correlations between them. To also address collinearity in
categorical data, we removed the covariate Department from our data frame.
At the end of the data cleaning procedure, our dataset was reduced to 1470

rows and 26 columns.

4.3 Dataset Visualization

To better understand our dataset, we conducted an exploratory data anal-
ysis. The main findings of our visualizations are shown in figure 3, in
particular:

• The majority of the employees who quit the company left before
working ten years at the firm [a].

• Churner employees were more densely distributed at the beginning
of their career [b].

• Employee attrition occurs with higher percentages among employees
that have worked for more than four companies so far [c].

• One out of three employees who worked extra hours left the organi-
zation [d].

We obtained each graph using the R package ggplot2 (Wickham, 2016).



4 experimental setup 19

[a] [b]

[c] [d]

Figure 3: Key findings of the exploratory data analysis conducted

4.4 Model building

Before building any model, we one-hot encoded all the categorical vari-
ables present in our dataset. To do so, we utilized the dummycols function
available through the R package fastDummies (Kaplan, 2020). We dropped
the reference column in each dummy covariate to avoid multicollinearity.
After this process, the dimensions of our data frame were in the order
of 1470 rows and 39 columns. All the 39 covariates were used as input
features to train our models.
The IBM dataset was then split into a train and test set, reserving 70% of
the data for training and 30% for testing. We performed this process apply-
ing the function createDataPartition offered by the R package caret (Kuhn,
2021) to not alter the distribution of censoring across the data. Hence, we
saved the train and test datasets into two separate csv files. They were
imported in Python using pandas (The pandas development team, 2020).
The first model we built was Cox PH. Since our baseline did not neces-

sitate hyperparameter tuning, we directly fitted it on the training data
through the lifelines library (Davidson-Pilon, 2019). To interpret the
model, we retrieved its summary statistics. Moreover, we checked if the
assumption of the proportionality of the hazard held for the covariates
used. We observed that it was violated by 4 out of 37 features as reported
in Table 3. As a consequence of the proportionality hazards assumption
violation, we expected a less accurate model fit as the hazard ratio of four
covariates will change over time. However, since only a limited number
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Table 3: Covariates violating the PH assumption with a p-value treshold of 0.05.
The null-hypothesis is that there are no violations.

covariate p-value

BusinessTravel_Travel_Rarely 0.04

JobSatisfaction 0.04

TotalWorkingYears 0.02

YearsSinceLastPromotion <0.005

Table 4: RSF hyperparameter space

min_node_size {8, 16, 24, 32}
max_features {2, 4, 6, 8}
trees {500, 1000}

of covariates violated the PH assumption, we might expect Cox PH to
perform reasonably well for the current IBM employee dataset. Therefore,
after checking the proportionality of the hazards assumption, Cox PH was
tested on unseen data by computing both the Harrel’s C-index and the
integrated Brier score.
RSF, DeepSurv, and DeepHit required hyperparameter optimization. To
test the best-performing combination of hyperparameters, we performed
5-folds cross-validation. Specifically, the event variable Attrition was strati-
fied across all the folds to maintain censoring distribution in the dataset un-
altered. For each model, we conducted a stratified 5-folds cross-validation
for the same hyperparameter space twice. Indeed, the optimal combination
of hyperparameters was selected monitoring their performance in terms of
concordance index during the first and integrated Brier score during the
second. Thus, we concluded the tuning process by selecting two different
combinations of hyperparameters per model.
For RSF, hyperparameter optimization was performed using grid search

due to the limited number of parameters to adjust. As reported in Table 4,
we tuned the minimum amount of data to collect at the end of each leaf
node (min_node_size), the maximum number of covariates to randomly
consider at every node (max_features), and the trees’ quantity that com-
poses the forest (trees). The log-rank rule proposed by Segal (1988) was
used as a criterion to split the nodes. We chose the values reported in Table
4 based on prior studies (Kantidakis et al., 2020; Kvamme et al., 2019), thus
exploring 32 possible combinations of parameters. Once the best perform-
ing hyperparameters in terms of Antolini’s concordance index were found
using a stratified 5-folds cross-validation, we fitted a RSF on the complete
training dataset (RSFc). Further, another RSF was trained on the whole
training set with the tuned hyperparameters found through a stratified
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Table 5: DeepSurv hyperparameter space

num_nodes {32}, {32, 32}, {38}, {32, 38}, {38, 38}, {38, 32}
dropout [0.1, 0.2, . . . , 0.8]
batch_size [32, 96, . . . , 576]
epochs [10, 15, . . . , 120]
learning_rate LogSpace [0.0001, 0.4]
optimizer {Adam, SGD}
activation {ReLU, SELU}

5-folds cross-validation while monitoring the integrated Brier score (RSFi).
Both RSFc and RSFi were built using the Python library pysurvival (Fotso
et al., 2019), and tested on unseen data.
For DeepSurv and DeepHit, we standardized the numerical covariates in
the IBM dataset before tuning. Due to the large number of hyperparame-
ters to optimize, a random search of 160 iterations was implemented. Both
DeepSurv and DeepHit were built in Python using the pycox framework
(Kvamme, 2018). Early-stopping and dropout were implemented for Deep-
Surv and DeepHit to avoid overfitting.
The values of the hyperparameters we utilized for tuning DeepSurv are

reported in Table 5. To set up DeepSurv’s hyperparameter space, we re-
ferred to the experiments conducted by Katzman et al. (2018). In particular,
we followed Katzman et al. (2018) in testing a moderate number of layers
(num_nodes), optimizers, and activation functions. To determine the nodes’
values, we tried the default input suggested in pycox (32) and the total
number of covariates we had in the dataset minus the event variable (38).
Further, we researched the best performing hyperparameters using values
of batch_size, dropout, epochs, and learning_rate that are commonly
used for training neural networks. Similar to what we did for the RSF,
DeepSurv’s hyperparameters were tuned monitoring Harrel’s C-index with
a stratified 5-folds cross-validation and then used to fit a DeepSurv on the
training set (DeepSurvc). Moreover, another DeepSurv was trained with
the hyperparameters selected through a stratified 5-folds cross-validation
monitoring the integrated Brier score (DeepSurvi). Either DeepSurvc and
DeepSurvi were hence tested on testing data.
As mentioned above in 3.1.4., DeepHit requires discrete times as input.
To treat our time variable YearsAtCompany discretely, we divided it into
34 equal distant intervals. We split YearsAtCompany into 34-time points
as CoxPH and DeepSurv made predictions for 34 survival times. The
hyperparameter space for DeepHit is reported in Table 6. To select the
hyperparameters’ values, we referred to prior studies (Kvamme et al., 2019;
C. Lee et al., 2018; Nagpal, Li, & Dubrawski, 2021). For example, we
implemented considerable dropout as suggested by C. Lee et al. (2018),
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Table 6: DeepHit hyperparameter space

num_nodes {2, 3, 156}, {32, 32}, {32}, {38, 38}
dropout {0.6, 0.7}
batch_size [32, 96, . . . , 576]
epochs [10, 30, . . . , 120]
learning_rate LogSpace [0.0001, 0.2]
α {0, 1}
σ {0.1, 0.25, 0.5, 1, 2.5}
activation {ReLU, ELU}

ELU activation as done by Nagpal et al. (2021), α and σ as indicated
by Kvamme et al. (2019). We chose values of batch_size, epochs, and
learning_rate among those that are frequently used for tuning neural
networks, and Adam as optimizer. Once the best performing hyperpa-
rameters in terms of Antolini C-index were selected through a stratified
5-folds cross-validation, we fitted DeepHit on the training set (DeepHitc).
Evaluating the same hyperparameter space in terms of IBS with a stratified
5-folds cross-validation, we fitted another DeepHit model on the training
set (DeepHiti). Both DeepHitc and DeepHiti were then tested on testing
data.
The best combinations of hyperparameters selected per model are reported
below in appendix B (page 34), where even the training loss for DeepSurv
and DeepHit are displayed.

4.5 Software implementation

In order to conduct the experiments described above, R software (R Core
Team, 2020) was utilized for cleaning, exploring, and splitting the IBM
dataset. On the contrary, all the models and the visualizations of their
results were implemented in Python (Van Rossum & Drake Jr, 1995).

5 results

This section will report the performances in predicting voluntary employee
attrition obtained with the survival analysis methods described above in
subsection 3.1. Further, it will present the most relevant predictors in
forecasting whether an employee will leave an organization according to
our best-performing model.
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Table 7: Performances of the tuned models in terms of C-index and IBS. Subscript
c indicates a model tuned with a stratified 5-folds cross-validation monitoring the
C-index, whereas subscript i monitoring the IBS.

Models C-index IBS

Cox PH 0.904 0.060

RSFc 0.908 0.162

RSFi 0.909 0.148

DeepSurvc 0.917 0.064

DeepSurvi 0.917 0.055

DeepHitc 0.918 0.108

DeepHiti 0.919 0.112

5.1 Predicting employee attrition

The results of the implemented algorithms in predicting employee churn
on IBM testing data are provided in Table 7. Overall, every survival ma-
chine learning algorithm we fitted outperformed the state-of-the-art Cox
PH in relation to the concordance index. Indeed, either RSF, DeepSurv, and
DeepHit showed a higher concordance score than our baseline (Cox PH =
0.904), regardless of whether their hyperparameters were tuned monitoring
the C-index or the IBS. In particular, among the survival machine learning
models applied, DeepHit resulted in the highest concordance score with a
C-index equal to 0.919. DeepSurv occurred to have a concordance index
equal to 0.917 and RSF to 0.909. The fact that DeepHit was the best per-
forming survival algorithm in terms of concordance index on unseen data
fits appropriately with the findings of previous studies (Kvamme et al.,
2019; C. Lee et al., 2018).
Substantial improvements in concordance index were not observed by
tuning the model’s hyperparameters optimizing the C-index or the IBS.
In fact, for example, the concordance score of a DeepHit trained with the
cross-validated hyperparameters that maximized the C-index (DeepHitc

= 0.919) was close to the concordance score of a DeepHit tuned while
minimizing the IBS (DeepHiti = 0.918). Similarly, the concordance index of
a RSFc (C-index = 0.908) was almost the same as the concordance score of a
RSFi (C-index = 0.909). No difference was found between the concordance
index of a DeepSurvc (0.917), and a DeepSurvi (0.917).
In terms of integrated Brier score, we observed that only DeepSurv out-
performed our baseline Cox PH. Indeed, while Cox PH resulted in an
integrated Brier score equal to 0.060, DeepSurv achieved a performance
of 0.055. On the other hand, non-proportional hazards models performed
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Figure 4: Survival curves of first and second unseen employee per model.

considerably worse than the Cox PH: the integrated Brier score for our best-
tuned RSF was equal to 0.148, and for DeepHit to 0.108. A limited number
of experiments in previous studies obtained similar results (Kvamme et
al., 2019; Vale-Silva & Rohr, 2020) as frequently non-proportional hazards
models showed lower integrated Brier score’s values than proportional haz-
ards algorithms (Kantidakis et al., 2020; Kvamme & Borgan, 2019; Kvamme
et al., 2019; Vale-Silva & Rohr, 2020).
As the results presented in Table 7 show, improvements in terms of inte-
grated Brier score were observed by tuning the model’s hyperparameters
monitoring the IBS or the concordance index. In fact, the integrated Brier
score of a DeepHit optimized by maximizing the C-index trough cross-
validation (DeepHitc = 0.108) was lower than a DeepHit tuned by mini-
mizing the integrated Brier score (DeepHiti = 0.112). On the other hand, a
DeepSurv tuned by minimizing the integrated Brier score (DeepSurvi =
0.055) resulted in a better integrated Brier score than a DeepSurv optimized
by maximizing the C-index (DeepSurvc = 0.064) as well as RSFi (IBS =
0.148) had a better performance than RSFc (IBS = 0.162).
To further compare the fitted models, we plotted the predicted survival

curves of the first two employees in the test set, as shown in the left and
right panels of figure 4. Specifically, Cox PH and the best-tuned version
of every model (RSFi, DeepSurvi, and DeepHitc) were used to forecast the
survival probabilities of each employee over time. For the first unseen
employee plotted on the left of figure 4, we observed that every model
predicted her/his survival curve concordantly until a ten-year window.
After ten working years, the proportional hazards models diverged from
the non-proportional hazards models in predicting employee churn. A
similar pattern was found for the second unseen employee on the right plot
of figure 4, where proportional hazards models were concordant with non-
proportional hazards models until approximately a twelve-year window
and diverged afterward.
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Figure 5: Top five factors influencing voluntary employee attrition according to the
best performing model slected DeepSurvi. They were retrieved using permutation
importance.

5.2 Most relevant predictors for predicting employee churn

As previously discussed, DeepHit achieved the best score on employee data
regarding the concordance index, while DeepSurv was the best-performing
model in terms of integrated Brier score. Since we observed that Deep-
Surv resulted in a concordance index close to the best value obtained by
DeepHit, whereas DeepHit was far from the best integrated Brier score, we
chose DeepSurvi to investigate the main causes driving employee attrition.
Figure 5 presents the most relevant factors influencing the workforce’s
deliberate turnover retrieved through the permutation importance of the
features on the IBM test set. According to DeepSurvi, we observed that the
focal predictors of employee churn in the company were TotalWorkingYears
(permutation importance: 0.216), NumCompaniesWorked (permutation im-
portance: 0.038), and OverTime (permutation importance: 0.031). Further,
results visualized in figure 5 indicate that EnvironmentSatisfaction (permuta-
tion importance: 0.010) and JobSatisfaction (permutation importance: 0.009)
played a moderate role in predicting voluntary employee attrition.

6 discussion

Several machine learning algorithms have recently been extended to per-
form survival analysis (E. Lee, 2019; P. Wang et al., 2019). Nonetheless,
prior studies on employee attrition only used traditional survival analysis
methods to investigate why an employee will leave a job (Assefa et al., 2017;
Li, Ge, Zhu, Xiong, & Zhao, 2017; P. Wang et al., 2019). Here, we compared
the performances of state-of-the-art Cox PH with the newly developed
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survival algorithms RSF, DeepSurv, and DeepHit in forecasting deliberate
workforce turnover. Furthermore, we utilized our best-performing model
to investigate the most relevant factors influencing employee churn. As
such, this thesis contributes to the deliberate turnover literature by ex-
ploring the potential of novel survival methods in predicting whether an
employee will quit an organization.
The concordance index and the integrated Brier score were applied to
analyze the predictive capabilities of Cox PH and novel survival methods
on employee data. Our findings indicate that all the survival models im-
plemented resulted in a better concordance score than state-of-the-art Cox
PH, consistently with prior studies (Kvamme & Borgan, 2019; Kvamme
et al., 2019; C. Lee et al., 2018). However, it is interesting to notice that
only DeepSurv achieved a better result concerning the integrated Brier
score than Cox PH. In particular, this is not in line with the majority of the
experiments reported by previous papers (Kantidakis et al., 2020; Kvamme
& Borgan, 2019; Kvamme et al., 2019; Vale-Silva & Rohr, 2020), where
novel survival analysis methods resulted in a better integrated Brier score
than Cox PH. Only a limited number of experiments in previous studies
(Kvamme & Borgan, 2019; Vale-Silva & Rohr, 2020) reported that Deep-
Surv resulted in a better integrated Brier score than other methods, where
Kvamme and Borgan (2019) argued that the proportionality of the hazards
played a role in DeepSurv’s performance. We also suspect that our results
diverge from the majority of the literature due to the proportionality of
the hazards assumption. Indeed, our findings show that non-proportional
hazards models performed considerably worse in terms of integrated Brier
score than proportional-hazards models. We argue that this could be the
case because only four covariates out of thirty-seven violated the hazards
assumption of proportionality in the synthetic IBM dataset used (see table
1). Moreover, the capability of DeepSurv in modeling the proportionality of
the hazards in a non-linear manner could motivate its better performance
in terms of integrated Brier score than Cox PH.
This thesis also aimed at selecting the best performing survival model to
investigate the most relevant predictors in predicting voluntary employee
attrition. Once we identified DeepSurv as the best performing model, the
most influential factors for employee churn were retrieved using permu-
tation importance. Our results show that the number of years since an
employee has begun to work, the number of companies for which she/he
had worked, and overtime are the focal factors that influence attrition.
These findings are in line with previous papers (Alduayj & Rajpoot, 2018;
Jin et al., 2020), where they also resulted in being among the most relevant
predictors of deliberate workforce turnover. However, our results are in
contrast with other studies conducted on the IBM data frame (Fallucchi,
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Coladangelo, Giuliano, & William De Luca, 2020; Yang, Ravikumar, & Shi,
2020), where other variables as MonthlyIncome and Age were indicated as
having the most substantial influence on employee churn. We suspect that
the difference in results relies on the methodology used to retrieve the
most influential predictors. For example, Yang et al. (2020) obtained dis-
cordant predictors while interpreting the coefficients of logistic regression
or the variable importance score given by a random forest. Future studies
may implement different methodologies to retrieve the most influential
predictors of employee churn with more reliable estimates.
From the societal perspective, our findings may positively impact both
the employer and the employees. Indeed, suppose it is observed that an
employee is at a high risk of churn in the next time window by inter-
preting the survival probabilities output by our best-performing model
DeepSurv. In that case, the employer could take proactive measures to
avoid employee attrition using the most relevant predictors of employee
churn we found. For instance, if the employee at risk is working overtime,
the employer may proactively reduce her/his extra working hours spent at
work. Consequently, the employee may be more satisfied with her/his job,
hence deciding not to quit the company. As such, data-driven proactive
measures based on our results may save attrition costs, thus producing
a positive impact on a firm as pointed out by previous studies (Alduayj
& Rajpoot, 2018; Căplescu et al., 2019; Madariaga et al., 2018). Moreover,
our findings may have a positive effect even on staff members’ lives. In
fact, an employee working overtime may be satisfied with spending fewer
extra hours at work, hence choosing not to stress herself/himself with the
research of another job. In this way, the results presented in this project
may have positive societal implications.
We argue that a limitation of this study concerns the strategy implemented
for handling multicollinearity between variables. Indeed, prior studies
(Belsley, Kuh, & Welsch, 2005; Tomaschek, Hendrix, & Baayen, 2018) in-
dicated that correlation matrices could not guarantee that there isn’t any
collinearity issue even though a high correlation between variables is not
observed in the matrix (Tomaschek et al., 2018). Since we used correlation
matrices not only for diagnostics, but also for decision-making, the Cox PH
implemented could have suffered from our choices. Further researches on
voluntary employee attrition could implement more advanced techniques
to avoid multicollinearity, such as the principal component analysis (?)
strategy for numerical variables.
Another limitation of this thesis regards the usage of permutation impor-
tance as the only method used for exploring the most relevant predictors
of employee attrition. Indeed, previous studies (Molnar, 2020) indicated
that permutation importance could produce inconsistent results and suffer
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from correlations between variables. Further studies could implement
different techniques such as Olden’s algorithm (Olden, Joy, & Death, 2004)
to estimate the relevance of the features through the network’s weights and
compare its findings with the results given by permutation importance.
Through this comparison, more reliable estimates of the most relevant
factors influencing employee attrition could be obtained.

7 conclusion

The objective of this study was to investigate how well voluntary employee
attrition can be predicted using survival analysis. The reported results
indicate that survival analysis methods can effectively predict deliberate
workforce turnover. In particular, our findings reveal that novel machine
learning models extended to survival analysis outperformed state-of-the-
art Cox PH in terms of concordance index in forecasting employee attrition.
Among them, DeepSurv had a better performance than Cox PH with
respect to the integrated Brier score. Moreover, we observed that the
number of years since the employee has begun her/his career, the number
of companies in which an employee worked, and extra working hours are
the most relevant predictors in predicting the churn.
By comparing recently proposed survival methods with state-of-the-art
Cox PH, this project enclosed a novel methodology to predict deliberate
attrition in a company. Since satisfactory results were obtained through
this comparison, future studies could further explore the potential of
survival analysis in forecasting employee attrition by comparing other novel
machine learning techniques extended to survival tasks. In addition, it
would be interesting for future studies to investigate models’ performance
differences with respect to the integrated Brier score on employee data
where most of the covariates violate the proportional hazards assumption.
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Figure 6: Correlations of the numeric variables used

9 appendix b

Table 8: RSFc tuned

min_node_size 8

max_features 2

trees 1000

Table 9: RSFi tuned

min_node_size 32

max_features 6

trees 500

https://doi.org/https://doi.org/10.1002/cjs.11176
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Table 10: DeepSurvc tuned

num_nodes [38, 38]
dropout 0.6
batch_size 224

epochs 25

learning_rate 0.018076592746497238

activation SELU
optimizer Adam

Figure 7: DeepSurvc training loss

Table 11: DeepSurvi tuned

num_nodes [32]
dropout 0.3
batch_size 224

epochs 105

learning_rate 0.04559725022244564

activation SELU
optimizer SGD

Figure 8: DeepSurvi training loss
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Table 12: DeepHitc tuned

num_nodes [38, 38]
dropout 0.7
batch_size 96

epochs 30

learning_rate 0.023579057190571906

α 1

σ 0.25

activation ReLU

Figure 9: DeepHitc training loss

Table 13: DeepHiti tuned

num_nodes [32, 32]
dropout 0.6
batch_size 32

epochs 110

learning_rate 0.0035446036055156544

α 1

σ 0.5
activation ELU

Figure 10: DeepHiti training loss
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