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Abstract

This paper explores the in-sample effects of Twitter on the stock price return volatility of 12 major
U.S. companies. Motivated by the increased attention among retail investors, the importance of social
media in our daily lives, and the adoption of non-financial practices in investment strategies, this study
only considers non-financial tweets. To determine the Twitter-based sentiment score, this research
employs a domain adjusted variant of the VADER lexicon. This paper develops a new method to
aggregate tweets based on readily available attention variables. Besides the sentiment, this study
considers both the number of tweets and the number of interactions to account for the effect of Twitter
on stock price return volatility. To describe the return process, this research uses an auto-regressive
moving-average structure with apARCH innovations. Both the asymmetric effects and the effects of
the volatility of the Twitter variables on the stock price return volatility are investigated. It is found
that in a constant parameter setting, the volatility of the Twitter variables can significantly explain the
volatility of the stock price returns. In general, Twitter only affects one day ahead volatility. To account
for possible varying effects, a smooth, macroeconomic dependent function is employed to investigate
whether the effect of Twitter is subject to the state of the economy. The effects of Twitter are concluded
to be dependent on the overall state of the economy. During economic downturn, Twitter successfully
explains the conditional volatility of the majority of the companies. Moreover, it is concluded that
negative sentiment has a larger effect on volatility than positive sentiment.
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1 Introduction

“The beauty of social media is that it will point out your company’s flaws; the
key questions is how quickly you address these flaws.”

Erik Qualman (Socialnomics: How Social Media Transforms the Way We Live
and Do Business (ed. 2009))

Over the years, numerous micro-blogging platforms have gained a prominent role in the daily conversa-
tions of individuals. In particular, over the last decade, Twitter has grown out to be more and more of a
news and actualities sharing platform (Kwak, Lee, Park, & Moon, 2010). People post tweets, small mes-
sages containing up to 280 characters, which can be read by their followers, sometimes attaching hashtags
referring to particular threads or topics.
On Twitter, users can continuously display their feelings and emotions, possibly influencing others into

actions. This makes Twitter a great source of sentiment mining, which is the practice of deriving sentiment
scores based on the tweets posted on the platform. The rise of the role of Twitter in our daily lives
has happened gradually along with the rise of computational power. This has increased the popularity
of Natural Language Processing (NLP) techniques that analyse textual data to find relevant structures
(e.g. the spam filter in our e-mail inbox). Moreover, an increased amount of financial news is shared on
Twitter, which extends the number of financial applications. For instance, Dredze, Kambadur, Kazantsev,
Mann, and Osborne (2016) find that Twitter can be regarded as a valuable source of financial information.
This allows for new behavioural finance research, which investigates the relationship between psychology
and financial markets, and in most cases relaxes the assumptions that investors behave rationally at all
time. Although using Twitter to model financial market performance has been done in numerous research
(Audrino, Sigrist, & Ballinari, 2020; Fan, Talavera, & Tran, 2020; Ramco, Aleksovski, Calderelli, Grcar, &
Mozetic, 2015), little attention has been paid to the type of tweets included in these researches. Baurichter
(2021), finds that retail investors account for the majority of the stock price movements, and additionally,
that these investors are guided more by their emotion than institutional investors. In their article, Rakowski,
Shirley, and Stark (2021) discuss the effect of Twitter and observe a significant effect, especially for stocks
primarily traded by retail investors. Following the arguments of Da, Engelberg, and Gao (2011) and Hsu,
Lu, and Yang (2021), it is argued that retail investors react differently to news than institutional investors,
and are therefore more likely to be affected by social media coverage. Additionally, it is argued that after
the recent GameStop mania, retail investors are likely to influence stock market prices for longer periods
to come (Fitzgerald, 2021). Therefore, this paper considers tweets that arguably affect retail investors to a
greater extent.
Over the past years, the interest in responsible investing has surged. Practices like Corporate Social

Responsibility (CSR) or Environmental, Social and Governance (ESG) have been increasingly integrated
into the financial world. The rising popularity of these terms associated with the way corporations should
behave according to the public, gives rise to the question whether investors are likely to be influenced by
announcements regarding these terms. As the quote illustrates, it can be argued that social media can serve
as an accelerator for thoughts or opinions towards companies. From the news article ’Deliveroo crashes in
IPO after remarkable run-up’1, it can be seen that the interest of institutional investors in the shares of
Deliveroo descreased because of the bad working conditions at Deliveroo. This supports the intuition that
investors are more concerned with responsible investments. From Da et al. (2011), it is clear that retail
investors react different to news announcements than more sophisticated institutional investors. Combining
these findings, it is proposed that non-financial Twitter coverage can be used to predict stock price return

1NOS: Deliveroo onderuit bij beursgang na opmerkelijke aanloop
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volatility. The volatility of the stock price returns is described as the degree to which the returns vary
over time. Therefore, this paper explores whether Twitter drives stock price fluctuations. It is investigated
whether volatility models that take into account Twitter-variables, capture the volatility of the stock price
returns better than models that do not account for these variables. Simultaneously, this paper is concerned
with exploring the effect of Twitter coverage that is argued to predominantly affect retail investors. Since
the U.S. stock market is the most prominent and the U.S. has the most active Twitter users2, U.S. data is
used.

Since Engle (1982) developed the Autoregressive Conditional Hetereskedascity (ARCH) and Bollerslev
(1986) proposed the Generalized ARCH (GARCH) model, modeling the volatility of stock prices, inflation
rates or GDP growth has been a hot topic in finance. Investors dislike the exposure to heavy swings of
their stock portfolio, similarly countries do not like a very fluctuating inflation rate. In most cases, higher
volatility is associated with increasing levels of risk. Since investors try to balance their risks and returns
high volatility causes constant portfolio reallocation (Markowitz, 1952). Furthermore, Engle and Patton
(2001) discuss the fact that throughout the financial world, precise volatility forecasts are crucial. Since
inaccurate volatility models can lead to excessive risk taking, the model from Bollerslev (1986) has been
under constant revision, with researchers constantly proposing adjustments to account for additional effects
in financial time series. Black (1976) introduced the phenomenon of the leverage effect, which proposes
that volatility tends to rise in periods when excess returns are lower than they were expected, and falls
when excess returns exceed their expectation. Additionally, Schwert (1989) reports increasing levels of
stock volatility in times of economic distress or war, which can only partly be explained by increasing
market volatility. To this extent, asymmetric volatility models that take into account the leverage effect
are proposed by Glosten, Jagannathan, and Runkle (1993) and Nelson (1991). In these models, negative
shocks can have a larger effect than positive shocks.
More recent is the introduction of exogenous variables into stock price volatility models, which are

of interest when assessing effects of non-financial Twitter coverage. Engle and Patton (2001) show the
significance of the inclusion of the T-bill rate when making forecasts of the Dow Jones Industrial Index
returns volatility. Lately, Hsu et al. (2021) proposed to include sentiment variables in the volatility equation
and report significant effects of these exogenous variables. Additionally, in the recent article by de Winter
and van Dijk (2021), the authors found a significant relationship between headlines in the Dutch Financial
Times (Het Financieele Dagblad) and macroeconomic performance. By accounting for these headlines, short
term volatility forecast error was reduced by up to 10%. These articles underline the observed significance
of accounting for sentiment and news based effects in volatility modeling.
Furthermore, Bollerslev and Ghysels (1996) consider an extension of the GARCH model, which allows

for the parameters to depend on cyclical patterns. In this article, it is found that these types of varying
parameter models increase the flexibility of the GARCH models compared to the time-invariant GARCH
models. Additionally, allowing for the existence of structural breaks or time-varying coefficients in volatil-
ity models have been proven to greatly improve volatility forecasts (Andreou & Ghysels, 2002). Amado
and Teräsvirta (2008) introduce a time-varying GARCH model, where the transition between the multiple
regimes is modeled by a smooth transition function. Considering the fact that the effect of Twitter may also
vary through time, this specification can greatly improve existing methodologies that incorporate Twitter
sentiment via a single regime model.

As illustrated by Engle and Patton (2001), accurate volatility models provide great benefits across the
entire financial industry. Since social media is increasingly important in the way that we interact with

2Number of Twitter users per country
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others, recommend (financial) products and display our (dis)satisfaction with everyday events, the role of
Twitter can not be disregarded when investigating stock price movements. Especially in the case of individ-
ual investors, it can be argued that Twitter plays a significant role in their news dissemination. Therefore,
this paper will investigate if non-financial Twitter data can be used to explain stock price volatility. In
particular, this research aims to answer how Twitter exerts influence on volatility, when Twitter influences
volatility, and how long Twitter affects volatility. To answer this question, multiple models that combine
common features are constructed to determine which effect Twitter exerts on volatility.
This analysis is performed in-sample, and mainly focuses on discovering the observed differences in the

impact of sentiment through time for different companies, as suggested by Audrino et al. (2020). However,
uncovering in detail the ways that Twitter activity influences stock price volatility can be used to improve
out-of-sample volatility forecasting in future research. Moreover, this analysis will be useful to determine
which content shared on Twitter that mainly drives stock price volatility

Using a combination of the proposed methodologies, the question how and when Twitter coverage af-
fects stock price volatility can be answered more precisely. To this extent, multiple models are investigated
across a sample of U.S. multinationals and compared to determine how Twitter coverage can successfully
explain volatility. Additionally, to determine what kind of Twitter information affects volatility, this re-
search specifically selects tweets following a manually constructed ESG-dictionary, which contains multiple
terms linked to non-financial performance. Especially since these interests are sometimes conflicting, cre-
ating more insights is very valuable. For instance, when Apple invests ten million in creating eco-friendly
offices, this is likely to be good for the environment, however unlikely to increase sales.
Earlier research has paid very little attention to the selection of an appropriate sentiment classification

method. These articles made use of sentiment classification methods that have been shown to perform
not very accurate in determining the appropriate sentiment. Especially since more advanced sentiment
classification methods - which are proven to be very accurate - are performing increasingly better due to
the increasing availability of data, paying more attention might turn out to be valuable (Go, Bhayani, &
Huang, 2009). Determining the correct sentiment from textual data is crucial in these types of research.
Since deriving the incorrect sentiment score might result in failure to discover meaningful links between
sentiment and volatility. Finally, a parsimonious method that can be used to derive a weighted average of
multiple sentiment scores is developed. This improves earlier research where calculated sentiment scores
are simply averaged (Fan et al., 2020; Ramco et al., 2015), and takes into account the relative importance
of tweets in the conversations that are happening on Twitter.

The remainder of this thesis is structured as follows. Section 2 introduces the basic GARCH model along
with common estimation techniques. Additionally, this section explains the rationale behind common
GARCH alternatives and introduces the necessary assumptions associated with these alternatives. Then,
it section 3.1 explains how to leverage Twitter to determine the impact of tweets with non-financial con-
tent, and section 3.2 introduce various sentiment classification methods. Section 3.3 introduces a model
that calculates the weighted average sentiment score. In section 4, the proposed econometric models are
explained, along with the appropriate assumptions, estimation procedure, and tests. Additionally, this
section presents a time-varying specification, which is employed to determine in more detail the periods
during which Twitter exerts significant influence on volatility. Section 5 discusses the application of the
stated theory to empirical applications, provides the summary statistics, and discusses several time series
plots. The results are analysed and shown in section 6. Lastly, section 7 summarizes the contents of this
research and section 8 provides concluding remarks and recommendations for future research.

4



2 Preliminaries

This research considers various methodologies to determine the effect of non-financial Twitter-based public
sentiment on stock price movements. To provide the reader with some intuition about how Twitter variables
can enter volatility models, this chapter introduces common volatility modeling techniques. Moreover, this
chapter provides the necessary assumptions and estimation techniques associated with these models.

2.1 The GARCH model

Since Engle (1982) proposed the Autoregressive Conditional Heteroskedascity (ARCH) model to identify
stock price volatility, various extensions to this model have been proposed. In the first place, Bollerslev
(1986) introduced the Generalized ARCH (GARCH) model, a natural generalization of the model proposed
by Engle (1982). In his article, Bollerslev (1986) first provides the specification of the simplest GARCH(1,1)
process, which is later extended to the general GARCH(p, q) to allow for longer memory and more flexible
lag structure. To define the GARCH(1,1) process, let εt be a real-valued discrete time stochastic process
with information available up to time t

εt = σtzt (1)

σ2
t = ω + αε2

t−1 + βσ2
t−1, (2)

where ω > 0, α ≥ 0 and β ≥ 0 to ensure non-negativity of the process σt. Note that the processes zt and σt
are unobservable and can only be estimated. The variables zt are called the innovations and are assumed
to be independent and identically distributed with zero mean and unit variance, i.e. E[zt | εt−1, . . . , ε1] = 0

and E[z2
t | εt−1, . . . , ε1] = 1. Throughout this research, σ2

t denotes the conditional variance of εt given
information up to time t, let Ft−1 denote this information set including all information up to time t. In
case of the model from equation (2), this set is equal to Ft−1 = {εu, u < t}. Then, the assumption on the
innovations is rewritten to E[zt | Ft−1] = 0 and E[z2

t | Ft−1] = 1.
To guarantee stationarity of the conditional variance process from equation (2), it must hold that α+β < 1

(Bollerslev, 1986), which means that the first moment and autocorrelations are time-invariant. In many
empirical research, GARCH processes are used to determine how long shocks to the process described in
equation (2) affect future values of the conditional volatility (Nelson, 1990), which is called the persistence.
As the conditional volatility rises after shocks of εt−1, it is of interest how long these shocks keep affecting
the conditional volatility many periods ahead. In the GARCH(1,1)-case, the total degree to which shocks
’persist’, is measured by the sum α+β, with the sum being larger indicating a higher degree of persistence.
As Lamoureux and Lastrapes (1990) point out, it is generally observed that when the GARCH model is
applied to high frequency financial data, shocks to variance persist for longer periods ahead in time and
the conditional volatility only slowly decays.

Estimation of the parameter values in equation (2) is commonly done by the Maximum Likelihood Es-
timator (MLE). Based on a likelihood function, these are parameter estimates that make the observations
of the conditional volatility the most ’likely’ based on the distribution of the innovations zt. For compu-
tational convenience, in most cases the log likelihood function logL(ϕ) is maximized (Bain & Engelhardt,
1987). In the initial article by Bollerslev (1986), the innovations are assumed to follow a standard normal
distribution. However, this assumption does generally not hold, as financial time series commonly have
more fat-tailed distributions (Feng & Shi, 2017). This common attribute is also observed by Bollersev and
Wooldridge (1992), who disregard the restrictive normality assumption. The authors proceed by intro-
ducing the asymptotic efficiency of a Quasi Maximum Likelihood Estimator (QMLE) that estimates the
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parameters in a consistent and efficient way. The QMLE differs from the traditional Maximum Likelihood
Estimator in that the QMLE allows some distributional assumptions to be misspecified (White, 1982).
When the quasi maximum likelihood function is not oversimplified, the parameters that maximize this
function are still consistent parameter estimates of the true parameter values (Bollersev & Wooldridge,
1992).

The generalization of the GARCH(1,1) model, the GARCH(p, q) specification tackles the empirical prob-
lems observed by using the ARCH model from Engle (1982), as a relatively long lag in the conditional
variance equation is often needed. Let p and q denote the lag order of the process εt and σt, respectively,
then

σ2
t = ω +

p∑
i=1

αiε
2
t−i +

q∑
i=1

βiσ
2
t−i, (3)

where ω > 0, αi ≥ 0 for i = 1, . . . , p and βi ≥ 0 for i = 1, . . . , q to ensure non-negativity. Again, the same
assumptions on the innovations hold, that is E[zt |Ft−1] = 0 and E[z2

t |Ft−1] = 1, where Ft−1 = {εu, u < t}.
To guarantee time invariant first moments and autocorrelations, it must hold that

∑p
i=1 αi +

∑q
i=1 βi < 1

(Bollerslev, 1986). However, by thorough empirical research, it is commonly argued that in financial
applications, the model with p = q = 1 provides a generally good fit on the time-series data. Hansen
and Lunde (2005) investigate the use of over 330 GARCH-type models, with varying levels of lags. In
their conclusion, the authors argue that no model succeeds in beating the standard GARCH(1, 1) model.
Therefore, the GARCH(1,1) model serves as a benchmark model in the following alternatives.

2.2 Extensions of the standard GARCH(1, 1) model

In this subsection, various common extensions of the GARCH(1, 1) model are discussed and explained.
These extensions on the previously introduced idea by Bollerslev (1986) provide alternatives that have been
tested extensively through empirical research, and that allow for the inclusion of Twitter-based variables
into the equation from equation (2). These methods provide the groundwork to develop a model that allows
for inclusion of Twitter-based sentiment variables into the standard model from equation (2).

The ARMA(P,Q)-GARCH model

In his article, Weiss (1984) discusses a special case of the ARCH model by Engle (1982), which models
a variable yt as an Auto Regressive Moving Average (ARMA) process with ARCH errors. As mentioned
by Franq and Zakoian (2004), it is common in financial applications to use ARMA-type models to fit the
conditional mean of the return process, and let the errors of this process follow a GARCH process. This
allows return time series to incorporate a drift term, autocorrelations, or seasonal effects in the conditional
mean equation. Similar to the model from equation (3) the ARMA model has a lag structure for both
parts. The first part of the ARMA(P,Q) model corresponds to the autoregressive (AR) part, where lagged
values of yt up to lag P enter the equation of yt. The second part incorporates the moving-average (MA)
structure, which describes yt as a function of the Q lagged estimation errors εt, εt−1, . . . , εt−Q. This leads
to the following specification of the conditional mean process of yt:

yt = µ+

P∑
i=1

γiyt−i +

Q∑
i=1

δiεt−i + εt,

= µ+

P∑
i=1

γiL
iyt +

(
1 +

Q∑
i=1

δiL
i

)
εt,

(4)
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where L denotes the lag operator, i.e. Liyt = yt−i and Liεt = εt−i. Let G(L) = 1 −
∑P
i=1 γiL

i and
D(L) = 1 +

∑Q
i=1 δiL

i denote the AR and MA polynomials respectively, then equation (4) is equal to
G(L)yt = µ+D(L)εt. To guarantee stationarity and invertibility of the ARMA(P,Q) process, it must hold
that the roots of |G(L)|= 0 and |D(L)|= 0 are outside the unit circle (Ling & McAleer, 2003). To derive
the ARMA-GARCH specification, the errors εt of equation (4) are assumed to follow the process described
by equation (2).

Asymmetric GARCH models

In their article Ding, Granger, and Engle (1993) argue that there is no specific reason to model the con-
ditional variance process as a linear function of lagged squared residuals. Considering the leverage effect
reported by Black (1976), it is argued that not only the level, but also the sign of shocks to the values εt
have an effect on the conditional volatility.
The most commonly used GARCH alternatives that allow for different effects of negative or positive

shocks of ε1, . . . , εT on the conditional volatility are the GJR-GARCH from Glosten et al. (1993) and
the Exponential GARCH model of Nelson (1991). As the statistical behaviour of the EGARCH model
estimates is not readily available under general conditions (Franq & Thieu, 2019), this research employs
the GJR-GARCH model to take into account the asymmetric effects of positive versus negative residuals.
The GJR-GARCH(1,1) model is defined as follows

σ2
t = ω + α∗i ε

2
t−1 + aIt−1ε

2
t−1 + βσ2

t−1 (5)

where It−1 is an indicator function, which takes value one when εt−1 < 0 and zero otherwise. To ensure
non-negativity of the conditional variance process, ω > 0, α∗ ≥ 0, a ≥ 0 and β ≥ 0. Again, let εt
be characterized by equation (1), and let zt be an i.i.d. sequence of innovations. Additionally, assume
E[zt | Ft−1] = 0 and E[z2

t | Ft−1] = 1, where Ft−1 = {εu, u < t}.
Since the GJR-GARCH model as described above is a special case of the asymmetric power ARCH

(apARCH) model by Ding et al. (1993)3, the notation of the apARCH with κ = 2 is used throughout this
research. Define this model by

σ2
t = ω + α (|εt−1|−ψεt−1)

2
+ βσ2

t−1, (6)

where −1 < ψ < 1 captures the possible asymmetric effects of shocks of εt to the conditional volatility.
Similar to earlier definitions, ω > 0, α ≥ 0 and β ≥ 0 to guarantee non-negativity of σt. When the
distributions of the innovations is symmetric, Ling and McAleer (2002) suggest that in order for the process
of equation (6) to be stationary, it must hold that α(1 − ψ)2 + α(1 + ψ)2 + β < 1, which is equivalent to
α(1 +ψ2) +β < 1. Similar to the GARCH(1,1) case, α(1 +ψ2) +β also denotes the degree to which shocks
to the conditional volatility persist, and have a lasting effect on future conditional volatility values.
From equation (6) it can be seen that for positive values of ψ, negative values of εt have more effect

than positive values on the conditional volatility, which is in line with the observations by Black (1976)
and Schwert (1989). On the contrary, for negative values of ψ, positive values of εt have a larger effect on
the conditional volatility.

The GARCH-X model

Multiple empirical research articles investigate the use of economic or financial indicators in GARCH-
type models, but also the inclusion of exogenous sentiment variables (see Hsu et al., 2021 or Rupande,

3As shown by Ding et al. (1993), when κ = 2, the apARCH model can be rewritten to the GJR-GARCH model of
equation (5). That is, when 0 ≤ ψi < 1 it can be shown that α∗

i = αi(1 − ψi)
2 and bi = 4αiψi and when −1 < ψ < 0 the

parameters of equation (5) are α∗
i = αi(1 + ψi)

2 and bi = −4αiψi.
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Muguto, and Muzindutsi, 2019 for recent examples). These models are generally refered to as GARCH-X
models and allow for the inclusion of exogenous variables into the conditional variance equation. Han
and Kristensen (2014) provide a specification where lagged values of the exogenous variable xt enter the
conditional volatility equation of equation (3). As discussed, throughout this research it is assumed that
p = q = 1, however, it is interesting to include up to the R-th order lag of the exogenous variable xt, leading
to the following GARCH-X specification

σ2
t = ω + αε2

t−1 + βσ2
t−1 +

R∑
i=1

πix
2
t−i, (7)

where ω > 0, α ≥ 0, β ≥ 0 and π ≥ 0 to ensure non-negativity of the conditional variance process. To guar-
antee stationarity of σt, it must hold that α+ β < 1, as shown by Bollerslev (1986). To succesfully include
the exogenous variable xt into the conditional variance equation, it must hold that the values x1, . . . , xT

form a stationary time series process. Following Han and Kristensen (2014) the covariates are required to
be exogenous in the sense that E[zt |Fx,t−1] = 0 and E[z2

t |Fx,t−1] = 1, where the information set is defined
by Fx,t−1 = {εu, xu, u < t}. This assumption limits the possibility of xt, as choosing a stock return will
likely violate the exogeneity assumption.

Similar to the GARCH(1,1) models, the parameters of the proposed alternatives can be estimated by
the QMLE. In their article, Ling and McAleer (2003) provide the asymptotic consistency of the QMLE of
the ARMA-GARCH specification, which is then shown again under less restrictive assumptions by Franq
and Zakoian (2004). Han and Kristensen (2014) show the consistency of the QMLE in the GARCH-X set-
ting, and Franq and Thieu (2019) provide the conditions for consistency of the QMLE for the apARCH-X
model. Section 4 discusses in more detail the conditions that must hold for consistency of the QMLE,
introduces the quasi likelihood function and provides the models that are used in this paper.
Additionally, section 4 introduces a robustness check to test whether the models can be extended to

allow for time-varying effects. This can help to determine during what periods Twitter can be leveraged to
accurately model conditional volatility. Furthermore, Lamoureux and Lastrapes (1990) provide arguments
that when a model is unable to signal shifts, it is likely to overstate the true level of persistence.
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3 Modeling sentiment

Section 2 discussed what types of models can be used to model stock price movements, and how exogenous
variables might be included in these models. This chapter focuses on how Twitter can be leveraged to
determine non-financial public sentiment towards U.S. companies, to determine its effect on stock price
volatility. This platform is argued to play a pivotal role in the information and opinion stream that Twitter
users experience. This chapter discusses techniques that handle the classification of sentiment based on
textual data (the selected tweets). Furthermore, this chapter discusses how to combine the sentiment score
of multiple tweets within one time period to derive the total sentiment score. Lastly, other variables that
might be valuable in assessing the total sentiment that can be derived based on a Twitter dataset are
highlighted.

3.1 Twitter data

To retrieve the necessary tweets, Twitter provides researchers the option to find tweets via the Academic
License of their Twitter search API. Via the Academic License of the Twitter API it is fairly easy to get
historical tweets obeying the restrictions imposed by the user. Furthermore, any historical tweet dating
back to as early as 2006 can be found, extending the possibilities of the regular license, which only allows
retrieval of tweets dating back up to one week. As this license was only deployed in 2020, this extends the
number of opportunities with regard to Twitter-based sentiment analysis.

Constructing the search query

Since randomly retrieving tweets does not provide an overview of the non-financial public sentiment towards
the selected U.S. corporations, the Twitter API allows the user to specify a search query. This search query,
consisting of at most 1024 characters, holds the specifications of the content (i.e. words, language or time-
interval) that must hold for all tweets. In order to retrieve tweets that are valuable in the assessment
of non-financial public sentiment, the following is done. First, a list of all Environmental, Social and
Goverance (ESG) related words is created manually, containing words that are affiliated with non-financial
performance of companies. This list can be found in appendix A.1.1 in table 12. This list has been
constructed with help of the ESG glossary of Allianz4, completed with multiple additions describing the
non-financial actions of companies (i.e. fraud, pollution or slavery). By specifying these words, the Twitter
API only retrieves tweets that contain at least one word from this ESG dictionary.
Besides containing one or more words from the ESG dictionary, a tweet must contain either the company

name, official company name or the company stock exchange ticker symbol accompanied with a so-called
cashtag ($), e.g. tweets must contain either Apple, Apple Inc. or $AAPL when retrieving tweets for Apple.
As the search query can also hold terms that filters out tweets with content that is not relevant, a negation

dictionary is created, which limits the amounts of random tweets retrieved. This negation dictionary is
company-specific and makes sure that words from this dictionary do not occur in the retrieved tweets.
Creating this negation dictionary is done manually by inspecting a small subsample of the retrieved tweets,
and looking for tweets that are evidently spam or are not of interest in this research, such as product offers.
This negation dictionary is crucial as it filters out a lot of tweets that do not contribute to the goal of
this research. Besides filtering the historical tweets based on the ESG dictionary and negation dictionary,
several other constraints are imposed on the retrieval of the relevant tweets. Tweets in this research are
only written in English, are not promoted (commercial) tweets and are not retweets, quotes, or replies to
other tweets.

4Allianz ESG glossary
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Public metrics

Besides the content of the retrieved tweets, the Twitter API also allows to retrieve other options for each
tweet, such as the user name or the geolocation from where the tweet was sent. In this research, the main
interest is how messages on Twitter influences the behaviour of (retail) investors, and whether this affects
stock price movements. To determine the virality of a tweet, the Twitter API allows to retrieve the public
metrics for each tweet. These public metrics are the number of likes, number of retweets, number of quotes,
and number of replies associated with a tweet. It shows how many Twitter users interact with a tweet.
Hence, these public metrics directly show the number of people that might be moved or influenced by a
tweet. Furthermore, these metrics can be used to filter out tweets that are spam or that are not credible,
since these tweets do not generate any interactions with other Twitter users.

Exploiting the search query as described above results in the Twitter dataset. This dataset consists of
all tweets containing at least one of the words of each row of table 12 in appendix A.1.1, and do not
contain any of the words in the company-specific negation dictionary. Along with the text, this method
also prompts the Twitter API to return for each tweet the user ID of the sender, the time the tweet was
created and the number of likes, retweets, quotes and replies (the public metrics).

3.2 Sentiment classification

After retrieving the Twitter data using the Twitter API, the sentiment of the tweets must be determined.
This is done using one or more NLP techniques, which are discussed in this section. Here, multiple sentiment
classification methods are introduced, and the advantages and disadvantages of these methods are discussed.
Furthermore, the data-driven algorithm for selecting the proper method is explained.

3.2.1 Sentiment analysis methods

The goal of sentiment analysis is to correctly classify tweets based on their sentiment polarity (i.e. positive
(+1), neutral (0) or negative (-1)) associated with textual data. Classification is the task of sorting data into
the corresponding class (assign the data a label). Classification methods of textual data can be attributed
to either of these types:

– Supervised classification methods: Supervised classification methods encompasses all models
that make use of a labeled dataset to learn structures and rules which can then be used to assign
labels to unseen data. These methods make use of Machine- or Deep Learning approaches and thus
require a training set with textual data for which the sentiment is already known (Ribeiro, Araujo,
Goncalves, Goncalves, & Benevenuto, 2016). To use supervised classification it is important that a
training dataset is retrieved which is very similar to the unseen data. These models are able to derive
complex structures, context and negation clauses when properly trained, and are known to perform
well in classifying sentiment (Hartmann, Huppertz, Schamp, & Heitmann, 2019).

– Unsupervised classification methods: In contrast to supervised classification methods, this type
of classification methods do not require a training dataset with labeled items (Ribeiro et al., 2016).
In NLP tasks, these methods encompasses all models that make use of lexicon based approaches.
That means that the classification of tweets is based on a manually constructed sentiment lexicon,
in which words or emoticons are assigned a polarity score. By classifying the words in each body of
text the total sentiment can be derived. When there is no available labeled dataset these models are
known to perform reasonably well in classifying sentiment.
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It is clear that under the availability of training data, supervised classification methods perform gener-
ally better than unsupervised classification methods, which is supported by the Hartmann et al. (2019).
However, when no training data is available, the lexicon based approaches offer reasonable alternatives to
classify textual data. Since it is very important to correctly assign the proper polarity label to the tweets in
the dataset, the method used to classify the tweets must be properly chosen. Ribeiro et al. (2016) find that
the classification performance of the same method on different datasets can be very different, therefore, the
chosen sentiment classification model must be able to correctly classify tweets that are similar to the tweets
that are used in this research. Before the model selection metrics are presented, this section first discusses
two methods that perform generally well in classifying textual data (Go et al., 2009; Ribeiro et al., 2016).

Supervised sentiment classification

Before the sentiment classification model is discussed, the raw Twitter data needs to be preprocessed.
This appropriate preprocessing steps are different for different NLP tasks, and are therefore finetuned to
the training data and model that is chosen. After the preprocessing steps are taken, the textual data
is vectorized, which is the process of assigning numerical scores to terms in the text (Yang, 1999). The
following preprocessing steps modify each individual tweet using common techniques, such that the number
of features is reduced (Go et al., 2009), which allows the model to discover links more easily. First, several
modifications to the text are made, all letters are set to lower case, all URLs, links, hashtags and username
references (@) are removed. Also, all punctuation symbols and numeric digits are removed from the text.
Then, all text is tokenized, which means that the text is broken into individual words or characters. This
process improves the effectiveness of the classification tasks and reduces computational complexity (Yang,
1999).
Subsequently, all elements are assigned a Part-of-Speech tag, identifying whether the items are nouns,

verbs, adjectives, adverbs, or other parts of speech, which is done because items with the same tag often
display similar behaviour within sentences. Lastly, the textual representation is lemmatized, this means
that words are assigned their base form, as mentioned in the dictionary, with paying attention to the role
of these words in the sentence (Yang, 1999). This is done such that the model does not confuse between
several words with similar meaning (e.g., walking, walked, walk).

Following these preprocessing steps, the text is vectorized using the Term Frequency - Inverse Document
Frequency (tf-idf ) vectorizer to obtain a numerical representation of the textual data. This vectorizer is
commonly used in many NLP approaches (Ramco et al., 2015; Xu, 2018), and assigns each term t a score
based on the importance of a certain term within a document (tf) versus the importance of that term across
all documents (idf). That is, every term t is assigned a score

tf − idf(t, d,D) = tf(t, d) · idf(t,D), (8)

where d denotes the document t is in and D denotes the entire corpus, i.e. the combined set of documents.
Let ft,d denote the number of times term t appears in tweet d, and let nt denote the number of tweets d in
the entire dataset in which the term t is found, then

tf(t, d) =
ft,d∑
t′∈d ft′,d

idf(t,D) = − log
(nt
N

)
,

where N denotes the total number of tweets in the dataset. This method weighs the importance of a term
in a single document versus the occurrence of that term in all documents. The terms t from equation (8)
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are both unigrams (single word) and bigrams (two adjecent words). The tf-idf vectorizer is first fitted to
the training dataset, and subsequently the terms t in the unseen data are assigned a score tf − idf(t, d,D)

using the weights of the training data. This highlights that the training and unseen data should be familiar,
such that the weights are comparable.

After all the tweets in both the training and test dataset are preprocessed and vectorized, the model
is trained. Although the Naive Bayes Classifier (NB) performs generally well in multiclass classification
assignments (Go et al., 2009; Hartmann et al., 2019), it must be noted that the performance decreases
with an increasing number of classes. NB makes use of the posterior probability of a tweet d being as-
signed to class s, where s denotes the polarity of a tweet (positive, neutral, negative). This probability is
characterized by

P (s | d) =

(
P (s)

∑
t∈d P (tf − idf(t, d,D) | s)nt(d)

)
P (d)

, (9)

where the probabilities P (s) and P (tf − idf(t, d,D) | s) are obtained by maximum likelihood estimates and
calculated on the training data. P (s) denotes the probability of an instance being classified as class s, and
P (tf − idf(t, d,D) | s) denotes the probability of an tf − idf feature occurring in a document labeled as
class s. Here nt(d) is the count of the term frequency - inverse document frequency score tf− idf(t, d,D) in
document d. The sentiment polarity class s that maximizes this probability is than assigned to an instance
tweet d. Because the NB assumes independence of the features tf− idf(t, d,D), this approach is considered
efficient, and easily implemented via the sklearn package in Python.

Unsupervised sentiment classification

Unlike supervised classification models, unsupervised models do not require extensive training or a training
set. As aforementioned, in NLP tasks, unsupervised classification generally involves the use of a sentiment
lexicon, in which words are annotated by a manually determined sentiment score. Ribeiro et al. (2016)
investigate in their article multiple of these lexicon based sentiment approaches. The authors conclude
that although the performance of these lexicon based approaches varies between the platform and type
of text, the VADER (Valence Aware Dictionary for sEntiment Reasoning) classification method performs
well on social media documents. This lexicon based approach, constructed by Hutto and Gilbert (2015),
is specifically created to handle social media content. Besides its reputable performance on social media
texts, an additional benefit of the VADER sentiment lexicon is the fact that it is easily extended. The
VADER lexicon handles slang, extensive punctuation (e.g. !!?), extended words (e.g., greaaaat), and words
in capitals and assigns these different versions of words different sentiment scores. This is particularly
useful on Twitter text, where this type of text is very common. Hence, the Twitter data requires very few
preprocessing steps, only URLs, hashtags and usernames, and all numeric digits are removed from the text.
The classification using the VADER lexicon is done as follows, in the first place, each word in the text is

assigned a valence score, based on the manually created lexicon. Next, the rule based approach deals with
negation, relative importance of capitals and punctuation and sentiment shifting clauses (e.g. via the word
’but’) to derive the compound sentiment score of a specific body of text. Following the approach of Hutto
and Gilbert (2015), this compounded score is calculated on every sentence of a tweet, of which the mean
is taken to derive the overall sentiment score of a specific tweet, where -1 is the most negative score, and
+1 the most positive score a tweet can generate. Similar to the authors, tweets with a score smaller than
-0.05 are classified as negative (-1) and tweets with a score above 0.05 are classified as positive (+1), the
rest is classified as neutral (0).
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3.2.2 Selecting a sentiment classification model

Subsequently, it must be determined how the appropriate sentiment classification model is chosen. After
retrieving the Twitter data for each company in this research, a subsample of the data is taken and manually
annotated by a panel of eight students. This subsample, containing manually annotated tweets, serves as
the test set. The existence of a test set allows to test the proposed models based on actual data used in
this research. The model that performs the best on this test set is eventually used to classify the entire
Twitter dataset.
However, supervised sentiment classification models require training on a comparable dataset before these

models can successfully classify unseen data. This paper proposes to create a training dataset by combining
multiple publicly available labeled Twitter datasets. The training dataset is constructed from the publicly
available Apple sentiment dataset, a dataset with U.S. airline reviews, a dataset containing preprocessed
tweets and lastly a sample of 8000 items from the Sentiment140 dataset5. Although this dataset does not
contain tweets that are in the exact same domain of the datasets used in this research, they are based on
Twitter messages, which might improve the performance of the supervised model. Furthermore, all words
that have specific connection to the training data are removed, as the discovered patterns are most likely not
applicable on the actual data (e.g., flight or airport have different sentiment meaning in the non-financial
Twitter datasets).

To compare the performance of the previously introduced sentiment classification methods, several test
statistics can be computed. As Yang (1999) points out, model evaluation should be done on a variety
of complementary scores instead of being reliant on a single evaluation score. Therefore, in line with
the large-scale sentiment classification comparison done by Ribeiro et al. (2016), both the Macro F1 and
the accuracy of the models is computed. The model that performs best in classifying the test data on
these two metrics is selected in this research. The Macro F1 is the average of the F1 score for each class
s ∈ [positive, neutral, negative], which is computed as the harmonic mean between precision and recall for
a class s. Precision P (s) is computed as the number of elements correctly classified as class s, divided by
the total number of elements classified as class s. Recall R(s) is the number of elements correctly classified
as class s divided by the total number of elements that have true label s (Ribeiro et al., 2016). Let S
denote the set with sentiment polarities, and let nS be the number of elements in S (in this case nS = 3),
the Macro F1 score is then computed by

Macro F1 =
1

nS

∑
s∈S

F1(s) =
1

nS

∑
s∈S

2P (s) ·R(s)

P (s) +R(s)
. (10)

Along with the Macro F1 score, the accuracy of the model is calculated as well, to assess which model
performs best on the humanly annotated test data. The accuracy is calculated as

accuracy =
#True

#True+ #False
, (11)

where #True denotes the number of elements correctly classified, i.e. an instance with label s is classified
as s, and #False denotes the number of elements that are falsely classified. This metric shows the fraction
of instances correctly classified by a model. The sentiment classification method that achieves the highest
rank for these metrics based on the manually annotated test set is chosen in this paper.

Before the metrics are calculated, another method is introduced, which is the Adjusted VADER. As ex-
plained, the VADER sentiment lexicon is easily extended, which might prove to be valuable to include

5The datasets can be find via these links, Apple dataset, U.S. airline sentiment dataset, tweets dataset, and the Sentiment
140 dataset
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domain specific words not included in the regular VADER lexicon (e.g. pollution). Recall that sentiment
classification methods are very domain sensitive (see Ribeiro et al., 2016), hence domain dependent miss-
classifications can be overcome by the introduction of domain words relevant for this research into the
VADER lexicon. To determine which words are valuable to consider, the falsely classified tweets from the
test dataset by VADER are inspected, and words that signal domain specific characterizations are used to
construct the Adjusted VADER lexicon. It must be noted that the addition of items to the lexicon must
be done carefully, as resolving every misspecified tweet probably leads to overfitting. This is the case when
the model is too much tuned according to the training data (in this case the manually annotated test set),
and thus fails to correctly classify text that the model has not seen.

3.3 Averaging Twitter sentiment

To get an accurate overview of the sentiment at time t of the entire population active on Twitter, all sen-
timent scores must be aggregated to reach any conclusion. This section introduces a method to aggregate
sentiment polarity across different tweets to derive the sentiment score at time t.

One significant difference between Twitter and more traditional news sources is that Twitter is a crowd-
sourced medium (Gupta & Kumaraguru, 2012). This means that any individual can post whatever they
want, without being fact-checked before they send their message, which can then influence or inspire other
users. As the goal of this research is to model sentiment based on tweets, it is crucial to make a distinction
between tweets that are credible and might influence other users (e.g. causing them to sell or buy stocks)
and tweets that are not credible or contain spam. Since it is important that the derived Twitter-based
sentiment score is a good reflection of the actual public sentiment, tweets that are not credible and/or have
no influence on other users, should be handled differently than tweets that attract a lot of attention.
Most research that focus on influence and importance of tweets make use of the social structure or the

credibility of the sender of the tweet on the basis of the number of followers or historical tweets (Verma,
Divya, & Sofat, 2014). Considering the fact that such an approach would require additional information,
this paper opts for a tweet-based, which makes use of the readily retrieved dataset to tackle this issue.
To determine the sentiment score within a certain interval, previous research does not consider the dis-

tinction between more important and less important tweets that are posted in that interval (Fan et al.,
2020; Ramco et al., 2015). For example, a tweet sent by a respected investor such as Warren Buffet is
weighed equally as a tweet from a consumer expressing its dissatisfaction with a certain product. However,
there is a clear difference in the influence of these tweets on the public sentiment and how widespread
that sentiment is. Considering that this research explores how Twitter activity affects stock price return
volatility, it must be determined to what extent tweets exert influence on Twitter users.

Recall that the Twitter API provides the opportunity to access the public metrics associated with each tweet.
Now, these metrics are leveraged to determine the relative importance of each single tweet in the dataset.
Since these metrics describe the frequency that Twitter users interact with a tweet, these metrics provide a
very good intuition of the relative importance of each tweet and how much attention a tweet generates. In
the literature, very little has been written on using these public metrics to find a weighted average of multi-
ple sentiment scores within a certain time period. However, in their article, Perdana and Pinandito (2018)
present a method to use like-retweet analysis to assign non-textual scores to retrieved tweets. Consequently,
the method to find a public metric based weighted average is based on their findings. The authors calculate
a score to determine the importance of each feature j ∈ [# of likes, # of retweets, # of quotes, # of likes].
To take into account the possible asymmetric effects of the polarity of tweets, this score makes a distinc-
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tion between positive, negative and neutral polarity. Let j denote public metric j and let S be the set of
sentiment polarities (positive, negative, neutral), the score Sc at time t for feature j is defined by

Sct(j) =

∑
s∈S ns(µ

j
s − µj)2

(σj)2
, (12)

where ns is the number of tweets at t with sentiment polarity s. The average number of feature j for all
tweets with polarity s is given by µjs, µj denotes the average count of feature j regardless of the polarity
and σj is the standard deviation of the number of feature j across all tweets. If the standard deviation
of the count of feature j across all tweets equals zero, σj is set equal to one, this indicates that there is
no difference in the counts of public metric j. Equation (12) calculates how much standard deviations
the average number of likes, retweets, quotes, or replies for tweets with polarity s deviates from the mean
number of likes, retweets, quotes, or replies across all tweets.
The score from equation (12) is calculated at time t using all the tweets send at time τ for t− 1 < τ ≤ t,

which determines the feature score Sct(j) at time t for feature j. Using this score, let mj
k,t denote the

count of public metric j at time t of a specific tweet k, the nontextual weight for this tweet k at time t is
then defined as

tweetScorek,t =

∑
j∈J

mj
k,t · Sct(j)

+ 1, (13)

where J denotes the set of all public metrics. In this equation, one is added to account for the case that
although mj

k,t = 0 for all j, the tweet k is send by a Twitter user, even though it failed to generate any
interactions. Unlike Perdana and Pinandito (2018) who combine the sentiment scores and weights, this
paper uses the tweetScore to derive a weighted average of all the selected tweets at time t.
The weight for a tweet k from equation (13) is used to determine a weighted average sentiment score

that accounts for the relative importance of tweets. This weighted average approach yields the sentiment
score at time t using all tweets sent between t− 1 and t, for t ∈ {1, . . . , T}. The weight for tweet k at time
t is determined by the normalized tweet weight at time t

Wk,t =
tweetScorek,t∑nt

k=1 tweetScorek,t
, (14)

where nt denotes the number of tweets sent at between t − 1 and t. Consequently, the Twitter-based
sentiment twitSent score at time t is computed by multiplying the sentiment score sentiScore of tweet k
by its weight Wk,t, which yields

twitSentt =

nt∑
k=1

Wk,t · sentiScorek,t. (15)

Hence, equation (15) provides a method to derive the weighted average Twitter derived sentiment at t for
t ∈ {1, . . . , T} and can be included in the models that are discussed in more extent later. Here, sentiScorek,t
denotes the numerical representation of the sentiment polarity (positive, negative or neutral) as determined
by the models from section 3.2. Recall that negative tweets are assigned a score of -1, neutral tweets a
score of 0 and positive tweets a score of +1. Thus, negative values of twitSentt correspond to negative
public sentiment at time t, and positive values show positive public sentiment at t, with values closer to
zero signalling weaker sentiment and vice versa.
This section introduces a parsimonious method to derive a weighted average sentiment score that takes

into account the relative importance of tweets in the conversations happening on Twitter. This method is
easily implemented and calculates the relative importance of tweets based on the number of interactions
with real-life Twitter users. Therefore, tweets that do not generate any interactions are assigned a very low
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score, which may help to filter out the importance of spam tweets, and tweets that get a lot of interactions
(even though they are spam tweets) are given a higher weight. To this extent, in contrast to other articles,
this paper does not immediately discard spam tweets as they might reveal valuable information.

3.4 Twitter attention metrics

In the assessment of Twitter activity on the stock price return volatility, other variables besides the weighted
average sentiment must be considered to explore how Twitter influences stock prices. Although the method
from equation (15) provides a unique approach to determine the weighted average sentiment score, it does
is not a reflection of the total magnitude of the calculated sentiment. To illustrate, ten Twitter users
acting very disappointing towards Coca-Cola on Twitter between t − 1 and t results to a high sentiment
score twitSentt in absolute terms. However, 10.000 people tweeting something moderately positive about
Coca-Cola probably causes an average sentiment score closer to zero, while their feelings are clearly more
wide-spread and might have more effect on the stock price volatility of Coca-Cola. Therefore, it might turn
out to be valuable to consider the total volume of tweets send within each time interval as well. Audrino
et al. (2020) find that measures of investors attention variables, specifically the amount of messages posted
and the daily financial searches at Google are the most relevant predictors for volatility.
Additionally, as aforementioned in section 3.3 the number of interactions on tweets send between t − 1

and t present information about the number of people possibly influenced by the tweets. It can be regarded
as the number of people agreeing or disagreeing with the content of a tweet, which can be used as a proxy
of how much attention a tweet generates. Therefore, the public metrics associated with each tweet are
included as well to determine how much attention a company receives at time t. As these metrics are
already used individually to get a weighted average of the daily sentiment, the metrics associated with
all tweets send between t − 1 and t are summed to derive the daily number of interactions. Denote by
ninteract,t =

∑J
j m

j
t the number of interactions at time t, where mj

t denotes the count of public metric j
across all tweets send on day t, t ∈ {1, . . . , T}. Hence, the number of interactions helps with assessing the
degree of virality tweets generated.

To determine the effect of Twitter-based sentiment variables based on non-financial Twitter coverage,
several variables are included in this research. In the first place, the sentiment score, weighted by the
parsimonious approach introduced in section 3.3 is included. As explained in this section, both the number
of tweets and the number of interactions might hold valuable information on the behaviour of the public.
Therefore, next to the sentiment, these exogenous variables are included as well to determine how Twitter
affects stock price volatility. In line with the literature, it is expected that increased attention, measured
by these attention variables, signal increased levels of volatility (Audrino et al., 2020). Additionally, it is
expected that negative sentiment has a larger effect on stock price return volatility than positive sentiment
(M. P. Chen, Chen, & Lee, 2013; Smales, 2015).
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4 Modeling volatility

In this chapter, the main econometric models used in this research are explained. These models make use
of the previously introduced modeling techniques discussed in section 2. Along with the introduction of
the proposed models, this section discusses the associated assumptions needed for consistent estimation,
the estimation procedure, and the asymptotic theory of the estimates. Additionally, a varying parameter
specification is introduced that is used to determine whether the effect of the Twitter-based sentiment
variables is subject to change as a function of the overall state-of-the-economy. Lastly, relevant tests are
introduced that allow to test the significance of the Twitter-based variables, and that help to determine
the best-practice approach of including these variables.

4.1 Econometric models

This section introduces the benchmark specification of the conditional variance model, which will serve
as the model against which possible extensions are compared. Subsequently, the proposed methodologies
to include exogenous Twitter-based variables into the standard model specification are discussed briefly.
Before the estimation procedure of these models is explained, section 4.2 outlines the necessary assumptions
and constraints associated with the proposed models.

4.1.1 The benchmark model

Recall from section 2 that the standard GARCH(1,1) process performs generally well in modeling the
volatility series of financial time series (Hansen & Lunde, 2005; Lamoureux & Lastrapes, 1990). Conse-
quently, it is assumed that p = q = 1 for the models in this research. However, the lags P and Q and
the lags including the exogenous variables are allowed to be of a higher order. The exact lag order is later
discussed and is determined via a data-driven approach.
The GARCH model formulation deals with the conditional volatility of a time series. However, to impose

a drift or moving average structure on the mean of time series, the mean equation needs to be specified as
well. Therefore, the conditional mean of the return time series process r1, . . . rT for is proposed to follow
an ARMA(P,Q) process, that is

rt = µ+

P∑
i=1

γirt−i +

Q∑
i=1

δiεt−i + εt. (16)

Denote by ϑ = (µ, γ1, . . . , γP , δ1, . . . , δQ)′ the parameter set driving the conditional mean from equa-
tion (16), and let the compact parameter space be denoted by Θ0 ∈ RP+Q+1. Subsequently, it is assumed
that the residuals from this process, ε1, . . . , εT follow a apARCH process specified by equation (1) and
equation (6) to accommodate for the leverage effect. Hence, the unobservable conditional volatility process
σt is defined by

εt = σtzt,

σ2
t = ω + α (|εt−1|−ψεt−1)

2
+ βσ2

t−1,
(17)

where ω > 0, α ≥ 0, β ≥ 0, and ψ ∈ (−1, 1) to guarantee non-negativity. Let θ ∈ Θ1 denote the parameter
set containing the parameters of the conditional variance equation, i.e., θ = (ω, α, β, ψ)

′. Additionally, let
the innovations zt be an i.i.d. sequence for which E[zt | Ft−1] = 0 and E[z2

t | Ft−1] = 1 holds, where Ft−1

denote the information until time t, {εu, u < t}. Recall from section 2 that positive values of ψ indicate
that negative shocks of the residuals εt have more effect on the conditional variance process of equation (17)
than positive shocks, and vice versa.
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4.1.2 Exogenous variables

The goal of this paper is to determine whether, and via which methodologies, Twitter-based sentiment
variables can be used to predict the conditional volatility of the stock price returns. To this extent, it
must be determined how the exogenous variables enter the model defined by equation (16) and equa-
tion (17). Section 2 discusses the inclusion of exogenous variables in the conditional variance equation
via the method of Han and Kristensen (2014). This research aims to find the best practice approach to
include these covariates, hence, three different methodologies are considered that include exogenous vari-
ables into the ARMA(P,Q)-apARCH(1,1) model. Let the time series of the exogenous variables be defined
by xk,1, . . . , xk,T where k ∈ {1, . . . , nK} is an element of the set of exogenous time series. K is the set
of exogenous variables, and nK the number elements in K. Denote by Rk the number of lagged values
of the exogenous variable xk included in the model. Denote by xxx1, . . . ,xxxT the time series processes of all
exogenous variables k ∈ {1, . . . , nK}, i.e., the vector xxxt contains the value at time t of every exogenous
variable k ∈ {1, . . . , nK}.

Model I: ARMAX-apARCH

Before proposing models that incorporate exogenous variables in the conditional volatility, it might prove
to be valuable to check how the model performs in terms of likelihood by letting exogenous variables enter
the mean equation. That is, the model from equation (16) is rewritten to include nK lagged exogenous
variables xk,t−i with lags i = 1, . . . , Rk. Consequently, define the ARMAX specification by

rt = µ+

P∑
i=1

γirt−i +

Q∑
i=1

δiεt−i +

nK∑
k=1

(
Rk∑
i=1

πk,ixk,t−i

)
+ εt, (18)

where µ, γi, δi, πk,i ∈ RP+Q+1+
∑nK

k=1 Rk . The residuals from this ARMAX equation follow an apARCH
specification, given by equation (17). Thus, this model will be referred to as the ARMAX-apARCH model
throughout the remainder of this paper. Denote by Fx,t−1 = {εu,xxxu, u < t} the information set generated
by lagged values of εt and xk,t, then it must hold that E[zt | Fx,t−1] = 0 and E[z2

t | Fx,t−1] = 1.

Model II: ARMA-apARCH-apX

To determine the effect of the exogenous variables on the conditional volatility, it must be specified how
these variables enter the conditional variance equation described in equation (17). In previously discussed
cases, the exogenous covariates entered the GARCH model linearly by squaring their values (see Han
and Kristensen, 2014 or Hsu et al., 2021 for examples). However, this specification does not account for
possible asymmetric effect of the Twitter-based variables. That is, it is also of interest whether an increase
or decrease of the exogenous variables affects the conditional variance σt differently, which is supported by
Smales (2015). Especially since this thesis includes sentiment scores and attention variables (the number
of tweets and the number of interactions), it is of interest whether these variables have asymmetric effects
on the conditional volatility. Negative sentiment is proposed to have more effect on the volatility of stock
price returns than positive sentiment, and similarly high values of attention variables are proposed to have
more effect than low values.
To accommodate for these asymmetric effects of the exogenous variables, the exogenous variables enter

the model via the function g(·). This function captures possible asymmetric effects of the process xk,t
similarly to the asymmetric specification in the apARCH model from equation (17). Define the function
gk(xk,t−i, ψk,i) by

gk(xk,t−i, ψk,i) = (|xk,t−i|−ψk,ixk,t−i)2, (19)
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where −1 < ψk,i < 1 for all k ∈ {1, . . . , nK} and i ∈ {1, . . . , Rk}. Recall from section 2 that for negative
values of ψk,i positive values of the i-th order lag of exogenous variable k have more effect on the con-
ditional volatility than negative values, and vice versa. Note that when ψk,i → 1, the effect of positive
values of xk,t−i on the conditional volatility reduces to zero, and similarly, the effect of negative values
reduces to zero when ψk,i → −1. By taking into account possible asymmetry in the effects of the exoge-
nous variables, both the level and the sign of xk,t is accounted for in the effects on the conditional volatility.

To include the asymmetric effects of the exogenous variables, let the function from equation (19) enter
the conditional volatility model of equation (17). This results into the following ARMA-apARCH-apX
model

εt = σtzt,

σ2
t = ω + α (|εt−1|−ψεt−1)

2
+ βσ2

t−1 +

nK∑
k=1

(
Rk∑
i=1

πk,igk(xk,t−i, ψk,i)

)
,

(20)

where εt are the residuals from the conditional mean equation equation (16). For the innovations zt it must
hold that E[zt | Fx,t−1] = 0 and E[z2

t | Fx,t−1] = 1, where Fx,t−1 is the σ-field generated by {εu,xxxu, u < t}.
To ensure non-negativity of the process in equation (20), ω > 0, α ≥ 0, β ≥ 0, ψ ∈ (−1, 1) and with regard
to the parameters describing the effect of the exogenous variable, it must hold that πππk ≥ 0 and −1 < ψψψk < 1

for k ∈ {1, . . . , nK}, where πππk = (πk,1, . . . , πk,Rk
) and ψψψk = (ψk,1, . . . , ψk,Rk

) for k ∈ {1, . . . , nK}. Denote
by Θ1 the entire parameter space containing the parameters of the volatility equation proposed in equa-
tion (20), where every realisation satisfies the non-negativity constraints.

In contrast to earlier defined GARCH alternatives that allow for the inclusion of exogenous variables,
this method proposes a unique manner which hopefully provides additional insights into the way that these
exogenous variables can predict conditional volatility. The asymmetric power function g(·) of equation (19)
allows to test the hypotheses that conditional volatility is more affected by negative sentiment, and that
high values of the attention variables have more effect on the conditional volatility.

Model III: ARMA-apARCH-apXGARCH

In the previous subsections, two rather straightforward approaches were discussed, proposing methodologies
to alter the models from equation (16) and equation (17) to account for the effect of exogenous variables. In
the article by Fan et al. (2020), the authors find that increased values of a so-called disagreement measure
has significant effects on the volatility of multiple stock price returns. Therefore, it is proposed that next to
the asymmetric effects of the lagged exogenous variables, the degree to which these variables are prone to
change can also serve as a relevant predictor of stock price volatility. That is, the model from equation (20)
must also account for the degree to which exogenous variables change from day to day. This is comparable
with Audrino et al. (2020), who include the standard deviation of the daily sentiment score as a measure
of disagreement.

Contrary to Audrino et al. (2020), this research will use the conditional volatility of the exogenous variables
as a proxy for the degree of disagreement. That is, this research does not consider the daily disagreement,
but considers how the exogenous variables vary over time. To this extent, an ARMA(1, 1)-GARCH(1, 1)

structure on the exogenous variables is proposed. This specification is chosen because letting the exogenous
variables follow a pure GARCH model seems too restrictive. Hence, let an exogenous variable Xt be defined
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by the process

Xt = µx + γxXt−1 + δxε
(x)
t−1 + ε

(x)
t

ε
(x)
t = σ

(x)
t η

(x)
t ,

(21)

where |γx|< 1 must hold forXt to be stationary and |δx|< 1 must hold for invertibility. Let ϑx = (µx, γx, δx)
′

denote the parameter set of equation (21). Similar to the earlier introduced GARCH models, without
imposing a distribution on the innovations η(x)

t , it must hold that η(x)
t is i.i.d. and E[η

(x)
t |ε

(x)
t−1, . . . , ε

(x)
1 ] = 0

and E[(η
(x)
t )2|ε(x)

t−1, . . . , ε
(x)
1 ] = 1. Now, the specification of the conditional variance of the exogenous variable

Xt is given by
(σ

(x)
t )2 = ωx + αx(ε

(x)
t−1)2 + βx(σ

(x)
t−1)2, (22)

where ωx > 0, αx ≥ 0 and βx ≥ 0, as the conditional variance process can not be negative. Let the
parameter set θx = (ωx, αx, βx)′ be a realisation of Θx.

Using the specification from equation (22), the degree of variability of xk,t at each time t ∈ {1, . . . , T}
is captured by the conditional volatility (σ

(x)
t )2 of the exogenous process. Since the conditional volatility

of equation (22) is non-negative and stationary by definition, this process can directly be included into the
conditional volatility equation. Thus, the conditional volatility equation from equation (20) is extended to
incorporate the conditional volatility process of the exogenous variables as well. Accordingly, this model
will be referred to as the ARMA-apARCH-apXGARCH model throughout this research.
To define this model, let equation (16) denote the ARMA(P,Q) process that drives the conditional

mean process of the returns rt. Let K denote the set of exogenous variables that enter the model via the
specification in equation (19), and K1 the set of exogenous variables of which the conditional variance also
enters the model, where K1 ⊆ K. Additionally, let Rk denote the lag order for exogenous variable k that
enters the model for k ∈ {1, . . . , nK}, and denote by Sk the lag order of the exogenous volatility process
that enters the model, where k ∈ {1, . . . , nK1}. Allowing for a more flexible lag structure of the exogenous
variables can help pin down how long the effects of shocks to these variables have a lasting effect on the
volatility of stock price returns. The ARMA-apARCH-apXGARCH model is defined as

εt = σtzt

σ2
t = ω + α (|εt−1|−ψεt−1)

2
+ βσ2

t−1 +

nK∑
k=1

(
Rk∑
i=1

πk,igk(xk,t−i, ψk,i)

)
+

nK1∑
k=1

(
Sk∑
i=1

λk,iσ
(xk)
t−i

)
,

(23)

where the values of σ(xk)
t−i are given by equation (22). To ensure non-negativity of the process described

by equation (23), define non-negativity constraints on the parameter space Θ1. Let ω > 0, α ≥ 0, β ≥ 0

and ψ ∈ (−1, 1), for the parameters describing the effect of the exogenous variables, πk,i ≥ 0, and ψk,i ∈
(−1, 1) for i ∈ {1, . . . , Rk}, k ∈ {1, . . . , nK} for the exogenous variables that enter via the function from
equation (19), and λk,i ≥ 0 for i ∈ {1, . . . , Sk}, k ∈ {1, . . . , nK1} for the variables k for which the exogenous
volatility process is included.
Lastly, denote by Fx,t−1 the information set created by {εu,xxxu,σσσ(x)

u , u < t}, where σσσ(x)
t contains every

process σ(xk)
t for k ∈ {1, . . . , nK1}. The innovations zt must be independent and identically distributed,

and it must hold that E[zt | Fx,t−1] = 0 and E[z2
t | Fx,t−1] = 1. Other distributional assumptions on the

innovations are discussed in the next subsection.

The previous subsection discussed in extent the alternatives of the apARCH model from equation (6),
that were briefly touched upon in section 2. Along with the formal model statements, relevant constraints
on the parameter space were proposed. These models are used to determine the ways in which exogenous
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Twitter-based variables exert influence on the conditional stock price returns. Via these models, it can
be tested whether there are observable asymmetric effects of the exogenous variables on the conditional
volatility, in line with previously stated propositions. Additionally, equation (23) includes the conditional
volatility, such that it can be tested whether the degree of variation of the exogenous variables serves as a
relevant predictor for conditional volatility.

4.2 Assumptions and constraints

As discussed in section 2, multiple assumptions and constraints must hold to consistently estimate the
QMLE of Bollersev and Wooldridge (1992). In their respective articles, Franq and Zakoian (2004) and
Ling and McAleer (2003) show consistency of the QMLE under ARMA-GARCH specifications, and Franq
and Thieu (2019) and Han and Kristensen (2014) provide the necessary assumptions for consistency of the
QMLE under the GARCH-X and apARCH-X specifications, respectively. The findings in these articles are
discussed in this section, and necessary assumptions for the models in section 4.1 are stated. Additionally,
this section discusses possible test and evaluation criteria to discuss the stationarity of the exogenous
covariates and the optimal lag order for each variable entering the models. This section only discusses
relevant assumptions in the case when Twitter-based variables enter the conditional volatility equation,
and disregards common identifiability conditions.
Let ϕ = (ϑ′, θ′)′ denote the entire set of parameters containing the parameter set of the conditional mean

model and the conditional volatility models, respectively. Despite this set being different for each model
proposed in section 4.1, this notation will be the same for each different model since the constraints mostly
encompass the same parameters and to not confuse the reader with unnecessary super- or subscripts. Let
the compact parameter space that satisfies the non-negativity conditions of the conditional volatility models
of section 4.1 be denoted by Φ, where Φ = Θ0 × Θ1. It is assumed that the parameters set ϕ is in the
interior of the parameter space Φ (which corresponds to Case A and Case C in the article by Franq and
Thieu, 2019), this is in line with the assumption from Franq and Zakoian, 2004.
In contrast to the earlier mentioned assumption by Ling and McAleer (2003), the assumption by Franq

and Zakoian (2004) does not require the existence of second-order moments to guarantee stationarity of the
ARMA process from equation (16) or equation (18). For the ARMA process of the exogenous variables,
recall that it must hold that |γx|< 1 and |δx|< 1, as this process does not allow for a longer lag structure.
Define the AR and MA polynomials by A(z) = 1 −

∑P
i=1 γiz

i and B(z) = 1 −
∑Q
i=1 δiz

i, to guarantee
stationarity of the ARMA process, the following must hold:

Assumption 1 A(z)B(z) = 0 implies that |z|> 0.

Note that for the residuals εt of the conditional mean model, it holds that εt = σtzt. Then, following
the assumption by Franq and Thieu (2019), the following must hold for the innovations of the conditional
volatility model of both the conditional volatility models of the return, as well as for the innovations η(x)

t

from equation (21).

Assumption 2 (zt, η
(x)
t ,xxxt) is a strictly stationary process, and there exists s > 0 such that E|z1|s< ∞,

E|η(x)
1 |s<∞ and E||xxx1||s<∞.

As the solution to equation (22) must also satisfies the assumptions, the process σσσ(x)
t is strictly stationary

by definition. For the returns to be a strictly stationary process described by the models in equation (17),
the following must hold as well:

Assumption 3 zt and η
(x)
t are i.i.d. sequences for t ∈ {1, . . . , T}, and E[zt|Fx,t−1] = 0 and E[z2

t |Fx,t−1] =

1 holds for zt, and for η(x)
t , E[η

(x)
t | ε(x)

t−1, . . . , ε
(x)
1 ] = 0 and E[(η

(x)
t )2 | ε(x)

t−1, . . . , ε
(x)
1 ] = 1.
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Assumption 4 l = α(1 + ψ2) + β < 1 for all ϕ ∈ Φ, and βx + αx < 1 for all θx ∈ Θx.

Recall that for model I and model II, the σ-field containing all relevant information up to time t was
specified by Fx,t−1 = {εu,xxxu, u < t}, and in the case for model III Fx,t−1 = {εu,xxxu,σσσ(x)

u , u < t}. Under
these assumptions, following Franq and Thieu (2019) and Franq and Zakoian (2004) the return series is
a strictly stationary solution of the models proposed in section 4.1. Note that assumption 4 guarantees
stationarity of the conditional volatility process, and l captures the degree to which shocks to the conditional
variance equation are persistent.
Other assumptions mentioned by the authors consider multicollinearity in the exogenous variables, and

the incorporation of redundant exogenous variables (i.e., Franq and Thieu (2019) give a remark about letting
lagged residual values εt enter as exogenous variables), which are generally assumed hold throughout this
paper and do not need additional specification.

Checking stationarity

From assumption 2, it can be seen that the exogenous processes must satisfy stationarity. A stationary
process is a process of which the statistical attributes, mean and standard deviation, do not change over
time. In most cases, time series experiencing a trend over time are non-stationary and hence prohibit the
QMLE from being consistent. To this extent, the Augmented Dickey-Fuller (ADF) test is employed (Dickey
& Fuller, 1979). Via this test it is tested whether a unit root is present in a time series process. Let Yt be
a time series process and denote by ∆Yt = Yt − Yt−1, then the following function is considered

∆Yt = α+ ρYt−1 + δ1∆Yt−1 + . . .+ δp∆Yt−p + εt.

Dickey and Fuller (1979) propose a test for the null hypothesis that ρ = 0, which is equivalent to testing
for the existence of unit roots. The process Yt is stationary if the test statistic DF = ρ̂

s.e(ρ̂) exceeds the
critical value at the p% significance level, which rejects the null at p% significance. The values for DF can
be found in Fuller (1976).
By applying this test on the exogenous variables xk,t it can be tested whether these processes are sta-

tionary and hence if assumption 4 is satisfied. If for any k ∈ {1, . . . , nK} the null hypothesis can not be
rejected, differencing is applied to this variable and the process ∆xk,t = log(xk,t − xk,t−1) is again checked
for unit roots and enters the model if the ADF test is rejected. If again the null hypothesis can not be
rejected, this variable is omitted from this research, as iteratively taking the logarithmic difference of a
variable will lead to un-interpretable parameter estimates.

Variable lags

Before the QMLE can be found, the optimal number of lags in the model must be determined. The
most popular approaches to test for the optimal level of model complexity are the Akaike Information
Criterion (AIC) and the Bayes Information Criterion (BIC) (Schwarz, 1978). Both methods present a
weigh-off between model complexity and maximum likelihood, with the latter punishing the inclusion of
more variables more.
To select the optimal number of lags in both the ARMA(P,Q) conditional mean model as well as

the optimal number of lags of the Twitter-based variables, the BIC is employed. As model complexity
unnecessarily rises when evaluating all possible combinations of P,Q and all values Rk and Sk, selecting
the lags in the conditional mean model and the lags for each exogenous variable is done separately. Define
by LT be the quasi log-likelihood of a model with n parameters and sample size T , then the BIC is defined
by

BIC = n log T − 2 · LT . (24)
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The AR and MA lags P and Q that minimize this function, using the specification by equation (16) and
equation (17) is applied to all models that allow for the inclusion of exogenous covariates. The lag order of
the exogenous variables, Rk and Sk is determined by the values that minimize equation (24).

4.3 Parameter estimation

Recall from section 2 that the most widely used method to estimate the parameters of GARCH alternatives
is by maximizing the Quasi Maximum Likelihood. Under the assumptions from section 4.2, the Quasi
Maximum Likelihood estimator provides consistent estimates of the true parameter values ϕ = (ϑ′, θ′)′.
Asymptotic properties and consistency of the parameters are remained if the QMLE specification is not
oversimplified (Bollersev &Wooldridge, 1992). This section provides the quasi maximum likelihood function
and the proper estimation procedure, laid out by Franq and Thieu (2019). Additionally, the asymptotic
properties and consistency of the QMLE are shown.

4.3.1 Quasi Maximum Likelihood Estimator

To determine the QMLE for the period t ∈ {1, . . . , T}, start by initializing lagged values for the conditional
mean and conditional variance equation ε̃1−Q, . . . ε̃0, r1−P , . . . , r0, σ̃0 ≥ 0, and the stationary exogenous
variables xk,1−Rk

, . . . , xk,0 for k ∈ {1, . . . , nK}. Following Franq and Zakoian (2004), the ARMA(P,Q)

residuals for t ∈ {1, . . . , T} are defined by

ε̃t(ϑ) =

rt − µ−
∑P
i=1 γirt−i −

∑Q
i=1 δiε̃t−i,

rt − µ−
∑P
i=1 γirt−i −

∑Q
i=1 δiε̃t−i −

∑nK

k=1

(∑Rk

i=1 πk,ixk,t−i

)
,

(25)

where the conditional mean models follows equation (18) or equation (16), respectively. Note that the
first case also corresponds to the benchmark model from equation (17). For the parameters in this model,
assumption 1 must hold, as does assumption 2 for the exogenous variables.

Recall from section 4.1 that model III included the conditional volatility of the exogenous variables in
K1 via the function from equation (22). Let ε̃εε(x)

t and σ̃σσ(x)
t denote the residuals and the conditional volatil-

ity of these exogenous variables at time t, respectively. Denote xxx(sub)
t denote the subset of exogenous

variables contained in K1, such that xxx(sub)
t ⊆ xxxt. Recall that to initialize the process in equation (25) the

lagged exogenous variables xk,1−Rk
, . . . , xk,0 were defined. Hence, if Sk > Rk for k = 1, . . . nK1 , define

x
(sub)
k,−Sk

, . . . , x
(sub)
k,−Rk−1. Next, define for each variable in K1 initial values of ε̃(x)

−Sk
and σ̃(x)

−Sk
. The ARMA-

GARCH process of the exogenous variables for t ∈ {1− Sk, . . . , T} is defined by

ε̃εε
(x)
t (ϑϑϑx) = xxx

(sub)
t −µµµ′x − γγγ′xxxx

(sub)
t−1 − δδδ

′
xε̃εε

(x)
t−1

σ̃σσ
(x)
t (θθθx) =

√
ωωω′x +ααα′x(εεε

(x)
t−1)2 + βββ′x(σσσ

(x)
t−1)2,

(26)

where µµµx =
(
µx,1, . . . , µx,nK1

)′ and the same holds for all other parameters in ϑϑϑx and θθθx. Recall that
the innovations form an unobserved process, and are defined by equation (21). This specification ensures
existence of the Sk-th order lag of the estimated exogenous volatility at time t = 1, although the notation
may be slightly confusing.

As the estimates for the exogenous volatility process are defined by the method above, the conditional
volatility via the methods proposed in section 4.1 can be constructed. To define the conditional volatility

of either of the three models, start by letting σ̃σσ(x)
t =

(
σ̃

(x1)
t , . . . , σ̃

(xnK1
)

t

)′
which was defined previously.
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Then, the conditional volatility is specified by

σ̃2
t (θ) = ω + α (|ε̃t−1|−ψε̃t−1)

2
+ βσ̃2

t−1

σ̃2
t (θ) = ω + α (|ε̃t−1|−ψε̃t−1)

2
+ βσ̃2

t−1 +

nK∑
k=1

(
Rk∑
i=1

πk,igk(xk,t−i, ψk,i)

)

σ̃2
t (θ) = ω + α (|ε̃t−1|−ψε̃t−1)

2
+ βσ̃2

t−1 +

nK∑
k=1

(
Rk∑
i=1

πk,igk(xk,t−i, ψk,i)

)
+

nK1∑
k=1

(
Sk∑
i=1

λk,iσ̃
(xk)
t−i

)
,

(27)

where the functions correspond to the conditional volatility described by the models from equation (17),
equation (20) and equation (23), respectively. To ensure non-negativity, it must hold that ω > 0, α ≥ 0,
β ≥ 0, and ψ ∈ (−1, 1), and these parameters must satisfy assumption 4 as well. For the covariates, πk,i ≥ 0

for i ∈ {1, . . . , Rk}, k ∈ {1, . . . , nK}, λk,i ≥ 0 for i ∈ {1, . . . , Sk}, k ∈ {1, . . . , nK1
}, and ψk,i ∈ (−1, 1) for

i ∈ {1, . . . , Rk}, k ∈ {1, . . . , nK}. Again, the innovations zt follow equation (1), and must satisfy assump-
tion 2 and assumption 3.

The ARMA residuals from equation (25) and the conditional volatility as defined above gives values of
ε̃1, . . . , ε̃T and σ̃1, . . . , σ̃T . While Bollersev and Wooldridge (1992) provide the conditions for consistency of
the Gaussian quasi log-likelihood, Franq and Thieu (2019) use the following negative quasi log-likelihood
function

`t(ϕ) = log σt(θ) +
ε2
t (ϑ)

σ2
t (θ)

.

To find the parameter estimates ϕ̂ = (ϑ̂′, θ̂′)′ that are consistent estimates of the true parameter values in
ϕ, define the QMLE as the argument that minimizes

QT (ϕ) =
1

T

T∑
t=1

˜̀
t(ϕ) =

1

T

T∑
t=1

(
log σ̃t(θ) +

ε̃2
t (ϑ)

σ̃2
t (θ)

)
, (28)

which is equivalent to finding the parameters that maximize the quasi log likelihood function. Thus, the
QMLE is defined as any measurable solution ϕ̂ that minimizes QT (ϕ), i.e., ϕ̂ = argmin

ϕ∈Φ
QT (ϕ).

Under the assumptions and constraints explained in section 4.2, Franq and Thieu (2019) prove that when
T −→ ∞ then the solution of equation (28) converges in probability to the actual parameter values ϕ, i.e.
ϕ̂→ ϕ which means consistency of the QMLE.
Minimization of QT (ϕ) yields the same estimates as maximization of the quasi log-likelihood −QT (ϕ).

Since multiple metrics and tests (see for instance the BIC statistic in equation (24)) consider a maxi-
mized (quasi) log-likelihood value, throughout this paper the maximum quasi log-likelihood is defined by
LT (ϕ̂) = −QT (ϕ̂), under the parameters estimates that minimize equation (28).

Note that in order to estimate the parameters of the ARMA-apARCH-apXGARCH model from equa-
tion (23), the conditional volatility process of the exogenous variables xxx(sub) must be determined. As the
exogenous variables were proposed to also follow an ARMA-GARCH process equation (28) can be used
in a similar fashion to find the optimal parameters ϑ̃ϑϑx and θ̃θθx. That is, the QMLE ϕ̃ϕϕx which form the
exogenous ARMA-GARCH process is found by

ϕ̃ϕϕx = argmin
ϕ∈Φ

1

T

T∑
t=1

(
log σ̃σσ

(x)
t (θθθx) +

(ε̃εε
(x)
t (ϑϑϑx))2

(σ̃σσ
(x)
t (θθθx))2

)
, (29)

which is a consistent estimate of ϕϕϕx =
(
ϕx,1, . . . , ϕx,nK1

)′ under the assumptions from section 4.2. Subse-
quently, these parameter estimates are used to construct the conditional volatility process of equation (26)
of exogenous variable k = 1, . . . , nK1 for t ∈ {1−Sk, . . . , T} which enters the ARMA-apARCH-apXGARCH
model.
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4.3.2 Asymptotic properties of the QMLE

Franq and Thieu (2019) provide the asymptotic properties of the QMLE by defining four distinct cases, as
the asymptotic behaviour is different when one or more values in ϕ̂ are zero, or the residuals ε̃t and the
exogenous variables are not independent of the innovations zt. Note that section 4.2 already stated that
only parameter values that do not stand at the boundary are considered. Additionally, it is assumed that
the innovations zt are independent of the information set described by Fx,t−1 (which corresponds to case
A in the article by Franq and Thieu, 2019).
To define the asymptotic distribution of the QMLE, an additional assumption must be made on the

fourth moment of the innovations zt,

Assumption 5 E[z4
t ] < ∞ for the conditional volatility models, and E[(η

(x)
t )4] < ∞ for the model in

equation (22).

Assumption 5 guarantees the existence of the variance of the score function st(ϕ) = ∂`t(ϕ)
∂ϕ . Under the

assumptions from section 4.2 and assumption 5, the QMLE ϕ̂ is a consistent estimator of the true parameter
values ϕ. Franq and Thieu (2019) define under the limiting distribution of the QMLE by

√
T (ϕ̂− ϕ) ∼ N (0,Σ) , where Σ = J−1IJ−1. (30)

Hence, the distribution of the QMLE is asymptotically normal with variance-covariance matrix given by
Σ. Combining the asymptotic results in Franq and Zakoian (2004) of the ARMA-GARCH model and from
Franq and Thieu (2019) who show the asympotics of the apARCH-X model, the Hessian J is defined as
follows:

J = E

[
∂2`t(ϕ)

∂ϕ∂ϕ′

]
= E

[
1

σ4
t (θ)

∂σ2
t (θ)

∂ϕ

∂σ2
t (θ)

∂ϕ′

]
+ 2E

[
1

σ2
t (θ)

∂εt(ϑ)

∂ϕ

∂εt(ϑ)

∂ϕ′

]
.

Following Franq and Zakoian (2004), I is defined as

I = E

[
∂`t(ϕ)

∂ϕ

∂`t(ϕ)

∂ϕ′

]
.

Franq and Thieu (2019) propose in proposition I in their article that under equation (30), strongly consistent
estimators of J and I can be defined as follows
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T
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t=1

1

σ̃4
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+
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T

T∑
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1
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∂ε̃t(ϑ̂)

∂ϕ

∂ε̃t(ϑ̂)

∂ϕ′
,

ÎT =
1

T

T∑
t=1

∂ ˜̀
t(ϕ̂)

∂ϕ

∂ ˜̀
t(ϕ̂)

∂ϕ′
.

Combining the equations for the Hessian and the score of the QMLE, the variance-covariance matrix Σ can
be estimated by6

Σ̂T = Ĵ−1
T ÎT Ĵ

−1
T . (31)

Note that these equations also hold for the asymptotic distribution of the parameters ϕ̃x,k of the exogenous
conditional volatility equation, given by equation (21) and equation (22) under the assumptions from
section 4.2 and assumption 5.

6Calculations of the Hessian and score function are done by a finite-difference approach in Python.
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4.4 Varying parameter specification

In general GARCH-type models, a linear relationship between the lagged residuals, AR part and possible
exogenous variables is commonly assumed to model the conditional volatility process. However, it can
be argued that the dynamics of the volatility process are prone to change through time. Andreou and
Ghysels (2002) test the existence of structural breaks in the volatility dynamics and find alignment with
Asian and Russian financial crises. Bauwens, Preminger, and Rombouts (2010) employ a Markov switching
regime GARCH model to account for these structural breaks, and conclude this model provides a better
fit on S&P500 volatility than a single regime ARCH model. Additionally, both Kim and Kon (1999) and
Lamoureux and Lastrapes (1990) provide evidence that a model that is not able to capture deterministic
regime-shifts is likely to overstate the degree of persistence.
As this research is concerned with investigating the role of non-financial public sentiment on stock price

volatility, it might be valuable to see whether the effect of Twitter-based variables is different during different
states of the economy. Amado and Teräsvirta (2008) investigate the use of parametric time dependent
extensions of the standard GARCH model, where the parameters are allowed to change as functions of
time. The authors propose a modification of the parameters to support a smooth transition over time.
That is, via the additive structure which they propose, the parameter vector θ is transformed into the time
varying vector

θ(t) = θ + θ∗G(t, ν, c),

where the continuous function G(t, ν, c) takes into account the smooth transition between parameter values
and takes values between zero and one. However, in contrast to Amado and Teräsvirta (2008) and in line
with the master thesis of Thomassen (2018), this research does not focus on a smooth transition through
time, but rather on stages of the economy, i.e. whether at time t the economy is in a downturn/investors
are very bearish. Let ζt denote an exogenous variable describing the state of the economy (e.g., ζt contains
macroeconomic variables such as housing starts or GDP). The choice of ζt used in this research is specified
later. Then, similar to Thomassen (2018), define the state-of-the-economy dependent parameter vector
θ(ζt) by

θ(ζt) = θ + θ∗G(ζt, ν, ζ̄), (32)

where ζ̄ denotes the sample mean of ζt for t ∈ {1, . . . , T}. In the article by Amado and Teräsvirta (2008),
c does not necessarily have to be the sample mean, it can be defined as the point where a structural break
occurs. However, for simplicity only deviations from the sample mean are defined as structural breaking
points. Amado and Teräsvirta (2008) define the transition function G(ζt, ν, ζ̄) by

G∗(ζt, ν, ζ̄) =
(
1 + exp{−ν(ζt − ζ̄)}

)−1
, (33)

where ν > 0, which is the general logistic function. Note that for values of ζt below the sample mean ζ̄ this
function goes to one, and when ζt exceeds the sample mean, it approaches zero for increasing values of ζt.
In equation (33), the parameter ν defines the level of smoothness in the transition function, it determines
how smooth the parameter values fluctuate between θ and θ + θ∗. More specifically, for low values of ν
this transition is rather smooth, and when ν →∞, the transition from one parameter vector to the next is
abrupt, approaching a structural break.
Taking the function of Amado and Teräsvirta (2008) that allows for multiple structural breaks as a

starting point, the following is proposed. Let ζζζt = (ζ1,t, . . . , ζn,t) be a set of n exogenous variables that might
provide useful in detecting time-varying regimes. Then the smooth logistic transition function indicating
the appropriate state is given by

G(ζζζt, ν, ζ̄ζζ) =

(
1 + exp

{
− ν

(
1

n

n∑
i=1

(ζi,t − ζ̄i)

)})−1

, (34)
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which provides a generalization of equation (33). This function has the benefit that it can include multiple
exogenous variables. Structural breaks are only observed if across all items in ζζζt, the deviation from the
sample means ζζζ is negative. As equation (34) allows for the inclusion of multiple exogenous variables,
multiply proxies can be used to account for switching states of the economy. This reduces dependence on
a single metric that is said to indicate the state of the economy, and only indicates a break when the items
in ζζζt mutually deviate from their sample means.

Define the models that allow for time-varying parameters by replacing the parameter vector θ by θ(ζt) =

θ + θ∗G(ζt, ν, ζ̄) in the models from equation (27). In order to not drastically increase the number of
parameters, the goal of this varying parameter specification is to check whether the conditional volatility can
be better characterized by allowing for regime-depending parameters, therefore, only the parameters in θ are
altered to accommodate for time varying effects. Then, define the total parameter set ϕ(ζt) = (ϑ′, θ(ζt))

′,
which can be estimated similarly to the models with a constant parameter specification. That is, the
parameters ϕ(ζt) that minimize QT from equation (28) are the parameters that define the conditional
volatility that accommodates for possible regime shifts. The assumptions on the parameter space stated in
section 4.2 must hold for every value of ϕ(ζt) at time t.
To determine the optimal value of the smooth transition operator ν, a grid search on a limited number

of options is performed to provide an estimate for the range where ν is optimal. Thomassen (2018) reports
that including ν in the parameter set leads to high standard errors of the parameter estimates, caused by
the fact that the quasi log likelihood is insensitive to small changes in ν. By conducting a grid search on a
relatively low number of options, the behaviour of the quasi log-likelihood as a function of ν is investigated
to provide an intuition for the optimal value of the smooth transition operator. This method is discussed
in more extent in section 5.

By accommodating for varying parameters of the conditional volatility equation using the function equa-
tion (34), the relationship between Twitter activity and stock price return volatility can be investigated
more in-depth. The specification allows to distinguish the effect of Twitter through various stages of the
economy, which could bring interesting insights not yet observed. For instance, positive values of π∗k indicate
that the effect of exogenous variable k is greater in times when G(·) = 1, and contrarily, when πk < π∗k < 0

the effects of the exogenous variable k on the conditional volatility reduces when G(·) = 1. Additionally,
from Kim and Kon (1999) and Lamoureux and Lastrapes (1990) it is expected that the total degree of
persistence l = α(1 + ψ2) + β decreases when allowing for varying parameters.

4.5 Statistical tests

To determine whether any of the apARCH models introduced in equation (20) and equation (23) explains
the volatility better than the benchmark model from equation (17), multiple tests are conducted. First, the
significance of individual coefficients are tested. This helps to identify via which way, if any, Twitter-based
variables exert influence on the conditional volatility process. Additionally, two algorithms are introduced to
compare the in-sample fit of various models with each other which will help in determining the best-practice
approach to include Twitter-based variables.
The parameters of the models in section 4.4 can be tested similarly to the models from section 4.1. The

tests in this section additionally allow to test the in-sample fit of the varying-parameter models against the
models that assume a constant parameter specification.
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4.5.1 Significance of parameters

In the first place, the significance of each element in ϕ̂ can be tested via the popular t-test. This test is
easily employed and tests whether individual elements k in ϕ̂ are significantly different from zero, i.e.,

H0 : ϕ̂k = 0 and ϕ̂j 6=k 6= 0 vs. Ha : ϕ̂ 6= 0,

which tests for all individual parameter estimates in ϕ̂ if they differ from zero. When the assumptions
stated in section 4.2 hold, both Franq and Thieu (2019) and Han and Kristensen (2014) show that the
t-test statistic to test the nullity of element k in ϕ̂ is defined by

tk =
ϕ̂k

s.e.(ϕ̂k)
, (35)

where s.e.(ϕ̂k) = diag (Σ̂T )
1
2

k , which corresponds to the square root of the k-th element on the diagonal
of the variance-covariance matrix defined in equation (31). H0 is rejected at significance level α when
tk > Φ−1(1 − 2α), where Φ denotes the standard normal cumulative distribution function. When H0 can
not be rejected at the significance level α, this indicates that the k-th element of ϕ̂ is not significantly
different from zero, and thus does not have any predictive power on the conditional volatility.

4.5.2 Comparison of models

To test whether the advanved apARCH-X type models increases the model performance in terms of the
quasi log likelihood LT , the likelihood ratio test is employed. Under the assumptions and constrains stated
in section 4.2, Franq and Zakoian (2009) propose the use of the Quasi Likelihood Ratio (QLR) test statistic
to test whether a more advanced model provides any benefits over a restricted model. Under this restric-
tion, several parameters are kept equal to zero. This allows for the comparison of the proposed models
from section 4.1 and their varying-parameter counterparts with the benchmark model from equation (17).
This test can additionally be employed to compare the constant parameter models from section 4.1 with
the models that allow for varying-parameters via the function from equation (34). Lastly, since the ARMA-
apARCH-aX model is nested in the ARMA-apARCH-apXGARCH model, this test allows to test whether
inclusion of the so-called disagreement measures σ(xk)

t can lead to significant model improvement.

Let ϕ(1) and ϕ(2) be two components of the parameter vector ϕ and let mi for i = 1, 2 denote the number
of elements in component 1 and 2, respectively. To compare the performance of several models against
each other, the following hypothesis is tested

H0 : ϕ(2) = 000m2
vs. Ha : ϕ(2) 6= 000m2

,

under the assumption that all elements in ϕ(1) are strictly nonzero. Let ϕ0 denote the parameter vector
under H0, so with ϕ(2) = 000m2

and let ϕ denote the parameter vector under the alternative. To use this
test, two models must be nested, in order to constrain several parameters to be equal to zero, that is, ϕ0

and ϕ must contain the same parameters.
Following Franq and Zakoian (2009), the Quasi Likelihood Ratio statistic ΛQLR is given by

ΛQLR = −2 (LT (ϕ̂0)− LT (ϕ̂)) , (36)

where ϕ̂0 and ϕ̂ are the parameter values that minimize QT under the null and alternative hypothesis,
respectively. The null hypothesis is rejected for large values of the QLR, following Wilks (1938), ΛQLR

follows a χ2
m2

distribution. Note that the degrees of freedom correspond to the number of elements in ϕ(2)

assumed to be equal to zero. Hence, if the null hypothesis can not be rejected at significance level α, it can
be concluded that a more complex model does not lead to significant improvement of the Quasi Likelihood
of the conditional volatility model.
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4.5.3 Evaluation of the in-sample fit

Recall that the conditional volatility process is an unobserved process, and hence no straightforward tech-
niques (such as the RMSE) can be applied to evaluate the in-sample fit or forecasting performance of a
model. However, in conditional volatility modeling, it is common to use a conditionally unbiased estimator
as a proxy for the true unobserved conditional volatility process (Patton, 2011). The author considers
multiple loss functions and ranks the forecasts based on these function, with the goal to define the loss
functions that are ’robust’ to imperfect volatility proxies. Denote by σ̂2

t,prox the proxy of the conditional
volatility, which is estimated by σ̃2

t from equation (27). Hansen and Lunde (2006) point out that the goal
of ranking multiple volatility in-sample fits is a qualitative task rather than a quantitative one, especially
as an imperfect volatility proxy is chosen to rank the in-sample fit of the model. Following Patton (2011),
two robust loss functions are proposed to evaluate the in-sample fit of the volatility models using the proxy
σ̂2
t,prox, which are the Mean Squared Error (MSE) and the Quasi Likelihood (QLIKE) loss functions. The

errors of a volatility series using these methods is given by

L(σ̂2
prox, σ̃

2) =
1

T

T∑
t=1

(σ̂2
t,prox − σ̃2

t )2, (MSE)

L(σ̂2
prox, σ̃

2) =
1

T

T∑
t=1

(
log(σ̃2

t ) +
σ̂2
t,prox

σ̃2
t

)
, (QLIKE)

(37)

where the robustness of these functions is shown by Patton (2011). Robustness of a loss function means
that the rank of a volatility model in equation (27) is equivalent when using a proxy σ̂2

t,prox and when using
the ’true’ unobserved volatility σ2

t . In figure 1 in the article by Patton (2011), the shapes of these different
loss functions L(·, ·) are plotted. It can be seen that the MSE is a symmetric loss function that penalizes
positive and negative errors similarly, whereas the QLIKE loss function punishes positive outliers less than
negative outliers. This characteristic is particularly useful in volatility model evaluation, as accounting
for higher volatility can be seen as a margin of safety, while accounting for lower volatility than what is
actually observed can lead to excessive risk taking.

Subsequently, Hansen and Lunde (2006) and Patton (2011) discuss the optimal choice of a volatility proxy
σ̂t,prox. The most common choice for σ̂2

t,prox are the squared daily returns, under the assumption that the
conditional mean of the returns is zero. Since the conditional mean of rt is argued to follow an ARMA
process described by equation (16), this does not hold in this paper. Throughout their papers, it is argued
that the realised volatility (the sum of squared intraday returns) is the best proxy for volatility, how-
ever this requires intraday data which is not available for this paper7. Therefore, the squared residuals
εt of the benchmark model are used as a proxy for conditional volatility, since it is easily checked that
E[ε2

t |Ft−1] = σ2
t , where once again Ft−1 denotes the information set at time t.

Hence, using ε2
t from equation (16) as proxy for the conditional volatility, the in-sample fit of the intro-

duced models can be compared. Calculating the values of the MSE and QLIKE loss functions yields the
MSE and QLIKE error for a conditional volatility process defined by σ̃2

t . This allows to rank the processes
σ̃2
t defined by equation (27) under the constant and varying-parameter specification, to make a qualitative

assessment about the in-sample fit of these models.

7The WRDS license of Tilburg University does not provide access to the TAQ database.
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5 Empirical setup

To test the effect of Twitter-based exogenous variables on GARCH-type volatility models proposed in
section 4.1, the methodologies are applied to real-world data. This chapter discusses the data that is used
for this research, provides descriptive statistics, and provides relevant time series plots. Furthermore, the
appropriate data-driven choice for the sentiment models from section 3.2 is determined and the exogenous
GARCH processes are calculated. The Python code of the empirical study can be accessed via GitHub8.

5.1 Data

This section discusses how the companies included in this research are selected. Subsequently, a sum-
mary of the evaluation metrics of the introduced sentiment models is provided, and the most suitable
method for this research is determined. Lastly, this section discusses relevant variables that are suited to
enter the equation from equation (34), which are used to account for possible shifts in the volatility process.

Before the Twitter data is investigated, the granularity of the data and time period of this research must
be established. In the literature, there are sometimes confronting views about the effect of Twitter-based
exogenous variables on stock prices. Barberis, Schleifer, and Vishny (1998) argue that the incorporation of
sentiment in stock prices only happens gradually, whereas Audrino et al. (2020) conclude that sentiment
and attention variables have predictive power for up to two-day ahead predictions. As the models from
section 4.1 allow for the inclusion of longer lags of the exogenous variables, daily data is used. Using daily
data, both long-term and short-term effects of Twitter on the volatility of stock price return can be discov-
ered. Following Lamoureux and Lastrapes (1990), it is expected that using high-frequency data increases
the total degree of persistence.
To account for both possible time-varying effects as proposed in section 4.4 and the gradual adoption

of Twitter as a news and sharing platform, a horizon of 10.5 years is proposed, starting from 01-01-2011
until 31-08-2021. This allows for discovering possible asymmetric and time-varying effects as multiple
recessions occurred during this time period. After 2010 social media platforms and the online culture
became increasingly adopted throughout our culture.

5.1.1 Company selection

This research investigates the effect of Twitter-based sentiment metrics on stock price movements of U.S.
companies as both the U.S. stock markets (NASDAQ and NYSE) are the most high profile and as the U.S.
population active on Twitter is the largest. To accurately model the sentiment and get a weighted average
sentiment score, a sufficient amount of Twitter coverage per company is crucial. Subsequently, the U.S.
companies selected in this research must generate a sufficient amount of tweets.
Accordingly, among the 50 largest companies in the S&P 500 based on Market Capitalization9 a Twitter

search is conducted. For all these companies, the relevant tweets obeying the search query from section 3.1,
send between the 1st and 31st of May 2021 are selected, and companies with limited coverage (less than
25 tweets per day on average) are filtered out10. This is done in order to not include companies in this
research with limited Twitter coverage since for these companies the effects of Twitter on stock price return
volatility are possibly less evident. Note that the negation dictionary is only constructed after the initial
company selection, hence, this initial search does not make use of a negation dictionary. Although this

8Full code (via GitHub)
9At 01-09-2021

10Note that the Twitter API only allows retrieval for 10 million tweets per month, which makes retrieving tweets for all 50
companies for an extended period impossible.
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is likely to increase the number of spam tweets in the initial search, it provides valuable insights into the
number of tweets sent per day.
After filtering out companies that do not generate a sufficient amount of Twitter attention in May 2021,

14 companies are left and are included in this research. Based on the tweets found in the initial Twitter
search, a company specific negation dictionary is constructed, in line with the explanation from section 3.1.
Although most tweets retrieved were relevant for this research, in the case of Amazon, Apple, McDonalds,
Google, Facebook, Microsoft, and NIKE, a negation dictionary is necessary to filter out unwanted tweets.
More specifically, some of the retrieved tweets refer to products these companies sell (e.g. ’green Nike Air
Max’), and do not express emotions or opinions that might influence stock price volatility. Furthermore,
there are multiple product links referring to products on Amazon or podcast/shows on Apple TV, therefore,
common terms in these tweets are included in the negation dictionary. A quick manual inspection from
the data for Facebook and Google learns that a substantial amount of tweets in the dataset is not related
to the business practices of Facebook Inc and Alphabet Inc., respectively. Even after using the negation
dictionary, the data mostly consists of spam tweets, hence, these companies are omitted from this research.
Table 1 show the companies that are included in this research. From the table, the selected companies

are very diverse in their business model and their maturity. This might lead to differences in the perceived
effects of Twitter on stock price companies across industries, which is interesting to explore. Additionally,
table 1 reports the number of tweets for each company included in this research.

Table 1 – Selected U.S. companies

Company name Number of tweets Company name Number of tweets
Apple (AAPL) 2,049,809 Microsoft (MSFT) 1,059,333
Amazon (AMZN) 1,024,467 Netflix (NFLX) 285,626
Chevron (CVX) 80,494 NIKE (NKE) 212,297
Coca-Cola (KO) 218,282 salesforce (CRM) 153,085
Exxon Mobil (XOM) 49,659 Tesla (TSLA) 399,564
McDonalds (MCD) 398,542 Walmart (WMT) 683,628

Companies from the S&P500 included in this research. Reported are the number of tweets between 01-01-2011
until 08-31-2021 obeying the query with the ESG-dictionary and manually constructed negation dictionary. Ticker
symbol of the NYSE or NASDAQ stock exchange for each company is provided in parentheses.

Besides the different levels of maturity and different types of business, other factors can be identified
that cause different effects of Twitter-based sentiment metrics on stock price volatility. Audrino et al.
(2020) observe the largest increase in predictive accuracy from including sentiment and attention data for
companies with large market capitalization and/or low percentage of institutional investors. Specifically,
stock volatility from stocks that are largely held by retail investors are more affected by public sentiment.
This supports the intuition that retail investors tend to be more affected by sentiment than institutional
investors. For the companies in this research, the market capitalization and percentage of shares held by
institutional investors are reported in table 13 in appendix A.1.2. Following the conclusions by Audrino et
al. (2020) and Rakowski et al. (2021), it is expected that for Apple, Chevron, Exxon Mobil, McDonalds, and
Tesla, Twitter-based variables can significantly explain the conditional volatility of the stock price returns.
Whereas it is expected that for Netflix, NIKE, salesforce, and Walmart, significant effects of Twitter are
less frequently observed.
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5.1.2 Sentiment classification

In this subsection, the sentiment classification methods from section 3.2 are tested on a manually annotated
subset of the gathered Twitter data. In total, a panel of eight students classified a subsample of 2200
tweets from the gathered tweets shown in table 1. These manually determined sentiment polarity scores
are regarded as ground-truth. The distribution of instance in class j is approximately equal, which indicates
that for every class j, approximately one third of the tweets are annotated with label j. The objective of
this section is to determine the method that achieves the best overall rank with regard to the proposed
evaluation metrics by equation (10) and equation (11). After the classification by the regular VADER
lexicon, the falsely classified items from the test-set are manually inspected, and domain specific items are
added to the dictionary to improve the performance of the VADER sentiment classification method. As
aforementioned, overfitting must be avoided, therefore the items that are added to the lexicon are mostly
words from the ESG dictionary from table 12 in appendix A.1.1, assigned a polarity score. As the scores
from the VADER sentiment lexicon by Hutto and Gilbert (2015) are extensively reviewed by a panel of
reviewers, determining the score for each introduced items individually is a tedious task, while determining
the score via a data-driven approach introduces the risk of overfitting to the small subsample. Therefore,
the score is assumed to be equal for all introduced words, and only the sign determines the polarity and
influence the sentiment classification. The numerical score attached to all introduced items is the score
that maximizes the accuracy and macro F1 score, which is 1.5.
The adjusted VADER lexicon allows for correct classification of some very domain specific issues. For

instance, a very objectively worded tweet discussing the large role of company X in climate change related
issues would normally be classified as neutral, whereas these tweets are argued to generate a negative sen-
timent of the public towards this company. The following tweet about NIKE is now classified correctly
despite its objective tone of voice

Nike & IKEA invest to scale waterless textile dyeing system to make #water-intensive industry
more sustainable http://t.co/7E95UGGqUn - @GlobalSherpa, 15-05-2015.

Recall that before using the VADER lexicon to classify the tweet, the only preprocessing step was to remove
hashtags, mentions, and links, which leads to the following tweet

Nike & IKEA invest to scale waterless textile dyeing system to make industry more sustainable.

This tweet very objectively informs other Twitter users of the sustainable move that NIKE has undertaken.
However, as sustainable is a very domain specific word, it does not have a score in the VADER lexicon,
which classifies this tweet as neutral. By extending the VADER lexicon and assigning sustainable a positive
polarity (with score +1.5), this tweet is correctly classified as positive by the adjusted VADER lexicon.

Table 2 – Performance metrics of sentiment polarity classifiers.

Naive Bayes VADER Adjusted VADER
Macro F1 0.377 0.462 0.474
Accuracy 0.387 0.47 0.489

Macro F1 and accuracy score of the NB, VADER and Adjusted VADER multi-class sentiment classification methods.
Goal of the classification algorithm is to correctly classify instances as positive, neutral or negative (three-class
classification). Metrics are calculated on a manually classified ground-truth subsample of the Twitter datasets.
Numbers in bold denote the best score of a metric among the classification methods.
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Subsequently, the Macro F1 score and accuracy for the proposed models on the manually annotated
test set is calculated. The results are provided in table 2. As aforementioned, that the Naive Bayes
Classifier was trained on a publicly available labeled training set, where all domain irrelevant words11 were
removed to increase the performance of this model. From table 2, it can be seen that across all sentiment
classification method, the Adjusted VADER method, tuned according to the very specific domain of the
retrieved tweets, performs best across the two complementary metrics. However, this method is shown
to provide little benefit over the use of the regular VADER lexicon. Lastly, it can be noted that across
all sentiment classification methods the score for both evaluation metrics is very low, specifically in the
case for NB, where the accuracy is only slightly higher than would be expected by pure chance. This
can be attributed to the fact that despite although the training data consists of tweets, they are widely
different from the tweets in the test set. The low accuracy of the multi-class sentiment classification is in
line with the observation by Hartmann et al. (2019), who identifies low accuracy in multi-class classification
assignments. As the Adjusted VADER achieves the highest score for both metrics, this method is used in
this research to determine the polarity score of the tweets.
However, it must be noted that a substantial fraction of the tweets is incorrectly classified, and 10%-20%

of the tweets in the test set is actually assigned the opposite polarity label. This might indicate that the
calculated Twitter-based sentiment score is not an actual representation of the sentiment among Twitter
users, and it fails to meaningfully explain volatility of stock price returns. When the sentiment score does
not successfully explain volatility, this could be attributed to both the failure of the correct classification
of sentiment, as well as there is simply no effect of Twitter-based sentiment on conditional volatility.

5.1.3 Volatility drivers

As discussed in section 4.4, this research additionally explores whether the effect of Twitter-based variables
is dependent on the state of the economy. By taking into account macroeconomic or market conditions, the
robustness of the parameters are investigated and time-varying effects can be found. To take into account
the possible time-varying effects on stock price volatility, the parameters of the GARCH alternatives are
allowed to shift over time based on a set of time series ζζζt. This subsection discusses in greater extent
possible choices to be included in this set which must be available on a daily basis.

Mittnik, Robinzonov, and Spindler (2015) aim to find key volatility drivers by exploiting a gradient boosting
method to find both financial and macroeconomic factors that seem to explain volatility. Their methodology
of including these risk drivers proves to increase forecasts. By including 40 different financial and macroeco-
nomic factors, classified in different categories their aim is to find the volatility drivers that lead to the most
increase in predictive ability. Their methodology provides more useful than the usual GARCH framework
for this particular task, however, the derived volatility drivers can be used in a GARCH framework likewise.
In their research, Mittnik et al. (2015) find that the CBOE Volatility Index is an important predictor

for realized volatility. This index is across all horizons preferred by their selection algorithm. The CBOE
Volatility Index is created by the Chicago Board Options Exchange (CBOE) to measure the market’s
expectation of future volatility (Kuepper, 2021) and is often simply called ’the VIX’. It is derived from
the prices of options of the S&P500 index options, with close maturity dates (between 23 and 37 days
ahead). Therefore, the VIX generates a 30-day forecast of market volatility, which is often considered a
way to observe market sentiment, and in particular the degree of fear among investors (Kuepper, 2021).
Specifically, high values of the VIX correspond to fearful investors, who are afraid of a market crash,

11These words are associated with the source of the training data. The words that are removed are ’aapl’, ’apple’, ’flight’,
’airline’, ’airtravel’, ’airpassenger’, ’delayed’, ’gate’, and ’terminal’.
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expecting worsening market conditions, and low values correspond to bullish investor belief. The VIX is a
real-time index and is therefore available on a daily basis.
Furthermore, Mittnik et al. (2015) find that from the macroeconomic variables investigated that are

available on a daily basis, only the Treasury-EuroDollar rate (TED) spread is not excluded as volatility
driver by their algorithm. Subsequently, this research also includes the TED spread as control factor. The
TED spread is an indicator of credit risk, and is the difference in basis points between the three-month
LIBOR (London Interbank Offered Rate) and three-month U.S. Treasury bill rate. More specifically, the
TED spread is the difference between the rate of short term interbank loans and the interest rate on short
term US government debt (J. Chen, 2020). In a weakened economy banks perceive loans to corporate
clients more risky, and in turn charge higher interest rates on these loans. When the LIBOR rate (rate
on corporate loans) deviates more from the risk-free U.S. government rate on T-bills, the TED rate rises.
Therefore, the TED spread signals a weakening economic strength.
Mittnik et al. (2015) state that the VIX and the TED spread are able to signal both increasing and

decreasing volatility while other variables were only able to signal increasing volatility. To account for
possible regime shifts, define ζζζt = (V IXt, TEDt) as the variables that drive the smooth transition operator
discussed in section 4.4. Figure 1 provides a time series plots of these metrics.

Figure 1 – Volatility drivers and regimes

Time series plots of the CBOE Volatility Index (VIX) (left) and Treasury-EuroDollar (TED) rate (right) spread
between 01-01-2011 and 31-08-2021 (upper graphs). Shaded areas correspond to periods where the VIX/TEDRATE
exceeds its sample mean, which might indicate worsening conditions in the market/economy. Lower graph displays
values of the logistic transition function for ν = 10, 25 based on the standardised12values of the VIX and TEDRATE.

Since these variables can be regarded as a proxy for investor sentiment in the market and weakening eco-
nomic strength, respectively, higher values for both variables correspond to worsening economic conditions,
whereas low values correspond to economic prosperity. Therefore, no adjustment to these variables have

12Let Xt be a time series process for t = {1, . . . , T}, then the standardized value of Xt is given by Xt−X̄
std(X)

, where X̄, std(X)

denotes the sample mean and sample standard deviation of X, respectively.
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to be made before they can enter the function from equation (34). Note that this function is one under
worsening economic conditions and increased fear in the market, and zero when investors and banks are
confident about the economy/market.
From figure 1 can be seen that although some periods of worsening macroeconomic or market conditions

overlap, there are some difference where the VIX and the TED rate exceed their respective sample means.
Both time series show increasing values around the COVID-19 outbreak, and around the sovereign debt
crises in Europe (Greece). Furthermore, it is remarkable to notice that in the case for the TED rate the spike
relating to the COVID-19 outbreak was relatively short, whereas increased fear in the market remained
until the end of 2020. In other periods, it can be seen that the TED rate seems to be more gradually
increasing, whereas the VIX consists of more spikes, for instance for the period 2017/2018. In line with
Hsu et al. (2021) and Smales (2014), it is expected that during economic distress (i.e. when G(·) = 1),
Twitter-based variables have a more significant effect on the conditional volatility of stock price returns.
Furthermore, based on Smales (2014), it is expected that this effect is asymmetric, such that the effect of
negative Twitter-based sentiment has more effect on the conditional volatility than negative Twitter-based
sentiment.
The lower graph in figure 1 shows time series plots of equation (34) for different values of ν, which indicates

spikes in the standardized VIX and TED rate and thus signals increased fear in the market. It can be seen
that for a lower value of ν, the smooth transition function is much more sensitive to small deviations from
the mean of the variables in ζζζt. As discussed in section 4.4, ν is chosen as the value that generally maximizes
the Quasi Log Likelihood of Model II across different companies for ν ∈ [10, 15, 25, 50, 100]. While there
is no consensus across companies for the optimal neighborhood of ν based on the range of possible values,
the reported maximized likelihoods across the possible values are declining or increasing with ν for half of
the companies. For the other companies, the optimal smooth transition operator is in the neighborhood of
the center of the grid. However, the differences in maximum Quasi Log Likelihood for different values of ν
are almost negligible. To ensure the same behaviour of the varying parameters based on the function G(·),
ν = 25 for all companies.

5.2 Descriptive statistics

In this section, the descriptive statistics of the company stock data, Twitter-based sentiment data and the
control variable data is given. Additionally, the parameter estimates of the exogenous GARCH process,
described by equation (21) and equation (22) are given, which serve as exogenous variables in the stock
price volatility model from equation (23).

5.2.1 Market data

For the period 2011-01-01 until 2021-08-31 daily stock prices are retrieved via Yahoo! Finance. Stock
price returns are characterized by rt = 100 · log

(
St

St−1

)
, where St denotes the closing price at time t.

Before the market based exogenous variables can enter the model, they must be standardized, otherwise
their highs and lows are not comparable. Define the standardized value of a time series variable Xt by

Xstand,t = (Xt − X̄)/s, where s =

√∑T
i=1(Xt−X̄)2

T−1 and X̄ = 1
n

∑T
t=1Xt.

Table 3 provides the descriptive statistics of the return time series of the companies in the dataset, as well
as the macroeconomic and market indicator time series, the TED rate and the VIX. From the table it can be
seen that the median, and the 75% and 25% quantiles are comparable across the companies. The standard
deviation, sample minimum and sample maximum are very different across the selected companies. When
looking at the range of values and the standard deviation of NFLX and TSLA it can be seen that the sample
minimum and maximum (in absolute values) and sample standard deviation is much higher compared to
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Table 3 – Descriptive statistics of the returns of U.S. companies and of the selected volatility drivers.

Stock returns of selected companies Volatility drivers

AAPL AMZN CVX KO XOM MCD MSFT NFLX NKE CRM TSLA WMT VIX TEDRATE

Mean 0.10 0.11 0.00 0.02 -0.01 0.04 0.09 0.12 0.08 0.08 0.18 0.04 0.00 0.00
Std. 1.79 1.96 1.76 1.11 1.57 1.22 1.60 3.15 1.65 2.18 3.47 1.21 1.00 1.00
Min -13.77 -13.53 -25.01 -10.17 -13.04 -17.29 -15.95 -42.92 -12.41 -17.30 -23.65 -10.74 -1.17 -1.57
25% -0.73 -0.82 -0.76 -0.47 -0.72 -0.48 -0.66 -1.22 -0.71 -0.92 -1.48 -0.52 -0.62 -0.61
50% 0.09 0.12 0.04 0.03 -0.01 0.07 0.07 0.03 0.07 0.10 0.12 0.05 -0.27 -0.26
75% 1.03 1.12 0.78 0.57 0.72 0.59 0.88 1.50 0.89 1.16 1.88 0.61 0.26 0.56
Max 11.32 14.62 20.49 6.28 11.94 16.66 13.29 35.22 14.44 23.15 21.83 11.07 8.88 7.80

Descriptive statistics of the selected companies for this research in the period 01-01-2011 until 31-08-2021 (T = 2683).
Companies are described by their ticker symbol. On the right, the descriptive statistics of the standardized values
of the volatility drivers from section 5.1.3 are given as well.

other companies. This may indicate higher or more frequent outliers in the volatility process. Lastly, by
observing the selected volatility drivers, it can be seen that the magnitude of the sample maximum is much
higher than sample minimum for both variables, which indicates that both of these time series contain high
spikes, which is supported by the time series plots in figure 1.

5.2.2 Exogenous variables

For each company included in this research, the exogenous variables that enter the model are described
by the daily sentiment score from equation (15), the daily number of tweets, and the number of interac-
tions. As these variables enter the conditional volatility models, these process must satisfy the stationarity
assumption, for which the Augmented Dickey Fuller test is used as explained by section 4.2. If the null
hypothesis can not be rejected, the log difference of the time series is used in the analysis, in this case the
corresponding differences time series will be displayed as ∆xt. For all Twitter-based exogenous variables
the null hypothesis that the time series process had a unit root was rejected at the 5% significance level.
Therefore, these variables can directly enter the models proposed in section 4.1.
Recall that the ARMA-apARCH-apXGARCH model from equation (23) assumed that the exogenous

variables themselves also followed an ARMA-GARCH process. The volatility of this process, σ(x)
t is sub-

sequently used to explain the conditional volatility of stock price returns. Under the assumptions from
section 4.2, the parameter estimates that minimize equation (29) form a time series of exogenous condi-
tional variances, since these variables are non-negative and stationary by definition, these series can directly
enter the conditional volatility equation. Minimizing13 the Quasi Log Likelihood function results in the
parameter estimates that create this series.
Table 4, table 5, and table 6 display the descriptive statistics and the optimal parameters of the time

series process of the daily Twitter sentiment, daily number of tweets and daily number of interactions,
respectively. Since the Twitter-based variables are standardized, the mean of the exogenous series is almost
equal to zero and the standard deviation equal to one. By inspecting the sample minimum and maximum,
it can be seen that in the case for the Twitter derived sentiment, the sample minimum and maximum
are symmetrically distributed around the sample mean. However, this does not hold for the number of
tweets and the number of interactions, where the sample mean is for most companies close to zero and
the sample maximum is in most cases much larger than 10 times the standard deviation, indicating a

13minimization is done using the Sequential Least Squares Programming (SLSQP) minimization in the SciPy library in
Python.
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skewed distribution and lots of spikes in the time series. If these positive outliers correlate with spikes in
the volatility, the attention variable could convey a lot of information and serve as an relevant variable to
explain the spikes in the volatility process.

Table 4 – ARMA(1,1)-GARCH(1,1) parameter estimates and descriptive statistics of Twitter sentiment time series
from 01-01-2011 until 31-08-2021.

ϕ̂x of ARMA(1,1)-GARCH(1,1) process of Twitter sentiment
AAPL AMZN CVX KO XOM MCD MSFT NFLX NKE CRM TSLA WMT

µx 0.0 -0.0* 0.004*** -0.0 0.086*** -0.019*** 0.002*** -0.0*** 0.001*** -0.0 -0.0*** 0.001***
(4.3e-04) (2.7e-05) (4.1e-05) (1.3e-04) (4.1e-03) (1.3e-05) (8.7e-05) (8.3e-05) (1.5e-04) (1.9e-03) (4.4e-05) (9.4e-08)

γx 0.6*** 0.549*** 0.776*** 0.822*** -0.948*** 0.59*** 0.679*** 0.984*** 0.906*** 0.989*** 0.967*** 0.181
(2.8e-02) (3.1e-02) (1.7e-01) (4.9e-02) (6.1e-02) (9.7e-02) (2.7e-02) (6.3e-04) (6.9e-03) (4.9e-04) (2.6e-03) (4.0e+00)

δx -0.401*** -0.361*** -0.638*** -0.689*** 0.96*** -0.413*** -0.457*** -0.921*** -0.804*** -0.916*** -0.883*** -0.031
(5.8e-06) (4.2e-05) (9.2e-03) (2.1e-02) (2.0e-02) (6.3e-05) (2.1e-05) (1.7e-04) (1.2e-04) (6.8e-04) (3.6e-02) (3.9e+00)

ωx 0.281*** 0.691*** 0.024*** 0.164*** 0.002*** 0.022*** 0.762*** 0.373*** 0.475*** 0.257*** 0.201*** 0.075***
(9.3e-12) (4.5e-11) (2.5e-10) (3.3e-11) (7.8e-09) (4.2e-10) (1.7e-09) (5.5e-07) (2.6e-08) (6.8e-09) (9.2e-09) (2.4e-13)

βx 0.647*** 0.195*** 0.958*** 0.784*** 0.983*** 0.941*** 0.113*** 0.512*** 0.427*** 0.558*** 0.665*** 0.848***
(2.9e-04) (2.8e-02) (1.4e-02) (2.4e-02) (1.9e-02) (8.6e-04) (3.6e-02) (1.5e-04) (2.0e-04) (1.1e-04) (2.7e-02) (4.4e-04)

αx 0.056*** 0.082*** 0.017*** 0.044*** 0.015*** 0.037*** 0.058*** 0.08*** 0.07*** 0.132*** 0.12*** 0.078***
(1.3e-03) (2.1e-02) (7.4e-04) (4.7e-03) (5.5e-04) (2.6e-03) (3.9e-03) (1.3e-03) (4.7e-03) (1.4e-03) (1.8e-03) (1.8e-02)

Descriptive statistics
Mean 1.66e-17 1.74e-16 2.73e-16 6.34e-16 -1.65e-16 -1.19e-16 -7.39e-17 -5.62e-16 4.90e-17 -5.40e-15 5.20e-16 3.01e-17
Std. 1.00e+0 1.00e+0 9.95e-1 1.00e+0 9.02e-1 1.00e+0 1.00e+0 1.00e+0 1.00e+0 9.97e-1 9.98e-1 1.00e+0
Min -5.05e+0 -6.46e+0 -4.13e+0 -4.13e+0 -4.71e+0 -4.59e+0 -5.33e+0 -4.54e+0 -5.53e+0 -3.79e+0 -4.87e+0 -6.18e+0
Max 5.17e+0 4.31e+0 4.76e+0 4.00e+0 6.61e+0 5.22e+0 3.56e+0 4.39e+0 4.14e+0 3.09e+0 3.28e+0 4.77e+0
LT -7444.05 -7467.07 -7432.23 -7457.75 -6382.80 -7362.09 -7369.99 -7339.12 -7437.85 -7038.38 -7297.05 -7445.66

Parameter estimates of Twitter derived daily sentiment score time series. Parentheses display the std. error of
the parameter estimates. Asterisks (*, **, ***) denote significance of the parameters at the 10%, 5% and 1%,
respectively. In the lower rows the descriptive statistics of the standardized daily sentiment series for each company
is provided, which directly enters the conditional volatility process. Lastly, the optimized Quasi Log Likelihood is
given.

Moreover, the tables provide the parameter estimates, standard errors and the reported significance of
the proposed ARMA(1,1)-GARCH(1,1) structure. The t-test from equation (35) is employed to calculate
the significance of the parameters at the 10%, 5% and 1% level. From the tables it can be inferred that for
almost all companies the parameters describing the process of the Twitter-based Twitter-based exogenous
variables are significant. In most cases (except for the daily number of interactions for XOM and NFLX),
the null that no ARCH structure is present can be rejected, as αx 6= 0 at the 1% significance level. Across
all companies and exogenous variables, the majority of the parameters is tested to be significant. The
ARMA-GARCH process for each variable seems to be highly persistent across all companies. To clarify, in
almost all cases βx + αx is close to one, indicating long term effects of unexpected values of the exogenous
variables.
The volatility of the exogenous variables are visualized in figure 3, figure 4, and figure 5 in appendix A.2.1.

These plots provide an intuition into whether the disagreement variables σ(xk)
t can successfully explain the

conditional volatility of stock price returns. From the plots, it is seen that the volatility of the Twitter-based
sentiment is generally represented by a flat line, albeit minor fluctuations are perceivable. Especially in
the case for Apple, Amazon, Microsoft, Netflix, and NIKE it is expected that the volatility of the Twitter-
based sentiment fails to explain spikes in the stock price return volatility. For Exxon Mobil, McDonalds,
salesforce, and Tesla, the volatility of the Twitter-based sentiment shows more variation, and thus the value
of σ(x)

t might help to explain conditional volatility of stock price returns. Now, consider the volatility of

37



the attention variables. The plots in appendix A.2.1 show that only for Apple, Microsoft, NIKE, and Tesla,
the volatility of the standardised number of tweets does not account for high spikes. The plots of the other
companies look more promising, although the spikes in the volatility of the stock price returns must align
with the spikes in the volatility of the number of tweets for these variables to have any influence. In the case
for Apple, Exxon Mobil, Microsoft, and Netflix, it is evident that the volatility of the standardised number
of interactions likely will not successfully explain the volatility of stock price returns, since σ(x)

t represents
a flat line for these companies. For the other companies, the volatility of the standardised number of
interactions can explain increased levels of stock price return volatility when the spikes correlate.

Table 5 – ARMA(1,1)-GARCH(1,1) parameter estimates and descriptive statistics of daily number of tweets from
01-01-2011 until 31-08-2021.

ϕ̂x of ARMA(1,1)-GARCH(1,1) process of daily # of tweets
AAPL AMZN CVX KO XOM MCD MSFT NFLX NKE CRM TSLA WMT

µx -0.222*** -0.463*** -0.039** -0.389** -0.035*** -0.013 0.002*** 0.006*** 0.001*** 0.004*** -0.223*** -0.009***
(2.7e-05) (2.3e-02) (1.8e-02) (2.4e-01) (4.5e-04) (2.1e-02) (2.2e-06) (9.3e-04) (1.0e-05) (9.0e-06) (9.2e-07) (3.9e-05)

γx 0.238** -0.488*** 0.723*** -0.927** 0.263* 0.496** 0.845*** 0.981*** 0.784*** 0.921*** 0.527*** 0.867***
(1.4e-01) (3.5e-02) (8.6e-02) (5.3e-01) (1.9e-01) (2.7e-01) (1.7e-02) (5.2e-02) (6.6e-02) (2.6e-02) (1.9e-01) (6.0e-03)

δx 0.076 0.818*** -0.938*** 0.293* 0.44*** -0.276*** -0.641*** -0.798*** -0.574*** -0.598*** -0.025 -0.728***
(1.2e-01) (5.7e-04) (4.2e-02) (2.2e-01) (2.3e-05) (4.6e-02) (2.7e-04) (1.8e-01) (1.1e-04) (2.4e-05) (1.2e-01) (2.2e-04)

ωx 0.006*** 0.195*** 0.09*** 0.15*** 0.08*** 0.592*** 0.249*** 0.039*** 0.579*** 0.303*** 0.001*** 0.145***
(6.1e-11) (7.1e-06) (1.1e-04) (4.1e-06) (1.4e-08) (3.4e-12) (5.3e-09) (8.8e-07) (2.5e-10) (3.2e-09) (6.3e-13) (2.1e-07)

βx 0.947*** 0.525*** 0.016 0.001 0.577*** 0.0 0.643*** 0.793*** 0.293*** 0.32*** 0.982*** 0.597***
(5.5e-03) (2.7e-04) (6.7e-01) (5.7e-02) (1.0e-03) (1.1e-06) (7.1e-04) (1.8e-01) (7.1e-02) (2.8e-02) (6.7e-03) (5.5e-04)

αx 0.053*** 0.475*** 0.984*** 0.999*** 0.423*** 0.447*** 0.078*** 0.207*** 0.05*** 0.31*** 0.018*** 0.189***
(2.4e-03) (4.2e-02) (2.0e-02) (4.1e-02) (3.3e-02) (7.1e-02) (4.7e-03) (4.4e-03) (1.0e-02) (2.9e-02) (1.3e-03) (4.4e-03)

Descriptive statistics
Mean -2.65e-16 -4.77e-16 1.01e-17 -1.22e-17 7.89e-17 -2.22e-17 2.04e-16 -1.24e-15 1.22e-16 4.15e-16 9.95e-16 6.55e-17
Std. 1.00e+0 1.00e+0 9.95e-1 1.00e+0 9.02e-1 1.00e+0 1.00e+0 1.00e+0 1.00e+0 9.97e-1 9.98e-1 1.00e+0
Min -9.58e-1 -8.94e-1 -2.87e-1 -3.04e-1 -2.69e-1 -6.31e-1 -1.03e+0 -6.89e-1 -7.16e-1 -8.93e-1 -6.14e-1 -7.37e-1
Max 1.39e+1 1.21e+1 3.38e+1 2.00e+1 2.72e+1 2.19e+1 1.20e+1 2.56e+1 1.74e+1 2.06e+1 1.86e+1 2.21e+1
LT -6620.15 -7175.38 -6089.41 -4160.47 -4444.82 -6667.26 -7145.90 -5658.14 -7193.36 -6161.08 -5581.48 -5875.98

Parameter estimates of the daily number of tweets. Parentheses display the std. error of the parameter estimates.
Asterisks (*, **, ***) denote significance of the parameters at the 10%, 5% and 1%, respectively. In the lower rows
the descriptive statistics of the standardized daily number of tweets for each company is provided, which directly
enters the conditional volatility process. Lastly, the optimized Quasi Log Likelihood is given.

The time series of the exogenous variables, as well as the residuals ε(x)
t from the autoregressive moving-

average structure imposed on the exogenous variables, are evaluated for each company. Via partial-
autocorrelation plots, it is checked whether the imposed ARMA-GARCH structure is sensible for the
exogenous variables for all companies. Across all companies, these plots did not show significant evidence
that higher order lags would hold any predictive power. However, it must be noted that in contrast to the
stock return models, the proper lag order specification of the exogenous processes was not evaluated by
an evaluation criterion (e.g. BIC), which might lead to patterns that are not discovered by the proposed
ARMA(1,1)-GARCH(1,1) specification, or cases where the proposed model is too restrictive.
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Table 6 – ARMA(1,1)-GARCH(1,1) parameter estimates and descriptive statistics of daily number of interactions
from 01-01-2011 until 31-08-2021.

ϕ̂x of ARMA(1,1)-GARCH(1,1) process of daily # of interactions
AAPL AMZN CVX KO XOM MCD MSFT NFLX NKE CRM TSLA WMT

µx -0.261*** -0.162*** -0.031*** -0.185 -0.003 -0.018 -0.287*** -0.064* -0.225*** -0.256*** -0.021 -0.006*
(4.0e-02) (1.6e-07) (7.8e-04) (1.8e-01) (4.4e-03) (1.8e-02) (1.9e-04) (4.4e-02) (1.1e-02) (4.0e-05) (8.3e-02) (5.0e-03)

γx -0.098*** 0.098*** 0.743*** -0.698*** 0.914*** 0.797*** 0.248* -0.134 -0.927*** 0.213 0.918*** 0.946***
(2.3e-02) (2.2e-02) (2.8e-01) (1.2e-02) (2.5e-01) (8.0e-02) (1.6e-01) (8.9e-01) (2.2e-02) (2.6e-01) (9.5e-02) (9.8e-04)

δx 0.58*** 0.476*** 0.853*** 0.988*** -0.921*** -0.615*** 0.09 0.142 1.0*** 0.104 -0.976*** -0.99***
(2.1e-04) (1.7e-04) (4.2e-03) (9.0e-02) (4.8e-04) (9.7e-05) (2.1e-01) (8.2e-01) (6.3e-02) (2.6e-01) (1.0e-01) (9.0e-02)

ωx 0.0*** 0.0*** 0.0*** 0.0*** 0.004*** 0.871*** 0.0*** 0.001*** 0.0*** 0.0*** 0.0 0.005***
(2.6e-09) (2.2e-13) (1.4e-09) (2.7e-07) (1.1e-16) (1.5e-07) (4.8e-13) (4.2e-21) (5.5e-08) (1.6e-11) (1.2e-05) (3.7e-06)

βx 0.993*** 0.966*** 0.797*** 0.894*** 0.996*** 0.007*** 0.992*** 1.0*** 0.959*** 0.991*** 0.969*** 0.003
(3.2e-04) (5.6e-04) (4.7e-02) (1.1e-02) (4.7e-03) (1.8e-03) (8.8e-06) (1.0e-03) (9.3e-02) (3.4e-03) (1.6e-03) (9.0e-03)

αx 0.007*** 0.034*** 0.203*** 0.106*** 0.0 0.993*** 0.008*** 0.0 0.041*** 0.009*** 0.031*** 0.997***
(1.1e-04) (2.2e-07) (1.4e-04) (5.0e-05) (2.0e-06) (2.0e-01) (5.1e-05) (1.0e-05) (3.4e-07) (8.9e-04) (1.1e-06) (6.3e-04)

Descriptive statistics
Mean -1.31e-16 6.49e-16 3.52e-16 2.01e-16 2.05e-17 2.25e-16 9.39e-16 5.50e-17 9.01e-17 -6.59e-17 -2.78e-16 -1.32e-16
Std. 1.00e+0 1.00e+0 9.95e-1 1.00e+0 9.02e-1 1.00e+0 1.00e+0 1.00e+0 1.00e+0 9.97e-1 9.98e-1 1.00e+0
Min -2.75e-1 -1.81e-1 -1.35e-1 -1.21e-1 -9.57e-2 -1.54e-1 -4.05e-1 -6.81e-2 -1.19e-1 -3.56e-1 -2.61e-1 -1.48e-1
Max 3.28e+1 3.41e+1 3.57e+1 3.93e+1 4.25e+1 2.39e+1 2.51e+1 4.94e+1 4.24e+1 1.60e+1 2.82e+1 2.98e+1
LT -4452.83 5875.82 246.39 -426.85 -6694.78 -7511.90 -2163.265 -6023.16 -1213.83 -4287.67 -1819.55 -1754.24

Parameter estimates of the daily number of interactions. Recall that the the number of interactions is calculated as
the sum of the daily number of retweets, quotes, likes and replies. Parentheses display the std. error of the parameter
estimates. Asterisks (*, **, ***) denote significance of the parameters at the 10%, 5% and 1%, respectively. In the
lower rows the descriptive statistics of the standardized daily number of interactions for each company is provided,
which directly enters the conditional volatility process. Lastly, the optimized Quasi Log Likelihood is given.

5.2.3 Model specification

Once the Twitter-based variables are computed, the lag order of the models is specified to estimate the
parameters and construct the conditional volatility. More specifically, the lags P and Q must be determined
for the mean model of equation (16), which is done via the Bayes Information Criterion, explained in
equation (24). The selection of the lags in the mean model is done disregarding the specification of the
conditional volatility, that is, the volatility is assumed to follow the benchmark model of equation (17). The
combination of lags P and Q for P,Q = 1, . . . , 5 that minimizes the BIC using the benchmark specification
from equation (16) and equation (17) is selected for the conditional mean model. The lags P and Q are
the same for every model in section 4.1. This procedure is repeated for each company from table 1.
The number of lags Rk ≥ 0 for k ∈ {1, . . . , nK} and Sk ≥ 0 for k ∈ {1, . . . , nK1

} for which the BIC is
minimized is chosen as the optimal lag order. This search is conducted per company for each conditional
volatility specification in equation (27). The lag order Rk (Sk) that minimizes the BIC in the constant
parameter setting is subsequently used for both the constant parameter models as for the models that allow
for varying parameters. As aforementioned, the BIC is more restrictive than for instance the AIC, and thus
penalizes the inclusion of more parameters more severe.
Only for seven companies, the mean returns process follows a higher order lag autoregressive moving-

average model. This is the case for Apple, Amazon, Microsoft, Netflix, NIKE, Tesla, and Walmart. With
regard to the exogenous Twitter-based variables, it can be seen that the BIC successfully excluded redundant
order lags. In the mean equation, only for Amazon, Exxon Mobil, Microsoft, and Netflix do longer lags of
the Twitter-based variables explain the mean stock return.
For the models where the Twitter-based exogenous variables enter the volatility equation (model II &
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model III), almost no companies include higher order lags of the exogenous variables. For model II, Mi-
crosoft and Tesla incorporate longer lags of the Twitter-based sentiment. This indicates that only for these
companies, Twitter-based sentiment has effect on the conditional volatility for multiple periods. Apple and
Amazon include multiple lags of the disagreement measure volatility of the sentiment and of the sentiment
itself, respectively. Since using the BIC, for almost no companies higher order lags are included in the
volatility models, it can be concluded that when Twitter effects the conditional volatility, Twitter can only
explain volatility in the subsequent period.

Additionally, note that section 4.2 provides the assumptions that must be satisfied, such that a strictly
stationary process σt exists. Hence, these assumptions are checked after the quasi log-likelihood is min-
imized14, to see whether these hold. Assumption 1 and assumption 4 are imposed as constraints on the
SLSQP minimization, which guarantees that these constraints are satisfied for all models. Note that for
five companies, P = Q = 1, such that it must hold that |γ1|< 1 and |δ1|< 1. Similarly, boundaries are
provided for all elements in ϕ, which guarantees the non-negativity constraints and guarantees that ϕ is in
the interior of the parameter space. To examine whether assumption 2, assumption 3, and assumption 5
hold, histograms of the realizations of the unobserved innovations z̃t = ε̃t(ϑ̂)

σ̃t(θ̂)
and η(x)

t =
ε̃
(x)
t (ϑ̂x)

σ̃
(x)
t (θ̂x)

are plotted

after estimation. These histograms provide an intuition in the (conditional) moments of the innovations.
Moreover, the first and second sample moments are calculated. These histograms and moments are in line
with the assumptions. Lastly, note that the exogenous variables in xxxt are checked to be stationary by
means of the ADF test, and the null hypothesis is rejected at the 5% level for all instances, indicating that
these variables all form a stationary process, thus satisfying assumption 2.

14Minimization is done using the SLSQP algorithm from SciPy in Python.

40



6 Results

This chapter discusses the results of the parameter estimation of the constant and varying parameter models.
First, the parameter estimates of the volatility models under the constant and the varying parameter
specification are presented and discussed. These estimates provide insights into the research question, which
aims to answer if, how, and when Twitter can be leveraged to explain conditional volatility. Subsequently,
a comparison between the various models is conducted to identify successful practices in including the
exogenous variables, and to distinguish similarities across the selected companies. It is investigated whether
allowing for varying parameters based on macroeconomic and market conditions can significantly improve
volatility models. Finally, by using the squared residuals of the benchmark model as a proxy for the
conditional volatility, the in-sample fit of the models is evaluated using the MSE and QLIKE loss functions.

6.1 Parameter estimates

This section discusses the parameter estimates of the proposed models. First, the parameters that describe
the mean return series are analysed. Then, the volatility persistence under the inclusion of exogenous
variables and varying parameters are compared with the benchmark model. Thereafter, the parameter
estimates that include the Twitter-based variables are analysed to infer how these variables affect the mean
return series and the volatility process of the stock price returns.
By minimizing the quasi log-likelihood from equation (28) for each conditional volatility specification in

equation (27), the parameters estimates for each model are found. Similarly, the parameter estimates for
the models that allow varying parameters in the conditional volatility equation are found as well as the
argument ϕ̂(ζζζt) that minimizes QT from equation (28). Note that for the k-th element of ϕ̂(ζζζt) it holds
that ϕ̂k(ζζζt) = ϕ̂k + ϕ̂∗kG(ζζζt, 25, ζ̄ζζ). Using the t-test values calculated by equation (35), the significance of
the individual parameter estimates is determined.
For the notation of the parameters, let πmetric,j denote the parameter describing the effect of the lag j

value of Twitter metric metric, where possible Twitter metrics are sent, tweet, and interact, describing
the sentiment score, number of tweets and number of interactions, respectively. Similar notations hold for
the parameters describing the asymmetric effects of the Twitter sentiment ψmetric,j , and for the parameters
describing the effect of the conditional volatility of the exogenous variables λmetric,j .

6.1.1 ARMA process and volatility persistence

Table 7, table 8, and table 9 show the parameter estimates that minimize QT for the ARMAX-apARCH
model, the ARMA-apARCH-apX model and the ARMA-apARCH-apXGARCH model, respectively. By
inspecting the parameters that describe the conditional mean in either of these models, it can be seen that
for Model I, for almost no companies the auto-regressive parameters nor the moving-average parameters
are significantly different from zero. This implies that when Twitter-variables are used to model the mean
return series, these variables convey more information than the auto-regressive or moving-average parts of
the model. Furthermore, the magnitude of these parameters is particularly low when comparing them to
the parameters modeling AR and MA part in Model II and Model III.
By considering the significant auto-regressive and moving-average parameters from Model II and Model

III, it can be seen that the lagged value of the stock price return has a negative effect on current returns.
From the generally positive estimated parameter value δ1 it can be derived that large positive (negative)
values of the unanticipated returns on the previous day signals higher (lower) returns in subsequent days.
The sign and magnitude of the parameter estimates of the mean return equation shown in table 8 and
table 9 are comparable with the parameter estimates of the benchmark model in table 14 in appendix A.1.3,
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although the signs are opposite for Netflix and salesforce.
Table 15, table 16, and table 17 in appendix A.1.4 show the parameter estimates for the models that allow

for varying parameters in the conditional volatility equation. The parameters including the AR and MA
parts in the conditional mean are similar to the parameter estimates observed in their constant parameter
counterparts with respect to magnitude and significance. Considering the significance of the AR and MA
parameters at at least the 10% level across all companies for all models (excluding for model I), it can be
concluded that the auto-regressive moving-average specification properly explain the mean return series.
Moreover, this supports the remark from Franq and Zakoian (2004) that a pure GARCH specification is
too restrictive in financial time series data.

Table 7 – Parameter estimates of Model I with constant parameters (data ranges from 01-01-2011 until 31-08-2021).

Parameter estimates per company of ARMAX-apARCH model
AAPL AMZN CVX KO XOM MCD MSFT NFLX NKE CRM TSLA WMT

ARMAX parameters
µ 0.162*** 0.243*** -0.02 0.024*** -0.016 0.073*** 0.189*** 0.015 0.151*** 0.0 0.278** 0.068**

(4.1e-02) (6.9e-02) (4.3e-02) (9.7e-03) (9.0e-02) (3.1e-02) (5.9e-02) (3.3e+00) (4.9e-02) (5.9e-02) (1.2e-01) (3.0e-02)
γ1 0.025 0.009 0.015 0.006 -0.023 0.011 0.012* -0.022 0.03 0.003* 0.027 0.002

(2.9e-02) (3.4e-02) (1.2e-02) (1.6e-02) (2.6e-02) (1.8e-02) (9.2e-03) (1.1e+00) (2.8e-02) (2.2e-03) (3.1e-02) (2.0e-02)
γ2 -0.069* 0.018 -0.03 0.025

(4.3e-02) (2.6e-01) (3.8e-02) (2.4e-02)
γ3 0.08***

(2.8e-02)
δ1 -0.051* -0.031 0.014 0.016 -0.038* 0.022** 0.025** -0.005 -0.683*** 0.0 -0.055* 0.034**

(3.3e-02) (3.5e-02) (1.7e-02) (2.1e-02) (2.6e-02) (1.3e-02) (1.3e-02) (1.0e-02) (1.7e-02) (3.4e-04) (3.5e-02) (1.5e-02)
δ2 -0.032 -0.029*** -0.036 0.024

(4.8e-02) (9.3e-03) (1.0e+01) (3.3e-02)
δ3 -0.38***

(2.6e-02)
πsent,1 0.403*** 0.007 -0.033 0.014 -0.006 -0.009 0.009* 0.018 -0.08*** -0.001 -0.918*** -0.443***

(7.6e-06) (2.4e-02) (2.6e-02) (1.9e-02) (2.6e-02) (1.3e-02) (5.2e-03) (7.2e-02) (2.8e-02) (2.1e-01) (3.4e-03) (6.3e-02)
πsent,2 -0.745*** -0.026 -0.979*** 0.021

(1.9e-02) (2.5e-02) (2.1e-03) (1.1e-01)
πtweets,1 0.016 -0.007 -0.92*** -0.588*** -0.864*** -0.694*** 0.933*** -0.029 -0.055** 0.988*** 0.914*** -0.084***

(2.2e-02) (2.1e-02) (2.0e-03) (1.1e-01) (5.6e-03) (3.6e-02) (1.8e-03) (1.8e+00) (2.5e-02) (4.7e-03) (2.9e-04) (2.9e-02)
πtweets,2 0.981***

(5.5e-02)
πinteract,1 -0.043** 0.747*** 0.909*** 0.567*** 0.858*** 0.684*** -0.059*** 0.01 0.636*** -1.003 -0.003 0.386***

(2.4e-02) (9.3e-04) (1.7e-04) (1.6e-03) (1.8e-04) (1.3e-04) (5.6e-05) (2.6e-01) (9.6e-05) (5.5e+00) (8.3e-03) (2.1e-05)
πinteract,2 -0.999

(2.4e+00)
apARCH parameters

ω 0.193*** 0.391*** 0.048*** 0.082*** 0.036*** 0.138*** 0.332*** 0.028*** 0.273*** 0.04*** 0.224*** 0.377***
(9.3e-06) (6.4e-06) (9.4e-08) (4.3e-07) (1.0e-60) (2.6e-26) (3.7e-05) (6.9e-03) (5.3e-25) (2.4e-03) (5.4e-06) (9.5e-06)

β 0.814*** 0.763*** 0.894*** 0.84*** 0.917*** 0.763*** 0.684*** 0.92*** 0.797*** 0.899* 0.942*** 0.511***
(4.5e-04) (8.4e-04) (1.7e-05) (9.6e-04) (6.0e-06) (3.1e-05) (7.7e-04) (1.2e-02) (6.3e-05) (6.5e-01) (1.2e-04) (6.6e-04)

α 0.106*** 0.145*** 0.078*** 0.074*** 0.033*** 0.06*** 0.178*** 0.075*** 0.053*** 0.091*** 0.039*** 0.244***
(1.1e-03) (4.4e-03) (4.5e-04) (7.3e-03) (3.5e-04) (3.5e-03) (1.6e-03) (1.3e-09) (3.4e-03) (4.4e-07) (4.0e-04) (1.6e-02)

ψ 0.463*** 0.19* 0.35*** 0.336*** 1.0* 1.0*** 0.208** 0.236 1.0*** 0.333 -0.0 0.052
(8.8e-02) (1.2e-01) (7.5e-02) (1.3e-01) (7.1e-01) (2.5e-01) (9.4e-02) (2.5e+01) (2.6e-01) (2.3e+00) (8.1e-02) (1.2e-01)

Parameter estimates per company of the ARMAX-apARCH model proposed in equation (18). Table indicates the
parameters of the conditional mean equation and the conditional variance equation. Parentheses display the std.
error of the parameter estimates. Asterisks (*, **, ***) denote significance of the parameters at the 10%, 5% and
1% significance level, respectively. In case the standard error is infinitely small, it is manually set to 1.0e-60, and
the corresponding parameter is denoted significant at the 1% level. Number of lags of each variable that enters the
model is determined by the BIC.
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Subsequently, the parameters that describe the conditional volatility process are considered. The constant
parameter estimates show that the intercept in the volatility models, ω is reduced by a substantial margin
when exogenous variables enter the conditional volatility equation. This reduction is observed even more
when the parameters are allowed to vary as a function of the VIX and the TED rate, shown by the tables in
appendix A.1.4. This implies that the volatility models are more flexible under the inclusion of exogenous
variables and/or varying parameters.
From table 7, table 8, and table 9 it is deduced that for all companies an apARCH process is present in

the conditional volatility. With the exception of Tesla, the parameter estimates for all companies show that
the estimates for α and β are significantly different from zero at at least the 10% level. The magnitude of
β implies that shocks to the volatility process decay slowly over time. These shocks are caused by either
unexpected values of the mean return process (via α), or via large values of the exogenous variables (for
model II and model III). Note that in the constant parameter setting, the magnitude of the estimates for α
is rather small, indicating that the immediate effect of shocks is small, although shocks affect the volatility
for a long period. Moreover, throughout all constant parameter models, almost all the selected companies
experience asymmetric effects of unexpected returns, which supports the leverage effect observed by Black
(1976). Only for the conditional volatility of Tesla, the asymmetric effect is estimated to be negative,
though this estimate is not significantly different from zero.
The varying parameter estimates, which are tabulated in appendix A.1.4, show substantial differences

compared to the constant parameter estimates. The magnitude of the estimated parameter β∗ is substantial
for McDonalds, Microsoft, Netflix, NIKE, salesforce, and Walmart, which implies that the effects of σ2

t−1 on
the volatility are largely dependent on ζζζt. For Netflix, NIKE, and salesforce, the parameter β(ζζζt) increases
when G(·) = 1 across all models, and for the other companies, β(ζζζt) decreases under G(·) = 1. Additionally,
α∗ > 0 for almost all companies, which indicates that during economic downturn, shocks ε2

t−1 to the mean
return series explains a larger part of the volatility than during times of economic prosperity.
For the majority of the companies, the estimates for ψ and ψ∗ again show sizable evidence in favor of

the leverage effect. However, the parameter estimates for ψ are less significant compared to the constant
parameter setting. For Netflix, it is actually the case that positive unexpected returns have more effect on
the volatility than negative returns of the same magnitude under G(·) = 1. For Coca-Cola and McDon-
alds, the magnitude of ψ(ζζζt) significantly decreases under economic downturn, which indicates that the
asymmetric effect decreases in magnitude.
Both in the constant parameter setting, as well as in the varying parameter setting, it is noted that

across multiple models, ψ approaches one in the case for Coca-Cola, McDonalds, NIKE, and salesforce. As
aforementioned, this indicates that positive unexpected returns have negligible effect on the volatility series.

From the parameter estimates, it can be seen that when exogenous variables enter the mean return se-
ries or the conditional volatility series, persistence (measured by α(1 + ψ2) + β) generally increases. This
indicates that when Twitter-based variables enter the model, shocks to the volatility process take longer to
decay over time. In contrast to the results by Kim and Kon (1999) and Lamoureux and Lastrapes (1990),
accommodating for possible structural breaks in the volatility process does not reduce the degree of persis-
tence. Although persistence generally decreases during economic prosperity, persistence during economic
downturn is actually higher compared to persistence in the constant parameter case. This is observed for
all companies, except McDonalds and Walmart. Hence, under G(·) = 1, shocks to the conditional variance
generally ’persist’ for longer amounts of time, which is consistent with the intuition that during economic
downturn, high levels of volatility indicate increased volatility in subsequent periods. Similarly to the
constant parameter case, it can be concluded that the conditional volatility series exhibit a high degree of
persistence.
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Table 8 – Parameter estimates of Model II with constant parameters (data ranges from 01-01-2011 until 31-08-
2021).

Parameter estimates per company of ARMA-apARCH-apX model
AAPL AMZN CVX KO XOM MCD MSFT NFLX NKE CRM TSLA WMT

ARMA parameters
µ 0.17*** 0.244* -0.015 0.024 0.003 0.079*** 0.19*** 0.3** 0.141** 0.003 0.576 0.064*

(4.1e-02) (1.7e-01) (5.2e-02) (2.9e-02) (4.2e-02) (3.2e-02) (4.2e-02) (1.5e-01) (8.3e-02) (3.4e-03) (1.1e+02) (4.0e-02)
γ1 -0.419*** -0.724 -0.874** -0.589*** -0.708*** -0.694*** -0.982*** -0.494*** -0.685*** 0.965*** -1.0 -0.617***

(3.5e-02) (6.9e-01) (4.7e-01) (4.1e-02) (9.4e-02) (5.6e-02) (4.8e-02) (2.9e-02) (1.4e-01) (2.2e-03) (1.6e+02) (1.1e-01)
γ2 -0.006 -0.649*** -0.077 -0.05

(2.5e-01) (5.6e-02) (9.7e-02) (5.1e-02)
γ3 -0.055

(5.0e-02)
δ1 0.441*** 0.725*** 0.858*** 0.568*** 0.688*** 0.686*** 0.935*** 0.496*** 0.64*** -0.987*** 1.0 0.566***

(1.7e-05) (5.6e-02) (1.3e-02) (1.7e-03) (7.9e-03) (9.2e-03) (1.2e-01) (2.2e-02) (6.3e-03) (9.9e-03) (8.5e+00) (1.4e-03)
δ2 0.017 -0.055*** 0.628*** -0.004

(2.4e-02) (2.1e-04) (1.1e-03) (1.5e-02)
δ3 -0.04**

(2.3e-02)
apARCH-apX parameters
ω 0.098*** 0.13*** 0.044*** 0.078*** 0.035*** 0.147*** 0.232*** 0.038*** 0.245*** 0.134*** 0.229*** 0.077***

(1.0e-60) (1.0e-60) (1.0e-60) (1.0e-60) (1.0e-60) (3.6e-27) (1.0e-60) (2.8e-28) (6.1e-29) (1.2e-27) (1.0e-60) (1.0e-60)
β 0.818*** 0.818*** 0.899*** 0.844*** 0.882*** 0.726*** 0.709*** 0.976*** 0.788*** 0.787*** 0.921 0.878***

(3.8e-04) (6.1e-02) (1.2e-02) (1.0e-03) (1.0e-02) (9.8e-03) (9.1e-02) (7.4e-04) (7.9e-03) (7.5e-03) (3.0e+00) (1.2e-03)
α 0.099*** 0.106*** 0.071*** 0.073*** 0.099*** 0.113*** 0.157*** 0.007*** 0.055*** 0.06*** 0.049*** 0.029***

(1.0e-60) (1.0e-60) (3.6e-25) (1.0e-60) (1.0e-60) (2.4e-24) (1.0e-60) (6.8e-09) (1.0e-60) (2.5e-08) (9.0e-24) (3.7e-20)
ψ 0.472*** 0.177 0.369*** 0.333*** 0.153*** 0.528*** 0.178** 1.0*** 0.999** 1.0* -0.014 1.0***

(9.0e-02) (2.4e-01) (1.4e-01) (1.3e-01) (5.3e-02) (1.2e-01) (9.6e-02) (5.4e-02) (5.8e-01) (7.7e-01) (1.3e+01) (5.6e-02)
πsent,1 0.015*** 0.0 0.0 0.0*** 0.0 0.002 0.02 0.0 0.0 0.129 0.026 0.007

(2.2e-03) (6.7e-10) (2.1e-09) (2.2e-11) (1.1e-05) (1.7e-03) (1.9e-01) (1.9e-09) (1.1e-10) (1.3e-01) (6.6e+01) (6.9e-03)
πsent,2 0.038 0.0

(1.9e-01) (2.1e-06)
πtweets,1 0.079*** 0.122 0.001 0.0 0.0 0.011 0.0* 0.21*** 0.124 0.0 0.174 0.005

(7.7e-03) (1.2e-01) (9.3e-04) (3.0e-04) (1.4e-03) (3.1e-02) (7.8e-11) (1.9e-03) (1.3e-01) (2.6e-10) (2.0e+01) (3.4e-02)
πinteract,1 0.165** 1.15* 0.014 0.001*** 0.001*** 0.0*** 0.076 0.004*** 0.007 0.722 0.0 0.014

(7.2e-02) (7.5e-01) (3.2e-02) (9.5e-05) (1.8e-04) (2.4e-09) (3.8e-01) (1.2e-04) (3.6e+00) (1.2e+00) (1.4e-07) (2.0e-02)
ψsent,1 0.998*** 0.807 0.151 -1.0** -0.976 0.999 -0.992 0.852 -0.62 0.348** 0.999 -1.0

(3.8e-01) (6.3e+00) (8.0e+00) (5.4e-01) (1.0e+03) (1.6e+00) (3.7e+00) (2.2e+01) (1.7e+00) (1.9e-01) (2.1e+03) (1.1e+00)
ψsent,2 -0.375 0.884

(7.8e-01) (3.4e+03)
ψtweets,1 0.447* 0.292* 0.033 -0.797*** -0.247 1.0*** 0.44* 0.916*** 0.727** -0.484 1.0 1.0*

(2.9e-01) (2.1e-01) (4.8e-01) (2.3e-01) (1.9e+00) (1.0e-01) (2.7e-01) (1.6e-01) (3.4e-01) (4.3e+00) (6.4e+01) (6.1e-01)
ψinteract,1 0.694*** 0.974 0.538 0.244 -0.509 -0.915** 1.0*** 0.231 0.995 0.57 1.0 1.0***

(2.8e-01) (1.3e+00) (1.7e+00) (8.0e-01) (9.9e-01) (5.3e-01) (3.8e-01) (3.7e-01) (3.2e+00) (1.1e+00) (1.7e+02) (1.3e-01)

Parameter estimates per company of the ARMA-apARCH-apX model proposed in equation (20). Table indicates
the parameters of the conditional mean equation and the conditional variance equation. Parentheses display the
std. error of the parameter estimates. Asterisks (*, **, ***) denote significance of the parameters at the 10%, 5%
and 1% significance level, respectively. In case the standard error is infinitely small, it is manually set to 1.0e-60,
and the corresponding parameter is denoted significant at the 1% level. Number of lags of each variable that enters
the model is determined by the BIC.

6.1.2 Significance of Twitter-based sentiment variables

To determine how Twitter exerts influence on the volatility of the stock price returns, the parameters that
include the Twitter-based exogenous variables are inspected. This subsection provides a detailed descrip-
tion of the parameter estimates and discusses the implied effects of Twitter on stock price return volatility.
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Table 9 – Parameter estimates of Model III with constant parameters (data ranges from 01-01-2011 until 31-08-
2021).

Parameter estimates per company of ARMA-apARCH-apXGARCH model
AAPL AMZN CVX KO XOM MCD MSFT NFLX NKE CRM TSLA WMT

ARMA parameters
µ 0.164*** 0.236 -0.014 0.024 0.004 0.076** 0.18 0.304*** 0.147 0.151** 0.582 0.068**

(4.1e-02) (1.9e-01) (4.3e-02) (3.1e-02) (5.4e-02) (3.6e-02) (1.9e-01) (1.2e-01) (2.9e-01) (6.8e-02) (1.2e+02) (3.4e-02)
γ1 -0.4*** -0.666** -0.876** -0.596*** -0.707*** -0.711*** -0.958*** -0.839*** -0.689 -0.732*** -1.0 -0.514***

(3.3e-02) (3.9e-01) (3.9e-01) (4.1e-02) (9.5e-02) (1.4e-01) (8.8e-02) (1.4e-01) (7.5e-01) (6.3e-02) (1.7e+02) (5.3e-02)
γ2 -0.003 0.069** -0.094 -0.082***

(1.7e-01) (3.5e-02) (5.3e-01) (3.3e-02)
γ3 -0.065

(2.6e-01)
δ1 0.422*** 0.667*** 0.861*** 0.576*** 0.687*** 0.705*** 0.912*** 0.85*** 0.641*** 0.706*** 1.0 0.458***

(1.2e-05) (1.0e-01) (3.7e-03) (2.3e-03) (1.2e-02) (2.9e-02) (9.6e-02) (2.3e-03) (1.4e-02) (1.1e-02) (2.0e+01) (2.4e-05)
δ2 0.016 -0.049*** -0.057*** -0.004

(2.3e-02) (6.9e-04) (5.7e-05) (6.1e-02)
δ3 -0.038*

(2.4e-02)
apARCH-apXGARCH parameters
ω 0.13*** 0.282*** 0.045*** 0.069*** 0.036*** 0.089*** 0.001*** 0.173*** 0.208*** 0.324*** 0.377*** 0.187***

(1.0e-60) (1.6e-25) (1.0e-60) (1.0e-60) (1.0e-60) (1.0e-60) (4.8e-28) (1.8e-27) (1.0e-60) (3.5e-24) (2.1e-18) (3.5e-28)
β 0.797*** 0.804*** 0.898*** 0.849*** 0.883*** 0.705*** 0.716*** 0.959*** 0.771*** 0.774*** 0.919 0.516***

(2.6e-04) (1.2e-01) (2.8e-03) (3.4e-03) (1.6e-02) (2.9e-02) (7.6e-02) (2.2e-03) (1.5e-02) (1.3e-02) (1.3e+01) (1.4e-04)
α 0.097*** 0.126*** 0.07*** 0.071*** 0.098*** 0.118*** 0.157*** 0.023*** 0.06*** 0.105*** 0.047*** 0.231***

(1.7e-26) (1.0e-60) (1.6e-31) (1.1e-33) (3.9e-26) (5.9e-37) (1.0e-60) (1.0e-60) (1.0e-60) (1.1e-26) (1.0e-60) (2.2e-34)
ψ 0.556*** 0.132 0.363*** 0.34*** 0.154* 0.543*** 0.211** 0.375*** 1.0 0.579*** -0.009 0.052

(9.8e-02) (1.5e-01) (8.7e-02) (1.1e-01) (1.2e-01) (1.2e-01) (1.2e-01) (1.4e-01) (3.1e+00) (9.5e-02) (4.9e+01) (1.2e-01)
πsent,1 0.011 0.0 0.0** 0.0*** 0.311*** 0.0 0.0 0.0 0.0 0.024*** 0.0 0.0***

(2.2e-02) (2.6e-09) (5.9e-11) (8.5e-10) (5.0e-02) (3.2e-09) (1.9e-08) (2.9e-10) (1.6e-04) (1.6e-03) (9.1e-07) (2.7e-11)
πsent,2 0.0

(1.1e-10)
πtweets,1 0.0 0.002*** 0.0 0.0*** 0.015* 0.0*** 0.0 0.0** 0.001 0.0*** 0.005 0.0

(3.3e-05) (1.8e-04) (2.4e-07) (3.1e-11) (1.1e-02) (2.1e-11) (2.0e-10) (1.0e-09) (5.8e-03) (2.9e-11) (2.5e-01) (7.9e-09)
πinteract,1 0.0 0.0 0.0* 0.0 0.0 0.0*** 0.0*** 0.0 0.0 0.015* 0.0 0.0

(1.1e-04) (2.5e-05) (4.4e-07) (2.0e-07) (4.0e-06) (2.2e-11) (1.5e-09) (1.8e-07) (1.7e-09) (9.8e-03) (9.3e-08) (6.1e-06)
λsent,1 0.0 0.0 0.0 0.0 0.0 0.085*** 0.252*** 0.0 0.0 0.0 0.0 0.181***

(1.8e-07) (4.0e-06) (1.2e-05) (9.4e-03) (1.7e-04) (3.5e-03) (1.1e-02) (2.5e-06) (1.3e-05) (3.0e-06) (2.5e-03) (4.3e-03)
λsent,2 0.0

(3.3e-07)
λsent,3 0.0

(4.8e-06)
λtweets,1 0.067*** 0.0 0.0 0.01*** 0.0 0.0 0.069*** 0.0 0.05 0.0 0.0 0.023

(7.6e-03) (4.0e-05) (6.7e-06) (2.0e-03) (2.6e-04) (5.1e-06) (2.4e-02) (4.2e-02) (3.4e-01) (3.4e-06) (1.4e-03) (7.0e-02)
λinteract,1 0.062*** 0.0 0.011** 0.0 0.0 0.0 0.0 0.0 0.087*** 0.0 0.018 0.0

(8.4e-03) (7.4e-05) (5.7e-03) (4.9e-03) (2.6e-04) (3.3e-06) (2.7e-02) (2.9e-06) (8.7e-03) (8.1e-07) (1.1e+02) (1.1e-01)
ψsent,1 0.594 0.816 -0.258 -1.0** 1.0*** 0.054 0.563 0.249 1.0*** -0.259 0.289 -0.187

(4.9e-01) (3.1e+00) (9.2e-01) (5.1e-01) (7.2e-08) (2.1e+01) (1.2e+02) (8.3e-01) (0.0e+00) (3.1e-01) (3.4e+03) (3.1e-01)
ψsent,2 -0.66

(4.2e+00)
ψtweets,1 0.972*** 0.333 -0.971 0.104 0.986*** 0.329*** 0.073 0.497** 0.753 -0.715 1.0*** 0.106

(9.2e-03) (7.6e-01) (3.4e+00) (2.8e-01) (9.5e-02) (1.3e-01) (3.8e-01) (2.9e-01) (1.2e+00) (6.0e-01) (6.8e-07) (5.1e-01)
ψinteract,1 0.732 0.501 0.007 0.075 0.38 0.165 0.266* 0.095 0.282 0.681 0.671 0.174

(1.4e+00) (6.3e+00) (7.6e-01) (1.2e+00) (4.8e+00) (1.9e-01) (1.7e-01) (1.1e+00) (8.9e+00) (1.2e+00) (3.2e+02) (5.0e+00)

Parameter estimates per company of the ARMA-apARCH-apXGARCH model proposed in equation (23). Table
indicates the parameters of the conditional mean equation and the conditional variance equation. Parentheses
display the std. error of the parameter estimates. Asterisks (*, **, ***) denote significance of the parameters at
the 10%, 5% and 1% significance level, respectively. In case the standard error is infinitely small, it is manually set
to 1.0e-60, and the corresponding parameter is denoted significant at the 1% level. Number of lags of each variable
that enters the model is determined by the BIC.
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Before the behaviour of the effect of the Twitter-based exogenous variables on the conditional volatility is
analysed, the first consideration is whether the inclusion of these variables into the mean return process
provides reasonable estimates. From table 7, it is seen that for six companies, the parameter πsent,1 is
significant, which indicates that the lagged value of the Twitter sentiment can explain the mean stock price
return. For Microsoft and Amazon, the second order lag of the sentiment has effect on the conditional mean
of the stock returns. With the exception of Apple, all significant parameter estimates indicate a negative
effect of sentiment on the stock price return. This means that higher sentiment scores explains lower returns
in the subsequent period, and vice versa. The effect of the daily number of tweets and the daily number of
interactions on the conditional return process are significant across more companies. Chevron, Coca-Cola,
Exxon Mobil, McDonalds, NIKE, and Walmart all show significant negative parameter values of πtweets,1.
Interestingly, Microsoft, salesforce and Tesla report significant positive coefficients that describe the effect
of the number of tweets on returns. With the exception of Netflix, salesforce and Tesla, the parameter
estimate πinteract,1 is significantly different from zero at at least the 5% level. For Apple and Microsoft
this effect is negative, which signals that a high number of interactions signals lower stock price returns the
next day, and vice versa.
Comparison of the results of the constant parameter estimates of model I from table 7 with their varying-

parameter counterparts, reported in table 15 in appendix A.1.4, reveals that the parameter estimates for
the Twitter-based sentiment variables are generally equal, both in sign, significance and magnitude.
Combining the significance of the Twitter-based variables on the mean return series with the low magni-

tude of the auto-regressive moving-average parameters in these models, the following can be concluded. For
almost all companies, regardless of the state of the economy, the Twitter-based variables provide reasonable
explanatory power for the mean return series of the companies in this paper.

While it can be concluded that Twitter-based variables can successfully explain the mean return series,
the main question of this paper addresses how these variables affect the conditional volatility of stock price
returns. The parameter estimates of the constant parameter specification of model II and model III are
given in table 8 and table 9, respectively. The varying parameter estimates of these models can be found
in table 16 and table 17 in appendix A.1.4.

From table 8, it can be deduced that only in the case of Apple, the parameters that describe the ef-
fect of the Twitter-based variables are all significantly different from zero. Additionally, ψsent,1 approaches
one, which implies that the effect of positive Twitter sentiment on conditional volatility is negligible. For
Netflix, both the standardised number of tweets and the standardised number of interactions successfully
explain the conditional volatility. Finally, the effect of the standardised number of interactions is significant
at at least the 10% significance level for Amazon, Coca-Cola, Exxon Mobil, and Netflix. Hence, via the
specification of model II, Twitter-based variables successfully explain the volatility of only five companies.
This indicates that in general, this model lags flexibility, or outliers in the time series of the exogenous
variables do not correlate with the stock price return volatility.
Therefore, it is investigated whether the volatility of these exogenous variables significantly effects the

conditional volatility process. Since the conditional volatility σ(x)
t is positive and stationary by definition,

the volatility of the exogenous variables can directly enter the conditional volatility equation of the stock
price returns. These processes serve as a disagreement measure, that capture the degree of variation to
which the exogenous variables vary over time. Recall that based on the time series plots in appendix A.2.1,
it is expected that this specification may be particularly beneficial for Chevron, Exxon Mobil, McDonalds,
salesforce, Tesla, and Walmart.
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The parameter estimates of the model of equation (23) are substantially different than the estimates of
model II. For McDonalds, Microsoft, and Walmart, the estimate of λsent,1 is significantly different from
zero. This implies that the conditional volatility of the Twitter-based sentiment can explain volatility of
stock price returns. Increased variation of Twitter-based sentiment can thus be used to account for increased
conditional volatility for these companies. Moreover, λtweets,1 and λinteract,1 determine the effect of the
conditional volatility of the standardised number of tweets and the standardised number of interactions,
respectively. Table 9 shows that volatility of the daily number of tweets has a significant effect on conditional
volatility in the subsequent period for Apple, Coca-Cola and Microsoft. Similarly, λinteract,1 is significant
for Apple, Chevron, and NIKE. This finding is in contrast with the expected effects of the volatility of the
exogenous based on the plots in appendix A.2.1. Particularly in the case of Apple and Microsoft, the plots
show little indication that these variables have significant effect on the conditional volatility, since these
plots display little variation of the volatility of the exogenous variables.
Additionally, the Twitter-based variables can successfully explain the volatility series for three more

companies. For Amazon, πtweets,1 is significantly different from zero, for Exxon Mobil both πsent,1 and
πtweets,1 are significantly different from zero. Furthermore, notice that ψsent,1 ≈ 1, which indicates that
only negative values of Twitter sentiment significantly effects the conditional volatility of Exxon Mobil. For
salesforce, both πsent,1 and πinteract,1 are significantly different from zero.
In total, for all companies except Netflix and Tesla, it holds that either λk or πk is significantly different

from zero for at least one exogenous variable k. Note this was only that case for five companies by the
constant parameter estimates of model II. Hence, it can be concluded that for the majority of the companies,
the volatility of Twitter-based variables successfully explain the conditional volatility of stock price returns.
Especially for Chevron, Exxon Mobil, McDonalds, Microsoft, NIKE, salesforce, and Walmart, it is argued
that the conditional volatility of the stock price returns is better described by model III than model II.
Additionally, it is considered whether the exogenous variables asymmetrically exert influence on the

conditional volatility of stock price returns. Based on the parameter estimates in table 8 and table 9,
the Twitter-based sentiment is only significant for Apple in model II, and for Exxon Mobil and salesforce
in model III. As aforementioned, for Apple and Exxon Mobil, ψsent,1 is significant, and approaches one,
which implies that only negative values of Twitter sentiment significantly explain the volatility of stock
price returns for these companies. In line with the results of Audrino et al. (2020) it is expected that high
values of the attention variables (i.e., the standardised values of the number of tweets and interactions)
have more effect on the conditional volatility. Recall that for ψk < 0, positive values of exogenous vari-
able k have a larger effect on the conditional volatility than negative values of the same magnitude, and
vice versa for ψk > 0. However, since table 5 and table 6 show that the magnitude of negative values is
very low (due to the skewed distribution), the estimated values of ψk do not necessarily convey any infor-
mation about the asymmetric effects of the attention variables. Only when ψk approaches (minus) one,
these parameters convey information, indicating that (negative) positive values have negligible effect on the
conditional volatility. Although the magnitude of ψk is generally high, it does not approach one in any case.

Following these parameter estimates, the following conclusions can be reached. Via the specification of
equation (20), the Twitter variables generally fail to explain spikes in the conditional volatility series.
Furthermore, the number of tweets is reported to convey the most information, and is reported to be
significantly different from zero for five companies. When the parameter estimates from model III in ta-
ble 9 are considered, it is seen that in generally, the Twitter-based variables significantly explain stock
price return volatility across twice as many companies. This indicates that the volatility of the Twitter-
based variables can provide useful to explain the conditional volatility. Furthermore, when the effect of
Twitter-based sentiment is significant, it is found that negative sentiment is more useful to explain volatility,
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which is consistent with the literature (M. P. Chen et al., 2013; Smales, 2015). Lastly, no higher order lags
are reported to be significant, indicating that Twitter only effects one day ahead stock price return volatility.

Subsequently, the parameter estimates of the varying parameter estimates of these models are consid-
ered. These estimates are tabulated in appendix A.1.4. As aforementioned, it is expected that during
periods where G(·) = 1, the effect of Twitter on the conditional volatility series is larger. Additionally, it
is expected that during these periods, the asymmetric effects are more evident, signalling larger effects of
negative Twitter-based sentiment (Hsu et al., 2021; Smales, 2014).

From table 16 in appendix A.1.4, it is evident that the varying parameters allow for a much more flexible
relationship between Twitter and the conditional volatility. When G(·) = 0, πsent,1 is significantly differ-
ent from zero for Microsoft, salesforce, Tesla, and Walmart. This effect is reduced (to zero) in economic
downturn, albeit π∗sent,1 is not significantly different from zero for all companies. Contrarily, in economic
downturn, the conditional volatility of Apple and NIKE is significantly affected by the Twitter-based senti-
ment towards these companies. The estimates for ψsent,1 and ψ∗sent,1 additionally provide evidence towards
the intuition that negative sentiment has more effect on the conditional volatility, although this does not
hold for Microsoft. Furthermore, during economic downturn, the second order lags of the Twitter-based
sentiment exerts significant influence on the stock price return volatility of Microsoft and Tesla. For Mi-
crosoft, negative values of the second order lag of Twitter-based sentiment has more effect on the conditional
volatility than positive values.
Contrary to the constant parameter estimates of model II, the standardised number of tweets significantly

affects the conditional volatility series of all companies, excluding salesforce. For Apple, Amazon, Chevron,
Exxon Mobil, Netflix, and Walmart, the magnitude of this effect is the largest when G(·) = 0. However, for
Netflix, ψtweet,1 ≈ 1, indicating that the magnitude of both positive and negative (negative values are very
small) effects is negligible. During economic downturn, the effects of the standardised number of tweets
significantly reduces (to zero) for Apple, Chevron, Exxon Mobil, and Netflix. On the contrary, Coca-Cola,
McDonalds, Microsoft, NIKE, and Tesla experience increasing significant effects of the standardised number
of tweets in economic downturn.
Similar to the standardised number of tweets, the standardised number of interactions also exerts influence

on the majority of the companies. For Apple, salesforce, and Tesla, the standardised number of interac-
tions can successfully explain the conditional volatility of stock price returns during economic prosperity,
this effect is reduced in economic downturn. For Chevron, Coca-Cola, and Exxon Mobil, π∗interact,1 > 0

significantly, which implies that the effects of the standardised number of interactions increases in eco-
nomic downturn. Comparable to the constant parameter specification, the standardised number of inter-
actions can significantly explain the conditional volatility of Amazon, Netflix, and salesforce (for salesforce
the parameter estimate was not significant). However, for Amazon ψsent,1 ≈ 1, and for Exxon Mobil
ψinteract,1 + ψ∗interact,1 ≈ 1, which are both significant, which implies that the effects of the standardised
number of interactions on the conditional volatility are negligible.

The parameter estimates form the varying parameter specification of model III are given in table 17 in
appendix A.1.4. Again, the volatility of stock price returns of McDonalds, Microsoft, and Walmart can be
significantly explained by the volatility of the Twitter-based sentiment. For McDonalds and Walmart this
holds when G(·) = 0, and for Walmart, the effect significantly reduces to zero in economic downturn. For
Microsoft, λsent,1 is only significantly different from zero when G(·) = 1. This implies that the effect of the
volatility of Twitter sentiment is dependent on the VIX and the TED rate.
Similarly, the volatility of the number of tweets significantly exerts influence on the conditional volatility
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of Apple, Coca-Cola, and Walmart when G(·) = 1, and on Microsoft, NIKE, and Walmart when G(·) = 1.
Whereas this effect was only significant for Apple, Coca-Cola and Microsoft in the constant parameter case.
When the parameters vary through time via the function from equation (34), λ∗interact,1 is significant for
six companies. This indicates that under G(·) = 1, this variable explains the volatility series of three more
companies (Coca-Cola, Microsoft, and Walmart) than under the constant parameter case. Regardless of
the state of the economy, this variable successfully explains the conditional volatility of NIKE.
Compared to the constant parameter case, the parameter estimates πsent,1, πtweets,1 and πinteract,1 are

significant for more companies. During economic downturn, Twitter-based sentiment significantly explains
the conditional volatility process of Apple, Chevron, Microsoft, Netflix, NIKE, and salesforce. Similar to
the constant parameter case, πsent,1 is significant for Exxon Mobil and salesforce. Additionally, negative
sentiment has a larger effect on the volatility series than positive sentiment, and consistent with Smales
(2014), these asymmetric effects increase during economic downturn for Coca-Cola and NIKE.
The standardised number of tweets exerts significant effects on the volatility in at least one state of the

economy for eight companies, compared to the mere two times when the parameters are assumed to be
constant. During economic prosperity, the parameter estimate of πtweets,1 is significantly different from zero
only for Apple, Amazon, and Cehvron. Yet, under G(·) = 1, the standardised number of tweets successfully
explains the conditional volatility of Coca-Cola, Microsoft, Netflix, NIKE, and Walmart. For Coca-Cola en
Exxon Mobil, the parameter estimate π∗interact,1 is significantly different from zero as well, which indicates
that in periods of economic downturn, the standardised number of interactions significantly influences the
conditional volatility.

In line with the proposed assumptions, allowing for varying parameters provides a more flexible mod-
eling structure, and the significant effect of Twitter-based variables on stock price returns volatility is
perceived more often. Compared to the constant parameter estimates of model II, Twitter-based variables
significantly explain the conditional volatility of seven more companies. These companies are Chevron,
McDonalds, Microsoft, NIKE, salesforce, Tesla, and Walmart. Across all companies, it is found that the
significant effects of Twitter-based variables on conditional volatility mostly occur during economic down-
turn, which is consistent with Hsu et al. (2021). However, for model II, the Twitter-based sentiment and
the standardised number of interactions are significant more often for G(·) = 0. Under G(·) = 1, the
standardised number of interactions is significant more often. In the case of Apple, Twitter-based variables
explain the volatility of the stock price returns better in economic prosperity, which contrast the intuition.
Unlike the constant parameter case, the varying parameter version of model III does not provide sub-

stantial benefits over the varying parameter version of model II. Especially during economic prosperity,
the effect of the Twitter variables on the volatility process are found to be significant across less compa-
nies. Although the varying parameter specification provides a more flexible structure, and this increases
how often Twitter variables can successfully explain the volatility process, this model does not incorporate
Twitter-based variables more successfully than the varying parameter version of model II. More specifically,
based on the parameter estimates, it is argued that only for Coca-Cola, McDonalds, Microsoft, NIKE, and
Walmart, the varying parameter specification of model III provides the best model to include exogenous
variables. Based on the plots of appendix A.2.1, this is in contrast with the expectation, especially in the
case of Microsoft and NIKE.
Across both varying parameter models, negative sentiment has a larger effect on the conditional volatility

than positive sentiment, which supports the expectation. Additionally, in contrast to the findings by
Audrino et al. (2020) and Rakowski et al. (2021), based on the parameter estimates, there is no apparent
relationship between the distribution of stock ownership and the effects of Twitter-based sentiment.
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6.2 Model comparison

In order to determine which conditional volatility model specification incorporates the exogenous Twitter-
based variables via the best methodology, several tests were proposed in section 4.5. These test are
conducted to determine the best-practice approach when incorporating Twitter-based variables into the
conditional volatility equation of stock price returns. Moreover, it is investigated whether allowing for a
varying parameter specification based on the state-of-the-economy can significantly benefit the in-sample
fit of the proposed volatility models. Finally, the in-sample fit of these models is evaluated using a rank-
ing algorithm based on the MSE and QLIKE loss scores, which are computed using a volatility proxy σ̂2

t,prox.

To provide some intuition for the behaviour of the conditional volatility processes, figure 2 shows the
conditional volatility of the proposed models for Apple, Amazon, Chevron and Coca-Cola. Figure 6 and
figure 7 in appendix A.2.2 show the plots of the conditional volatility processes for the remaining compa-
nies in this research. These plots show for each company the conditional volatility process of each model,
the varying-parameter counterpart and the benchmark volatility process specified by the parameters from
table 14 in appendix A.1.3. Recall that the squared residuals ε2

t of the mean returns series are used as a
proxy for the conditional variance σ̂2

t,prox.

As described in section 4.5, it is mainly considered how well the conditional volatility processes described
σ̃t captures the spikes in the volatility, since failure to capture these high values of volatility can induce
excessive risk taking. From the plots, there is no readily derived model that significantly captures the
conditional volatility better for all companies. Recall from table 3 that the standard deviation of the stock
price returns series for Netflix and Tesla was much higher compared to the other companies. This obser-
vation indicates high levels of volatility throughout the series, this is confirmed by the plots. Yet, the high
standard deviation of Netflix is caused by a few outliers, whereas the volatility of Tesla is generally high
and has a lot of spikes throughout the entire sample.
Consistent with the parameter estimates, the plots show that the ability of a model to capture volatility

spikes is company specific. The time-series plots show favorability for the constant parameter specifica-
tion for Amazon, Coca-Cola (to lesser extent), and Microsoft, since it can be observed that the constant
parameter version are better to capture volatility spikes. This contradicts the results from the parameter
estimates, which show that in the varying parameter setting, there are more Twitter-based variables that
successfully explain the conditional volatility series for these companies.
Additionally, consistent with the parameter estimates, the plots reveal that indeed for Coca-Cola and

Walmart, model III seems to provide a better fit than model II. This evidence is less convincing for
McDonalds, Microsoft, and NIKE. Subsequently, consider the plots from appendix A.2.1, which display
the volatility of the exogenous variables. From these plots and figure 1, it can be seen that for Coca-Cola,
the spikes in the volatility of the attention variables in 2015 and 2019 can be used to explain the volatility
of Coca-Cola during economic downturn. Similarly, it can be concluded that spikes in the volatility of
the attention variables of Walmart occur when G(·) = 1, and are therefore useful to explain increased
conditional volatility. These relationships are less evident for the other variables.
For the other companies, the plots show that model II provides the best fit. In general, the varying

parameter models seem to better capture volatility clustering and model volatility spikes. However, by
simultaneously considering figure 1, it can be deduced that periods of increased volatility of the stock price
returns do not necessarily correlate with the VIX and the TED rate. This only holds for the period around
the outbreak of COVID-19, and for the volatility of Chevron, Exxon Mobil, McDonalds, salesforce, and
Walmart (to lesser extent). This implies that the period where the structural breaks occur based on the
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function G(·) is inconsistent with volatility clusters.

Figure 2 – Conditional volatility between 01-01-2011 and 31-08-2021 of U.S. companies stock price returns.

Time series plot of the conditional volatility for Apple, Amazon, Chevron and Coca-Cola (top to bottom plots)
between 01-01-2011 and 31-08-2021. Squared ARMA residuals serves as a proxy for the conditional variance process
(square root of proxy is denoted in dark blue). From left to right, plots show time series plots of the condi-
tional volatility using the ARMAX-apARCH model, the ARMA-apARCH-apX model, and the ARMA-apARCH-
apXGARCH model, for both the constant and time-varying parameter specification. In yellow, the conditional
volatility of the benchmark model is plotted.
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6.2.1 Quasi Likelihood Ratio test

The previous subsections discussed the time series plots of the conditional volatility process and the pa-
rameter estimates for the models that include Twitter-based variables via the specifications in section 4.1.
To test whether the inclusion of Twitter-based exogenous variables significantly increases the quasi log-
likelihood, the Quasi Likelihood Ratio test, given by equation (36) is performed. Later, the results from
this test are compared with the minimal value of the BIC, to see whether the selected model is consistent
based on these evaluation metrics. Table 10 shows for each company included in this paper the quasi
log-likelihood LT under the parameters that minimize equation (28), and the BIC based on this value LT .
Moreover, the QLR statistics ΛiQLR under various null hypotheses i are given.
Recall that for large values of the test statistic ΛiQLR the null is rejected, indicating that the unrestricted

model significantly increases the quasi log-likelihood compared to the restricted model. The QLR test
statistics are iteratively considered for i = 1, 2, 3 to determine which model provides the best fit.

For i = 1, the null hypothesis states that the parameters which include the Twitter-based exogenous
variables are zero. This is equivalent to testing whether the quasi log-likelihood LT of any model that
includes exogenous variables is significantly larger than the quasi log-likelihood from the benchmark model.
Using equation (36), the quasi log-likelihood of the benchmark model is compared against the quasi log-
likelihood of the proposed models, where the degrees of freedom correspond to the number of elements that
is assumed zero under the null.
Table 10 shows that Λ1

QLR is significant at at least the 10% level for the constant parameter models
of Apple, Amazon, Chevron, and NIKE. This indicates that for these companies, the null is successfully
rejected at the 10% significance level, which indicates that the inclusion of exogenous variables significantly
increases the quasi log-likelihood for all models. For McDonalds, Netflix, and salesforce, under the condi-
tional volatility specification from equation (23), the null hypothesis is significantly rejected. Moreover, for
Microsoft, Netflix, salesforce, and Tesla, the conditional volatility under equation (20) significantly increases
the quasi log-likelihood. Additionally, the null is rejected for all companies, except Tesla, which proves that
the varying parameter models perform significantly better than the benchmark model. Still, this does not
imply that the inclusion of the exogenous covariates in a varying parameter setting significantly increases
the quasi log-likelihood.

Subsequently, it is tested whether the models that allow for varying parameters outperform the models
that assume constant parameters. To this extent, the test statistic Λ2

QLR is computed. This test statistic
is calculated via equation (36) under the null hypothesis that all elements in θ∗ are equal to zero. That is,
it is tested whether allowing for varying parameters in the conditional volatility equation can significantly
increase the quasi log-likelihood compared to the constant parameter counterparts. The null is rejected
at at least the 10% significance level for all models, except for Tesla. This implies that accommodating
for varying parameters in the conditional volatility equation significantly improves the models that assume
constant parameters. This is consistent with the parameter estimates from table 7, table 8, and table 9
and the tables with the estimated varying parameters in appendix A.1.4. It was established that under
the specification of section 4.4, the number of significant parameter estimates that include the exogenous
variables increased substantially.

Finally, the test statistic Λ3
QLR compares both the constant and varying parameter specifications of model

II against model III. This is equivalent to testing H0: λk,i = 0 and λ∗k,i = 0 for all i ∈ {1, . . . , Sk},
k ∈ {1, . . . nK1

}.
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This test is conducted to infer whether the conditional volatility under equation (23) significantly im-
proves the fit compared to the volatility under equation (20). From table 10, it is deduced that for
Coca-Cola, McDonalds, NIKE, and Walmart, the null is rejected at at least the 10% level, both for the
constant as well for the varying parameter specification. This finding is consistent with the aforementioned
conclusion regarding the parameter estimates.

Table 10 – Quasi maximum likelihood, BIC and LR statistics of the conditional volatility processes (Table continues
on next page).

Constant parameter poop Varying parameter specification
Benchmark Model I Model II Model III Model I Model II Model III

AAPL
LT -5.253e+03 -5.241e+03 -5.226e+03 -5.231e+03 -5.237e+03 -5.204e+03 -5.212e+03
BIC 2.819e+07 2.812e+07 2.804e+07 2.807e+07 2.810e+07 2.792e+07 2.797e+07
Λ1
QLR 24.134*** 54.314*** 44.33*** 32.757*** 98.84*** 81.591***

Λ2
QLR 8.624* 44.527*** 37.26***

Λ3
QLR -9.983 -17.25

AMZN
LT -6.020e+03 -6.011e+03 -5.985e+03 -6.000e+03 -5.977e+03 -5.921e+03 -5.961e+03
BIC 3.232e+07 3.227e+07 3.213e+07 3.221e+07 3.208e+07 3.179e+07 3.200e+07
Λ1
QLR 17.267*** 70.866*** 40.083*** 86.362*** 197.604*** 117.82***

Λ2
QLR 69.095*** 126.738*** 77.737***

Λ3
QLR -30.782 -79.784

CVX
LT -4.331e+03 -4.323e+03 -4.323e+03 -4.319e+03 -4.310e+03 -4.285e+03 -4.288e+03
BIC 2.324e+07 2.320e+07 2.320e+07 2.318e+07 2.313e+07 2.299e+07 2.301e+07
Λ1
QLR 16.798*** 15.475** 24.057*** 42.933*** 91.889*** 85.701***

Λ2
QLR 26.136*** 76.414*** 61.644***

Λ3
QLR 8.582** -6.188

KO
LT -2.583e+03 -2.581e+03 -2.581e+03 -2.578e+03 -2.542e+03 -2.512e+03 -2.492e+03
BIC 1.386e+07 1.385e+07 1.385e+07 1.383e+07 1.364e+07 1.348e+07 1.337e+07
Λ1
QLR 3.798 3.454 9.876 81.72*** 141.107*** 181.632***

Λ2
QLR 77.922*** 137.653*** 171.755***

Λ3
QLR 6.423* 40.525***

XOM
LT -3.875e+03 -3.948e+03 -3.870e+03 -3.869e+03 -3.865e+03 -3.851e+03 -3.859e+03
BIC 2.080e+07 2.118e+07 2.077e+07 2.076e+07 2.074e+07 2.066e+07 2.071e+07
Λ1
QLR -144.35 10.028 11.932 20.92*** 48.902*** 33.511*

Λ2
QLR 165.27*** 38.873*** 21.579*

Λ3
QLR 1.904 -15.391

MCD
LT -2.719e+03 -2.721e+03 -2.719e+03 -2.712e+03 -2.663e+03 -2.662e+03 -2.654e+03
BIC 1.459e+07 1.460e+07 1.459e+07 1.455e+07 1.429e+07 1.428e+07 1.424e+07
Λ1
QLR -3.785 1.036 14.978* 111.725*** 114.555*** 130.132***

Λ2
QLR 115.51*** 113.519*** 115.154***

Λ3
QLR 13.942*** 15.577**

MSFT
LT -4.644e+03 -4.619e+03 -4.630e+03 -4.642e+03 -4.596e+03 -4.568e+03 -4.583e+03
BIC 2.492e+07 2.478e+07 2.484e+07 2.491e+07 2.466e+07 2.451e+07 2.459e+07
Λ1
QLR 51.806*** 29.2*** 4.853 97.077*** 153.678*** 123.551***

Λ2
QLR 45.271*** 124.478*** 118.698***

Λ3
QLR -24.347 -30.127
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Constant parameter poop Varying parameter specification
Benchmark Model I Model II Model III Model I Model II Model III

NFLX
LT -8.629e+03 -8.987e+03 -8.509e+03 -8.617e+03 -8.489e+03 -8.441e+03 -8.435e+03
BIC 4.630e+07 4.822e+07 4.566e+07 4.624e+07 4.555e+07 4.529e+07 4.526e+07
Λ1
QLR -715.915 239.766*** 23.447*** 281.118*** 376.452*** 388.075***

Λ2
QLR 997.033*** 136.686*** 364.628***

Λ3
QLR -216.319 11.623*

NKE
LT -4.918e+03 -4.912e+03 -4.912e+03 -4.878e+03 -4.881e+03 -4.832e+03 -4.797e+03
BIC 2.639e+07 2.636e+07 2.636e+07 2.617e+07 2.619e+07 2.593e+07 2.574e+07
Λ1
QLR 10.991** 11.43* 79.932*** 73.427*** 171.843*** 242.463***

Λ2
QLR 62.437*** 160.413*** 162.531***

Λ3
QLR 68.502*** 70.62***

CRM
LT -6.407e+03 -6.479e+03 -6.279e+03 -6.394e+03 -6.432e+03 -6.231e+03 -6.303e+03
BIC 3.438e+07 3.477e+07 3.369e+07 3.431e+07 3.452e+07 3.344e+07 3.382e+07
Λ1
QLR -144.992 255.18*** 24.869*** -51.087 350.614*** 208.212***

Λ2
QLR 93.905*** 95.434*** 183.343***

Λ3
QLR -230.311 -142.402

TSLA
LT -9.031e+03 -9.044e+03 -9.011e+03 -9.030e+03 -9.029e+03 -9.014e+03 -9.018e+03
BIC 4.848e+07 4.855e+07 4.837e+07 4.847e+07 4.847e+07 4.839e+07 4.841e+07
Λ1
QLR -26.61 38.668*** 1.161 2.758 32.998** 25.575

Λ2
QLR 29.368*** -5.67 24.414**

Λ3
QLR -37.507 -7.423

WMT
LT -3.266e+03 -3.261e+03 -3.299e+03 -3.263e+03 -3.144e+03 -3.210e+03 -3.126e+03
BIC 1.753e+07 1.751e+07 1.771e+07 1.751e+07 1.688e+07 1.723e+07 1.678e+07
Λ1
QLR 9.048** -67.352 6.158 243.912*** 111.464*** 278.604***

Λ2
QLR 234.864*** 178.816*** 272.447***

Λ3
QLR 73.51*** 167.14***

Table presents for each company the maximized Quasi Log Likelihood and the BIC.
1: Λ1

QLR is the test statistic under the null that the inclusion of exogenous variables does not improve the model.
2: Λ2

QLR is the test statistic under the null hypothesis that the varying elements are equal to zero, i.e., H0: θ∗ = 000m2

where m2 denotes the number of elements in θ∗.
3: Λ3

QLR is the test statistic under the null that the disagreement measures σ(x)
t have no effect on the conditional

volatility.
Asterisks (*, **, ***) denote significance of the QLR statistic at the 10%, 5% and 1% significance level, respectively,
calculated using the χ2 distribution.

By simultaneously considering the test statistics in table 10, the following can be concluded. For Coca-
Cola, McDonalds, NIKE, and Walmart, the varying-parameter specification of model III is considered
the most useful to explain conditional volatility using Twitter-based variables. For Tesla, the volatility
specified by the ARMA-apARCH-apX model from equation (20) provides the highest quasi log-likelihood.
For all the other companies, the model that yields the best likelihood that is significantly higher than any
other specification is the varying-parameter specification of model II. These findings are consistent with
the BIC reported in the table. Recall that the BIC provides a weigh-off between model complexity and
the likelihood. This supports the finding that the Quasi Likelihood Ratio tests correctly identified the best
model for each company
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6.2.2 Evaluation of the in-sample fit

Lastly, the in-sample fit of the volatility models are compared via the method described in section 4.5.3.
Due to the fact that the conditional volatility is an unobservable process, the estimated processes are com-
pared to a volatility proxy. As aforementioned, since this proxy is not the ’true’ volatility, evaluation via the
loss functions provides a qualitative assessment of the in-sample fit, rather than a quantitative assessment.
This implies that no remarks are made on the relative size of the errors computed by the loss functions.

Recall from section 4.5.3 that Patton (2011) identified two robust evaluation metrics, in the sense that the
ranking of multiple models by these loss functions is consistent regardless of the volatility proxy σ̂2

t,prox = ε̃2
t .

As aforementioned, the MSE is a symmetric function, that equally values negative and positive losses of
the same magnitude, and the QLIKE is asymmetric and ’punishes’ positive losses less severe than negative
losses of the same magnitude.
From the conditional volatility plots in figure 2, and figure 6 and figure 7 in appendix A.2.2 it can be

seen that across all companies, the level of the conditional volatility tends to be much higher than the level
of the volatility proxy, which causes positive errors. During periods with increased levels of volatility, the
conditional volatility is generally lower than the proxy, which causes negative loss. The errors, computed
by the MSE and the QLIKE loss functions are tabulated in table 11. The numbers in bold denote the
lowest error, and indicate which model provides the best in-sample fit for each company.

Table 11 – In-sample loss scores for different models. Data ranges from 01-01-2011 until 31-08-2021

Loss scores of different models against volatility proxy
AAPL AMZN CVX KO XOM MCD MSFT NFLX NKE CRM TSLA WMT
Mean Squared Error

Benchmark 81.84 131.85 263.78 15.19 55.42 67.76 64.07 2845.12 96.34 252.99 1068.29 35.54
Model I 81.64 132.05 263.50 15.17 55.37 67.01 64.30 3033.83 96.28 259.57 1070.36 35.52
Model II 82.96 130.56 263.53 15.16 55.44 67.79 64.07 2808.60 96.44 259.77 1068.91 35.91
Model III 82.17 131.84 263.06 15.15 55.43 68.20 64.20 2827.21 96.54 305.28 1067.78 35.49
vp Model I 81.54 131.54 265.16 14.78 55.41 72.80 63.86 2967.69 95.49 255.04 1073.75 35.84
vp Model II 82.51 130.28 267.85 18.16 55.36 72.29 63.87 2839.85 95.90 260.91 1061.35 34.86
vp Model III 81.33 131.26 264.44 15.07 55.28 72.84 64.34 2942.07 95.68 522.80 1073.76 35.40

QLIKE loss
Benchmark 1.958 2.243 1.614 0.963 1.444 1.014 1.731 3.216 1.833 2.388 3.365 1.217
Model I 1.955 2.240 1.614 0.962 1.473 1.015 1.727 3.232 1.833 2.413 3.367 1.217
Model II 1.948 2.230 1.612 0.962 1.443 1.013 1.726 3.192 1.831 2.343 3.357 1.231
Model III 1.950 2.236 1.611 0.961 1.442 1.011 1.730 3.226 1.818 2.385 3.364 1.216
vp Model I 1.954 2.228 1.598 0.948 1.443 0.993 1.719 3.156 1.822 2.393 3.360 1.174
vp Model II 1.939 2.206 1.598 0.936 1.435 0.992 1.703 3.177 1.802 2.325 3.354 1.199
vp Model III 1.943 2.221 1.599 0.929 1.438 0.989 1.708 3.141 1.788 2.350 3.360 1.166

Errors computed by the MSE and QLIKE loss functions for all models per company. Loss scores are calculated
using a variance proxy σ̂2

t,prox to compare with the estimated volatility by the models. Volatility proxy is the square
root of the squared residuals from the benchmark model. Bold cases denote the best score per company for the
MSE and QLIKE errors.

Since the QLIKE loss function is asymmetric, the ability of a conditional volatility model to correctly
model volatility spikes is more important than the ability to model low values of volatility. While models
that are unable to properly account for high values of volatility can indulge excessive risk taking by the
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user, the risks for overestimating the actual volatility bears less severe risks. The QLIKE ’punishes’ the
losses accordingly and values the ability to capture spikes in the volatility more. Hence, the error computed
by the QLIKE loss function serves as the most important loss function.

From the values of the MSE, it is clear that no model unanimously performs better than any other model
across the selected companies. Nonetheless, it must be noted that the errors for the models that allow for
varying parameters are generally smaller than the errors of the constant parameter models. This is consis-
tent with the conclusions from the Quasi Likelihood Ratio test, and supported by the time series plots of
the conditional volatility. By inspecting the conditional volatility plots, there is no apparent reason why
the MSE is lower for the constant parameter specification of McDonalds, Neftflix, NIKE and salesforce.
Subsequently, the errors computed by the Quasi Likelihood loss functions are the smallest for the models

that allow for varying parameters. As aforementioned, this loss functions punishes negative errors more
severe than positive errors, which is beneficial when testing the in-sample fit of volatility models since
underestimating the conditional volatility can lead to excessive risk taking, and overestimating the volatility
will merely decrease risk appetite. From the table, it can be deduced that across all companies the models
that allow for varying parameters are ranked better than the models that assume constant parameters.
It is remarkable that the ranking algorithm using the QLIKE loss function prefers the same models for

almost all companies as the QLR test statistic. Only for Netflix and Tesla the ranking is different, which
could be due to the fact that these companies may experience more stock price return volatility than the
other companies in the sample, which is supported by the descriptive statistics in table 3.

Hence, by evaluating the in-sample fit of the models using the QLIKE and MSE error, it can be con-
cluded that the results are consistent with the parameter estimates and the results of the Quasi Likelihood
Ratio test. From these results, it can be concluded that in general, models that allow for varying parameters
in the volatility equation provide a better fit than their constant parameter counterparts. Additionally, in
line with the literature, Twitter-variables successfully explain the conditional volatility better in times of
economic downturn. From the parameter estimates, it is concluded that, consistent with Smales (2014),
negative Twitter-sentiment has a larger effect on the volatility series, and this asymmetry increases during
economic downturn. In contrast with previous findings, the significant effects of the Twitter-based senti-
ment and the number of interactions decreases under economic distress, whereas the significant effects of
the standardised number of tweets increases when the VIX and TED rate are high.
Moreover, it can be concluded that for customer intensive15 companies, the volatility of the Twitter-

based variables exerts significant effects on the volatility. This holds for Coca-Cola, McDonalds, NIKE,
and Walmart. For the other companies, (the varying parameter specification of) model II is proven to
provide the best in-sample fit, and significantly improves the fit that does not include exogenous variables.
Lastly, in contrast to the findings of Audrino et al. (2020) and Rakowski et al. (2021), there is no evidence

that Twitter-based sentiment affects companies with a large portion of retail investors more than companies
with little percentage of retail investors.

15This entails companies that belong to the S&P 500 Consumer Discretionary Index or the S&P500 Consumer Staples
Index.
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7 Summary

This chapter discusses the methodologies used throughout this study, the main findings are discussed, and
their implications are explained in more detail. This research aims to determine how Twitter activity can be
leveraged to explain stock price volatility. Additionally, it is investigated how long these effects of Twitter
persist, and whether these effects are different during different states-of-the-economy. Since it is argued
that these stock price fluctuations are mostly attributed to the behaviour of retail investors, this paper
specifically considers the effect of non-financial tweets.

To this extent, this paper uses the Twitter API to retrieve tweets of 12 major U.S. companies. The
content of these tweets is specifically selected to address non-financial issues, such as bad working condi-
tions and environmental concerns. Moreover, this study specifically considers the hazards of spam tweets,
and aims to limit the amount of spam tweets by filtering out words that do not display emotions towards
the selected companies. In contrast to previous research (Fan et al., 2020; Ramco et al., 2015), this research
develops a method to aggregate multiple tweets within a certain period. This method is based on the ar-
ticle by Perdana and Pinandito (2018), who employ Twitter-specific public metrics to derive a non-textual
importance for each tweet. This research argues that the number of retweets, quotes, likes, and replies of a
tweet imply the relative influence a tweet generates. To this extent, the method of Perdana and Pinandito
(2018) is modified to assign each tweet within an interval a non-textual weight. This weight is subsequently
used to derive a weighted average sentiment score, based on multiple tweets send between an interval. This
approach simultaneously deals with tweets that are not credible and not worthwhile considering, since these
tweets are assigned a lower weight when they do not generate any interactions. Hence, this method also
deals with filtering out spam tweets, without the consideration of extra data.
To determine the sentiment that the selected tweets display, the sentiment polarity of the tweets is

calculated. Unlike previous research, this paper performs a study to determine an appropriate sentiment
classification method. Since the performance of sentiment classification methods is very context dependent,
this research tests several methods on a subsample of the retrieved Twitter data. To construct this test
dataset, a panel of eight peer students manually annotated 2200 tweets. The construction of a ground-
truth test dataset, with context specific tweets, allows to test multiple classification methods. From the
performance of the methods on this manually annotated subsample, it can be inferred how well each method
is likely to perform on the entire Twitter dataset.
This study aims to employ either the VADER lexicon based approach, constructed by Hutto and Gilbert

(2015), or the Naive Bayes machine learning approach. The NB performs generally well on classification
assignments (Go et al., 2009), and is trained on a training set constructed using multiple publicly available
datasets. Besides the VADER lexicon-based approach, this thesis proposes to extend this lexicon by adding
domain specific words to this lexicon. It is proposed that adding domain specific words (e.g., climate change,
wage gap) increases the classification accuracy of the VADER lexicon on the retrieved tweets. As proposed
by Yang (1999), the Macro F1 score and the accuracy of these sentiment classification methods are computed
to evaluate the performance of these methods on the manually annotated test set. It is concluded that the
adjusted VADER makes the most precise classifications, although a substantial fraction of tweets in the
test set is still missclassified. However, this extensive study does provide insights in how readily available
classification methods generally perform.
Moreover, this study also accounts for possible effects of the number of tweets send per day, and the

number of interactions per day, in line with the suggestions by Audrino et al. (2020).

Subsequently, the appropriate modeling technique is chosen that allows for the inclusion of these vari-
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ables. In financial time series, it is common that volatility tends to cluster and depends on past levels of
the volatility. These characteristics are captured by the GARCH model developed by Bollerslev (1986).
Over the years, multiple alternatives to these types of models have been proposed, of which several allow
for the inclusion of exogenous variables. Since it is argued that the mean stock price return does not nec-
essarily follow a pure GARCH model (Franq & Zakoian, 2004), an auto-regressive moving-average model
describes the mean return series, where the innovations follow an apARCH model. This model, developed
by Ding et al. (1993), provides an extension of the GARCH model that takes into account the leverage
effect observed by Black (1976). This effect describes the tendency that negative shocks have larger effects
on the volatility than positive shocks.
Using the apARCH model as a benchmark, this paper introduces three main extensions, that allow for

Twitter-variables to explain the volatility process. Ultimately, it is explored whether accounting for Twitter
variables can improve the in-sample fit compared to the benchmark case. Unlike other papers, this thesis
focuses on the in-sample fit, and no inferences are made about the forecasting power of the suggested
models. However, this research does provide meaningful suggestion to include Twitter to explain volatility
better, which could be easily extended to make Out-of-Sample forecasts.
The proposed models in this research introduce the Twitter-based variables via different methodologies.

In the first place, the Twitter-based variables enter the mean return equation. Next, two models are intro-
duced were the Twitter-based variables enter the conditional volatility equation. Similarly to the leverage
effect, these variables enter the models asymmetrically, to infer whether negative sentiment has a different
effect on the volatility process than positive sentiment. Lastly, the third model additionally includes the
conditional volatility of these exogenous variables as extra explanatory variable in the conditional volatility
equation of the stock price returns. These measures serve as disagreement measures and describe how much
the Twitter-based variables vary over time.

Additionally, a robustness check is proposed to determine whether the effects of Twitter are different
through different states of the economy, which is supported by Hsu et al. (2021). To this extent, a smooth
transition function is introduced, inspired by the function by Amado and Teräsvirta (2008), that assumes
value zero or one, based on the state of the economy. To model the state of the economy, this thesis uses the
VIX and the TED rate. For high values of these variables, the smooth transition function takes value one,
and zero elsewhere. Hence, it can be investigated whether Twitter variables can better explain conditional
volatility when their effects are dependent on the state of the economy.
Finally, the volatility processes are estimated using the Quasi Maximum Likelihood Estimator. Franq

and Thieu (2019) and Franq and Zakoian (2004) provide the required assumptions that are necessary for
consistent estimation of the ’true’ model parameters. The in-sample comparison of the different models is
done by means of the Quasi Likelihood Ratio tests, and the in-sample fit is evaluated using the QLIKE
and MSE loss functions.

In this research, it is found that the Twitter-based variables can significantly improve traditional mod-
els. Based on the Bayes Information Criterion, it is deduced that in general, Twitter-based variables only
effect the one-day ahead stock price return volatility, which is consistent with Audrino et al. (2020). Based
on the significance of the parameter estimates, the results from the QLR tests, and the evaluation of the
in-sample fit, it is shown that Twitter variables successfully help to explain the volatility series. Consistent
with the findings of Audrino et al. (2020), it is found that Twitter-based sentiment asymmetrically affects
the conditional volatility process. More specifically, it is found that negative sentiment has more effect
on the conditional volatility than positive sentiment. The magnitude of this asymmetry increases during
economic downturn. Additionally, by using the varying parameter specification, it is found that during
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economic downturn, the effects of Twitter on conditional volatility are more significant, which is consistent
with Hsu et al. (2021). Hence, accounting for varying parameters and asymmetric effects of the Twitter
variables can significantly improve the in-sample fit of conditional volatility models.
In the varying parameter setting, inclusion of the volatility of the exogenous variables is shown to result

in better volatility models for a limited number of companies. This only holds for companies that are
very customer intensive. However, in general it might provide valuable to include a certain disagreement
measure, similar to Fan et al. (2020). In the constant parameter setting, the volatility is better explained
by models that include both the Twitter variables as well as the volatility of these variables.
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8 Conclusions and recommendations

This study considers the effect on non-financial Twitter activity on stock price return volatility. It is ex-
plored how Twitter sentiment, and Twitter-based attention measures influence stock price returns volatility.
This study explores multiple approaches to meaningful derive the methods via which Twitter affects the
volatility of stock price returns. The Twitter data consists of non-financial related tweets covering 12 major
U.S. companies between 01-01-2011 and 31-08-2021. During this period, social media is gradually adopted
in our daily lives, moreover, this period covers multiple recessions. Additionally, this research considers
multiple sentiment classification methods and introduces a parsimonious method to derive a daily weighted
average Twitter sentiment score.

To account for the effects of Twitter, this research carefully considers multiple sentiment classification
methods. In line with previous research (Ribeiro et al., 2016), it is found that the classification methods
are very domain sensitive, and generally fail to succesfully classify a large part of the retrieved tweets.
To overcome this obstacle, this research aims to improve the VADER sentiment lexicon, by taking into
account the specific domain of the retrieved tweets. However, the classification is still relatively poor.
Hence, it is concluded that readily available sentiment lexicons do not perform very well in classifying
very domain specific data. This implies that careful consideration must be paid to the classification of the
tweets. This could also imply that the role of the public sentiment, calculated using non-financial tweets,
is underestimated in this research. Therefore, it is suggested that in future research, more resources must
be consulted to construct an appropriate training dataset, as machine-learning models generally perform
better in classifying sentiment (Hartmann et al., 2019). If this is impossible, the researchers should consider
tuning readily available lexicons to the domain on a larger scale, using methods similar to those proposed
in this research.
Moreover, this paper presents a parsimonious method to distinguish important and non-important tweets,

based on public metrics associated with each tweet. Unlike other research, this approach does not require
additional information other than the information already stored with each tweet. This method offers a
substantial improvement compared to earlier research, where the sentiment scores of tweets were simply
averaged to derive the daily sentiment score.
However, it is not tested whether this weighted average method actually succeeds to derive a superior

proxy for the sentiment score, which in turn has more significant effect on the conditional volatility. Future
research could investigate whether there are observable differences using this aggregation algorithm, in
contrast to simple averaging of polarity scores.

After these variables are extensively reviewed, it is tested whether Twitter-based variables can successfully
explain the volatility of stock price returns. In conclusion, it is found that under specific circumstances,
Twitter exerts significant influence on stock price return volatility. This is shown by multiple quasi log-
likelihood tests, as well as by the error computed by multiple loss functions, which are calculated on the
in-sample fit of the conditional volatility models. Consistent with the findings of Audrino et al. (2020)
and Smales (2015), it is found that negative Twitter based sentiment has a larger effect on the conditional
volatility than positive Twitter based sentiment. Additionally, as proposed by Audrino et al. (2020), this
study explores whether the effects of Twitter are different over time. To this extent, parameters are allowed
to vary as a function of macroeconomic and market-based indicators. This function is inspired by Amado
and Teräsvirta (2008). The existence of varying parameters are confirmed, and in line with Hsu et al.
(2021), it is concluded that under worsening economic conditions, Twitter-based variables have a larger ef-
fect on the conditional volatility. In contrast to Audrino et al. (2020) and Rakowski et al. (2021), there is no
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evidence that Twitter-based variables particularly affect stocks that are primarily traded by retail investors.
When the volatility of the Twitter-based variables enter the conditional volatility equations, inspired by
Fan et al. (2020), it is concluded that in the constant parameter setting, the significance of these exogenous
variables substantially increases across all companies included in this research. In the varying parameter
setting, only for Coca-Cola, McDonalds, NIKE, and Walmart, the volatility of the Twitter-based variables
show significant effect on the conditional volatility process. In contrast with Kim and Kon (1999) and
Lamoureux and Lastrapes (1990) it is concluded that during economic downturn, the conditional volatility
process exhibits a higher degree of persistence compared to the constant parameter case. This indicates
that when Twitter-based variables are used to explain the volatility of stock price returns, shocks to this
process take longer to decay over time.
However, this research fails to test the proposed methodologies to make meaningful volatility forecasts,

which is the goal of volatility models in almost all financial applications (Patton, 2011). Thus, future
research could investigate whether Twitter-based variables also have predictive power, and can significantly
explain future volatility.
Finally, this research only considers lagged values of the Twitter-based variables to affect the volatility

process. Yet, Hsu et al. (2021) show that accounting for the contemporaneous effects of news can also
successfully explain volatility, and improve volatility forecasting. Hence, future research should consider
contemporaneous effects of Twitter sentiment as well as lagged effects, especially considering the fact that
information dispersion through social media is rather instantaneous compared to more traditional news
sources.

All in all, this research shows several practices that can be employed to successfully model volatility using
Twitter-based variables. Volatility models that use these variables can capture Twitter attention and the
public attitude towards certain companies. Given the increase in retail investor activity, illustrated by the
GameStop Mania (Fitzgerald, 2021), professional investors and pension funds can account for the effects of
retail investor behaviour by employing the proposed methodologies. Additionally, this research can be used
by companies to steer away from controversies, as it is argued that negative sentiment can significantly
increase volatility, which makes these companies less attractive for professional investors.
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A Appendix

A.1 Tables

A.1.1 Twitter API

Table 12 – ESG dictionary used for the Twitter API

ESG dictionary eco-friendly, harassment, fraud, sustainable, governance, responsible, benefi-
cial, unhealthy, pollution, climate change, clean energy, carbon, ethical, green
energy, green ambitions, greenhouse gas, exclusions, negative, human-rights,
human rights, impact investing, slavery, renewable, energy transition, sustain-
able transition, SDG, unfair, discrimination, sexism, ESG, CSR, green devel-
opment, inclusion, waste, favoritism, impoverished, obesity, scarcity, layoff,
unemployment, renewables, inclusion, employee bonus

List of words that are included in the search query. Table shows both the constructed ESG dictionary, containing
words associated with the non-financial performance of corporations. All tweets in the retrieved data must contain
at least one of the words in this dictionary.

A.1.2 List of market capitalization and % of shares held by institutional investors

Table 13 – Company characteristics of selected U.S. companies

Company name Market capitalization Percentage of shares held by in-
stitutional investors

Percentage of shares held by in-
siders

Apple 2.46T 58.88% 0.07%
Amazon 1.668T 59.15% 13.62%
Chevron 197.18B 68.42% 0.03%
Coca-Cola 247.04B 68.39% 0.64%

Exxon Mobil 240.34B 52.85% 0.12%
McDonalds 178.35B 69.08% 0.05%
Microsoft 2.2T 72.07% 0.08%
Netflix 228.34B 82.39% 1.53%
NIKE 271.8B 83.44% 1.22%

salesforce 244.4B 79.22% 3.62%
Tesla 710.01B 41.89% 18.96%

Walmart 419.005B 30.92% 49.28%

List of market cap and percentage of shares held by institutional investors at 02-08-2021 for companies in this
research. Data collected via the yahoo! finance website

62



A.1.3 Benchmark model parameter estimates

This section presents the parameter estimates of the benchmark model, that does not include exogenous
covariates.

Table 14 – Parameter estimates of the benchmark model with constant parameters (data ranges from 01-01-2011
until 31-08-2021).

Parameter estimates per company of ARMA-apARCH model
AAPL AMZN CVX KO XOM MCD MSFT NFLX NKE CRM TSLA WMT

ARMA parameters
µ 0.165 0.234 -0.023 0.025 0.0 0.079** 0.192*** 0.211** 0.149*** 0.001** 0.584 0.068***

(1.5e-01) (2.1e-01) (4.4e-02) (1.4e-01) (3.5e-02) (3.8e-02) (7.1e-03) (1.1e-01) (4.9e-02) (4.4e-04) (7.6e-01) (2.6e-02)
γ1 -0.408 -0.67 -0.955*** -0.612*** -0.707*** -0.69*** -0.983*** 0.557*** -0.674*** 0.986*** -1.0*** -0.471***

(4.4e-01) (7.6e-01) (1.1e-03) (7.5e-02) (8.5e-03) (9.7e-03) (1.2e-03) (4.0e-04) (1.8e-02) (2.6e-04) (1.3e-05) (4.5e-02)
γ2 -0.007 -0.816*** -0.081*** -0.083***

(3.2e-01) (2.5e-02) (2.8e-02) (2.8e-02)
γ3 -0.055**

(2.5e-02)
δ1 0.436*** 0.669*** 0.947*** 0.59*** 0.686*** 0.682*** 0.933*** -0.572*** 0.626*** -0.995*** 1.0 0.414***

(3.3e-04) (4.1e-03) (2.3e-04) (3.6e-02) (6.1e-05) (3.7e-03) (1.0e-03) (2.7e-02) (7.8e-05) (9.7e-03) (2.0e+00) (9.4e-06)
δ2 0.021 -0.058*** 0.855*** -0.004

(1.2e-01) (9.5e-05) (2.7e-03) (1.2e-02)
δ3 -0.034

(2.7e-02)
apARCH parameters
ω 0.2*** 0.417*** 0.047*** 0.098*** 0.037*** 0.154*** 0.314*** 0.226*** 0.277*** 0.217*** 0.356*** 0.374***

(4.6e-26) (5.7e-06) (5.6e-08) (3.3e-06) (3.8e-08) (3.6e-06) (3.0e-06) (1.1e-07) (1.6e-26) (3.7e-13) (1.5e-03) (2.8e-05)
β 0.829*** 0.757*** 0.896*** 0.814*** 0.879*** 0.728*** 0.708*** 0.947*** 0.795*** 0.871*** 0.923*** 0.516***

(2.6e-06) (3.3e-03) (5.4e-06) (5.0e-02) (1.1e-05) (3.9e-03) (7.6e-05) (3.5e-04) (1.9e-06) (1.2e-02) (6.9e-07) (3.1e-04)
α 0.055* 0.143*** 0.075*** 0.084*** 0.102*** 0.112*** 0.162*** 0.029*** 0.054*** 0.044*** 0.047*** 0.242***

(4.0e-02) (3.9e-02) (3.5e-04) (6.7e-04) (8.2e-04) (4.5e-03) (1.6e-03) (8.5e-04) (3.7e-03) (3.8e-03) (5.6e-09) (2.3e-04)
ψ 1.0** 0.188 0.36*** 0.332*** 0.164*** 0.526*** 0.201** 0.42** 1.0*** 1.0*** -0.013 0.054

(5.6e-01) (1.5e-01) (7.7e-02) (1.1e-01) (5.2e-02) (1.0e-01) (9.4e-02) (2.1e-01) (2.8e-01) (1.1e-01) (5.3e-01) (1.2e-01)

Parameter estimates per company of the ARMA-apARCH benchmark model. Table indicates the parameters of
the conditional mean equation and the conditional variance equation. Parentheses display the std. error of the
parameter estimates. Asterisks (*, **, ***) denote significance of the parameters (tested using equation (35)) at
the 10%, 5% and 1% significance level, respectively.
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A.1.4 Time-varying parameter estimates

Here, the parameter estimates of the various models that allow for time-varying parameters in the volatility
equation are presented.

Table 15 – Parameter estimates of Model I with time-varying conditional volatility parameters (data ranges from
01-01-2011 until 31-08-2021).

Parameter estimates per company of the vpARMAX-apARCH model
AAPL AMZN CVX KO XOM MCD MSFT NFLX NKE CRM TSLA WMT

ARMAX parameters
µ 0.165*** 0.232*** 0.0001 0.04* -0.00034 0.088*** 0.187*** 0.00748*** 0.148** -0.00011*** 0.084** 0.08***

(4.1e-02) (9.1e-02) (1.3e-04) (2.7e-02) (3.9e-02) (3.5e-02) (3.6e-02) (2.0e-03) (6.5e-02) (1.5e-06) (4.0e-02) (2.9e-02)
γ1 0.027 0.017 0.00039 0.017 -0.021 0.00704 -0.00352 -0.013 0.039 0.00509*** 0.013 -0.00124

(2.9e-02) (4.9e-02) (9.2e-04) (1.7e-02) (3.3e-02) (1.6e-02) (3.5e-02) (4.5e-02) (3.3e-02) (7.7e-06) (4.0e-02) (3.4e-02)
γ2 -0.045* 0.017 -0.021 0.00333

(3.2e-02) (4.3e-02) (3.1e-02) (2.1e-02)
γ3 0.08***

(3.3e-02)
δ1 -0.051* -0.00754 -0.00168 0.012 -0.032 0.022** 0.00793 -0.00369 -0.628*** -0.00193*** -0.048 0.039**

(3.3e-02) (8.2e-02) (1.9e-03) (1.8e-02) (2.9e-02) (1.3e-02) (3.7e-02) (4.2e-03) (5.7e-02) (2.7e-05) (7.4e-02) (1.9e-02)
δ2 -0.045 -0.026** -0.015** -0.0006

(4.7e-02) (1.1e-02) (8.2e-03) (6.3e-02)
δ3 -0.397***

(3.2e-02)
πsent,1 0.418*** 0.00374 0.00042 0.017 0.00327 -0.00634 0.00722* 0.019 -0.068** -0.00191*** 0.367*** -0.485***

(1.1e-05) (3.7e-02) (1.0e-03) (1.4e-02) (2.9e-02) (1.3e-02) (5.6e-03) (1.8e-02) (3.6e-02) (4.0e-05) (4.3e-02) (5.0e-02)
πsent,2 -0.773** -0.029 -0.98*** 0.00988

(3.6e-01) (4.2e-02) (7.8e-02) (1.3e-02)
πtweets,1 0.015 -0.00666 0.984*** -0.512*** -0.883*** -0.687*** 0.936*** -0.00863** -0.047*** 0.996*** -0.378*** -0.071***

(2.3e-02) (1.5e-01) (4.7e-04) (2.8e-02) (2.7e-01) (5.7e-02) (1.6e-01) (5.0e-03) (1.7e-02) (4.6e-05) (2.3e-05) (2.4e-02)
πtweets,2 0.964***

(5.3e-03)
πinteract,1 -0.044** 0.77*** -0.996*** 0.481*** 0.876*** 0.672*** -0.057*** -0.00228 0.589*** -1.003 -0.00784 0.438***

(2.3e-02) (6.2e-02) (2.2e-03) (3.4e-05) (1.1e-03) (1.2e-04) (1.1e-04) (9.6e-03) (9.7e-05) (4.5e+00) (2.7e-02) (2.8e-05)
πinteract,2 -0.96***

(6.2e-04)
Time-varying apARCH parameters

ω 0.213*** 0.743*** 0.054*** 0.212*** 0.037*** 0.111*** 0.396*** 1.982*** 1.488*** 0.055*** 0.367*** 0.677***
(2.8e-09) (1.6e-08) (1.3e-06) (1.8e-10) (7.3e-07) (2.3e-08) (6.6e-06) (7.3e-06) (3.0e-07) (7.7e-04) (5.2e-04) (1.7e-07)

ω∗ -0.031 -0.45*** 0.00852 -0.08*** 0.00782 0.25*** -0.154*** -1.841*** -1.233*** -0.014 -0.355*** -0.1
(5.3e-02) (3.6e-04) (1.4e-02) (5.9e-04) (1.4e-02) (3.7e-03) (1.8e-03) (8.1e-03) (2.1e-03) (1.0e-01) (4.7e-04) (9.6e-02)

β 0.818*** 0.684*** 0.911*** 0.685*** 0.883*** 0.794*** 0.676*** 0.564*** 0.098*** 0.927*** 0.923*** 0.00139***
(2.3e-04) (5.6e-02) (5.5e-04) (2.2e-04) (7.1e-04) (1.2e-04) (1.1e-01) (5.3e-04) (5.9e-03) (2.0e-05) (1.9e-03) (5.4e-04)

β∗ -0.012 0.093*** -0.033*** 0.102*** -0.00723 -0.245*** 0.08*** 0.394*** 0.727*** -0.012 0.062*** 0.533***
(1.7e-02) (2.6e-02) (6.2e-03) (6.6e-03) (3.1e-02) (5.1e-03) (2.3e-02) (3.8e-04) (1.0e-03) (2.5e-02) (1.1e-03) (8.9e-04)

α 0.084*** 0.056*** 0.047*** 0.019*** 0.093*** 0.025*** 0.112*** 0.158*** 0.091*** 0.058*** 0.046*** 0.357***
(1.5e-08) (7.1e-06) (1.6e-05) (1.7e-07) (7.4e-07) (2.4e-03) (6.2e-04) (1.6e-04) (9.6e-05) (3.5e-05) (6.7e-06) (7.2e-04)

α∗ 0.044*** 0.133*** 0.018*** 0.102*** 0.00982 0.217*** 0.031 -0.128*** -0.036*** -0.022*** -0.034*** -0.126***
(4.8e-03) (1.7e-03) (3.0e-03) (1.3e-03) (3.2e-02) (2.4e-02) (4.6e-02) (6.8e-05) (1.1e-03) (5.9e-04) (4.5e-05) (9.2e-03)

ψ 0.471*** -0.123 0.266*** 1.0*** 0.067 1.0*** -0.1 -0.45*** 0.98** 0.521 -0.048 0.201
(1.2e-01) (9.9e-01) (4.7e-03) (9.9e-02) (7.4e-02) (1.2e-01) (3.0e-01) (3.8e-02) (4.3e-01) (1.2e+00) (2.9e-01) (2.0e-01)

ψ∗ -0.022 0.305 0.476*** -0.734*** 0.197 -0.619*** 0.505 1.0*** 0.02 0.479 0.311** -0.15
(4.6e-02) (1.1e+00) (1.6e-01) (1.6e-01) (1.6e-01) (2.2e-01) (4.3e-01) (3.1e-01) (3.3e-02) (3.5e+00) (1.7e-01) (2.2e-01)

Time-varying parameter estimates per company of the ARMAX-apARCH model. Parentheses display the std. error
of the parameter estimates. Asterisks (*, **, ***) denote significance of the parameters at the 10%, 5% and 1%
significance level, respectively.
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Table 16 – Parameter estimates of Model II with time-varying conditional volatility parameters (data ranges from
01-01-2011 until 31-08-2021). Table continues on next page.

Parameter estimates per company of the vpARMA-apARCH-apX model
AAPL AMZN CVX KO XOM MCD MSFT NFLX NKE CRM TSLA WMT

ARMA parameters
µ 0.191*** 0.233*** -0.019 0.035** 0.00183 0.086*** 0.179*** 0.264 0.127*** 0.00347*** 0.162** 0.033

(4.3e-02) (5.8e-02) (6.9e-02) (1.7e-02) (3.6e-02) (3.0e-02) (3.2e-02) (2.6e+00) (4.5e-02) (8.9e-04) (7.2e-02) (3.1e-02)
γ1 -0.453*** -0.744*** -0.896*** -0.576*** -0.71*** -0.692*** -0.98*** -0.926 -0.548*** 0.961*** -0.197*** -0.502***

(4.2e-02) (5.5e-02) (1.2e-01) (3.4e-02) (8.1e-02) (6.5e-02) (6.4e-02) (1.3e+00) (1.6e-01) (1.3e-02) (4.6e-02) (6.3e-02)
γ2 -0.016 0.00742 -0.056 -0.039*

(3.6e-02) (1.3e+01) (1.4e-01) (2.9e-02)
γ3 -0.042

(8.5e-02)
δ1 0.463*** 0.733*** 0.882*** 0.554*** 0.692*** 0.677*** 0.934*** 0.932*** 0.51*** -0.983*** 0.186*** 0.453***

(4.0e-05) (6.5e-05) (5.7e-04) (6.0e-04) (1.4e-04) (1.4e-03) (2.7e-02) (6.0e-03) (3.4e-03) (3.0e-02) (2.3e-02) (1.3e-04)
δ2 0.011 -0.055*** 0.00345 -0.00984

(5.7e-02) (2.2e-04) (1.3e+01) (2.3e-02)
δ3 -0.042

(5.3e-02)
Time-varying apARCH-apX parameters
ω 0.067*** 0.109*** 0.026*** 0.09*** 0.036*** 0.109*** 0.215*** 0.018*** 1.304*** 0.295*** 0.236*** 0.00466***

(9.2e-03) (6.7e-04) (8.5e-06) (4.1e-08) (1.1e-04) (3.3e-06) (6.8e-06) (2.0e-07) (8.2e-10) (4.7e-03) (2.8e-03) (4.6e-05)
ω∗ -0.021 0.056*** 0.015* 0.00546 -0.036*** 0.198*** -0.167*** -0.018*** -1.198*** -0.295*** 0.644*** 0.303***

(1.9e-02) (1.1e-02) (1.2e-02) (2.2e-02) (4.5e-03) (4.2e-03) (1.7e-03) (4.9e-07) (1.7e-02) (4.1e-03) (2.6e-03) (3.8e-03)
β 0.828*** 0.881*** 0.914*** 0.837*** 0.886*** 0.787*** 0.753*** 0.985*** 0.192*** 0.615*** 0.923*** 0.966***

(1.8e-03) (8.5e-06) (5.2e-05) (8.8e-04) (1.5e-04) (1.7e-03) (2.1e-02) (3.3e-03) (6.0e-03) (1.9e-02) (6.6e-07) (2.2e-04)
β∗ 0.00357 -0.125*** -0.034*** -0.041*** -0.028* -0.225*** 0.081*** -0.018 0.557*** 0.244*** -0.126*** -0.231***

(1.6e-02) (4.8e-03) (5.3e-03) (6.9e-03) (1.7e-02) (5.5e-03) (1.0e-02) (2.4e-01) (1.2e-02) (7.2e-03) (1.1e-03) (1.3e-03)
α 0.06*** 0.0 0.044*** 0.017*** 0.087*** 0.027*** 0.065*** 0.0 0.077*** 0.071*** 0.041*** 0.0

(3.4e-03) (1.2e-04) (5.8e-04) (7.9e-04) (2.6e-04) (2.2e-03) (1.3e-03) (6.0e-04) (2.0e-05) (8.1e-05) (1.7e-04) (1.6e-04)
α∗ 0.046*** 0.193*** 0.048*** 0.103*** 0.029* 0.205*** 0.015 0.016 -0.015** -0.023*** 0.068*** 0.091***

(1.6e-02) (6.0e-03) (4.5e-04) (3.6e-04) (2.0e-02) (1.3e-02) (3.7e-02) (5.6e-02) (7.3e-03) (2.0e-03) (5.0e-04) (1.4e-02)
ψ 0.443*** 0.291 0.232** 1.0*** 0.033 1.0*** -0.341** -0.241 1.0 0.98*** -0.122 -0.586**

(1.3e-01) (4.0e-01) (1.1e-01) (1.4e-01) (1.2e-01) (1.6e-01) (2.1e-01) (1.1e+01) (1.4e+00) (1.9e-01) (1.3e-01) (3.5e-01)
ψ∗ 0.1 -0.152 0.253* -0.736*** 0.243 -0.614*** 0.995** 1.0 2e-05 0.02 0.195 0.999***

(1.6e-01) (3.5e-01) (1.6e-01) (2.1e-01) (2.1e-01) (2.1e-01) (5.2e-01) (3.2e+00) (7.3e-03) (7.6e-02) (1.7e-01) (2.9e-01)
πsent,1 0.014 0.00594 0.0 0.00086 0.0 0.00368 0.062*** 0.00446 0.0 0.335*** 0.035*** 0.00536***

(1.8e-02) (3.4e-02) (1.8e-05) (3.3e-03) (1.2e-04) (9.2e-03) (5.8e-04) (2.7e-01) (1.0e-04) (1.7e-02) (9.1e-03) (1.8e-03)
π∗sent,1 0.033*** -0.00584 0.0001 -0.00076 0.00455 -0.00358 -0.062*** 0.072 0.105** -0.219*** -0.035 -0.00526

(7.6e-03) (3.1e-02) (1.2e-04) (3.0e-03) (9.6e-03) (7.6e-03) (2.8e-03) (5.8e-01) (4.8e-02) (6.7e-02) (3.1e-02) (1.3e-01)
πsent,2 0.0 0.0

(2.8e-05) (4.8e-06)
π∗sent,2 0.054*** 0.0001***

(5.1e-03) (2.7e-05)
πtweets,1 0.153*** 0.08*** 0.251*** 0.0 0.00084*** 0.0 0.0 0.222*** 0.0 0.043 0.148*** 0.036***

(1.7e-03) (2.6e-02) (3.5e-03) (1.1e-04) (1.6e-04) (3.6e-04) (7.2e-05) (9.0e-03) (9.6e-05) (5.2e-02) (5.4e-02) (1.1e-03)
π∗tweets,1 -0.153*** 0.117 -0.236*** 0.00842*** -0.00074** 0.127*** 0.031*** -0.189 0.606*** 0.059 0.444*** -0.024

(1.6e-03) (1.2e-01) (1.2e-02) (4.4e-04) (4.4e-04) (4.5e-02) (2.7e-03) (2.7e-01) (1.5e-02) (9.3e-02) (1.7e-01) (4.9e-02)
πinteract,1 0.487*** 1.761*** 0.00103*** 0.0 0.00244*** 0.0 0.065 1.0*** 0.0 1.188*** 0.011*** 0.0

(1.3e-02) (9.5e-02) (1.5e-04) (9.2e-03) (7.5e-04) (2.9e-05) (3.5e-01) (1.5e-01) (1.2e-04) (5.4e-02) (4.5e-03) (1.4e-05)
π∗interact,1 -0.482*** -1.0 0.023*** 0.803*** 2.274*** 0.0001 -0.031 -1.0 0.0001 -1.0*** -0.011*** 0.0001

(4.3e-04) (2.2e+00) (7.4e-03) (7.9e-02) (6.9e-02) (5.8e-04) (6.4e-01) (1.3e+00) (2.6e-04) (4.0e-02) (3.9e-03) (1.0e-03)
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AAPL AMZN CVX KO XOM MCD MSFT NFLX NKE CRM TSLA WMT
ψsent,1 1.0 0.625 -0.25 0.943 -0.933 0.811 -0.97*** -0.387 -0.354 0.197* 0.927** 0.516

(8.8e-01) (7.4e+00) (1.6e+00) (3.1e+00) (4.3e+00) (1.1e+00) (2.4e-02) (8.3e-01) (3.0e+00) (1.3e-01) (4.6e-01) (6.3e-01)
ψ∗sent,1 -0.035 -1.0 0.453 -0.111 -0.064 -1.0 0.517*** 1.0 1.0 -0.197 -0.396 -1.0

(2.0e-01) (2.2e+00) (2.1e+00) (2.7e+00) (4.2e+00) (1.4e+00) (2.1e-01) (1.7e+01) (2.3e+00) (2.2e-01) (2.2e+00) (2.7e+01)
ψsent,2 -0.207 -0.944

(3.4e-01) (9.8e-01)
ψ∗sent,2 0.703*** -0.047

(2.3e-01) (1.1e+00)
ψtweets,1 0.365* 0.163*** 0.894*** -0.567 -0.22 0.961 -0.684 0.838 1.0*** 0.987*** 0.994*** 0.864***

(2.8e-01) (3.4e-03) (3.3e-01) (7.8e-01) (7.9e-01) (8.9e-01) (1.5e+00) (3.1e+00) (4.1e-01) (1.8e-01) (9.2e-02) (2.2e-01)
ψ∗tweets,1 0.635 0.837*** 0.106 0.656 1.0 -0.504 1.0 0.16 -0.435** 0.013 0.00632 -1.0

(8.2e-01) (2.5e-01) (3.3e-01) (6.8e-01) (1.0e+00) (5.5e-01) (1.8e+00) (6.3e-01) (2.0e-01) (1.1e-02) (1.6e-01) (2.1e+00)
ψinteract,1 0.693*** 0.999* -0.777 1.0 -1e-05 0.957 1.0 0.963 -0.986 0.545* 0.033 0.58***

(2.4e-01) (7.3e-01) (9.9e-01) (8.1e-01) (1.4e-01) (3.2e+01) (1.8e+00) (1.3e+01) (1.2e+00) (3.3e-01) (5.7e-01) (8.9e-02)
ψ∗interact,1 -1.0 -0.144 -0.223 -1.0* 1.0*** -0.062 -0.506 -0.452 0.016 -0.021 0.534 0.293

(3.0e+00) (1.4e+00) (3.0e+00) (7.1e-01) (3.0e-01) (3.2e+01) (3.1e+00) (9.6e+00) (3.9e+00) (2.2e-02) (4.8e-01) (8.0e-01)

Time-varying parameter estimates per company of the ARMA-apARCH-apX model. Parentheses display the std.
error of the parameter estimates. Asterisks (*, **, ***) denote significance of the parameters at the 10%, 5% and
1% significance level, respectively.

Table 17 – Parameter estimates of Model III with time-varying conditional volatility parameters (data ranges from
01-01-2011 until 31-08-2021). Table continues on next page.

Parameter estimates per company of the vpARMA-apARCH-apXGARCH model
AAPL AMZN CVX KO XOM MCD MSFT NFLX NKE CRM TSLA WMT

ARMA parameters
µ 0.176** 0.236*** -0.01 0.04 0.00323 0.087 0.187*** 0.277* 0.138*** 0.147 0.565 0.086***

(8.9e-02) (6.5e-02) (5.9e-02) (3.3e-02) (3.5e-02) (1.9e-01) (4.4e-02) (1.8e-01) (2.9e-02) (5.8e-01) (7.1e-01) (3.0e-02)
γ1 -0.426*** -0.673*** -0.889*** -0.56*** -0.707*** -0.695*** -0.98*** -0.857*** -0.6*** -0.662* -1.0*** -0.548***

(3.3e-02) (1.8e-01) (1.3e-01) (3.4e-02) (9.6e-02) (1.0e-01) (1.6e-03) (2.3e-01) (1.1e-01) (4.8e-01) (1.2e-02) (5.2e-02)
γ2 -0.00389 0.113*** -0.077*** -0.064***

(6.6e-02) (2.7e-02) (3.2e-02) (2.1e-02)
γ3 -0.055***

(2.2e-02)
δ1 0.444*** 0.673*** 0.875*** 0.531*** 0.689*** 0.68*** 0.93*** 0.846*** 0.563*** 0.627*** 1.0 0.504***

(1.9e-05) (8.9e-03) (7.7e-04) (1.8e-03) (3.2e-04) (5.7e-04) (4.1e-03) (1.2e-03) (2.9e-03) (9.5e-04) (1.5e+00) (4.2e-04)
δ2 0.016 -0.058*** -0.114*** -0.0034

(2.3e-02) (9.0e-05) (3.6e-04) (3.4e-03)
δ3 -0.04**

(2.2e-02)
Time-varying apARCH-apXGARCH parameters
ω 0.175*** 0.374*** 0.055*** 0.124*** 0.034*** 0.101*** 0.142*** 4.978*** 0.744*** 0.771*** 0.364*** 0.119***

(1.5e-03) (2.5e-05) (6.2e-05) (2.7e-07) (1.2e-06) (4.3e-05) (7.4e-05) (2.0e-04) (1.5e-04) (1.6e-02) (3.7e-04) (6.5e-04)
ω∗ -0.174*** -0.159*** -0.015 -0.05*** -0.012 -0.101** -0.142*** -4.978*** -0.601*** -0.628*** -0.355*** 0.094***

(2.2e-03) (8.0e-03) (1.4e-02) (1.4e-02) (2.4e-02) (5.9e-02) (3.5e-03) (4.5e-01) (1.2e-04) (2.9e-03) (5.7e-03) (1.1e-03)
β 0.848*** 0.801*** 0.906*** 0.779*** 0.895*** 0.778*** 0.878*** 0.149*** 0.301*** 0.553*** 0.924*** 0.0

(3.0e-04) (1.1e-02) (4.3e-04) (5.1e-04) (3.6e-04) (5.7e-04) (3.5e-03) (1.3e-02) (6.0e-04) (1.0e-03) (5.1e-04) (1.8e-05)
β∗ -0.064*** 0.03 -0.027*** -0.047* -0.015* -0.228*** -0.088*** 0.81*** 0.524*** 0.333*** 0.062*** 0.35***

(9.9e-03) (3.2e-02) (5.7e-03) (3.6e-02) (1.1e-02) (1.9e-02) (1.1e-02) (3.6e-04) (1.1e-02) (1.5e-02) (5.2e-03) (5.9e-03)
α 0.045*** 0.063*** 0.047*** 0.022*** 0.079*** 0.029*** 0.02*** 0.188*** 0.087*** 0.083*** 0.045*** 0.291***

(2.9e-03) (1.5e-03) (2.0e-03) (1.4e-03) (5.5e-06) (4.2e-03) (8.6e-04) (1.0e-04) (4.3e-05) (1.7e-03) (5.0e-03) (1.5e-03)
α∗ 0.059*** 0.066*** 0.039*** 0.128*** 0.02*** 0.213*** 0.051*** -0.155*** -0.035*** -0.038 -0.033*** -0.022

(9.2e-04) (7.6e-03) (7.1e-03) (2.6e-03) (8.0e-03) (2.2e-02) (1.3e-03) (2.2e-06) (1.2e-03) (3.2e-02) (2.7e-04) (1.0e-01)
ψ 0.768* -0.224 0.214** 1.0*** 0.015 1.0*** -0.236 -0.465 0.991 0.999 -0.079 0.199

(5.7e-01) (2.1e+00) (1.1e-01) (1.3e-02) (7.4e-02) (3.9e-01) (2.1e-01) (4.2e-01) (9.8e-01) (5.2e+00) (1.0e-01) (2.5e-01)
ψ∗ -0.137 0.5 0.289** -0.808*** 0.268*** -0.614 1.0*** 1.0* 0.00875 -0.00335 0.313 -0.133

(6.5e-01) (2.8e+00) (1.7e-01) (3.0e-01) (1.0e-01) (5.8e-01) (2.6e-01) (7.3e-01) (7.4e-03) (2.9e+00) (3.5e+00) (3.4e-01)
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AAPL AMZN CVX KO XOM MCD MSFT NFLX NKE CRM TSLA WMT
πsent,1 0.0 0.0 0.0 0.0 0.222* 0.0 0.0 0.0 0.0 0.683*** 0.0 0.0

(6.9e-05) (1.0e-04) (4.5e-05) (1.4e-05) (1.5e-01) (2.2e-04) (8.5e-04) (4.1e-05) (9.5e-06) (4.5e-02) (8.1e-04) (4.3e-05)
π∗sent,1 0.00202*** 0.0001 0.0001** 0.012 -0.053 0.00725 0.00644*** 0.012*** 0.578** -0.523* 0.0001 0.0001

(1.1e-05) (2.3e-03) (5.6e-05) (2.1e-02) (2.7e-01) (4.9e-02) (9.8e-04) (1.4e-03) (3.1e-01) (3.8e-01) (2.6e-03) (1.1e-03)
πsent,2 0.0

(1.4e-04)
π∗sent,2 0.0001

(1.5e-03)
πtweets,1 0.00187*** 0.017*** 0.00029*** 0.0 9e-05 0.0 0.0 0.0 0.00013 0.00155 1e-05 0.0

(3.1e-04) (1.1e-03) (9.2e-07) (1.1e-06) (2.6e-04) (7.0e-05) (4.1e-04) (3.4e-05) (1.7e-02) (8.5e-03) (7.1e+00) (1.1e-08)
π∗tweets,1 -0.00177 -0.016 -0.00018*** 0.0001*** 1e-05 0.0001 0.036*** 0.00032** 0.05*** -0.00145 0.00069 0.0001***

(1.9e-03) (1.4e-01) (6.3e-05) (3.4e-05) (2.7e-03) (2.4e-04) (5.2e-03) (2.0e-04) (2.1e-02) (4.2e-03) (7.5e+00) (4.0e-05)
πinteract,1 0.0 0.0 0.00043 0.0 0.0 0.0 0.0 0.0 0.00779 0.011 0.0 0.00153*

(3.0e-05) (5.5e-05) (4.0e-04) (2.3e-05) (2.0e-05) (2.5e-06) (3.8e-06) (5.4e-08) (8.2e-02) (1.0e-02) (1.2e-03) (1.1e-03)
π∗interact,1 0.0003 0.00017 -0.00033 0.0001*** 0.098*** 0.00036 0.0001 0.0001 0.102 -0.00716 0.0001 0.0

(2.7e-04) (3.2e-04) (7.5e-03) (1.7e-05) (4.2e-02) (7.9e-04) (1.5e-03) (2.4e-04) (2.3e-01) (2.5e-02) (9.4e-02) (8.1e-01)
λsent,1 0.0 0.0 0.0 0.0 0.0 0.018* 0.0 0.0 0.0 0.0 0.0 0.513***

(7.7e-05) (3.3e-04) (2.0e-05) (8.0e-06) (6.2e-05) (1.2e-02) (1.4e-03) (4.5e-02) (1.1e-05) (9.2e-06) (4.1e-03) (7.8e-03)
λ∗sent,1 0.0001 0.0001 0.0001 0.0001 0.0001 0.139 0.177*** 0.0001 0.0001 0.0001 0.0001 -0.513***

(2.1e+00) (2.6e-01) (1.7e-02) (6.2e-02) (4.7e-02) (3.9e-01) (2.6e-03) (6.4e-01) (4.6e-03) (3.9e-01) (4.8e-01) (9.7e-04)
λsent,2 0.0

(3.9e-05)
λ∗sent,2 0.0001

(1.6e+00)
λsent,3 0.0

(1.7e-04)
λ∗sent,3 0.0001

(1.8e+00)
λtweets,1 0.012 0.0 0.0 0.0002 0.0 0.0 0.019*** 0.0 0.16*** 0.0 0.0 0.089***

(3.3e-02) (1.9e-04) (2.6e-05) (4.7e-03) (3.2e-05) (2.0e-04) (7.7e-04) (6.0e-05) (5.8e-03) (5.7e-01) (6.8e-03) (1.1e-02)
λ∗tweets,1 0.128*** 0.0001 0.0001 0.078*** 0.0001 0.231 -0.019 0.0001 -0.16*** 0.0001 0.0001 0.708***

(5.3e-03) (2.6e-01) (1.2e-02) (2.2e-02) (3.8e-02) (1.9e-01) (4.2e-02) (4.6e-01) (2.9e-02) (2.0e+00) (5.2e-01) (1.3e-02)
λinteract,1 0.012 0.0 0.00394 0.0 0.0 0.0 0.0 0.0 0.291*** 0.0 0.00991 0.0

(2.5e-02) (2.8e-04) (3.5e-03) (2.1e-05) (1.1e-04) (3.8e-05) (1.1e-03) (6.5e-05) (7.8e-04) (3.7e-06) (6.7e-01) (4.6e-05)
λ∗interact,1 0.127*** 0.00018 0.081*** 0.239*** 0.022 0.0001 0.151*** 0.0001 -0.233*** 0.0001 -0.00981 0.202***

(1.9e-02) (1.4e-01) (1.4e-02) (3.7e-03) (1.9e-02) (2.4e-02) (9.1e-03) (2.7e-01) (1.8e-03) (1.2e+00) (4.0e-01) (6.8e-02)
ψsent,1 -0.067 0.089 0.821 0.918*** 1.0*** -0.00709 0.375 -0.408 0.144*** 0.554*** -0.093 0.642

(1.4e+00) (1.6e+00) (9.8e-01) (4.8e-03) (2.0e-08) (9.4e-01) (3.6e-01) (4.3e+00) (5.1e-02) (5.0e-02) (1.3e+02) (9.2e-01)
ψ∗sent,1 -0.933 0.911 -0.166 0.082*** -0.00013 0.661 -0.357 -0.16 0.73*** 0.446 0.853 -0.154

(1.0e+00) (3.4e+00) (9.3e-01) (1.0e-02) (1.3e-04) (2.4e+00) (5.4e-01) (3.9e+00) (1.6e-01) (4.8e-01) (1.3e+02) (5.1e+00)
ψsent,2 0.117

(4.1e+00)
ψ∗sent,2 0.628

(6.3e+00)
ψtweets,1 0.517*** 0.763*** 0.877*** 0.774*** 0.784 0.999* 0.094 0.602* 0.985*** 1.0 1.0*** 0.305

(8.7e-02) (1.2e-01) (1.3e-04) (1.0e-01) (6.2e-01) (6.3e-01) (1.2e-01) (3.7e-01) (8.0e-02) (1.5e+00) (2.9e-01) (2.6e-01)
ψ∗tweets,1 0.483*** 0.237 0.123*** -0.073 0.216 -0.338 0.858** 0.398 -0.179* -0.754** -0.00389 0.509**

(1.5e-01) (5.9e-01) (2.5e-03) (1.4e-01) (6.8e-01) (3.3e+00) (3.9e-01) (4.5e-01) (1.3e-01) (3.9e-01) (1.8e+00) (2.6e-01)
ψinteract,1 0.494 0.863*** 0.955*** 1.0*** 0.628 0.567*** 0.771*** 0.641*** 1.0*** 0.268 0.874 0.987***

(4.9e-01) (1.1e-01) (3.0e-02) (3.5e-03) (1.5e+00) (1.8e-01) (2.2e-01) (1.6e-01) (6.2e-09) (4.9e-01) (8.8e+00) (8.4e-03)
ψ∗interact,1 0.5 -0.031 -0.158 -0.117* 0.354 0.43** 0.229 0.359** -3e-05 0.557 0.126 0.013

(5.2e-01) (9.3e-01) (5.1e-01) (8.5e-02) (9.8e-01) (2.3e-01) (8.9e-01) (2.0e-01) (1.2e-04) (3.3e+00) (9.1e+00) (5.2e-02)

Time-varying parameter estimates per company of the ARMA-apARCH-apXGARCH model. Parentheses display
the std. error of the parameter estimates. Asterisks (*, **, ***) denote significance of the parameters at the 10%,
5% and 1% significance level, respectively.
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A.2 Figures

A.2.1 Plots of exogenous conditional volatility plots

Here, the plots of the conditional volatility of the exogenous variables are given for each company included
in this research.

Figure 3 – Conditional volatility of exogenous variables of U.S. companies

Conditional volatility for the exogenous variables of the selected U.S. companies between 01-01-2011 and 31-08-2021.
Dark blue dotted line represents the square root of the squared residuals of the ARMA(1,1) process describing the
mean of the exogenous variable process, colored line shows the conditional volatility σ(x)

t . From left to right, plots
show time series plots of the conditional volatility of Twitter sentiment, number of tweets and number of interactions
of Apple, Amazon, Chevron, and Coca-Cola (up to down).
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Figure 4 – Conditional volatility of exogenous variables of U.S. companies

Conditional volatility for the exogenous variables of the selected U.S. companies between 01-01-2011 and 31-08-2021.
Dark blue dotted line represents the square root of the squared residuals of the ARMA(1,1) process describing the
mean of the exogenous variable process, colored line shows the conditional volatility σ(x)

t . From left to right, plots
show time series plots of the conditional volatility of Twitter sentiment, number of tweets and number of interactions
of Exxon Mobil, McDonalds, Microsoft, and Netflix (up to down).
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Figure 5 – Conditional volatility of exogenous variables of U.S. companies

Conditional volatility for the exogenous variables of the selected U.S. companies between 01-01-2011 and 31-08-2021.
Dark blue dotted line represents the square root of the squared residuals of the ARMA(1,1) process describing the
mean of the exogenous variable process, colored line shows the conditional volatility σ(x)

t . From left to right, plots
show time series plots of the conditional volatility of Twitter sentiment, number of tweets and number of interactions
of NIKE, salesforce, Tesla, and Walmart (up to down).
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A.2.2 Plots of conditional volatility

This section shows the plots of the conditional volatility of the remaining companies included in this
research.

Figure 6 – Conditional volatility between 01-01-2011 and 31-08-2021 of U.S. companies stock price returns.

Time series plot of the conditional volatility for Exxon Mobil, McDonalds, Microsoft, and Netflix (top to bottom
plots) between 01-01-2011 and 31-08-2021. Squared ARMA residuals serves as a proxy for the conditional variance
process (square root of proxy is denoted in dark blue). From left to right, plots show time series plots of the con-
ditional volatility using the ARMAX-apARCH model, the ARMA-apARCH-apX model, and the ARMA-apARCH-
apXGARCH model, for both the constant and time-varying parameter specification. In yellow, the conditional
volatility of the benchmark model is plotted.
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Figure 7 – Conditional volatility between 01-01-2011 and 31-08-2021 of U.S. companies stock price returns.

Time series plot of the conditional volatility for NIKE, salesforce, Tesla, and Walmart (top to bottom plots) between
01-01-2011 and 31-08-2021. Squared ARMA residuals serves as a proxy for the conditional variance process (square
root of proxy is denoted in dark blue). From left to right, plots show time series plots of the conditional volatil-
ity using the ARMAX-apARCH model, the ARMA-apARCH-apX model, and the ARMA-apARCH-apXGARCH
model, for both the constant and time-varying parameter specification. In yellow, the conditional volatility of the
benchmark model is plotted.
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