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Abstract
This study investigates the importance of CEO reputation on stock

price. A major driver of stock price is corporate reputation. The
CEO accounts for a large part of the corporate reputation, and thus
it may be possible to predict stock price based on CEO reputation.
Seven CEOs of the top S&P 500 firms were analysed. CEO reputation
was measured using sentiment analysis on daily Twitter data using
various Transformer based models. To determine the influence of
CEO reputation, Long Short-Term Memory (LSTM) containing Twitter
information was used to predict stock price, as well as McNemar’s
test. LSTM without Twitter information served as a baseline. The
results show that including Twitter information does lead to a better
LSTM model for stock price prediction, but there is no statistical
substantiation for this increase. This research concludes that there is
no definitive proof that CEO reputation is a strong predictor of stock
price.

1 introduction

Stock price forecasting has been a topic of interest in both business and
academia for decades. If one could accurately predict stock market move-
ments, the possible economic profits would be endless. Creating an ac-
curate stock price forecasting model, however, has proven to be very
challenging due to the random nature and high level of noise of the stock
market (Malkiel & Fama, 1970; Oliveira & Meira, 2006; Zhang et al., 2018).

Early work in stock price prediction was based on the random walk
theorem and Efficient Market Hypothesis (EMH) (Bollen, Mao, & Zeng,
2011; Fama, 1965). The random walk theorem states that past prices are not
reflective of the future. Whether a stock would go up or down was deemed
to be completely uncorrelated with past prices. In recent years, however, it
has been proven that stock prices do not follow a completely random walk,
and thus are future prices dependent on past prices (Gallagher & Taylor,
2002; Kavussanos & Dockery, 2001).

The EMH states that stock price changes are largely driven by new
information. With the introduction of the internet, there is a continuous
stream of information that is readily available, be it through news articles,
social media, or online financial reports. Text mining is the field that anal-
yses this online information. The first attempt at predicting stock prices
using text mining was by Wuthrich et al. (1998). The core idea of text
mining for stock price prediction is always the same; automatically extract
information from unstructured documents and correlate this information
with stock prices.

In recent years text mining has been largely used to determine the
mood of society regarding a topic. Many researchers have shown that
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there is a correlation between online sentiment and stock price (Bollen et
al., 2011; Kordonis, Symeonidis, & Arampatzis, 2016; Li, Xie, Chen, Wang,
& Deng, 2014; Nguyen & Shirai, 2015; Pagolu, Reddy, Panda, & Majhi,
2016; Qasem, Thulasiram, & Thulasiram, 2015; Rao, Srivastava, et al., 2012).
By analysing how the public feels regarding a company, it is possible to
predict the short-term trend of the respective stock price.

The feelings of a large public can be analysed using sentiment analysis.
Sentiment analysis, or opinion mining, is the field of finding the opinion of
authors about specific entities, through self-automated tools (Chaudhuri,
2019; Feldman, 2013). A popular platform for gathering information for
sentiment analysis is Twitter (Baziotis, Pelekis, & Doulkeridis, 2017; Bollen
et al., 2011; Cakra & Trisedya, 2015; Guo & Li, 2019; Ismail, Harous, &
Belkhouche, 2016; Kordonis et al., 2016; Pant, Neupane, Poudel, Pokhrel,
& Lama, 2018; Pota, Ventura, Catelli, & Esposito, 2021; Rao et al., 2012;
Sprenger, Tumasjan, Sandner, & Welpe, 2014; Valencia, Gómez-Espinosa,
& Valdés-Aguirre, 2019). Twitter is a social media platform where peo-
ple from all over the world can share their emotions, activities, opinions
and observations about any subject. Communication on Twitter goes via
so-called “tweets”. A tweet is a short message composed of up to 140

characters, containing a combination of text, videos, and photos. Twitters
massive amount of data represents a relevant source for gathering people’s
views and opinions (Smailović, 2015).

It is clear from the literature that an organization’s reputation is closely
related to stock price (Black, Carnes, & Richardson, 2000; Kossovsky, Green-
berg, & Brandegee, 2012; Vergin & Qoronfleh, 1998). An important driver
of corporate reputation is the Chief Executive Officer (CEO). Gaines-Ross
(2000) showed that the CEO can represent up to 45% of the company’s
overall reputation. Since the reputation of the CEO is a major driver of
corporate reputation, it might be possible to predict stock price based on
CEO reputation.

This research aimed to discover whether CEO reputation is indicative
of stock price. Sentiment analysis on Twitter data was used to determine
the feelings of a large public regarding a CEO. This sentiment was then
used to predict the stock price trend. CEOs from the top eight Standards &
Poors (S&P) 500 organizations were analysed.

Reputation cannot be directly measured. This thesis assumes that us-
ing sentiment analysis on a large corpus of Tweets mentioning a CEO is
representative of his/her reputation. Reputation in this thesis, refers to the
average sentiment regarding a CEO.
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The main question this thesis will address is:

To what extend is CEO reputation, measured using sentiment analysis,
predictive of stock price changes?

Sub-questions that this thesis will address are:

RQ1 To what extent is the amount of internet traffic predictive of stock price
movements?

RQ2 To what extend is there a delay between Twitter information and its reflection
in stock price?

RQ3 To what extent do Transformer models improve sentiment analysis classifica-
tion?

RQ3 To what extent does ensemble of Transformer models outperform individual
classifiers?
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2 related work

This thesis aimed to predict stock price trend using CEO reputation mea-
sured using sentiment analysis. Stock price prediction coupled with senti-
ment analysis has been a topic of interest among many authors. Bollen et
al. (2011) were the first to show a correlation between Twitter sentiment
and stock price. They used past prices as well as sentiments derived from
tweets as inputs in a Fuzzy neural network to predict the movement of the
Dow Jones Industrial Average index. They concluded that there is a strong
correlation between Twitter sentiment and stock price. Mittal and Goel
(2012) replicated Bollen et al. their experiment, confirming their results.
Dickinson, Hu, et al. (2015) as well as Pagolu et al. (2016), used Pearson
correlation to determine the relationship between public sentiment and
stock price. Both publications found a strong correlation between public
sentiment and stock price. Cakra and Trisedya (2015) used linear regression
to predict stock price. They concluded that using historic prices, as well as
sentiment polarity as inputs performs best. Guo and Li (2019) used Twitter
data to compute a sentiment score. They then used this sentiment score in
a linear regression to predict the following days stock price.

Many authors used support vector machine (SVM) to predict stock
price. Sprenger et al. (2014) used SVM to show that organizations in the
S&P top 100 closely follow their Twitter reputation. Kordonis et al. (2016)
continued on the work of Sprenger et al., showing that the same conclusion
holds for sixteen large technological firms. Li et al. (2014) found that
including sentiment polarity increases the accuracy of SVM for stock price
prediction. Nguyen and Shirai (2015) showed an increase of 6% in pre-
dictive power when including sentiment polarity over using only historic
prices as inputs in an SVM. Kalyani, Bharathi, Jyothi, et al. (2016) tested
various machine learning (ML) methods and ultimately concluded that
SVM performed best. Batra and Daudpota (2018) analysed the relationship
between public opinion and Apple’s stock price. Their results showed that
SVM can predict the relation between sentiment polarity, historic prices,
and Apple’s stock price.

In recent years long short-term memory (LSTM) has become the most
common and successful method for stock price prediction. Y. Liu, Qin,
Li, and Wan (2017); Souma, Vodenska, and Aoyama (2019); Tsantekidis
et al. (2017); Valencia et al. (2019) showed that LSTM outperforms SVM
for stock price prediction. S. Das, Behera, Rath, et al. (2018) concluded
that the ability of LSTM to store past information, and thus stock price
trend, makes it most suited for stock price prediction. Pant et al. (2018)
used LSTM to predict bitcoin price. Jin, Yang, and Liu (2019) showed that
LSTM with attention mechanism outperformed regular LSTM for stock
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price prediction.
No prior research was found on the influence of CEO reputation on

stock price. Direct comparison between prior research and this research
is therefore difficult. Another difficulty is the difference in timeframes
and different stock data. Prior stock price trend prediction results have
been published by Nelson, Pereira, and de Oliveira (2017), who obtained
an accuracy of 54.3% in stock price trend prediction using LSTM, Wen,
Li, Zhang, and Chen (2019), who obtained an accuracy of 55.9% for SP
500 stock price prediction, and Picasso, Merello, Ma, Oneto, and Cambria
(2019), who obtained an 80% return on their hypothetical portfolio, traded
using LSTM predictions.

Most of the above listed authors use very simple sentiment analysis
methods. State-of-the-art (STOA) sentiment analysis methods result in
better sentiment predictions, which in turn may lead to better stock price
trend prediction. This thesis will test various STOA sentiment analysis
methods for sentiment analysis. Further, this thesis will determine whether
CEO reputation is a predictor of stock price.



3 method 9

3 method

In this section, the LSTM model which was used for stock price prediction,
as well as McNemar’s test, which was used to determine the significance of
the LSTM results, will be explained. First recurrent neural network (RNN),
on which LSTM is based, will be introduced shortly.

3.1 Recurrent Neural Network and Short-Term Memory

What sets recurrent neural networks (RNN) apart from traditional neural
networks (NN) is that RNN allows information to persist. Previous infor-
mation might be connected to the present task, and traditional NNs are not
able to take this previous information into account. RNN uses previous
predictions as input for the present task and is thus able to use past infor-
mation to predict the future. Non-RNN models only use snapshots of the
information at time t to predict targets at time t + δ. These models ignore
sequential relations between time intervals Li, Wu, and Wang (2020).

RNN has a very short memory and can only learn short-term depen-
dencies (Cliche, 2017). Stock price prediction might require remembering
historic information from many predictions ago. This is where LSTM
comes in. LSTM networks are a kind of RNN that is capable of learning
long and short-term dependencies. The core concept of LSTM’s is the
cell state. Cell state acts as the memory of the network, in which past
predictions are saved. The cell state only carries relevant information.
Information gets added or removed to the cell state via gates. These gates
use sigmoid activation functions to map values between 0 and 1. There are
different gates in an LSTM; forget gate, input gate and output gate. These
gates are formally defined as (Cliche, 2017):

ft = σ
(
W f · xt + U f · ht−1 + b f

)
(1)

it = σ (Wi · xt + Ui · ht−1 + bi) (2)

ot = σ (Wo · xt + Uo · ht−1 + bo) (3)

ct = ft ◦ ct−1 + it ◦ tanh (Wc · xt + Uc · ht−1 + bc) (4)

ht = ot ◦ tanh(ct) (5)

where ft is the forget gate, it the input gate, ot the output gate, ct the cell
state, ht the prediction (regular hidden state), σ the sigmoid function, ◦ the
Hadamard product, and xt a matrix containing the sentiment polarity and
stock price. The parameter set {U f , Uj, Uo, Uc, W f , Wj, Wo, Wc} correspond
to the weight matrices of different gates and {b f , bj, bo, bc} corresponds to
the bias terms of the different gates (Cliche, 2017; Jin et al., 2019). At time
t, given the input vector xt, and the previous hidden state ht−1, the LSTM
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calculates the hidden state ht.
The forget gate decides which information is kept and which is for-

gotten (Phi, 2018). The previous hidden state and new information are
aggregated and passed through a sigmoid function. Values close to 1 are
kept and values close to 0 are forgotten. Figure 1 explains the workings of
the forget gate using diagram notation.

Figure 1: Graphical representation forget gate LSTM

The input gate updates the cell state (Phi, 2018). Again, the previous
hidden state and new information are aggregated and passed through a
sigmoid. These aggregated values are also passed through a tanh function.
The outputs of the sigmoid and tanh are multiplied. The sigmoid function
is used to distinguish important features from not important. Not impor-
tant values are close to 0, and thus is the product of sigmoid and tanh
close to 0. Figure 2 explains the workings of the input gate using diagram
notation.

Figure 2: Graphical representation input gate LSTM

The above two gates are needed to update the cell state. The forget
gate determines which information is kept, and the input gate updates the
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cell state. Figure 3 explains the process of updating the cell state using
diagram notation.

Figure 3: Graphical representation cell state update LSTM

The final step is the output gate. The output gate is used for new pre-
dictions (Phi, 2018). As noted above, LSTM uses new and past information
for predictions. First, the previous hidden state and new information are
passed through a sigmoid. Next, the updated cell state is passed through
a Tanh. Both outputs are multiplied and result in a prediction. Figure 4

explains the workings of the output gate using diagram notation.

Figure 4: Graphical representation output gate LSTM

3.2 McNemar’s Test

The McNemar’s test (McNemar, 1947) is used to determine whether in-
cluding sentiment, volume, or both, results in a statistically different LSTM
model. The idea is that by including sentiment, volume, or both, as a
variable, the model differently learns how to map inputs to output. The
McNemar’s test is used to test the above hypothesis and determine whether
the difference in models is statistically significant.

The McNemar’s test is a statistical test on a 2x2 classification table
(table 1) to determine whether there is a statistical difference between two
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Model 1 up Model 1 down Row total
Model 2 up a b a + b

Model 2 down c d c + d
Column total a + c b + d N

Table 1: McNemar’s classification table

models (Lu, 2010). It assumes dichotomous data, meaning that it requires
nominal data, or categorical data, of two classes. In this research the di-
chotomous data are the trend predictions of the LSTM model, being up
and down. McNemar’s test does not require the two classes to be from
different samples, as many other statistical tests do. Rather it is used to
test the statistical difference of two models on the same set of data.

The null hypothesis is that two models are the same, or rather the
probability of each model’s outcome is the same. The alternative hypothesis
is that two models are different, or rather that the probability of each
model’s outcome is different. More formally:

pa + pb = pa + pc (6)

pb + pd = pc + pd (7)

H0 : pb = pc (8)

H1 : pb 6= pc (9)

The McNemar’s test is defined as:

X2 =
(b− c)2

b + c
(10)

Given that b and c are sufficiently large (b + c > 25), X2 has a chi-
squared distribution with 1 degree of freedom. If X2 is sufficiently large,
the null hypothesis can be rejected with confidence level a, and the two
models are statistically different with confidence level a. In this research a
is taken to be 95%. To reject the null hypothesis with 95% confidence a X2

score of 3.841 or higher is needed.
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4 sentiment analysis

In this section sentiment analysis, the current STOA sentiment analysis
methods, and ensemble learning will be explained

4.1 Background

Sentiment analysis, or opinion mining, is the field of finding the opinion of
an author about specific entities, through self-automated tools (Chaudhuri,
2019; Feldman, 2013). An entity can be any noun, like persons, events, and
topics. The objective of sentiment analysis is to classify whether an opinion
is positive, negative, or neutral (Chandrakala & Sindhu, 2012; Pang & Lee,
2008).

An opinion can be mined on document-level, sentence-level or entity-
level (Dey, Sarddar, Sarkar, Bose, & Roy, n.d.; B. Liu, 2012; Pozzi, Fersini,
Messina, & Liu, 2016). In document-level analysis an entire document
is analysed, and a single opinion is extracted on a single entity. The
entire document is either positive, negative, or neutral regarding this entity.
Sentence-level analysis aims to identify the sentiment of every sentence
(Medhat, Hassan, & Korashy, 2014). Sentence-level analysis assumes that
every sentence, that does contain a sentiment, is targeted at a single entity.
The result is a number of sentiments, equal to or smaller than the number
of sentences, on a variety of entities. In entity-level analysis, every opinion
regarding every entity in a document is identified. The idea is that every
opinion is paired with an entity. Within a single sentence, there can be
multiple opinions and multiple entities. For example, the sentence “That
book on opinion mining was great, but the binding was poor.” contains
an opinion regarding the content and the binding. The content quality is
positive, but the binding quality is poor. Entity-level analysis identifies all
of the opinion and entity combinations, whereas sentence and document-
level analysis aggregate the opinions and assigns it to a single entity.
This thesis deals with document-level sentiment analysis; determining the
overall sentiment of a tweet regarding a CEO.

The most popular methods for sentiment analysis are ML methods. ML
methods often use supervised classification, meaning that a classifier is
trained on labelled data. Sentiment can be expressed as positive, negative,
or neutral, resulting in a three-class classification problem. After training
the classifier, it can be used on new, unseen data in the hopes that it
generalizes well. The most powerful ML methods are deep learning (DL)
methods.

DL, a division of ML, is based on artificial neural networks. DL methods
can process raw data and automatically discover the representations needed
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for classification (LeCun, Bengio, & Hinton, 2015). Raw data is fed into
an input layer, which then uses a non-linear transformation to transform
the data into a more abstract level. The next layer uses this non-linear
transformation as its input layer and again transforms this. Given enough
layers, very complex functions can be learned.

The sentiment of a word largely depends on the domain and context in
which it exists (A. Das & Gambäck, 2012; Thelwall & Buckley, 2013). By
not taking the context and domain into account words that on their own
do not bear sentiment, but in the larger domain do, can be overlooked.
A word can also have different meanings depending on the context. DL
methods are the only methods that can distinguish different meanings for
the same word. It accomplishes this using word embeddings.

Word embeddings were first introduced by Collobert and Weston (2008).
It was not until 2013, however, that word embeddings became popular
when Mikolov, Chen, Corrado, and Dean (2013) created the word2vec
model. Word embeddings create vector representations of words, where
similar words are closely located in a pre-defined feature space. The idea
is that similar words often occur in a similar context. The most popular
methods for word embeddings are word2vec and GloVe (Pennington,
Socher, & Manning, 2014).

Glove and word2vec are first-generation pre-trained models (PTMs).
A downside of these first-generation PTMs is that they operate on word-
level. Second-generation PTMs, like BERT, XLNet, and T5 can analyse
entire sentences, making them handle context better. These models use the
Transformer architecture (Qiu et al., 2020; Vaswani et al., 2017).

4.2 Transformer

Transformer uses an encoder-decoder structure (Bahdanau, Cho, & Bengio,
2014; Cho et al., 2014) with attention mechanism. The encoder transforms
a variable input sequence into a fixed-length sequence z of vector repre-
sentations. This vector representation contains contextual meaning and
positional information. The decoder takes z as its input and generates an
output. Each step is auto-regressive, meaning that the previously generated
output is added to the current input (Graves, 2013). The main component
of Transformer is the Multi-Headed Attention (MHA) mechanism.

The MHA is composed of N attention mechanisms. The attention
mechanism was first proposed by Bahdanau et al. (2014). It learns how
each word is related to all other words in the input, whilst maintaining
context. The idea is that not all words in a sentence are as informative.
Some words hold more information than others. The attention mechanism
tries to capture this property that some words hold more information.
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It assigns weights to the input words, where the most important words
receive a higher weight.

The current STOA sentiment analysis methods are all based on the
encoder part of Transformer and discussed in the next section. All these
models have been trained on an extremely large corpus to gain a general
understanding of language. They differ in how they obtain this general
understanding. The models are compared based on their accuracies on the
SST-2 dataset, which is part of the GLUE benchmark.

4.3 Sentiment Analysis Transformer Models

Devlin, Chang, Lee, and Toutanova (2018) introduced BERT (Bidirectional
Encoder Representations from Transformers). BERT uses the encoder part
of Transformer to take in entire sentences. BERT was trained using Masked
Language Modeling (MLM) to learn dependencies among words, as well
as next sentence prediction (NSP) to learn relationships between sentences.
MLM randomly masks words in a sentence. The idea is that BERT predicts
these masked words by looking at all other words in the sentence. Masked
words are replaced by a [MASK] token. This token creates a mismatch be-
tween training and implementation since real-world examples do not carry
such tokens. To overcome this, 80% of the masked words is replaced with
[MASK] token, 10% with a random token and 10% is left unchanged. NSP
comes down to predicting whether sentence B follows sentence A. Two
random sentences are chosen from a corpus and BERT decides whether B
follows A, which is the case 50% of the time. Using MLM and NSP, BERT
was able to get a better understanding of language than any other model
at the time. BERT attained an accuracy of 94.9% on SST-2, being the top
score when introduced.

Lan et al. (2019) introduced ALBERT (A Lite BERT). A downside of
BERT is its size and thus computational cost. Lan et al. tried to find
a solution to decrease the computational cost, whilst maintaining per-
formance. To accomplish this ALBERT incorporates two techniques to
reduce complexity: factorized embedding parameterization and cross-layer
parameter sharing. ALBERT factorizes the parameters of the word embed-
dings. Factorization splits the original embedding matrix into input-level
embeddings (size E) and hidden-layer embeddings (size H). E captures
context-independent information and H captures context-dependent in-
formation. In BERT E = H. Since the goal is to learn context-dependent
representations, Lan et al. argue that H is more important and should be
larger than E. Taking a vocabulary size V, the total number of parameters
of BERT is O(V · H = E). For ALBERT this is O(V · E + V · H). Having
H >> E reduces the total number of parameters significantly. Cross-layer
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parameter sharing enables sharing parameters from previous layers in
layers blocks. ALBERT shares all parameters across all layers, resulting in
a massive decrease of parameters. Besides the complexity reduction tech-
niques, ALBERT also uses sentence-order prediction (SOP). BERT’s NSP
proved to be ineffective since it ends up focusing more on topic prediction
rather than coherence. With SOP two consecutive sentences are taken from
a corpus and segments from these sentences are swapped. ALBERT needs
to determine whether parts of a sentence are swapped or not. Ultimately
ALBERT attained an accuracy of 93.4%, being slightly lower than BERT,
but with eighteen times fewer parameters.

XLNet (Yang et al., 2019) uses permutation language modelling (PLM)
to overcome some of the shortcomings of BERT. BERT corrupts its input
using [MASK] tokens, which creates discrepancy in real-world applica-
tions. Further, it neglects dependencies between masked positions. BERT
acknowledged the downside of masking but did not find a real solution.
PLM predicts the probability of a word using a sample of the permutations
of all other words in a sentence. Permutations are all the possible orders
of words. Given a sentence of length T, there are T! permutations. For a
sentence x, permutation z is being sampled one at a time to compute the
likelihood pθ(xt). The parameter θ is shared across all permutations and
thus, in expectation, xt should be conditioned on every possible element in
x. Using PLM XLNet overcomes the shortcomings of masking. XLNet is
also able to overcome BERT’s shortcoming of neglecting dependencies be-
tween masked positions since it is conditioned on all positions. Ultimately
XLNet attained an accuracy of 97.1% on SST-2.

Li and Fourches (2020) created RoBERTa (Robustly optimized BERT
pretraining approach), an improved version of BERT. Li and Fourches
concluded that BERT was significantly undertrained. RoBERTa is based
on the same architecture as BERT, but uses more training data and better
parameter settings. Li and Fourches, just as Lan et al. (2019) note that NSP
does not perform as expected. They decided to remove the NSP objective
altogether. Eventually optimizing the parameters over more training data
resulted in an accuracy of 96.7% on SST-2.

DeBERTa (He, Liu, Gao, & Chen, 2020) differs from BERT in two novel
ways. First DeBERTa uses disentangled attention. Each word in DeBERTa
is represented by two vectors, one for its content and one for the position.
This is unlike BERT which uses one vector, composed of the sum of content
and position. By using two vectors, the attention weights among words can
be computed with better accuracy, since the attention weight of a word pair
depends not only on their contents but also on their position. DeBERTa
better captures this positional information, resulting in a better attention
mechanism. Second, DeBERTa uses enhanced mask decoder. Like BERT,
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DeBERTa uses MLM. He et al. (2020) argue that a word largely depends on
its absolute position in a sentence. Two similar words may belong at differ-
ent parts of a sentence. To account for this absolute position requirement,
DeBERTa incorporates absolute word position embeddings right before
decoding the masked words. Using these changes, DeBERTa managed to
obtain an accuracy of 97.5% on SST-2.

T5 (Text-to-Text Transfer Transformer), developed by Raffel et al. (2019)
takes text as an input and produces text as an output, regardless of the
task. By viewing every task as a text-to-text framework, the same model,
hyperparameters, and loss function can be used for all tasks. A specific
task prefix is added to the input so that the model knows what to do. For
multilabel classification, for example, the prefix “Multilabel-classification”
is added. T5 uses MLM to learn dependencies. To speed up training it
replaces multiple words with a single masking token. The objective of T5

is to predict this short sequences of masked words. Ultimately, T5 attained
an accuracy of 97.5% on SST-2.

ELECTRA (Clark, Luong, Le, & Manning, 2020) differs from BERT only
in how it corrupts its input to learn word dependencies. Instead of MLM,
inputs are corrupted by replacing words with plausible alternatives. ELEC-
TRA is trained to determine whether each word in a sentence is corrupted
or not. This method is more efficient than MLM, since it incorporates all
inputs rather than only the masked tokens. Using this method ELECTRA
managed to obtain an accuracy of 97.1% on SST-2.

4.4 Ensemble Learning

Ensemble learning combines multiple models into a single predictor. The
idea behind ensemble is that many know more than one. Simple techniques
like majority vote and weighted average exist, but also more advanced
like stacking, boosting, and bagging (Sewell, 2008). Stacking means using
the predictions of multiple classifiers as inputs for a new meta-classifier.
The relationships between inputs and outputs in stacking are often not as
complex, since the input already contains processed information in the
form of probabilities. Therefore, simple models like logistic regression,
decision-tree, or SVM perform well (Pavlyshenko, 2018).

Boosting (Freund & Schapire, 1997) involves converting weak models
into stronger ones to remove bias. Homogenous models are created se-
quentially and try to overcome the weaknesses of their predecessors (An &
Kim, 2010). The most popular boosting algorithms are AdaBoost, CatBoost,
lightGBM, XGBoost and gradient boosting (Rahman et al., 2020). The basic
idea is the same for all models; create a homogeneous classifier, build on
the errors of its predecessors, and combine the results to minimize loss.
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Bagging (Breiman, 1996) creates multiple independent homogeneous
models, each on a different subset of the data. The most popular way of
creating subsets is using bootstrap aggregation (Dietterich, 2000). Here m
examples are randomly drawn from the training data with replacement.
By using random samples multiple independent models are created which
combined results in lower variance.
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5 methodology

This section discusses the proposed scheme of this research. Figure 5 gives
an overview of all the steps taken in this research. First various sentiment
classifiers were created and compared. Next the gathered tweets on the
CEOs were analysed and finally this information was used to predict stock
price.

Figure 5: Research workflow

5.1 Datasets

The datasets used in the research are explained below.

1. Labelled training and test dataset to train the sentiment classifiers
and evaluate their performance. The datasets from the SemEval-2017

challenge were used for both training and testing. The training set
is an aggregation of earlier versions of the SemEval, consisting of
50,063 labelled instances, of which 45% is neutral, 40% positive and
15% negative. The test set contains 11,907 instances.

2. Twitter data on CEOs from 2017 to 2020. This data was gathered
using Twint, a Python module that allows mining of Twitter data
without limit. The CEOs Twitter username, as well as their full names,
were used as keywords when mining tweets. CEOs from the top
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eight S&P 500 companies were analysed. Figure 6 shows an overview
of the CEOs and the number of acquired tweets. Elon Musk (Tesla),
was excluded from this research due to the enormous amount of
internet traffic he receives, which due to lack of computational power
was impossible to analyse.

3. Daily financial stock data on the organizations of the relative CEO’s,
provided by Yahoo Finance from 2017 to 2020. The data consists of
the stocks daily closing price. 2017 till 2019 was used as training data,
and 2020 as testing data.

Figure 6: Average acquired daily number of tweets per CEO

5.2 Sentiment Analysis

5.2.1 Preprocessing

Data preprocessing is a necessary step for any NLP task and is done to
reduce noise, remove uninformative information and improve classification
accuracy (Asghar, Khan, Ahmad, & Kundi, 2014; Haddi, Liu, & Shi, 2013).
Since language on Twitter is very informal and often contains abbrevi-
ators, misspellings, slang, links, and special characters, Twitter-specific
techniques, as well as regular NLP techniques, are needed to clean the
data (Smailović, 2015). Singh and Kumari (2016) investigated which pre-
processing steps work best for sentiment analysis and ultimately created a
pipeline of steps. Baziotis et al. (2017) created a preprocessing tool for their
submission at SemEval-2017. They used many of the same steps as Singh
and Kumari, but instead of removing special characters, they replaced them
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with special tokens like <hashtag>. To determine the best preprocessing
method, both methods were compared using XLNet. Average recall using
no preprocessing was used as a baseline. The results are listed in Table 2.
Using the preprocessing steps by Baziotis et al. increased average recall by
2.1%, whereas the method by Singh and Kumari decreased average recall
by 10.2% over the baseline.

Method Unprocessed Singh and Kumari (2016) Baziotis et al. (2017)
Average recall 0.700 0.628 0.715

Table 2: Average recall of different preprocessing techniques

5.2.2 Fine-tuning Transformer models

All the models mentioned in Section 4.3 are not trained for specific tasks,
but rather to have a general understanding of language. To maximize
their performance, these models need to be finetuned (Qiu et al., 2020).
There are different approaches for finetuning: (i) retrain or update the
entire model (all parameters), (ii) freeze part of the model and only update
another part and (iii) freeze the entire model. In all cases finetuning is
done by adding additional NN layer(s) on top of the model, which learn
how to map inputs to outputs. A labelled dataset is required to update the
NN parameters via an optimizer which minimizes the loss function.

Parameters of the NN are assigned randomly. Pre-training is done to
better initialize the NN parameters (Alt, Hübner, & Hennig, 2019). When
finetuning, a very small learning rate should be used to avoid overfitting
(Mosbach, Andriushchenko, & Klakow, 2020). The most used method is
to freeze all layers for pretraining and unfreeze them for finetuning. This
method is also used in this research. The pre-training parameters can be
found in Table 3. These parameters are based on the original papers. For
finetuning a slightly lower learning rate provided better results. All other
parameters were kept the same.

Parameters BERT ALBERT RoBERTa DeBERTa ELECTRA XLNET T5
Dropout rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Learning rates 1e−5 1e−5 2e−4 2e−4 1e−5 2e−5 1e−3

Weight decay 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Learning rate decay linear linear linear linear linear linear linear
Adam e 1e−6 1e−6 1e−6 1e−6 1e−6 1e−6 Adafactor
Adam b1 0.9 0.9 0.9 0.9 0.9
Adam b2 0.999 0.999 0.999 0.999 0.999

Table 3: Pretraining parameters for Transformer models



5 methodology 22

5.2.3 Sentiment analysis results

All models mentioned in Section 4.3 were tested, as well as Cardiff, which
is a RoBERTa model trained on Twitter data. The models were compared
on their average recall, as determined by the organizers of SemEval-2017

(Rosenthal, Farra, & Nakov, 2017). The highest score of the SemEval-2017

was used as a baseline. This score is 0.681 by Baziotis et al. (2017). The
models are also compared to the model by Azzouza, Akli-Astouati, and
Ibrahim (2019), who obtained an F1-score of 0.718.

In line with Dodge et al. (2020), various seeds were tested since the
initialization of the weights is of great influence on the final performance.
This thesis followed their proposed method of trying many models, early
stop the majority and continue with the most promising ones. Ten random
seeds were selected and trained for one epoch. The top three best perform-
ing models were then fully finetuned. The difference between seeds was as
large as 9%. Due to computational limitations, only ten seeds were tried.
The highest score per model is listed in Table 4.

Metric BERT ALBERT RoBERTa DeBERTa ELECTRA XLNET T5 Cardiff
Average recall 0.683 0.695 0.712 0.699 0.715 0.720 0.702 0.719

F1-score 0.678 0.692 0.699 0.689 0.686 0.708 0.689 0.702

Table 4: Accuracies on SemEval-2017

The outputs of the individual models were used in the various ensemble
techniques explained in Section 4.4. The outputs are probability scores of
whether a tweet is positive, negative, or neutral. For stacking, boosting,
and bagging decision tree, logistic regression and SVM were tested as weak
learners with varying hyperparameters. The highest obtained scores are
listed in Table 5.

Metric Stacking Bagging Boosting Majority
vote

Weighted
vote

Average recall 0.713 0.711 0.708 0.727 0.731

F1-score 0.710 0.708 0.709 0.719 0.723

Table 5: Ensemble accuracies on SemEval-2017

5.3 Stock price prediction

The gathered tweets on the CEOs were preprocessed using the method
by Baziotis et al. (2017). ELECTRA was used as the model to generate
sentiment predictions, as it obtained the highest F1-score of any standalone
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Name Meaning
MA10 10-day simple moving average
MA20 20-day simple moving average
MA50 50-day moving average

Diff Difference EMA12, EMA26

DEA 9-day exponential moving average of DIFF
RSI6 6-day relative strength index

RSI12 12-day relative strength index
RSI24 24-day relative strength index

Table 6: Technical indicators

model. The additional performance of weighted vote ensemble does not
outweigh its computational cost and was thus not used.

Stocks are only traded on weekdays, but any new information from the
weekend might still be of influence on Monday’s price. Monday’s polarity
score is therefore the weighted average of Saturday, Sunday, and Monday.
In line with Ko and Chang (2021) the percentage of positive and negative
tweets are used as sentiment scores. The total daily number of tweets,
referred to as volume, was also used as an input to determine whether this
is an indicator of stock price trend.

Positive score =
Number of positive tweets

Total number of tweets
(11)

Negative score =
Number of negative tweets

Total number of tweets
(12)

The goal of this thesis was to predict stock price trend. To do so, prior
day’s prices, sentiment scores, Twitter volume, and technical indicators
were used as inputs. Bollen et al. (2011) found a delay between Twitter
sentiment and its reflection in stock price. Therefore, various delays, rang-
ing from 0 to 5 days, for sentiment scores and volume were tested. More
formally, sentiment on day t−x was used as a predictor at day t to predict
stock price for day t + 1.

Li et al. (2020) included technical indicators in their LSTM-model, boost-
ing model performance. Technical indicators reflect trends or fluctuations
of the market. The names and meanings of the technical indicators are
shown in Table 6.
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Simple moving average (SMA) is defined as:

SMAN =
1
N

k

∑
t−n:t

Pt (13)

where N is the number of periods considered, t is the current date and
Pt is the price at date t. In SMA all observations are weighted equally,
meaning that it assumes all observations are equally representative of the
future (Ellis & Parbery, 2005).

Exponential moving average (EMA) is defined as:

EMA = Pt · k + EMAt−1 · (1− k) (14)

where k = 2
N+1 . EMA, unlike SMA, emphasizes recent observations more.

It assumes that more recent observations are more representative of the
future. The more recent an observation, the higher the weight it receives.

Relative strength index (RSI) is defined as:

RSIN = 100−

 100

1 + Average loss
Average gain

 (15)

RSI measures how fast and how much prices change. Higher levels of RSI
indicate that a stock is overbought and lower levels that it is oversold.

Since each feature value’s range is diverse, the descending path of the
optimizer is more tortuous and convergence of the model is harder (Wu &
Zhao, 2020). To facilitate easier convergence, all features are normalized
using z-score, defined as:

z =
x− µ

σ
(16)

where x is the observation, µ the mean and σ the standard deviation.

5.3.1 LSTM model

The LSTM architecture of this thesis is based on that of Li et al. (2020).
The architecture consists of an input layer, two LSTM layers, two dropout
layers, and a dense prediction layer (Figure 7). The input layer receives the
raw data and feeds it into the LSTM layer. The LSTM layer learns how to
map the inputs to outputs. The dropout layer is added to avoid overfitting
by preventing co-adaptation between units (Srivastava, Hinton, Krizhevsky,
Sutskever, & Salakhutdinov, 2014). The Dense layer returns the predicted
stock price based on the input variables, the computed weights, and bias
term.

Mean squared error (MSE) was used as the loss function to calculate
prediction errors and optimize hyperparameter settings. Even though the
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Figure 7: LSTM architecture

goal was stock price trend prediction, which is a classification problem,
MSE, which is used for regression optimization, was used. When training
the model in a classification setting, the model ended up not learning
anything most of the time and simply predicted the majority class. The
model was often unable to map inputs to outputs in a way that improved
accuracy over predicting the majority class. This is likely due to the random
nature of stock prices. Training the model in a regression setting forced
the model to predict a value and thus learn how to map inputs to outputs,
even when this led to worse performance. This allowed comparison across
all created models on their performance. MSE is defined as:

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2
(17)

where n is the number of datapoints, Yi the actual values and Ŷi the
predicted values. To use the outputs for trend prediction, any predicted
values that are higher than their actual value are classified as “up” and
any predicted values that are lower than their actual value are classified as
“down”:

Classification =

{
Up if Yi < Ŷi
Down if Yi > Ŷi

(18)

Adam (Kingma & Ba, 2014) was used as the optimizer for the LSTM.
Adam was chosen because it is computationally efficient, requires little
tuning and works well for DL problems (Jais, Ismail, & Nisa, 2019; Kingma
& Ba, 2014). An important parameter is the learning rate. Larger learning
rates will make the loss function converge faster towards a local minimum,
but have a harder time achieving optimality due to the larger steps. Smaller
learning rates will take longer to converge but may result in a more optimal
set of weights. When the learning rate is too small, the model may get
stuck in a local minimum and achieve suboptimal result.

An often-used approach is to lower the learning rate as training evolves.
Adam finds optimal learning rates for each weight in the network, thereby
not requiring the above (Kingma & Ba, 2014). The hyperparameter learning
rate λ is the maximum value that the individual weights can receive. Every
weight can be updated using a learning varying from 0 (no update) to λ
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Figure 8: Effect learning rate on loss

Hyperparameter Settings
Hidden layer size 20, 50, 100, 200

Dropout rate 0.1, 0.2, 0.3
Window size 5, 10, 30, 50

Learning rate 1e−5, 5e−6

Table 7: LSTM hyperparameter settings

(maximal update). To determine the best learning rate various learning
rates were tested and their performances were compared. Figure 8 shows
an overview of the validation loss over 100 epochs. Ultimately a learning
rate of 1e−5 and 5e−6 were tested as they gave the best results and have a
nice smooth curve, which is indicative of a good model.

Various hyperparameters of LSTM were tested, namely the number
of hidden layers, dropout rate, random seed, and window size, all other
parameters were set to default. Window size refers to the number of past
observations that are used to predict the future. Using a window of size w,
prediction at time t is based on inputs from t−w till t−1. Table 7 shows the
tested hyperparameter settings. All combinations of these hyperparameters
were tested.

In line with Dodge et al. (2020) were all hyperparameter settings were
trained for 25 epochs. The top three performing models were trained again,
but for 50 epochs. Figure 8 shows that after 50 epochs the model has
already converged close to its optimum. Ultimately, the best performing
model was trained for 1000 epochs with early stopping and checkpoints.
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For the final run, the training and validation set were concatenated
to have more training data. Early stopping was used to avoid overfitting,
potentially improving performance, and speed up training (Prechelt, 1998).
Whenever the loss function did not decrease for 50 consecutive epochs, the
training was terminated. Checkpoints were used to keep track of the best
performing epoch. Whenever the current validation loss was lower than
the previous best performing epoch, the checkpoint was updated. This
makes sure that the best performing settings are used.

All combinations of possible inputs were tested to determine which
worked best for which stock. All models were compared on their accuracy
in predicting stock price trend.

Accuracy in this case means the number of times the predicted trend
matched the actual trend over the number of trading days.

Accuracy =
Number of times predicted trend = actual trend

Number of trading days
(19)

Besides the accuracy, return on investment was used as an evaluation
metric, just like Picasso et al. (2019) did. Starting with a hypothetical
portfolio of $1000, daily trend predictions were generated using the top
performing LSTM model for each stock. When the model predicted up,
shares were bought/kept. When the model predicted down, shares were
sold/cash is kept. Return is defined as:

Returnt =
Valuet −Valuet=0

Valuet=0
· 100% (20)
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6 results

This section discusses the results from the LSTM predictions on 2020 stock
data.

6.1 Baseline

The baseline was computed by testing all combinations of past prices and
technical indicators as inputs in the LSTM. Table 8 shows the highest
obtained accuracy per stock, as well as the majority vote accuracy. The
majority vote represents the accuracy when always predicting that the
price goes up.

When using majority vote, the average accuracy is 53.95%, and when
including past prices and technical indicators as variables, the average
accuracy is 59.29%. All stocks see an increase in accuracy when using any
combination of past prices and technical indicators as inputs. The baseline
for further comparison is the average accuracy of 59.29%.

Variables Amazon Apple Google JP Mor-
gan

Facebook Microsoft Berkshire
Hathaway

Majority vote accu-
racy

55.21 54.62 55.81 50.44 53.43 56.11 53.03

Highest accuracy
without sentiment

55.32 59.68 62.06 58.10 61.26 59.29 59.29

Table 8: Baseline accuracy per stock

6.2 LSTM Results

Table 9 shows the highest accuracies per stock when including sentiment
and/or volume as a variable. Again, all possible combinations of inputs
were tested. Appendix A (page 44) shows the obtained accuracies for all
combinations. The highest accuracy per stock using only sentiment as
additional variable, only volume as additional variable, and using both
sentiment and volume as additional variables are reported.

When including sentiment as a variable, the average accuracy is 59.74%.
When including volume, the average accuracy is 59.31%. When including
both sentiment and volume, the average accuracy is 59.67%. On average,
including sentiment, volume, or both, boosts model performance and beats
the baseline. Using the best performing settings for each stock, the average
accuracy increases to 60.47%.
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Variables Amazon Apple Google JP Morgan Facebook Microsoft Berkshire
Hathaway

Sentiment 57.31 60.87 60.47 56.52 63.24 59.69 60.08

Volume 57.70 60.24 59.68 59.68 61.66 58.50 57.71

Sentiment +
volume

57.71 60.87 60.01 56.13 62.85 58.50 61.66

Table 9: Accuracy per stock including sentiment, volume or both

To determine whether there is a delay between Twitter information
and its reflection in stock price, the top performing settings for each stock
were used, with a delay interval from zero to five days for sentiment scores
and volume. Table 10 gives an overview of the accuracies per stock using
the various time intervals. When including a possible delay, the average
accuracy increased to 61,86%.

Delay
(days)

Amazon Apple Google JP Morgan Facebook Microsoft Berkshire
Hathaway

0 57.71 60.87 60.47 59.68 63.24 59.69 61.66

1 54.54 60.87 59.29 58.89 60.08 58.50 63.63
2 55.73 61.66 59.29 58.98 59.68 55.73 58.50

3 59.68 61.66 60.47 58.89 58.50 57.70 62.85

4 54.54 60.47 61.66 56.92 60.08 61.26 56.12

5 55.34 61.66 61.26 58.50 59.29 59.29 54.54

Table 10: Accuracy per stock accounting for delay

On average, including daily sentiment scores and/or volume as vari-
ables, and accounting for a delay, the accuracy increased by 2.57% over the
baseline accuracy.

The best performing settings for every model, including possible delay,
were used to predict stock price trend predictions. These predictions were
then used to trade using a hypothetical portfolio of 1000 dollars. When the
model predicted up, shares were bought/kept. When the model predicted
down, shares were sold/cash was kept. Table 11 shows how much a 1000

dollars of a certain stock on January 1st, 2020, was worth on December
31st, 2020, when not trading at all, when trading conform the baseline
LSTM prediction, and when trading conform the best performing LSTM
predictions.

The average return when holding a stock from January 1st, 2020, till
December 31st, 2020, is 33.83%. When trading conform the baseline LSTM
predictions the average return increased to 124.98%. When trading conform
the best performing LSTM predictions, all stocks, but Google and Facebook,
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Price Amazon Apple Google JP Morgan Facebook Microsoft Berkshire
Hathaway

No trading 1715.97 1767.14 1281.20 900.63 1302.12 1384.76 1016.23

Baseline
LSTM

1870.86 3004.33 2241.66 1818.24 2866.15 2275.07 1672.47

Best LSTM 2265.97 3330.90 2134.65 1875.82 2823.71 2443.61 1914.89

Table 11: Portfolio value on December 31st after investing $1000 on January 1st

2020

saw an increase in return over the baseline, and the average return increased
to 139.85%.

6.3 McNemar’s Test

McNemar’s test was used to test whether the predictions of an LSTM with
sentiment, volume, or both, is significantly different from one without,
and thus whether the LSTM with sentiment, volume, or both, learns how
to map inputs to output differently, with confidence level a. Here a is
taken to be 95%. The baseline model is an LSTM including past prices and
technical indicators. When there was an observed delay this delay was
also implemented when conducting the McNemar’s test. The McNemar’s
test proved to be volatile, therefore the average score over 10 runs was
computed.

The Chi-square scores, their standard deviation, and corresponding p-
values for including sentiment are listed in Table 12, for including volume
in Table 13, and for including both in Table 14. Only Microsoft experiences
a statistically different model when including sentiment, volume, or both,
but it has a high standard deviation.

Assuming that the McNemar’s scores are normally distributed around
the mean, a 95% confidence interval for the distribution of the mean can
be computed. A 95% confidence lower bound and upper bound can be
calculated by:

Upper Bound = mean + 1.96 · standard deviation (21)

Lower Bound = mean− 1.96 · standard deviation (22)

When doing so for Microsoft, a 95% confidence interval for McNemar’s
score including sentiment is [1.967 , 14.979], including volume is [4.099

, 28.489], and including both is [-5.469 , 17.925]. Only for volume is the
lower bound high enough to accommodate a statistically significant model.
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McNemar’s
sentiment

Amazon Apple Google JP Morgan Facebook Microsoft Berkshire
Hathaway

Mean
Chi-square

2.883 1.203 0.661 0.248 0.366 8.474 0.396

St. dev.
Chi-square

2.526 1.849 0.645 0.372 0.286 3.319 0.275

P-value 0.089 0.273 0.416 0.619 0.545 0.004
∗

0.529

Table 12: McNemar’s test influence sentiment

McNemar’s
volume

Amazon Apple Google JP Morgan Facebook Microsoft Berkshire
Hathaway

Mean
Chi-square

0.753 2.770 0.829 1.059 0.575 16.294 0.152

St. dev.
Chi-square

0.705 2.145 0.604 1.389 0.672 6.222 0.138

P-value
volume

0.386 0.096 0.363 0.303 0.448 0.000
∗

0.697

Table 13: McNemar’s test influence volume

McNemar’s
sentiment

and volume

Amazon Apple Google JP Morgan Facebook Microsoft Berkshire
Hathaway

Mean
Chi-square

2.471 2.447 0.654 0.294 0.331 6.228 0.158

St. dev.
Chi-square

1.387 3.138 0.461 0.302 0.351 5.968 0.144

P-value 0.116 0.118 0.419 0.588 0.565 0.013
∗

0.691

Table 14: McNemar’s test influence sentiment and volume
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7 discussion

The goal of this research was to predict stock price trend using CEO
reputation. To determine CEO reputation sentiment analysis on Twitter
data was performed.

7.1 Sentiment Analysis

Sentiment analysis was performed using ELECTRA, which was the best
performing model out of the ones compared in 4.3. ELECTRA beat the
baseline score of Baziotis et al. (2017) by 5.73%. It did not, however, beat the
f1-score by Azzouza et al. (2019) of 0.718. This is likely because Azzouza
et al. trained BERT on Twitter data and used the large version of BERT.
Cardiff shows that training on Twitter data increases model performance.
All compared models were trained by the original authors on extremely
large datasets (Wikipedia, BooksCorpus, C4), but not Twitter data. Further,
all authors of the compared models found that the larger the model, the
better it performs. Due to computational limitations, only the base versions
of all models were used.

This research did not perform an extensive hyperparameter search due
to computational limitations. The settings proposed by the original authors
were used. These settings were not specifically designed for Twitter sen-
timent analysis. Trying out various settings for all hyperparameters may
boost model performance, but it very computational expensive. Besides
parameter tuning, trying more seeds may boost performance further. A
variation in average recall score of as large as 9% was found between differ-
ent seeds. Testing more seeds may further boost performance. This, again,
is computationally expensive. Many of the best performing sentiment
analysis models, as determined on the SST-2 dataset, were tested in this
research. The best performing model, ERNIE 2.0, however, was not due
to lack of extensive documentation. Testing more of the top performing
models, including ERNIE 2.0, could result in a better model for Twitter
sentiment analysis.

The outputs of the individual models from Section 4.3 were also used
in the various ensemble techniques explained in Section 4.4. The outputs
consisted of the probability scores of a tweet being positive, negative, or
neutral. Bagging, boosting, and stacking did not lead to an increase in
performance. These methods are designed to combine multiple weak
models into a stronger model. In this research, the individual models are
already very powerful, and bagging and boosting were not able to increase
performance further. Bagging and boosting are normally trained on raw
data, and not probability outputs. This may be a reason why bagging and
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boosting did not lead to an increase in performance.
Unlike bagging and boosting, stacking is designed to use the outputs

of various individual models as inputs to create a better model. In this
research, stacking did not lead to an increase in performance. This means
that the probability outputs of the individual models did not contain
enough information to better predict sentiment when used in stacking.

Majority vote and weighted average over all individual models did
increase performance. Ultimately weighted average performed best with
an average recall of 0.731, beating the score of Baziotis et al. by 7.3%.
Weighted average also obtained an f1-score of 0.723, beating the f1-score
by Azzouza et al. by 0.70%.

7.2 Stock Price Prediction

ELECTRA was used to generate Twitter sentiment predictions on the gath-
ered tweets. The predicted sentiment was then used in an LSTM model to
predict stock price. Besides sentiment, the daily number of tweets was also
included as a possible variable, as it may be related to the daily sentiment.
The average baseline accuracy, which was computed using an LSTM with-
out sentiment, or volume, was 59.29%.

When including sentiment as a predictor, average accuracy increased
by 0.45% over the baseline. All stocks, but Google and JP Morgan saw an
increase in accuracy when including sentiment as a variable. To determine
whether this increase in accuracy was not due to chance, a McNemar’s test
was conducted. The average McNemar’s score over ten runs was computed
to offset some of the variance. When including sentiment only Microsoft
ended up with a statistically significant different LSTM model. Due to
the high standard deviation in McNemar’s scores, it can, however,not be
definitively concluded that sentiment leads to a statistically different model
for Microsoft, since the 95% confidence lower bound does not achieve a
statistically significant McNemar’s score.

When including volume as a predictor, average accuracy increased
by 0.02% over the baseline. Amazon, Apple, Facebook, and JP Morgan
were the only stocks who did see an increase in accuracy when including
volume. Again, a McNemar’s test was conducted to determine whether
volume led to a statistically different LSTM. Only Microsoft ended up with
a statistically significant different LSTM model, and this time the 95% lower
bound was still statistically significant. Microsoft, however, did not see
an increase in performance, thus even though the model was statistically
different, and thus learned how to map inputs to outputs differently when
including volume, it was not better.

When including both sentiment and volume as variables, average accu-
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racy increased by 0.38% over the baseline. This time Amazon, Facebook,
Apple, and Berkshire Hathaway were the only models that did see an
increase in accuracy. Again, Microsoft was the only model to end up with
a statistically significant McNemar’s score, but not after accounting for the
standard deviation.

Using the best performing settings for each stock, including a possi-
ble delay between Twitter information and its reflection in stock price,
all stocks, but Google, saw an increase in accuracy. The average accu-
racy increased to 61.86%, a 2.57% increase over the baseline. Using these
best performing LSTM settings, the average return was 139.85%, which
is significantly higher than the 80% return of Picasso et al. (2019). Direct
comparison to the result of Picasso et al. is difficult due to the difference
in time frames. Nontheless, including Twitter information does lead to a
substantial increase in return.

7.3 Limitations

This thesis assumed that twitter CEO reputation could be measured using
sentiment analysis on Twitter data. There is no proof that CEO reputation
can be measured using sentiment analysis. Reputation is a very abstract.
It describes the feelings of a large public regarding someone. It is only
possible to approximate the feelings of this large public using automated
means, there is no guarantee that the predictions of a model are correct.

Another limitation is the number of stocks. Analysing more companies
and CEOs could give a better indication of the significance of CEO reputa-
tion on stock price. Only the largest companies were analysed. Companies
who on its own receive a lot of internet traffic. It might be possible that
analysing a smaller company, with a less popular CEO, results in a different
outcome.

Another limitation is the time frame. As stated above, 2020 was a
volatile year for the stock market, where some stocks experienced record
positive returns and others large negative returns. The average return of
Amazon, for instance, from 2017 till 2019 was 35.70%. In 2020 this was
71.16%. The higher average actual returns of 2020 naturally led to a higher
return when trading conform thee LSTM predictions. Using the LSTM
architecture for any other year will most likely result in lower returns. For
a better understanding of model performance, a larger time frame may be
needed.
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8 conclusion

This section answers the main research question and the sub-questions as
stated in the introduction.

8.1 To what extend is CEO reputation, measured using sentiment analysis,
predictive of stock price trend?

Using CEO reputation, measured using sentiment analysis, as a variable
increased model performance, on average, from 59.29% to 59.74%, a 0.45%
increase. The McNemar’s test was used to determine whether this increase
in performance was significant. None of the analysed stocks experience
a statistically different model when including sentiment. CEO reputa-
tion alone is thus not a statistically significant predictor of stock price.
Nonetheless the average accuracy increased slightly, indicating that includ-
ing sentiment in stock price predictions may sometimes be beneficial.

When including volume and sentiment as variables, model performance
increased to 60.47%, a 1.18% increase over the baseline. Again, none of the
stocks experienced a statistically different model. Even though including
volume and sentiment does not lead to a statistically significant model,
performance was boosted indicating that including both might be bene-
ficial when predicting stock price. Even an increase of 1.18% in model
performance is an accomplishment when predicting something as volatile
as stock price.

8.2 To what extent is the amount of internet traffic related to stock price move-
ments?

Using the daily number of tweets as a variable, model performance, on
average, increased from 59.29% to 59.34%, a 0.05% increase. Only four
out of the seven stock saw an increase in performance when including
volume as a predictor. Only for Microsoft did volume result in a statistically
different model. Microsoft, however, did not see an increase in performance.
The daily number of tweets alone is not a statistically significant predictor
of stock price and did not boost model performance by much, indicating
that including volume alone for stock price prediction does not seem to be
worth it.
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8.3 To what extend is there a delay between Twitter comments and its reflection
in stock price?

The average accuracy without including a delay, using the best performing
settings per stock was 60.47%. When introducing a possible delay, the
average accuracy increased to 61.86%, a 1.39% increase. Five out of the
seven stocks saw an increase in model performance when including a delay,
indicating that any information on Twitter is often not directly represented
in stock price. When predicting stock price using Twitter sentiment, a
possible delay should be included.

8.4 To what extent do Transformer models improve sentiment analysis classifica-
tion?

The baseline score on the SemEval-2017 dataset was an average recall of
0.681 by Baziotis et al. (2017), who used an LSTM for sentiment prediction.
The average recall score obtained by the Transformer models was 0.706,
beating the baseline score by 3.62%. The top performing model, ELECTRA,
obtained an average recall of 0.720, beating the baseline by 5.73%.

8.5 To what extent does ensemble of Transformer models outperform individual
classifiers?

Weighted average was the best performing ensemble method and resulted
in an average recall of 0.731. Weighted average increased model perfor-
mance by 3.60% when compared to the average score of all individual
models, and it beat ELECTRA, the top performing model stand-alone
model, by 1.53%.
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appendix a : lstm accuracy scores

Variables Amazon Apple Google JP Mor-
gan

Facebook Microsoft Berkshire
Hathaway

Only predicting up 55.21 54.62 55.81 50.44 53.43 56.11 53.03

Past prices (PP) 47.83 53.36 52.17 47.83 49.41 47.83 50.99

PP + MA 53.36 59.68 62.06 57.71 61.26 59.29 55.73

PP + DEA 45.85 54.94 51.78 49.01 47.03 47.83 53.36

PP + RSI 50.59 54.94 55.73 47.43 46.64 55.73 58.89

PP + MA + DEA 53.76 56.52 62.06 58.10 59.29 58.50 56.92

PP + MA + RSI 53.36 54.94 57.71 56.13 51.78 59.29 59.29

PP + RSI + DEA 48.62 54.54 53.75 46.64 48.22 54.94 54.94

PP + MA + RSI + Diff 55.32 56.12 57.31 52.96 54.54 56.52 56.92

PP + Sent 54.94 52.96 54.94 49.01 48.61 54.94 53.75

PP + Vol 45.45 54.54 52.56 47.82 48.22 49.80 55.73

PP + Sent + Vol 45.85 51.78 53.36 49.01 48.22 50.99 54.94

PP + Sent + MA 57.31 60.87 60.47 56.13 63.24 59.69 52.96

PP + Sent + RSI 48.22 53.36 54.94 50.20 49.40 50.59 52.56

PP + Sent + DEA 46.64 51.78 50.20 47.83 44.66 50.99 53.76

PP + Vol + MA 57.70 60.24 58.89 59.68 61.66 58.10 56.52

PP + Vol + RSI 47.62 53.46 57.96 50.23 48.47 50.62 60.06

PP + Vol + DEA 45.85 53.36 57.31 49.80 48.61 48.22 55.73

PP + Sent + Vol + MA 57.71 60.87 60.01 55.33 62.85 58.10 56.52

PP + Sent + Vol + RSI 48.62 53.36 50.99 50.59 49.01 52.17 54.54

PP + Sent + Vol + DEA 47.43 52.57 54.94 47.03 49.40 48.62 51.38

PP + Sent + MA + RSI 55.34 56.92 57.71 51.78 55.73 58.10 60.08

PP + Sent + MA + DEA 53.36 56.13 59.68 55.34 56.13 58.89 58.50

PP + Sent + RSI + DEA 47.81 52.65 52.32 48.44 46.12 52.12 56.80

PP + Vol + MA + RSI 55.73 54.94 58.89 55.73 54.54 58.89 57.71

PP + Vol + MA + DEA 57.70 58.89 59.68 52.17 54.15 58.50 57.31

PP + Vol + RSI + DEA 47.03 54.15 53.36 47.03 48.22 55.73 51.78

PP + Sent + Vol + MA +
RSI

53.76 55.73 58.10 52.17 56.12 58.10 57.31

PP + Sent + Vol + MA +
DEA

56.52 56.52 59.68 59.68 51.38 58.50 61.66

PP + Sent + Vol + RSI +
DEA

47.43 54.94 52.96 47.04 48.22 55.34 55.34

PP + Sent + MA + RSI +
DEA

52.56 56.52 56.92 56.52 52.17 57.71 58.50

PP + Vol + MA + RSI +
DEA

56.52 57.70 57.31 52.96 52.57 58.10 56.52
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Variables Amazon Apple Google JP Mor-
gan

Facebook Microsoft Berkshire
Hathaway

PP + Sent + Vol + MA +
RSI + DEA

54.15 55.73 58.89 52.97 52.96 56.12 57.70

Table 15: LSTM scores
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