
The validity of backtesting for evaluation of autoregressive time
series predictions

by
Michael Fotakis 536534
MSc Tilburg University

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in
Econometrics and Mathematical Economics

Supervisor:
Denis Kojevnikov

May 2021



Contents

Acknowledgements 2

Abstract 3

1 Introduction 4

2 Literature review 5

3 Prediction evaluation design 7
3.1 Simulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Applications on real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Conclusions 21

References 22

Appendix 23

1



Acknowledgements

First and foremost I would like to thank my thesis supervisor Dr. Denis Kojevnikov for his invaluable
support during this master thesis. Without his advice, directions and assistance this endeavour would not
have been possible. My gratitude extends to Dr. Christoph Bergmeir of Monash University for his useful
input regarding the coding part of my thesis. Additionally, I would like to thank Aegon Nederland’s Model
Validation department and especially Pieter-Jan whose support during my internship at the department and
feedback on my thesis played no small part in its completion. Last but not least, I would like to sincerely
thank my family and friends, Costis, Nitsa, George, Ilka, Dimitris and Nikos who supported me throughout
my studies.

2



Abstract

This thesis examines the validity of backtesting in the autoregressive predictions context. A Monte Carlo
simulation exercise was adopted to compare the performance of popular cross-validation methods to walk-
forward testing in cases of structural breaks and autocorrelations in the error structure. Despite the limited
use of the method in time series prediction evaluations, it manages to very closely compete with cross-
validation in most data generating processes and even achieve lower errors when heavy error autocorrelation
is present. Additionally, in small real data samples, backtesting implemented with the walk-forward method
yields lower error figures and remains competitive even at bigger samples.
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Chapter 1

Introduction

The term backtesting in time series modelling describes the process of testing the performance of a predic-
tive model using historical data. This ex-post evaluation checks how well the model would have performed
in terms of predicting the present with past data. This in turn could, generally speaking, provide an indicator
for the suitability of the model in question for predicting the future using present data. In the time series
setting, backtesting generally involves reserving some part of the series and using observations further back
in time to predict for the reserved data. Contrary to traditional time series prediction methodology where
all present information is used to predict the unknown, unobserved future, backtesting a time-series model
involves using past information to predict present information. Since present information is available, such
a prediction can easily be evaluated when compared to the actual observed quantity. As a method for eval-
uating time series predictions, it is closely related to cross-validation. More specifically, cross-validation is
a wider concept since it is often the case that more recent data are used to predict observations of the past
for evaluation purposes.

Bergmeir, Hyndman & Koo (2018) conduct a Monte Carlo simulation experiment to test similar eval-
uation methods for autoregressive time series such as 5-fold and leave-one-out cross-validation, cross-
validation for dependent data among others. They use autoregressive models of varying orders to predict
series which where generated using an autoregressive and a moving average sequence in order to examine
performance under correct and incorrect specification.

This thesis assumes the same approach to test the validity of backtesting in the purely autoregressive
framework implemented with the walk-forward testing method in Kaastra & Boyd (1996). This testing
method, popular in the commodity trading and neural network literature, involves splitting the data in train
and test sets while maintaining the natural order of the time series data. The train/test set window moves
forward in time, the model is examined across all possible time windows and prediction errors and accuracy
are averaged over the number of iterations (hence the relation with CV). This particular method seems
particularly attractive for time series with structural changes e.g. series with an intercept change at a specific
time period. Apart from examining the validity of backtesting in comparison to information criteria, this
thesis will also consider how backtesting would handle the case of structural breaks and an autocorrelated
error structure in the simulated data generating processes on top of the commonplace independent and
identically distributed errors case.

In general, this research proposal aims to examine whether backtesting in this particular framework has
potential advantages over other CV methods, how well does it perform under correct or incorrect specifi-
cation, whether it responds positively to distortions encountered in real data (e.g. non-iid errors, structural
changes) and how efficiently it could be applied to real-world applications.

The structure of the thesis is given here. In Chapter 2, the current literature revolving the issues dis-
cussed in this thesis are reviewed. In Chapter 3, the technical analysis is described in detail and results are
presented, analyzed and explained. Finally, Chapter 4 gives the main conclusions of the thesis and discusses
potential implications and recommendations for further research.
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Chapter 2

Literature review

Backtesting is mainly used in the risk management sector to evaluate either the performance of a trading
strategy or the quality of a firm’s risk measurement. How often a risk measurement succeeds in predicting
potential losses for a portfolio or whether a given strategy yields gains or losses is often tested ex-post.
In other words, how many correct instances of current losses a risk measurement predicts or how well a
trading strategy would perform in the present is tested exclusively with past data giving a sense of predictive
quality. For example, Harvey & Liu (2015) showcase the use of backtesting for evaluating trading strategies.
Similarly, Campbell (2005) gives a thorough introduction to the backtesting procedures for VaR (Value at
Risk) measures. More specifically, a transformation of the returns of a portfolio into a binary function is
presented for the evaluation of its performance using historical data.

In a more abstract time series setting (not necessarily financial analysis), backtesting generally involves
reserving some part of the series to use as the ”unknown” future and using observations further back in time
to predict for the reserved data. Contrary to traditional time series prediction methodology where all present
information is used to predict the unknown, unobserved future, backtesting a time-series model involves
using past information to predict present information. Since present information is naturally available,
such a prediction can easily be evaluated when compared to the actual observed quantity of interest. In
this setting, backtesting can be implemented through training and test set splits1 of the data and evaluating
ex-post based on the observations in the test set.

It is obvious that such an evaluation design is closely related to cross-validation. More specifically,
cross-validation is considered a wider concept since it is often the case that, with random sampling, more
recent data are used to predict observations of the past for evaluation purposes while for backtesting the
opposite is generally true. Cross-validation with time series data has been thoroughly examined in the
pertinent literature e.g. McQuarrie & Tsai (1998), Racine (2000), Arlot & Celisse (2009), Bergmeir &
Benı́tez (2012) and remains a heavily discussed topic.

In predictive neural networks literature the data is often used in a smaller sample window that moves
forward in time. In this sub-sample, both training and test sets are not random, like in standard cross-
validation, but their observations are kept in chronological order. The test set always comes right after the
training set in time and iteration after iteration, the whole sub-sample is moved forward by one observa-
tion/time period. This procedure is mentioned as walk-forward sliding window in Kaastra & Boyd (1996)
used for financial forecasting and is also present in Karathanasopoulos et al. (2016) used for predicting the
crack spread and Gudelek et al. (2017) used for developing a trading model.

This sliding window approach combines generally lower error figures averaged over a number of iter-
ations ( in comparison to non-iterative methods such as OOS validation), also existent in cross-validation,
with the fact that the order of the data is kept unchanged which naturally conforms to the definition of
backtesting. Unchanged data order might be especially useful in the context of time series since correlation
between subsequent observations is often significant. Here, the sliding window approach is presented not
for neural networks but for the case of linear time series modelling. Especially interesting is the comparison
between the sliding window method and the use of information criteria used for model selection when the
research objective is prediction quality. Additionally, it is also examined how well this method performs
compared to the cross-validation methods used for the same purpose in Bergmeir et al. (2018) where an
array of random sub-sampling methods are evaluated on their forecasting performance.

The choice of the sliding window or walk forward testing approach is motivated by several factors. First,
its usage in the relevant literature is quite limited. Also, while used for practical applications, its theoretical

1For the definition of training and test data sets see James, Witten, Hastie & Tibshirani (2013)
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CHAPTER 2. LITERATURE REVIEW

properties are not explored along with its potential advantages and disadvantages. Additionally, this method
of validation has a particular appeal for the cases that the series of interest is one with autocorrelation present
in the idiosyncratic error or even structural breaks. Even though traditional cross-validation methods have
been adjusted to deal with heavy correlation between adjacent time series observations, a method that does
not shuffle the data and discards a potentially smaller amount of observations might prove competitive in
the autoregressive context. The latter would specifically mean more accurate predictions and consequently
more consistent model selection. Such strengths as well as potential drawbacks are lacking in the current
literature.
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Chapter 3

Prediction evaluation design

In this chapter, the validity of the walk-forward testing procedure is examined. Firstly, a simulation exer-
cise is conducted to examine the theoretical performance of cross-validation and walk-forward testing on
synthetic data (section 3.1). Simulation results can be found in section 3.2. The comparison is extended to
real data as well (real data applications are found in section 3.3).

3.1 Simulation experiments
The Monte Carlo experiment implemented in this study is an extension of the experiment conducted in
Bergmeir et al. (2018). The experiment is extended to accommodate the cases where the data are generated
using structural breaks and autocorrelated errors. These additional data generating processes are tested in
the same way as in Bergmeir et al. (2018) using multiple autoregressive models meaning models in which
the variable of interest is given as a linear function of its past values. Additionally, the walk forward testing
method is also adapted into the experiment to test its performance against the cross validation methods in
Bergmeir et al. (2018). The procedures are evaluated based on error metrics i.e how well the prediction
method manages to predict actual values observed in the data (either simulated or real). The methodology
adopted in this study for the calculation of the error measures is described in further detail in the following
paragraphs.

The experiment is initiated by simulating a series from one of the data generating processes described
in Bergmeir et al. (2018) and those described in Table 3.1. In all DGPs excluding those with autocorrelated
errors the error structure is an independently and identically distributed stochastic process following a stan-
dard normal distribution (zero mean and variance equal to one). All DGPs are initially simulated as zero
mean processes. The whole series is then made positive by subtracting its minimum and adding 1 to all
observations. This transformation is applied in order not to offset the error metrics of interest with negative
values.

Table 3.1: Description of the additional data generating processes used in the extended version of the
experiment. Real data series are also included in the exercise and are discussed in section 3.3.

DGP Description
AR(3) w/ break AR(3) process consisting of two different set of random parameters for its

two halves. Stationarity constraints dictate that the mean of the process
should remain constant. For this reason, the different sets of parameters
are such to yield a stationary process with the same mean and variance
for every sub-sample with different parameters (such models with breaks
expressed in non-constant parameters are also described in Chow (1960)
and Lin & Teräsvirta (1994)). The stationarity of the generated process is
also confirmed with ADF tests. In notation:

yt =
3

∑
i=1

φiyt−i + εt ,

where εt ∼ N(0,1) and φi = φi1, i = 1, . . . T
2 ,φi = φi2 6= φi1 for i = T

2 +
1, . . . ,T (all φ ’s yield a stationary solution of the above).

7



3.1. SIMULATION EXPERIMENTS CHAPTER 3. PREDICTION EVALUATION DESIGN

MA(1) w/ break MA(1) process generated similarly to the AR(3) with a break process. Dif-
ferent parameters for the two halves of the series but statistical properties
are kept unchanged. Stationarity checks are also performed. In notation:

yt = zt +θizt−i + εt ,

where both εt ,zt ∼ N(0,1) and θi = θi1 for i = 1, . . . , T
2 , θi = θi2 6= θi1 for

t = T
2 +1, . . . ,T (θ yields a stationary solution for the above).

AR(3) w/ AR errors In this case the error structure is generated not as a white noise but as a
stationary AR(1) process whose parameters are chosen randomly in each
simulation run. In notation:

yt =
3

∑
i=1

φiyt−i + εt ,

where φi such that the above is stationary and εt = bεt−1 +ut ,ut ∼ N(0,1).
AR(3) w/ MA errors Error structure used follows a MA(1) process. Parameters are again chosen

randomly. In notation:

yt =
3

∑
i=1

φiyt−i + εt ,

where φi such that the above is stationary and εt = vt +bvt−1 +ut ,vt ,ut ∼
N(0,1).

MA(1) w/ AR errors Moving average process of order one. Error structure is a stationary AR(1)
process. Parameters for the error process and MA(1) process are chosen
randomly. In notation:

yt = zt +θzt−1 + εt

where θ such that the above is stationary and εt = bεt−1 +ut ,ut ∼ N(0,1).

MA(1) w/ MA errors Moving average process of order one. Error structure is an MA(1) process.
Parameters for the error process and MA(1) process are chosen randomly.
In notation:

yt = zt +θzt−1 + εt

where θ such that the above is stationary and εt = vt + bvt−1 + ut ,vt ,ut ∼
N(0,1).

After the series is simulated and transformed, it is used to estimate a variety of linear autoregressive
models and evaluate their predictive power. Specifically, autoregressive models of order one up to five
are used for each data generating process to estimate the analogous autoregressive parameters and predict
future values based on those parameters. In order to evaluate predictions, the simulated series sample is
not used in its whole to estimate the AR polynomial parameters but is instead split into separate partitions
for estimation (also known as training) and prediction-evaluation (also known as testing). The way the
partitions are set for the testing of the cross validation methods that are described in Bergmeir et al. (2018)
are similarly adapted here. Necessary for the comprehension of the experiment are the different validation
methods used and are described below:

• OOS (Out-of-sample validation)
The simple way of validating a model. The data are split once into training and test sets (not with ran-
dom sampling, the test set is always the last block of the data). The model is fit on the training set and
evaluated on the test set. Error measures like mean squared error (MSE), mean absolute error (MAE)
are calculated from the actual test data and the fitted values of the model (predictions). Predictions
for the test set observations are evaluated based on the true values of the dependent variable. Since
the test observations are not used in fitting the model, its accuracy can be estimated more accurately.

• k-fold cross-validation
Data is split in k random subsets. Each time, a single of the k subsets is used as a test set and the
model is trained on the rest of the data. The process is repeated for every subset. Error measures of
interest are averaged over the k validations for better accuracy. Train and test sets do not necessarily
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are ordered. Splits are made with random sampling. Here, k is chosen equal to 5 similarly to Bergmeir
et al. (2018) for consistency. Additionally, a k between 5 and 10 has been shown to be enough for
accurate measures without suffering from calculation complexity (James et al. 2013).

• LOOCV (Leave-one-out cross-validation)
A special case of k-fold CV with k = n, where n is the sample size. This means that only one
observation at a time is used as the test set. The model is trained on all observations except one and
evaluated on the one excluded. Error measures are again extracted and averaged over n times where
every observation has been used for validation. LOOCV is more flexible than k-fold since it uses
more data to train but it incurs computational cost and its performance improvement with respect to
k-fold rarely justify it. Performance compared to 5-fold CV is very similar as showcased in Bergmeir
et al. (2018) and is not included here.

• k-fold CV for dependent data (referred as ”noDepCV” in the output tables)
Functions similarly to the standard k-fold but in order to control for dependence in the data (like
the one existent in time series) some observations before and after those used for evaluation are
discarded. This way, advantages of CV are exploited even with dependent data but a considerable
number of observations is discarded and the smaller sample size often leads to inaccurate predictions.

• Walk-forward testing (a.k.a rolling scheme or sliding window)
In this case, training and test sets are taken sequentially in similar fashion to OOS validation but not
all observations are used. This allows for the train/test data “window” to slide forward in time. Each
time the window is moved forward by one observation and a training observation is discarded (from
the start) and one is added at the end of the test set. This way, the model is trained and evaluated on
updated data for every new iteration and at the same time the order of the data is maintained.

To implement the walk-forward testing procedure, the series is split differently. Like the experiment
in Bergmeir et al. (2018), the series is separated into in-set and out-set. The in-set is used to estimate and
evaluate predictions by extracting error measures with a traditional train/test split described in James et al.
(2013). The in-set is then used in its entirety to retrain the model and the out-set is used as a validation set
to the retrained model thus estimating the ”generalization error” (Bergmeir et al. 2018). The particularity
of the walk-forward testing method is that it involves repeated iterations and each time, both the in-set
and out-set are pushed forward in time by one observation. The in-set and out-set consist, by design, of
subsequent observations and so, contrary to the respective cross validation experiment, the whole in-set/out-
set block is iteratively moved ahead and estimation and prediction are repeated. A small percentage of the
observations is discarded in each iteration to allow for a sliding in-set/out-set window (ten percent). The
loss of information in this procedure is minimal and a small percentage such as ten percent allows for
multiple iterations even at moderate sample sizes. More iterations to average over mean that averaged error
measures are more precise.

The available observations in each iterative step are divided into in-set/out-set based on a 70%/30%
split while the train/test partition within the in-set is based on an 80%/20% split, see also Bergmeir et al.
(2018). This split is repeated in each iteration of walk forward testing since the window of observations
slides ahead but in the rest of the validation methods, the out-set is set only once and used only once once
the cross-validation procedure is run solely on the in-set.

The performance of the partitioning method (referring both to cross-validation and walk-forward test-
ing) on a given DGP is derived from the magnitude of the difference between the corresponding error
metrics in the in-set and out-set. The metrics in question are prediction accuracy error (PAE) and abso-
lute prediction accuracy error (APAE) which are calculated by using the difference in root mean square
error (RMSE) and mean absolute error (MAE) in the in-set and out-set. In notation, these calculations are
expressed as

PAE = (Min−Mout) (3.1)

and

APAE = |Min−Mout | (3.2)

which are averaged over the the number of simulation runs to get MPAE and MAPAE respectively, in
notation as follows.

MPAE =
1
m ∑(Min−Mout) (3.3)

9



3.2. SIMULATION RESULTS CHAPTER 3. PREDICTION EVALUATION DESIGN

and

MAPAE =
1
m ∑ |Min−Mout |. (3.4)

In the above, m represents the number of simulation runs and M represents the error measure and is
indexed by in or out corresponding to the partition in which the error measure was calculated. RMSE and
MAE are calculated as:

RMSE =
1

Nset
∑

i∈set
(yi− ŷi)

2 (3.5)

and

MAE =
1

Nset
∑

i∈set
|yi− ŷi| (3.6)

where i ∈ set gives all the observations in the given validation set (whether the test set or the out-set) and
Nset denotes the size of said sub-sample. Also, denoted by yi and ŷi respectively are the true value of the
observation i in the data and the predicted value for observation i.

When generating an autoregressive series, either for use directly in the experiment or indirectly as error
structure, stationarity is guaranteed since the random parameters are chosen such that the autoregressive
polynomial has roots between 1.1 and 5. Similarly, for the moving average processes, polynomial roots be-
tween 1.1 and 1.2 ensure stationarity. Stationarity is a necessary condition here. Since resampling methods
are employed, it is important that the series has the same stochastic distribution regardless of the sub-sample
examined. As mentioned before, the parameters for the lagged values are different random parameters cho-
sen by setting a different seed in each Monte Carlo run and specifically as a linear function of the simulation
run. This way, parameters are different in each run but results of the whole process can be replicated.

The new data generating processes that are used to extend the simulation experiment are described
here. Firstly, in order to introduce a series with structural break the stochastic series in Bergmeir et al.
(2018) are adapted. Due to the stationarity condition necessary for estimation and prediction, series with
structural breaks cannot be generated by shifting the intercept. Instead, the series is generated by using
two different sets of random parameters for the series (the number of of breaks within the series is one
resulting a series with different parameters in its two parts). Parameters are such that mean and variance are
maintained throughout. Just as with the simple stochastic DGPs, in each run a different seed is chosen for
the generation of parameters.

Another extension of the experiment is the introduction of autocorrelation in the error term. New DGPs
are used where the error term was set manually to reflect that. For the DGPs with autocorrelated errors, the
series generation is similar to the simple stochastic DGPs in Bergmeir et al. (2018) but the simulation error
is not a white noise process. Significant autocorrelation is introduced by adding an error term that is in turn
generated either as an AR(1) or MA(1) process parameters for which are chosen randomly in each run.

One deviation of the experiment carried out here from the one in Bergmeir et al. (2018) is in the sample
size of the simulated series. The chosen sample size is 500 instead of 200. While a small sample size is
useful to grasp real application performance with scarce data, evaluating performance on more substan-
tial samples is also insightful for a more generalized picture needed here for the substantiation of the use
of backtesting. To aid in comprehension, the procedure followed here is also given in pseudo-code (see
Algorithms 1 and 2 in the appendix).

3.2 Simulation results
The simulation experiment results are presented in Tables 3.2 and 3.3 for the cross-validation methods
of Bergmeir et al. (2018) and walk-forward testing respectively. Given are the prediction accuracy errors
figures for the RMSE and MAE metric calculated as described in the previous sections. For a comparison
to a much more traditional evaluation technique, the average Akaike information criterion (AIC) is also
showcased (averaged over the number of simulation runs). The average AIC given in Table 3.3 would
be calculated the same way for the models in Table 3.2 and the figures are not repeated. It is noted that
adding variables to a model improves the fit but might result in overfitting which negatively affects model
predictions. This criterion (Akaike 1974) penalizes larger models resulting in a measure to evaluate models
depending on their fit/parsimonity trade-off. Comparison to AIC is imperative since it is one of the tools
most used for model selection. For the ”best” model a minimized AIC is sought. It is important to note
that when interpreting the prediction accuracy error figures, a metric for a given model and method with the
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lowest absolute value means better performance. Comparing the corresponding figures in the two tables,
the first key takeaway is that walk-forward testing is performing very similarly to the CV methods for most
data generating processes and even outperforming them for some.

Table 3.2: Prediction accuracy errors using the Bergmeir et al. (2018) cross-validation methods on all DGPs,
n = 500. Number of simulations = 1000.

# Lags RMSE MAE
MAPAE MPAE MAPAE MPAE

Stochastic AR(3)
5-fold CV AR(1) 0.0611 0.0056 0.0529 0.0032

AR(2) 0.0538 0.0044 0.0468 0.0021
AR(3) 0.0538 0.0053 0.0468 0.0027
AR(4) 0.0539 0.0053 0.0470 0.0028
AR(5) 0.0543 0.0061 0.0474 0.0035

noDepCV AR(1) 0.0779 0.0525 0.0647 0.0401
AR(2) 0.0826 0.0665 0.0667 0.0509
AR(3) 0.0973 0.0862 0.0776 0.0663
AR(4) 0.1157 0.1087 0.0911 0.0837
AR(5) 0.1368 0.1329 0.1068 0.1025

OOS AR(1) 0.0906 0.0041 0.0780 0.0054
AR(2) 0.0807 0.0018 0.0687 0.0030
AR(3) 0.0812 0.0023 0.0693 0.0033
AR(4) 0.0814 0.0016 0.0695 0.0029
AR(5) 0.0819 0.0023 0.0696 0.0036

Stochastic MA(1)
5-fold CV AR(1) 0.0702 0.0071 0.0606 0.0046

AR(2) 0.0645 0.0042 0.0550 0.0029
AR(3) 0.0611 0.0061 0.0526 0.0039
AR(4) 0.0595 0.0060 0.0511 0.0039
AR(5) 0.0582 0.0071 0.0501 0.0049

noDepCV AR(1) 0.0771 0.0307 0.0653 0.0231
AR(2) 0.0859 0.0589 0.0705 0.0455
AR(3) 0.0927 0.0745 0.0754 0.0570
AR(4) 0.1111 0.1006 0.0890 0.0777
AR(5) 0.1277 0.1213 0.1008 0.0938

OOS AR(1) 0.1027 -0.0007 0.0885 0.0023
AR(2) 0.0933 -0.0013 0.0797 0.0020
AR(3) 0.0886 -0.0013 0.0766 0.0014
AR(4) 0.0876 0.0004 0.0759 0.0029
AR(5) 0.0861 0.0009 0.0737 0.0036

Seasonal ARIMA
5-fold CV AR(1) 115.1834 -21.9630 96.7376 -21.1397

AR(2) 117.0713 -32.1678 98.4162 -29.5819
AR(3) 119.3455 -39.5577 100.1148 -36.0202
AR(4) 124.2539 -51.6009 104.3097 -45.6987
AR(5) 128.6290 -61.7764 107.7119 -54.1881

noDepCV AR(1) 119.0875 10.7730 99.1899 4.6100
AR(2) 121.6447 17.9357 100.7751 9.4933
AR(3) 125.5325 27.0583 103.4676 15.8845
AR(4) 129.9525 33.3091 106.3693 20.1499
AR(5) 134.8378 39.6226 110.0953 23.8675

OOS AR(1) 143.4039 -2.9361 119.4262 1.1792
AR(2) 144.5708 -4.5383 120.7964 -0.3288
AR(3) 147.0885 -3.9486 122.7743 0.0309
AR(4) 150.5957 -4.0077 126.4228 1.0284
AR(5) 152.6405 -5.4721 128.5837 0.0508

AR(3) w/ break
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5-fold CV AR(1) 0.1698 0.1698 0.0934 0.0934
AR(2) 0.2852 0.2852 0.2205 0.2205
AR(3) 0.1014 0.1014 0.0788 0.0788
AR(4) 0.0623 0.0623 0.0548 0.0548
AR(5) 0.0605 0.0605 0.0517 0.0517

noDepCV AR(1) 0.3556 0.3556 0.2070 0.2070
AR(2) 0.4539 0.4539 0.3098 0.3098
AR(3) 0.2713 0.2713 0.1985 0.1985
AR(4) 0.2104 0.2104 0.1657 0.1657
AR(5) 0.3110 0.3110 0.2519 0.2519

OOS AR(1) 0.9686 0.9686 0.7228 0.7228
AR(2) 1.1121 1.1121 0.8415 0.8415
AR(3) 0.6537 0.6537 0.5474 0.5474
AR(4) 0.6192 0.6192 0.5443 0.5443
AR(5) 0.7209 0.7209 0.6172 0.6172

MA(1) w/ break
5-fold CV AR(1) 0.0836 0.0836 0.0761 0.0761

AR(2) 0.0925 0.0925 0.0820 0.0820
AR(3) 0.0829 0.0829 0.0785 0.0785
AR(4) 0.0613 0.0613 0.0553 0.0553
AR(5) 0.0553 0.0553 0.0511 0.0511

noDepCV AR(1) 0.2086 0.2086 0.1734 0.1734
AR(2) 0.2926 0.2926 0.2297 0.2297
AR(3) 0.2987 0.2987 0.2332 0.2332
AR(4) 0.2610 0.2610 0.2066 0.2066
AR(5) 0.2931 0.2931 0.2408 0.2408

OOS AR(1) 0.4436 0.4436 0.3926 0.3926
AR(2) 0.6457 0.6457 0.5638 0.5638
AR(3) 0.7156 0.7156 0.6164 0.6164
AR(4) 0.6334 0.6334 0.5521 0.5521
AR(5) 0.6177 0.6177 0.5409 0.5409

AR(3) w/ AR errors
5-fold CV AR(1) 0.0255 -0.0173 0.0321 -0.0179

AR(2) 0.0338 -0.0336 0.0249 -0.0249
AR(3) 0.0374 -0.0374 0.0244 -0.0244
AR(4) 0.0335 -0.0335 0.0217 -0.0217
AR(5) 0.0314 -0.0314 0.0171 -0.0171

noDepCV AR(1) 0.0182 0.0047 0.0249 -0.0056
AR(2) 0.0119 0.0073 0.0077 -0.0014
AR(3) 0.0342 0.0342 0.0217 0.0214
AR(4) 0.0587 0.0587 0.0370 0.0370
AR(5) 0.0726 0.0726 0.0505 0.0505

OOS AR(1) 0.0211 0.0192 0.0338 0.0129
AR(2) 0.0181 0.0181 0.0236 0.0227
AR(3) 0.0165 0.0165 0.0269 0.0269
AR(4) 0.0178 0.0178 0.0269 0.0269
AR(5) 0.0166 0.0166 0.0294 0.0294

AR(3) w/ MA errors
5-fold CV AR(1) 0.0549 -0.0478 0.0433 -0.0216

AR(2) 0.0610 -0.0610 0.0443 -0.0443
AR(3) 0.0542 -0.0542 0.0282 -0.0282
AR(4) 0.0443 -0.0443 0.0143 -0.0143
AR(5) 0.0357 -0.0357 0.0085 -0.0080

noDepCV AR(1) 0.0431 -0.0282 0.0343 -0.0072
AR(2) 0.0182 -0.0127 0.0171 -0.0071
AR(3) 0.0142 0.0106 0.0221 0.0190
AR(4) 0.0289 0.0216 0.0308 0.0308
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AR(5) 0.0465 0.0465 0.0509 0.0509
OOS AR(1) 0.0227 0.0214 0.0595 0.0589

AR(2) 0.0121 0.0061 0.0356 0.0356
AR(3) 0.0129 0.0012 0.0420 0.0420
AR(4) 0.0190 0.0095 0.0536 0.0536
AR(5) 0.0193 0.0168 0.0589 0.0589

MA(1) w/ AR errors
5-fold CV AR(1) 0.0638 -0.0638 0.0356 -0.0356

AR(2) 0.0549 -0.0549 0.0371 -0.0371
AR(3) 0.0613 -0.0613 0.0283 -0.0283
AR(4) 0.0461 -0.0461 0.0190 -0.0190
AR(5) 0.0360 -0.0360 0.0118 -0.0118

noDepCV AR(1) 0.0480 -0.0480 0.0200 -0.0200
AR(2) 0.0110 -0.0110 0.0201 -0.0009
AR(3) 0.0144 0.0114 0.0309 0.0309
AR(4) 0.0271 0.0180 0.0317 0.0317
AR(5) 0.0323 0.0323 0.0388 0.0388

OOS AR(1) 0.0295 0.0295 0.0503 0.0503
AR(2) 0.0161 0.0161 0.0421 0.0421
AR(3) 0.0106 -0.0079 0.0393 0.0393
AR(4) 0.0058 0.0022 0.0407 0.0407
AR(5) 0.0128 0.0128 0.0516 0.0516

MA(1) w/ MA errors
5-fold CV AR(1) 0.0959 -0.0959 0.0709 -0.0709

AR(2) 0.0791 -0.0791 0.0444 -0.0444
AR(3) 0.0857 -0.0857 0.0480 -0.0480
AR(4) 0.0686 -0.0686 0.0448 -0.0448
AR(5) 0.0613 -0.0613 0.0432 -0.0432

noDepCV AR(1) 0.0903 -0.0903 0.0696 -0.0696
AR(2) 0.0215 -0.0215 0.0275 -0.0023
AR(3) 0.0228 -0.0228 0.0196 0.0080
AR(4) 0.0168 -0.0058 0.0284 0.0130
AR(5) 0.0286 0.0286 0.0352 0.0275

OOS AR(1) 0.0473 0.0473 0.0446 0.0446
AR(2) 0.0261 0.0035 0.0408 0.0408
AR(3) 0.0233 -0.0233 0.0275 0.0275
AR(4) 0.0252 -0.0092 0.0356 0.0338
AR(5) 0.0231 -0.0082 0.0355 0.0345

Table 3.3: Prediction accuracy errors using the Walk-forward testing procedure, n = 500. Akaike informa-
tion criterion is also listed (last column). Number of simulations = 1000.

# Lags RMSE MAE AIC
MAPAE MPAE MAPAE MPAE

Stochastic AR(3)
AR(1) 0.0775 0.0028 0.0677 0.0033 1449.44
AR(2) 0.0703 0.0001 0.0602 0.0007 1410.86
AR(3) 0.0710 0.0007 0.0609 0.0010 1408.53
AR(4) 0.0713 0.0006 0.0611 0.0009 1409.43
AR(5) 0.0718 0.0012 0.0613 0.0016 1410.38
Stochastic MA(1)
AR(1) 0.0917 -0.0018 0.0777 0.0008 1546.82
AR(2) 0.0838 -0.0023 0.0711 0.0003 1491.75
AR(3) 0.0798 -0.0022 0.0678 0.0001 1464.77
AR(4) 0.0780 -0.0007 0.0664 0.0012 1448.34
AR(5) 0.0763 0.0003 0.0653 0.0021 1438.46
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Seasonal ARIMA
AR(1) 134.5255 -2.7368 112.9500 1.1871 8245.58
AR(2) 135.3352 -5.3037 113.7143 -1.2689 8242.23
AR(3) 137.3391 -5.2872 115.2063 -1.6940 8239.26
AR(4) 139.6598 -5.6044 117.6478 -1.2567 8235.45
AR(5) 140.7849 -7.1528 118.7747 -2.2577 8231.48
AR(3) w/ break
AR(1) 0.6538 0.6538 0.4686 0.4686 1764.30
AR(2) 1.0629 1.0629 0.7345 0.7345 1664.75
AR(3) 0.8311 0.8311 0.5806 0.5806 1640.72
AR(4) 0.7721 0.7721 0.5592 0.5592 1642.62
AR(5) 0.7655 0.7655 0.5621 0.5621 1644.50
MA(1) w/ break
AR(1) 0.2689 0.2689 0.2231 0.2231 1674.00
AR(2) 0.4977 0.4977 0.3993 0.3993 1675.99
AR(3) 0.6500 0.6500 0.4959 0.4959 1677.98
AR(4) 0.6576 0.6576 0.4923 0.4923 1675.59
AR(5) 0.6666 0.6666 0.4956 0.4956 1677.40
AR(3) w/ AR errors
AR(1) 0.0641 -0.0641 0.0422 -0.0414 1505.71
AR(2) 0.0492 -0.0492 0.0126 -0.0112 1442.16
AR(3) 0.0472 -0.0472 0.0033 -0.0015 1436.00
AR(4) 0.0445 -0.0445 0.0015 0.0002 1436.70
AR(5) 0.0431 -0.0431 0.0031 0.0025 1437.69
AR(3) w/ MA errors
AR(1) 0.0713 -0.0713 0.0205 -0.0101 1594.88
AR(2) 0.0630 -0.0630 0.0147 -0.0114 1512.77
AR(3) 0.0690 -0.0690 0.0134 -0.0014 1490.48
AR(4) 0.0592 -0.0592 0.0161 0.0143 1469.15
AR(5) 0.0543 -0.0543 0.0204 0.0198 1465.15
MA(1) w/ AR errors
AR(1) 0.0455 -0.0455 0.0328 0.0082 1577.34
AR(2) 0.0502 -0.0502 0.0331 0.0045 1518.84
AR(3) 0.0709 -0.0709 0.0166 0.0048 1497.54
AR(4) 0.0625 -0.0625 0.0066 0.0066 1477.82
AR(5) 0.0581 -0.0581 0.0174 0.0174 1472.72
MA(1) w/ MA errors
AR(1) 0.0481 -0.0481 0.0272 -0.0272 1792.43
AR(2) 0.0769 -0.0769 0.0162 -0.0162 1653.48
AR(3) 0.0934 -0.0934 0.0263 -0.0230 1618.91
AR(4) 0.0831 -0.0831 0.0476 -0.0136 1561.59
AR(5) 0.0881 -0.0881 0.0497 -0.0174 1548.79

For the simpler stochastic DGPs (AR(3), MA(1), seasonal ARIMA), 5-fold cross-validation performs
better than every other method but walk-forward testing comes exceptionally close and outperforms the
rest of the cross-validation methods. Better performance is seen in the overall lower figures than those for
the other CV methods and isolated exceptions do not affect how the performance of the method should be
perceived. For every model from the range of the five autoregressive models chosen 5-fold CV achieves
metrics approximately 0.01 lower than the ones given by walk-forward testing the data generating processes.

Interestingly, for the DGPs with a structural break, 5-fold CV again outperforms walk-forward testing.
This implies that in this case, the data does not necessarily need to be maintained in chronological order to
achieve better predictions, at least in terms of estimating the generalization error described above. Predic-
tion accuracy error metrics for five-fold CV are closer to zero across for both RMSE and MAE compared
to the walk-forward testing method. The difference here is much more substantial for both the AR and MA
data generating processes.

What can also be in the tables (3.2 and 3.3) is that for the moving average processes with autocorrelated
error structures the walk-forward testing procedure produces figures with lower absolute values for all
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estimated models than five-fold cross-validation. OOS is the strongest contender here as it yields the lowest
absolute value metrics. Regardless, walk-forward testing remains very competitive for all processes and
even outperforms the non-dependent cross-validation used in Bergmeir et al. (2018).

In terms of prediction accuracy errors, for the moving average processes with autocorrelated errors the
best performing method is simple OOS testing. For the rest, 5-fold cross-validation is the most dominant
method as it achieves prediction accuracy error measures closer to zero than the competing cross-validation
methods. Bergmeir et al. (2018) also implement leave-one-out-cross-validation (LOOCV) but since results
are very similar to 5-fold CV across the board it is deemed redundant for this exercise. Examining perfor-
mance in terms of the raw measures themselves also presents interest. Achieving the ”generalization error”
is not always wanted. Walk-forward testing remains competitive in terms of raw RMSE and MAE as well.
In the case of the new DGPs introduced, walk-forward testing is slightly behind in performance but for the
simple AR(3) and MA(1) processes it achieves lower RMSE and MAE.

As for model selection, one could only draw conclusions for the case of the AR(3) processes where the
true data generating process is included in the attempted models. Based on which of the five models at-
tempted achieves the lowest error measures, the best model is determined. AIC also becomes relevant in this
comparison as the model with the lowest AIC would be the one selected for use. One would expect that the
procedures that involve multiple iterations, like CV and walk-forward testing would achieve better results
when the attempted model is the one used to generate the data and outperform the AIC selection. In this
case, contrary to both methods examined here, AIC selects the true model, although the other procedures
only miss the true model by one autoregressive order (see first five rows in Tables 3.2, 3.3). This is not the
case for the raw RMSE and MAE figures with which both methods select the correct model (first five rows
of Tables A.1, A.2). These results are expected since the model is relatively simple and so every method
is successful in identifying the true model. Any shortcomings of CV and walk-forward testing in terms
of PAE are to be taken lightly since the range of the models examined here is narrow and the prediction
accuracy error measure design is not the primary tool for model selection. In the rest of the AR(3)-based
DGPs, AIC remains successful excluding the case of the moving-average errors where walk-forward testing
also manages to pinpoint the true number of lags present thanks to the lower MPAE, MAPAE figures for
MAE. Five-fold CV does not identify the AR(3) model as the best model for the modified AR(3) DGPs.

3.3 Applications on real data
Since simulated data do not tell the whole story, the procedures are also applied to real data. In order to
examine the methods on a broader scale, four different data series are selected for this purpose. They are
of economic interest and are characterized by different granularity and sample size to test the simulated
outcomes. First, real interest rate for the USA provided by The World Bank DataBank1 (Figure 3.1),
second, the harmonised index of consumer prices (HICP) for inflation rate in the Euro area provided by the
European Central Bank Statistical Data Warehouse2 (Figure 3.2). Additionally, the euro area M3 monetary
aggregate (European Central Bank Statistical Data Warehouse3). Lastly, US dollar to euro exchange rate
data4 are also included in the analysis.

Before testing, the series are tested for stationarity. All series indicate presence of unit roots (ADF tests
are conducted) and so they are differenced at the start of the procedure to end up with suitable stationary
series. Prediction accuracy error measures for 5-fold CV and walk-forward testing are given in Tables 3.4
and 3.5.

1https://data.worldbank.org/indicator/FR.INR.RINR?locations=US
2https://sdw.ecb.europa.eu/quickview.do?SERIES_KEY=122.ICP.M.U2.N.000000.4.ANR
3https://sdw.ecb.europa.eu/quickview.do?SERIES_KEY=117.BSI.M.U2.Y.V.M30.X.I.U2.2300.Z01.A
4https://sdw.ecb.europa.eu/quickview.do?SERIES_KEY=120.EXR.D.USD.EUR.SP00.A
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(a) (b)

(c)

Figure 3.1: (a): Real interest rate (%) of the United States, annual frequency ranging from 1961 to 2020
(Sample size: 59). (b): Autocorrelation function of the final, differenced series, given for 40 lags. Shaded
regions represent the 95% confidence interval. (c): Partial autocorrelation function of the final, differenced
series, given for 25 lags. Shaded regions represent the 95% confidence interval.

(a) (b)

(c)

Figure 3.2: (a): Harmonised index of consumer prices, monthly frequency ranging from April 1997 to
February 2021 (Sample size: 290). (b): Autocorrelation function of the final, differenced series, given for
40 lags. Shaded regions represent the 95% confidence interval. (c): Partial autocorrelation function of the
final, differenced series, given for 25 lags. Shaded regions represent the 95% confidence interval.
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From the different cross-validation procedures, only five-fold cross-validation is performed since it gen-
erally outperforms the rest on the simulated data for prediction accuracy errors. For the sake of comparison,
walk-forward testing is also applied here. Prediction accuracy error figures are listed in Tables 3.4 and 3.5.

Table 3.4: 5-fold cross-validation applied on real data series. Number of iterations = 1000.

# Lags RMSE MAE

MAPAE MPAE MAPAE MPAE
Real interest rate (US)

AR(1) 0.5803 0.5803 0.5201 0.5201
AR(2) 0.6773 0.6773 0.5705 0.5705
AR(3) 0.7221 0.7221 0.6142 0.6142
AR(4) 0.8713 0.8713 0.7412 0.7412
AR(5) 1.1707 1.1707 0.9143 0.9143

HICP

AR(1) 0.0550 0.0550 0.0109 -0.0109
AR(2) 0.0685 0.0685 0.0002 -0.0002
AR(3) 0.0733 0.0733 0.0029 -0.0029
AR(4) 0.0763 0.0763 0.0052 -0.0052
AR(5) 0.0734 0.0734 0.0031 0.0031

Monetary aggregate M3 (euro area)

AR(1) 0.1030 0.1030 0.0826 0.0826
AR(2) 0.0986 0.0986 0.0763 0.0763
AR(3) 0.0850 0.0850 0.0634 0.0634
AR(4) 0.0888 0.0888 0.0650 0.0650
AR(5) 0.0885 0.0885 0.0637 0.06371

US/euro exchange rate

AR(1) 0.000568 0.000568 0.000037 0.000037
AR(2) 0.000569 0.000569 0.000037 0.000037
AR(3) 0.000572 0.000572 0.000039 0.000039
AR(4) 0.000576 0.000576 0.000041 0.000041
AR(5) 0.000577 0.000577 0.000043 0.000043

Table 3.5: Walk-forward testing applied on real data series.

# Lags RMSE MAE

MAPAE MPAE MAPAE MPAE

Real interest rate (US)

AR(1) 0.1135 0.1135 0.1163 0.1163
AR(2) 0.1296 0.1296 0.1236 0.1236
AR(3) 0.1006 0.1006 0.0563 0.0563
AR(4) 0.1375 0.1375 0.1349 0.1349
AR(5) 0.1331 0.1331 0.1246 0.1246

HICP

AR(1) 0.0209 -0.0209 0.0295 -0.0295
AR(2) 0.0185 0.0185 0.0025 -0.0025
AR(3) 0.0126 0.0126 0.0045 -0.0045
AR(4) 0.0131 0.0131 0.0051 -0.0051
AR(5) 0.0095 0.0095 0.0021 -0.0021

Monetary aggregate M3 (euro area)

AR(1) 0.0659 0.0659 0.0615 0.0615
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AR(2) 0.0666 0.0666 0.0628 0.0628
AR(3) 0.0414 0.0414 0.0365 0.0365
AR(4) 0.0346 0.0346 0.0275 0.0275
AR(5) 0.0311 0.0311 0.0232 0.0232

US/euro exchange rate

AR(1) 0.0015685 0.0015685 0.0006320 0.0006320
AR(2) 0.0015700 0.0015700 0.0006325 0.0006325
AR(3) 0.0015695 0.0015695 0.0006303 0.0006303
AR(4) 0.0015726 0.0015726 0.0006348 0.0006348
AR(5) 0.0015691 0.0015691 0.0006324 0.0006324

Walk-forward testing is performing better for the real interest rate series with lower PAE measures
across the board. Walk-forward testing manages to beat 5-fold CV for RMSE PAE measures as well and
achieves very similar MAE PAE figures. In the smaller samples examined here (59 for the interest rate data,
290 for the HICP data), walk-forward testing clearly outperforms 5-fold cross-validation. Similarly, CV is
also outperformed by walk-forward testing in the case of the M3 aggregate data especially for the RMSE
figures. In a much larger sample, as is for the exchange rate data, results are different. It is observed that
CV achieved much lower prediction accuracy error metrics for this data series and walk-forward testing,
while its figures are quite small, does not manage to stay competitive against 5-fold CV.

(a) (b)

(c)

Figure 3.3: (a): Monetary aggregate M3 vis-a-vis euro area, monthly frequency ranging from January 1981
to February 2021 (Sample size: 482). (b): Autocorrelation function of the final, differenced series, given
for 40 lags. Shaded regions represent the 95% confidence interval. (c): Partial autocorrelation function of
the final, differenced series, given for 25 lags. Shaded regions represent the 95% confidence interval.

The picture painted by the raw RMSE, MAE in Tables 3.6 and 3.7 is similar. For the first three data
series (real interest rate, HICP, M3 aggregate), walk-forward testing achieves lower figures than 5-fold CV.
Again, for the exchange rate data, 5-fold CV performs slighty better that walk-forward testing. It is worth
noting that with a large sample size like this, the differences observed are much slimmer. Even though the
prediction accuracy error design with the MPAE, MAPAE measures makes more sense in a synthetic data
context , it is not the intuitive metric when using real data. Since the designation of the out-set keeps a
significant amount of observations unused in estimation, something one would typically avoid, using the
standard RMSE and MAE on the whole sample is more representative for assessing the suitability of a given
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method. As seen in the tables, walk-forward testing constitutes the superior method at small samples. Only
in the case of exchange rates, where the sample size is just over 5700 observations 5-fold CV marginally
outperforms walk-forward testing.

(a) (b)

(c)

Figure 3.4: (a): ECB reference exchange rate, US dollar/Euro, daily frequency ranging from 4th January
1981 to 24th April 2021 (Sample size: 5708). (b): Autocorrelation function of the final, differenced se-
ries, given for 40 lags. Shaded regions represent the 95% confidence interval. (c): Partial autocorrelation
function of the final, differenced series, given for 25 lags. Shaded regions represent the 95% confidence
interval.

From the range of five models used here, the model with the lowest metrics would be naturally selected
as the better among the range. For real interest rate, 5-fold CV chooses the AR(1) while walk-forward
testing selects the AR(5) with both RMSE and MAE. For the HICP data, 5-fold CV chooses the AR(2) with
RMSE and the AR(4) with MAE. Walk-forward testing chooses the AR(3) with RMSE and the AR(1) with
MAE. For the M3 data, 5-fold RMSE selects the AR(4), MAE the AR(3) while walk-forward testing selects
the AR(5) with both measures. For the exchange rate data, the smallest model is chosen across the board.
AIC is also reported in Table 3.7. The AR(1) is chosen for interest rate, AR(5) for HICP, AR(4) for M3 and
AR(1) for the exchange rate data. Having that said, not knowing the true model, as is with real data, AIC
and metric selections cannot be correctly evaluated here.

Table 3.6: RMSE, MAE, 5-fold cross-validation for real data series.

# Lags RMSE MAE

Real interest rate (US)

AR(1) 1.5569 1.2762
AR(2) 1.6483 1.3389
AR(3) 1.7138 1.3764
AR(4) 1.7953 1.4437
AR(5) 2.1007 1.6230

HICP

AR(1) 0.5481 0.3593
AR(2) 0.5270 0.3495
AR(3) 0.5300 0.3462
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AR(4) 0.5339 0.3449
AR(5) 0.5333 0.3487

Monetary aggregate M3 (euro area)

AR(1) 0.4657 0.3598
AR(2) 0.4670 0.3621
AR(3) 0.4608 0.3527
AR(4) 0.4601 0.3535
AR(5) 0.4634 0.3571

US/euro exchange rate

AR(1) 0.0074671 0.0053498
AR(2) 0.0074686 0.0053498
AR(3) 0.0074717 0.0053522
AR(4) 0.0074762 0.0053558
AR(5) 0.0074806 0.0053595

Table 3.7: RMSE, MAE, walk-forward testing on real data.

# Lags RMSE MAE AIC

Real interest rate (US)

AR(1) 1.1589 0.9159 177.3608
AR(2) 1.1764 0.9354 179.0453
AR(3) 1.1865 0.8845 180.8357
AR(4) 1.1419 0.8545 179.9961
AR(5) 1.1425 0.8555 181.9958

HICP

AR(1) 0.4516 0.3219 444.6139
AR(2) 0.4561 0.3262 415.5617
AR(3) 0.4497 0.3230 411.9500
AR(4) 0.4514 0.3220 413.4100
AR(5) 0.4502 0.3242 412.8034

Monetary aggregate M3 (euro area)

AR(1) 0.4381 0.3412 555.3772
AR(2) 0.4409 0.3463 552.4968
AR(3) 0.4281 0.3273 545.7998
AR(4) 0.4193 0.3201 540.2109
AR(5) 0.4184 0.3192 542.2093

US/euro exchange rate

AR(1) 0.0084388 0.0059377 -39925.090
AR(2) 0.0084400 0.0059379 -39923.714
AR(3) 0.0084403 0.0059357 -39922.241
AR(4) 0.0084440 0.0059415 -39920.281
AR(5) 0.0084421 0.0059412 -39920.027
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Chapter 4

Conclusions

In this section, the main results are discussed and conclusions are drawn from these results. This study
examined one way backtesting could be implemented in the time series setting and specifically to evaluate
model predictions and subsequent model selection based on the quality of said predictions. A Monte Carlo
simulation experiment was conducted adapting the experiment of Bergmeir et al. (2018) to accommodate
structural breaks and autocorrelated errors in the data generating processes to evaluate the performance of
information criteria, cross-validation methods and backtesting implemented using the walk-forward testing
method in Kaastra & Boyd (1996). Real data are also tested with these methods and analogous comparisons
are made.

The main result of this exercise is that, despite the very limited use in similar time series and financial
applications, backtesting implemented with a sliding ”window” of data is very competitive in achieving
accurate predictions even against the best performing cross-validation methods utilised in this experiment.
Both in terms of prediction accuracy error measures and ”raw” RMSE and MAE figures, which are more
traditional in such types of model selection, the form of backtesting applied here is only slightly falling
behind for some of the artificial data generating process and manages to outperform 5-fold cross-validation
for processes with significant autocorrelation present in the error structure.

The encouraging performance of the method on processes with significant autocorrelation along with
the fact that the models used to estimate and predict are very simple AR(p) models hint that the method
could handle heavy misspecification which is very well the case with real data whose true generating process
is rarely, if at all, known. Indeed, when it comes to the real data series used here, backtesting outperforms
5-fold CV especially at relatively small samples. Both PAE and traditional error measures confirm that
backtesting implemented with a walk-forward testing (a.k.a sliding window) could provide prediction and
model selection advantages over cross-validation in heavily misspecified time series contexts.

Having that said, this study is limited by the fact that theoretical properties of the walk forward testing
method in large samples are not straightforward as with some types of cross-validation. Asymptotic proper-
ties of the procedure and error estimates would greatly benefit towards better comprehension of predictions
and model selections given by the method. This thesis recommends that further research is required to
establish in which scenarios such an undertaking would be beneficial for the researcher. Theoretical proper-
ties of such a method have to be thoroughly examined and the use of models and data generating processes
with higher complexity need to be explored.
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Appendix

Algorithm 1: Cross-validation testing procedure on simulated data for calculation of prediction
accuracy errors.

for (n in 1, 2, . . . , number of simulations) do
for (all data generating processes) do

set seed (differs with n);
generate synthetic series according to Table 3.1;
for (all CV methods) do

determine in-set/out-set partitions and number of iterations of each method;
for (every iteration of the CV method in current run) do

for (AR order from 1 to 5) do
estimate model of current order with train data;
evaluate model on test data;

end
end
for (AR order from 1 to 5) do

estimate model of current order with the whole in-set data;
evaluate model on out-set data;
determine prediction accuracy error measures by subtracting average error

measures calculated on the in-set and measures calculated on the out-set;
end

end
end

end

Algorithm 2: Walk-forward testing procedure on simulated data for calculation of prediction ac-
curacy errors.

for (n in 1, 2, . . . , number of simulations) do
for (all data generating processes) do

set seed (differs with n);
generate synthetic series according to Table 3.1;
for (every iteration of the WFT method) do

determine the in-set and out-set;
for (AR order from 1 to 5) do

estimate model of current order with train data;
evaluate model on test data;
estimate model of current order again, now with the all of the in-set data;
evaluate model on out-set data;

end
end
for (AR order from 1 to 5) do

determine prediction accuracy error measures by subtracting average error measures
calculated on the in-set and measures calculated on the out-set;

end
end

end
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Table A.1: RMSE, MAE measures using the Bergmeir et al. (2018) cross-validation methods on all DGPs.
Number of simulations = 1000, sample size n = 500.

# Lags RMSE MAE

Stochastic AR(3)

5-fold CV AR(1) 1.0504 0.8388
AR(2) 1.0079 0.8045
AR(3) 1.0064 0.8035
AR(4) 1.0080 0.8050
AR(5) 1.0099 0.8065

noDepCV AR(1) 1.0973 0.8757
AR(2) 1.0700 0.8533
AR(3) 1.0874 0.8671
AR(4) 1.1114 0.8858
AR(5) 1.1367 0.9056

OOS AR(1) 1.0489 0.8410
AR(2) 1.0052 0.8055
AR(3) 1.0034 0.8041
AR(4) 1.0043 0.8051
AR(5) 1.0061 0.8066

Stochastic MA(1)

5-fold CV AR(1) 1.1554 0.9226
AR(2) 1.0932 0.8734
AR(3) 1.0650 0.8510
AR(4) 1.0484 0.8375
AR(5) 1.0390 0.8301

noDepCV AR(1) 1.1789 0.9411
AR(2) 1.1478 0.9160
AR(3) 1.1334 0.9041
AR(4) 1.1430 0.9113
AR(5) 1.1531 0.9190

OOS AR(1) 1.1476 0.9204
AR(2) 1.0877 0.8725
AR(3) 1.0576 0.8485
AR(4) 1.0428 0.8365
AR(5) 1.0328 0.8287

Seasonal ARIMA

5-fold CV AR(1) 998.8598 799.2195
AR(2) 994.2633 795.3548
AR(3) 990.6431 792.2216
AR(4) 985.2711 788.0291
AR(5) 980.2467 783.8283

noDepCV AR(1) 1031.5958 824.9693
AR(2) 1044.3668 834.4300
AR(3) 1057.2591 844.1264
AR(4) 1070.1811 853.8777
AR(5) 1081.6456 861.8840

OOS AR(1) 1017.8867 821.5384
AR(2) 1021.8928 824.6080
AR(3) 1026.2522 828.2727
AR(4) 1032.8644 834.7562
AR(5) 1036.5509 838.0672
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AR(3) w/ break

5-fold CV AR(1) 1.5003 1.1644
AR(2) 1.3879 1.1101
AR(3) 1.3124 1.0326
AR(4) 1.3077 1.0281
AR(5) 1.3109 1.0293

noDepCV AR(1) 1.6861 1.2779
AR(2) 1.5566 1.1994
AR(3) 1.4823 1.1524
AR(4) 1.4558 1.1389
AR(5) 1.5613 1.2296

OOS AR(1) 2.2991 1.7937
AR(2) 2.2148 1.7310
AR(3) 1.8647 1.5012
AR(4) 1.8647 1.5176
AR(5) 1.9713 1.5948

MA(1) w/ break

5-fold CV AR(1) 1.3448 1.0713
AR(2) 1.3529 1.0768
AR(3) 1.3516 1.0768
AR(4) 1.3487 1.0736
AR(5) 1.3498 1.0737

noDepCV AR(1) 1.4698 1.1686
AR(2) 1.5530 1.2246
AR(3) 1.5674 1.2315
AR(4) 1.5484 1.2248
AR(5) 1.5876 1.2634

OOS AR(1) 1.7048 1.3878
AR(2) 1.9061 1.5587
AR(3) 1.9842 1.6147
AR(4) 1.9208 1.5704
AR(5) 1.9122 1.5635

AR(3) w/ AR errors

5-fold CV AR(1) 1.1147 0.8857
AR(2) 1.0304 0.8186
AR(3) 1.0220 0.8128
AR(4) 1.0245 0.8158
AR(5) 1.0276 0.8189

noDepCV AR(1) 1.1367 0.8980
AR(2) 1.0714 0.8420
AR(3) 1.0937 0.8586
AR(4) 1.1168 0.8745
AR(5) 1.1316 0.8865

OOS AR(1) 1.1512 0.9165
AR(2) 1.0821 0.8662
AR(3) 1.0760 0.8640
AR(4) 1.0759 0.8644
AR(5) 1.0756 0.8654

AR(3) w/ MA errors

5-fold CV AR(1) 1.2216 0.9764
AR(2) 1.1007 0.8761
AR(3) 1.0778 0.8553
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AR(4) 1.0583 0.8439
AR(5) 1.0568 0.8422

noDepCV AR(1) 1.2412 0.9908
AR(2) 1.1490 0.9133
AR(3) 1.1425 0.9025
AR(4) 1.1241 0.8889
AR(5) 1.1390 0.9011

OOS AR(1) 1.2907 1.0569
AR(2) 1.1678 0.9560
AR(3) 1.1331 0.9254
AR(4) 1.1120 0.9117
AR(5) 1.1093 0.9091

MA(1) w/ AR errors

5-fold CV AR(1) 1.1745 0.9388
AR(2) 1.1082 0.8871
AR(3) 1.0816 0.8569
AR(4) 1.0673 0.8483
AR(5) 1.0657 0.8455

noDepCV AR(1) 1.1904 0.9544
AR(2) 1.1520 0.9233
AR(3) 1.1543 0.9161
AR(4) 1.1314 0.8991
AR(5) 1.1341 0.8961

OOS AR(1) 1.2679 1.0247
AR(2) 1.1791 0.9663
AR(3) 1.1349 0.9245
AR(4) 1.1156 0.9081
AR(5) 1.1146 0.9090

MA(1) w/ MA errors

5-fold CV AR(1) 1.4596 1.1695
AR(2) 1.2738 1.0301
AR(3) 1.2221 0.9855
AR(4) 1.1561 0.9202
AR(5) 1.1444 0.9068

noDepCV AR(1) 1.4652 1.1707
AR(2) 1.3315 1.0722
AR(3) 1.2851 1.0415
AR(4) 1.2188 0.9780
AR(5) 1.2344 0.9775

OOS AR(1) 1.6028 1.2850
AR(2) 1.3565 1.1153
AR(3) 1.2846 1.0610
AR(4) 1.2154 0.9988
AR(5) 1.1976 0.9846

Table A.2: RMSE, MAE measures, walk-forward testing. Number of simulations = 1000, sample size n =
500.

# Lags RMSE MAE

Stochastic AR(3)

AR(1) 1.0479 0.8392
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AR(2) 1.0044 0.8039
AR(3) 1.0029 0.8026
AR(4) 1.0043 0.8040
AR(5) 1.0061 0.8056

Stochastic MA(1)

AR(1) 1.1467 0.9191
AR(2) 1.0873 0.8715
AR(3) 1.0574 0.8478
AR(4) 1.0426 0.8357
AR(5) 1.0332 0.8282

Seasonal ARIMA

AR(1) 1019.3437 822.3744
AR(2) 1023.4679 825.3353
AR(3) 1027.6679 828.7279
AR(4) 1033.8075 834.4938
AR(5) 1037.2777 837.7937

AR(3) w/ break

AR(1) 2.1499 1.6725
AR(2) 2.2944 1.7343
AR(3) 2.1222 1.6063
AR(4) 2.0909 1.6005
AR(5) 2.0892 1.6081

MA(1) w/ break

AR(1) 1.6164 1.2959
AR(2) 1.8516 1.4779
AR(3) 2.0092 1.5750
AR(4) 2.0266 1.5815
AR(5) 2.0416 1.5891

AR(3) w/ AR errors

AR(1) 1.0989 0.8770
AR(2) 1.0395 0.8392
AR(3) 1.0360 0.8424
AR(4) 1.0369 0.8441
AR(5) 1.0375 0.8446

AR(3) w/ MA errors

AR(1) 1.2276 1.0088
AR(2) 1.1232 0.9281
AR(3) 1.0867 0.8973
AR(4) 1.0648 0.8837
AR(5) 1.0612 0.8808

MA(1) w/ AR errors

AR(1) 1.2147 0.9927
AR(2) 1.1356 0.9404
AR(3) 1.0915 0.8984
AR(4) 1.0708 0.8812
AR(5) 1.0677 0.8829

MA(1) w/ MA errors

AR(1) 1.5321 1.2269
AR(2) 1.3017 1.0794
AR(3) 1.2327 1.0239
AR(4) 1.1610 0.9592
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AR(5) 1.1416 0.9448
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