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DGS Glosses to German Text Translation
Aided by Temporal Data

Gijs Thissen

Sign languages are languages that have unique grammar, words, and manners of speaking.
Therefore they may be completely distinct from the regional equivalent spoken language. Most of
the time these live in parallel worlds, with the deaf on one side and the hearing on another. When
these worlds clash, confusion arises because of the dissimilarity between the two since they might
not stem from the same language family. In recent years the field of neural machine translation
has grown exponentially, with the invention of the transformer architecture increasing accuracy
in machine translation software. German Sign Language (DGS) and German are two distinct
languages and are therefore subject to translation possibilities. The recent approaches mainly
focus on (German) text to (DGS) glosses. However, there has been a lack of a glosses-to-text
translation system. The focus of this paper is to find the best approach by adding temporal,
vocal, or combined data to the glosses of the DGS Public Korpus. The results show that adding
these extra tokens to the data results in a less accurate translation across all models. The neural
machine translation system with an input of nothing but glosses [BLEU 3.69, TER 0.960]
outperforms the more complex models [average BLEU 2.19, average TER 0.981]. It is concluded
that adding temporal, vocal or both in the data without the use of standardization of the tokens
aids in the emergence of more rare and unique words resulting in the decrease in accuracy of the
model.

1. Introduction

Contrary to popular belief, sign language and spoken language are not the same. In
fact, sign language has its own words and grammar (Camgoz et al., 2018; Stokoe Jr,
2005) that are completely separate from its regional spoken counterpart. The earliest
attested use of sign language can be found in Plato’s Cratylus (Sedley, 2003). The
hearing impaired, users of sign language, use signs as their day to day communication
(Perniss, 2007a). This is done by the use of spatial-temporal gestures to communicate
pieces of information. However, communication between the signers and non-signers
can prove to be difficult (Meadow et al., 1981) when both of them do not know the
other’s language.

1.1 Spoken Language of the Deaf and Hard of Hearing

When a deaf person signs, spoken words can be heard. In the field of sign language
research, these spoken language utterances performed by deaf individuals are referred
to as mouthings (Konrad et al., 2020; Braem & Brentari, 2001). The concept of mouthings
is quite common among non-deaf individuals. It is often referred to as intra-sentential
code-mixing (Paradis et al., 2000) and is fairly prominent among bilingual non-deaf
children. However, bilingualism does not limit itself to solely hearing individuals.
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Many deaf persons are, in fact, bilingual. Only 8% of deaf children are born to two
deaf parents. Consequently, these children tend to "speak" both sign language and
spoken language (Perniss, 2007a). Research suggests that in adults, this code-mixing
has become a structural part of their linguistic abilities and plays an important role in
the meaning of a sign. (Pfaff, 1979; Konrad et al., 2020). It is, however, not consistent
among sign languages. Signers of American Sign Language tend to use less mouthing
when compared to signers of German Sign Language.

1.2 Sign Translation

When faced with situations where proper communication is key, written text is a so-
lution to circumvent ambiguity. In the case of sign language, linguists have developed
conventions for translating sign language into text (Konrad et al., 2020; Aouiti et al.,
2015; Porta et al., 2014). This is done by denoting a single gesture as a word. Around
this word, several glosses are positioned. Glosses are brief annotations used by linguists
to denote an explanation of a word. For example, I LIKE [negative] COWS would
translate to I don’t like cows. Translating glosses to normal text is a tedious job that
is exclusively done by specialised linguists. Preferably this task would be able to be
automated. However, for this goal to be achieved, there is a need for a corpus to be
machine-readable. Machine readability is achieved by making use of consistent sign
annotations and tags (Johnstonet al. , 2008).

To solve this problem, end-to-end machine translation models have been developed
to recognize gestures and translate gestures directly to text (De Coster et al., 2020). Sign
recognition systems work by isolating different signs from each other, which has proven
to be difficult due to the existence of a transitional period between signs (Konrad et al.,
2020) (See Section 3.4 about Segmentation for more details). While this approach has
shown promising results it ignores the underlying linguistical aspects of sign language
(Camgoz et al., 2018; Perniss, 2007a). This paper will investigate whether or not adding
temporal data improves machine translation systems for language glosses to text.

1.3 Research Question

To what extent does temporal data aid in the performance of a machine translation
system for sign language glosses to text?
The research question is broken down into the following sub-questions:

• How to introduce temporal data to the Machine Translation system?
The baseline system does not have temporal data added to it. This
sub-question is related to how to add temporal data to the machine
translation system.

• To what extent does temporal data aid a Machine Translation system
when compared to a baseline system?
The chosen dataset (Konrad et al., 2020a) contains both the glosses (i.e.:
TO-HAVE-BSL1, I1^, BUTTER1A) and the timestamps next to them to
indicate when and how long these signs have taken place. This
sub-question is related to combining this temporal data with the baseline
system. Both the baseline and the temporal experiments are described in
the methods section.
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• To what extent does vocal data aid a Machine Translation system when
compared to a baseline system?
The dataset contains both glosses on sign language and data on what the
subject said during the interview (vocal). This sub-question is related to:

1. Combining the additional vocal data with the baseline system.
2. Combining the additional vocal data with the temporal data and

the baseline system.
3. Measuring to what extent does adding extra tokens have an effect

on the performance of the Machine Translation system.
.

1.4 Findings

The results of the conducted research show that combining words and temporal features
does not increase the accuracy of the model. Instead, combining these features decreases
the BLEU score of the translated text by as much as 22%. Even though prior research
showed that mouthings are intrinsically part of a signer’s linguistical ability (Pfaff, 1979;
Konrad et al., 2020) the results show a 45% decrease in BLEU score when paired with
words and fed into an NMT system. Combining all the data results in a BLEU score loss
of 50% on the translated text.

2. Related Work

Research on parallel translation of spoken language is widely attested. Sign language
translation, however, is a relatively small field with little appropriate datasets or meth-
ods (Camgoz et al., 2021; Bragg et al., 2019).

2.1 Hidden Markov Models

In the late 1990s, the field of Sign Language translation wasn’t much of a separate field,
the research that did exist was mainly focused on recognizing sign language. The focus
of Sign Language Recognition mainly relied on HMMs (Starner & Pentland, 1997; Liang
& Ouhyoung, 1996; Vogler & Metaxas, 1999; Holden et al., 2005). A gesture would be
decomposed into a sequence of postures. These postures would then be recognised by
the HMM as a gesture. For the system to be able to track a gesture the user would
be wearing an annotation glove. For example, coloured rings would be worn around
each finger. This approach changed in 1996 by using the colour of the participants’ skin
to segment from the background by calibrating the system on the participants noses
(Starner et al., 1998). This proved to be problematic, however, since the hands move
at a different pace compared to the nose the system would occasionally filter out the
nose (Starner et al., 1998). In 2005, an end-to-end pipeline, called the Sign2 Conversion
System (Glenn et al., 2005), was created. However, it could only be used for ASL finger-
spelling excluding any non-alphabetical ASL signs and therefore limiting the system
greatly by excluding essential linguistical aspects of the American Sign Language.

2.2 Deep Learning

Using neural networks in sign recognition was among the first methods proposed at
the onset of the field (Murakami & Taguchi, 1991; Fels & Hinton, 1993), however, the
approach was overshadowed due to the success of HMM’s in the 1990s (Cooper et al.,
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2011). The use of neural networks became more prominent in the late 2000s (Parton,
2006). During this time several new international projects were set up to create sign
language recognition systems for local sign languages (Admasu & Raimond, 2010;
Akmeliawati et al., 2007; Kiani Sarkaleh et al., 2009; Dias et al., 2009; Maraqa & Abu-
Zaiter, 2008).

Within recent times Deep Learning (LeCun et al., 2015) has gained popularity
giving rise to new models. This enables the use of 3-dimensional convolutional neural
networks. While previous recognition systems employed sign language recognition on
2-dimensional images, due to having no temporal dimension in their kernel this would
result in a 2-dimensional output (Tran et al., 2015). The main difference between the old
systems and the new is the 3-dimensional convolutional neural network (CNN) that can
extract discriminative spatial-temporal features (Huang et al., 2015).

2.3 Continuous Sign Language Recognition

In mid 2010s the field has morphed into continuous sign language recognition (CSLR)
(Koller et al., 2015). Where the older SLR systems were limited to the use of isolated ges-
tures (Cooper et al., 2011), through the use of (Long Short Term Memory) LSTM models
(Hochreiter & Schmidhuber, 1997) the field was able to create a CSLR system that recog-
nizes gestures as a sequence of interconnected sub-units (Mittal et al., 2019). This proved
to be especially difficult since there are no clear boundaries between signs hands move
from because signs do not simply stop but rather move in transitional movements (See
Section 3.4 for details about Segmentation). An architecture that improves on this, even
more, is the Transformer architecture (Vaswani et al., 2017) improving the WMT 2014
English-to-German translation task by 2 BLEU score (see Section 4.5 for details about
BLEU) compared to older architectures. Consequently this architecture was applied to
the field of SLR where Transformers have been proven to outperform LSTMs in SLR
experiments (De Coster et al., 2020; Camgoz et al., 2020).

2.4 Sign Language Translation

The field of sign language recognition has continuously posed the problem of
translating sign language as a purely symbolic one (Camgoz et al., 2018). However,
sign language is its own language with its own distinctive grammar (Perniss, 2007a;
Camgoz et al., 2018; Camgoz et al., 2020), consequently by ignoring the grammar and
linguistic properties of a sign language important information is lost. The current
state-of-the-art solves this issue by using sequence-to-sequence based deep learning
models. The SLR translation as performed by Koller et al., 2015 is still performed,
however, it is enhanced by embedding the glosses into the system (Camgoz et al.,
2018). Due to the lack of prior research into the topic of Sign Language Translation,
especially regarding Neural Machine Translation, many tokenization methods have yet
to be explored. In the NMT system, the temporal features are added, however, contrary
to the signs and their respective glosses, no temporal data is embedded. Research has
also shown that the mouthing a deaf person performs is of importance for the meaning
of the sign that is being performed at the same time (Konrad et al., 2020).

This thesis focuses on to what extent the addition of temporal or vocal tokens,
aids in the performance of a gloss to text NMT system. The system will use the
Transformer architecture in combination with source word features (García-Martínez
et al., 2016) that correspond to either the temporal, vocal or combined glosses. The
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public DGS corpus (Konrad et al., 2020a) will be used due to the presence of both vocal
and temporal tiers in the corpus. It is hypothesised that adding temporal, vocal, or
either will progressively strengthen the NMT-system’s accuracy while reducing the
errors it makes in the translation.

3. Data

In the following section the source and distribution of the data for the NMT system
will be discussed as well as the method in which the dataset was collected (IDGS,
2020). Furthermore, the conventions by which the corpus was created is presented and
explained in detail.

3.1 Source

The data consists of 405 EAF-files (ELAN Annotation Files) gathered by the Institute
for German Sign Language and Communication of the Deaf at Hamburg University
(Prillwitz et al., 2008). These files consist of a total of 50 hours of annotated recordings
spanning a wide range of narrations regarding the cultural aspects of the deaf commu-
nity. The interviews were conducted using a peer-to-peer procedure, where participant
change roles according to the conversation (Prillwitz et al., 2008). During a discussion
2 German Sign Language or Deutsche Gebärdensprache (DGS) signers conversed. Each
conversation consisted of a standardized interview covering linguistical and social data
(Hanke et al., 2009). Following this conversation, a spontaneous conversation on a given
topic was held while the participants were encouraged to use as much basic vocabulary
as possible (Hanke et al., 2009). In the EAF-files the signers are annotated as either
Speaker A or Speaker B. The data was collected between January 2010 and December
2011 by videotaping 330 participants from all 16 Federated States (Bundesländer). The
recordings were conducted using a mobile field lab in; areas with a relatively high deaf
population density (deaf schools, deaf centres, and deaf institutes) (IDGS, 2020) (Hanke
et al., 2009), the catchment areas of the former Schools for the Deaf (IDGS, 2020; Prillwitz
et al., 2008), areas which were easy to reach from surrounding rural communities (IDGS,
2020; Hanke et al., 2009), and finally areas that were suspected of having a distinct
dialect. (IDGS, 2020; Prillwitz et al., 2008)

The data was collected by representatives of the local deaf community to take into
account the regional varieties of DGS (Hanke et al., 2009). As can be seen in Figure 1 the
data was sampled from participants across different age groups (IDGS, 2020).

3.2 ELAN

The conversation conducted between the representatives of the deaf community has
been annotated and stored in EAF-files. These EAF-files can be shown and edited using
the ELAN software (Crasborn & Sloetjes, 2008). ELAN is a multimedia annotation
software developed by (Nijmegen: Max Planck Institute for Psycholinguistics, 2020)
to assist in Linguistical studies, language conservation, and sign language research
(Brugman et al., 2004). The software can be used to add annotations to video and/or
audio recordings. An annotation can be a sentence, word, or in the case of sign language,
a gloss. Using ELAN multiple annotations can be created that are sorted into tiers
(Crasborn & Sloetjes, 2008).
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Figure 1
Showing the percentage of participants per age, divided into both the Male (shown in Purple)
and Female (shown in Red) gender, that participated in the creation of the DGS corpus (both
annotated and non-annotated). (IDGS, 2020)
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Figure 2
Showing the structure of one of the EAF (English Annotated File)-files (Konrad et al., 2020b)
inside the program ELAN. ELAN is a multimedia annotation tool used for multi-modality
research (Sloetjes, 2017).

3.3 Initial Translation

The annotations are divided into tiers are presented across a timeline. As can be seen in
(Figure 2) these files are divided into 11 different tiers, presented in both English and
German due to accessibility (Konrad et al., 2020). Take "Lexem_Gebärde_r_A"
for example, this tier is translated into English as "Lexeme_Sign_r_A". The
tiers present in the EAF-files, translated into English, are: "Time", "Sign_l_B",
"Sign_r_B", "Lexeme_Sign_l_B", "Lexeme_Sign_r_B", "Translation_into_English_B",
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"Sign_l_A", "Sign_r_A", "Lexeme_Sign_l_A", "Lexeme_Sign_r_A", and "Transla-
tion_into_English_A" (Sloetjes, 2017). The goal of this research is to investigate to what
extent temporal data aids in the performance of a machine translation system for sign
language glosses to text. For this purpose, both the German Sign Language and the
German Language were chosen respectively. Since the target language is German, since
the corpus originated at the university of Hamburg (IDGS, 2020), it was decided to use
the original glosses and translations that were available in the corpus.

The initial translation of the glosses in the data set (i.e.: Sign_l_A to Transla-
tion_into_English) was conducted by contracted sign language translators and inter-
preters (Konrad et al., 2020). These researchers translated the data set word-for-word.
Consequently, university students created coherent meaningful sentence like structures.
Lastly, these sentences were fed back into the system until the proper meaning was
determined by the DGS experts (Figure 3) (Konrad et al., 2020).

Figure 3
Showing the translation pipeline of the initial translation phase as conducted by the Institute for
German Sign Language and Communication of the Deaf at Hamburg University. (Konrad et al.,
2020)

3.4 Segmentation

As with spoken languages, sign languages tend not to have a naturally occurring white
space character (Hanke et al., 2019; Konrad et al., 2020). Thus it is difficult to determine
where a sign begins and where a sign ends. In this situation, the segmentator has two
options: either add a gap or none at all. Unlike spoken languages, when a participant is
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signing two words, take TREE (rest your right forearm upon your left palm and twist)
(Perniss, 2007b) and COW (make two horns using your thumb and little finger on top
of your head), for example. There is a transitional period where the participant moves
his or her arm from one sign to the next. When adding a gap between the signs, the
segmentator determines that the transitional movements are not part of the token’s form
(Konrad et al., 2020). Taking this into account researchers at the University of Hamburg
have decided that for the creation of the DGS corpus gaps will be added. The direct
result of this decision is located in the EAF files, where there is temporal data assigned
to the white spaces.

3.5 Lemmatisation and Gloss conventions

When creating a corpus there is an intrinsic need to have conventions in place to make
sure a uniform dataset is created (Konrad et al., 2020). Therefore it is necessary to
employ linguistics to standardise glosses using gloss conventions (Kristoffersen et al.,
2016):

• In the field of Linguistics or more specifically in the field of lexicography, a
lexical item forms the basic element of the lexicon of a language. Lexical
signs are treated as items, that is as units of their respective sign language
that would be found in the dictionary (Konrad et al., 2020). When a deaf
person signs SQUARE1^it may mean different things such as a map, a
recipe, or a page. In DGS (Perniss, 2007b) and several other European Sign
Languages signs are iconically motivated (Pietrandrea, 2002; Oomen,
2017), meaning that there is a similarity between the form of the sign and
the meaning of the sign. In the DGS corpus, type glosses are given an
indication of iconic value by using a circumflex at the end: "SQUARE1^".
Examples of child types to the SQUARE1^parent type are: FORM1,
MIRROR2, and PAPER4, these and all other non-circumflex glosses are
subtypes. The numbers denote different lexical variants.

• Fully iconically motivated signs, also known as poly-morphemic signs, are
denoted as productive signs in contrast to lexical signs that denote a object
in nature instead of meaning. Productive signs, therefore, have a $PROD
token (Konrad et al., 2020)

• Due to the anonymisation laws present in Germany, where this corpus was
created, all names are replaced by "$NAME". Except when it concerns a
famous person the $NAME gloss is followed by the person’s name.
(Konrad et al., 2020)

• Foreign language elements are represented using the INTS token, for
example, when signing the English word Germany instead of
"Deutschland" it has been written as GERMANY-INST1. (Kellett & Ochse,
2008; Konrad et al., 2020)

• In German Sign Language it is conventional to use a one-handed manual
alphabet, for example when spelling out someone’s name. For these
situations, the $ALPHA token is used. Numbers are presented similarly by
using $NUM. (Konrad et al., 2020)

8



G. Thissen Thesis

Taking into account these points a uniform corpus was created with annotated signs
presented on a timeline. An example of an annotated DGS sentence can be seen in
Figure 4.

Figure 4
Showing an example sentence of the annotated corpus in DGS glosses. The German translation
of this gloss sentence is: "Und dann fällt es einem wieder auf, dass der andere noch Fehler
macht" (Konrad et al., 2020a). (English translation: And then one notices again, that the other
(person) is still making mistakes). 1. A token denoting a gesture. 2. The sign annotated as NM
has iconic meaning. 3. One of several lexical variants of the lexical unit FEHLER.

4. Methods

Since the data was created under specific gloss conventions (Konrad et al., 2020) it is
difficult to build a MT system with. Furthermore, the data was split up into multiple
separate files and it was therefore necessary for these files to be ordered and combined.
This section will show the various techniques that were employed in this process.

4.1 Experiments

To answer the (sub-) research questions, experiments are needed. Described below are
4 experiments that have been designed to test the hypotheses, they differ mainly in the
data structure. A good overview of their differences can be found in (Figure 5).

4.1.1 Baseline. Other experiments will be compared to the baseline. This model lacks
any externally added tokens. The data consists of a sequence of glosses as the source
and their German translations as the target (Source: PRIVAT1A* FAMILIE1 Target:
Privates oder Familie? (Konrad et al., 2020a)). The sign language glosses are without
any transitional periods (See the Lemmatisation and Gloss conventions section in Data)
and adhere to the standard gloss conventions.

4.1.2 Temporal. One of the sub-goals of this thesis is to, inspect or identify to what
extent temporal data aids in the performance of machine translation systems for sign
language glosses to text. This will be tested in the Temporal experiment. The data in the
temporal experiment consists of the glosses formed into a sentence with tokens added
to each word separated by the "|" character, e.g.: FAMILIE|120. The number behind the
| character represents the total amount of milliseconds it took for a sign to be signed, in
the given example this would mean that the sign for FAMILIE (English: Family) would
have taken 120 ms to be made. As mentioned before these sentences are without the
transitional periods from one sign to another (See Section 3.5). The "|" sign is a library
standard sign to split Word features from the actual words (Klein et al., 2017). The
temporal data files consist of glosses formed into a sentence with added temporal data
and their German translation as the target (Source: PRIVAT1A*|340 FAMILIE1|460
Target: Privates oder Familie? (Konrad et al., 2020a))

9



Cognitive Science & Artificial Intelligence 2021

4.1.3 Vocal. Another sub-goal of this thesis is to investigate to what extent adding extra
embeddings aids in the performance of machine translation systems for sign language
glosses to text. This will be tested in both the Vocal and the Combined experiment. The
data in the vocal experiment consists of glosses formed into a sentence with tokens
added to each word that represent the spoken words uttered by the participant while
performing this sign. Research has shown that the mouthing a deaf-person performs is
of importance for the meaning of the sign that is being performed at the same time
(Konrad et al., 2020). The spoken word and the gloss will be separated by the "|"
character as per library standard (Klein et al., 2017). When using the OpenNMT library
(Klein et al., 2017) it is necessary that all source word features have the same amount
of features. Thus when a sign does not have an accompanied mouthing a "nan" will be
added instead of the spoken word. This is done to represent the empty space created
by the empty row. The vocal data files consist of glosses formed into a sentence with
added vocal data and their German translation as the target (Source: PRIVAT1A*|privat
FAMILIE1|familie Target: Privates oder Familie?). It is important to note that all vocal
word features are denoted solely using lowercase characters.

4.1.4 Combined. Research has shown that talking speed is affected by emotions (Kshir-
sagar, 2002). The combination experiment is an experiment that combines the previ-
ously mentioned temporal and vocal features into one model. The data will be separated
by a "|" and be processed in a GLOSS|vocal|TIME format. The same conditions apply
to the combined model as applied to the vocal and temporal model. The combined
data files consist of glosses formed into a sentence with added vocal and temporal
data and their German translation as the target (Source: PRIVAT1A*|privat|340 FAMI-
LIE1|familie|460 Target: Privates oder Familie? (Konrad et al., 2020a)).

Figure 5
Showing the source file textual comparison between the Baseline, Temporal, Vocal, and
Combined experiments. In the temporal experiment, the concept of time is added (in ms). In the
vocal experiment, the concept of spoken words is added (in lowercase letters). In the combined
experiment these are combined into one.

4.2 Pre-Processing
4.2.1 EAF to CSV. Using the ELAN software 7 of the 11 tiers were selected and converted
into a CSV file. This creates 2 distinct CSV files that were consequently merged (sec-
tion 1). Due to having merged the files, there are no longer multiple persons in the data
set, instead, the data set is transformed into a contextless database. Due to being able
to access the timeline in ELAN (Nijmegen: Max Planck Institute for Psycholinguistics,
2020), it is possible to extract the temporal features of a given annotation. As mentioned
before the annotators decided to add gaps between the signs (Hanke et al., 2019; Konrad
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et al., 2020), this has been carried over into the EAF-files, resulting in empty rows
inside the CSV file. These need to be removed since the program automatically puts
white spaces between words instead of pasting them into one giant string (section 1).
Failing to do so would result in temporal features being assigned to empty strings (A
temporal-annotated sentence without removal of prior white spaces would result in
$GEST-NM^|430 |230 FEHLER1*|450 |400 $GEST^|400).

4.2.2 Data splitting. As has been described 4 experiments are to be performed: Sign,
Temporal, Vocal, and Combined. For each of these experiments, two files are needed:
a Source file (.src), and a Target file (.trg). These files are fully extracted from the data
frame. By isolating the sentences in the data frame it is possible to create a separate
sentence set for every sentence. This will result in 5 files: normal.en, vocal.en, times.en,
combined.en and sentences.nl. "sentences.nl" is the target file for all the experiments
and is therefore uniform.

To tokenize and split the data the train_test_dev.py (Shterionov, 2020) script
was used to both tokenize and split the data into a training, a validation, and a testing
file. Since the data set only has 60000 sentences it was decided to split the data into only
500 sentences for validation and testing each while the remaining 59000 sentences were
used for the training file.

An unwanted side-effect of the train_test_dev.py (Shterionov, 2020) script is
that it adds white spaces between the individual sentences in both the (train, test, dev)
source files as the target files. This results in the Machine Translation system "assigning"
sentences to these white spaces when training, resulting in a normal German sentence
within a normal German sentence. For this reason all files are passed through the
remove_whitespace.py script (section 1) which will strip away all empty lines.

4.2.3 BPE. Byte Pair Encoding (BPE) is a general-purpose data compression algorithm
(Gage, 1994) which has been employed for MT to reduce the OOV instances (Sennrich
et al., 2015). The way it works is by replacing the most frequent pair of bytes in a
sequence with unused bytes, in the case of the OpenNMT Byte Pair Encoding (Klein
et al., 2017) scripts the unused bytes were denoted in the data files as "@@ ". The
advantages of using the BPE algorithm are:

1. Memory. In the case of German, many words start with the unit "auf", by
encoding this unit by only using 1 symbol, the system only encounters one
symbol instead of 3. (Gage, 1994)

2. Out-of-vocabulary words (OOV). Taking into account the previous
example, since the sub-unit "auf" has been replaced by 1 symbol
encountering it will be familiar. This is because BPE allows for the
encoding of rare words and will not introduce any unrecognised tokens.
When the system thenceforth encounters words containing the sub-unit it
will be more familiar rather than it would be in the case without the
sub-unit. (Gage, 1994; Sennrich et al., 2015)

Before being passed to the pre-processing and training, the data, with the exception
of the test.trg-file, since after translation the output file will be passed through an un-
encryption algorithm resulting in normal text, were passed through a modified form of
the BPE algorithm. In normal circumstances when using BPE, it caused no problems,
however, when applying BPE to data containing temporal word features it would split
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the word on the "|" character. The modified algorithm first double-checks whether or
not there is a temporal feature added to the word and if there is will join the word and its
respective temporal feature together (section 1). Applying remove_whitespace.py
on the data files significantly increases the BLEU-score for the Baseline model, while
the old Baseline (pre-BPE, post-removal) had a BLEU score of 2.15, the new Baseline
(post-BPE, post-removal) had a BLEU-score of 3.69. It was therefore decided to use the
Byte Pair Encoding algorithm to compress the data files.

4.3 OpenNMT

To train the data a Neural Machine Translation library is needed that supports source
word features. With these criteria in mind 2 libraries were eventually found: OpenNMT
(Klein et al., 2017) and MarianNMT (Junczys-Dowmunt et al., 2018). A main difference
between the two remaining libraries is the way source word features can be used.
Consider the following sentence: "PRIVAT1A*|340 FAMILIE1", as can be seen, the first
word has word features attached, however, the second word does not. While this is
not a problem in MarianNMT this would be a cause a problem in OpenNMT since it’s
source word features need to be consistent. Nonetheless, OpenNMT was chosen as the
preferred library because of its compatibility with Microsoft Windows 10.

4.4 Hyperparameters and Architecture

Using OpenNMT (Klein et al., 2017) a Transformer model was trained. The hyperparam-
eters were picked to match the recommended standard transformer hyper-parameters
(OpenNMT, 2018) as shown in (Table 1). These settings were chosen to create a model
that is able to imitate the WMT2014 German-English (Bojar et al., 2014) results as
achieved by the original paper on Transformers (Vaswani et al., 2017). Overfitting on a
small data set (the training data consists of 60000 sentences) is a major challenge (Barone
et al., 2017), therefore, an early stopping criterion was introduced. If the perplexity and
accuracy of the model do not improve during the last 5 validation performances the
system will be stopped. Due to the limited capabilities of the system used, even with
the use of the BPE algorithm, the batch size had to be decreased from a recommended
4096 to 1024.

5. Evaluation Metrics

5.1 BLEU

BLEU is short for Bilingual Evaluation Understudy and is an evaluation metric for
Neural Machine Translation as described in (Papineni et al., 2002). As the name suggests
it is an evaluation metric for a parallel bilingual system with a reference (original target
file) and a hypothesis (predicted target file). Previously used metrics were human-based
and could take weeks or even months to be calculated (Papineni et al., 2002). The
idea behind the metric was that the closer a machine translation was to a professional
(linguistic) human translation, the better it was. Therefore one has to measure how close
the prediction is to the reference translations.

5.1.1 Weighted precision. BLEU uses the weighted precision score (Figure 6). The
difference between the modified version and the normal version is that the modified
version takes into account the maximum reference count (Chan, 2012). If the "normal"
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Table 1
Showing the hyperparameters used for training using the Transformer architecture.

Hyperparameter Setting Hyperparameter Setting
Encoder type Transformer Batch size 1024
Decoder type Transformer Batch type tokens
Transformer feed-forward 2048 Normalization tokens
Layers 6 Warm-up steps 8000
Heads 8 Training steps 20000
RNN size 512 Validation steps 1000
Word embedding size 512 Label smoothing 0.1
Position encoding True World size 1
Maximum generator batches 2 GPU rank 0
Dropout probability 0.1 Early stopping 5
Optimization method adam Early Stopping criteria perplexity, accuracy
Adam beta2 hyperparameter 0.998 Max gradient norm 0
Decay Method noam Parameters initialized at 0
Learning rate 2 Parameters_init_glorot True

precision measure was used with multiple references, when comparing the sentence
"dog dog dog dog dog dog dog" with "I want a dog" would be able to get a score of
close to 1. This is especially true since MT systems tend to over-generate words that
seem to fit in (Papineni et al., 2002).

Figure 6
Showing the modified n-gram precision formula. The difference between the modified version
and the normal version is that the modified version takes into account the maximum reference
count, known as the clipped count. Candidates refers to the translated sentences (Chan, 2012)
(Papineni et al., 2002). First compute the N-gram matches. Second add the clipped counts for all
translated sentences. Third divide the sum by the total number of n-grams in the reference.
(Chan, 2012)

5.1.2 Brevity penalty. Traditionally the BLEU-score was used to calculate the score of a
prediction over multiple references. Since these references may or may not have variable
length this will negatively affect the recall score (Papineni et al., 2002) (Section 2.2). The
proposed solution is the brevity penalty or BP for short as can be seen in (Figure 7). The
Brevity penalty high scoring translations must match the references in word order and
length. Sentences smaller than the reference sentences are therefore penalized since they
are multiplied by a factor < 1.
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Figure 7
Showing the complete formula for calculating BLEU (Papineni et al., 2002). In the BP formula, c
denotes the total length of the translation corpus, r is the sum of the best match lengths of the
translation sentence in the test corpus (Papineni et al., 2002). If the BP value is 1 this means that
the translation length and the reference length are equal if this is not the case the second formula
will be used. The eventual BLEU-score is the average of the weighted precision scores times the
brevity penalty and therefore penalizes shorter sentences.

5.1.3 BLEU-score. The BLEU score ranges from 0 to 1, with 0 being not related to the
reference sentence and 1 being identical. As a convention in the field of Neural Machine
Translation, the BLEU-score is either multiplied by 10 or 100, for the purposes of this
paper the BLEU-score will be multiplied by 100. In this paper, BLEU will be used on
only 1 reference since there is only one available per gloss sentence.

5.2 TER

Translation Edit Rate (TER) measures the amount of editing that needs to be done to cre-
ate an output that exactly matches a reference translation (Snover et al., 2006). There can
be multiple TER-scores since they may match one of many references, however, since
in this paper only one reference will be used this will not be considered a problem. The
higher the TER-score the worse the translation, since the more edits are performed on
the total number of edits. The formula to calculate the TER-score is shown in (Figure 8).
The number of edits is calculated in two different phases (Shapira & Storer, 2002):

1. A greedy search algorithm is used to find the words that need to be shifted
from one place to another.

2. An optimal calculation is made to calculate the smallest amount of
remaining edits (insertion, deletion, and substitution) necessary to match
the reference.

Figure 8
Showing the formula for calculating the TER score (Snover et al., 2006). The TER-score is
calculated by dividing the number of edits by the average number of words in the reference
translation. Possible edits are insertion, deletion, substitution, and switching words around. All
these edits have an equal cost.
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6. Results

Table 2
Best performing models with the accompanying BLEU- and TER-scores. Highlighted in bold are
the best results. As can be seen in the table the baseline outperforms all other models.

Word-Form Models BLEU TER

Original
Baseline 3.69 0.960
Temporal 2.85 0.971
Vocal 2.03 1.000
Combined (Temporal + Vocal) 1.69 0.973

At the beginning of this paper it was hypothesised that with the insertion of tem-
poral data into the baseline data, there would be an improvement of the translation
quality. Additionally, it was hypothesised in a sub-hypothesis that the addition of a
vocal token would increase the BLEU-score of the model (see Section 4.1.3 on the scien-
tific background). For these reasons 4 experiments were set up, the baseline, temporal
(baseline + time), vocal (baseline + vocal), and combined (baseline + vocal + time). These
experiments were performed, on each of them, their respective BLEU and TER score
were calculated these results are presented in (Table 2). Histogram plots are shown in
Figure 9 and 10 to compare the scores to each other and see any possible trends between
them.

6.1 Baseline fine-tuning

The baseline experiment consisted of 4 sub-experiments, the results are shown in (Fig-
ure 9). The first experiment that was run, ran on basic hyperparameters, such as a
learning rate of 0.01, however, this architecture was abandoned in favour of mimicking
the original transformer architecture. The results improved by 17.6% (1.12 -> 1.36).
The fine-tuning of the third experiment had to do with the pre-processing. In both the
first and second experiment an oversight was made regarding empty lines in the data
files, these would result in sentences being learned for empty source lines. Applying
remove_whitespace.py on the data files significantly increases the BLEU-score for
the Baseline model, while the old Baseline (pre-BPE, pre-removal) had a BLEU score
of 1.36 the new Baseline (pre-BPE, post-removal) had a BLEU score of 2.15. The algo-
rithm improved the results by 36.7% (1.36 -> 2.15), it was therefore decided to use the
remove_whitespace.py on all data files. The fourth and final experiment was tuned
by applying the BPE algorithm (Gage, 1994) (see section 4.2.3). The results improved by
a total of 41.7% (2.15 -> 3.69). The translated text of the final baseline translation model
had a BLEU-score of 3.69 and a TER score of 0.960, an example is shown in (Table 3). The
former is an improvement of 69.6% compared to the non-tuned baseline while showing
a general trend of improvement across the sub-experiments. When the BLEU-score is
3.69 and the TER score 0.960 are compared to contemporary research they are below
average. However, of the 4 conducted experiments the baseline model had the best
performance.

15



Cognitive Science & Artificial Intelligence 2021

Table 3
Showing the translation results of the baseline model, the original input is the input of the
glosses in accordance to the gloss conventions. While the test reference sentence is more strict
and solely presents a sentence using und and oder. The predicted sentence is more in the context
of the conversation about deafness.

Original Gloss Input MAMA1A* PAPA8* $GEST^ PAPA1B* OMA1C*
Model Predicted Sentence Meine Mutter und mein Bruder, der ja auch hörend war.
Test Reference Sentence Ja, MAMA und PAPA, oder so PAPA, PAPA, OPA, OMA.

Figure 9
Showing the BLEU-scores from the 4 performed sub-experiments. The description of the
experiments can be found in section 5.1. Overall there is a trend of improvement along with the
fine-tuning of the model. On the X-axis the different models are presented. On the Y-axis the
score is shown, the calculation and description of the BLEU score is described in Section 4.5)
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6.2 Experiments

The second experiment was performed to answer the question of whether or not adding
temporal data into the source files would aid in the performance of the model. The
translations generated by the temporal model received a BLEU-score of 2.85 and a TER
of 0.97. When compared to the baseline system this a decrease of 22.8% in BLEU-score
and a similar TER score, an example of a generated translation can be seen in (Table 4).

The third experiment was performed to answer the question of whether vocal data
would aid in the performance of the baseline model. The results show a BLEU-score of
2.03 which is a decrease of 45.0% compared to the baseline. The calculated Translation
Error Rate on the model is 1, the maximum rate since TER-scores are between 0 and 1,
suggesting that a high number of edits was necessary to reach the reference. A practical
example of this can be seen in (Table 5). Research, however, suggests vocal utterances of
deaf individuals are a strong indication of meaning (Konrad et al., 2020).

The final experiment was performed to answer the question of whether or not
combining the third and fourth experiment would aid in the performance of a gloss to
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Table 4
Showing the translation results of the baseline model, the original input is the input of the
glosses in accordance with the gloss conventions with embedded temporal features denoted by
|NUMBER. The model seems to break down while translating, repeating the same word
"Mama" over and over again.

Original Gloss Input MAMA1A*|120 PAPA8*|340 $GEST^|60 PAPA1B*|260 OMA1C*|120
Model Predicted Sentence Das ist meine Mama und meine Mama und meine Mama meine Oma
Test Reference Sentence Ja, MAMA und PAPA, oder so PAPA, PAPA, OPA, OMA.

Table 5
Showing the translation results of the vocal model, the original input is the input of the glosses
in accordance with the gloss conventions with embedded vocal features denoted by |mouthing.
The sentences of the model seem to be quite a bit more basic as compared to the baseline and
temporal experiments.

Original Gloss Input GUT1*|nan TOLL1A|toll GLÜCK1*|glück GUT1*|nan
Model Predicted Sentence Das war sehr gut.
Test Reference Sentence Gut, das ist toll. Du hattest Glück.

text machine translation system. Results show a BLEU-score of 1.69, which is a decrease
of 54.2% compared to the baseline. The calculated TER on the model is 0.97, while
a small increase compared to the baseline. Surprisingly, however, while being worse
compared to the baseline the combined TER was on par with the temporal experiment
and better compared to the vocal experiment. An example of the translation can be
found in (Table 6).

Table 6
Showing the translation results of the combined experiment, the original input is the input of the
glosses in accordance with the gloss conventions with embedded vocal temporal features
denoted by |mouthing|NUMBER. As is shown the sentence does not resemble the reference
sentence anymore.

Original Gloss Input GUT1*|nan|100 TOLL1A|toll|440 GLÜCK1*|glück|160 GUT1*|nan|160
Model Predicted Sentence Das ist wirklich gefährlich..
Test Reference Sentence Gut, das ist toll. Du hattest Glück.
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Figure 10
Showing the results from the 4 performed experiments. On the X-axis the different models are
presented. On the Y-axis the score is shown, the calculation and description of the BLEU score is
described in Section 4.5)
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Figure 11
Showing the results from the 4 performed experiments. The range of the TER is [0, 1] while 0 is
without any edits and 1 with a lot. On the X-axis the different models are presented. On the
Y-axis the score is shown, the calculation and description of the Translation Error Rate is
described in Section 4.6
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7. Discussion

The goal of this thesis was to research to what extent temporal and vocal data aids in
the performance of a MT system for sign glosses to text. The hypothesis stated that it
was to be expected, based on prior research (Konrad et al., 2020), for temporal and vocal
embeddings to increase the performance of the system.

7.1 Research findings

NMT systems were created to aid with translating sign glosses to text using temporal
features. It was shown that the addition of temporal and vocal features to the baseline
did not aid in increasing the BLEU-score of the model. In fact, the addition of temporal
and vocal data decreased the baseline BLEU score by as much as 50%. The results
suggest that neither temporal nor vocal data aids in the performance of a machine
translation system for sign language glosses to text.

7.2 Results

The hypothesis stated that the use of token data (be it temporal or vocal) would help
increase the accuracy of the baseline model. The results show the contrary, a non-aided
simple gloss to text translation system outperformed the aided temporal and vocal
systems. It was hypothesised that vocal utterances would in fact aid more in the per-
formance of a machine translation system. However, the baseline system outperforms
the vocal system by as much as 45%. The vocal experiment has the worst TER rate,
especially considering the maximum rate is 1. The reason for this drop in performance
is likely due to two aspects:

1. The lack of data Because of the small size of the corpus, only barely
enough data was used to train the system, in combination with small
hardware capabilities compared to contemporary research heavily
decreased the expected accuracy. This was due to both time constrains and
hyperparameters optimization. Since, the hyperparameters were not tuned
with ideal circumstances in mind but resource management. As was
suggested in Qi et al. (2018), word features are the most efficient in models
trained on small datasets. However, if the dataset is at the bare minimum,
it shows a significant drop-off in efficiency results. The lower performance
of the temporal, vocal, and combined experiments supports this claim.

2. Increase in vocabulary, decrease in commonality Because of the
non-standardization of the tokens (i.e.: |40, |200 instead of |time_0-200)
the vocabulary increased exponentially, giving the model not many
common words to train on and increasing the amount of OOV-words. A
major flaw in the research was choosing the wrong dataset. Since the DGS
Corpus (Konrad et al., 2020a) was created for purposes of conservation, it
over-represented local dialects. This resulted in the model upon translation
receiving more unknown words. This is caused by, for example, the sign
Kuh (Cow) being different between Nordrhein-Westfalen and Sachsen.

Another reason might be because of the vocal and combined data files being pre-
processed differently, due to the several different encoding errors the BPE algorithm
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malfunctioned for these file. Therefore, it was decided to not utilize the algorithm
for these systems. This is clearly shown in the results, however, the average increase
in BLEU score after the use of the algorithm was shown to be around 40%. Even if
the BPE algorithm was applied on the Vocal and Combined in the ideal circumstance
would increase their respective scores to 2.8 and 2.5. This could be solved by creating a
library that has the feature for BPE embedded into its code, like MarianNMT (Junczys-
Dowmunt et al., 2018). While MarianNMT was considered for the purposes of this
Thesis, due to the restrictions applied by Google Colab and its incompatibility with
Microsoft Windows 10, the use of MarianNMT was discontinued. Preliminary results
showed a substantially lower BLEU-score compared to the OpenNMT-pipeline, pre-
sumably caused by its lack of running time and insufficient hyperparameters.

7.3 Alternatives and Future Research

The results suggest that neither temporal nor vocal data aid in the performance of a
machine translation system for sign language glosses to text. Supporting the results
found by Camgoz et al. 2018; Qi et al. 2018. The research, therefore, sits among an
increasingly growing SLT literature suggesting that embedding words into an NMT
system decreases the accuracy rate of the model.

Future research should be conducted into different forms of pre-processing the
tokens. By the grouping of tokens into small subgroups, there might be a reduction in
over-diversity in the vocabulary, whereas in this paper the words could be paired with
temporal features spanning the range from 0 to 1000, having 5 distinct groups could
possibly have an effect on the performance of the system.

A suggested alternative baseline is performed by the stripping of the gloss-
conventions (Konrad et al., 2020) from the data files, as was practised by Othman &
Jemni (2012). Preliminary results show that an improvement of 11.3% compared to the
current baseline, however, that would undermine the concept of sign language and
return to SLR style translation by not taking into account linguistical aspects (Camgoz
et al., 2018). Therefore, future research should focus on the creation and standardisation
of an annotated German Sign Language corpus using less diverse tokens while main-
taining proper grammar by proper sentence creation.

8. Conclusion

The field of Signal Language Recognition has shown promising results regarding sign
to text translation. However, it fails to take into account the linguistical aspects of sign
language. Therefore systems were needed with the ability to encode the linguistical
aspects. It was established that neural machine translation systems were most suitable
for this task. The goal of this study was to integrate temporal data into neural machine
translation systems and research its effectiveness. This was accomplished by using
factored neural machine translation with source word features. We conducted four
experiments. The baseline showed the ability to translate rudimentary gloss sentences
into similar spoken German sentences. It was found that by adding temporal data the
accuracy of the system decreased while increasing the number of errors. Even though
contemporary research suggests that vocal utterances correlate with the meaning of
the sign, it was found that inserting vocal data did not increase the accuracy of the
model. Combining the latter two experiments into one model resulted in a model
that saw a 50% decrease in accuracy rate. This implies assigning temporal, vocal, or
vocal-temporal data directly to the words translated by a gloss-to-text translation
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system does not improve its effectiveness. Future research could be done by training a
full spatiotemporal gesture to spoken language system and embedding both the word
and additional features separately.

The Self-Reflection can be found in the Appendix.
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1. Self-Reflection

At first, when I started this thesis, I didn’t quite know what I was getting myself into.
The careful planning it would involve, the research, the literature review it was all kind
of new to me. While I experienced many of these concepts in the earlier parts of my
bachelor combining them proved to be a difficult task. What proved especially difficult
was the planning, since I am used to being able to do an assignment or learn for an exam
within the span of a week, however, I learned that regarding a research project this is not
the case. Especially since my topic is Deep Learning related it took careful planning and
prediction on how long each particular experiment would take and whether it would
fit within the time span I had. There were some foreseeable setbacks, mainly the intro-
duction of CAPTCHA in Google Colab, that caused the experiments to take longer than
expected which took me by surprise. Especially since I had to start from scratch again.
What I learned from this was that my planning (dis)ability is the biggest bottleneck in
my research. If I had planned out the experiments in a better way by doing a prototype
beforehand these problems could have been avoided. There should have been a better
literature review on my part, mainly regarding the available architectures, instead of
struggling with the dataset using the Phoenix dataset as described in (Camgoz et al.,
2018) would have made for a better thesis. What I learned from this experience is that
when it comes to research planning, prototyping and exploring is essential, but for me
at first surprising, part of the project. When it came to programming I had some prior
experience regarding Neural Machine Translation, however, having prior experience
does not equate to a smooth ride. Mainly due to not exploring the available libraries
well enough. I did not realize soon enough that the library I ended up using OpenNMT
(Klein et al., 2017) also supported word embedded features, therefore I decided upon
MarianNMT (Junczys-Dowmunt et al., 2018) a library that is both incompatible with
my system and had to be run externally. Throughout the thesis, I did start to learn not
only how to use the libraries but also the inner workings since I frequently had to adjust
certain functions that were not suitable for my experiments. I often ran into trouble
regarding certain parts of my code that would have easily been resolved if I had a
variable explorer enabled. Furthermore, due to the thesis, I had my first experience with
reading a paper and applying its code instead of finding it on GitHub or there being a
library present, something that was an insightful experience and will undoubtedly be
useful in the future. As well as writing a proper README file in my GitHub repository
(Thissen, 2021) that gave me insight into how users would view my code. Before the
start of this project, my main focus when it came to NMT was related to Dutch to
English translation, however, when I started this thesis project I was immersed into
the world of the deaf. Using sign language to communicate is really resilient, adapting
to the situation you are in, and therefore deserves more scientific research done on the
subject. Especially when it wasn’t considered a language until fairly recently (Stokoe Jr,
2005). Having said that I thought it was quite hard to explain my thoughts on the
subject especially in the Introduction and Related Works section as I was overwhelmed
by all the information that came to me. Looking back I should have listened more to
my supervisor when he said that we had to create a file with all the summaries of the
papers that we read. Instead of doing that I had a bunch of different files on my PC,
outside my PC, and inside my head that caused a giant mess. While this approach is
considered acceptable when it comes to small essays, with a huge thesis this becomes an
impossible task. What I learned from this is that I need to be more organised. While I do
not have a problem with speaking in public, I do have trouble with speaking rehearsed
text in public. Due to the COVID-19 restrictions present, it made it more difficult since I
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couldn’t look the listeners in the face making me stutter quite a bit. However, I learned
from this experience that I have to know my text inside-out and I need to rehearse more.

Appendix B: Merging Code

1 class create_file(object):
2 def __init__(self, path="datasets/"):
3 self.path = path
4 self.inputs = listdir(str(path))
5 self.dataframe = self.drop_empty()
6

7 def clean_dataframe(self, dataset):
8 """
9 Load the dataset into a frame, delete the "Unnamed" column,

10 and replace all instances of nothing with a numpy nan.
11 Requires the numpy library.
12

13 :param dataset: str, input name of the dataset.csv
14 :return: dataframe, a cleaned dataframe with only used columns
15 """
16 dataframe = pd.read_csv(self.path + str(dataset), sep=",") # Read into

a frame
17 dataframe = dataframe.loc[:, ~dataframe.columns.str.contains("^Unnamed"

)] # Drop the "^Unnamed" column
18 dataframe.replace("", np.nan, inplace=True) # Replace the empty values

with a nan
19

20 return dataframe
21

22 def merge(self):
23 """
24 The EAF-files consist of different persons, this functions merges those
25 into one dataframe.
26

27 :return: Dataframe. A merged dataframe consisting of all users.
28 """
29 combined = pd.DataFrame()
30 for dataset in self.inputs:
31 temp = self.clean_dataframe(dataset)
32

33 # Normalize the column names into the translated versions.
34 column_list = list(temp.columns)
35 normalized_names = ["Time", "Right", "Mouth", "Translation", "Left"

]
36 # A dictionary is created with the corresponding column_list name

and the normalized name
37 translation_dict = {column_list[n]: normalized_names[n] for n in

range(len(normalized_names))}
38 temp = temp.rename(columns=translation_dict)
39

40 # Combine the dataframes into one universal dataframe
41 combined = combined.append(temp, ignore_index=True, sort=False)
42

43 return combined
44

45 def list_definer(self, input_list):
46 """
47 Finds the True instances in a list and stores their indexes.
48

49 :param input_list: list, a list of True’s and False’s.
50 :return: list, the list of indexes that were true in the input_list.
51 """
52 output_list = []
53 # Looping over a enumerated input_list
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54 for number, element in enumerate(input_list):
55 # If the element is True append the index else continue the loop
56 if element:
57 output_list.append(number)
58 continue
59 return output_list
60

61 def drop_empty(self):
62 """
63 Dropping the empty rows from the dataset causing it to become more

information packed.
64 Downsides of this approach can be found in the Discussion of the

written Thesis.
65

66 :return: dataframe, a dataframe where there are no empty rows.
67 """
68 combined = self.merge()
69

70 # Find the empty rows for each respective token (time excluded since it
is always present).

71 left_sign = set(self.list_definer(list(combined[’Left’].isnull().values
)))

72 right_sign = set(self.list_definer(list(combined[’Right’].isnull().
values)))

73 mouth_token = set(self.list_definer(list(combined[’Mouth’].isnull().
values)))

74

75 # Find the intersection of these tokens.
76 signs = left_sign.intersection(right_sign)
77 empty_rows = signs.intersection(mouth_token)
78 signs_missing = list(empty_rows)
79

80 # Dropping the empty rows
81 final_dataframe = combined.drop(signs_missing)
82

83 return final_dataframe

Listing 1
Shown is the Python code to merge the multiple CSV-files into one DataFrame. (Thissen, 2021)
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Appendix C: Fixing

1 def fixing():
2 """
3 Fixes files by removing the extra \n that was created during the

train_test_dev.py splitting of the data. OpenNMT
4 does not handle empty lines well and will assign "translations".
5 """
6 # Get current working directory
7 working_directory = str(os.getcwd())
8

9 # Calculate the total amount of files in the working directory
10 dataset = os.listdir(str(working_directory))
11 total = len(dataset)
12

13 print("\nDeleting white spaces in files\n")
14

15 # Source (regarding the lines of code related to the tqdm-libary):
16 # DDGG. (2018, Feb 22) tqdm not showing bar. Stackoverflow.com.
17 # https://stackoverflow.com/questions/48935907/tqdm-not-showing-bar
18

19 with tqdm(total = total) as pbar:
20 for element in dataset:
21 # Create new name
22 new_name = "f-" + element
23 with open(str(element), "r", encoding="utf-8") as f: # Read from

this file
24 with open(str(new_name), "w+", encoding="utf-8") as fixed: #

Write in this file
25 # Removing all the extra white spaces
26 while True:
27 line = f.readline()
28 if line == "":
29 break
30 if line == "nan\n":
31 continue
32 if not line.isspace() and line != "nan":
33 fixed.write(line)
34 pbar.update(1) # Update pbar by 1

Listing 2
Shown is the Python code to fix the false white lines created by the train_test_dev.py script.
(Thissen, 2021)

Appendix D: BPE Modification

1 #############
2 # Normal
3 #############
4 for item in new_word[:-1]:
5 output.append(item + self.separator)
6 output.append(new_word[-1])
7

8

9 ##############
10 # EDIT 11/05/2021 Gijs Thissen
11 # This is to "fix" the problems I am having with DGS glosses with

features that get split up
12 # Run code above for the normal way
13 ##############
14 # If new_word contains more than one element (having one element

suggest there not being a temporal feature)
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15 if len(new_word)>1 and new_word[-1][-1].isdigit(): # Last element
of last element of new_word is digit

16 for item in new_word[:-1]:
17 output.append(item + self.separator + new_word[-1])
18 else:
19 for item in new_word[:-1]:
20 output.append(item + self.separator)
21 output.append(new_word[-1])

Listing 3
Shown is the Python code that is a modification to the normal Byte Pair Encoding algorithm.
(Thissen, 2021)
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