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Abstract

In this thesis, the analysis on the number of infections with the SARS-CoV-2
virus is discussed. The data contains four status of patients’ which provided
in the online dashboard rijksoverheid.nl. The chosen period is July 2020 until
January 2021, as July 2020 marks the month when a large scale of testing is
done and January 2021 as the end of the period since there is the start of
vaccination which influences the transition from being infected to being in need
of hospitalization.

In order to obtain a reliable result, the mathematical model from these data
is estimated by two methods. The methods are Segmented Least Squares (SLS)
and Regression in the presence of a qualitative factor. The result is carried
out in Markov chain evolution to observe the situation of SARS-CoV-2 in the
Netherlands over time.

It turns out that dynamic programming on multi-way choices validates that
there are window shifts between states. The proportions to shift from one state
to another are obtained by a centered model in general linear form. These
respective proportions then translated to the transition probabilities in Markov
Chain. Subsequently, the rollout of Markov Chain evolution showed that the
actual condition on early pandemic days is much worse than it is shown in
the online dashboard. It would have taken only four more weeks for the virus
to spread to the whole Netherlands population if there was no governmental
interference.

https://coronadashboard.rijksoverheid.nl/landelijk/positief-geteste-mensen
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1 Introduction

Coronavirus disease, also known as COVID-19, is an infectious disease caused
by the coronavirus SARS-CoV-2. The COVID-19 has become a pandemic in
2020. SARS-CoV-2 infection remains a significant challenge for the world ever
since. According to the World Health Organization (WHO), people infected
with the virus will experience respiratory problems scaling to mild to moderate.
In most cases, infected people will not require special treatment to recover.
However, older people and people with underlying medical problems are more
prone to develop a major illness. Garg et al. (2020) states the most common
underlying conditions were hypertension, obesity, chronic lung disease, diabetes
mellitus, and cardiovascular disease. Additionally, Centers for Disease Control
and Prevention CDC (2020) states pregnant and recently pregnant people are
also at increased risk for severe illness.

WHO (2020) states the best way to prevent or slowing down virus transmis-
sion is by being updated with any information about the virus, the diseases it
causes, and the way it spreads. As the virus primarily spreads through droplets
of saliva or nose discharge of infected person, the virus could spread easily if
people do not practice respiratory etiquette, e.g., coughing into a flexed elbow.

The rising number of infected people resulted in rising demand for special
treatment from a hospital, whether medical assistance given in a hospital bed
or intensive assistance given in an intensive care unit. If the virus transmission
continues without any interference, there will be a high demand for medical
assistance that could cause disruptions.

In the Netherlands, the first disease has been detected in early March 2020.
The government needed to make a quick interference in order to slow down the
virus transmission by creating national measures. The question now will be how
fast the virus will spread if the government does not interfere and how many
hospital beds and intensive care beds are needed to accommodate the infected
people with a major illness.

In this thesis, one performs an analysis of the SARS-CoV-2 condition in the
Netherlands. This research aims to know the number of patients infected with
the SARS-CoV-2 virus and their status over time. The difficulties here lie in
the assumption that has not been statistically proven yet. Therefore, this thesis
aims to obtain the statistically proven assumption.

An estimation method called Segmented Least Squares (SLS) is used as the
first step of analyzing SARS-CoV-2 data. SLS allows one to understand the seg-
mentation of patients according to the trend with their respective days. There
are a polynomial number of possibilities to obtained a reliable and optimal seg-
mentation, known as Multi-way choices. Thus, dynamic programming is then
used to solve this problem. Implementing SLS ables one to validate assumptions
about how many days approximately patients will change their status.

Another estimation method discussed in this thesis is the study of regression
in the presence of a qualitative factor. The regression model has the same
mathematical model as ANCOVA. The model estimation leads to some lines,
which then being tested with F-statistic to know whether these lines obtained
are parallel or not. Subsequently, the proportion of patients that change their
health status can be retrieved here.

These proportions are used for the next step in Markov chain simulation.
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1 INTRODUCTION N.P.A. ARIANTARI

Markov chain has its unique trait that describes a step-by-step movement, which
in this case is the change of patient status. Therefore, Markov chain plays an
essential role in describing the process of SARS-CoV-2 patients’ status at a
particular time.

The goal of this thesis shows the SARS-CoV-2 condition over time in the
Netherlands with a statistically proven assumption. In order to see the condition
over time, Markov chain evolution and Markov simulations are performed.

The thesis outline looks as follows: First, a literature review is written in
the second chapter. Second, a section about Segmented Least Squares (SLS)
is given. This is followed by a section about regression in the presence of a
qualitative factor. Then, a section about the implementations of the method
for SARS-CoV-2 data is explained; it includes data introduction, SARS-CoV-2
analysis in early pandemic days, and the reconstruction of early days data. The
latter is a section containing a summary, conclusions, and recommendations.

Markov Chains Evolution and The Role of Dynamic Programming in Multi-way Choices:
An Analysis of SARS-CoV-2 Data
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2 Literature Review

The data from rijksoverheid.nl has intrigued one to conduct an analysis of SARS-
CoV-2 in the Netherlands. This online dashboard provided data on detected
infected people, hospital admissions, intensive care unit admissions, deaths, and
reproduction factor.

Shown in Figure 1 is the reproduction factor over time. The data showed
February 17th, 2020, as the start of the period. However, there was no extensive
scale testing before July 2020. There is not much information on how the re-
production factor is being estimated. The reproduction factor is crucial to know
how fast the virus will spread. By understanding the reproduction factor, one
could understand in which direction the condition of the SARS-CoV-2 will be.

Figure 1: Reproduction Factor Over Time (Source: RIVM)

Due to the lack of information on the change of patients’ status (whether be-
ing hospitalized, being in ICU, or dead), COVID-19 op de Nederlandse Intensive
Cares by NICE (2021) is considered. This is the only paper in the Netherlands
with specific information about the Intensive Care Unit (ICU). The data is col-
lected throughout all ICU units in the Netherlands. NICE (2021) has provided
information on the number of patients that are being treated in ICU, the num-
ber of patients that are being discharged from ICU and move to a usual hospital
bed, and the number of patients that died in ICU starting from March 2020.

In this thesis, the data from rijksoverheid.nl is analyzed by estimation meth-
ods. The estimation gives the idea of the change of patients’ status from detected
infected to hospitalized and hospitalized to the intensive care unit. While the
additional data by NICE (2021) specifically complements this thesis with ICU
data which gives information on the proportion of patients’ status change from
ICU to hospitalized and from ICU to dead.

7

https://coronadashboard.rijksoverheid.nl/landelijk/positief-geteste-mensen
https://coronadashboard.rijksoverheid.nl/landelijk/positief-geteste-mensen


3 Segmented Least Squares (SLS)

This chapter discusses about one of the two methods that are used in this re-
search. The Segmented Least Squares (SLS) is used to estimate the piecewise
linear model parameters. As this estimation involves many possibilities to find
the optimal solution, this chapter also discusses how dynamic programming plays
a vital role in solving this problem.

3.1 The Notion of SLS

Suppose that the given data denoted as (x1, y1), (x2, y2), ..., (xn, yn) are n points
in a plane that are also the elements of a set P and suppose that x1 < x2 <
... < xn. The goal is to find a line of best fit L (a line with minimum error) with
respect to P . This error of line L is the sum of its squared distance to the points
in P . The line L is defined by the equation y = ax + b, hence the error of L is
given by:

Error(L,P ) =
n∑
i=1

(yi − axi − b)2 (1)

The â and b̂ values where the line leads to a minimum error are given by:

â =
n
∑

i xiyi − (
∑

i xi)(
∑

i yi)

n
∑

i x
2
i − (

∑
i xi)

2
(2)

b̂ =

∑
i yi − a

∑
i xi

n
(3)

In some cases, the data points visualization might look like in Figure 2. In
this case, the formulas given were not designed to cover such phenomena. In
essence, any single line through the set of data points in Figure 2 could lead to
terrible error. Thus, by judging the way the data points are plotted, there are
approximately two lines in Figure 2 that could achieve minimal error. The same
things applied to Figure 3. There are approximately three lines. The following
purpose is to formalize this notion.

Figure 2: Two lines covers data points
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3 SEGMENTED LEAST SQUARES (SLS) N.P.A. ARIANTARI

Figure 3: Three lines covers data points

3.2 Formalizing the Notion

The notion mentioned comes from the intuition of only looking at the figure. On
the other hand, instead of trying to fit a single line, an arbitrary set of lines can
be chosen to minimize the error. Unfortunately, this is not a suitable problem
formulation. If one can fit the points to an arbitrary set of lines, then one could
also fit the points perfectly by just choosing a new line passing on each pair of
consecutive points. Hence, one needs a better problem formulation to fit the
points well using as few lines as possible.

The better problem formulation is known as change detection. Given a se-
quence of data points, one wants to identify a change from one linear estimation
to another (from a few points in the sequence to another). Thus, given a set of
points in P = {(x1, y1), (x2, y2), ..., (xn, yn)} and x1 < x2 < ... < xn. The point
(xi, yi) is denoted as pi. Partition set P into several subsets. Each subset, say
S is of the form {pi, pi+1, ..., pj−1, pj} for some indices i < j. Finally, for each
S in partition of set P , compute the line that minimize error with respect to
points in S. The penalty of a partition is called trade-off function defined as:
E+CL, for some constant C > 0. E is the error value of the optimal line in each
segment and L is the number of lines. Consequently, if one wants to minimize
error (by tuning C into some low number) as much as possible then the number
of segments/lines are increasing and vice versa.

The Segmented Least Squares method aims to find a partition with a mini-
mum penalty. However, there are a polynomial number of possibilities in order
to find this partition. The following subsection starts with explaining dynamic
programming’s ability to find a partition of the minimum penalty with a poly-
nomial number of possibilities.

3.3 SLS: The Algorithm

Nowadays, Dynamic programming is a widely-known method to solve many
optimization problems. In general, the intuition of dynamic programming is to
explore all the possible solutions by working backward from the end of a problem
towards the beginning, breaking large problems into smaller subproblems, then
building up correct solutions to larger and larger subproblems.

As mentioned before, Segmented Least Squares method involves a polynomial
number of possibilities to find the optimal solution at each step, also called

Markov Chains Evolution and The Role of Dynamic Programming in Multi-way Choices:
An Analysis of SARS-CoV-2 Data
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3 SEGMENTED LEAST SQUARES (SLS) N.P.A. ARIANTARI

Multi-way choices. Dynamic programming plays its natural role in solving this
problem.

Originally, the first segmented straight lines observation by Bellman and Roth
(1969) has been elaborated by McZgee and Carleton (1970). It was continued
by Kim et al. (2008) that observe on segmented line with a simulation study.
Recently, Mankowski and Moshkov (2021) uses dynamic programming for multi-
objective optimization.

The following observation by Kleinberg and Tardos (2005) is to find an opti-
mal solution from Segmented Least Squares. A possible optimal partition as seen
in Figure 4 can be obtained with pi as the beginning of the single line segment
and ends at the last point pn. Accordingly, if the identity of the last segment
pi, pi+1, ..., pn is known, then one could remove these points from consideration
as it is already the last segment of the possible optimal partition. Hence, solving
the subproblem on the remaining points p1, ..., pi−1 recursively will lead to the
next possible segment of the possible optimal partition.

Figure 4: A possible optimal solution
(Kleinberg, 2005)

Suppose the optimum solution for the points p1, ..., pi denoted as OPT (i)
and the minimum error of any line with respect to points pi, pi+1..., pj denoted
as ei,j . The observation above says the following (Kleinberg, 2005, p. 265):

1. If the last segment of the optimal partition is pi, ..., pn then the value of
the optimal solution is OPT (n) = ei,n + C +OPT (i− 1)

2. For the subproblem on the points pi, ..., pj ,

OPT (j) = min
1≤i≤j

(ei,j + C +OPT (i− 1)) (4)

and the segment pi, ..., pj is used in an optimum solution for the subproblem
if and only if the minimum is obtained using index i.

Markov Chains Evolution and The Role of Dynamic Programming in Multi-way Choices:
An Analysis of SARS-CoV-2 Data
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3 SEGMENTED LEAST SQUARES (SLS) N.P.A. ARIANTARI

Below, the algorithm is given in pseudo code.

Algorithm 1: Segmented Least Squares algorithm

Data: n, p1, ..., pn, C
Result: Near optimal solutions OPT (i) in order of increasing i
Segmented Least Squares(n)
Array M [0...n]
Set M [0] = 0
for all pairs (i, j) with i ≤ j do

Compute the least square error ei,j for the segment pi, ..., pj
end
for j = 1, 2, ..., n do

M [j] = min1≤i≤j(ei,j + C +M(i− 1))
end
return M [n]

Markov Chains Evolution and The Role of Dynamic Programming in Multi-way Choices:
An Analysis of SARS-CoV-2 Data
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4 Regression in Presence of a Qualitative Factor

The second method to estimate the model parameters is the study of regression
in the presence of a qualitative factor. This chapter starts with an overview
of ANCOVA, which has the same mathematical model as the regression in this
research. The second part discusses this mathematical model as the regression
in the presence of a qualitative factor. Finally, the last part discussed the model
in General Linear (GLM) form.

4.1 Overview of Analysis of Covariance (ANCOVA)

ANCOVA is a technique invented by R.A. Fisher. The first description of AN-
COVA is in his book ”Statistical Methods for Research Workers” in 1930, which
later improved in 1935. This technique is first applied to increase the precision
of comparison of treatments by H.G. Sanders, which Fisher advised in 1930.

ANCOVA itself is a part of the General Linear Model (GLM). Typically,
GLM refers to conventional linear regression models for a continuous response
variable given continuous and/or categorical predictors. Consequently, one has
an ANOVA when the model has no continuous factors. If the model has no
categorical factors, then it is a regression. At last, one has General Linear Model
(GLM) when the model has both continuous and categorical factors. ANCOVA
can be used to include both of these factors.

Let x denote the covariate (continuous predictor) which is included as ex-
planatory variable. Commonly, a covariate is centered: z = x− x̄. Let β0 denote
the intercept which is the expected yield of the reference treatment and τt being
the parameter corresponding to the qualitative factors. Let τt denote the fixed ef-
fects which is the difference in expected yield between treatments. Subsequently,
let β1 denote the random effects induced by the quantitative factor and let εtb
denote the random error term. Let T denote the number of treatments and B
denote the number of subjects for each treatment. The ANCOVA mathematical
model is given by:

ytb = β0 + τt + β1ztb + εtb t = 1, ..., T
= β0 + τt + β1(xtb − x̄) + εtb b = 1, ...,B

(5)

There are two steps that initially lead R.A. Fisher to introduce ANCOVA
Model. First, he performed regression of y on z. He then changed the response y
into (y−β̂1z) for correcting z. Second, he performed ANOVA on these corrrected
observations: ytb− β̂1ztb = β0 + τt + εtb. At last, the model in (5) is obtained by
moving β̂1ztb from left hand side to the right hand side.

There are several assumptions for ANCOVA model which are independence
between error terms, normality of error terms, equal variance of error terms,
linear relationship between response y and covariate x, and covariate x does not
depend on the treatments.

4.2 The Regression with a Qualitative Factor

As mentioned by Kutner et al. (2005) about generalization of covariance model,
there are two points of view towards ANCOVA model. The first one is there
is interest in the treatments. This is what people usually have in mind for

12



4 REGRESSION IN PRESENCE OF A QUALITATIVE FACTOR N.P.A. ARIANTARI

analysis of covariance. The covariate x is introduced to increase precision of
comparison between treatments. The second one, that is the purpose of this
research, is a specific interest in the relationship between y the response variable
and x explanatory variable. This is called the regression in the presence of a
qualitative factor. In this part, variable x is of interest as well and not merely
there to increase the precision of comparison between treatments.

Suppose that the relationship between response y and a covariate x (or sev-
eral covariates x1, x2, ...) is linear and suppose that parameters of covariates may
differ between treatments. Then, product terms of covariates and dummy vari-
ables are introduced here. Essentially, these product terms represent interactions
between factors and covariates. Subsequently, the model assumptions are almost
same with ANCOVA model assumptions given before. The only difference is the
last assumption, covariate x does not depend on the treatments, is no longer
applied as one is not focusing on analysis of covariance.

4.3 The Model in General Linear form (GLM)

Fitting the model in equation (5) is done to match the data. Notice that there
is only β1 there, which means one is imposing an equal slope, i.e., parallel lines.
In general, the model in (5) can be designed to allow different slopes. The
GLM approach is made to allow different slopes shown in Rutherford (2001) is
presented here. The following model is in General Linear (GLM) form, which
given by:

yij = β0 + τi + β1xij + λixij + εij
i = 1, ..., I
j = 1, ..., J

(6)

The model in GLM form given in equation (6) allows different slopes for
different treatment as interaction terms are present. Let I denote the number
of treatments and let J denote the number of subject for each treatment. Thus,
this model in GLM form allow the difference in intercepts as well as the difference
in slopes.

The difference in intercepts is the difference in expected yield between treat-
ments provided by τi. If the value of τi is 0 then that particular treatment is
a reference treatment. While the other treatment i will have some value for τi
accordingly. Subsequently, the difference in slopes which is the difference of the
random effects induced by the quantitative factor for each treatment is given
by λi. This means the slope of all treatments will no longer be the same, in
other words it is no longer imposing parallel lines. The value of λi is 0 when the
respected treatment is reference treatment while the other treatment will have
this value accordingly.

Regression in presence of a qualitative factor model is adopted to know
whether the relationship between response y and a covariate x (or several covari-
ates x1, x2, ...) is affected by the treatments. The null hypothesis corresponding
to this regression model present that there is no different slope between treat-
ments (7), while the alternative hypothesis present that at least one treatment’s
slope is different (8).

H0 : λ1 = λ2 = ... = λi−1 = 0 (7)

Markov Chains Evolution and The Role of Dynamic Programming in Multi-way Choices:
An Analysis of SARS-CoV-2 Data
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Hα : λi 6= 0 ∃i = 1, ..., I − 1 (8)

The F-statistic compares the mean square of the fixed factor with the mean
square of the error term. The larger the F-statistic indicates a high probability
of a difference between the slopes of the treatments. The F-statistic follows
an F-distribution with (I − 1) and (I − 1) x (J − 1) degrees of freedom. The
α denoted the chosen significance level. The typical value of α is 5%, which
establishes a 95% confidence level. This indicates that there is a probability of
5% to find an outcome of the F-statistic larger than the critical value, given that
the null hypothesis is true.

Nowadays, modern statistical software condenses F-test by providing the p-
value. The p-value here is the probability of getting an F-statistic even greater
than what one observes. In other words, the more F-statistic values, the lesser
becomes the p-value. Hence, the decision rule is if the p-value obtained is less
than α, then Reject H0 and Accept Hα.

Therefore, first, imposing equal slope (parallel lines), hence parameters λi
are set to be zero. Then, the F-test is performed. This step is to investigate
whether it is suitable to impose equal slope or not. When the model is applied
and the F-test rejects the null hypothesis, it is known that there is a difference
between the slopes of the treatments.

Markov Chains Evolution and The Role of Dynamic Programming in Multi-way Choices:
An Analysis of SARS-CoV-2 Data
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5 Markov Chains

This chapter start with an introduction to Markov chains and its evolution over
time. The model formulation of Markov chain over time will be used to tackle
the problem of this research. Therefore, only Markov theory related to Markov
chain over time roll-out that is relevant for the problem, will be introduced.

5.1 Introduction to Markov Chains

Let Xn denote values in each time period n of a process and let {Xn, n =
0, 1, 2, ..., } be a stochastic process that takes on a finite values of non-negative
integers. A Markov chain is a special stochastic process that describes movement
step-by-step through a number of states. Each state is referring to a situation
in the process at a certain point in time n. Hence, a state describes the current
position of the process. All the situations in the process are in the state space
S. The process is always in one state of the state space S at any point in time.
Furthermore, the distribution of the next state, given the past and current states,
only depends on the current state and not on the past states. This is also known
as the Markov property. Thus, one needs to determine the initial state in order
to describe a Markov chain. Since Markov chain is a stochastic process, there is
a probability for certain transition between one state to another in the process.
Suppose that whenever the process is in state i, there is a probability pij that it
will be in state j. Then, the Markov property for a Markov chain is given by:

Pr{Xn = jn|Xn−1 = in−1, Xn−2 = in−2, ..., X1 = i1, X0 = i0}
= Pr{Xn = jn|Xn−1 = in−1}, i, j ∈ S, i, j ≥ 1, n ≥ 0

(9)

Let matrix P be the matrix with pij as its elements which is known as the
transition probability matrix. Matrix P is a stochastic matrix by definition, as a
consequence, all elements of P are non-negative pij ≥ 0 with i, j ≥ 0 and its rows
sums up to one, i.e.

∑∞
j=0 pij = 1 with i = 0, 1, 2, .... The value of pij correspond

to a one-step transition probability that the process will make a transition to
state j, given state i as a current position, is given by:

pij = Pr{Xn = j|Xn−1 = i} (10)

5.2 Evolution Over Time

Previously, pij were already defined as the one-step transition probabilities. Now,
let pnij be the n-step transition probabilities. One should understand how the
chain evolves over time in order to study the performance characteristics of
Markov chains. Accordingly, one should look at the n-step transition probabili-
ties pnij to comprehend the process over time.

The Chapman-Kolmogorov equations establish a method to compute these
n-step transition probabilities out of the one-step transition probabilities, by
means of the first law of total probability and the Markov property. The formal
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derivation as described by Ross (2014) is given in expression (11) as follow:

pn+mij = Pr{Xn+m = j|X0 = i}

=
∑
k=0

Pr{Xn+m = j,Xn = k|X0 = i}

=
∑
k=0

Pr{Xn+m = jXn = k,X0 = i}Pr{Xn = k|X0 = i}

=
∑
k=0

Pr{Xn+m = jXn = k}Pr{Xn = k|X0 = i}

=
∑
k=0

pmkjp
n
ik, i, j ∈ S, ∀n,m ≥ 0

(11)

Expression (11) is obtained by determining the probability that state i as
initial state will eventually reach state j in (n+m)-transitions by conditioning
on the position reached after m steps. Consequently, the process will no longer
depend on past behavior in the evolution of the process over time once the
process has reached state k with m-transitions. The future behavior then only
depends on the current state k. Thus, the probability that the process will be in
state j after (n + m)-transitions is equal to the summation of the probabilities
of all intermediate state k.

Let P (n) denote the matrix of n-step transition probabilities pnij then expres-
sion (11) also state that:

P (n+m) = P (n)P (m) (12)

P (n) = P (n−1+1) = P (n−1)P = Pn (13)

From expression (12), in particular, P (2) = P (1+1) = PP = P 2. Then,
expression (13) is obtained by induction. Therefore, the n-step transition proba-
bility matrix can be obtained by multiplying the one-step transition probability
matrix P by itself n times.

5.3 Condition for Limiting and Stationary Distribution

State j is said to be accessible from state i if pnij > 0 for some integer n > 0.
This implies that state j is accessible from state i if and only if starting from the
initial state i, the process will ever enter state j. The two states i and j are said
to communicate when these states are accessible to each other. This indicate
that if state i communicates with state j, then state j communicates with state
i. Also, if state i communicates with state j and state j communicates with
state k, then state i communicates with state k. Thus, state i is accessible from
state k and vise versa. If all states in space state S communicate with each other
then this chain is said to be irreducible. The state that only communicates with
itself and the probability of staying in that state equals to 1 is called absorbing
state.

For any state i, let fi denote the probability that the process will reenter
state i given state i as a starting state. If fi < 1, then state i is a transient
state. Moreover, if fi = 1, then state i is a recurrent state. As the process
always needs to be in some state, every Markov chain needs to have at least one
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recurrent state since the fact that if all the states are transient, then the process
will be in no state. When the expected number of transitions that state i takes
to return to itself is finite then state i is said to be positive recurrent and it said
to be null recurrent when it takes infinite transitions.

fi =
∑
∀k∈R+

Pr{Xn+k = i|Xn = i}, i ∈ S, n ≥ 0 (14)

State i of a Markov chain is said to have period d if that state i will be
revisited whenever n, number of transitions, is not divisible by d. That implies
with d > 1 then a state is periodic. However, when d = 1 then a state is aperiodic.

A Markov chain is said to have a limiting distribution if the chain staisfies 3
conditions which are irreducible, aperiodic, positive recurrent. Also, Pinsky and
Karlin (2011) described that a limiting distribution, when it exists, is always a
stationary distribution, but the converse is not true. There may exist a stationary
distribution but no limiting distribution.

When a Markov Chain is irreducible, aperiodic, positive recurrent then there

is a probability π
(n)
i that the process is in state i at time n. This probability

will converge to a limit πi as n goes to infinity, regardless the initial state. Thus,
letting πj denote the long-run proportion of time that the chain is in state j.
Formally stated in theorem described by Ross (2014) as follow:

Theorem Let {Xn, n = 0, 1, ...} be an irreducible, aperiodic, positive recurrent

Markov chain. Then exists limn→∞ p
(n)
ij = πj ∀j ∈ S. This limit is independent

of the value of i ∈ S. Then {πj , j ∈ S} is the unique non-negative solution of
the equation (15) and equation (16).

πj =
∑
i∈S

πipij , j ∈ S, (15)

∑
j∈S

πj = 1 (16)

Equation (15) can also be written as equation (17) where π is the row of
limiting probabilities πj and P the matrix of one-step transition probabilities.

π = πP (17)

The set {vj , j ∈ S} is called the stationary distribution of a Markov chain. A
stationary distribution is such a distribution v that if the distribution over states
at step k is v, then the distribution over states at step k + 1 is v. Therefore, a
stationary distribution can also be expressed by:

v = vP (18)

Notice that this expression on equation (18) is similar to equation (17). The
only difference is vj is not uniquely defined.

Consequently, the statement from Pinsky and Karlin (2011) can be restated
as follow:

1. The limiting distribution of a regular Markov chain is a stationary distri-
bution.
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2. If the limiting distribution of a Markov chain is a stationary distribution,
then the stationary distribution is unique.

In practice, limiting and stationary distribution allows one to evaluate the
probability of ending up in a particular recurrent class, the (mean) time until
entering one of the recurrent classes, and the long-run proportion of time spent
in each states. This particular research is focusing on evaluating the long-run
proportion of time spent in each of its states.

5.4 The role of Markov Chains

Markov Chains plays an essential role in this research. As its unique trait de-
scribes a step-by-step movement, Markov chains can be used in many studies
to understand a process flow. For instance, in the SARS-CoV-2 process, the
Markov chain becomes incredibly valuable in describing the process of SARS-
CoV-2 patients’ status at a particular time.

The transition probability matrix is the one that stores valuable information
on how the process moves from one state to another. This matrix also gives in-
formation on how each state would behave. Additionally, The n-step transitions
probabilities have allowed one to comprehend how the chain evolves. Thus, one
could also see how the process will be in the long run.

In this research, one could observe how patient status change over time and
how likely this patient will be in a critical condition or even passing away. The
implementation of Markov chains for an analysis of SARS-CoV-2 will be ex-
plained in section 6.4.
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6 Implementation for SARS-CoV-2 Data

In this chapter, the Netherlands SARS-CoV-2 data is introduced first. Second,
the implementation of the methods is explained. The two models in this chapter
are both regressions. In general, one has sets of the Netherlands SARS-CoV-2
data and is determined to search for possible patterns to fit the data with the
slightest error. These implementations aim to estimate the model parameter by
employing Segmented Least Squares, which leads to a piecewise linear function or
lines in the Regression in Presence of a Qualitative Factor with levels. Third, the
implementation of Markov Chain is explained. Fourth, the analysis of SARS-
CoV-2 in the Netherlands on early pandemic days is presented. In the latter
section, the reconstruction of early days pandemic if there were no governmental
restrictions is explained.

6.1 Introduction to the Netherlands SARS-CoV-2 Data Prob-
lem

The Netherlands SARS-CoV-2 data are obtained from rijksoverheid.nl. There
are four types of the Netherlands SARS-CoV-2 data used which are Detected
Infected (DI) people data, Hospitalized (Hos) people data, Intensive Care Unit
(ICU) data, and Dead (DD) people data. These data then become the states
of patients for Segmented Least Squares method and Markov Chain, while it
becomes qualitative factors for Regression in Presence of a Qualitative Factor.

Initially, these four states/qualitative factors are considered for the parameter
estimations of this research’s model by utilizing both the segmented least squares
method and the least square method (The study of Regression in the Presence
of a Qualitative Factor). However, the Dead (DD) data is no longer being
taken into account in the implementation of estimation methods due to the
high volatility of data that jeopardizes the estimation performed. This rapid
and unpredictable change happens because of many factors that are outside the
scope of this research. One of the many factors is that patients who passed away
(state DD) do not necessarily come from ICU beds. In some cases, the patients
that passed away could come from detected infected status or hospitalized status.

The following figures are the four types of data shown in a histogram with the
line representing the seven-day average. For this research, the starting date is
July 7th, 2020 until January 31st, 2021 for Detected Infected (DI). This period
is chosen because starting from July 7th, 2020, there is a visible effect of the
virus since a large scale of testing is implemented. In contrast, the end period is
chosen at January 31st, 2021 because there is a beginning of vaccination which
influences the transition from being infected to being in need of hospitalization.
The starting and the end date for the other three types are adjusted according
to the estimation of window shift between patient status that will be discussed
in Section 6.2.
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Figure 5: Number of Detected Infected over time (Source: RIVM)

Figure 6: Hospital Bed Admissions over time (Source: RIVM)

Figure 7: Intensive Care Unit Admissions over time (Source: NICE via RIVM)

Figure 8: Deaths over time (Source: RIVM)
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6.2 Implementation of Segmented Least Squares

The Segmented Least Squares method is implemented for each type of the
Netherlands SARS-CoV-2 data. This implementation is performed using python
3.7. SLS method implementation will lead to piecewise lines (segments) that cor-
respond to particular dates.

6.2.1 SLS Implementation on Detected Infected (DI)

First of all, the SLS method is implemented to Detected Infected (DI) data which
runs from July 7th, 2020 until January 31st, 2021. As described in Algorithm
1 from section 3.3, one can obtain a dynamic programming solution using pre-
computed results which are done by getting minimum error over possible start
indices for each end index, then backtrack to get segment and coefficients. After
tuning the penalty factor (C), one discovers seven segments when the penalty
factor is tuned to one (C = 1), five segments when C = 2, 3, 4, and four segments
when C = 5 for DI data. The estimation shown in Figure 10, with C = 2, 3, 4,
gives desired patterns as the estimation of the line are not overfitting as shown
in Figure 9 and also not underfitting as shown in Figure 11.

Figure 9: SLS with penalty factor C=1 for DI data

Figure 10: SLS with penalty factor C=2 for DI data
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Figure 11: SLS with penalty factor C=5 for DI data

6.2.2 SLS Implementation on Hospitalized (Hos) and Intensive Care
Unit (ICU)

Secondly, implementing SLS method on Hospitalized (Hos) data and Intensive
Care Unit (ICU) data. There are three choices of penalty factor (C = 2, 3, 4)
that resulted in five segments. Thus, one implement the SLS method on Hos data
with penalty factor C = 2 first. It appears that fitting Hos data with SLS C = 2
resulted in a very steep kink, shown in Figure 12. This kink shows that there is a
segment that only contains one observation indicating overfitting. Subsequently,
one implements SLS with another penalty factor (C = 3) to fit Hos data. As
it is shown in Figure 13, the estimation using SLS with C = 3 gives desirable
patterns. Consequently, SLS with the same penalty factor C = 3 is implemented
for DI, Hos, ICU consistently. Figure 14 shown the SLS implementation on ICU
data.

Figure 12: SLS with C=2 for Hos data
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Figure 13: SLS with C=3 for Hos data

Figure 14: SLS with C=3 for ICU data

6.2.3 Window Shift between Patient Status

Detected infected people spend several days at home before being admitted to
a hospital bed (from state DI to state Hos). The same situation also applies to
hospitalized people who spend several days in a usual hospital bed before they
are needed to be moved to an ICU bed (from state Hos to state ICU). These
several days in between one state before moving to another state are called
window shifts.

Detected Infected people usually have seven until eighteen days window to
shift to Hospital bed while Hospitalized to ICU usually has four until nine days
in between. The window shifts would vary between states. One is implementing
SLS from the shift of DI to Hos and the shift of Hos to ICU data with varying
windows in between. Since the window shift from DI to Hos has twelve possible
days and the window shift from Hos to ICU has six possible days, there are 72
possible combinations of the implementation of SLS method.

For instance, take one possible combination of the SLS implementation. After
being detected infected for seven days, the detected infected people shift to a
hospital bed is written as DI-Hos: Day 7th. So, given the start date of detected
infected is July 7th, the first day of state Hos here is July 13th. Subsequently,
Hos-ICU: Day 4th means the hospitalized people shift to ICU on day fourth.
So, given that the start date of Hos is July 13th, then the first day of state
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ICU is July 16th. Consequently, the start date of combination 7-4 is July 7th,
July 13th, July 16th, for DI, Hos, ICU, respectively. The end dates are adjusted
respectively in order to have the same amount of observations in each state.

From this point onwards, the days in this research are called generic days be-
cause the start/first day of one state is not the same as the other state. Also, for
the simplicity of writing the window shift combinations, starting from this point
onward, DI-Hos: Day 7th and Hos-ICU: Day 4th will be written as combination
7-4. The same goes for the rest of the combinations.

Table 1: DI-Hos: Day 7th, Hos-ICU: Day 4th

DI Hos ICU

Segment 1 1-74 1-61 1-66

Segment 2 75-116 62-112 67-96

Segment 3 118-147 114-137 98-135

Segment 4 149-161 139-168 137-168

Segment 5 163-209 170-209 170-209

For example, as given in Table 1 for combination 7-4, the numbers shown are
the generic days. The other 71 possible combinations can be seen in Appendix
A. One calculates the intersection of the generic days within the same segment
throughout different states. The generic days’ intersection is shown as follows;
Segment 1 (Day 1-61), Segment 2 (Day 75-96), Segment 3 (Day 118-135), Seg-
ment 4 (Day 149-161), and Segment 5 (Day 170-209). This calculation of generic
days intersection is carried out to the other 71 combinations.

The best window shift combination is the one that has minimum mismatch
from generic days intersection. For instance, in combination 7-4, the generic
days’ intersection is Day 1-61. Thus, there will be thirteen days mismatches for
state DI, zero mismatch for state HI, and five mismatches for state ICU. In total,
segment 1 of combination 7-4 has eighteen mismatches. Afterward, segment 2
has 57 mismatches, segment 3 has 38 mismatches, segment 4 has 36 mismatches,
and segment 5 has seven mismatches. Consequently, combination 7-4 has 156
mismatches in total.

The result of the window shift mismatches of all possible combinations is
given in Table 2. From this Table 2, there is a decreasing trend as the window
shifts from DI to Hos and Hos to ICU are also decreasing. Therefore, one decides
to investigate further the estimation with other combinations with lower window
shifts. Therefore, three new combinations (combination 7-1, combination 7-2,
and combination 7-3) are observed. The result of these mismatches of three new
possible combinations is given in Table 3.
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Table 2: Day shift mismatch of all possible combinations

DI-Hos
7 8 9 10 11 12 13 14 15 16 17 18

H
os

-I
C

U

4 156 162 168 174 180 186 192 198 210 222 234 246
5 162 168 174 180 186 192 198 207 219 228 240 252
6 168 174 180 186 192 198 207 216 228 237 249 261
7 174 180 186 192 198 207 216 225 237 246 258 270
8 180 186 192 198 207 216 225 234 246 255 267 279
9 186 192 198 204 213 222 231 240 252 264 276 288

Table 3: Mismatch on 3 new possibilities

DI-Hos
7

H
os

-I
C

U 1 150
2 150
3 153

From Table 3, one chooses either combination 7-1 or combination 7-2 since
these combinations resulted in the smallest mismatches. The combination 7-2 is
chosen by empirical reason. RIVM (2020) states that it will usually takes five
or six days before someone develop symptoms if someone is infected with the
SARS-CoV-2 virus. Then, when people have symptoms, they usually do not
take the SARS-CoV-2 test right away. The reason could be that the symptoms
are similar to common flu, so people tend to disregard it, or it simply takes time
to wait for an appointment for them to get tested. By the time they get tested,
it also takes time to get the result. It means there are many days passed before
a person becomes Detected Infected.

As a result, it also affected the window shift of patient status from DI to Hos.
This shift is the expected value from the estimated line obtained by employing
Segmented Least Squares. According to the estimation performed here, it turns
out that the shift is only seven days on average.

Additionally, patients tend to undergo some medical assistance needed in
Hospital bed first; only if they become critical, they move to the ICU bed.
The statement before is the empirical reason why the shift from Hos to ICU
happened on average in day second. Therefore, combination 7-2 is chosen instead
of combination 7-1. The following are the retrieved days from the estimation:

1. Segment 1: Day 1-61

2. Segment 2: Day 75-98

3. Segment 3: Day 118-137

4. Segment 4: Day 149-161

5. Segment 5: Day 172-209

To sum up, the best combination is when there are seven days on average
for the patients to change their status from detected infected to be hospitalized.
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Also, it takes approximately two days for the patients to end up in an ICU bed
from a hospital bed. The retrieved start dates for combination 7-2 are July
7th, July 13th, July 14th, respectively, for state DI, state Hos, state ICU. These
retrieved days are obtained by tuning C = 3 in SLS for combination 7-2 and
are kept to be later used for the subsequent implementation of Regression in a
Presence of Qualitative Factor.

6.2.4 Attempt of SLS Implementation on Dead (DD)

SLS method is now implemented on DD data. As mentioned in the last two
sections, the penalty factor used for the previous three states is C = 3. The same
penalty factor is applied to keep the consistency. According to NICE (2021), the
patients tend to spend between fifteen until twenty days in ICU before passed
away, i.e., move to state DD.

Therefore, the first attempt is to applying SLS with C = 3 on combination
7-2-15 (DI-Hos: Day 7th, Hos-ICU: Day 2nd, ICU-DD: Day 5th), which corre-
sponds to the start date at July 28th, 2020 for DD state. However, with this
penalty factor, SLS still overfit the DD data shown in Figure 15. It is also seen
that the DD data has high volatility that makes the lines estimations obtained
from SLS seem to overfit the data, despite tuning the same level of penalty with
the other three states.

Figure 15: SLS with C=3 for DD data

Another problem with DD data is that the number of people who died is way
higher than the number of people in ICU. This statement contradicts the fact
that, in the Netherlands, the ICU beds are never full, which means every critical
patient will undoubtedly go to ICU bed first before passing away. This problem
also implies that state DD could come from any other state, either straight from
DI or Hos. Hence, this implication becomes another reason why including DD
data could jeopardize the estimation calculation.

Since including DD data on estimation is no longer an option, one has found
the existed study that gives information about ICU beds in the Netherlands.
This study is Covid-19 op de Nederlandse intensive cares by NICE (2021). The
essential information regarding state ICU that is needed in this research is al-
ready provided in this study.
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Figure 16: State ICU and State DD for the whole observed period

Figure 17: Segment 1 of State ICU and State DD

Figure 18: Segment 2 of State ICU and State DD

Figure 19: Segment 3 of State ICU and State DD
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Figure 20: Segment 4 of State ICU and State DD

Figure 21: Segment 5 of State ICU and State DD

Figure (16) shown that DD observations are all above ICU observations.
Closer look on DD observations that are always above ICU observations on each
segment can be seen in Figure (17) until Figure (21).

To sum up, including DD data for this research model’s parameter estimation
by SLS method will lead to two problems which are:

1. The volatility of DD data forces one to tune the penalty factor to a greater
number, allowing SLS to tolerate more error in a trade for fewer segments.
In this case, from nine segments to five segments. Hence, besides the
inconsistency of penalty tuning, this volatility compels one to tolerate more
error on segment estimation in SLS, which is not the aim of this research.

2. The number of patients on DD data is greater than ICU data, which implies
that patients who ended up in state DD could come from any other state.
It could be from DI-DD or Hos-DD or ICU-DD. Hence, DD data is better
not to be included for SLS estimation.

Since the DD data is compulsory to this research and estimating it by one-
self has a risk of jeopardizing the entire estimating calculation, one decided to
take a proportion from the existed paper mentioned earlier in this section. The
information from NICE (2021), COVID-19 op de Nederlandse Intensive Cares,
has provided this research the missing link from state ICU to state DD. This
paper also provides extra information about state ICU to state Hos shift that
will be explained in Section 6.4.
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6.3 Implementation of Regression in a Presence of Qualitative
Factor

Regression in presence of a qualitative factor model is adopted to know whether
the relationship between the number of patients (y) and days (x) is affected by
the states. In this regression, there are two kinds of factors which are quantitative
factor (the generic days) and qualitative factors (the three states DI, Hos, ICU).
The estimation then leads to three lines from each segment in Regression in
Presence of a Qualitative Factor with three levels. After these three lines are
obtained, one can retrieve the proportion of people that move from one state to
another.

6.3.1 The Trends

Now, one wants to see whether the chosen model in (5) matches the Netherlands
SARS-CoV-2 data. Let β0 denote the intercept which is the expected yield of
patients for the reference state and let τs being the parameter corresponding
to the qualitative factors. τs denote the fixed effects which is the difference in
expected yield between states. Next, let βs denote the random effects induces
by the generic days for each state and let εsp denote the random error term. Let
S denote the number of states and D denote the quantitative factor which in
this case is the number of days, the regression model is given by:

ysd = β0 +τs+βszsd+εsd = β0 +τs+βs(xsd− x̄)+εsd
s = 1, ..., S
d = 1, ..., D

(19)

These are the 5 segments retrieved from section 6.2.3:

1. Segment 1: Day 1-61

2. Segment 2: Day 75-98

3. Segment 3: Day 118-137

4. Segment 4: Day 149-161

5. Segment 5: Day 172-209

Figure 22 until Figure 26 shows the data points for the three states DI, Hos,
and ICU. One is able to see the trend of each segment in a closer look. DI data
points are always on the top of the other two states (Hos and ICU) because
essentially, the number of Detected Infected people is greater than Hospitalized
people and people in the Intensive Care Unit. It also can be seen that Hos data
points are a little bit above the ICU data points. Thus, as it is known, DI >
Hos > ICU.

Figure 22 shows segment 1, which presents an incline from Generic Day 1-
61. In comparison, Figure 23 shows an even steeper incline from Day 75-98,
which appears in segment 2. Notice that the incline in segment 2 starts from
approximately 2000 patients until 6500 patients. While in segment 1 the incline
starts from 0 until approximately 800 patients. Figure 24 and Figure 25 show
that there is a decline in segment 3, but then it starts to have another incline in
segment 4. For the last segment, Figure 26 shows a trend of steep decline.
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Figure 22: Segment 1 of DI, Hos, and ICU

Figure 23: Segment 2 of DI, Hos, and ICU

Figure 24: Segment 3 of DI, Hos, and ICU

Figure 25: Segment 4 of DI, Hos, and ICU
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Figure 26: Segment 5 of DI, Hos, and ICU

Figure 27 until Figure 31 show the line estimations for the 3 states within one
segment in one scale. This model is fitted to data through least square method.
The model that is used here is a centered model, i.e., notice that zsd = xsd − x̄.
These figures confirmed that imposing an equal slope is not suitable for this
research. Thus, the model in General Linear form, which allows different slopes,
will be discussed in the next section. There will be an F-test to confirm whether
imposing an equal slope is suitable statistically or not.

Figure 27: Centered model of Segment 1 of DI, Hos, and ICU

Figure 28: Centered model of Segment 2 of DI, Hos, and ICU
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Figure 29: Centered model of Segment 3 of DI, Hos, and ICU

Figure 30: Centered model of Segment 4 of DI, Hos, and ICU

Figure 31: Centered model of Segment 5 of DI, Hos, and ICU
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6.3.2 GLM form: Estimated Lines for Each Segment

This section is about the implementation of model in General Linear (GLM)
form which allow different slopes, in the presence of interaction terms, that
accommodate the three states DI, Hos, ICU.

The model in General Linear Model (GLM) form given by:

yij = β0 + τi + β1zij + λizij + εij
i = 1, ..., I
j = 1, ..., J

(20)

with β0, β0 + τ1, β0 + τ2 as the intercepts for state DI, state Hos, state ICU,
respectively, while β1, β1+λ1, β1+λ2 are the slopes for state DI, state Hos, state
ICU, respectively. Index i denote the states and index j denote the generic days.

Further, one imposes an equal slope, i.e., imposing parallel lines for all the
three states DI, Hos, ICU. This implies that the λi in equation (20) is set to be
0, i.e., setting both λ1 and λ2 to 0. This implementation is performed using R,
as it is shown in Rasch et al. (2019) and Das and Mishra (2021). The F-test
is then performed for all five segments with three states. Each F-test is being
done per segment. After the F-test is performed, the p-values obtained are very
close to zero from all five segments. These p-values obtained represent a highly
significant p-value. Consequently, a close to zero p-value indicates that one can
reject the null hypothesis, allowing one to conclude that the slopes are different
between states. This step also concludes that it is not suitable to impose an
equal slope.

The following are DI, Hos, and ICU in GLM form given in equation (21),
(22), (23), respectively:

yij = β0 + β1zij + εij (21)

yij = (β0 + τ1) + (β1 + λ1)zij + εij (22)

yij = (β0 + τ2) + (β1 + λ2)zij + εij (23)

The following are the result for the line estimations:
Segment 1
Estimated line state DI: ŷ = 382.18 + 10.56z1
Estimated line state Hos: ŷ = (382.18 − 368.23) + (10.56 − 10.25)z1 = 13.95 +
0.31z1
Estimated line state ICU: ŷ = (382.18−380.13)+(10.56−10.51)z1 = 2.05+0.05z1

Segment 2
Estimated line state DI: ŷ = 3795.54 + 211.29z2
Estimated line state Hos: ŷ = (3795.54 − 3630.71) + (211.29 − 204.40)z2 =
164.83 + 6.89z2
Estimated line state ICU: ŷ = (3795.54 − 3770.63) + (211.29 − 210.05)z2 =
24.91 + 1.24z2

Segment 3
Estimated line state DI: ŷ = 6088.45− 169.35z3
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Estimated line state Hos: ŷ = (6088.45 − 5894.90) + (−169.35 + 167.06)z3 =
193.55− 2.29z3
Estimated line state ICU: ŷ = (6088.45 − 6055.40) + (−169.35 + 168.77)z3 =
33.05− 0.58z3

Segment 4
Estimated line state DI: ŷ = 7266.23 + 362.42z4
Estimated line state Hos: ŷ = (7266.23 − 7043.08) + (362.42 − 357.49)z4 =
223.15 + 4.93z4
Estimated line state ICU: ŷ = (7266.23 − 7230.54) + (362.42 − 361.24)z4 =
35.69 + 1.18z4

Segment 5
Estimated line state DI: ŷ = 6489.95− 154.80z5
Estimated line state Hos: ŷ = (6489.95 − 6279.05) + (−154.80 + 152.31)z5 =
210.90− 2.49z5
Estimated line state ICU: ŷ = (6489.95 − 6453.42) + (−154.80 + 154.32)z5 =
36.53− 0.48z5

6.3.3 Retrieved Proportion

The line estimations for each state in each segment given in the section before
are all obtained by utilizing a centered model (zi). Generally, centering makes
this value more interpretable because the expected value of y when centered
(Points(z) is 0) represents the expected value of y when x is at its mean. In
many cases, the intercept interpretation will be unreasonable or undesirable
without some centering. It is also known that centering influences main effects
in the presence of an interaction term. In the centered case, βi is the main effect
when the predictor variable xi is equal to its mean. Hence, by centering, the
interpretation of βi remains the same when interactions are added.

Table 4: Proportion from Segment 1

Points (z)
-30 -20 -10 0 10 20 30

Proportion DI-Hos 0.0711 0.0453 0.0392 0.0365 0.0349 0.0339 0.0333
Proportion Hos-ICU 0.1183 0.1355 0.1428 0.1469 0.1496 0.1514 0.1527

Table 5: Proportion from Segment 2

Points (z)
-10 -5 0 5 10

Proportion DI-Hos 0.0570 0.0476 0.0434 0.0411 0.0395
Proportion Hos-ICU 0.1304 0.1435 0.1511 0.1561 0.1596
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Table 6: Proportion from Segment 3

Points (z)
-10 -5 0 5 10

Proportion DI-Hos 0.0278 0.0295 0.0318 0.0347 0.0388
Proportion Hos-ICU 0.1795 0.1754 0.1707 0.1656 0.1597

Table 7: Proportion from Segment 4

Points (z)
-6 -4 -2 0 2 4 6

Proportion DI-Hos 0.0380 0.0349 0.0326 0.0307 0.0291 0.0279 0.0268
Proportion Hos-ICU 0.1478 0.1522 0.1563 0.1599 0.1633 0.1664 0.1692

Table 8: Proportion from Segment 5

Points (z)
-20 -10 0 10 20

Proportion DI-Hos 0.0272 0.0293 0.0325 0.0376 0.0475
Proportion Hos-ICU 0.1769 0.1753 0.1732 0.1706 0.1672

Table 4 until Table 8 show the proportion of people that move from state
DI to state Hos as well as the proportion of people that move from state Hos to
state ICU over 5 or 7 data points. Instead of averaging the proportion over 5 or
7 points, one decided to choose the median from every segment. The reason is
that any points above or below the median resulted in an unreliable proportion
as it will be closer to the kink point to other segments.

Therefore, the proportion of people that move from state DI to state Hos is
the average of the (red) median across the five segments, which is 0.035, and
the proportion of people that move from state Hos to state ICU is the average
of the (blue) median across five segments which is 0.160. Thus, approximately
3.5% of people are Detected Infected and will have to go to a hospital bed within
approximately one week. In comparison, approximately 16% of people that are
already in a hospital bed need to be placed in an intensive care unit within
approximately one week. These proportions will be used for the next section
of the implementation of Markov chain in order to see the evolution of patients
over time.
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6.4 Implementation of Markov Chains

In this section, the transition probability matrix is introduced first. Second,
Markov chain simulations are performed to see how the chain evolves over time.
The implementation of Markov chain simulations is performed using python 3.7.

6.4.1 Transition Probability Matrix with Five States

First, one has to construct the transition probability matrix. There will be five
states: state DI, state Hos, state ICU, state DD, and state Recover (Rec). As
obtained in section 6.3.3, the transition probability of detected infected people
to a hospital bed (state DI to state Hos) is 0.035. Furthermore, transition
probability of hospital bed to intensive care unit (state Hos to state ICU) is
0.160.

As mentioned in section 6.2.4 about an attempt of implementing SLS method
on Dead (DD) data, there are two primary reasons as to why including DD data
on the estimations by utilizing SLS method and least square method would lead
to problems. However, the DD data is still necessary to this research. The existed
paper, NICE: COVID-19 op de Nederlandse Intensive Cares, has complemented
this research. NICE (2021) dynamics has provided this research the missing link
of any transition that happens from state ICU, which are both state ICU to state
DD and state ICU to state Hos. One assumes that from ICU is not possible to
go straight to state DI.

Suppose that whenever the process is in state i, there is a probability pij
that it will be in state j with i, j ∈ S. Let S denoted the state space with
S = {DI,Hos, ICU,DD,Rec}. The following matrix P given in (24) shows the
transition probability.

P =

DI Hos ICU DD Rec


0 0.035 0 0 0.965 DI

0 0 0.160 0 0.840 Hos

0 0.705 0 0.268 0.027 ICU

0 0 0 1 0 DD

0 0 0 0 1 Rec

(24)

From the matrix P , the first row presents any transition that happens from
state DI. Once the people are detected infected, they will never stay detected
infected. This statement implies that there is a zero probability that state DI
will stay in state DI. Detected Infected people would either in a worse condition
than ended up needing medical support that can only be provided in a hospital
bed, or they are recovering but not necessarily in a hospital bed. Hence, it is
known that state DI will make a transition either to state Hos or state Rec. This
statement implies there is also no chance of detected infected people that has to
go to the intensive care unit straight away. Also, another zero chance of detected
infected people is said to be dead right away. Thus, transition probability from
state DI to state DI, from state DI to state ICU, and from state DI to DD are
zero.

After thorough estimations being done in the last two sections, one can re-
trieve essential information about the expected proportion of people moving from
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state DI to state Hos. Subsequently, there is an expected probability of 0.035
that detected infected people would have to go to a hospital bed to get medical
assistance needed, leaving a 0.965 chance that detected infected people would
end up independently recovering from SARS-CoV-2 outside the hospital.

The transitions that happen from state Hos are presented in the second row
of matrix P . There are also only two possibilities that the people in state Hos
will transition to. Again, when the condition is getting worse, the people in
the hospital bed will need intensive medical care, which can be provided in an
Intensive Care Unit. From an estimation in a previous section, one knows that
the probability of ending up in an Intensive Care Unit from a hospital bed is
0.160. Hence, the transition probability from state Hos to state ICU is 0.160.
There is also a chance that people in a hospital bed will end up recovering
without ICU needed. Hence, there is a transition from state Hos to state Rec
which in this case is 0.840.

Meanwhile, there is no transition from state Hos to state DI because one
assumes that once become detected infected and become hospitalized, the person
can only get worse that is ending up in ICU or recovering independently. There
is also the assumption of not becoming infected the second time. Also, there is no
transition from state Hos to state Hos since the people will not stay hospitalized
forever. They will somehow move to either state ICU or state Rec. The last one
from the second row is the transition from state Hos to state DD. This transition
has a zero probability. In the Netherlands, the intensive care unit (ICU) bed has
never been full, so if the people in hospital bed somehow become critical, they
at least will get some intensive medical care first before passing away. This fact
is the empirical reason why the transition from state Hos to state DD is zero. In
other words, there is no way that state Hos transition to state DD right away
since it has to transit to state ICU first.

The third row of matrix P presents the transition probability that happens
from state ICU. State ICU will never go to state DI with the same assumption
that there is no second infection. State ICU also will never stay in state ICU.
Thus, the transition probability of state ICU to state DI and state ICU to state
ICU are both zero.

However, according to NICE (2021), there is a chance that the people in the
Intensive Care Unit will be dismissed to a regular hospital bed. This statement
implies there is a transition probability from state ICU to state Hos, which is
0.705. There is also a chance that people in the Intensive Care Unit will end up
dead with a probability of 0.268. Hence, leaving the probability of recovering
directly after being in an Intensive Care Unit is 0.027.

The last two states in matrix P are state DD and state Recover. These are
presented in the fourth and fifth rows, respectively. The transition that can
happen is only state DD to state DD as once passed away then the people will
remain so. As to state Rec will also stay in state Rec with probability 1. It
is assumed that once recovered then the people will stay recovered. Thus, the
transition probability from state DD to state DD and state Rec to state Rec are
both one. Leaving no possibility of transitioning to other states than itself.
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Figure 32: State Transitions Visualization

The visualization of how the state transitions is shown in Figure 32. It can
be seen that regardless of where State DI goes, it will never return. Therefore,
state DI is called a transient state. State Hos and state ICU communicate with
each other. There are two absorbing states: state DD and state Rec as once the
process gets there, the process will never leave this state. Therefore, the Markov
chain in this research is then a reducible Markov chain.

6.4.2 Markov Chain Simulations

This section discussed the evolution of Markov chain in this research over time.
The main question is: what is the probability that m steps from now, the process
is in state j given that it is currently in state i?

The question given above is about n-step transition probabilities. In section
5.2, the n-step transition probabilities pnij provides Markov chain performance
characteristics. The Chapman-Kolmogorov equation states that the n-step tran-
sition probabilities P (n) can be obtained by multiplying the one-step transition
probability matrix P by itself n times. Therefore, to understand the evolution
of the Markov chain of this research over time, one can multiply the matrix P
given in (24).

Also, notice that the chain in this research is a reducible Markov chain which
means one of the three conditions to have a limiting distribution is not fulfilled.
Not having a limiting distribution is not necessarily mean also not having a
stationary distribution. Thus, there is a chance of having stationary distribution,
which is beneficial to evaluate the long-run proportion. Hence, Markov chain
simulation is performed to give more clarity about this matter.

Figure 33 gives the time scheme of n-steps transition. Additionally, Table 9
gives the result of the probabilities of being in states DI, Hos, ICU, DD, Rec,
respectively, given the initial state is DI, n-steps from now. The number of
transitions is shown as nrTransitions, i.e., n-steps. Each transition happens in
approximately two weeks.

Thus, the first row implies that, given initial state DI, 3.57% of detected in-
fected people must be in a hospital bed in approximately two weeks. Meanwhile,
the rest of 96.43% will be recovering but not necessarily in a hospital bed. After
four weeks, given state DI as the initial state, there is a 0.54% chance that they
will be in the Intensive Care Unit while 99.56% are recovering.
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Notice that there is a pattern obtained from this n-step transitions. It
switches between having to go to a Hospital bed or ICU given the initial state of
detected infected in the first seven steps. In other words, for the first fourteen
weeks, detected infected people would still have a chance to go to a hospital bed
or to an ICU unit.

As the number of steps grows, the probabilities then converge to 0.0017 and
0.9983 for being in state DD and state Rec, respectively. This statement also
means that detected infected people would either pass away with a 0.17% chance
or recover with a 99.83% chance starting from week sixteenth.

Figure 33: Time scheme of n-steps transitions

Table 9: The probabilities of being in states DI, Hos, ICU, DD, Rec, given state
DI as initial state

nrTransitions DI Hos ICU DD Rec

1 0 0.03573 0 0 0.96427

2 0 0 0.00541 0 0.99459

3 0 0.00371 0 0.0015 0.99479

4 0 0 0.00046 0.00163 0.99791

5 0 0.00046 0 0.00202 0.99752

6 0 0 0.00004 0.00194 0.99802

7 0 0.00005 0 0.00165 0.9983

8 0 0 0 0.00179 0.99821

9 0 0 0 0.00188 0.99812

10 0 0 0 0.00169 0.99831

The matrix P (∞) in (25) presents the result of the stationary probabilities of
being in each of the states DI, Hos, ICU, DD, Rec as n → ∞. The first row of
matrix P (∞) implies that in the long run, there is a 99.8% chance of recovering
given detected infected as the initial state. Meanwhile, there is a 95.17% chance
of recovering given hospitalized as the initial state. Also, given the current
condition of being in an ICU bed, there is a 69.79% chance of recovering. The
last two rows showed that when the people passed away, it will remain so, and
the same goes for people who already recovered.

P (∞) =

DI Hos ICU DD Rec


0 0 0 0.00169 0.99831 DI

0 0 0 0.04833 0.95167 Hos

0 0 0 0.30207 0.69793 ICU

0 0 0 1 0 DD

0 0 0 0 1 Rec

(25)
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6.5 An Analysis of SARS-CoV-2 in the Netherlands on Early
Pandemic Days

This section is about getting to look closer at the condition of SARS-CoV-2 in
the Netherlands from early March 2020 until mid-May 2020. In section 6.4.2,
the probabilities of being in a certain state have been provided as well as the
long-run proportion. This information then can be used in this chapter.

For example, given the first state 100,000 people detected infected, what will
be the proportion of people in each state after two weeks?

One first define that the one-step transition period is equal to approximately
two weeks. In order to answer this question, one needs to investigate the prob-
ability of being in certain states when the nrTransitions is equal to 1. There
will be around 3,573 people ending up in hospital beds in approximately two
weeks and around 96,427 people making an independent recovery, given 100,000
people were detected infected at time zero. However, this long-run proportion
only gives the information of what will happen discretely. It only gives an idea
of what will happen when the first wave hit after certain weeks. Subsequently,
gives an idea of what will happen after the second wave hit after certain weeks
and so on.

Next, one wanted to investigate further the SARS-CoV-2 data that are pro-
vided in rijksoverheid.nl. The visualization of this data are given in Figure 5 until
Figure 8. Notice that from Figure 5 (DI data visualization), the early March
2020 until mid-May 2020 has a relatively flatter pattern compared to Hos, ICU,
and DD data visualization. Thus, one wanted to reconstruct the detected in-
fected people data in early pandemic days employing the transition probabilities
from previous section.

The exact period that one is interested in observing is March 4th, 2020 until
May 12th, 2020. This period has 70 days in total. One can reconstruct this
period based on the transition probabilities, Hos data, and ICU data. This
reconstruction aims to observe how the data in state DI would actually look
like, given the same fashion of collecting the data with the period of July 2020
until January 2021, where a large scale of testing is implemented.

First, reconstruct the number of DI people given the Hos data and the tran-
sition probability from DI to Hos. Second, given the ICU data and the transition
probabilities of Hos to ICU and DI to Hos, reconstruct the number of DI people.
The latter compares the initial DI from the online dashboard with DI recon-
struction from Hos data and DI reconstruction from ICU data. Figure 34 shows
the visualization of the comparison. The blue line presents the initial DI data
presented from RIVM, the orange line is DI data reconstruction from Hos data,
and the grey line is DI data reconstruction from ICU data.
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Figure 34: Comparison of Reconstructed DI data

Figure 35: Reconstructed the first 70 days of DI placed back in the timeline

The reconstruction of these 70 days being placed back to the rest of the
timeline can be seen in Figure 35. The blue line presents the first 70 days of
reconstruction of DI from Hos data being placed back in the timeline, and the
orange line presents the reconstruction from ICU data. The DI data supposedly
has way larger numbers on the first 70 days if the same large scale of testing was
also implemented in the early days of the pandemic.

Additionally, from the first 14 days, one estimates reproduction factor (R)
by means of the following formula:

Sn = x0

(
1−Rn

1−R

)
(26)

From (26), xo is the first observation and Sn is the summation of the first n
observations. The reproduction factor R is the number that shows how fast the
virus is spreading. This factor shows how many people are on average infected
by someone else who is already infected with the SARS-CoV-2 virus. This way,
one can observe the number of transmissions that could be constant when the
reproduction factor is 1 and declines as the reproduction factor is less than 1
but increases when the factor is above 1. The visualization of the reproduction
with certain factors is shown in Figure 36.
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Figure 36: Visualization of Reproduction Factor (Source: RIVM)

On the average of 14 days, the reproduction factor is given in Table 10.
In this table, the R of the DI data from the dashboard is approximately 1.65.
While from the reconstruction of the number of DI people given Hos data leads
to reproduction factor of approximately 2.06. The last one is the reconstruction
of the number of DI people given ICU data gives the information of reproduction
factor, which is around 2.13.

To sum up, to obtain this reproduction factor, one used the first 14 days,
from March 4th until March 18th. The first reason as to why these 14 days are
chosen to calculate R is that there is no governmental intervention at all during
this period. After R is obtained, so one can roll the reconstruction based on the
reproduction factor R to see how it could be if the government did not interfere
over time. The second reason is that to make this calculation period is consistent
with the transition period since all of the transition probabilities are adjusted to
two weeks.

Table 10: Reproduction Factor (R)

Initial DI From Hos From ICU

1.65 2.06 2.13
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6.6 Reconstruction of March 4th 2020 until May 12th 2020

As reproduction factor R is obtained from these first 14 days, now R is used to
reconstruct the whole 70 days of DI people. Given the transition probabilities
in the matrix (24), the following table shows how many people arrived in state
DI, Hos, ICU in every two weeks transition.

Table 11: Transition Rollout of Reconstructed Data from Hos (R = 2.06)

nrTrans Days Sum DI Hos ICU

0 S14 23.9 · 103 839 134

1 S28 − S14 611 · 106 21.4 · 106 3.4 · 106

2 S42 − S28 15.6 · 1012 546 · 109 87.4 · 109

3 S56 − S42 398.2 · 1015 13.9 · 1015 2.2 · 1015

4 S70 − S56 10 · 1021 355 · 1018 56.9 · 1018

Table 12: Transition Rollout of Reconstructed Data from ICU (R = 2.13)

nrTrans Days Sum DI Hos ICU

0 S14 34.8 · 103 1.2 · 103 195

1 S28 − S14 1.4 · 109 47.9 · 106 7.6 · 106

2 S42 − S28 53.7 · 1012 1.8 · 1012 301 · 109

3 S56 − S42 2.1 · 1018 73.9 · 1015 11.8 · 1015

4 S70 − S56 83 · 1021 2.9 · 1021 465.3 · 1018

Table 11 and Table 12 show an overview of what would have happened if the
government decided not to interfere with the spreading process of SARS-CoV-2
in the Netherlands during these early pandemic days. Also, the calculation and
estimation are being done in a similar fashion of data collection from the online
dashboard (period July 2020 until January 2021).

Table 11 shows the rollout of reconstructed data from Hos. For instance,
given the start date is March 4th, the first transition (nrTrans = 1) suggest that
around 611 million are detected infected in March 31st, which will bring around
21.4 million people out of them needed to have medical assistance in hospital bed
around two weeks after (April 14th). Leaving around 3.4 million will eventually
end up in ICU bed on April 28th. It happens according to the transition prob-
ability of people going from DI to Hos and the transition probability of people
going from Hos to ICU, which are 0.035 and 0.16 in the matrix (24) as well as
corresponding reproduction factor R of 2.06. This transition implies that in less
than four weeks after March 4th, the whole population of the Netherlands could
be infected if the government did not make any restrictions.

While according to Table 12 shows that on March 31st, there is around 1.4
billion people are detected infected, and around 47.9 million people out of them
will need to be in a hospital bed in around two weeks after, while 7.6 million will
end up in ICU bed in around four weeks after March 31st. This estimation is
according to the exact transition probabilities and corresponding reproduction
factor R of 2.13. The estimation seems to increase drastically given an increase
in reproduction factor R, though it is only increased by 0.07.
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7 Summary, Conclusions, and Recommendations

This thesis started with a review on the online dashboard rijksoverheid.nl which
provided four types of SARS-CoV-2 data in the Netherlands. These data are
Detected Infected (DI), Hospitalized (Hos), Intensive Care Unit (ICU), and Dead
(DD).

Segmented Least Squares (SLS) is implemented to DI data first. The period
chosen for this estimation is from July 7th, 2020, until January 31st, 2021. The
optimal segmentation obtained is five segments. Then, SLS is applied to Hos
and ICU data. It turned out SLS also gives desirable patterns in five segments.
So, SLS resulted in five optimal segmentation for all three types/states (DI, Hos,
and ICU data). SLS implementation on DD data is not being taken into account
since the result would not be reliable. Subsequently, the assumption of window
shift between states is validated statistically. It is proven that the window of
detected infected people to shift to hospital beds is on average seven days. In
comparison, the patients in hospital beds will, on average, shift to ICU in two
days.

Next to that, regression in the presence of a qualitative factor was performed.
The F-statistic is performed on the model in general linear form. It turned out
that the lines are not parallel; therefore, imposing a parallel line is not suitable.
The lines estimation allowing different slopes then obtained. The proportion
of DI to Hos and the proportion of Hos to ICU are obtained by utilizing the
centered model of the estimated lines. These proportions are used to build the
transition probability matrix P with five states: DI, Hos, ICU, DD, Rec. The
transition probability from ICU to Hos and ICU to DD are given from NICE
(2021). With P matrix, Markov chain evolution can then be observed.

In addition, an analysis of SARS-CoV-2 on early days is performed. It turned
out that the DI data shown in the online dashboard rijksoverheid.nl is not being
reasonable since it supposedly has the highest peak around the end of March
2020. The reasonable reproduction factors are also obtained. Lastly, the recon-
struction of the early pandemic day is performed. This reconstruction shows how
fast the spreading of SARS-CoV-2 would have been if the government decided
not to interfere with any measurements. It is shown that around early April
2020, the whole population of the Netherlands could have been infected if there
were no restrictions. This could happen since the reproduction factor was high
at the start of the pandemic.

In conclusion, dynamic programming on multi-way choices has validated that
there are window shifts between states. Then, the centered model in general
linear form resulted in proportions of one state to move to another. These pro-
portions then become transition probabilities in Markov Chain. The transition
probabilities matrix rollout showed that the actual condition on early pandemic
days was much worse than shown in the online dashboard. It would have taken
only four more weeks for the virus to spread quickly throughout the whole pop-
ulation of the Netherlands if there was no governmental interference. Following
infections, hospitalization and intensive care need would have been huge, leading
to disastrous consequences for the Dutch society.

A recommendation for future work would be to develop a different method
for calculating the day shift mismatch of all possible combinations. Currently,
the calculation is done manually throughout 72 possible combinations with five
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segments and three states in each combination.
A second recommendation would be to observe further the possibility of be-

coming infected the second time. In this thesis, one assumes that being infected
the second time is not possible. However, given the current delta mutation
globally, infected people can get infected the second time after being recovered.

Next to that, another idea of elaboration is to further observe the kink from
the patterns with respected governmental interference during that kink period.
This elaboration then could be studied further with Markov Decision Processes
instead.
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Appendices

A Appendix: Day shifts Tables

A.1 DI-Hos shift on Day 7th

Table 13: DI-Hos: Day 7th, Hos-ICU: Day 1st

DI Hos ICU

Segment 1 1-74 1-61 1-69

Segment 2 75-116 62-112 70-99

Segment 3 118-147 114-137 101-138

Segment 4 149-161 139-168 140-171

Segment 5 163-209 170-209 173-209

Table 14: DI-Hos: Day 7th, Hos-ICU: Day 2nd

DI Hos ICU

Segment 1 1-74 1-61 1-68

Segment 2 75-116 62-112 69-98

Segment 3 118-147 114-137 100-137

Segment 4 149-161 139-168 139-170

Segment 5 163-209 170-209 172-209

Table 15: DI-Hos: Day 7th, Hos-ICU: Day 3rd

DI Hos ICU

Segment 1 1-74 1-61 1-67

Segment 2 75-116 62-112 68-97

Segment 3 118-147 114-137 99-136

Segment 4 149-161 139-168 138-169

Segment 5 163-209 170-209 171-209

Table 16: DI-Hos: Day 7th, Hos-ICU: Day 5th

DI Hos ICU

Segment 1 1-74 1-61 1-65

Segment 2 75-116 62-112 66-95

Segment 3 118-147 114-137 97-134

Segment 4 149-161 139-168 136-167

Segment 5 163-209 170-209 169-209
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Table 17: DI-Hos: Day 7th, Hos-ICU: Day 6th

DI Hos ICU

Segment 1 1-74 1-61 1-64

Segment 2 75-116 62-112 65-94

Segment 3 118-147 114-137 96-133

Segment 4 149-161 139-168 135-166

Segment 5 163-209 170-209 168-209

Table 18: DI-Hos: Day 7th, Hos-ICU: Day 7th

DI Hos ICU

Segment 1 1-74 1-61 1-63

Segment 2 75-116 62-112 64-93

Segment 3 118-147 114-137 95-132

Segment 4 149-161 139-168 134-165

Segment 5 163-209 170-209 167-209

Table 19: DI-Hos: Day 7th, Hos-ICU: Day 8th

DI Hos ICU

Segment 1 1-74 1-61 1-62

Segment 2 75-116 62-112 63-92

Segment 3 118-147 114-137 94-131

Segment 4 149-161 139-168 133-164

Segment 5 163-209 170-209 166-209

Table 20: DI-Hos: Day 7th, Hos-ICU: Day 9th

DI Hos ICU

Segment 1 1-74 1-61 1-61

Segment 2 75-116 62-112 62-91

Segment 3 118-147 114-137 93-130

Segment 4 149-161 139-168 132-163

Segment 5 163-209 170-209 165-209

A.2 DI-Hos shift on Day 8th

Table 21: DI-Hos: Day 8th, Hos-ICU: Day 4th

DI Hos ICU

Segment 1 1-74 1-60 1-65

Segment 2 75-116 61-111 66-95

Segment 3 118-147 113-136 97-134

Segment 4 149-161 138-167 136-167

Segment 5 163-209 169-209 169-209

Markov Chains Evolution and The Role of Dynamic Programming in Multi-way Choices:
An Analysis of SARS-CoV-2 Data
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Table 22: DI-Hos: Day 8th, Hos-ICU: Day 5th

DI Hos ICU

Segment 1 1-74 1-60 1-64

Segment 2 75-116 61-111 65-94

Segment 3 118-147 113-136 96-133

Segment 4 149-161 138-167 135-166

Segment 5 163-209 169-209 168-209

Table 23: DI-Hos: Day 8th, Hos-ICU: Day 6th

DI Hos ICU

Segment 1 1-74 1-60 1-63

Segment 2 75-116 61-111 64-93

Segment 3 118-147 113-136 95-132

Segment 4 149-161 138-167 134-165

Segment 5 163-209 169-209 167-209

Table 24: DI-Hos: Day 8th, Hos-ICU: Day 7th

DI Hos ICU

Segment 1 1-74 1-60 1-62

Segment 2 75-116 61-111 63-92

Segment 3 118-147 113-136 94-131

Segment 4 149-161 138-167 133-164

Segment 5 163-209 169-209 166-209

Table 25: DI-Hos: Day 8th, Hos-ICU: Day 8th

DI Hos ICU

Segment 1 1-74 1-60 1-61

Segment 2 75-116 61-111 62-91

Segment 3 118-147 113-136 93-130

Segment 4 149-161 138-167 132-163

Segment 5 163-209 169-209 165-209

Table 26: DI-Hos: Day 8th, Hos-ICU: Day 9th

DI Hos ICU

Segment 1 1-74 1-60 1-60

Segment 2 75-116 61-111 61-90

Segment 3 118-147 113-136 92-129

Segment 4 149-161 138-167 131-162

Segment 5 163-209 169-209 164-209

Markov Chains Evolution and The Role of Dynamic Programming in Multi-way Choices:
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A.3 DI-Hos shift on Day 9th

Table 27: DI-Hos: Day 9th, Hos-ICU: Day 4th

DI Hos ICU

Segment 1 1-74 1-59 1-64

Segment 2 75-116 60-110 65-94

Segment 3 118-147 112-135 96-133

Segment 4 149-161 137-166 135-166

Segment 5 163-209 168-209 168-209

Table 28: DI-Hos: Day 9th, Hos-ICU: Day 5th

DI Hos ICU

Segment 1 1-74 1-59 1-63

Segment 2 75-116 60-110 64-93

Segment 3 118-147 112-135 95-132

Segment 4 149-161 137-166 134-165

Segment 5 163-209 168-209 167-209

Table 29: DI-Hos: Day 9th, Hos-ICU: Day 6th

DI Hos ICU

Segment 1 1-74 1-59 1-62

Segment 2 75-116 60-110 63-92

Segment 3 118-147 112-135 94-131

Segment 4 149-161 137-166 133-164

Segment 5 163-209 168-209 166-209

Table 30: DI-Hos: Day 9th, Hos-ICU: Day 7th

DI Hos ICU

Segment 1 1-74 1-59 1-61

Segment 2 75-116 60-110 62-91

Segment 3 118-147 112-135 93-130

Segment 4 149-161 137-166 132-163

Segment 5 163-209 168-209 165-209

Markov Chains Evolution and The Role of Dynamic Programming in Multi-way Choices:
An Analysis of SARS-CoV-2 Data
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Table 31: DI-Hos: Day 9th, Hos-ICU: Day 8th

DI Hos ICU

Segment 1 1-74 1-59 1-60

Segment 2 75-116 60-110 61-90

Segment 3 118-147 112-135 92-129

Segment 4 149-161 137-166 131-162

Segment 5 163-209 168-209 164-209

Table 32: DI-Hos: Day 9th, Hos-ICU: Day 9th

DI Hos ICU

Segment 1 1-74 1-59 1-59

Segment 2 75-116 60-110 60-89

Segment 3 118-147 112-135 91-128

Segment 4 149-161 137-166 130-161

Segment 5 163-209 168-209 163-209

A.4 DI-Hos shift on Day 10th

Table 33: DI-Hos: Day 10th, Hos-ICU: Day 4th

DI Hos ICU

Segment 1 1-74 1-58 1-63

Segment 2 75-116 69-109 64-93

Segment 3 118-147 111-134 95-132

Segment 4 149-161 136-165 134-165

Segment 5 163-209 167-209 167-209

Table 34: DI-Hos: Day 10th, Hos-ICU: Day 5th

DI Hos ICU

Segment 1 1-74 1-58 1-62

Segment 2 75-116 69-109 63-92

Segment 3 118-147 111-134 94-131

Segment 4 149-161 136-165 133-164

Segment 5 163-209 167-209 166-209

Table 35: DI-Hos: Day 10th, Hos-ICU: Day 6th

DI Hos ICU

Segment 1 1-74 1-58 1-61

Segment 2 75-116 69-109 62-91

Segment 3 118-147 111-134 93-130

Segment 4 149-161 136-165 132-163

Segment 5 163-209 167-209 165-209

Markov Chains Evolution and The Role of Dynamic Programming in Multi-way Choices:
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Table 36: DI-Hos: Day 10th, Hos-ICU: Day 7th

DI Hos ICU

Segment 1 1-74 1-58 1-60

Segment 2 75-116 69-109 61-90

Segment 3 118-147 111-134 92-129

Segment 4 149-161 136-165 131-162

Segment 5 163-209 167-209 164-209

Table 37: DI-Hos: Day 10th, Hos-ICU: Day 8th

DI Hos ICU

Segment 1 1-74 1-58 1-59

Segment 2 75-116 69-109 60-89

Segment 3 118-147 111-134 91-128

Segment 4 149-161 136-165 130-161

Segment 5 163-209 167-209 163-209

Table 38: DI-Hos: Day 10th, Hos-ICU: Day 9th

DI Hos ICU

Segment 1 1-74 1-58 1-58

Segment 2 75-116 69-109 59-88

Segment 3 118-147 111-134 90-127

Segment 4 149-161 136-165 129-160

Segment 5 163-209 167-209 162-209

A.5 DI-Hos shift on Day 11th

Table 39: DI-Hos: Day 11th, Hos-ICU: Day 4th

DI Hos ICU

Segment 1 1-74 1-57 1-62

Segment 2 75-116 58-108 63-92

Segment 3 118-147 110-133 94-131

Segment 4 149-161 135-164 133-164

Segment 5 163-209 166-209 166-209

Table 40: DI-Hos: Day 11th, Hos-ICU: Day 5th

DI Hos ICU

Segment 1 1-74 1-57 1-61

Segment 2 75-116 58-108 62-91

Segment 3 118-147 110-133 93-130

Segment 4 149-161 135-164 132-163

Segment 5 163-209 166-209 165-209
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Table 41: DI-Hos: Day 11th, Hos-ICU: Day 6th

DI Hos ICU

Segment 1 1-74 1-57 1-60

Segment 2 75-116 58-108 61-90

Segment 3 118-147 110-133 92-129

Segment 4 149-161 135-164 131-162

Segment 5 163-209 166-209 164-209

Table 42: DI-Hos: Day 11th, Hos-ICU: Day 7th

DI Hos ICU

Segment 1 1-74 1-57 1-59

Segment 2 75-116 58-108 60-89

Segment 3 118-147 110-133 91-128

Segment 4 149-161 135-164 130-161

Segment 5 163-209 166-209 163-209

Table 43: DI-Hos: Day 11th, Hos-ICU: Day 8th

DI Hos ICU

Segment 1 1-74 1-57 1-58

Segment 2 75-116 58-108 59-88

Segment 3 118-147 110-133 90-127

Segment 4 149-161 135-164 129-160

Segment 5 163-209 166-209 162-209

Table 44: DI-Hos: Day 11th, Hos-ICU: Day 9th

DI Hos ICU

Segment 1 1-74 1-57 1-57

Segment 2 75-116 58-108 58-87

Segment 3 118-147 110-133 89-126

Segment 4 149-161 135-164 128-160

Segment 5 163-209 166-209 162-209

A.6 DI-Hos shift on Day 12th

Table 45: DI-Hos: Day 12th, Hos-ICU: Day 4th

DI Hos ICU

Segment 1 1-74 1-56 1-61

Segment 2 75-116 57-107 62-91

Segment 3 118-147 109-132 93-130

Segment 4 149-161 134-163 132-163

Segment 5 163-209 165-209 165-209
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Table 46: DI-Hos: Day 12th, Hos-ICU: Day 5th

DI Hos ICU

Segment 1 1-74 1-56 1-60

Segment 2 75-116 57-107 61-90

Segment 3 118-147 109-132 92-129

Segment 4 149-161 134-163 131-162

Segment 5 163-209 165-209 164-209

Table 47: DI-Hos: Day 12th, Hos-ICU: Day 6th

DI Hos ICU

Segment 1 1-74 1-56 1-59

Segment 2 75-116 57-107 60-89

Segment 3 118-147 109-132 91-128

Segment 4 149-161 134-163 130-161

Segment 5 163-209 165-209 163-209

Table 48: DI-Hos: Day 12th, Hos-ICU: Day 7th

DI Hos ICU

Segment 1 1-74 1-56 1-58

Segment 2 75-116 57-107 59-88

Segment 3 118-147 109-132 90-127

Segment 4 149-161 134-163 129-160

Segment 5 163-209 165-209 162-209

Table 49: DI-Hos: Day 12th, Hos-ICU: Day 8th

DI Hos ICU

Segment 1 1-74 1-56 1-57

Segment 2 75-116 57-107 58-87

Segment 3 118-147 109-132 89-126

Segment 4 149-161 134-163 128-159

Segment 5 163-209 165-209 161-209

Table 50: DI-Hos: Day 12th, Hos-ICU: Day 9th

DI Hos ICU

Segment 1 1-74 1-56 1-56

Segment 2 75-116 57-107 57-86

Segment 3 118-147 109-132 88-125

Segment 4 149-161 134-163 127-159

Segment 5 163-209 165-209 161-209
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A.7 DI-Hos shift on Day 13th

Table 51: DI-Hos: Day 13th, Hos-ICU: Day 4th

DI Hos ICU

Segment 1 1-74 1-55 1-60

Segment 2 75-116 56-106 61-90

Segment 3 118-147 108-131 92-129

Segment 4 149-161 133-162 131-162

Segment 5 163-209 164-209 164-209

Table 52: DI-Hos: Day 13th, Hos-ICU: Day 5th

DI Hos ICU

Segment 1 1-74 1-55 1-59

Segment 2 75-116 56-106 60-89

Segment 3 118-147 108-131 91-128

Segment 4 149-161 133-162 130-161

Segment 5 163-209 164-209 163-209

Table 53: DI-Hos: Day 13th, Hos-ICU: Day 6th

DI Hos ICU

Segment 1 1-74 1-55 1-58

Segment 2 75-116 56-106 59-88

Segment 3 118-147 108-131 90-127

Segment 4 149-161 133-162 129-160

Segment 5 163-209 164-209 162-209

Table 54: DI-Hos: Day 13th, Hos-ICU: Day 7th

DI Hos ICU

Segment 1 1-74 1-55 1-57

Segment 2 75-116 56-106 58-87

Segment 3 118-147 108-131 89-126

Segment 4 149-161 133-162 128-159

Segment 5 163-209 164-209 161-209

Markov Chains Evolution and The Role of Dynamic Programming in Multi-way Choices:
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Table 55: DI-Hos: Day 13th, Hos-ICU: Day 8th

DI Hos ICU

Segment 1 1-74 1-55 1-56

Segment 2 75-116 56-106 57-86

Segment 3 118-147 108-131 88-125

Segment 4 149-161 133-162 127-158

Segment 5 163-209 164-209 160-209

Table 56: DI-Hos: Day 13th, Hos-ICU: Day 9th

DI Hos ICU

Segment 1 1-74 1-55 1-55

Segment 2 75-116 56-106 56-85

Segment 3 118-147 108-131 87-124

Segment 4 149-161 133-162 126-158

Segment 5 163-209 164-209 160-209

A.8 DI-Hos shift on Day 14th

Table 57: DI-Hos: Day 14th, Hos-ICU: Day 4th

DI Hos ICU

Segment 1 1-74 1-54 1-59

Segment 2 75-116 55-105 60-89

Segment 3 118-147 107-130 91-128

Segment 4 149-161 132-161 130-161

Segment 5 163-209 163-209 163-209

Table 58: DI-Hos: Day 14th, Hos-ICU: Day 5th

DI Hos ICU

Segment 1 1-74 1-54 1-58

Segment 2 75-116 55-105 59-88

Segment 3 118-147 107-130 90-127

Segment 4 149-161 132-161 129-160

Segment 5 163-209 163-209 162-209

Table 59: DI-Hos: Day 14th, Hos-ICU: Day 6th

DI Hos ICU

Segment 1 1-74 1-54 1-57

Segment 2 75-116 55-105 58-87

Segment 3 118-147 107-130 89-126

Segment 4 149-161 132-161 128-159

Segment 5 163-209 163-209 161-209
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Table 60: DI-Hos: Day 14th, Hos-ICU: Day 7th

DI Hos ICU

Segment 1 1-74 1-54 1-56

Segment 2 75-116 55-105 57-86

Segment 3 118-147 107-130 88-125

Segment 4 149-161 132-161 127-158

Segment 5 163-209 163-209 160-209

Table 61: DI-Hos: Day 14th, Hos-ICU: Day 8th

DI Hos ICU

Segment 1 1-74 1-54 1-55

Segment 2 75-116 55-105 56-85

Segment 3 118-147 107-130 87-124

Segment 4 149-161 132-161 126-157

Segment 5 163-209 163-209 159-209

Table 62: DI-Hos: Day 14th, Hos-ICU: Day 9th

DI Hos ICU

Segment 1 1-74 1-54 1-54

Segment 2 75-116 55-105 55-84

Segment 3 118-147 107-130 86-123

Segment 4 149-161 132-161 125-157

Segment 5 163-209 163-209 159-209

A.9 DI-Hos shift on Day 15th

Table 63: DI-Hos: Day 15th, Hos-ICU: Day 4th

DI Hos ICU

Segment 1 1-74 1-53 1-58

Segment 2 75-116 54-104 59-88

Segment 3 118-147 106-129 90-127

Segment 4 149-161 131-160 129-160

Segment 5 163-209 162-209 162-209

Table 64: DI-Hos: Day 15th, Hos-ICU: Day 5th

DI Hos ICU

Segment 1 1-74 1-53 1-57

Segment 2 75-116 54-104 58-87

Segment 3 118-147 106-129 89-126

Segment 4 149-161 131-160 128-159

Segment 5 163-209 162-209 161-209

Markov Chains Evolution and The Role of Dynamic Programming in Multi-way Choices:
An Analysis of SARS-CoV-2 Data

57



A APPENDIX: DAY SHIFTS TABLES N.P.A. ARIANTARI

Table 65: DI-Hos: Day 15th, Hos-ICU: Day 6th

DI Hos ICU

Segment 1 1-74 1-53 1-56

Segment 2 75-116 54-104 57-86

Segment 3 118-147 106-129 88-125

Segment 4 149-161 131-160 127-158

Segment 5 163-209 162-209 160-209

Table 66: DI-Hos: Day 15th, Hos-ICU: Day 7th

DI Hos ICU

Segment 1 1-74 1-53 1-55

Segment 2 75-116 54-104 56-85

Segment 3 118-147 106-129 87-124

Segment 4 149-161 131-160 126-157

Segment 5 163-209 162-209 159-209

Table 67: DI-Hos: Day 15th, Hos-ICU: Day 8th

DI Hos ICU

Segment 1 1-74 1-53 1-54

Segment 2 75-116 54-104 55-84

Segment 3 118-147 106-129 86-123

Segment 4 149-161 131-160 125-156

Segment 5 163-209 162-209 158-209

Table 68: DI-Hos: Day 15th, Hos-ICU: Day 9th

DI Hos ICU

Segment 1 1-74 1-53 1-53

Segment 2 75-116 54-104 54-83

Segment 3 118-147 106-129 85-122

Segment 4 149-161 131-160 124-156

Segment 5 163-209 162-209 158-209

A.10 DI-Hos shift on Day 16th

Table 69: DI-Hos: Day 16th, Hos-ICU: Day 4th

DI Hos ICU

Segment 1 1-74 1-52 1-57

Segment 2 75-116 53-103 58-87

Segment 3 118-147 105-128 89-126

Segment 4 149-161 130-159 128-160

Segment 5 163-209 161-209 162-209
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Table 70: DI-Hos: Day 16th, Hos-ICU: Day 5th

DI Hos ICU

Segment 1 1-74 1-52 1-56

Segment 2 75-116 53-103 57-86

Segment 3 118-147 105-128 88-125

Segment 4 149-161 130-159 127-159

Segment 5 163-209 161-209 161-209

Table 71: DI-Hos: Day 16th, Hos-ICU: Day 6th

DI Hos ICU

Segment 1 1-74 1-52 1-55

Segment 2 75-116 53-103 56-85

Segment 3 118-147 105-128 87-124

Segment 4 149-161 130-159 126-158

Segment 5 163-209 161-209 160-209

Table 72: DI-Hos: Day 16th, Hos-ICU: Day 7th

DI Hos ICU

Segment 1 1-74 1-52 1-54

Segment 2 75-116 53-103 55-84

Segment 3 118-147 105-128 86-123

Segment 4 149-161 130-159 125-157

Segment 5 163-209 161-209 159-209

Table 73: DI-Hos: Day 16th, Hos-ICU: Day 8th

DI Hos ICU

Segment 1 1-74 1-52 1-53

Segment 2 75-116 53-103 54-83

Segment 3 118-147 105-128 85-122

Segment 4 149-161 130-159 124-156

Segment 5 163-209 161-209 158-209

Table 74: DI-Hos: Day 16th, Hos-ICU: Day 9th

DI Hos ICU

Segment 1 1-74 1-52 1-52

Segment 2 75-116 53-103 53-82

Segment 3 118-147 105-128 84-121

Segment 4 149-161 130-159 123-155

Segment 5 163-209 161-209 157-209
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A.11 DI-Hos shift on Day 17th

Table 75: DI-Hos: Day 17th, Hos-ICU: Day 4th

DI Hos ICU

Segment 1 1-74 1-51 1-56

Segment 2 75-116 52-102 57-86

Segment 3 118-147 104-127 88-125

Segment 4 149-161 129-158 127-159

Segment 5 163-209 160-209 161-209

Table 76: DI-Hos: Day 17th, Hos-ICU: Day 5th

DI Hos ICU

Segment 1 1-74 1-51 1-55

Segment 2 75-116 52-102 56-85

Segment 3 118-147 104-127 87-124

Segment 4 149-161 129-158 126-158

Segment 5 163-209 160-209 160-209

Table 77: DI-Hos: Day 17th, Hos-ICU: Day 6th

DI Hos ICU

Segment 1 1-74 1-51 1-54

Segment 2 75-116 52-102 55-84

Segment 3 118-147 104-127 86-123

Segment 4 149-161 129-158 125-157

Segment 5 163-209 160-209 159-209

Table 78: DI-Hos: Day 17th, Hos-ICU: Day 7th

DI Hos ICU

Segment 1 1-74 1-51 1-53

Segment 2 75-116 52-102 54-83

Segment 3 118-147 104-127 85-122

Segment 4 149-161 129-158 124-156

Segment 5 163-209 160-209 158-209
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Table 79: DI-Hos: Day 17th, Hos-ICU: Day 8th

DI Hos ICU

Segment 1 1-74 1-51 1-52

Segment 2 75-116 52-102 53-82

Segment 3 118-147 104-127 84-121

Segment 4 149-161 129-158 123-155

Segment 5 163-209 160-209 157-209

Table 80: DI-Hos: Day 17th, Hos-ICU: Day 9th

DI Hos ICU

Segment 1 1-74 1-51 1-51

Segment 2 75-116 52-102 52-81

Segment 3 118-147 104-127 83-120

Segment 4 149-161 129-158 122-154

Segment 5 163-209 160-209 156-209

A.12 DI-Hos shift on Day 18th

Table 81: DI-Hos: Day 18th, Hos-ICU: Day 4th

DI Hos ICU

Segment 1 1-74 1-50 1-55

Segment 2 75-116 51-101 56-85

Segment 3 118-147 103-126 87-124

Segment 4 149-161 128-157 126-158

Segment 5 163-209 159-209 160-209

Table 82: DI-Hos: Day 18th, Hos-ICU: Day 5th

DI Hos ICU

Segment 1 1-74 1-50 1-54

Segment 2 75-116 51-101 55-84

Segment 3 118-147 103-126 86-123

Segment 4 149-161 128-157 125-157

Segment 5 163-209 159-209 159-209

Table 83: DI-Hos: Day 18th, Hos-ICU: Day 6th

DI Hos ICU

Segment 1 1-74 1-50 1-53

Segment 2 75-116 51-101 54-83

Segment 3 118-147 103-126 85-122

Segment 4 149-161 128-157 124-156

Segment 5 163-209 159-209 158-209
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Table 84: DI-Hos: Day 18th, Hos-ICU: Day 7th

DI Hos ICU

Segment 1 1-74 1-50 1-52

Segment 2 75-116 51-101 53-82

Segment 3 118-147 103-126 84-121

Segment 4 149-161 128-157 123-155

Segment 5 163-209 159-209 157-209

Table 85: DI-Hos: Day 18th, Hos-ICU: Day 8th

DI Hos ICU

Segment 1 1-74 1-50 1-51

Segment 2 75-116 51-101 52-81

Segment 3 118-147 103-126 83-120

Segment 4 149-161 128-157 122-154

Segment 5 163-209 159-209 156-209

Table 86: DI-Hos: Day 18th, Hos-ICU: Day 9th

DI Hos ICU

Segment 1 1-74 1-50 1-50

Segment 2 75-116 51-101 51-80

Segment 3 118-147 103-126 82-119

Segment 4 149-161 128-157 121-153

Segment 5 163-209 159-209 155-209
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