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Abstract 

The purpose of this paper is to investigate whether mouse movement coupling facilitates 

enhanced performance in a computer-based collaborative problem solving (CPS) task. 

Although multi-scale coordination in CPS is observed consistently, no consent has been 

established on when and how interpersonal coordination relates to performance outcomes. 

The presented research contributes to existing literature by reporting the first empirical 

evidence for mouse movement coupling in complex CPS. I drew on dynamical systems theory 

and have applied cross-wavelet transformation to analyze behavioral coupling of 30 dyadic 

teams at multiple frequency scales. Participants collaborated on the Moonbase Alpha 

simulation, which is a genuine, computer-based CPS task. Mouse movement coordination was 

significantly greater than expected due to chance at the scales 18s, 36s, 60s, and 180s. 

However, coordination did not significantly predict dyadic CPS performance. I further discuss 

these findings and propose theoretical and practical implications on their basis. 

 Keywords: collaboration, dynamical systems, interpersonal coordination, mouse 

movement coupling, problem solving, team dynamics, team performance 
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Mouse Movement Coupling in a Computer-Based Collaborative Problem Solving Task 

 Collaboration is a key driver for business performance and success (Kristensen & Kijl, 

2010), and collaborative problem solving (CPS) is widely recognized as one of the most 

important skills of the 21st century (Fiore, Graesser, & Greiff, 2018; Graesser, Kuo, & Liao, 

2017; OECD, 2017). As the world is becoming increasingly complex, the major problems of 

our time require coordinated efforts of multidisciplinary teams beyond individual problem 

solving (Fiore et al., 2018). Consequently, “collaboration is likely to become an even more 

prevalent aspect in people’s daily use of computing technologies and interactions” 

(Papangelis, Potena, Smari, Storti, & Wu, 2019). Recent technological developments 

furthermore enhance the capabilities and design of computer-supported collaboration, both 

local as well as remote (Chanel, Bétrancourt, Pun, Cereghetti, & Molinari, 2013; Papangelis 

et al., 2019). However, the opportunities technology offers do not suffice for successful 

collaboration as such. In order to fully exploit the potential of technological advances, we 

need to better understand the dynamics of CPS and define characteristics of an efficient and 

successful collaboration (Papangelis et al., 2019).  

 By applying propositions from dynamical systems theory, I aim to contribute to a 

better comprehension of the observable interaction dynamics, which facilitate effective CPS. 

More precisely, in this paper, I want to examine whether computer mouse movement 

coordination helps to achieve performance goals in CPS. 

Societal and Scientific Relevance of CPS 

 Despite the fact that collaboration has become increasingly important (OECD, 2017; 

Papangelis et al., 2019), students and professionals around the globe currently seem to lack 

collaboration competencies which are highly demanded concerning the workforce (Fiore et 

al., 2018; OECD, 2017). Collaborative Problem Solving (CPS) is defined as “a process 

whereby two or more individuals attempt to solve a problem by sharing the understanding and 

effort required to come to a solution and pooling their knowledge, skills and efforts to reach 

that solution” (OECD, 2017, p. 134). Hence, as the efforts of a team working towards a 

common goal are distributed, by definition, explanations focusing on isolated individuals are 

deficient (Gorman, Dunbar, Grimm, & Gipson, 2017). Instead, teams should be the unit of 

observation, as they constitute the decisive factor in accomplishing organizational outcomes 

(Johnson et al., 2007). 

 Collaborative problem solving is viewed as a process rather than an outcome of a team 

(Cooke, Gorman, Myers, & Duran, 2013). Interactive relationships among team members 

unfold over time and provoke complex, non-linear shifts in behavior. Consequently, 
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individuals become coupled through communication and perception when engaging in 

collaborative tasks. This means that behavioral and physiological features are coordinated, 

may it be intentional or unintentional (Gorman et al., 2017). 

 Regardless of the context (from sports teams to work and family relationships), 

collaborators consistently appear to coordinate their actions when interacting with each other. 

This phenomenon occurs across various modalities (e.g., aligned speech, bodily movements, 

and cardiovascular measures; Abney, Dale, Louwerse, & Kello, 2018; Louwerse, Dale, Bard, 

& Jeuniaux, 2012; Palumbo et al., 2016; Silva, Vilar, Davids, Araújo, & Garganta, 2016) and 

is associated with intra- (e.g., positive affect) as well as interpersonal benefits (e.g., affiliative 

outcomes, prosocial behavior; Mogan, Fischer, & Bulbulia, 2017; Vicaria & Dickens, 2016). 

However, it is not yet clear how coordination facilitates these positive outcomes (Abney, 

Paxton, Dale, & Kello, 2015), particularly not so in collaborative team contexts (Wiltshire, 

Steffensen, & Fiore, 2019). 

 Technological advances enable us to explore the cognitive and social constructs 

associated with effective collaboration, which were inaccessible before (Graesser et al., 2018; 

Stoeffler, Rosen, Bolsinova, & von Davier, 2020). Stoeffler et al. (2020) urge that the 

cultivation of CPS skills substantially depends on our ability to identify, measure and track 

CPS performance. Thus far, much of the research on complex CPS is theoretical and we lack 

a thorough understanding of CPS processes (Wiltshire, Butner, & Fiore, 2018). Empirical 

insights are necessary to structure successful interaction among individuals and provide 

optimal instructional support and feedback (Fiore et al., 2018; Kobbe et al., 2007). 

 Only an informed understanding of CPS processes allows to incorporate strategies to 

develop and foster collaboration skills in curricula and the workforce (Fiore et al., 2018; 

OECD, 2017).  Hence, uncovering the dynamics of collaborating individuals is of utmost 

relevance for both theory and practice, as it can ultimately facilitate enhanced team 

performance (Graesser et al., 2018; Kobbe et al., 2007). 

Dynamical Systems Theory 

 To study CPS, I will draw on dynamical systems theory. Team dynamics, in essence, 

are the interactions between individuals of a team (Cooke et al., 2013). As team processes are 

widely acknowledged as being dynamic, i.e. non-linear, they should be studied utilizing non-

linear models correspondingly (Eloy et al., 2019; Ramos-Villagrasa, Marques-Quinteiro, 

Navarro, & Rico, 2018). As opposed to linear models (where the output is the weighted sum 

of the inputs), dynamical systems theory aims to understand, model, and predict a teams’ 

behavior and how it changes over time. This is applicable to any kind of system (Richardson, 
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Dale, & Marsh, 2014), may it be cells collectively prompting a muscle contraction, fish of a 

swarm navigating the course and pacing their movements, or humans in a work force 

coordinating their efforts to solve a difficult problem. 

Interpersonal Coordination in Collaboration  

 How team processes emerge and evolve is described by interpersonal coordination. 

Vicaria and Dickens (2016) characterize interpersonal coordination as “an umbrella term that 

describes nonrandom patterned behaviors during a social interaction” (p. 336) and the 

literature further describes examples by terms such as alignment, compliance, convergence, 

coupling, linkage or synchronization (Abney et al., 2015; Chanel et al., 2013; Fujiwara, 

Kimura, & Daibo, 2019; Gorman et al., 2017; Miles, Lumsden, Flannigan, Allsop, & Marie, 

2017; Vicaria & Dickens, 2016). These nonrandom patterns, i.e. coordinated actions of two or 

more collaborating individuals, are observed not only at a single scale. Team coordination is 

rather supported by many different spatial and temporal scales (e.g., from adjusting minor 

postural movements to the position of a football player in the field, and coordination at 

milliseconds to hours or even years; Davis, Brooks, & Dixon, 2016; Gorman et al., 2017; 

Vicaria & Dickens, 2016). 

 Davis et al. (2016), for example, found highly multi-scale properties in hand 

movements of individuals who collaborated on a physical manipulation task. Interpersonal 

movement coordination was widely distributed across a range of spatiotemporal scales, rather 

than being locally isolated. Hence, coordination in collaboration tasks is not separable into 

narrow sub-processes as it emerges on a global scale (Davis et al., 2016; Gorman et al., 2017; 

Richardson et al., 2014). These findings were confirmed by subsequent studies, where 

coordination of bodily movements and speech occurred on several different scales (Fujiwara 

et al., 2019; Louwerse et al., 2012; Miles et al., 2017; Wiltshire et al., 2019).  

The Functional Role of Coordination in Effective Collaboration 

 Whereas the occurrence of multi-scale coordination in CPS is well documented, the 

question of its functionality remains (Abney et al., 2015; Amon, Vrzakova, & D’Mello, 2019; 

Miles et al., 2017). Although interpersonal coordination in CPS is generally associated with 

benefits (Mogan et al., 2017; Vicaria & Dickens, 2016), there is no consistent support for the 

positive effects of coordination and thus indices of effective CPS need to undergo further 

investigation (Chanel et al., 2013; Palumbo et al., 2016).  

 In order to achieve a common goal, individuals may implicitly alternate synchronous 

and complementary coordination strategies (Richardson et al., 2014; Skewes, Skewes, 

Michael, & Konvalinka, 2015). Thereby, simultaneous movement is called “in-phase”, 
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whereas alternating movement is called “anti-phase” (Miles et al., 2017). The temporal lag in 

coordination can take on any value in between, and describes the behavioral latency between 

coordinated movements (Skewes et al., 2015). However, when individuals become coupled 

they tend towards either in-phase or anti-phase coordination (Miles et al., 2017).  

 Interpersonal coordination seems to increase with advanced task difficulty (Louwerse 

et al., 2012; Ramenzoni, Davis, Riley, Shockley, & Baker, 2011), and Miles et al. (2017) 

propose that coordinating actions serves a reduction of complexity in goal-oriented social 

interaction, which ultimately improves collaborative performance outcomes (Miles et al., 

2017). Davis et al. (2016) for example found the level of hand movement coordination 

predictive of dyadic performance in a physical coordination task.  

 In the same vein, Chanel et al. (2013) could predict self-reported performance 

measures from eye-movement and physiological coupling in a computer collaboration task. 

Eye-movement coupling could predict the factors convergence (of emotions and ideas) and 

co-constructing (i.e., building new ideas, deepening as well as broadening them), which are 

measures of effective collaboration. When participants looked at the same regions on their 

computer screens at approximately the same time (i.e., in-phase coordination), they reported 

higher synchronized action and co-elaboration on ideas. Moreover, higher levels of 

coordination in electrical brain activity (EEG) measures predicted higher ratings in the factor 

grounding, which refers to maintaining a shared understanding, managing task progress and 

relationship quality. These results suggest that interpersonal coordination plays an active role 

in facilitating effective collaboration. 

 However, forms of coordination such as synchronization can also act 

counterproductive in achieving performance goals (Abney et al., 2015; Gorman & Crites, 

2015; Wiltshire et al., 2019). When trying to collaboratively tie a knot for example, the 

tendency to show in-phase movements is obstructive as solving this task requires 

simultaneous, although independent action of individuals. Therefore, synchrony can also be 

associated with poorer team performance (Gorman & Crites, 2015). Abney et al. (2015), for 

example, found higher coordination associated with poorer performance in a physical 

collaboration task. Instead, moderate levels of bodily movement coupling yielded the best 

performance outcomes. 

 In some contexts, interpersonal coordination seems to lower the ability to react to 

changes in task demands and environment due to less degrees of freedom for behavioral 

adaption. Hence, at certain frequencies or when coordination becomes too strong, coupling 

appears to impair rather than enhance performance (Amon et al., 2019; Ramos-Villagrasa et 
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al., 2018). Team performance may not be linearly related to any team process but follow an 

inverted U-shape, where extremely high or low levels of one variable negatively affect the 

outcome variable (Ramos-Villagrasa et al., 2018). 

 In a computer-based CPS task, Wiltshire et al. (2019) found substantial coordination 

of bodily movements in collaborating individuals. Moreover, the observed movement 

coordination was significantly greater than what can be expected due to chance or task 

demands alone. Particularly at smaller time scales, individuals showed meaningful bodily 

movement coordination. Smaller time scales correspond to highly frequent movements, and 

these explained a considerable amount of variance (30.2%) in team level performance. 

However, the relationship strength differed across frequency scales and was not always 

positive. The best predictor of dyadic CPS performance was coordination including its form, 

namely in-phase, at the 1 second scale. These findings support the assumption that 

particularly in-phase coordination, i.e. movement synchronization, is associated with 

beneficial outcomes. 

 The positive effects of in-phase movements are explained by the close connection of 

body and mind (Cooke et al., 2013; Richardson et al., 2014). In complex environments, in-

phase coordination is believed to function as “social glue” due to a reduction of complexity 

(Fujiwara et al., 2019; Miles et al., 2017). In a manipulation experiment, Miles et al. (2017) 

provoked dyads with in- and anti-phase movement exercises, respectively, before they 

collaborated on a cognitive CPS task. Performance was assessed both on team and individual 

level. Compared to participants in the anti-phase and control group, individual performance of 

in-phase induced participants was superior. However, the overall measured dyadic team 

performance has not been affected by the experimental group. These findings suggest that 

synchronous coordination may yield individual, but not necessarily collective benefits on 

team level. 

 Moreover, the benefits of interpersonal coordination might be limited by context-

specific qualities such as dyad composition and history, personal characteristics, role 

assignment, or task constraints (Abney et al., 2015; Fujiwara et al., 2019; Miles et al., 2017; 

Vicaria & Dickens, 2016; Wiltshire et al., 2018). In a study conducted by Fujiwara et al. 

(2019), for instance, the form of coordination was significantly moderated by context factors. 

They did find positive effects of coordination at smaller time scales (below 2 and 40 seconds, 

respectively) on perceived rapport. However, this applied only to dyads of strangers, not 

friends. Thus, when and why in-phase coordination yields positive performance outcomes in 

CPS remains subject to further investigation. 



MOUSE MOVEMENT COUPLING IN CPS   8 

 

 Summarized, although recent methods and research did yield important insights, a 

comprehensive understanding of the dynamic interactions between collaborating individuals 

is yet to be established (Zapata-Fonseca, Dotov, Fossion, & Froese, 2016). Findings show that 

the effects of interpersonal coordination differ across varying frequency scales and modalities 

(Chanel et al., 2013; Fujiwara et al., 2019; Wiltshire et al., 2019), and to this date, we know 

little about how and when coordination indeed facilitates enhanced CPS performance (Abney 

et al., 2015; Miles et al., 2017; Palumbo et al., 2016; Wiltshire et al., 2019). 

Present Research 

 What distinguishes this work from previous research is that I examine a thus far 

unobserved modality, namely mouse movements, and how it relates to CPS performance in a 

naturalistic, computer-based task setting. To account for the multi-scale nature of 

collaborative processes I distill meaningful features of low-level motor movements across 

varying time scales, i.e. frequencies, and try to relate them to an objective CPS outcome on a 

team level. 

 Insights from authentic CPS assessment are pivotal to identify, measure and track 

effective collaboration and ultimately develop strategies to cultivate CPS skills (Stoeffler et 

al., 2020). Automated, computer-based assessment of CPS processes can help to gain insights 

which are inaccessible with traditional methods such as questionnaires on subjective 

impressions, and therefore present an important advancement (Graesser et al., 2018; Stoeffler 

et al., 2020). The Moonbase Alpha task is such a genuine, computer-based CPS task which 

requires high levels of collaboration to solve it (NASA, 2011). Unlike previous research 

(Chanel et al., 2013; Fujiwara et al., 2019), this task allows one to examine the effect of team 

dynamics on an objective performance measure. 

 Finally, performance is measured on the level of the dyad. Whether collaboration is 

effective or not should be measured on team level performance, as it is the overall team output 

which is crucial to solve complex problems rather than individual performance (Fiore et al., 

2018; Graesser et al., 2018; Papangelis et al., 2019). This is an important aspect, as effects on 

team level have been shown to deviate from those on individual level (Miles et al., 2017).  

 As introduced above, empirical findings support the general idea that multiple 

spatiotemporal scales determine collaborative outcomes (Davis et al., 2016; Fujiwara et al., 

2019; Wiltshire et al., 2019). To capture these complex CPS interaction patterns, complex 

computational processes from the dynamical systems perspective are suitable as they observe 

teams as non-linear systems and depict how team processes evolve over time (Amon et al., 

2019; Gorman et al., 2017; Richardson et al., 2014). 
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 Drawing on dynamical systems theory, I utilize cross-wavelet transformation (CWT) 

in this study. This time-series analysis method allows to quantify patterns which emerge 

during collaboration. CWT can precisely detect the multi-scale properties of complex signals 

derived from CPS and thus uncover behavior of collaborating individuals (Issartel, Bardainne, 

Gaillot, & Marin, 2015; Richardson et al., 2014). This method is reliable and viable to gain a 

deeper understanding of complex team interactions, and hence to exceed the knowledge 

derived from traditional, linear approaches (Cooke et al., 2013; Gorman et al., 2017; Issartel 

et al., 2015; Ramos-Villagrasa et al., 2018; Richardson et al., 2014). These insights into team-

level dynamics may facilitate the prediction of effective collaborative processes (Amon et al., 

2019; Ramos-Villagrasa et al., 2018) and further enable enhancement in team development 

and training (Gorman et al., 2017; Graesser et al., 2018).  

 Furthermore, a comprehensive understanding of team dynamics in CPS can only be 

established by aggregating insights derived across multiple modalities. Different individual 

measures might act complementary in explaining effective collaboration, thus different 

modalities allow distinct inferences on collaborative processes (Amon et al., 2019; Chanel et 

al., 2013). In the data set I utilize, Wiltshire (2015) and Wiltshire et al. (2018, 2019) explored 

coordination of bodily movements as well as teams’ communication already. In this paper I 

examine a novel modality and thereby aim to complement the valuable findings from these 

studies to advance the knowledge of how interpersonal coordination in computer-based CPS 

functions in real-time.  

 To my best knowledge, one motor component that has not been studied in CPS yet, is 

the coupling of computer mouse movements; neither in this present data set, nor in the 

prevailing literature. Freeman et al. (2011) promote the employment of mouse movement 

data, as it can reveal unknown linkages between individuals’ action, perception, basic and 

team cognition (Cooke et al., 2013; Freeman et al., 2011; Richardson et al., 2014; Schoemann, 

O’Hora, Dale, & Scherbaum, 2019). This is in line with embodied cognition theory, which 

states that cognitive processes are realized in the body outside of the brain. Embodied 

movements allow teams to perform sophisticated behavior and be adaptive to different 

contexts and changes in the environment. This key idea is often applied in team research and 

views the body, i.e. motor movements, as central in understanding the nature of mind and 

team cognition (Farina, 2020). 

 Following this line of thought, mouse movement trajectories constitute a continuous 

source of manual action which exposes the underlying cognitive processes in real-time 

(Calcagnì, Lombardi, & Sulpizio, 2017; Freeman et al., 2011; Schoemann et al., 2019). As 



MOUSE MOVEMENT COUPLING IN CPS   10 

 

observable behavior such as mouse movements are effectuated by complex team interactions, 

they allow to draw conclusions on team dynamics (Richardson et al., 2014). In essence, team 

dynamics are the interactions between individuals of a team (Cooke et al., 2013). Hence, 

measuring how the relationship of individual mouse movements of collaborators change 

together over time can model team interactions, i.e. team dynamics. Team dynamics 

ultimately produce team outcomes, for which reason they can provide valuable insights into 

the characteristics of effective CPS processes (Gorman et al., 2017). 

 From a scientific point of view, examining mouse movement trajectories is a powerful 

method to observe behavior in naturalistic, computer-based CPS. It is a promising method to 

study interpersonal coordination as mouse movements are highly spatially sensitive, gained 

unobtrusively and at low cost (Calcagnì et al., 2017; Freeman et al., 2011; Hehman, Stolier, & 

Freeman, 2015; Schoemann et al., 2019; Spivey, Grosjean, & Knoblich, 2005). This 

efficiency makes them advantageous as opposed to labor-intensive alternatives such as video 

or audio analysis of bodily movements or speech, where one needs to hand-code movements 

frame by frame or transcribe whole conversations (Graesser et al., 2018; Paxton & Dale, 

2013). In summary, mouse movements present a rich data source offering great potential for 

both theory and practice (Calcagnì et al., 2017; Cooke et al., 2013; Freeman et al., 2011; 

Hehman et al., 2015; Paxton & Dale, 2013). 

 Integrating relevant findings from related research, I expect individuals to exhibit 

significant mouse movement coordination while collaborating on the computer-based CPS 

task. Furthermore, the coordination strength will most likely vary across different frequency 

scales. Given previous findings (Fujiwara et al., 2019; Wiltshire et al., 2019), the nature of the 

task (Wiltshire et al., 2019) and the fact that mouse movements are composed of fast 

movement executions and motor pauses (Calcagnì et al., 2017), I expect coordination 

particularly on smaller time scales to be more important as compared to coordination at larger 

time scales. Here it is crucial to demonstrate that coordination occurs beyond pure chance 

(Moulder, Boker, Ramseyer, & Tschacher, 2018; Palumbo et al., 2016). This is done by 

creating a surrogate data set, described in the method section. Accordingly, I advance the 

following hypothesis (H):  

 H1: Mouse movement coordination is greater than chance. 

 Furthermore, I am interested in whether mouse movement coordination plays a 

functional role in shaping effective CPS. And if so, whether the phase of coordination is  
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essential in predicting successful CPS. Consequently, I pose the following research 

questions (RQ): 

 RQ1: Can mouse movement coordination predict team level performance? 

 RQ2: Is the phase of coordination associated with team level performance? 

 The hypothesis will be confirmed for those frequency scales where mean values of 

observed mouse movement coordination are significantly greater than surrogate coordination 

values (with 95% confidence). 

 The research questions will be answered based on the results of multiple linear 

regression analyses. RQ1 will be answered in the affirmative if mean coordination strength 

values of significant scales explain a significant amount of variance in dyadic CPS 

performance. RQ2 will be answered in the affirmative if mean coordination strength and 

phase values of significant scales explain a significant amount of variance in dyadic CPS 

performance (both with 95% confidence).   

Methods 

Experimental Setup 

 The data set I use originates from a larger study on team dynamics during a computer-

based CPS assignment (Wiltshire, 2015; Wiltshire et al., 2018, 2019). Data was collected in 

2014 and consists of mouse movement data files in text format. The files were extracted using 

RUI (Recording User Input), a keystroke and mouse move logger (see http://acs.ist.psu.edu/

projects/RUI/ for details). RUI is an unobtrusive application that records user actions and 

assigns timestamps to it. Thus, it is apt to provide valuable insights into human behavior 

(Hehman et al., 2015; Kukreja, Stevenson, & Ritter, 2006). 

Participants 

 In exchange for credits towards course requirements at a southeastern United States 

university, 84 undergraduate students voluntarily participated in the experiment. The 

prerequisites for participation were general video game experience using mouse and 

keyboard, no prior history of seizures, no prior experience with the CPS assessment 

(Moonbase Alpha simulation, NASA, 2011) and no prior acquaintance. Twelve teams were 

excluded from the analysis because at least one of the participants barely used the computer 

mouse, but instead, predominantly used the keyboard to accomplish the task. This resulted in 

a total of 60 participants (22 female, Mage = 19.5 years, range 18-28 years; ≈ 68% White, 13% 

Asian, 8% Hispanic, 7% Black and 3% Other) comprising 30 dyadic teams of which 47% 

were mixed gender, 40% male and 13% female. 

http://acs.ist.psu.edu/projects/RUI/
http://acs.ist.psu.edu/projects/RUI/
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Materials and Task 

 The two collaborating individuals sat on their desks facing each other with two 

desktop computers placed slightly aside. The keyboard and mouse were placed on a tray 

attached to the desk. This setup enabled the dyad to perform the mission while being able to 

communicate with each other naturally. Cursor speed was captured using default settings of 

the Moonbase Alpha simulation. 

 The Moonbase Alpha game is a complex collaborative problem-solving task. It places 

individuals in a scenario where a meteorite strike damages critical parts of the life support 

system of the lunar base they are settled. The goal is to fully restore oxygen on the moon base 

by collaboratively fixing and/or replacing the damaged elements (such as solar panels, power 

cables, the life support system itself) within 25 minutes or less. To do so, they can use a 

variety of equipment and tools, but individuals are also bound to constraints. For example, 

they can hold and handle only one object at a time. Hence, collaboration and coordinated 

endeavors significantly enhance task progress. Although there are no precise guidelines for 

how to successfully complete the assignment within the given timeframe, some strategies are 

superior to others (NASA, 2011).   

Procedure 

 After arriving at the laboratory, participants were informed about the nature of the 

experiment and invited to introduce themselves to each other. They gave informed consent 

and filled in a biographic survey. 

 A short tutorial covering the basics of the simulation was given to all participants and 

their understanding was tested with a quick 10-item multiple-choice knowledge assessment. 

The content for the tutorial was derived from the Moonbase Alpha instruction manual 

(NASA, 2011). 

 Before starting the game, participants were reminded of the essential role of 

collaboration for successful completion of the task. A short video introduced the problem and 

assignment (i.e., the lunar base was destroyed by a meteorite and oxygen must be restored in 

less than 25 minutes) before participants started. The game was finished either when the time 

has expired or when oxygen was fully restored (100%), whichever came first. 

 To conclude the experiment, participants were debriefed and filled in a research 

evaluation form. 

CPS Performance 

 CPS performance was assessed by a rescaled combination of total time spent to 

complete the task (0-25 minutes) and the percentage of oxygen restored (0-100%). The total 
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time spent to complete the task (in seconds) was rescaled into a range of 0-100 with the 

following formula: 100*(MaxObservedTime/ObservedTime)/Range, where 1500 seconds was 

the max observed time and the range was 488. Thus, shorter times result in higher values. 

These values were added to the total amount of oxygen restored (in percentage) and divided 

by two to obtain values back on a 0-100 scale. 

 The fastest team to complete the task finished after 16.25 minutes, the mean time to 

complete the task was 23.94 minutes (SD = 2.11 minutes, range = 8.75 minutes). 

Analytic Strategy 

Preprocessing 

 Data was processed using R Studio (R Core Team, 2017) and as a first step, I subset 

the raw log data into mouse movements only by removing all keyboard entries from the logs. 

I plotted the time series for visualization and to detect possible oddities. Figure 1 shows three 

different mouse movement trajectories over the course of the task. 
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Figure 1: Individual Mouse Movement Trajectories with Mouse Cursor X- and Y- Positions in Pixels 

on the x- and y-axes, Respectively. 

 

 Second, I transformed the time series of the x, y mouse movement screen coordinates 

into time series of inter-point distances for each participant by using the following formula: 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒((𝑥𝑡, 𝑦𝑡), (𝑥𝑡−1, 𝑦𝑡−1)) =  √(𝑥𝑡 − 𝑥𝑡−1)2 +  (𝑦𝑡 − 𝑦𝑡−1)2    . 

 The resulting interpoint distance values correspond to the general, time-localized 

mouse movement magnitude, i.e. the horizontal and vertical deviations in trajectories over 

time (Hehman et al., 2015). This is a common method to reduce dimensionality and distill a 

meaningful feature from multi-dimensional data (Davis et al., 2016; Paxton & Dale, 2013). 
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The lag variables (xt-1 and yt-1 in the formula above) between consecutive observations was 

calculated by applying the Lag function of the Hmisc package (Harrell, 2020), and I removed 

the first entries of each time series as they do not have valid lag values (see Appendix A for 

an example excerpt of a data frame). 

 Figure 2 shows an example of the movement magnitude of collaborating individuals 

throughout the task. On the x-axes is the time on task in seconds, on the y-axes the moved 

distance, i.e. movement magnitude, in pixels. The first example (A) shows the covarying 

signals over the whole course of completion time, the second (B) and third (C) examples 

show more zoomed in visualizations to demonstrate the covariation of mouse movement 

magnitudes in more detail.  

(A) Entire Time Series 

 

(B) Zoomed In Time Series From 200 to 400 Seconds 
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(C) Zoomed In Time Series From 1000 To 1150 Seconds 

Figure 2: Individual Mouse Movement Magnitudes of Collaborating Individuals in Dark Green and 

Yellow, Respectively, With Time on Task on the x-axes and Moved Distance on the y-axes. Entire (A) 

and Detailed Display (B and C) of One Team. 

 

 Previous research on mouse movement data facilitated a sampling rate of 36 Hz, 

which is a suitable frequency to examine quick changes of this rich source of data (Spivey et 

al., 2005). The method I employed (cross-wavelet transformation) requires two time series of 

the same length and a constant sampling rate (Issartel et al., 2015). Therefore, I created a new 

time series of conjoint action for each team, i.e. I removed the first few log entries where only 

one individual was active because the other team member did not yet start the task and the last 

few log entries where one individual stopped performing the task already. Using the interp1 

function of the pracma package (Borchers, 2019), I up-sampled the time series of the newly 

obtained length by 36 observations per second, i.e. 36 Hz. This method returns linearly 

interpolated values of the movement magnitude data at the evenly spaced time steps of the 

new time series I created previously. Thus, two mouse movement magnitude time series with 

identical time steps for each team (one for each individual) are obtained. Linear interpolation 

has been applied in numerous human movement studies and is straightforward to calculate 

and interpret (Long, 2016). Chanel et al. (2013), for example, linearly interpolated gaze 

position data to further examine eye movement coupling. The gaze trajectories share similar 

characteristics to the mouse movement trajectories in this paper. 
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 To compare the interpolated time series to the original ones, I plotted both signals to 

validate whether they looked good or if deviations occurred (see Appendix B for an example). 

Linearly interpolated values are estimates along the linear path between known values. As 

illustrated in the example visualization (Appendix B) towards the end of the task (at around 

1700 seconds), the interpolated values suggest mean movement magnitude values in between 

no and very high movement magnitudes of the original time series. Thus, the interpolated 

values may indicate mouse movement before it actually occurred in the unevenly spaced data.  

Given that, other interpolation methods such as inverse-distance weighting (IDW) might 

appear more suitable for this kind of data. However, IDW like any other interpolation method 

does not come without limitations. In calculating interpolated values, IDW draws more 

weight from closer locations. However, the weight needs to be determined a priori and 

remains constant, disregarding the spatial pattern of the original time series. As movement 

magnitude time series do not show a constant distance decay but rather large local variability 

(as can be seen in Appendix B), IDW might even produce less accurate interpolated values 

than the linear method (Lu & Wong, 2008). Furthermore, the values of my time series are 

closely spaced so the number of consecutive values to be estimated by interpolation is 

typically small. For this case, Long (2016) showed that linear interpolation performs identical 

or even better than more sophisticated interpolation methods. Hence, I chose linear 

interpolation. 

Surrogate Data Set 

 I generated a surrogate data set by random permutation of each of the original time 

series using the permute function of the gtools package (Warnes, Bolker, & Lumley, 2020). 

This method eliminates any temporal connection between observations while preserving the 

characteristics of the distribution. Hence, this data set of shuffled time series represents 

uncorrelated noise and serves as null hypothesis of no time dependency when testing for 

Hypothesis 1 (Lancaster, Iatsenko, Pidde, Ticcinelli, & Stefanovska, 2018; Moulder et al., 

2018). Various different surrogate methods associated with different null hypotheses exist 

(Cazelles, Cazelles, & Chavez, 2013; Lancaster et al., 2018). When beginning to assess 

interpersonal coupling, however, random permutation is very useful and suggested to start 

with to see whether the data set is suitable for further analysis (Lancaster et al., 2018; 

Moulder et al., 2018). Superior to testing coordination above and beyond no coordination, the 

associated null hypothesis allows to test for significant coordination above and beyond 

random chance (Moulder et al., 2018). Furthermore, this method has been employed in recent 

studies on synchrony (Louwerse et al., 2012; Wiltshire et al., 2019). 
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Cross-Wavelet Coherence 

 To analyze the time series data, I applied the cross-wavelet transformation method by 

utilizing the wtc function of the biwavelet package (Gouhier, Grinsted, & Simko, 2019). This 

method is suitable for largely unstructured data (Issartel et al., 2015) and has successfully 

been used in recent research to study CPS processes (Miles et al., 2017; Wiltshire et al., 

2019). Wavelet transformation does not require any hypothesis about the nature of the time 

series and decomposes them into different time-frequency scales, which allows one to analyze 

different levels, i.e. frequencies, of time series independently (Issartel et al., 2015). Although 

traditional methods such as Fourier transformation, including adapted versions, can model 

relations in time, they fail to capture the dynamic, i.e. time-varying, nature of collaborative 

interaction. The biggest advantage of wavelet transformation as opposed to traditional 

methods is that it provides high precision in both the frequency as well as the time domain 

(Issartel et al., 2015; Skoura, 2019).  

 The application of the wtc function allows one to measure the similarity and 

convergence of timing between time series, i.e. coherence and relative phase (RP) at different 

frequencies. Frequency refers to the rate of oscillations per second and - when using the 

Morlet wavelet - is inversely related to the scale. In this case, scale and period are identical 

and refer to the duration of time of one cycle or oscillation (Cazelles et al., 2008). The smaller 

the scale (or period), the higher the frequency and the larger the scale, the lower the 

frequency. Mouse movements on smaller scales, hence, are fast movements with a high 

frequency. 

 Coherence indicates the relationship strength between two time series. Values lie 

between zero and one and can be interpreted similar to a cross-correlation ranging from 

no (= 0) to perfect (= 1) congruence. However, using simple cross-correlation to indicate the 

relationship strength between mouse movement time series could lead to false conclusions. In 

general, time series data derived from studies on human perception and performance is non-

stationary. It tends to be highly autocorrelated with varying mean and variance values, thus 

violating the assumption of independent and identically distributed values which parametric 

tests require (Dean & Dunsmuir, 2016). As opposed to cross-correlation, coherence values are 

robust to this kind of data and thus superior (Dean & Dunsmuir, 2016; Issartel et al., 2015). 

 The relative phase is a relational variable that determines transitions and quantifies 

potential time lags between two series. RP values lie between 0° (“in-phase”) and 180° (“anti-

phase”) and summarize the relations between spatial and temporal information. Therefore, 

they express critical facets of team behavior (Issartel et al., 2015; Skoura, 2019).  
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 I applied the wtc function utilizing the Morlet mother wavelet with 100 Monte Carlo 

randomizations, all other arguments were on default options (see Gouhier et al., 2019). For 

behavioral data, Issartel et al. (2015) suggest the Morlet as a mother wavelet. This practice 

finds continued support and is frequently applied in human movement studies (Fujiwara et al., 

2019; Issartel et al., 2015; Issartel, Marin, Gaillot, Bardainne, & Cadopi, 2006; Schmidt, Nie, 

Franco, & Richardson, 2014; Wiltshire et al., 2019). As opposed to other mother functions, 

the Morlet function allows to extract relative phase values in addition to coherence values, 

which is essential in quantifying signal interaction (Issartel et al., 2015, 2006) and 

furthermore is required to answer RQ2. To my best knowledge, this is the only mother 

function applied to movement magnitude data (i.e. interpoint distance time series). As in the 

present research, in all these data, values range from zero (no movement) to the maximum 

movement magnitude (Fujiwara et al., 2019; Schmidt et al., 2014; Wiltshire et al., 2019). 

 The wavelet and cross-wavelet power spectra are automatically computed bias-

corrected (Gouhier et al., 2019) as described in Veleda, Montagne, and Araujo (2012). As I 

compare the power of time series to noise from 100 Monte Carlo simulations (used to 

calculate surrogate coherence values), instantaneous power is reliable. The calculated 

coherence values are robust as well, as 100 Monte Carlo simulations and bias-corrected power 

spectra were used for the analysis. The step size of the wavelet was 0.0278, and zero padding 

was applied to reduce edge effects.  

 Based on previous findings on the occurrence of coordination in CPS (Fujiwara et al., 

2019; Khoramshahi, Shukla, Raffard, Bardy, & Billard, 2016; Wiltshire et al., 2019), I 

extracted the average coherence and RP values from the frequencies at .25 seconds (s), .5s, 1s, 

3s, 9s, 18s, 36s, 60s, and 180s, respectively. However, as mentioned above and in accordance 

with Wiltshire et al. (2019), I expect coordination on smaller scales to be most meaningful in 

predicting CPS performance. The frequency scales were converted into the time domain by 

multiplying them by the sampling rate of 36 Hz and dividing them by 60 (for seconds in a 

minute). 

Coordination Beyond Chance 

 To examine H1 (if coordination is greater than chance), I compared the average 

coherence values of dyadic real and surrogate data with a paired sample t-test at each of the 

nine frequencies mentioned above. Coherence values of the surrogate data series are generally 

considered to denote coordination expected due to pure chance (Moulder et al., 2018; 

Wiltshire et al., 2019). Therefore, the surrogate data set serves as H0 when testing for 

Hypothesis 1 (Moulder et al., 2018; Palumbo et al., 2016). 



MOUSE MOVEMENT COUPLING IN CPS   20 

 

The Association between Coordination and Performance  

 To answer the two research questions, I was planning to perform two multiple linear 

regression analyses with dyadic performance as the dependent variable. 

 For RQ1 (whether team coordination can predict performance), coherence values of 

the significant frequency scales (where coordination is found higher than chance with 95% 

confidence) were entered in the model as independent variables. 

 To answer RQ2 (whether the form of coordination is associated with performance), the 

RP values of frequencies found predictive of performance in the former analysis were planned 

on being entered as independent variables in addition to coherence values. However, as none 

of the four coherence values were found significantly associated with CPS performance, this 

last step of analysis was omitted.  

Commonality Analysis 

 Previous research indicates that cross-wavelet coherence values of different 

frequencies in dyadic interactions are highly correlated (Fujiwara et al., 2019). Standardized 

(beta) coefficients indicate the relative importance of individual predictors when they are 

uncorrelated. However, when predictor variables are correlated, beta weights cannot 

disentangle the effects of the predictors on the outcome from the deviations of predictor 

variables, but cofound them (Nimon & Oswald, 2013). Hence, to avoid biased results and 

address the issue of multicollinearity, Fujiwara et al. (2019) conducted a commonality 

analysis with the coherence values obtained from cross-wavelet transformation. This method 

decomposes the effects of coherence on dyadic performance into the unique contributions of 

coordination at each frequency. It can identify the presence, location and extent of 

multicollinearity and also suppression (Nimon, Lewis, Kane, & Haynes, 2008) and thus is 

useful to enhance the interpretation potential of regression results (Kraha, Turner, Nimon, 

Zientek, & Henson, 2012). I adopted this approach by implementing the 

commonalityCoefficients function of the yhat package (Nimon, Oswald, & Roberts, 2020) in 

order to isolate the distinct frequencies which may ultimately relate to performance. This 

function partitions the total variance explained (R²) into variance unique to each predictor and 

variance shared between each combination of predictors. The unique coefficients or effects 

are the squared semi-partial correlations between predictor and outcome and hence indicate 

how much variance is uniquely accounted for by this predictor. The common variance 

describes the variance common to a predictor set (Nimon & Oswald, 2013). For a detailed 

description of the computation see (Nimon & Oswald, 2013).  
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Post hoc Power Spectrum Analysis 

 Using the wt function of the biwavelet package (Gouhier et al., 2019), I computed the 

primary power spectra of individual mouse movement time series. The corresponding plots 

(see Appendix C) allow to analyze where there is power in a given frequency band for 

individual signals by plotting the power in both time (x-axes) and frequency (y-axes) domain. 

The figures in Appendix C show higher concentration of power (warmer colors) at larger 

scales, but also significant power concentrations at small and very small scales (at the top of 

the plots) – these are surrounded by black lines. The semi-transparent area underneath the 

white line marks the cone of influence (COI) area. This region may be affected by edge 

effects (Gouhier et al., 2019).  

Results 

Hypothesis Testing 

 Coordination of mouse movements among collaborating individuals in the CPS task 

was hypothesized to be greater than chance (Hypothesis 1). To test for this hypothesis, I 

compared the observed coherence values from the real data set to the coherence values of the 

surrogate data set. Interestingly, considerable mouse movement coordination occurred at 

larger rather than smaller scales, contrary to my expectations. Results suggest that observed 

coherence was significantly greater than chance at the frequency scales of 18s (t(29) = 3.35, p 

= .002, 95% CI[0.02, 0.1]), 36s (t(29) = 5.88, p < .001, 95% CI[0.14, 0.29]), 60s (t(29) = 7.4, 

p < .001, 95% CI[0.24, 0.42]) and 180s (t(29) = 3.16, p = .004, 95% CI[0.09, 0.42]). The 

mean differences are also significant after Bonferroni correction for multiple comparisons. 

Means and standard deviations for all frequency scales can be found in Table 1. 

Table 1 

Paired Sample t-tests Comparing Observed to Surrogate Coherence Values, 

Including Means and Standard Deviations  

Frequency Scale Observed Coherence Surrogate Coherence 

.25s 0.20 (.04) 0.25 (.02) 

.5s 0.22 (.04) 0.28 (.02) 

1s 0.24 (.04) 0.29 (.02) 

3s 0.29 (.04) 0.31 (.03) 

9s 0.33 (.06) 0.31 (.04) 

18s 0.4 (.09)** 0.34 (.06) 

36s 0.52 (.16)** 0.30 (.06) 

60s 0.63 (.21)** 0.30 (.11) 

180s 0.75 (.28)** 0.49 (.25) 

Note. * indicates p < .05. ** indicates p < .01. 
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 The four coherence values which were significantly higher than expected due to 

chance (18s, 36s, 60s, 180s) were entered in a multiple linear regression model to predict CPS 

performance (RQ1). Figure 3 contrasts observed mouse movement coordination of a low and 

a high performing team and thereby aims to illustrate the relationship between coherence and 

performance.  

 Figure 3: Wavelet Coherence of One Low and One High Performing Team with Time in Seconds on 

the x-axes and the Scale on the y-axes 

 The x-axes show the time on task, and each unit represents 1/36 of a second. The scale 

on the y-axes shows the period, i.e. scale, which can be converted into time domain in 

seconds by multiplying it with 36 and dividing it by 60. The regions with warmer colors (red) 

are those where individuals exhibit high coordination, whereas regions with colder colors 

(blue) are those where time series indicate less or no coordination. The black arrows represent 
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relative phase values. When pointing to the right, they indicate in-phase mouse movement, 

whereas arrows pointing to the left indicate anti-phase mouse movement. One can see that the 

high performing team (in the bottom plot) exhibits visibly higher coordination as opposed to 

the low performing team (in the top plot). Hence, these visuals suggest that the high 

performing team coordinated their mouse movements more than the low performing team did. 

 Although the observed coherence of all four scales accounted for 27% of variability on 

CPS performance (R² = 27.28%, adj. R² = 15.65%), this effect was not significant (F(4, 25) = 

2.35, p = .08). Whereas coherence at 18s and 60s showed a positive trend towards CPS 

performance (b = 177.87, p = .10, 95% CI[-38.99, 394.72], and b = 106.72 , p = .07, 95% CI[-

10.00, 223.45], respectively), coherence at 36s and 180s indicated tendencies towards poorer 

performance (b = -134.76, p = .14, 95% CI[-315.29, 45.76], and b = -15.92, p = .53, 95% CI[-

67.99, 36.15], respectively). The regression results can be found in Table 2. 

Table 2 

Regression Results Using Dyadic CPS Performance as the Outcome 

 Unstandardized 

Coefficients 

Standardized 

Coefficients 

  
95% CI for b 

 b SE β t p LL UL 

(Constant) -29.59 25.65  -1.15 .26 -82.43 23.25 

18s 177.87 105.29 .55 1.69 .10 -38.99 394.72 

36s -134.76 87.65 - .72 -1.54 .14 -315.29 45.76 

60s 106.72 56.68 .76 1.88 .07 -10.00 223.45 

180s -15.92 25.28 - .15 -0.63 .53 -67.99 36.15 

  

 In addition to the multiple linear regression analysis, a commonality analysis was 

conducted. Commonality coefficients are more specific than regression weights and are 

uniquely able to detect suppressing predictor variables (Nimon et al., 2008; Nimon & Oswald, 

2013). The results of the commonality analysis revealed that coherence at 60s had the highest 

unique contribution to the regression effect (10.3%), followed by 18s (8.3%) and 36s (6.9%). 

Coordination at 180s had the smallest unique contribution (1.2%) and was involved with only 

3.4% of the explained variance in total. The unique, common and total contribution of each 

frequency to the regression effect are displayed in Table 3. 
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Table 3 

Unique, Common and Total Effects of the IVs 

 Unique Common Total 

18s 0.083 0.071 0.154 

36s 0.069 0.036 0.104 

60s 0.103 0.072 0.175 

180s 0.012 0.022 0.034 

Note. The total is the sum of unique and common 

contribution. 

 The commonality coefficients and total variance explained by all possible sets of 

predictors can be found in Table 4. Although there was little common variance in the 

dependent variable shared across all four predictor variables (8.9%), multicollinearity 

between the three frequencies at 18s, 36s, and 60s accounted for half of the regression effect 

(50.11%). 

Table 4 

Commonality Coefficients 

 Coefficient % Total 

Unique to 18s 0.0830 30.43 

Unique to 36s 0.0688 25.20 

Unique to 60s 0.1031 37.81 

Unique to 180s 0.0115 4.23 

Common to 18s, and 36s -0.0616 -22.58 

Common to 18s, and 60s -0.0249 -9.12 

Common to 36s, and 60s -0.0661 -24.23 

Common to 18s, and 180s 0.0018 0.67 

Common to 36s, and 180s -0.0101 -3.72 

Common to 60s, and 180s 0.0037 1.36 

Common to 18s, 36s, and 60s 0.1367 50.11 

Common to 18s, 60s, and 180s 0.0046 1.70 

Common to 18s, 60s, and 180s -0.0099 -3.62 

Common to 36s, 60s, and 180s 0.0077 2.81 

Common to 18s, 36s, 60s, and 180s 0.0244 8.94 

Total 0.2728 100.00 

 Beyond that, commonality analysis allows one to examine the amount of variance 

explained by suppression (Kraha et al., 2012). Suppressors are independent variables which 

increase predictive power, i.e. heighten the estimated regression coefficients, of one or more 

other predictors by suppressing their irrelevant variance when added into a regression model 

(Hsu & Chiang, 2020). These effects are indicated by negative commonality coefficients and 

should augment the interpretation of regression coefficients (Kraha et al., 2012). 

 Here, coherence at 36s might act as a suppressor and impact the regression effects of 
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the frequency scales at 18s and 60s. If the 36s scale was excluded as a predictor, coherence at 

18s would predict only 2.1% of performance and coherence at 60s only 3.7%. 

Discussion 

 By observing mouse movement coupling in a computer-based CPS task, the central 

aim of this research was to explore whether mouse movement coordination plays a functional 

role in effective CPS. By examining interpersonal coordination of a yet unobserved modality 

in computer-based CPS, I sought to extend and thereby complement knowledge gained from 

previous research (Amon et al., 2019; Chanel et al., 2013; Malmberg, Haataja, Seppänen, & 

Järvelä, 2019; Wiltshire, 2015; Wiltshire et al., 2018, 2019). Studying mouse movement 

trajectories builds upon to the recommendation to employ automated measures in order to 

advance the studies of CPS (Graesser et al., 2018; Papangelis et al., 2019), as this rich source 

of data poses significant theoretical and practical potential (Calcagnì et al., 2017; Farina, 

2020; Freeman et al., 2011). 

 In support with Hypothesis 1, I found coordination at 18s, 36s, 60s, and 180s 

significantly greater than coordination expected due to pure chance. This is in line with 

previous findings (Amon et al., 2019; Davis et al., 2016; Fujiwara et al., 2019; Wiltshire et al., 

2019) and provides further empirical evidence for the multi-scale nature of interpersonal 

coordination in complex CPS. Regarding RQ1, coordination did not significantly predict 

dyadic CPS performance, although the results suggest trends. Subsequently, I did not continue 

the analysis to answer RQ2 (whether the form of coordination related to CPS performance).  

Contributions 

 This study contributes to existing literature in several ways. First, beyond theoretical 

conceptualization of team dynamics, empirical studies investigating team dynamics in 

ecologically valid tasks are necessary to advance our understanding of complex CPS 

(Graesser et al., 2018; Stoeffler et al., 2020). The present research does not only address this 

demand by attempting to demonstrate the interactional dynamics in complex CPS. Drawing 

on dynamical systems theory, this study also helps to overcome the limitations of linear 

approaches which are still frequently employed despite the fact that team processes are widely 

acknowledged as being complex and non-linear (Ramos-Villagrasa et al., 2018).  

 By observing mouse movements, I approached a thus far unobserved modality in CPS. 

This is the first empirical evidence reported for mouse movements coordination to occur 

beyond chance and at multiple frequency scales in computer-based CPS. However, the 

methodology I used can be applied to any modality (Issartel et al., 2015). Future research 

should continue to utilize cross-wavelet transformation to measure interindividual coupling, 



MOUSE MOVEMENT COUPLING IN CPS   26 

 

as it has proven to be a valuable method to examine collaboration dynamics. Comparing the 

resulting cross-wavelet plots from this study to those of other authors examining human 

movement magnitude coordination (Schmidt et al., 2014; Wiltshire et al., 2019), the time 

series show commensurable patterns. This confirms the choice of parameters selected for the 

present analysis. 

 Previous empirical research often relied on basic collaboration tasks such as physical 

object manipulation (Davis et al., 2016; Paxton & Dale, 2013) and/or subjective outcome 

measures (Chanel et al., 2013; Fujiwara et al., 2019) and hence does not adequately reflect the 

complex task environment organizational teams face. Certainly, valuable insights are gained 

from these studies, though it remains questionable whether these findings can be generalized 

concerning real-world settings. The authentic design of this study allowed me to examine 

unobtrusively gained behavioral data and its relation to an objective measure of CPS 

performance. In team research, ecological validity is important to advance our understanding 

of genuine team dynamics (Cooke et al., 2013; Graesser et al., 2018; Palumbo et al., 2016; 

Stoeffler et al., 2020). 

 Furthermore, this study aims to reveal cognitive team processes by observing 

behavioral patterns. Even though evidence indicates a relationship between low-level, 

embodied movement and high-level team cognition in collaborative tasks (Farina, 2020), 

behavioral coordination has not yet been employed to assess CPS skills and performance 

(Graesser et al., 2017; Stoeffler et al., 2020; Wiltshire et al., 2019). Explicitly studying 

embodied team cognition is a promising paradigm to deliver informed insights about CPS 

processes (Cooke et al., 2013; Graesser et al., 2017). This study may stimulate subsequent 

research to better understand how cognition flows into observable action such as mouse 

movements (Freeman et al., 2011) and how and why these in turn may facilitate effective 

CPS. 

General Discussion 

 Although the findings support mouse movement coordination in CPS to occur beyond 

chance, those frequencies found significant were rather the larger time scales than the smaller 

ones. This diverges from previous research, which found decreased bodily movement 

coordination with increasing sizes of time scales (Fujiwara et al., 2019; Wiltshire et al., 2019). 

Given the characteristics of mouse movement trajectories (Calcagnì et al., 2017) as well as the 

task environment, I presumed mouse movement coupling to be significant particularly at 

smaller time scales, too.  
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 One reason for this divergent finding could be that coordination at smaller scales was 

omitted due to an insufficient amount of frequencies extracted at these smaller scales. Indeed, 

post hoc visual inspection of the individual wavelet transform as well as coherence plots 

indicates significant power (see Appendix C) and quite some coordination to occur at smaller 

scales (see Figure 1). As mentioned before, this study is the first to examine mouse movement 

coupling in a CPS setting and I based the extracted frequency scales on previous findings 

(Fujiwara et al., 2019; Paxton & Dale, 2013; Wiltshire et al., 2019). However, suitable for the 

observed modality in these studies, viz. bodily movement, the authors facilitated a 

considerably lower sampling rate of 8 Hz. As mouse movements exhibit relatively rapid 

changes and a high spatial sensitivity, I applied a sampling rate of 36 Hz to fit this type of 

data (Spivey et al., 2005). Compared to the high sampling rate, however, the amount of 

frequency bands I extracted is small and it would be interesting to obtain more values, 

particularly at smaller time scales. This might reveal a more complete picture of coordination 

at these frequency bands.  

 Furthermore, random shuffling destroys low-frequency characteristics more than high-

frequency characteristics, so it eliminates potential coherence more for larger scales, i.e. lower 

frequencies (Bandrivskyy, Bernjak, Mcclintock, & Stefanovska, 2004; Lancaster et al., 2018).  

This may be an explanation for the unexpected pattern of significant observed coherence 

scales, namely lower observed coherence values compared to the surrogate values at the 

smaller scales and significant larger scales. 

 The lack of frequency bands at smaller time scales may also be an explanation for the 

non-significant findings of the relationship between mouse movement coordination and CPS 

performance (RQ1). Furthermore, previous research which guided the formulation of RQ1 

mostly related aggregated or overall levels of coordination to an outcome measure (Abney et 

al., 2015; Chanel et al., 2013; Davis et al., 2016; Miles et al., 2017), whereas this study aimed 

to relate coordination at specific frequencies to dyadic task performance. Maybe the overall 

level of mouse movement coordination does relate to performance and would show similar 

findings to those of prior studies (Chanel et al., 2013; Davis et al., 2016; Miles et al., 2017).  

 Another reason for the non-significant effects of coordination on performance might 

be that factors of heterogeneity (e.g., personality traits, or race; Vicaria & Dickens, 2016) 

over-rule or moderate the statistical effects of mouse movement coupling on effective 

collaboration. Wiltshire et al. (2018), for example, observed task knowledge as well as the 

gender composition of teams to impact CPS performance in the data set I utilize in this 

present study. The benefits of coordination for team level outcomes were found to be 
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constrained by interindividual and contextual factors in previous research (Abney et al., 2015; 

Louwerse et al., 2012; Miles et al., 2017; Vicaria & Dickens, 2016) and perhaps, this applies 

to the context of mouse movements in computer-based CPS as well. 

 However, results do suggest trends regarding RQ1. Coordination at two frequencies 

inclines positively (18s and 60s), and at two frequencies negatively (36s and 180s) towards 

CPS performance. This conforms with earlier findings indicating that coordination at 

particular time scales seems to inhibit CPS performance rather than enhancing it (Abney et 

al., 2015; Wiltshire et al., 2019). Nevertheless, commonality analysis revealed that the 

frequencies which showed positive trends towards performance had the highest contributions 

to the regression effect, albeit it was non-significant. The most relevant frequency was the 

scale at 60s, analogous to the results of Wiltshire et al. (2019). Furthermore, commonality 

analysis suggests that the frequencies which exhibit negative trends towards CPS performance 

may act as suppressor variables. 

 As I could not predict CPS performance from frequency-specific coherence values, the 

question whether mouse movement coordination at these larger scales is relevant for effective 

collaboration in the Moonbase Alpha task remains. However, considering the maximum 

duration of 25 minutes in the present collaboration task, coordination on the largest scale 

(180s) might not unfold within this stretch of time. The small beta (β = - .15) and unique 

contribution (1.2%) of mouse movement coordination at the 180s scale also indicate that this 

scale might be less relevant for the given task. Nonetheless, this study found evidence for the 

occurrence of coupling on those scales and perhaps future research can relate it to processes 

yet unknown. 

 In accordance with Fujiwara et al. (2019), multicollinearity accounted for a 

considerable amount of variance in the regression effect, indicating that coordination 

measures at different frequencies are highly correlated (Kraha et al., 2012). 

Limitations and Future Directions 

 This study’s findings need to be considered in the light of their limitations, which 

future research might resolve. Although cross-wavelet transformation is a suitable method to 

study interpersonal coordination in CPS, it is not without limitations. That is, the frequency 

scales one extracts are chosen semi-arbitrarily. This is the suggested practice (Issartel et al., 

2015) and I did choose the scales to my best knowledge as explained above. Notwithstanding, 

visual inspection of the wtc plots indicates that the examination of more high frequency scales 

may reveal further important insights. This was supported by a post hoc visual inspection of 

primary wavelet power spectra (see Appendix C), which suggests power at smaller scales of 
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the original wavelet transforms as well. Unlike in this study, future research should analyze 

power spectra beforehand to make more informed choices about the frequency scales to be 

extracted. This can prevent overseeing relevant frequencies, which probably happened in the 

present work.  

 Therefore, an essential next step will be to extract coherence and RP values at smaller 

scales and examine their relationship to team outcomes. As the evident dynamics of 

behavioral data depend on the frequency scale that is being observed (Zapata-Fonseca et al., 

2016), examining more time scales will contribute to characterize the mouse movement 

dynamics of teams in CPS better. However, the post hoc inspection of individual wavelet 

transform spectra (see Appendix C) confirms that the overall observed pattern of results of 

this study are plausible. 

 Should coordination of mouse movements at different frequency scales be found to 

relate to CPS performance, the predictive role of the form of coordination should be 

investigated as well. Concerning RQ2, as none of the coherence values could significantly 

predict CPS performance, this was not further investigated in this paper. Nonetheless, it is to 

mention that previous findings suggest that temporal proximity, i.e. in-phase movement, can 

trivialize the predictive power of coordination strength in primitive physical collaboration 

tasks (Abney et al., 2015) and hence, might be more important than the magnitude of 

coordination itself. Whether this is applicable to complex CPS settings too, should be subject 

to further investigation. Unlike in this paper, relative phase values (which indicate temporal 

latency in coordination) could be examined independent of the predictive ability of the 

coherence values in future research.  

 As argued in the methods, a randomly shuffled surrogate data set is appropriate to test 

whether the observed data is time dependent and hence suitable for further analysis (Lancaster 

et al., 2018; Moulder et al., 2018). However, a large variety of different surrogate methods 

exist, and each of them is associated with different null hypotheses. Therefore, the choice of 

surrogate method strongly affects the statistical evaluation of periodic patterns and, hence, the 

conclusions made about a certain time series (Cazelles et al., 2013; Lancaster et al., 2018). 

Surrogate methods other than random shuffling, such as inter-subject (i.e., participant 

shuffling/random pairs) or time-shifted surrogates, are more robust and might be even better 

suited to test for the occurrence of meaningful interpersonal coupling. Future research, hence, 

should apply different and more complex null-hypotheses to compare their results to each 

other (Lancaster et al., 2018; Moulder et al., 2018).  
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 Another limitation of this study might be that the keyboard entries were simply 

removed from the logs if they were not predominantly used by participants. Maybe future 

research can either prevent usage of the keyboard entirely when examining mouse movement 

coordination or find a way to incorporate the keyboard entries into the analysis. 

 Mouse movement trajectories do have a high spatial sensitivity, but they can capture 

movements only in two dimensions, not three. The range of movements measured is 

comparatively small and restricted through the table surface (Freeman et al., 2011; Spivey et 

al., 2005) which is disadvantageous as compared to other modalities such as speech, which is 

less constrained. Another point to mention is that yet, no agreed standards on facilitating 

mouse movement trajectories exist, even though Schoemann et al. (2019) demonstrated that 

even minor experimental design features of mouse movement observations can affect the 

outcomes in significant ways. The flexible application is among the advantages of the 

employment of mouse movement trajectories, but future research should precisely choose and 

report subtle design features such as cursor speed and response requirements. This may help 

systematic knowledge accumulation and hence to fully exploit the potential of this method in 

studying team cognition (Schoemann et al., 2019). 

 Besides that, mouse movement trajectories proved to be an effective alternative to 

labor-intensive manual coding of interactions in studying interpersonal coordination, as data 

logging is automated. Likewise, their application poses interesting opportunities for real-time 

behavioral tracking and intervention to optimize team processes (Graesser et al., 2018; 

Stoeffler et al., 2020). 

 However, each measure reflects a unique process and collecting several modalities 

leads to greater specificity of the processes related to each of them. Previous research which 

included multiple modality measures in one study (Amon et al., 2019; Chanel et al., 2013) 

showed that this promotes more comprehensive insights into the functional role of 

interpersonal coordination in CPS. 

 As this study confirmed interpersonal coordination across different frequency bands to 

be highly correlated (Fujiwara et al., 2019), commonality analysis may prove valuable in 

future research as well, to avoid biased regression results and interpretation (Kraha et al., 

2012). Moreover, future research may consider to report on and control for interindividual and 

contextual sources of heterogeneity when examining coupling in CPS as they were found to 

contribute to collaborative outcomes (Abney et al., 2015; Miles et al., 2017; Wiltshire et al., 

2018). Unfortunately, despite these discoveries, most studies fail to provide information on 

potentially interesting and important moderating factors (Vicaria & Dickens, 2016). 
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 Although the ecological validity of this study is high, future research can observe 

teams consisting of triads or more individuals and include collaborating with a computer to 

approximate real-world work settings even closer (Amon et al., 2019; Papangelis et al., 2019). 

 We are only beginning to understand the role of motor coupling in CPS. Yet, the role 

of mouse movement coordination and whether it has a primary influence on shaping 

functional CPS outcomes, remains subject to further investigation. Future research should 

continue to investigate how mouse movement coupling emerges, and at which time scales 

coordination is critical for effective CPS. 

Conclusion 

 To conclude, my study suggests that mouse movements of individuals in a computer-

based CPS task are coordinated beyond chance. Results could not support a relationship 

between mouse movement coordination and dyadic CPS performance. Nonetheless, 

examining mouse movement coupling in complex CPS remains a promising subject to further 

investigation. To gain a comprehensive understanding on the functionality mouse movement 

coordination may have in CPS, more emphasis should be placed on particularly smaller time 

scales, i.e. high frequencies. 

 Dynamical systems theory proved to fit well in collaboration research and provided 

valuable insights as it is apt to depict the multi-fractal nature of team processes in CPS. 

Hence, the paradigm should be further adopted and applied also to other contexts to better 

understand team dynamics in complex environments. 

 CPS certainly is a challenging construct to measure, but it poses great potential for 

learning, training and performance of teams likewise (Graesser et al., 2018; Stoeffler et al., 

2020). Collaboration is of pivotal strategic importance for business and society and recent 

developments in technology significantly changed and enabled computer-supported 

collaboration (Fiore et al., 2018; Kristensen & Kijl, 2010; Papangelis et al., 2019). 

 Consequently, organizations will benefit from systematic, structured investment in 

tools and methods which help to understand and assess computer-based CPS. Only if we 

begin to comprehend collaborative processes better, technology can be designed to improve 

connectivity and efficiency. Training and support for shaping efficient collaboration can be 

provided so teams ultimately are enabled to exceed their current level of competence and 

hence fully exploit their potential (Graesser et al., 2018; Kobbe et al., 2007; Kristensen & 

Kijl, 2010; Papangelis et al., 2019). 
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Appendices 

Appendix A 

Excerpt of a Data Frame After Calculating All Relevant Variables 

Elapsed 

Time 
X Y X lag Y lag 

xdiff-

sqrt 

ydiff-

sqrt 

Moved 

Distance 

0.449 153 487 169 484 256 9 16.278821 

0.450 142 487 153 487 121 0 11.000000 

0.451 131 492 142 487 121 25 12.083046 

0.452 115 525 131 492 256 1089 36.674242 

0.453 115 533 115 525 0 64 8.000000 

0.455 115 568 115 533 0 1225 35.000000 

0.456 115 595 115 568 0 729 27.000000 

0.501 115 613 115 595 0 324 18.000000 

0.505 134 667 115 613 361 2916 57.245087 

0.552 161 724 134 667 729 3249 63.071388 

0.553 210 823 161 724 2401 9801 110.462663 

0.555 215 831 210 823 25 64 9.433981 

0.641 234 861 215 831 361 900 35.510562 

0.642 277 926 234 861 1849 4225 77.935871 

0.644 301 950 277 926 576 576 33.941125 

0.645 317 969 301 950 256 361 24.839485 

0.677 325 971 317 969 64 4 8.246211 

0.721 344 974 325 971 361 9 19.235384 

0.722 368 974 344 974 576 0 24.000000 

0.723 382 974 368 974 196 0 14.000000 

0.724 398 974 382 974 256 0 16.000000 

0.781 406 974 398 974 64 0 8.000000 

0.783 409 974 406 974 9 0 3.000000 

0.846 414 980 409 974 25 36 7.810250 

0.847 441 1012 414 980 729 1024 41.868843 

0.848 446 1017 441 1012 25 25 7.071068 

0.910 446 1020 446 1017 0 9 3.000000 

0.913 446 1023 446 1020 0 9 3.000000 

0.915 449 1023 446 1023 9 0 3.000000 

0.944 452 1023 449 1023 9 0 3.000000 

0.955 465 1023 452 1023 169 0 13.000000 

1.011 476 1023 465 1023 121 0 11.000000 

1.013 484 1017 476 1023 64 36 10.000000 

1.014 487 1015 484 1017 9 4 3.605551 

1.047 490 1015 487 1015 9 0 3.000000 

1.058 495 1009 490 1015 25 36 7.810250 

1.126 498 1009 495 1009 9 0 3.000000 
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Appendix B 

Visualization of the Original (Unevenly Spaced) Data in Grey and the Interpolated Time-

Series in Red, with Time on Task in Seconds on the x-axis and Movement Magnitude in 

Pixels on the y-axis 
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Appendix C 

Primary Wavelet Power Spectra of Three Individual Mouse Movement Signal Time Series 

with Time on Task on the x-axes and Period/Scale on the y-axes
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