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A regressive approach to emotion prediction
applied to EEG signals from passive elicited
emotion

Joey de Kruis

This paper addresses the two major EEG emotion prediction challenges regarding a scarcity in
emotion prediction research that use passive emotion elicitation stimuli and the implementation
of a proper theoretical framework for emotion. By using passively elicited emotion from the
reading of sentences, emotion has been regressed based on a two-dimensional framework con-
taining the dimensions ’arousal’ and ’valence’. Two setups of EEG features have been evaluated
on three regression models, where setup 1 contains the differential asymmetry of the Fractal
Dimensions, Statistical features, and Band power features. Setup 2 contains the differential
asymmetry of statistical features from the Intrinsic Mode Functions extracted with the Hilbert
Huang Transform. A basic linear regression model has been employed in combination with a
K-Nearest Neighbor Regressor and a Support Vector Regressor. Results for arousal indicate a
better performance of setup 2 with an Mean Absolute Error (MAE) of .605. Valence results
show similar predictions for both setups resulting in an MAE of .695. This study shows positive
results regarding the possibilities of applying a regressive approach on passive elicited EEG data
but emphasizes more research is necessary to obtain practically reliable predictions.

1. Introduction

The effect of emotion in marketing communication with branding has been distinct
since the early zeros. Lynch and De Chernatony (2004) stated that companies need
to communicate their emotional brand values more effectively. Subsequently, a lot
of research has been done into understanding human emotions, and ultimately into
emotion prediction (also referred to as emotion recognition and affective computing).
Accurate predictions of emotions in marketing communication could eventually lead to
more effective marketing campaigns.

A prominent way to predict human emotion is by using electroencephalograms
(EEG) signals. In the past 20 years, research has shown that EEG signals are quite
valuable features for emotion prediction (Musha et al. 1997; Takahashi et al. 2004).
Specifically, EEG is a cheap and relatively easy method for obtaining physiological
responses that are suited for EEG emotion prediction (Soroush et al. 2017).

The majority of EEG emotion prediction research experiments are benefiting from
methods with active emotion elicitation stimuli (i.e. stimuli that are actively provoking
emotion as video clips, music, pictures) to create clear signals (Soroush et al. 2018).
Although these are methods that are excellently provoking a reaction inside the brain,
there is a real issue regarding ecological validity while using these stimuli (Hu et al.
2019). In the real world, emotion is more passive and comes in lower intensive forms.
To meet the ecological validity, more passive emotion elicitation stimuli need to be used
as texts and conversations. Considering the scarcity in research for predicting emotion
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with EEG data using passive emotion elicitation stimuli (i.e. stimuli that are passively
provoking emotion like reading and talking), this paper proposes to investigate several
predictive algorithms to find out the best way to predict emotion when reading a
sentence.

In order to predict emotion, it needs to be properly conceptualized. Because of the
complexity of human emotion, scientists disagree on how to conceptualize emotion
resulting in different perspectives. The discrete perspective and the dimensional per-
spective are the most common perspectives used for conceptualizing emotion (Mauss
and Robinson 2009). The discrete perspectives categorizes emotional states (e.g. ’sad’,
’happy’) based on experience, physiology, and behaviour (Panksepp 2007). The dimen-
sional perspective uses continuous dimensions to organize emotional response (Mauss
and Robinson 2009). The most common dimensions in the dimensional perspective are
arousal, valence, and approach-avoidance (Mauss and Robinson 2009).

Consequently, a major challenge with emotion prediction is the adoption of a con-
sistent and proper theoretical framework for emotion (Hu et al. 2019). Although various
researchers use a framework based on the discrete perspective, EEG and neuroimaging
studies, indicate there is a link between specific brain regions and the dimensional
measures (Mauss and Robinson 2009). More specifically, there is convincing evidence
that the frontal EEG asymmetry is considerably sensitive to the approach-avoidance
dimension (Davidson 1999). Considering the limited availability of approach-avoidance
labels, the proposed study applies the dimensional perspective with the use of the
dimensions arousal and valence that are widely available. With the use of gathered
EEG data from reading sentences, the interactive emotional effect between the noun
and the adjective is utilized to investigate the research question "In what way can we
best predict the arousal and valence for the adjective-noun combination when reading
a sentence, by using EEG data?" (Nicenboim, Vasishth, and Rösler 2020; Lüdtke and
Jacobs 2015).

2. Related Work

Due to its complexity and still limited understanding, emotion prediction is a field
with many different preprocessing techniques, features, models, concepts, and emotion
elicitation methods. An overview of some recent studies on emotion prediction and
their different characteristics is shown in Table 1. In section 2.1, several feature extraction
methods are reviewed that are relevant for the current study. Section 2.2 will focus on
reviewing different models and a channel selection method.

Although there is a scarcity of research done with passive emotion elicitation meth-
ods, one study proposes a new channel selection method applied by using EEG data
from recalling past events (Ansari-Asl, Chanel, and Pun 2007). With the use of conver-
sations, Ansari-Asl, Chanel, and Pun (2007) did not actively provoke emotion. On the
contrary, the study created an environment where people were free to talk about events
that passively elicits emotion (Ansari-Asl, Chanel, and Pun 2007). Ansari-Asl, Chanel,
and Pun (2007) proposed synchronization likelihood as a channel selection method.
Interesting results are shown with a 5.2% average increase in accuracy when selecting
significant channels (Ansari-Asl, Chanel, and Pun 2007). However, the predictions were
made based on the discrete model. Consequently, more research is necessary to evaluate
a similar experimental setup integrating the dimensional perspective. Additionally,
there is limited information on if and how speech and reading are connected inside
our brains when it comes to emotion. Although the study done by Ansari-Asl, Chanel,
and Pun (2007) shows promising results when it comes to classifying emotion with
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Table 1
An overview of recent emotion prediction studies and its different aspects.

Perspective features Models Source

Dimensional HHT, HOC, STFT RF, SVM Ackermann et al. (2016)
Combination FD, BP SVR Lan et al. (2016)

Statistical
Discrete STFT, PSD KNN, DBN Zheng and Lu (2015)

SVR, LR
Discrete HHT SVM Zong and Chetouani (2009)

Dimensional HHT SVR Uzun, Yildirim, and Yildirim (2012)
Discrete Statistics, BP ANN, KNN Bhatti et al. (2016)

Wavelet SVM

Note. HHT: Hilbert Huang Transform; HOC: Higher Order Crossings; STFT: Short Time
Fourier Transform; FD: Fractal dimensions; PSD: Power Spectral Density; BP: Band pow-
ers; RF: Regression forest; SVM: Support Vector Machine; SVR: Support Vector Regressor;
LR: Linear regressor; DBN: Deep belief network.

the passive emotion elicitation method, the current study is applying the dimensional
perspective rather than the discrete perspective.

The majority of emotion prediction research applies the discrete perspective for
conceptualizing emotion. Some studies do apply the dimensional perspective, but turn
it into a classification task by predicting the corner of the matrix (e.g. high arousal
and low valence) like done in a study by Ackermann et al. (2016). Although previous
knowledge can be taken into account when applying a classification method, it is still
unclear what values match with which emotion in the matrix. As shown in Figure 1,
different emotions can be found in each edge of the two-dimensional space, which
complicates it more when there are more than 2 dimensions (Yu et al. 2016). Ackermann
et al. (2016) selected three different emotions to be predicted in a three-dimensional
space, resulting in wide assumptions of what that area in the three-dimensional space
represents. All things considered, a combination of both perspectives gives uncertainty
and can lead to a bias in what actually is being predicted.

2.1 Feature extraction

Lan et al. (2016) attempted to predict valence (controlling for arousal and dominance)
based on the International Affective Digital Sounds (IADS) dataset. Lan et al. (2016)
picked a regressive approach, so they could reduce the number of training resources
that are beneficial for a continuous emotion prediction application. In their experiment,
they selected three different sets of features: fractal dimensions (FD), statistical features
(STAT), and band power (POWER) features (Lan et al. 2016). Noteworthy is that all
feature parameters were extracted by applying a sliding window on the EEG channels,
varying from 32 steps (93.75% overlap) to 512 steps (0% overlap) (Lan et al. 2016).
Results show that applying a 50% overlap or more brings the best performance (Lan
et al. 2016). Additionally, FD features, mean of absolute values of first-order differences,
mean of absolute values of second-order differences, and band powers are found to be
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significantly correlated to valence, achieving a mean absolute error (MAE) of .74 (Lan
et al. 2016). In the current study, a similar setup of features is proposed excluding the
overlap applied during feature extraction. Due to the significant difference of the study
setup, where Lan et al. (2016) uses 60 seconds signals compared to the 2 seconds used in
the current study, it can be assumed that applying an overlap in the current study will
have a weaker effect and is therefore not implemented.

Another continuous EEG emotion prediction study achieved worse MAE results
predicting emotion, based on EEG and other physiological signals (e.g. blood volume
pulse, respiration, skin temperature, etc.) (Soleymani et al. 2011). Soleymani et al. (2011)
also extracted the band power features using Welsch’s method. Additionally, the lateral-
ization (the tendency of neurons to be active in one side of the brain) of several left-right
pairs were extracted using the power spectral density (PSD) that were computed for the
band powers. The study achieved an MAE for valence of 1.59 purely based on EEG,
and an MAE for arousal of 1.53 based on EEG, although the best results came from EEG
features combined with music video features. Even though the achieved results were
not significantly better as compared to Lan et al. (2016), the use of lateralization is an
interesting approach and is used more often in similar studies focused on classification
(Jenke, Peer, and Buss 2014). One particular study is interesting regarding its review
on many popular features extraction methods used for EEG emotion prediction (Jenke,
Peer, and Buss 2014). Jenke, Peer, and Buss (2014) collected EEG data in an experiment
using The International Affective Picture System (IAPS) dataset to elicit emotion. All
features proposed were computed and several feature selection algorithms were applied
to investigate the most frequently used features (Jenke, Peer, and Buss 2014). Results

Figure 1
A conceptual arousal-valence matrix based on the dimensional model.

Note. This figure shows how different emotions can be found inside a conceptual two-dimensional model for
arousal and valence.
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confirm that rational asymmetry features, which is the relative difference in the signal
of different EEG channels (based on the lateralization concept), performs accurately in
the study setup of Jenke, Peer, and Buss (2014). Additionally, the study favors the use of
’advanced’ methods like the Hilbert Huang Transform (HHT), Higher Order Crossings
(HOC), and Higher Order Spectrum (HOS).

Uzun, Yildirim, and Yildirim (2012) applied HHT on the International Affec-
tive Digital Sounds (IADS) dataset by using the dimensional perspective (containing
arousal/activation, valence, dominance) as a concept for emotion. Empirical mode
decomposition (EMD), the first part of the HHT, is used to create 5 Intrinsic Mode
Functions (IMFs) per signal (Uzun, Yildirim, and Yildirim 2012). Afterwards, 4 statistics
are computed over signal in combination with 7 POWER features, resulting in an
average arousal MAE of .65 (SD = .09) and an average valence MAE of 1.11 (SD =
.13) (Uzun, Yildirim, and Yildirim 2012). Although valence error was not significantly
lower than the baseline created in Lan et al. (2016), arousal error did achieve a relatively
good performance compared to what was predicted with Soleymani et al. (2011). Other
classification oriented studies have similarly investigated the predictive results coming
from the HHT. Zong and Chetouani (2009) likewise applied HHT on their data of the
University of Augsburg, comparing it with baseline methods. Zong and Chetouani
(2009) concluded that HHT outperforms traditional methods, favoring based on the
result of a ’Fission’ HHT approach. Due to the accurate performance of the HHT in the
study of Uzun, Yildirim, and Yildirim (2012) and in other emotion prediction studies,
HHT will be used as a second setup to evaluate the best way to predict emotion using
passive emotion elicitation methods.

2.2 Models and channels

Notable results have been made across different combinations of study setups using the
classification model K-Nearest Neighbor (KNN), and the Support Vector Machine(SVM)
(Soroush et al. 2018; Hassanien et al. 2018). A study evaluating different algorithms us-
ing the IAPS database indicates that KNN predicts best out of a set of five classifiers (i.e.
KNN, SVM, Bayesian Network, Regression Tree, Artificial Neural Networks) (Sohaib
et al. 2013). A comparative study using self-reported emotional states confirms accurate
classification performance of KNN, although it displays the competitive performance of
other classifiers where SVM and Regression Tree (RT) were outperforming KNN (Rani
et al. 2006). Based on that similar regression studies applied an SVR as done in the
study Lan et al. (2016) and Uzun, Yildirim, and Yildirim (2012), the proposed study
will explore results obtained from the SVR. Additionally, the regression equivalent of
the KNN model (K-Nearest Neighbor Regressor, KNNR) will be used to compare the
effectiveness among different models, due to KNN’s significant results in classification
studies. In order to investigate the predictive differences between the models, a basic
linear regression model will also be applied to test whether a minimum model would
already be effective.

At last, the EEG channels that are picked for an emotion prediction study are of
importance. Oftentimes EEG studies are dealing with many signal samples and different
channels, which creates a heavy dataset requiring a lot of processing time or power and
storage. In emotion prediction there is also a strong impact from the way emotion has
been elicited. Different emotion elicitation stimuli process different information, which
makes the selection of EEG channels a more complicated challenge (Ansari-Asl, Chanel,
and Pun 2007). Even though there is still not enough knowledge about which channels
work best for which elicitation method, some studies are attempting to find channel
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selection methods that can possibly identify relevant channels. Ansari-Asl, Chanel, and
Pun (2007) proposed synchronization likelihood (SL) as a channel selection method
using MATLAB, showing that a dataset of 60 channels could be reduced to only 5
channels with just slightly reducing accuracy performance. Ansari-Asl, Chanel, and Pun
(2007) concluded that frontal channels F3, F4, and AFz performed best, maximizing the
SL values. A more recent review on channel selection methods for emotion prediction
concluded similarly that the frontal pairs of channels give better results compared to
other channel combinations. Due to the absence of support for SL in the used processing
languages, this method will not be used in the current work. However, the current
research will make use of the frontal pairs of channels that seem to perform accurately
in emotion prediction study.

3. Experimental Setup

In order to explore the best way to predict arousal and valence with a passive emotion
elicitation method, two advanced feature extraction setups are proposed. To evaluate
the performance and the impact of several models, 2 top-performing models in the
EEG emotion prediction domain are utilized in combination with a basic linear re-
gression model. In section 3.1 more information is given on the EEG data and the
emotion labels. Section 3.2 describes the preprocessing methods and the two feature
extraction setups that are proposed. Section 3.3 elaborates on the decision in which
models and channels are being picked. Lastly, in section 3.4 the evaluation metrics
are proposed that fit the current study. All code, models, and scripts can be found in
https://github.com/Joeydekruis/emotion-prediction.

Figure 2
Processed EEG signal example

Note. This figure is an example of a randomly picked EEG channel of a randomly picked EEG signal that has
been pre-processed.
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3.1 Data

This study adopts the EEG data obtained by Nicenboim, Vasishth, and Rösler (2020)
that investigated the effect of gender during the pre-activation of the noun. EEG data
of 120 respondents were collected while they were reading German sentences. The
dataset can be found at https://osf.io/ut7xq/files/ under the "data" folder and the
"eeguana_preproc_clean" folder. In contrary to the research of Nicenboim, Vasishth,
and Rösler (2020), the current study is focused on the emotion obtained from passive
elicitation methods. To realize this, the variables constraining (i.e. whether the context
is forced to make the continuation predictable) and completion (i.e. whether the sen-
tence meets the predicted continuation) are being controlled and the dataset is filtered
on ’non-constraining’ and ’not-completed’. Additionally, the dataset is filtered on the
regions of the adjective and the noun, due to their interactive emotional effect. An
example of a randomly picked EEG signal for a randomly picked channel is showed
in Figure 2.

The consecutive data necessary for this study are the emotional labels. As described
in the introduction, arousal and valence are used according to the dimensional model.
A recent study constructed a dataset containing 350.000 German words rated on the
attributes of abstractness-concreteness, arousal, valence, and imageability (Köper and
Im Walde 2016). The ratings were based on a 10 point scale (0 - 10) and range from
1.780 - 6.273 for arousal and 3.081 - 7.402 for valence. The study used the unsupervised
Turney and Littman algorithm to classify the words based on several prominent studies
(Vo et al. 2009; Lahl et al. 2009; Kanske and Kotz 2010) as training data (Köper and
Im Walde 2016). With the purpose of regressing arousal and valence for single sentences,
the emotional values are matched with every word in every sentence and are averaged
over both regions (i.e. adjective and the noun). If there was no exact match for a word,
a smaller word up to 3 character differences at the end of the word is matched. This

Figure 3
The probability distribution of arousal and valence.

Note. A plot showing the probability distribution for arousal and valence, coming from the kernal density
estimation
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was necessary due to the different forms of German words (e.g. past and present). A
coverage of 100% of all words was achieved. The probability distribution of both arousal
and valence is showed in Figure 3. As showed in Figure 3, both distributions differ from
each other. A Shapiro-Wilk test indicates a non-normal distribution for both arousal (F
= .99, p = .000) and valence (F = .99, p = .000) where arousal is skewed to the left with
.13 and valence is skewed to the right with -.22.

3.2 Preprocessing and feature extraction methods

(Nicenboim, Vasishth, and Rösler 2020) filtered EEG data applying a zero-phase band-
pass finite impulse response (FIR) filter combined with a pass band-edge frequencies of
.1 and 30 Hz. More in-depth is the width of transition band .10 and 7.50 Hz for low and
high edges. Additionally, Independent Component Analysis (ICA) has been applied
by Nicenboim, Vasishth, and Rösler (2020) using the FastICA algorithm to correct eye
movements. R package Tibble is used to combine all respondents and filter channels and
samples based on the variables picked (Müller and Wickham 2017). Python is used to
create a two-dimensional array consisting of all channels times the number of samples
present for the word (i.e. approximately 650). Furthermore, for each sentence, the EEG
data for the adjective and the noun are combined and the correct averaged label is added
to the sentence. All sentences containing just the noun, or just the adjective, have been
removed. Similarly, all sentences without a label have also been removed. The benefit
of averaging the labels over the sentence is that it will not lose the context of the 10-
point scale and with that, the study can still be compared to other studies. Two relevant
feature extraction setups are proposed in section 3.2.1 and in section 3.2.2.

3.2.1 Setup 1. The first feature extraction method is based on the emotion prediction
study attempting to predict valence (Lan et al. 2016). In the current study, fractal
dimensions (FD) , statistical features (STAT) and band power features (POWER) are
used. In the description of these features, it is to be mentioned that ξ(t) ∈ RT denotes the
time series vector of an EEG channel. Fractal dimensions is a time-domain feature used
for characterizing non-linear time series. Fractal dimensions can be applied in several
ways. According to (Jenke, Peer, and Buss 2014), the Higuchi algorithm is recommended
for FD, because it comes close to the theoretical FD values. The Higuchi algorithm is
implemented in the current work, where the finite time series ξ (t), t = 1,...,T is rewritten
as (Liu and Sourina 2013):

{
ξ(m), ξ(m+ k), ..., ξ

(
m+

[
T −m
k

]
· k
)}

, (1)

where [·] denotes the Gauss’ notation and where m and k are both integers and
respectively represent the initial time and the time interval. A time interval that is equal
to k, gives k sets of new time series. K sets are

Lm(k) =
T − 1[
T−m
k

]
K2

[
T−m
k

]∑
i=1

∣∣ξ(m+ ik)− ξ(m+ (i− 1)k
∣∣. (2)
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Table 2
An overview of the statistics and its functions that are applied.

Statistic Function

1 Mean µξ =
1
T

∑T
t=1 ξ(t)

2 Standard deviation
√

1
T

∑T
t=1(ξ(t)− (µξ)2

3 1st difference 1T − 1
∑T−1
t=1

∣∣ξ(t+ 1)− ξ(t)
∣∣

4 1st difference normalized δξ =
δξ
σξ

5 2nd difference γξ =
1

T−1
∑T−2
t=1

∣∣ξ(t+ 2)− ξ(t)
∣∣

6 2nd difference normalized γξ =
γξ
δξ

After calculating K sets, the average value of K sets, denoted as
〈
L(k)

〉
, compre-

hends of the following relationship with the fractal dimension FDξ(Jenke, Peer, and
Buss 2014; Liu and Sourina 2013):

〈
L(k)

〉
∝ k−FDξ. (3)

The fractal dimension dimH is obtained from the logarithmic difference between
t and and the associated k (Liu and Sourina 2013). The Higuchi algorithm is applied
using the pyeeg library (Bao 2018).

Additionally, the other time-domain features are the 6 statistics that are applied
using the Numpy and Scipy package in Python (Oliphant 2006; Virtanen et al. 2020). An
overview of the 6 statistics used is to be found in table 2. These 6 statistics are picked
based on the recommendation of Jenke, Peer, and Buss (2014). Several other studies
similarly used these statistics in their emotion prediction study and on top of that, good
results were showed in the feature selection experiment showing significantly better
results compared to most other techniques (Jenke, Peer, and Buss 2014).

In contrary to the other 2 features, the band power features are frequency domain
features. The band power features are extracted with the power spectra density (PSD)
using Welch’s method and are applied using Scipy (Virtanen et al. 2020). Welch’s
method is chosen over other methods, due to the results seen in other emotion pre-
diction studies (Soleymani et al. 2015; Jenke, Peer, and Buss 2014). Band powers delta
(.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) are selected and computed in
accordance with the similar emotion prediction study Lan et al. (2016).

3.2.2 Setup 2. In the second setup, features are extracted using a time-frequency domain
feature which is the Hilbert Huang Transform (HHT). Python library pyhht is being
used for the computation of the HHT (Deshpande 2015). This feature extraction method
is fairly new and consists of two major steps: Empirical Mode Decomposition (EMD)
and Hilbert Spectral Analysis (HSA) (Uzun, Yildirim, and Yildirim 2012). The first step
EMD decomposes the EEG signal into a certain amount of Intrinsic Mode Functions
(IMFs), which can be compared to other transformations as the fourier transform and
the wavelet transform (Huang et al. 1998). An IMF represents the oscillation mode that
is embedded in the data and is defined as a function where the number of extrema and
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the number of zero-crossings differ at most by one (Huang et al. 1998; Uzun, Yildirim,
and Yildirim 2012). Additionally, the mean values of the envelopes that are formed by
the local minima and local maxima are equal to zero (Uzun, Yildirim, and Yildirim 2012).
After the EMD process, the signal is represented by a n amount of IMFs:

ξ(t) =
∑
i=1

nIMFi + rn, (4)

where rn equals the residue obtained from EMD for every IMF (Huang et al. 1998).
After the decomposition, the second step, the Hilbert transform, is applied on every
IMF to obtain the analytical signal (x̂(t) which can be defined by its amplitude (θ) and
its instantaneous frequency (Uzun, Yildirim, and Yildirim 2012). The instantaneous fre-
quency, w(t) can be computed by taking the derivative of an analytical signal using the
phase function (Uzun, Yildirim, and Yildirim 2012). The following equation describes
the Hilbert transform:

ξ̃(t) = ξ(t) + ξ̂(t) = G(t)ejθ(t), (5)

where

ξ̂ = Hx(t) =
1

π
P

∫ ∞
−∞

g(τ)

t− τ
dτ, (6)

and

w(t) =
dθ(t)

dt
. (7)

Figure 4
IMFs plot example

Note. A plot showing an example of all IMFs extracted from a signal, including the signal and the residu.
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Combined results of equations 5, 6, and 7 give a 3D representation of the time-
frequency-energy distribution, also known as the Hilbert Huang Spectrum (HHS)
(Uzun, Yildirim, and Yildirim 2012). The current study does not apply the second step
of the HHT. In line with Uzun, Yildirim, and Yildirim (2012), an arbitrary number of
IMFs are created of which a set of statistics has been applied. Unlike what has been
done in Uzun, Yildirim, and Yildirim (2012), 7 IMFs has been created on which zero
paddings has been applied when the algorithm was not able to find a number of 7
IMFs. Additionally, statistics from Table 2 are being used to extract the features from the
IMFs

3.2.3 Differential Asymmetry. Supporting evidence has shown that the emotions can
be found in EEG by looking at the hemispherical asymmetry of channels (Jenke, Peer,
and Buss 2014). Due to this phenomenon, the lateralization has been computed by fo-
cussing on the differences between the left hemispherical and the right hemispherical. A
feature extraction review shows several methods for computing the asymmetry (Jenke,
Peer, and Buss 2014). The current study applies differential asymmetry, which is the
most common method for calculating differences in signal. Differential asymmetry is
applied by Lan et al. (2016), which is the study on which setup 1 is formed. To stay
in line with the feature setup researched by Lan et al. (2016), this work implements
differential asymmetry in setup 1, and to control for lateralization it is applied in setup
2. Differential asymmetry can be computed by:

δx = xl − xr, (8)

where xl includes all EEG channels on the left hemisphere and where xr includes all
EEG channels on the right hemisphere.

3.3 Models and channels

As discussed in relevant work, two classifiers (KNN, SVM) have shown significant
performance in emotion prediction research. Additionally, the regression version of the
SVM, the SVR, has proven to be suited for predictions according to the dimensional
model. The SVR is used in this work as one of the models for regressing emotion, where
the regularization parameter (C) and the epsilon parameter are used as hyperparame-
ters. These parameters are optimized using steps of .2 - .5. Additionally, the KNNR is
used, derived from the KNN algorithms. The KNNR algorithm is optimized using the
number of neighbors variable taking steps of 1. In order to evaluate how these more
advanced models perform compared to a basic model, the LR model is applied as a
third model. No optimization is done with the LR model. The dataset is split into a 70%
training set and a 30% test set with a random state of 42. During processing, the Numpy
library was used to get the data in the right shape (Oliphant 2006). All other models are
applied using the scikit-learn library in Python (Pedregosa et al. 2011).

All channels selected are shown in Figure 6. A wide selection of channels is taken
in line with the study done by Lan et al. (2016). It is chosen to drop several channels
that are located the furthest away from the frontal channels. As concluded by Ansari-
Asl, Chanel, and Pun (2007), the frontal channels are most relevant for EEG emotion
prediction, whereas the relevance of southern channels is significantly less. The chan-
nels picked are controlled and are constant for both experiment setups. As described in
section 3.2, the differential asymmetry is calculated by taking the difference of the left
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hemisphere and the right hemisphere. The following pairs (left - right) are selected: FP1
- FP2, F3 - F2, F7 - F8, FC5 - FC6, FC1 - FC2, C3 - C4, CP5 - CP6, CP1 - CP2. Two channels,
Fpz and Fz, have been excluded from the differential asymmetry calculation, because
of their central position. Although these channels are centered, they are highly relevant
due to their frontal position.

3.4 Evaluation

Due to the appliance of the dimensional model, other evaluation metrics are needed
for regression rather than classification metrics. In line with other emotion regressing
studies, MAE was selected for evaluating the performance of the model. The MAE
metric provides a strong indication of the absolute error between the prediction and
real value. Considering the 10 point scale rating of the labels, MAE brings a better
interpretation compared to a metric as Root Mean Squared Error (RMSE). Several other
studies applying the dimensional approach are using MAE, allowing a comparison
between studies. Additionally, another evaluation metric is used to evaluate the models
from multiple perspectives. Unfortunately, most evaluation metrics are not suited for
this kind of task. EEG data is very noisy and the predictions are therefore not spot-
on accurate. In common evaluation metrics as Mean Squared Error and R2, small
error stacks up quickly while outliers skew the performance to their side. Haag et al.
(2004) proposed a new evaluation metric called bandwidth accuracy, which considers
the sample as correct (1) when it is within a certain bandwidth of β. It considers the

Figure 5
EEG channel selection

Note. An illustration showing all EEG channels. Channels with a red border, are selected in the current study.
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Table 3
An overview of MAE and Bandwidth results for predicting arousal using the two different
setups and three algorithms.

Setup 1 Setup 2

MAE Bandwidth MAE Bandwidth

Linear Regressor (LR) 0.626 0.429 0.718 0.407
K-Nearest Neighbor Regressor (KNNR) 0.627 0.442 0.605 0.457
Support Vector Regressor (SVR) 0.617 0.446 0.611 0.456

Note. KNNR parameters: N = 20 and 17; Weights = Uniform and Distance.
SVR parameters: C = 0.6 and 0.6; E = 0.05 and 0.1.

prediction as incorrect (0) when the prediction is not within the range of the bandwidth.
The bandwidth of formulated as:

Abandwidth =
1

N

∑
i

I(ŷi, yi), (9)

where

I(ŷi, yi) =

{
0 if ‖ŷi − yi‖ < β(ymax − ymin)
1, else

, (10)

where ‖ · ‖ denotes the Euclidean distance. The advantage of this evaluation metric
is the interpretability. Compared to accuracy for classification, it is a straightforward
metric to understand how much test labels are accurately predicted. Additionally, the
bandwidth metric normalizes the scale of the bandwidth by applying the max and min.
In this way, it is comparable between studies with different data. MAE is in contrary
to bandwidth, not easily interpret if the distribution of the labels is uncertain or not
clearly mentioned (Jenke, Peer, and Buss 2013). Although there is no domain-width
compliance of using the bandwidth, this metric will be used upon recommendation
of the evaluation metric review Jenke, Peer, and Buss (2013). A threshold bandwidth
of 10% is chosen for this work, in line with how it is carried out in Jenke, Peer, and
Buss (2013). As indicated in the related work, an MAE of .65 for arousal and an MAE
of .74 for valence is the baseline. The MAE is computed using the Scikit-learn library in
Python, while the bandwidth accuracy is computed using a custom function (Pedregosa
et al. 2011). All graphs are plotted using the Matplotlib library and the Seaborn library
(Hunter 2007; Waskom et al. 2017).

4. Results

Three models are applied to the training dataset using two different experimental
setups. Prediction results in terms of MAE and bandwidth are displayed in Table 3
for arousal and in Table 4 for valence. When it comes to the dimension ’arousal’ and
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Table 4
An overview of MAE and Bandwidth results for predicting valence using the two different
setups and three algorithms.

Setup 1 Setup 2

MAE Bandwidth MAE Bandwidth

Linear Regressor (LR) 0.722 0.363 0.819 0.322
K-Nearest Neighbor Regressor (KNNR) 0.695 0.379 0.696 0.358
Support Vector Regressor (SVR) 0.721 0.381 0.717 0.349

Note. KNNR parameters: N = 25 and 17; Power = Euclidean distance and Manhatten
distance; Weights = Uniform and Distance.
SVR parameters: C = 3 and 0.8; E = 0.1 and 0.1.

experiment setup 1, relatively similar results are achieved across all three models. The
basic Linear Regression model performs just fractionally less compared to the more
advanced models. The best performance in this section is observed for the SVR model
achieving an MAE of .617 and a bandwidth accuracy of 44.6%. The parameters are set
at the optimal point of C = .6 and E = .05. In experiment setup 2 a notable difference can
be observed comparing the basic Linear Regression model with the advanced models.
Performance of advanced models KNNR and SVR are relatively close where KNNR
(N = 17, weights = "distance") performs best with an MAE of .605 and a bandwidth
accuracy of 45.7%.

Looking at the prediction results of valence, one model stands out compared to
the other models. In experiment section 1, the basic Linear Regression model performs
with an MAE of .722 similarly as to the SVR (C = 3, E = .1) model with an MAE of
.721. The KNNR model (N = 25) achieves the best MAE score with an MAE of .695.
However, the SVR (bandwidth accuracy of 38.1%) scores slightly better compared to
KNNR (bandwidth accuracy of 37.9%), when looking at the bandwidth accuracy. In
experiment setup 2, the valence performance of the basic Linear Regression model is
worse compared to the other advanced models. Similarly as to the arousal scores for
experiment setup 2, KNNR (N = 17) performs significantly better with an MAE of .696
and a bandwidth accuracy of 35.8% as compared to the SVR (C = .8, E = .1) with an MAE
of .717 and a bandwidth accuracy of 34.9%.

Comparing the different experiment setups for arousal, there is a difference between
both setups’ best performance. An independent t-test indicates the performance of ex-
periment setup 2 is significantly better compared to experiment setup 1, t(815) = 6.136, p
= .000. Looking more specifically at the results of the predictions in Figure 6, every sector
represents the percentage of correctly regressed labels according to the bandwidth per
bin. Figure 6 shows distinct results for the 3 bottom models. More specifically, KNNR-2
and SVR-1 perform relatively strong for labels in the third bin (arousal of 3-4) width a
respectively 57.3% and a 58.2% bandwidth accuracy. However, KNNR-1 is particularly
performing relatively strong in the fourth bin with a bandwidth accuracy of 57.1%. LR-2
has a bandwidth accuracy of 9.3% in the second bin, and a bandwidth accuracy of 2.4%
in the fifth bin making it the only model performing better than 0% in the second and
fourth bin.
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In contrary to results found for arousal, the best performing model in experiment
setup 1 and experiment setup 2 for valence achieve similar performance. An indepen-
dent t-test indicates it is to be concluded that no significant distinctiveness can be found
between the two setups for the KNNR model, t(815) = 1.575, p = .116. Figure 7 shows the
percentage correctly regressed labels according to the bandwidth for every model per
bin. Best performing models KNNR-1 and KNNR-2 achieve a bandwidth accuracy of
respectively 80.4% and 76.8% in the fourth bin (valence of 5-6). SVR-2 achieves a similar

Figure 6
Prediction heatmap for Arousal

Note. A heatmap overviewing which arousal predictions were accurately predicted for experiment setup 1
(model names that end with 1) and experimental setup 2 (model names that end with 2).

Figure 7
Prediction heatmap for Valence

Note. A heatmap overviewing which valence predictions were accurately predicted for experiment setup 1
(model names that end with 1) and experimental setup 2 (model names that end with 2)
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bandwidth in bin 4 with 74.2%, although other bins do not perform well enough to
achieve similar overall scores as KNNR-1 and KNNR-2. Notable results are predicted for
bin 3 and 5 with LR-2, achieving a bandwidth accuracy of 21.4% and 21.7%. However,
the bandwidth accuracy of the fourth bin is 52.2%, lowering the overall score of the
model.

A two-dimensional matrix is showed in Figure 10 comprehending predictions from
the best performing arousal model KNNR-2 and the best performing valence model
KNNR-1, compared with true values for arousal and valence. It is to be observed that the
predictions are centered at an arousal of around 4 and a valence of around 5.5, which is
close to the mean of the true labels that are predicted (arousal mean = 4.04, valence mean
= 5.44). To further analyze the impact of which features create a two-dimensional matrix

Figure 8
Correlation plot for arousal

Note. A plot indicating the correlations of arousal and valence with all features extracted in setup 1.

Figure 9
Correlation plot for Valence

Note. A plot indicating the correlations of arousal and valence with all features extracted in setup 2.
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as shown in Figure 10, correlations between emotion (arousal and valence) and all
features are extracted using Pearson’s r correlation. In Figure 8 and Figure 9 are showing
a plot visualizing a distribution of Pearson’s r correlations between arousal and valence,
and the features that are used. In Figure 8, it is to be noted that in the distribution
of setup 1, a significant part of the features (43.8% for arousal, 41.3% for valence) are
slightly or not correlated with emotion (-.01 - .01). The majority of features have a small
correlation, where 56.2% for arousal and 58.7% for valence have a correlation between
-.01 and -.1 or between .01 and .1. A similar distribution is observed for setup 2 wherein
percentages there are more small correlations. More specifically, with 60.4% and 59.7%
of the features for arousal and valence, a small correlation (between -.01 and -.1 or
between .01 and .1) is observed, which is significantly more features considering that
the second setup contains almost 4 times as many features as the first setup.

5. Discussion

Despite the considerable amount of progress that has been made in the emotion predic-
tion field, this study focuses on emotion prediction while tackling two major challenges
in the domain of EEG emotion prediction: Applying a passive emotion elicitation
method with extracting EEG signals; Adopting a proper theoretical framework for
emotion. As is well known in the EEG domain, EEG signals quite noisy and volatile.
It is therefore logical that strong emotion elicitation methods have been applied to
draw out strong emotional responses for analysis. Soleymani et al. (2011) introduced the
possibility of classifying emotion while applying a passive emotion elicitation method.

Figure 10
A comparison of predictions and true values

Note. A two-dimensional matrix showing predictions that are made, in orange, with the KNNR-2 model for
arousal and with the KNN-1 model for valence. True values are showed as blue "+" symbol.
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For this reason, emotion prediction for a similar emotion elicitation method based on
the regression approach is introduced.

Additionally, many different studies have applied the discrete perspective on emo-
tion, treating different emotions as unique combinations of physiology, experience, and
behavior. However, scientific evidence has shown that a dimensional perspective would
favor emotion prediction. As a consequence, several studies have applied a regression
approach creating an MAE baseline of .65 for arousal and an MAE of .75 for valence.
As shown in Table 3, the best performing model achieves an MAE of .605 for arousal,
improving the baseline score with .045. A significant difference in result is to be found
between the two setups, favoring setup 2 where the Hilbert Huang Transform has been
applied. Results in Table 4 show that the best performing model for valence achieves
an MAE score of .695, which is an MAE that is .045 lower than the baseline score for
valence. However, it is to be noted that the MAE can be biased due to the range of the
labels. Labels in have been computed by averaging emotion scores for the adjective and
for the noun, to predict the emotion of the sentence. Although the scores are based on
a 10-point scale, the range of arousal and valence might be smaller compared to other
studies, depending on their study setup. Therefore, the distribution of both arousal and
valence are displayed in Figure 3 for future studies to compare. As a consequence, a
new metric is implemented, bandwidth accuracy, to be used for emotion prediction
regression as is introduced in Haag et al. (2004). The threshold bandwidth that is applied
is 10%, based on how it is implemented in Jenke, Peer, and Buss (2013). However, there
is currently no consensus regarding what this threshold bandwidth should be in the
EEG emotion prediction domain. More future research should be done to investigate
what level of bandwidth threshold is suited for emotion prediction.

Furthermore, the current research investigated two major experiment setups that
were in line with two leading studies for emotion prediction that were built on the
regression/dimensional approach. In the first setup, statistical features, band powers,
and fractal dimensions were extracted from the EEG signals. Eventually, right hemi-
sphere channels were deducted from the left hemisphere channels, to calculate the
lateralization. Two channels, Fpz and Fz, have been excluded from this process. The
second setup applied a Hilbert Huang Transform method by calculating IMFS and
taking the statistical features of those IMFS. Similar to the first setup, the lateralization
has been calculated. A comparison between the models clearly shows a significant
difference for arousal, although for valence there is no significant difference. For arousal,
setup 2 would favor with a small improvement in metrics over setup 1.

Although the model performance was significantly better than baseline methods,
the performance does not allow it yet to be practically implemented in a business
application. As shown in Figure 10, predictions are centered around the mean, meaning
that sentences with a valence or arousal level around the mean would be more likely to
be predicted correctly. This kind of pattern is not suitable for a business application that
needs to give reliable predictions. An emotion prediction application for, for example,
a marketing communication campaign would require to have accurate predictions so
that it can benefit decision making. Therefore, more research is necessary to investigate
several other aspects of emotion prediction. One of these aspects would be the imple-
mentation of either self-reported emotion labels or collectively agreed labels coming
from reliable datasets as Vo et al. (2009). Additionally, more research is necessary to
understand which features combined with which channels are allowing better perfor-
mance.
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6. Conclusion

The current study introduces an EEG emotion prediction research using EEG signals
that are relatively passive elicited by reading German sentences. Additionally, the
current study proposes a regression approach based on the dimensional models, com-
prehending the dimensions ’arousal’ and ’valence’. Labels for arousal and valence per
sentence are retrieved by averaging the adjective and noun labels, retrieved from a
corpus created by Köper and Im Walde (2016). EEG signals have been processed with
a zero-phase band-pass FIR filter combined with a pass band-edge. Additionally, ICA
has been applied to correct for eye movements. Two different experiment setups are
proposed containing several different feature extraction methods. The first experiment
setup consists of a combination of FD features, STAT features, and POWER features. The
second setup consists of statistical features extracted from the Hilbert Huang Transform.
All features are computed using the differential asymmetry formula to obtain informa-
tion about the lateralization of the signals. Furthermore, performance on three models
(LR, KNNR, SVR) has been evaluated by looking at the metrics MAE and the relatively
new metric bandwidth accuracy.

The best performance for arousal is found in the KNNR model with experimental
setup 2. The KNNR model for setup 2 is found to be significantly better compared
to the best model in setup 1. The KNNR model for setup 2 achieved an MEA of .605
and a bandwidth accuracy of 45.7%, improving the MAE ’arousal’ baseline of .645. For
valence, similar results are found for setup 1 compared with setup 2, where the KNNR
model performs best in both setups with the best MAE of .695 and a bandwidth accuracy
of 37.9%, improving the MAE ’valence’ baseline of .75. Correlations between emotion
and features show us that the majority of features have a small correlation, although no
strong correlations are found. Quantitywise, more small correlations are found in setup
2.

It can be derived from these results that a passive emotion elicitation method can
be used for improving the ecological validity. Additionally, a regression approach for
emotion prediction has been recommended by the literature and shows improving per-
formance in the scarce studies that are available. The current work shows improvements
of that approach and introduces a new evaluation metric, bandwidth accuracy, to better
evaluate the regressive performance of emotion predictions. Although performance is
improving, there is quite some room for improvement. In order to practically imple-
ment emotion predictions in business applications such as a marketing communication
evaluation tool, predictions need to be more accurate. More research is necessary to
better understand emotion, the impact of features, and the impact of EEG channels.
Conclusively, an advanced feature extraction method such as the HHT is recommended
in opposition to a combination of FD, STAT, and POWER features. In addition, a KNNR
model is a popular model in emotion classification, and the regressing version, KNNR,
is also to be recommended for future EEG emotion prediction studies selecting the
regressive approach.
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