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Preface 

The basis for this study is a collaboration between the Elisabeth-Tweesteden Hospital in 

Tilburg and Tilburg University. The goal of this study is to give more insight into the prediction 

of mortality for hip fracture trauma patients. These insights might help to improve the 

evaluation of trauma care. The dataset I got to work with was certainly interesting and 

motivated me to work hard. In the end, I am rather pleased with the outcome of this study. I 

truly believe that this study yields some interesting results and conclusions.  

As I would not be able to achieve these results alone, I would like to thank my 

supervisors for their guidance, support, and sharing their knowledge with me. Especially 

Marijn van Wingerden and Nanne Jansen for providing feedback, giving advice, and just 

generally serving as a point of contact in this special time. Furthermore, I would like to thank 

my fellow students in our thesis committee. Particularly Lisa Janssen, for peer-reviewing my 

study on multiple occasions.  
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Abstract 

Trauma is one of the leading causes of death around the globe. Thus improving trauma care 

is extremely important. Improving trauma care starts with a systematic approach of 

evaluating it. In the Netherlands, this is done by collecting the data of trauma patients in the 

DTR, calculating a probability of survival for every individual using the TRISS model, and 

comparing the actual mortality by the expected mortality using the sum of the probabilities of 

survival (called the Standardized Mortality Ratio or SMR). This approach has its limitations. A 

hospital that has relatively more patients of a certain subset where the TRISS model 

structurally underpredict the survival probabilities, is prone to getting a poor evaluation. The 

hip fracture is such a subset and thus this study tries to create a better mortality prediction 

model for this subset using machine learning techniques when evaluating on SMR. 

  The results of this study show that mortality prediction with hip fracture patients could 

be improved and that using training data that closely represents the test set is the most 

important part of creating a model with a good SMR score. This supports the literature stating 

the importance of the observed cohort matching the reference group. Additionally, it shows 

that the use of variables does not matter that much when trying to optimize for SMR. A model 

that is biased enough, even to a point that its predictive abilities are heavily impaired, can, 

and will, still get a good SMR on a test set with similar properties. Thus raising the concerns 

about the TRISS model being biased to a point that its individual predictions are 

untrustworthy. This study provides arguments about this statement by showing the lack of 

predictive and discriminative abilities of the TRISS model and its ineffective way of coding 

the variables.  
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1. Introduction 

Trauma is one of the leading causes of death around the globe (Alberdi, Garcia, Atutxa & 

Zabarte, 2014; WHO, 2014). In 2018, around 80.000 trauma patients were treated in 

hospitals and trauma centres in the Netherlands (LNAZ, 2019). Out of those 80.000 trauma 

patients, 4.700 patients were heavily injured and 3% of the trauma patients passed away. 

These numbers display the importance of trauma care and therefore the importance of the 

evaluation. Although throughout the years this evaluation has been criticized.  

 The Elisabeth-TweeSteden Hospital (ETZ) in Tilburg, the Netherlands is a level 1 

traumacentre, which roughly means that the hospital has all the resources in order to help 

injured patients 24 hours a day (ETZ, 2020). 

 World population has been increasing every year, which also indirectly means that 

there are more trauma patients. However, since the initiation of trauma-centres the mortality 

rate in the Netherlands has gone down by 50% for the most severely injured patients of 

almost all of level 1 hospitals (Hietbrink et al., 2019). The risk of death is shown to be 

significantly lower when trauma patients receive the care that they need in trauma-centres, 

compared to trauma patients that were not treated in trauma-centres (MacKenzie et al., 

2006). In research done by MacKenzie and colleagues, numbers showed that trauma 

patients that received treatment in trauma-centres had a lower mortality rate than trauma 

patients that received treatment in non-trauma centres (7.6% versus 9.5%). Thus, the 

presence of trauma-centres is extremely important, and thereby the relevance of improving 

trauma care and trauma-centres is shown.  

 Improving trauma care starts with a systematic approach of evaluating it. This is done 

differently in every country. In the Netherlands, data of trauma patients that are treated in 

emergency departments or trauma centres is gathered in the Dutch Trauma Registry (DTR). 

The data consists of various variables, such as day of birth, systolic blood pressure and age 

(LNAZ, 2018). Furthermore, this data is subsequently used to calculate an expected mortality 

rate, the Probability of Survival (PSNL15). 

 

 The PSNL15 is a percentage with a range from 0 up to 1, and the variable shows the 

likelihood of a patient to survive (e.g. the higher the percentage, the more likely a patient is to 

survive) (LNAZ, 2019). The PSNL15 is calculated by using the predictions of the Trauma and 

Injury Severity Score (TRISS) (Boyd et al., 1987; Tlson & Copes, 1987; Champion, 1981). 

The PSNL15 is calculated for every admitted patient that enters trauma care, also when a 

patient re-enters with other trauma symptoms. The PSNL15 can also be calculated again at 
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another moment of the patient’s hospitalization, and therefore a trauma patient can have 

multiple PSNL15 scores from different moments. 

 In the PSNL15 variable formula shown above, b  is the outcome of a multivariable 

regression, calculated using the (Revised) Trauma Score, the Injury Severity Score, and the 

variable Age (Boyd et al., 1987). The Trauma Score was first described in 1981 and then 

revised in 1989 (Champion, 1981; Champion, 1989). The Revised Trauma Score consists of 

coded variables based on Systolic Blood Pressure (SBP), Respiratory Rate (RR) and the 

Glasgow Coma Scale (GCS) which is the sum of Eye Response, Motor Response and 

Verbal Response (Champion, 1989; Teasdale, 1974; Jennet, 1974).  

 The Trauma Score seems to correlate with the probability of survival (Boyd et al., 

1987). The Injury Severity Score (ISS) is an overall injury severity score calculated from the 

different injuries. The ISS is proven to perform inadequately when used alone, however, in 

combination with the (Revised) Trauma Score, both performances increased (Boyd et al., 

1987). Furthermore, the formula differs for blunt injuries and penetrating injuries. The 

coefficients of the formula are shown in table 1 (LNAZ, 2018). Schluter and colleagues 

(2010) estimated these coefficients using a logistic regression on data from the National 

Trauma Data Bank and the NTDB National Sample Project.   

 

Table 1 

Coefficients of the PSNL15 variable 

 
Variable Blunt Penetrating 

β0 Intercept 1.5090 0.6460 

β1 Respiratory Rate 0.2372 0.2114 

β2 Systolic Blood Pressure 0.6460 0.6806 

β3 Glasgow Coma Score (EMV) 0.4008 0.6333 

β4 Injury Severity Score -0.1087 -0.0922 

β5 Age -2.2091 -1.5366 

 

 Predictions of the PSNL15 variable are compared to the actual mortality rate by using 

the Standardized Mortality Ratio (SMR). The SMR is the outcome of the actual mortality rate, 

divided by the expected mortality rate (LNAZ, 2019). Would the TRISS model be calibrated 

right, then it would result in a SMR of around 1 (Rogers et al., 2021).  
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 However, when the actual mortality rate is significantly higher than the expected 

mortality rate, then that particular hospital is obligated to explain their performance. Although 

this seems like a reasonable conclusion, there are some limitations in the evaluation 

process. For instance, table 2 shows that the TRISS model seems to perform well on all the 

data of the DTR (SMR of 1.087). However, the performance of the TRISS model can differ 

greatly on different subsets. Subsets that seem especially hard to predict, are those that 

include older patients, or patients with severe head injuries (de Jongh, Verhofstad & Leenen, 

2010). This could result in an unwanted situation where a hospital gets a poor evaluation, 

which is only due to the fact that their treated patients deviate in characteristics in 

comparison to the DTR.  

 A relevant example is the data of patients with hip fractures. This particular subset is 

a large subset, that contains around 20 - 25% of the total amount of observations in the DTR. 

This number is expected to rise even more, as the number of people aged over 65 years old 

is increasing. Another aspect that makes this subset interesting, is that some variables that 

the TRISS model uses show a different distribution in comparison to the total dataset. The 

average age is 21 years higher (57 years of age in the total dataset versus 78 years of age in 

the subset). Next to that, the mortality rate is also greater (2.6% in the total dataset versus 

4.1% in the subset). Unsurprisingly, the TRISS model performs poorly on this subset, with a 

SMR of only 1.293. This suggests that the performance of the TRISS model is dependent on 

the characteristics of the subset. It thus seems that a hospital that has a patient base with 

relatively more hip fracture patients than the DTR, is therefore prone to getting a bad 

evaluation. As this is not desired, it is relevant to create a model that can get a better SMR 

on this subset.  
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 1.1 Research Questions 

In order to improve predictions of mortality on the subset of patients with hip fractures, a 

number of research questions (RQ) have been formulated below. Each RQ addresses 

another aspect of the issue, and therefore will each have a contribution in this research.   

 
❖ RQ 1: Can the predictions of the supervised machine learning models, K-Nearest 

Neighbors, Random Forest and Support Vector Machines, achieve a SMR closer to 1 

than the TRISS model when predicting mortality rate for hip fracture cases using the 

same variables in the Dutch Trauma Registry as the TRISS model? 

o 1.1: Can the models achieve this using the same coded variables as the 

TRISS model? 

o 1.2: Can the models achieve this using the uncoded/raw variables?  

❖ RQ 2: Can the predictions of the supervised machine learning models, K-Nearest 

Neighbors, Random Forest and Support Vector Machines, achieve a SMR closer to 1 

than the TRISS model when predicting mortality rate for hip fracture cases while 

using all the variables in the Dutch Trauma Registry?  

o 2.1: Can the model achieve this using all the variables? 

o 2.2: What is the minimum number of variables needed to achieve a better 

SMR than the TRISS model? 

❖ RQ 3: Can the best performing supervised machine learning models from the last two 

research questions, achieve a SMR closer to 1 than the TRISS model when 

predicting mortality rate for all the different cases in the Dutch Trauma Registry? 

❖ RQ 4: Can the predictions of the supervised machine learning models, K-Nearest 

Neighbors, Random Forest and Support Vector Machines, achieve a SMR closer to 1 

than the TRISS model when predicting mortality rate for hip fracture cases while 

using all the variables in the Dutch Trauma Registry and being selected on Balanced 

Accuracy?  

Table 2 

SMR on the entire DTR and on the Hip fracture subset when missing data is imputed 

with maximum values (Max Values) or is multiple imputed (MI) 

 
Actual mortality Expected mortality SMR 

DTR (Max Values) 1251 1148.06 1.090 

DTR (MI) 1251 1150.64 1.087 

Hip subset (Max Values) 487 376.36 1.294 

Hip subset (MI) 487 376.48 1.293 

Note. The data from 2015 to and including 2019 from the DTR is used 
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2. Related Works 

This chapter provides a theoretical background on various aspects that are important for this 

research. More information is given about the TRISS model and its predictions. Over the 

years, a lot of research has been done in order to improve the way that professionals predict 

mortality, this includes some machine learning studies.  

 

 2.1 TRISS Model 

As mentioned before, the TRISS model has been used in many medical studies. Even 

though it is widely used, there are multiple limitations. Next to that, there are also a few 

alternatives to the TRISS model that could work better. This will be discussed in the next 

subchapters.  

 

 2.1.1 Limitations of the TRISS model and SMR 

There are several limitations to the use of the TRISS model and the SMR when it comes to 

evaluating performance even though it has been developed and revised by several 

researchers. Firstly, regarding SMR, not only is this evaluation metric difficult to interpret due 

to the non-comparability of the observed cohort and the reference group (Richardson, Keil, 

Tchetgen & Cooper, 2015), but the SMR is also often biased. For example, if the assumption 

that the reference group accurately represents the observed cohort does not hold, then there 

can be a high bias (Kim, Lim, Kang & Khang, 2019). Furthermore, the SMR uses the sum of 

all expected mortality rates and the results of individual predictions are therefore not as 

important.  

 Secondly, there are limitations regarding TRISS model itself. The TRISS model is 

used to compute the PSNL15. As seen before, the PSNL15 is the base for the expected 

mortality in the SMR. Therefore, the TRISS model can be seen as the most important 

element in calculating the so-called reference group in the SMR. The TRISS model has been 

used widely around the globe in the past 40 years, despite the awareness of the numerous 

limitations that the model has (Cayten, Stahl, Murphy, Agarwal & Byrne,1991; de Munter, 

Polinder, Lansink, Cnossen, Steyerberg & de Jongh, 2017; Gabbe, Cameron & Wolfe, 2004). 

 The TRISS model is proven to lack homogeneity, especially with the subcategory of 

penetrating injuries (Cayten et al., 1991). This could be explained by the fact that there are 

not as many patients with penetrating injuries in many countries, which is also the case in the 

Netherlands. Next to that, the TRISS model lacks predictive ability when predicting for 

patients with small injuries or patients with severe injuries to just one body part.  Additionally, 

multiple studies have concluded that the TRISS model can discriminate between survivors 
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and non-survivors, but that it does not have predictive reliability (de Munter et al., 2017; 

Kuhls, Malone, McCarter & Napolitano, 2002; Hannan et al., 1999).  

 When looking into the DTR, it was already clear that the TRISS model has difficulties 

predicting some subsets (SMR of hip fractures is 1.293). Furthermore, its ability to 

discriminate in the hip fracture subset is also not evident. Table 3 shows the mean PSNL15 

for the hip fracture subset, for the patients that passed away and the patients that survived. It 

shows almost no discrimination between the patients that passed away or survived. 

Combining this with the probability distribution of the TRISS model, shown in appendix D, 

there seems to be some good arguments for the discussion that the TRISS model has 

difficulties discriminating.  

 

Table 3 

Mean Probability of Survival for different subsets in the DTR 

 Hip subset Hip and survived subset Hip and passed away subset 

Mean PSNL15 
0.970 0.970 0.963 

Note. The PSNL15 is calculated using Multiple Imputation for missing data 

 

 

 2.1.2 Alternatives to the TRISS model 

The limitations caused an absence of consensus on what model to use in the evaluation of 

trauma care which caused the development of many more models. Each model has its own 

strengths and weaknesses and is often specialised for a certain demographic. For instance, 

the Norwegian Survival Prediction Model in Trauma (NORMIT), which is a model specifically 

created and validated on Norwegian data (Ghorbani et al., 2014). Furthermore, Glefering and 

colleagues (2014) created the Revised Injury Severity Score version II (RISC II), a revised 

RISC model that was developed by using German trauma data. 

 Additionally, some studies also try to revise the TRISS model in a more general 

manner. Weeks and colleagues (2014) developed the Kampala Trauma Score (KTS). The 

KTS is a model that can be used in countries with resource-limited settings, such as third 

world countries. The KTS model uses information that is typical for patients in resource-

limited countries.  

 Finally, De Munter and colleagues (2017) searched through 90 articles, leading to a 

literature review of 258 different models. The research of De Munter concluded that most 

models were based on the same variables the TRISS model uses. Adding to that, most 

models perform acceptably on the general population. However, their performance on 

different subsets of the data differs greatly. Especially the probability of survival on subsets 
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with older patients, such as hip fractures, is commonly overestimated with the TRISS model 

(de Munter et al., 2018). 

 

 2.2 Patients with hip fractures 

There is also a discussion on the inclusion of hip fractures in trauma registries. For now, this 

data is frequently excluded as it seems to have different characteristics than other trauma 

data (Bergeron et al., 2005; Gomez et al., 2010). The mortality rate for patients with a hip 

fracture is higher and these patients spend more days in the hospital. Therefore, excluding 

patients with a hip fracture could have a significant effect on the ranking of a hospital’s 

performance. 

 Various studies have given insights into the predictions of a subset of patients with 

hip fracture (Henderson & Ryan, 2010; de Munter et al., 2018; Groff et al., 2020). These 

studies commonly argue over the importance of the comorbidities of the patients. A 

significant association between the Charlson Comorbidity Index (CCI) and in-hospital 

mortality was found, especially for patients with hip fractures (Roffman et al., 2016). For 

these reasons, models that are developed specifically for the prediction of mortality on 

patients with hip fractures often include variables stating the comorbidity (Maxwell, Moran & 

Moppett, 2018). 

 

 2.3 Predicting mortality using machine learning techniques 

Formerly, regression techniques were primarily used when creating models for predicting 

mortality. However, when trying to accurately predict an outcome variable, machine learning 

models can be advantageous over traditional regression models and more studies in 

medicine have used them (Goldstein, Navar & Carter, 2017). Studies using machine learning 

or deep learning models for predicting mortality in trauma patients are still rare, however.  

 Studies that did use machine learning or deep learning techniques have mixed results 

with them. Rau and colleagues (2019) concluded that their Logistic Regression, Support 

Vector Machine and Neural Network performed similarly to the TRISS when evaluated on 

Balanced Accuracy and Sensitivity. The Neural Network created by DiRusso and colleagues 

(2000) only slightly outperformed the TRISS on ROC. Other studies often focused on specific 

demographics and did not always include a baseline (Taylor et al., 2016; Pao-Jen et al., 

2018).  

 

  



R. de Jong  Predicting in-hospital mortality after hip fracture 

13 
 

3. Methods 

This chapter shows how this research has been set up, and which methods have been used 

in order to answer the research questions. Different models have been selected, based on 

their characteristics suited for this research. The experimental setup with these models is 

further described in chapter four. 

 For this research, supervised machine learning models are used. This choice was 

made because predicting mortality is a classification problem. Therefore, supervised 

machine learning models are the most appropriate (Brownlee, 2017). The algorithms of 

interest are K-Nearest Neighbors (KNN), Random Forests (RF) and Support Vector 

Machines (SVM). The first two are transparent, which is desirable. Support Vector Machines 

could help to give more accurate predictions. The models are imported from the Scikit-learn 

library (Pedregosa et al., 2011). The hyperparameter settings that are tuned in this study are 

displayed in table 4.  

 

3.1 K-Nearest Neighbors  

The K-Nearest Neighbors is used as a classification method. The method is known to be one 

of the simplest classification methods (Hechenbichler & Schliep, 2004; Peterson, 2009). 

Furthermore, a KNN can offer computational advantages over other classification methods 

since it only requires little information (Liao & Vemuri, 2002). The KNN classifier takes the k 

nearest points and makes the prediction of the outcome variable based on the majority vote 

(Islam, Wu, Ahmadi & Sid-Ahmed, 2007). The k value needs to be tuned, and the choice of k 

is often made by the use of cross-validation.  

 

 3.2 Random Forest  

The Random Forest algorithm has been developed by Breiman (2001), in order to improve 

classification problems by using random sampling. In many cases, datasets contain 

imbalanced data which can result in poorly performing machine learning algorithms 

(Livingston, 2005). Since Random Forests use random sampling and attributes selection, 

imbalanced data can still be classified in a good way. Random Forests simply consists of an 

ensemble of decision trees, where the decision trees vote for a class. The class that gets the 

majority vote is chosen as the output and this can significantly increase the score in the 

desired metric such as accuracy or precision (Pal, 2007).  

 The most important hyperparameter is the number of estimators, which is the number 

of trees (Scikit-learn, n.d.). Therefore, this is one of the hyperparameters to be tuned in this 

study. The other hyperparameter is the maximum depth. This can retain the model from 

overfitting and reduce the computational time. 
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 3.3 Support Vector Machine 

Support Vector Machines (SVM) are a discriminative classifier that is defined by a separating 

hyperplane, meaning that a SVM outputs an optimal hyperplane that can categorize new 

examples (Fletcher, 2009). Furthermore, a SVM tries to minimize the classification error and 

maximize the geometric margin (Vapnik, 1995). SVM’s have been used quite frequently in 

bio-informatics and natural language processing, and are known for their good generalization 

performance (Burges, 1998). SVM’s are also often preferred because they have both a linear 

and a non-linear function (Furey et al., 2000). The algorithm can, therefore, work well on 

sparse and high dimensional data.  

 The hyperparameters used in this study are C and Kernel. C trades off 

misclassification of training examples against the simplicity of the decision surface (Scikit-

learn, n.d). Kernels are a set of mathematical functions that the SVM can use to transform its 

inputs. Additionally, the linear Kernel is not used in this study because it took too long to 

compute. 

 

Table 4 

Hyperparameters used for the different algorithms 

Algorithm Hyperparameter 1 Hyperparameter 2 

K-Nearest Neighbors K n/a 

Random Forest Max Depth Number of Estimators 

Support Vector Machine C Kernel 
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4. Experimental Setup 

In this chapter, the experimental setup is explained. First, the dataset that is used for this 

study is described, as well as the subsets. Later on, experiments are discussed for each 

research question.  

 

 4.1 Description of Raw Dataset 

The dataset that is being analysed in this study, is extracted from the DTR. The dataset 

consists of multiple smaller linked datasets, with all the trauma registrations from 2015 up to 

and including 2019. The data used in this research are the so-called ‘findings’. The findings 

consist of the values of vital parameters in combination with many other variables (108 in 

total). These vital parameters are then subsequently used for analysis, such as the 

calculation of the variable PSNL15. The data consists of observations (N = 85135) indexed 

by patient (case), date of arrival at the emergency department, and whether the 

measurement of the vital parameters was done in the ambulance or at the emergency 

department. Thus, a specific case can have multiple occurrences in the dataset, for example 

when this person has had multiple accidents leading to a trauma registration at different 

times (less common), or when the vital parameters have been measured in the ambulance 

and then again at the emergency department (more common).  

 The PSNL15 is calculated based on unique accidents. Therefore, only one finding is 

kept for a specific case, with a specific arrival time. Often, this one finding is the 

measurement at the emergency department, as it is seen as a more precise measurement. 

Only when this finding is unavailable, the measurements in the ambulance is used. This 

reduces the size of our observations (N = 55404). 

 The dataset now has 55404 observations and 108 variables. However, many of these 

variables are indexes, derived from other variables, or meaningless for prediction. Therefore, 

it is necessary to create a subset with the outcome variable and variables that are 

meaningful for predictions. This is done differently for every research question and for the 

reconstruction of the TRISS model.  

 4.1.1 Reconstruction of the TRISS model 

First, a subset has been created with the TRISS variables and the outcome variable (i.e. Eye 

Movement, Motor Response, Verbal Response, Respiratory Rate, Systolic Blood Pressure 

Injury Severity Score, Age, Type of injury, Passed Away). Illegal values are set to NA and all 

values of ‘888’ and ‘999’, as these values indicate missing data (LNAZ, 2018). Missing data 

is further analysed and the missing data percentage of every column is extracted (table 5) 

Then, the missing data is imputed using the MICE package in R. This results in five imputed 
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datasets that are combined into a single dataset using the average value rounded to the 

nearest integer.  

 New variables are created because the TRISS model uses coded variables. EMV 

(Glasgow Coma Scale) is created by adding the values of Eye Response, Motor Response 

and Verbal Response. The other variables are coded following table 6. Lastly, the PSNL15 of 

this multiple imputed dataset is calculated using the coefficients in table 1. 

 

Table 5 

Percentage of missing data for every variable 

Variable TRISS model RQ1 RQ2 RQ3 

Eye Response 2.5 3.5 3.5 2.5 

Motor Response 2.6 3.5 3.5 2.6 

Verbal Response 2.6 3.5 3.5 2.6 

Respiratory Rate 33.6 32.1 32 33.6 

Systolic Blood Pressure 14.2 5 5 14.2 

Injury Severity Score 0.2 0 0 5 

Age 0 0 0 0 

Type of Injury 0.2 0 0 0.2 

Passed Away 0 0 0 0 

Cause of injury n/a n/a 4 5 

Comorbidity (ASA) n/a n/a 4.1 5.5 

Referred From n/a n/a 0.5 0.7 

Referrer n/a n/a 4.5 5.3 

Length of Stay IC n/a n/a 9.5 13.4 

Level of Hospital Care n/a n/a 4.1 4.9 

Number of AIS codes n/a n/a 0 0 

Revised Trauma Score n/a n/a 0 0 

Level Pre Hospital Care n/a n/a 0.5 0.6 

Length of Stay ED n/a n/a 0.9 0.9 

Length of Stay Hospital n/a n/a 0.1 0.2 

Sex n/a n/a 0 0 

Time Ambulance n/a n/a 37.7 49.7 
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Table 6 

Coding the variables for the reconstruction of the TRISS model 

Coded Variable Systolic Blood Pressure Respiratory Rate EMV Age 

0 0 0 3 <54 

1 1-49 1-5 4-5 >54 

2 50-75 6-9 6-8 n/a 

3 76-89 >29 9-12 n/a 

4 >89 10-29 13-15 n/a 

 

 

 4.1.2 Research Question 1 

The pre-processing of the data for the first research question follows a similar approach as 

the one recreating the TRISS model. Again, the same subset of variables is used, but now 

only the observations of patients with hip fractures (N = 12408). Next, illegal values and 

missing data are set to ‘NA’. The missing data is analysed and imputed following the same 

procedure as in the recreation of the TRISS model. Furthermore, coded variables are 

created and the PSNL15 is calculated. Lastly, the data is split into a training and test set. The 

test set consists of the 2019 data (N = 2256) while the training set consists of the 2015 to 

2018 data (N = 10147). The choice was made to exclude the penetrating injuries in the 

training set, as the TRISS model creates the impression that their behaviour is quite different, 

and with only 5 observations it seems unlikely that the used models are going to pick up on 

these nuances.  

 

 4.1.3 Research Question 2 and 4 

Research question 2 and 4 uses the same approach for pre-processing and are using the 

subset of patients with hip fractures (N = 12408). However, the variables used are different 

which led to a selection of chosen variables. Out of the 108 variables, many were not useful 

for this research question. Variables that have over 70% of missing data, variables that were 

indices, and variables that were deemed meaningless for prediction were excluded from the 

subset. In appendix A, a list with the dropped variables and the reason is published. When 

variables correlated, the variable that predicted best in a univariate logistic regression was 

kept. Furthermore, all the categorical variables were individually assessed on their predictive 

ability and class (in)balance. Most of the categorical variables were recoded to compromise 

for their class imbalances, but some had to be deleted. More information can be found in 

appendix A and B.  
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 This resulted in 22 variables of which their missing data is analysed following the 

same procedure as in the first research question. After creating five imputed datasets using 

MICE, the different datasets were combined into one. For ordinal variables, the mean of the 

values was rounded to the nearest integer. For categorical variables, the mode of the values 

was chosen. Furthermore, the categorical variables that only had two classes left were binary 

coded and the categorical variables with more than two classes were one-hot coded.  

 Additionally, the data was split into a training and test set. Again, the test set consists 

of the 2019 data (N = 2256) and the training set of the data from 2015 up to and including 

2018 (N = 10147), excluding the penetrating injuries.  

  

 4.1.4 Research Question 3 

The pre-processing of the data for the third Research Question follows the exact approach 

as the second. The only difference is that the used observations are the entire DTR dataset 

(N = 55404), and in the end, the data is only split into a test split of the 2019 data (N = 8501). 

 

 4.2 Experimental Procedure 

The creation, training, validation and testing of the different models for all the research 

questions follow a similar approach. Firstly, the selection of the supervised machine learning 

algorithm. Secondly, choosing the models hyperparameter settings and sampling 

hyperparameter settings. Thirdly, creating a train/validation split. Lastly, creating a subset for 

training and validating the model.  

 

 4.2.1 Algorithms and Hyperparameters 

As mentioned in chapter three, the three algorithms that are used in this study are K-Nearest 

Neighbors, Random Forest and Support Vector Machine. For every algorithm, there are a 

number of hyperparameters chosen, shown in table 4.  

 After the set of hyperparameters are chosen, the data will be split into a training and 

validation set using 3-fold cross-validation, stratified on all the variables in the model. 3-fold 

cross-validation was chosen as using more folds resulted in more variance on the scores 

between the difference splits, and it increases processing time.  

 After splitting the data into a training and validation set, the data that is used for 

training is sampled into a subset. This sampling is done to help overcome the class 

imbalance in the outcome variable. This sampling is combined with Synthetic Minority Over-

sampling Technique (SMOTE) following the guidelines of Chawla and colleagues (2011). 

The idea is to create augmented data in the minority class relative to the majority class and 

then resampling the majority class (Chawla et al., 2011; Browlee, 2020). SMOTE is regularly 
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combined with random under-sampling of the majority class but is in this research both 

undersampling and oversampling of the majority class is used.  

 In summary, the data is split into a training and validation set. Additionally, the training 

set is split into the majority and the minority class, synthetic data is created in the minority 

class, and the majority class is randomly resampled (with replacement) to a specific ratio of 

the minority class (with synthetic data). The data is combined and shuffled into a single 

training subset which is used for training the model. The trained model is then used to 

calculate the SMR of the validation set.  

 Subsets within the same training/validation split, with the same amount of synthetic 

data, and the same amount of resampling of the majority class, can still differ from each 

other. Therefore, multiple subsets are necessary for a fair model selection.  

 As the difference in the structure in a subset matters greatly for the SMR of the 

trained model, the amount of synthetic data created and the amount of resampling of the 

majority class are treated as hyperparameters in the analysis.  

 

 4.2.2 Research Question 1 

First off, the three algorithms loop through many different combinations of hyperparameters, 

resulting in the creation of about 1000 different models each trained on three subsets for 

every of the three training splits (nine subsets total). The nine different SMR validation scores 

are combined and the 95% quantile confidence interval is calculated. The best five models 

for each algorithm are extracted based on the error function below.  

 

 This error function calculates the squared deviation from one. This metric is chosen 

because a SMR score of one is the best achievable result. So the closer a model’s 

performance approaches one, the better the model. Additionally, the deviation is squared 

because a confidence interval surrounding one is arguably more favourable than a 

confidence interval barely including one (e.g. 0.85 – 1.15  is better than 0.70 – 1.00). 

Therefore, exclusively the SMR is the criteria for the model selection as this is also the metric 

used in the evaluation of trauma care in the Netherlands. However, individual models of a 

specific algorithm are fitting the data using different methods. The Random Forest uses 

cross-entropy, the Support Vector Machine aims to maximize the geometric margin between 

classes, and the K-Nearest Neigbors does not explicitly learn but it just stores the training 

dataset.  

 The five best models of each algorithm explain what combination of hyperparameters 

works. So these hyperparameters are extracted from the model and used to run the same 
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code again, but now using 15 subsets for each training/validation split. Again, these 45 SMR 

scores on the validation tests are combined into a confidence interval and the best 

performing model for each algorithm is extracted using the same approach as above.  

 Additionally, these final models are trained using the same hyperparameter settings, 

on all the training data, for 50 subsets, and then tested on the independent test set. Again, 

the confidence interval of these 50 SMR scores is extracted and compared to the 

performance of the TRISS model. Appendix C contains a schematic of this approach. If both 

of the deviations in the confidence interval is lower than the deviation from one of the TRISS 

model, it can be said that the model is outperforming the TRISS model. For example, when 

the TRISS model has an absolute deviation from one of 0.20 then the compared model is 

only performing better if the lower confidence interval is higher than 0.8 and the higher 

confidence interval is lower than 1.2.  

 

 4.2.3 Research Question 2 

For the first part of the second research question, the same approach as in research 

question 1 is used for all the variables in appendix B. Appendix B also shows the descriptives 

of the variables.  

For the second part, the best performing Random Forest from the first part is used to 

create a feature ranking for every subset. This feature ranking is pooled over all the subsets 

and the least important feature is dropped. This approach continues until only one variable is 

left. This will result in a feature ranking. This feature ranking is used to try to create a model 

with the least amount of variables possible that can still outperform the TRISS model on the 

test set. After choosing the variables, the same approach of model selection as in the first 

part and the first research question is used.  

 

 4.2.4 Research Question 3 

This research question simply consists of selecting the best performing model of each 

research question and then testing it over 50 subsets on the 2019 data of the entire DTR.  

  

 4.2.4 Research Question 4 

Research questions 4 is similar to the second research question. The difference is that in this 

research question Balanced Accuracy is used for the model selection and not SMR 

(Brodersen et al., 2010)  
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The models are still evaluated using SMR on the test set. The results will show the effect on 

SMR, an evaluation metric that does not care for individual prediction, when the model 

selection uses a relatively simple evaluation metric that is based on individual predictions.  
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5. Results  

One of the earliest findings is that the hyperparameter settings for the model (number of 

estimators, depth, k, etc) are less important than the hyperparameter settings of the subset 

(SMOTE and ratio of resampling). Especially the ratio of resampling of the majority class 

seemed to have the biggest impact. This can be the result of the SMR needing to have a 

well-represented reference group as training data. Additionally, the majority/minority class 

ratio is also the most important variable for the stratification of the test/validation sets. 

Moreover, creating synthetic data in the minority class using SMOTE resulted in models with 

less variance, probably due to the increase in bias or/and the increase of training data in 

individual subsets.  

 

5.1 Research Question 1 

The (multiple imputed) TRISS model scored a SMR of 1.298 on the test set (2019 hip 

fracture subset). This is consistent with the SMR of the entire hip fracture subset (2015 – 

2019), which is 1.293.  

 Although the TRISS model uses the coded variables, there was no other model that 

performed adequately using these variables (table 9). An analysis of the data showed that 

one specific feature row of these coded variables, shown in table 7, has 10,457 occurrences 

(total observations in the hip subset is 12,408). Furthermore, table 8 shows the distribution of 

the outcome variable with this specific row, there seems to be no discrimination in the 

classes. This makes it extremely difficult for models to make predictions with these variables. 

Therefore, the performance of these models was poor on the validation set and not tested on 

the test set (results are displayed in table 9).  

 The models with the uncoded variables did better. The parameters and the 

performance of the best performing models are shown in table 10. The Random Forest and 

the K-Nearest Neighbors, perform adequate and are outperforming the TRISS model. 

Additionally, the Support Vector Machine makes the worst predictions. Lastly, the SMR is 

lower on the test set for all of the models. Thus all of the models seem to overpredict the 

mortality on the test set in comparison to the validation set.  

 

Table 7 

Feature row that occurs more than 84% of the time 

ISS Type of Injury EMV (coded) Systolic Blood Pressure 

(coded) 

Respiratory 

Rate (coded) 

Age (coded) 

9 0 4 4 4 1 
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Table 8 

Occurrences of the feature row of table 7 in the hip fracture subset 

Subset Frequency of observed feature row Total Frequency of rows Relative 

Survived 10044 11921 84.3% 

Passed away 412 487 84.6% 

Total 10457 12408 84.3% 

 
 

Table 9 

Results of Research Question 1 for the coded TRISS variables 

Model Ratio Smote Hyperparameter 1 Hyperparameter 2 CI val 

RF 1 0.06 50 50 0.042 1.309 

KNN 1 0.15 3 None 0.041 1.644 

SVM 1 0.15 12 rbf 0.041 0.853 

 

Table 10 

Results of Research Question 1 for the uncoded TRISS variables 

Model Ratio Smote Hyperparameter 1 Hyperparameter 2 CI val CI test 

RF 12 0.15 100 50 0.852 0.999 0.742 0.848 

KNN 8 0.15 9 None 0.912 1.109 0.820 1.018 

SVM 2 0.1 12 rbf 0.495 1.073 0.561 0.881 

 

 

5.2 Research question 2 

When all the selected variables are used for predicting, the SMR of the models did not 

drastically improve. As is shown in table 11, the Random Forest and the K-Nearest 

Neighbors are the best predictor and are outperforming the TRISS model. The performance 

of the Support Vector Machine is, once again, underwhelming. These results suggest that 

the TRISS model is already using some of the best predictors, or that the selection of 

variables is not that important.  
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 Therefore, for part 2, a feature ranking is created by repeatedly dropping the least 

important variable. The results are a feature ranking that can give an insight into the 

importance of the variables. The results are in table 12. Three of the last five dropped 

variables are variables that are also used in the TRISS mode, suggesting that the TRISS 

model uses already some highly predictive variables.  

 

Table 12 

Feature ranking based on the best performing Random Forest of RQ2 part 1. The upper 

variables are dropped first (and thus less important). 

Type of Injury 

Other (Cause of Injury)* 

Motor Response 

Revised Trauma Score 

Eye Response 

Level Pre Hospital Care 

Lowfall (Cause of Injury)* 

Injury Severity Score 

Traffic (Cause of Injury)* 

Verbal Response 

Number of AIS codes 

Referrer  

Referred From 

Length of Stay IC 

Comorbidity (ASA) 

Sex 

Length of Stay Hospital 

Time Ambulance 

Respiratory Rate 

Age 

Table 11 

Results of Research Question 2 part 1 (all the selected variables) 

Model Ratio Smote Hyperparameter 1 Hyperparameter 2 CI val CI test 

RF 5 0.12 100 50 0.801 1.167 0.949 1.107 

KNN 8 0.10 4 None 0.88 1.118 0.847 1.138 

SVM 2 0.15 12 rbf 0.493 1.099 0.507 0.887 
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Systolic Blood Pressure 

Length of Stay ED  

Level of Hospital Care 

Note. Cause of Injury is one hot coded into “Other”, “Lowfall” and “Traffic” 

 
For part 2, Systolic Blood Pressure and Length of Stay ED are chosen. Level of Hospital 

Care is not used as it did not improve the predictions. Furthermore, the decision was made to 

not include the SVM, as its performance in the previous part was already inadequate. The 

results are shown in table 13. Again, the Random Forest and K-Nearest Neighbors 

outperform the TRISS model on the test set.  

 

Table 13 

Results of Research Question 2 part 2  

Model Ratio Smote Hyperparameter 1 Hyperparameter 2 CI val CI test 

RF 15 0.08 50 50 0.863 1.136 0.849 1.051 

KNN 7 0.12 9 None 0.815 1.062 0.915 1.250 

 

 

5.3 Research Question 3 

The models that were tested on the 2019 hip fracture subset are also tested on all the 

observations of the 2019 DTR. The results are shown in table 14 with the result of the TRISS 

model.  

 There seems to be a systematic overprediction of mortality for the 2019 DTR. This is 

expected as the models are trained and optimized on data with a mortality of 3.9%, tested on 

the 2019 hip fracture subset with a mortality of 3.9%, and now tested on the 2019 DTR that 

has a mortality of 2.1%. It seems that the use of the SMR as an evaluation created a 

situation where models that are seriously biased, can still be seen as good predictors. 

Therefore, these results do support the literature stating the limitations of the use of SMR 

(Richardson et al., 2015; Kim et al., 2019). 

 The best example of this (and one specifically created for this point), are the models 

that only used two variables. These models are not able to make correct individual 

predictions but are trained to output a mortality rate of around 3.9%. Therefore, when the 

models are tested on the 2019 hip subset, the models seem to perform great. However, 

when tested on the 2019 DTR, which has around half the mortality, the SMR is only about 

half the amount it was. Following this logic, a lower drop in SMR between the test sets might 

indicate some predictive ability.  
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Another indication of predictive ability could be the probability outputs of the models, 

they can be found in appendix D. This shows that the TRISS model barely discriminates 

between different observations. Furthermore, it shows that the models that are trained on the 

uncoded TRISS variables and all the variables have much more variance in their probability 

distribution than the models trained on two variables and the TRISS model. 

 Lastly, Appendix E shows all the accuracies of the different models on the two test 

sets and their confusion matrix. It shows that all the results of the models on the two different 

test sets always resulted in a lower accuracy than the majority class. Suggesting that 

optimizing on SMR can negatively affect the predictive abilities of a model. 

 

5.3 Research Question 4 

When all the selected variables are used again for predicting mortality and the model 

selection is based on Balanced Accuracy, the Balanced Accuracy score of the models on the 

test set is fair. However, the SMR of the models on the test set did decrease. Table 15 

shows that both the Random Forest and the Support Vector Machine can get a decent score 

on Balanced Accuracy but that this negatively affected the SMR. Additionally, it shows that 

The KNN has the lowest score on Balanced Accuracy but that it does have the best SMR.  

Table 14 

All the test SMR scores 

  

 
2019 Hip fracture 2019 entire DTR 

TRISS 1.298 1.125 

RF Lower CI Higher CI Lower CI Higher CI 

Trained on TRISS variables 0.742 0.848 0.693 0.814 

Trained on all selected variables 0.949 1.107 0.305 0.351 

Trained on Systolic Blood pressure and age 0.849 1.051 0.480 0.557 
 

        

KNN         

Trained on TRISS variables 0.820 1.018 0.723 0.853 

Trained on all selected variables 0.847 1.138 0.808 0.993 

Trained on Systolic Blood pressure and age 0.915 1.250 0.418 0.524 
 

        

SVM         

Trained on TRISS variables 0.495 1.073 0.485 0.724 

Trained on all selected variables 0.507 0.887 0.507 0.887 
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 The low SMR score on the test set is due to overprediction of mortality and this 

overprediction is caused by the class imbalances. As the test set only has a low amount of 

cases that pass away, the penalty of missing such a case in the overall evaluation is greater 

than the penalty of misclassifying a case that survived. Resulting in the overprediction of 

mortality. This research question is, therefore, showing the difficulties in setting up a good 

evaluation matrix. 

 

 
 
 
 

  

Table 15 

Results of Research Question 4 

Model Ratio Smote Hyperparameter 1 Hyperparameter 2 CI BA* test CI SMR test 

RF 1 0.05 100 50 0.726 0.771 0.149 0.179 

KNN 7 0.12 5 None 0.544 0.571 0.564 0.664 

SVM 1 0.30 12 poly 0.725 0.737 0.175 0.206 

Note. BA = Balanced Accuracy 
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6. Discussion 

In this chapter, the results will be evaluated in regard to the research questions and the 

overall goal of this study. Furthermore, the limitations of this study will be acknowledged.  

 As the results have shown, in the current evaluation process of Trauma Care, it is 

possible for a hospital to get a poor evaluation just because their structure in the client base 

is different than the DTR. This is the case when a hospital has relatively more patients of a 

subset where the mortality is structurally underpredicted by the TRISS model (e.g. hip 

fractures) than the entire DTR. Therefore, the goal of this study was to create a model that 

performs better in terms of SMR on the hip subset data than the TRISS model.  

 In research question 1, the same variables of the TRISS model (coded and uncoded) 

in combination with the chosen supervised machine learning models (KNN, RF, SVM) were 

used to improve the TRISS model. When the models used the coded variables, the results 

were poor. It seems that the coding of the variables made the variables less informative. It 

even led to a specific feature row occurring in more than 84% of the observations. Using the 

uncoded variables, the results were better. The best Performing Random Forest model and 

the K-Nearest Neigbors model were outperforming the TRISS model in terms of SMR. 

Unfortunately, the Support Vector Machine was not.  

 Part 1 of research question 2,  followed a similar approach as the first research 

question, only with a different selection of variables. Once again, the Random Forest and the 

K-Nearest Neighbors performed better than the TRISS model. The Support Vector Machine 

was once again highly variate.  

 As part 1 raised questions about the importance of the variables, part 2 was set up to 

answer them. The feature ranking led to the conclusion that the TRISS model might be using 

some great predictors. More surprisingly, part 2 showed that it was possible to outperform 

the TRISS model on SMR while using only two variables.  

 Research question 3 and the literature gave more insights about the results and 

especially how a model with only two variables was able to a good SMR. Apparently, it is 

rather straightforward to create a model that can get a good SMR. Especially when it is 

trained on data that is similar to the observed cohort. The key is to impute much bias in the 

model. Even if this results in a model that has impaired predictive abilities. Therefore, the 

best performing models of research question 1 and 2 were not able to generalise well on the 

entire DTR.  

 This raises the concern that the current evaluation method, the TRISS model, is also 

just a biased model with impaired predictive abilities. The results concerning its SMR score 

on different subsets, the distribution of its predictions, its use of uninformatively coded 

variables, and other limitations brought up by the literature, suggests that the TRISS model 
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itself is not doing much more than just imputing the overall mortality rate as a probability of 

survival for each individual.  

 This has the significant clinical implication that the evaluation of the performance of a 

hospital is only accurate when the client base has the same structure as the DTR. However, 

as the DTR consists of highly heterogeneous data, this will rarely be the case. Even if the 

observed cohort of a hospital follows a similar structure as the DTR, the explanations of a 

hospital’s performance will prove to be extremely difficult when the individual predictions are 

not trustworthy. Furthermore, as this study shows, it is difficult to develop a model that can 

make reliable individual predictions when using the SMR.  

 Additionally, it is not as straightforward to create a model that can make better 

individual predictions and still get a good SMR. This study showed that optimising models on 

Balanced Accuracy generally resulted in a decrease in SMR. Therefore, this study briefly 

shows the difficulties in developing an evaluation metric that will select models that can get a 

good SMR and still make accurate individual predictions. 

 With these results, this study supports the existing literature stating the importance of 

having a good reference group as training data, it emphasizes some to of the limitations of 

the TRISS model and the SMR, and gives some arguments why there have been such a 

widespread of trauma evaluation models. Lastly, it is one of the limited studies using 

machine learning techniques in de prediction of mortality in trauma patients and one of the 

first that primarily focusses on SMR. 

 6.1 Limitations  

The first limitation is the choice to evaluate models on the SMR and not an individual 

evaluation metric. This choice was made because hospitals in the Netherlands are evaluated 

on SMR and using the same evaluation metric makes this study more relevant in this field. 

Unfortunately, this resulted in models with impaired predictive abilities Secondly, only a 

limited amount of different hyperparameters and hyperparameter settings were tried. 

Furthermore, no real effort was made to change the inputs (such as normalisation and 

standardisation) to make it easier for the algorithms to learn. This could have resulted in less 

variance and thus more stable results, which in turn could especially have helped the 

Support Vector Machine to get more interesting predictions, as its performance was now just 

underwhelming. Another limitation is the lack of knowledge about the individual variables. 

Better knowledge would have helped in choosing and recoding the variables. Now certain 

combinations of data might be controversial. Lastly, the assumption that all the missing data 

is missing at random is made in this study. Although looking at individual variables, this 

assumption is just naïve. 
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7. Conclusion 

This study shows that it is possible to create a model that performs better on the hip fracture 

subset using SMR as an evaluation. However, as the model is optimized using SMR, it will 

probably be fairly biased. If the model is used as a reference group while trying to evaluate 

an observed cohort with the same structure/characteristics, this should not be a problem. If 

this assumption does not hold, the model should not be used.  

 Therefore, this study can be used as an argument to exclude the hip fracture subset 

from the DTR and perhaps be evaluated independently. However, this will raise the question 

which other subsets should also be excluded and what models should be used.  

 Furthermore, this study could be used to advocate against the use of the SMR. An 

evaluation metric that is prone to choose models that are highly biased and discard their 

predictive ability, might not be the best choice for the evaluation of trauma care. In this case, 

the overall goal of the evaluation should be clear. Is a simple comparison between different 

hospitals enough, or is more detailed evaluation considering individual subsets and even 

individual patients the goal? If the latter is the case, individual predictions should also be 

taken into account.  

 Lastly, a remark about the TRISS model. During this study, the TRISS model was 

often negatively mentioned for its limited predicting and discriminative abilities and the use of 

uninformatively coded variables. The TRISS model seems highly biased and might only be 

performing well (in its current state) because of the SMR. However, the TRISS model is also 

remarkably robust and uncommonly interpretable. It seems to use highly predictive variables 

that are easily gathered. This study also showed that a simple algorithm can create adequate 

predictions. The limited predictive and discriminative abilities of the TRISS model can 

probably be strongly increased when using differently coded variables. Therefore, the TRISS 

model might have a future in the prediction of trauma care.  
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Appendix A. Unused variables 

Appendix A contains the variables that are not used in this study and the reason why.  

Dropped variable Reason 

AGB >70% Missing Data 

CTSCANDT >70% Missing Data 

CTSCANTIJD >70% Missing Data 

EMVMAX >70% Missing Data 

INTERVENTIEDT >70% Missing Data 

BASE >70% Missing Data 

BENORMAALTIJD >70% Missing Data 

INR >70% Missing Data 

BEADEMING >70% Missing Data 

DATUMOVERLEDEN >70% Missing Data 

RTSAMBR >70% Missing Data 

INTERVENTIETIJD >70% Missing Data 

RTSAMBR >70% Missing Data 

LUCHTWEG >70% Missing Data 

BEVERLOOPTIJD >70% Missing Data 

BASER >70% Missing Data 

INRR >70% Missing Data 

ICDUUR >70% Missing Data 

BEADEMINGR >70% Missing Data 

LEVELHOOGHOSPR >70% Missing Data 

MORTALITEITUUR >70% Missing Data 

MORTALITEITDGN >70% Missing Data 

AANRIJTIJD 

AANRIJTIJD, BEHANDELTIJD VERVOERTIJD are 

combined 

BEHANDELTIJD 
AANRIJTIJD, BEHANDELTIJD VERVOERTIJD are 

combined 

VERVOERTIJD 
AANRIJTIJD, BEHANDELTIJD VERVOERTIJD are 

combined 

PSXX98 Already a score  

PSUS0998 Already a score  

PSXX98R Already a score  

PSUS0998R Already a score  

OVERLEDENMETOBDUCTIE Can indicate if a person passed away 
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OVERPLBESTID  Can indicate if a person passed away 

EMVCODETOTAAL Derived 

EMVCODE Derived 

SBPCODE Derived 

ISSCAT Derived 

AISNUMR Derived 

NUMFRACT  Derived 

LEEFTIJDSEHCAT Derived 

VERBLIJFSDUURSEHR Derived 

EMVCODETOTAALCORR Derived and imputed with max values 

EMVCODECORR Derived and imputed with max values 

ADEMFREQUENTIEKLASSEID Inconsistent 

TOTAALTIJDONGEVAL Inconsistent 

RECORD_ Index 

CASEID_ Index 

IDAABA Index 

IDAABACA Index 

ISSCAT16 Index to check for multitrauma 

OORZAAKCATEGORIEID Intentie is used 

ICJANEE Is mostly derived from Dagenopname 

ISS98 ISS08 is used 

BEPALINGVITALEPARMSDT Meaningless for prediction 

ONGEVALDT Meaningless for prediction 

INANA Meaningless for prediction 

DATUMAANKOMST Meaningless for prediction 

DATUMVERTREKSEH Meaningless for prediction 

DATUMONTSLAG Meaningless for prediction 

CHECKLEVEN Meaningless for prediction 

JAARONGEVAL Meaningless for prediction 

MAANDONGEVAL Meaningless for prediction 

UURONG Meaningless for prediction 

UURONGCAT Meaningless for prediction 

ONGEVALDT_FUZ Meaningless for prediction 

INTERVTYPEANDERS Mostly empty 

OVERLEDEN30D Not the outcome variable used 

MORTALITEIT Not the outcome variable used 
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HARTSTILSTAND Only valid till 2019 

VERKEERWAARDEID Only valid till 2019 

DAGENOPNAME Opnameduur is used 

GOSONTSLAG Patients that pass away will not have this value 

ONTSLAGBESTEMMINGID Patients that pass away will not have this value 

RTSSEH RTSSEHPS is used 

RTS RTSSEHPS is used 

RTSSEHR RTSSEHPS is used 

RTSSCORE RTSSEHPS is used 

RTSSEHPSUP09 RTSSEHPS is used 

TRAUMACENTRUM 
The LNAZ tries to compare the performance to see if 

there is a difference 

TRAUMATEAMSEH 
The LNAZ tries to compare the performance to see if 

there is a difference 

TOTAALTIJD TIJDAMB is used 

INTUBATIEPREHOSP Too much class imbalance 

INTERVENTIETYPE Too much class imbalance 

OORZAAK Too much class imbalance 

EMVQUALIFIERWAARDEID Too much class imbalance 

VERVOERINTERKL uses ONTSLAGBESTEMMINGID 
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Appendix B. Descriptives 

Appendix B contains the descriptives for the used variables for the hip fracture subset (“Hip 

Fractures”) and for the entire DTR (“DTR”).  

 
EYEOPENINGWAARDEID MOTORRESPONSEWAARDEID VERBALRESPONSEWAARDEID 

 
Eye Response Motor Response Verbal Response 

 
DTR Hip Fractures DTR Hip Fractures DTR Hip Fractures 

Min.   : 1 1 1 1 1 1 

1st Qu.: 4 4 6 6 5 5 

Median : 4 4 6 6 5 5 

Mean   : 3.932 3.988 5.938 5.99 4.877 4.955 

3rd Qu.: 4 4 6 6 5 5 

Max.   : 4 4 6 6 5 5 

NA's   : 1403 431 1418 431 1437 430 

 

 
RRSYSTOLISCH ISS08 ADEMFREQUENTIE 

 
Systolic Blood Pressure Injury Severity Score Respiratory Rate 

 
DTR Hip Fractures DTR Hip Fractures DTR Hip Fractures 

Min.   : 0 17 1 9 0 0 

1st Qu.: 120 132 2 9 14 14 

Median : 139 150 4 9 16 16 

Mean   : 141.8 152.5 6.119 9.206 17.37 16.46 

3rd Qu.: 159 170 9 9 20 18 

Max.   : 434 288 75 59 187 187 

NA's   : 7849 619 105 
 

18606 3973 

 

 
RTSSEHPS LEEFTIJDSEH VERBLIJFSDUURSEH 

 
Revised Trauma Score (for 

MTOS*) 

Age Length of stay ED (Emergency 

Department) 
 

DTR Hip Fractures DTR Hip Fractures DTR Hip Fractures 

Min.   : 0 4.094 0 0 0 1 

1st Qu.: 7.841 7.841 28 71 128 137 

Median : 7.841 7.841 62 81 178 181 

Mean   : 7.778 7.827 54.45 77.88 191.5 194.7 

3rd Qu.: 7.841 7.841 80 87 241 239 

Max.   : 7.841 7.841 105 105 1043 754 

NA's   : 
  

9 1 505 111 

Note. MTOS: Major Trauma Outcome Study (Champion et al., 1990) 
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DAGENIC AISNUM TIJDAMB 

 
Length of Stay IC 

(Intensive Care) 

The number of AIS codes Time Ambulance* 

 
DTR Hip Fractures DTR Hip Fractures DTR Hip Fractures 

Min.   : 0 0 0 1 9 12 

1st Qu.: 0 0 1 1 35 37 

Median : 0 0 1 1 44 45 

Mean   : 7.8 0.1178 2.033 1.217 45.72 46.97 

3rd Qu.: 0 0 2 1 54 54 

Max.   : 124 41 28 16 225 182 

NA's   : 7413 1175 
  

27518 4672 

Note. Time Ambulance is a combination of AANRIJTIJD, BEHANDELTIJD, and VERVOERTIJD 

 

LEVELHOOGHOSP LEVELHOOGPREHOSP 

Level of Hospital Care Level Pre Hospital Care 

Levels DTR Hip fracture Levels DTR Hip Fracture 

0 (Other) 31082 1191 0 (None and Basic) 14570 851 

1 (Operating room) 21627 10711 1 (Other) 40497 11493 

NA's 2695 506 NA's: 337 64 

 

LETSELAARDWAARDEID OVERLEDEN 

Type of Injury Passed Away 

Levels DTR Hip fracture Levels DTR Hip Fracture 

0 (Blunt) 53639 12402 0 (Survived) 1251 487 

1 (Penetrating) 1650 5 1 (Passed away) 54153 11921 

NA's 115 1 
   

 

HERKOMSTWAARDEID GESLACHTMAN 

Referred From Sex  

Levels DTR Hip fracture Levels DTR Hip Fracture 

0 (Place Trauma) 39488 9701 0 (Male) 28122 4166 

1 (Other) 15535 2640 1 (Female) 27277 8241 

NA's 381 67 NA's 5 1 
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VERWYZER INTENTIE 

Referrer Cause of Injury 

Levels DTR Hip fracture Levels DTR Hip Fracture 

0 (112) 29841 7270 1 (Traffic) 12341 1264 

1 (Other) 22653 4579 2 (Other) 13560 400 

NA's 2910 559 3 (Low fall) 26743 10252 
   

NA's 2760 492 

 

COMORB OPNAMEDUUR 

Comorbidity (ASA) Length of Stay Hospital 

Levels DTR Hip fracture Levels DTR Hip Fracture 

1 (ASA 1) 20995 1085 1 (1 day) 5611 104 

2 (ASA 2) 19278 5514 2 (2 days) 18171 406 

3 (ASA 3) 11573 5088 3 (3-7 days) 18033 5887 

4 (ASA 4 & 5) 500 216 4 (8 -14 days) 9204 4310 

NA's 3058 505 5 (15-21 days) 2675 1130 
   

6 (>21 days) 1580 564 
   

NA's 130 7 
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Appendix C. Schematic approach of model selection 

Appendix C contains a schematic of the model selection approach.  
 

1. First run 

1 For the algorithms RF, 
KNN, and SVM 

2 Selecting many different 
hyperparameter settings 

3 With 3 fold cross-validation 

4 Training and validating on 3 
subsets for every training 
fold 

    

Result Creating +/- 1000 models in 
total each with 9 SMR 
scores 

 

  

 

 

 

 

 

 

 

5. Testing 

1 For the algorithms RF, KNN, and SVM 

2 Selecting the hyperparameter settings of the best 
performing model 

3 Training and testing on 50 subsets 

4 Calculate the 95% quantile confidence interval for each 
model 

    

Result 95% quantile confidence interval of the SMR scores on the 
test set for the best models 

2. Evaluation first run 

1 Calculating 95% quantile 
confidence interval for each 
model 

2 Selecting the best 5 models 
for each algorithm based on 
the error function 

    

  
 

    

Result An overview of the 15 best 
performing models and their 
hyperparameter settings 

3. Second run 

1 For the algorithms RF, 
KNN, and SVM 

2 Selecting the 
hyperparameter settings of 
the best performing models 

3 With 3 fold cross-validation 

4 Training and validating on 
15 subsets for  every 
training fold 

    

Result Creating fewer models 
each with 45 SMR scores 

4. Evaluation second run 

1 Calculating 95% quantile 
confidence interval for each 
model 

2 Selecting the best model for 
each algorithm based on the 
error  function 

  

  
    

    

Result An overview of the best 
performing models and their 
hyperparameter settings 
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Appendix D. Probability distributions 

Appendix D contains the probability distribution of the best performing models on the 

specified test sets. For the TRISS model, the probability is just the PSNL15. For the KNN 

and RF, this is the percentage of neighbours or trees voting for a negative outcome 

(survived). For the SVM the probabilities are calibrated using Platt scaling (Platt, 1999). 
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Appendix E. Accuracy and Confusion Matrices 

Appendix E contains the accuracy of the best performing models on the specified test sets 
and their confusion matrix.  

 
2019 Hip fracture 2019 entire DTR 

RF Lower CI Higher CI Lower CI Higher CI 

Trained on TRISS variables 0.912 0.925 0.954 0.958 

Trained on all selected variables 0.940 0.948 0.924 0.933 

Trained on 2 variables 0.918 0.927 0.936 0.942 
 

        

KNN         

Trained on TRISS variables 0.923 0.939 0.954 0.959 

Trained on all selected variables 0.925 0.936 0.955 0.960 

Trained on 2 variables 0.926 0.936 0.931 0.941 
 

        

SVM         

Trained on TRISS variables 0.917 0.938 0.950 0.960 

Trained on all selected variables 0.934 0.952 0.952 0.966 

Note. The numbers displayed is the accuracy, not the SMR. 
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