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Dimensionality reduction in visualization of
high-dimensional mixed data

Alicja Ciuńczyk

High-dimensional mixed data require a different approach in the context of dimensionality
reduction than homogeneous data. That approach can be either using an algorithm specifically
designed for both numerical and categorical variables or by using a distance for mixed data. This
research explores the second approach, using t-Distributed Stochastic Neighbor Embedding (t-
SNE) combined with Gower distance. The goal of the research was to explore if using t-SNE
would allow for better clustering than no dimensionality reduction.

Heart failure data were used with the assumption that it has a separation, according to phe-
notypes. Dimensionality reduction was used in order to allow for visualization of the phenotypes
in two dimensions. To quantitatively find the separation in t-SNE embeddings, a clustering
algorithm, DBSCAN, was used. The results of DBSCAN were evaluated by calculating the
Silhouette coefficient.

The results showed that t-SNE and data without dimensionality reduction result in very
similar clusterings in terms of the number of clusters and Silhouette coefficient. However, t-
SNE allows for visualization of the outputs, which allows for additional quantitative evaluation.
The visualization of t-SNE results made possible the exploration of the emerging patterns.

1. Introduction

Visualization of data can help in better understanding the world and phenomena within
it. However, there is a problem that undermines this visualization. Humans are used
to experiencing the world in three dimensions and can only observe and understand
a limited number of variables. With a maximum of three axes, researchers can only
present a limited number of variables. Many datasets, including clinical data, contain
tens or hundreds of variables. Such data, called high dimensional, poses problems
for researchers from many fields. Usually, dimensionality reduction can solve those
problems by preserving the most important information from the data in two or three
dimensions. However, when the high-dimensional data contain both numerical and
categorical variables, exploration, visualization, and analysis become harder. This is
because the conventional ways of handling high dimensionality problems, like linear
Principal Component Analysis (PCA), do not work well when nominal and ordinal
variables are combined with numerical ones (Van Der Heijden and Van Buuren 2016).
Another reason is that making the data homogenous by discretizing numerical variables
or omitting categorical variables can lead to the loss of information, while one-hot or
dummy encoding the categories can result in representations that have no meaning
(Zhang et al. 2016).

To solve this problem, researchers created several dimensionality reduction meth-
ods that can work with mixed data and help with their visualization. Examples of them
are Nonlinear Principal Component Analysis (NLPCA) (Gifi 1990) and an extension
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of Multiple Correspondence Analysis (MCA) (Greenacre and Blasius 2006). Those two
methods are related to each other, and both use indicator matrices to capture the infor-
mation in categorical variables. A different approach uses a dimensionality reduction
technique, for example, t-Distributed Stochastic Neighbor Embedding (t-SNE) (Van
Der Maaten and Hinton 2008), with a distance metric that can work with both numerical
and categorical variables simultaneously. Each of the approaches has its advantages, as
well as disadvantages. In this research, the focus is on exploring the second approach,
namely, using t-SNE to gather meaningful insights from high-dimensional mixed data.

High-dimensional data is complex and usually contains tens, hundreds or thou-
sands of variables, which can be on different measurement level (e.g. mixed data), have
different units or scale. When dealing with such data, dimensionality reduction can
improve the quality of the clustering(Magdalinos, Doulkeridis, and Vazirgiannis 2011;
Song, Yang, Siadat, and Pechenizkiy 2013). This enhancement of clustering is due to the
fact that many machine learning algorithms, such as clustering, perform better when
applied to lower dimensional data, which has reduced complexity compared to high-
dimensional ones.

The t-SNE algorithm is a relatively new dimensionality reduction technique. It is
quickly gaining popularity (see Appendix A). It was used in research in many different
disciplines, as astronomy (Traven et al. 2017), genetics (Li et al. 2017), and chemistry
(Fooladgar and Duwig 2019). It is used in medical research to make data visualization
possible. For example, Shen et al. (2017) used a variant of t-SNE to visualize the rela-
tionships and overlap between diseases. It has also been used to explore phenotypes of
different diseases (Hilvering, Vijverberg, Houben, Schweizer, Lammers, and Koender-
man 2014; Costantino, Aegerter, Dougados, Breban, and D’Agostino 2016).

According to the World Health Organization (WHO), cardiovascular diseases are
a primary cause of death, being responsible for 31% of all deaths worldwide (World
Health Organization 2017). One of the risk factors for cardiovascular disease is heart
failure (HF), which in 1997 was described as an “emerging epidemic” (Braunwald 1997,
p. 1365) and today around 26 million people affected by it (Savarese and Lund 2017). It
is a long-term condition in which the heart is not able to pump enough blood to satisfy
the needs of the human body. Various subtypes of the diseases have been identified.
This makes HF heterogeneous in prognosis, outcome, and response to treatment based
on the distinct phenotypes (Faxén et al. 2017). One of the phenotypic classifications
is the division between systolic and diastolic HF. In systolic heart failure, the heart
does not contract powerfully enough, resulting in reduced ejection fraction of blood
from the heart (HFrEF). In diastolic heart failure, the heart does not relax well enough,
resulting in insufficient blood filling but maintaining a preserved ejection fraction of
blood from the heart (HFpEF). Finding new subcategories and the differences between
patients can help to understand the condition better and offer improved patient care.
Personalized treatment plans could be beneficial, especially in the light of HFpEF not
responding well to ‘one size fits all’ treatments (Shah, Katz, and Deo 2014; Ferreira et al.
2017; Bertsimas, Orfanoudaki, and Weiner 2018). An analysis and visualization of the
patients’ data could help with making a phenotype analysis by differentiating a new
phenotype, finding out about phenotype classes and distribution, assigning patients to
a specific phenotype class, and understanding the variation in patient characteristics,
prognosis, and outcome. This is why exploration of the methods that can work with
high-dimensional mixed data could have a use in medical research.

The technique explored in this research, t-SNE, can make it possible to see the
patterns hidden in high-dimensional mixed data. Such visualizations might be useful
for clinicians interested in heart failure phenotypes. It might also improve the clustering
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results due to the reduced data complexity. This resulted in the research questions:
“Does t-SNE give rise to better clusterings of mixed high-dimensional data compared
to clustering on data without the performed dimensionality reduction? What are the
factors that can affect the peformance of t-SNE? Can the use of t-SNE help improve
the identification of distinct phenotypes in patients with heart failure by allowing the
visualization of the data?".

Based on these questions three hypotheses arise:

1. The previous work on enhancing clustering performance with
dimensionality reduction suggests that t-SNE provides better clusterings
of mixed high-dimensional data compared to the ones done without the
dimensionality reduction.

• The clustering is considered better when it has a higher Silhouette
coefficient.

2. The factors affecting the performance of clustering based on the t-SNE
output are the parameters of the algorithms and variables included in
t-SNE.

3. The use of t-SNE allows and improves the identification of distinct
phenotypes in patients with heart failure.

To answer the research questions and test the hypotheses a dataset of patients with
heart failure was used, which was high-dimensional and contained both numerical and
categorical variables.
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2. Related Work

2.1 Clustering

Dimensionality reduction is not a necessary step in working with-high dimensional
data. An example of that is research by Shah et al. (2015). It shows that just cluster-
ing can help find new phenotypes. So far, this is the only research that used clinical
data to investigate heart failure phenotypes. It was done on patients with HFpEF in
order to explore possible subtypes in this phenotype. The researchers used hierarchical
agglomerative clustering without any dimensionality reduction.

Clustering is used to separate visual patterns in the data quantitatively. A good
description is presented by Estivill-Castro (2002, p. 65): “Given a data set, any clustering
[...] is a hypothesis to suggest (or explain) groupings in the data”. The goal of clustering
is to group similar points into a homogeneous cluster based on a predefined criterion
while excluding dissimilar points from that group. It is done in an unsupervised way,
focusing on the data themselves and thus without using labels.

There are many clustering algorithms with traditional techniques, including clus-
tering based on model, partition, hierarchy, distribution, and density, as well as graph,
fractal, and fuzzy theory (Xu and Tian 2015). They differ based on the assumptions
about the data, and all of them have advantages and disadvantages. The chosen clus-
tering algorithm should consider the problem at hand and be based on assumptions
made about the inherent structure of the data (Estivill-Castro 2002). Each method can
present a different output, and assessing which solution is better can be subjective (Xu
and Wunsch 2008).

In this research, Density-based spatial clustering of applications with noise (DB-
SCAN) (Ester et al. 1996) was used. DBSCAN is a density-based clustering algorithm.
This means that it finds clusters based on high-density areas, which are separated from
other dense clusters by low-density parts. To do that, it uses two parameters: epsilon
(Eps) and the minimum number of samples (MinPts). Epsilon defines the radius of the
potential neighborhood. The Eps-neighborhood of the point p is defined as

NEps(p) = {q ∈ D|dist(p, q) ≤ Eps} (1)

where D denotes the dataset and dist(p, q) is the distance between the points p and q.
The DBSCAN algorithm defines two main types of points: core and noise. To define

the point p as a core one, it has to have a point q in its neighborhood, which has at least
the specified minimum number of samples defined by MinPts. The clusters are seen as
chains of points where point p1 is in the Eps-neighborhood of point p2 when the core
point condition is fulfilled. When a point does not belong to any cluster, it is defined as
noise.

In many scenarios, for example, exploratory research, the number of clusters (k) is
not known a priori. DBSCAN does not require the user to prespecify k, which can be
an advantage. It can also find clusters of a non-convex and arbitrary shape. DBSCAN
can also classify points as noise, which is different from some of the other clustering
techniques. Many other algorithms will classify all the points to some clusters. DBSCAN
will consider a point a noise if it does not fit into the criteria of a cluster specified by Eps
and MinPts. This is helpful when evaluating the results because the noise can be treated
as outliers and not considered.

Using only clustering, which was the approach of Shah et al. (2015), is interesting,
showing that it is possible to find phenotypes without dimensionality reduction or vi-
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sualizing the different subgroups. However, their work suffers from two shortcomings:
(1) for the clustering, they relied on numerical data only, and (2) the researchers did not
use dimensionality reduction, and thus they were not able to visualize their results.

2.2 Dimensionality reduction

Dimensionality reduction, with an emphasis on feature projection, can be used to visual-
ize phenotypes, as shown by Hilvering et al. (2014) and Costantino et al. (2016). The goal
of reducing dimensionality is to find low-dimensional structures in high-dimensional
data that would allow to represent them in two or three dimensions faithfully. Many di-
mensionality reduction techniques exist, which can be divided into linear and nonlinear.
Linear feature projection finds the best linear representation of the data that allows it to
map them to low-dimensional space. An example of it is Principal Component Analysis
(PCA), created over 100 years ago by Pearson (1901). He described it as a reduction of
the number of dimensions in the data by fitting a line or a plane that gives the best
representation.

Using dimensionality reduction can visualize the separation of the patients into
known and well-described phenotypes and help with better defining newly found ones.
Research by Costantino et al. (2016) studied the phenotypic presentation of patients
with early inflammatory back pain by using Multiple Correspondence Analysis (MCA)
(Greenacre and Blasius 2006) combined with clustering. MCA is specifically designed
to work with categorical data but it can be extended to mixed data as well. Costantino
et al. (2016) were able to visualize a clear separation of patients into two distinct groups.
The groups were confirmatory of the most recent patients’ classification and provided
insight into the variables separating them. Such a visualization would not be possible
without dimensionality reduction.

Another research that used dimensionality reduction and clustering was per-
formed in 2014 by Hilvering et al. They used Nonlinear Principal Component Analysis
(NLPCA) (Gifi 1990) to explore asthma phenotypes. The researchers first established
the phenotype of each patient by using sputum analysis, a method currently used for
this purpose. Independently from those results, they used NLPCA to try to separate the
patients into subgroups. Their results showed a close match between the results from
sputum analysis and dimensionality reduction. The conclusion was that using just a
routine set of clinical data can deliver a non-invasive way of establishing each patient’s
asthma phenotype.

MCA and NLPCA are designed for categorical data and mixed data. However,
it is also possible to use a different type of dimensionality reduction with a distance
that is designed for mixed data. A family of dimensionality reduction techniques that
can use such distance is manifold learning. Manifold learning, a part of the nonlinear
dimensionality reduction family, assumes that the data points lie on or near a nonlinear
manifold. It tries to map the data in the low-dimensional space in a way that preserves
the high-dimensional properties (Zheng and Xue 2009).

One of the manifold learning techniques is t-Distributed Stochastic Neighbor Em-
bedding, created by Van Der Maaten and Hinton (2008). It converts a distance measure
between high-dimensional points into a joint probability distribution P . This proba-
bility is a means of representing similarity. Points that are similar and thus close to
each other in high-dimensional space should be preferred to be nearby each other in
lower dimensions. Ideally, the probability of point xi being a neighbor of point xj in
high-dimensional space should be equal to the probability of their low-dimensional
equivalents yi and yj being neighbors in the low-dimensional space.
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The t-SNE algorithm has the advantage of being able to address the crowding
problem by using Student’s t-Distribution in the low-dimensional space. The crowding
problem is the result of the lack of space in low dimensions, which prevents an accurate
representation of the distances between points (Van Der Maaten and Hinton 2008).
Farther points exert a force that brings moderately distant points closer together, which
obstructs pattern creation. The heavier tails of Student t-distribution allow for a better
representation of the distances between the points and allow for patterns to emerge.

The low dimensional pairwise similarity in t-SNE uses the Student’s t-distribution
with one degree of freedom. This similarity is given by the formula

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yk − yl‖

2)−1
. (2)

The high dimensional pairwise similarity uses Gaussian probability distribution
and is symmetric by setting

pij =
pj|i + pi|j

2n
, (3)

with pij equal to

pij =
exp(−‖xi − xj‖2 /2σ2)∑
k 6=l exp(−‖xk − xl‖

2 /2σ2)
. (4)

The t-SNE algorithm minimizes the Kullback-Leibler divergence between the joint
probability distributions in the high- and low-dimensional space and its cost function is
given by:

C = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij
. (5)

In t-SNE, the number of neighbors is set by using perplexity. Its value usually ranges
between 5 and 50 and is defined with the formula

Perp(Pi) = 2H(Pi), (6)

andH(Pi) is the Shannon entropy of Pi. The values of perplexity influence the emphasis
on either local or a global structure. When the perplexity values are lower, t-SNE focuses
more on a few surrounding neighbors and preserves this local structure, while higher
values of perplexity look at more neighbors and recreate the global structure.

The used technique, t-SNE, as many other dimensionality reduction algorithms,
uses distances or similarities to lower the number of dimensions. One of the problems
with mixed data is that a metric that works well for numerical variables may not work
well for categorical ones (Zhang et al. 2015). This is because integers can represent the
categorical data, but that does not mean they behave in the same way. For example,
it is common practice to represent males and females with ones and zeros. However,
because this is only a representation, the natural ordering of one being greater than
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zero does not apply. It is thus essential to choose a distance that will take this into
account. For this research, several distances were considered, such as Heterogeneous
Euclidean-Overlap Metric (HEOM) (Wilson and Martinez 1997) and Unified Similarity
Metric (Jinyin et al. 2017). The chosen distance was Gower (Gower 1971) as it can
work with mixed data because it separates the nominal and binary variables from the
numerical ones and applies different distances to them. It was extended by Kaufman
and Rousseeuw (2009) to also work with ordinal and ratio variables. The distance
between i and j is given by the formula

dij =

∑p
f=1 δijk

d ij

p∑
f=1

δijk. (7)

The distance dij is defined separately for numerical and categorical variables. For
numerical data, the distance used is normalized Manhattan defined as

dijk =
|xik − xjk|

Rk
, (8)

where Rk is

Rk = max (xk)−min (xk). (9)

For categorical variables the Dice’s coefficient is used. Its formula is

dijk =

{
1 if xik 6= xjk

0 if xik = xjk.
(10)

2.3 Evaluation techniques

To help with evaluating the clustering results, researchers created clustering validity
criteria that can be used for this purpose. They can be divided into external and internal.
External criteria rely on a known variable or label that is assumed to separate the data.
The clustering results are compared with the label and provide an estimate of the quality
of the clustering. However, clustering is an unsupervised technique, which means that it
should not rely on the presence of labels. In cases where labels are not available, internal
criteria can help with evaluating the results. Internal validity is entirely based on the
data themselves. Each one makes a different assumption about what makes a good or
useful clustering.

The internal evaluation indices that are often used are Dunn Index (Dunn
1973), Davies-Bouldin (Davies and Bouldin 1979) and Calinski-Harabasz (Caliński and
Harabasz 1974) and Silhouette coefficient (Kaufman and Rousseeuw 2009).

The evaluation indices mentioned, as well as many others, try to capture the sepa-
ration and cohesion of clusters. This means that their underlying assumption is that the
best clustering should have clusters that are well separated from each other, as well as
clusters that contain similar points but not dissimilar ones.

A popular choice is a Silhouette Index, well described by Kaufman and Rousseeuw
(2009), which measures how similar the points in a cluster are to each other and how
different they are from points in other clusters. It is calculated by using the distance
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d(i, j) between points i and j by using the formula

s(i) =
b(i)− a(i)

max {a(i), b(i)}
, (11)

where a(i) is the mean distance between the points within the cluster Ci and is defined
as

a(i) =
1

|Ci| − 1

∑
j∈Ci,i6=j

d(i, j), (12)

and b(i) is the minimum distance between the cluster Ci and other clusters, given by

b(i) = min
k 6=i

1

|Ck|
∑
j∈Ck

d(i, j). (13)

The Silhouette Index ranges from -1 to 1, with higher values suggesting a more optimal
solution. The Silhouette coefficient represent the overall score and in this research it is
defined as the mean of the Silhouette Indices for all the clusters.

Evaluation of clustering results can be also done by comparing the outputs of two
different setups, such as different algorithms or in the case of this research, data with
and without dimensionality reduction. Such a comparison can focus on showing the
similarity of different solutions. One of the metrics that can evaluate that is the Adjusted
Rand Index (Hubert and Arabie 1985), which is the Rand Index (Rand 1971) corrected
for chance.
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3. Experimental Setup

3.1 Data

The data used in this study is a secondary analysis of the OPERA-HF, which is an
observational clinical study of heart failure patients (Cleland 2013). The study was
conducted between 2012 and 2016 by Philips in collaboration with hospitals in the
United Kingdom (NHS Hull and East Yorkshires). The study aimed to validate the
performance of heart failure risk models available in the literature, as well as to develop
a new model that would show better performance (Crundall-Goode et al. 2013).

In total, 1277 patients took part in the study. All the participants had to be at least
18 years old and reside in the local area. They also had to be at one of the study’s
hospitals and be treated with loop diuretics or have a clinical diagnosis of heart failure.
All participants were able and willing to provide their informed consent.

Data collection included two categories of information. The first category was de-
mographic information and included patients’ sex, age, race, marital status, education,
occupation, and income. The second category was medical information, for example,
symptoms, comorbidities, medication, blood test results, electrocardiogram (ECG) and
echocardiography results, as well as psychological health.

The demographic information from Table 1 shows that participants were mostly
elderly and overweight males that already had a diagnosed heart failure and previously
have had a heart attack.

Table (1) The table shows basic demographic information based on values present in the data,
with valid n showing the number of non missing values. The summary for the first four variables
is the percent of the cases, for the BMI and Age the summary is the median.

Valid n Summary

Sex Male 773 61
Female 504 39

Martial status Married 614 48
Single 495 39

Heart failure Yes 1228 96
No 49 4

Heart attack Yes 1102 86
No 175 14

BMI 834 28.5

Age 1277 77.0

3.2 Preprocessing

The first step in this secondary analysis, was data preprocessing. It consisted of 3 steps:

• outlier detection,

• feature removal,

• handling missing data.
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Firstly, the data were checked for outliers. Values that are not physiologically possible
for a human were deemed as errors. The medical literature was used to assess those
possible ranges. However, with four variables, a clinician was asked to help with the
evaluation. In five cases, the errors were assumed to come from using a different unit,
for example, seconds instead of milliseconds. These values were transformed by either
multiplying or dividing by a factor of ten. In nine other cases, the values were treated
as missing because there was no simple explanation for the value.

The second step was the feature removal, and it was done in phases. Figure 1
summarizes all the phases taken, which will be explained in detail.

Figure (1) The steps taken in feature removal. The first box shows the number of features
available and the last the final number of features. The rest shows how many were removed, the
exact number is in the parentheses.

Firstly, 78 columns were removed due to their high collinearity. This was assessed
on three levels: checking for variables that were either an exact match or the opposite of
each other, looking at the Pearson correlation coefficients, and using expert knowledge.
The variables in question were either a categorical flag of a continuous variable (e.g.,
a binary variable created from the temperature that indicated if a patient had a fever),
expressed a similar occurrence (e.g., hepatitis was rare in the data, which made variables
“hepatitis” and “history of hepatitis” identical) or were a result of one-hot encoding the
categorical variables in the primary study (e.g., turning variable Sex into two variables
male and female).

Only admission features were used to prevent the influence of hospital care on the
patients’ condition and thus on the phenotype clustering, except if the information was
only available at discharge. This meant removing 74 discharge variables.

Next, variables assumed not to influence a heart failure phenotype were taken out
of the dataset. This includes information about patients’ discharge place, whether their
discharge plan was shared with them and their family, the type of hospital at which they
were treated, and some demographic variables such as employment or marital status.
In total, there were 208 of such features.

Another part of feature removal was ensuring that all the variables had enough
categories for train, validation, and test set split. It meant removing variables that con-
tained only one or not enough values to cover the three sets. A threshold was calculated
to maximize the probability of each set having at least one instance of each case (the
formula for the threshold can be found in Appendix B). The threshold was determined
to be a minimum of 13 cases per category. In total, 15 variables were removed due to
not meeting the threshold.
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3.3 Missing data

The next phase was focused on handling missingness. Multiple Imputation (MI) tech-
nique was chosen as a way of dealing with missing values. It is a highly effective
technique, introducing little bias if the assumptions that it operates under are plausible
(Pigott 2001). MI is often used combined with statistical modeling, where multiple
imputed datasets are used to find optimal model coefficients independently from each
other. In the end, their results are pooled together to obtain a final result (Van Buuren
2018). However, in the case of clustering, there is no model for a pooling phase, and it
cannot be performed. One solution to this is to stack all the imputed data as proposed
by Beesley and Taylor (2019). It creates a large set (number of rows × number of
imputations), which then can be used to perform cluster analysis. Van Buuren (2018)
states that this approach can be beneficial when analyzing categorical data. The source
further states that it is not a recommended approach because it can produce biased
standard errors and t-tests. However, in the case of this research, this concern is not
relevant, as the focus is not on estimating population parameters.

The guidelines found in Jakobsen et al. (2017) were used to assess if MI can be per-
formed. The guidelines specify that the proportion of missing data should be between 5
and 40% and that the assumptions of data missing completely not at random (MCAR),
as well as missing not at random (MNAR), should not be plausible. In this research, the
allowed proportion of missing data was fixed to 40%, which meant that an additional
42 variables had to be removed because they were above that threshold.

Before performing the MI, the data were randomly split into training, validation,
and test sets with the proportion of 60:20:20. In the dataset used for MI, 75 columns had
no missing data. The rest of the variables had 15% missing data on average, ranging
from 1 to 39%. The missing data patterns and nullity correlation plots (Figure 2) were
analyzed in order to assess if performing MI was a reasonable choice.

Figure (2) The plots used to assess the missing data patterns.

(a) Missing data pattern plot. Each row represents a patient in the data. The black parts of the plot
indicate present data, while white parts are the missing instances.
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(a)

(b) Nullity correlation plot. It represents the correlation of the missing data between a pair of variables.

The first plot shows that, in most cases, there are no clear patterns. However, some
variables do show them. To better understand where those patterns are originating
from, the nullity correlation was plotted. It shows the correlation between the two
variables’ missing data. Some of the features show a relatively high correlation (above
0.7). Those variables are diastolic and systolic blood pressure taken in one measurement,
as well as variables measured with the same blood test (e.g., potassium, sodium, urea).
After analyzing the plots, the assumption of MAR seemed plausible and suspected to
be related to the test being performed or not.

The Multivariate Imputation by Chained Equations (mice) package in R was used
with the default arguments (van Buuren and Groothuis-Oudshoorn 2011). This means
that five imputations were performed, as suggested by Van Buuren (2018). The datasets
produced by MI were stacked together as described by Beesley and Taylor (2019).
This resulted in 4590 rows in the training set and 1536 in both validation and test
sets. As for the imputation models, those were also left as default, which means that
predictive mean matching (pmm) was used for the numeric data, logistic regression for
binary, polytomous regression for unordered categorical and proportional odds model
for ordered categorical data. The distribution of the data was evaluated to compare the
means and standard deviations of the original and imputed datasets. First, it was done
visually by exploring notched boxplots and density plots. For the observed and imputed
datasets, the mean, standard deviation, and five-number summary of all the variables
were compared to check for differences.

The density plot (Figure 4), in combination with boxplots, showed that two nu-
merical variables needed a closer examination: systolic, and diastolic blood pressure.
The curves for the imputations should closely match the observed data. However, those
variables showed a visual difference in distribution. The differences in observed and
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imputed data were further explored by performing a Welch’s t-test, which showed that
the differences in means were not significant.

Figure (4) Density plot for the training data for each of the numerical variables. The blue line
represents the observed data, while red lines represent imputations.

Additional nine features showed a significant difference in means that were as-
sessed using Welch’s t-test for numerical and chi-square for categorical variables. They
were: Left bundle branch block (p-value 0.009), Arrhythmia (p-value 3.5e-08), PCI
(p-value 0.002), Trouble bathing (p-value 1.6e-09), Trouble dressing (p-value 9.0-e10),
History of MI (p-value 0.03), Orthopnea (p-value 0.001), Coronary artery bypass graft
(p-value 7.8e-05) and History of alcohol intake (p-value 0.03). After closer examination,
the conclusion was that the MI did not converge for those variables. However, because
they were not used later in the study and had no impact on the final result, they were
removed from the data.

This created a final list of variables. It contained 104 features out of which 87 were
categorical, with 74 nominal binary, and 2 ordinal variables. The remaining 24 features
were numerical, with 18 variables being continuous and 8 discrete. Additional two
features were added after performing MI, Body Mass Index (BMI) and Pulse pressure,
as they were a combination of features in the data. A full list of variables can be found
in Appendix C.

3.4 Method / Models

Figure 5 presents the pipeline used for this research. The first steps, which are pre-
processing, splitting the data and handling missing data, were described in previous
sections. These steps resulted in the final dataset that was used for the analysis.

As the first step, the subsets of approximately ten variables (further also referred to
as features) were created based on medical literature and were used to assess better the
feature importance, as well as limit the number of features used by t-SNE.

The training and validation sets were used to perform experiments. The goal of
those experiments was to find the highest Silhouette coefficient. There were four sets of
experiments performed:
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Figure (5) The pipeline used in the performed analysis. Note: Rand in the figure is referring to
the Adjusted Rand Index.

1. Finding the best performing variable subset;

2. Exploring the parameter influence on the results;

3. Exploring the patterns found in the embedding by looking at variable
distribution;

4. Comparing results of t-SNE with the data without dimensionality
reduction.

The first experiment consisted of finding the best combination of variable subset and
parameters of t-SNE and DBSCAN, which were assessed by the Silhouette coefficient.
The algorithms were used on the validation data with the parameters obtained from
training. This was done to assess the performance of the solution on unseen data.
Secondly, the best performing subset was used to explore and visualize the influence of
parameters on t-SNE embeddings, clustering, and the Silhouette coefficient. Next, the
best performing subset was used to look at the variable distribution in the t-SNE output.
This was done by plotting the t-SNE embedding and using each of the variables in the
dataset as a label in that plot. Lastly, a test set was used, where clustering was performed
on the results of t-SNE and the test set itself. This was done to explore the effect of t-SNE
on the results, as it was the only difference between the two solutions. The Silhouette
coefficient was calculated for each result of the clustering (training, validation, and
test sets) in order to quantify the performance of t-SNE. The reduced and not reduced
test set clusterings were compared by using the Adjusted Rand Index. All their plots
were also evaluated visually to catch any discrepancies between the visual patterns and
the clustering result. In the next parts, each of the taken steps will be described. The
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next step was done using training and validation data to continue with the plan of
analysis from Figure 1. These sets were used to find an optimal combination of variable
subsets, algorithm parameters, and to test the distance used. To find the optimal variable
subset, the medical literature was studied, focusing on heart failure phenotypes. The
goal was to match as closely as possible the variables identified as separating different
phenotypes. The medical publications used were: Shah, Katz, Selvaraj, Burke, Yancy,
Gheorghiade, Bonow, Huang, and Deo (2015); Figueroa and Peters (2006); Clark and
Dargie (2011). The subsets based on them will be further referred to as A, B, and C. In
many cases, the needed variables were not available in the final dataset. An additional
subset (D) was created from the combination of features that were often referred to
in the medical literature about heart failure. They are the common tests done when a
patient is first seen by a medical professional (American Heart Association 2017). Table
2 shows the exact features identified from each paper.

Table (2) Subsets of variables that were used in the research.

Paper/book Variables

A: Shah et al. (2015) Age, Pulse pressure, Systolic bp, Diastolic bp, BMI,
Potassium, Sodium, Urea, White blood cell count

B: Figueroa and Peters (2006)

Age, Weight, Pulse pressure, Jugular venous pressure,
Pulmonary crackles, Pulmonary oedema,
Dependent oedema, Liver disease, Pleural effusion,
Resting sinus tachycardia

C: Clark and Dargie (2011)
Age, Weight, Sex, Diastolic bp, Heart rhythm,
Valvular heart disease, Left ventricular hypertrophy,
Haemoglobin, Diabetes

D: Basic tests
Age, Sex, Systolic bp, Diastolic bp, Creatinine,
Albumin, Bilirubin, Sodium, Urea, Potassium,
Hematocrit, Hypertension

In addition to the four feature sets based on the desk research, the combination
of t-SNE and clustering was also applied to the full dataset. On each of the subsets,
the Gower distance was calculated, and the resulting distance matrix was fed to the t-
SNE and clustered using DBSCAN. For both the t-SNE and DBSCAN parameters were
optimized by calculating the Silhouette coefficient and searching for its highest value.
For each subset, the perplexity, Eps, and MinPts were optimized to find the highest
Silhouette for that subset. The values for the parameters of the used algorithms can be
found in table 3 The ranges were intentionally set to be broader than suggested in the
literature. The reason is that this is exploratory research, and the influence of parameters
on the performance was studied.

Table (3) Values of the tested parameters for each of the algorithms.

Values

Perplexity 10 20 30 40 50 60 70 80 90 100

Eps 0.001 0.003 0.01 0.04 0.1 0.4 1.4 4.5 15 50

MinPts 10 64 119 173 228 282 337 391 446 500
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The outputs of the clustering were also visually assessed; the number of clusters
from DBSCAN was compared to the visual number of clusters. The patterns in the best
performing subset were explored. Each of the variables from the entire dataset was used
as a label in a plot of t-SNE embeddings. The separation of the variables was assessed
visually.

The final subset and parameter combination, further called the model, were used
on validation data to check if the performance was similar to the training result.

The last step was done using the test data with the final model (t-SNE and cluster-
ing), as well as clustering done without the dimensionality reduction. This part of the
testing was done to determine the performance of the t-SNE itself. For the data without
the dimensionality reduction, the Gower distance was also calculated and the same
variable subset was used. This was done to avoid the impact of the chosen distance and
subset on the result. The next step was using DBSCAN and finding optimal parameters
for it. The Silhouette coefficient was also calculated. However, as the data without t-
SNE is high-dimensional, it is not possible to plot it. The two resulting clusterings were
compared to each other based on their Silhouette coefficient and the Adjusted Rand
Index to assess their similarity.

3.5 Language and version

Most of the research was performed in Python 3.7.4. The general libraries used were
pandas (pandas development team 2020), scipy (Virtanen et al. 2020) and matplotlib
(Hunter 2007). The most important was scikit-learn (Pedregosa et al. 2011), as functions
from it were the most important part of this research. This included splitting the data
into training, validation and test set, t-SNE, DBSCAN, Silhouette coefficient, and Ad-
justed Rand Index.

At the time of this research, Gower distance was not included in any of the big
Python libraries. The package gower (Yan 2019) was used to calculate Gower distance.

MI was performed in R. This was done because, at the time of the writing, there
were no high-quality Python packages that could perform Multiple Imputation by using
different models for numerical and categorical variables1.

1 The package that could separate numerical and categorical data were Autoimpute (Kearney and Barkat
2019). Unfortunately, at the time, it was not yet a viable solution. During the research, problems with the
package were discovered, which led to the imputation models not converging. This resulted in values
that were outside of a reasonable range for the variables. The issue was fed back to the author of the
python package and solutions suggested.
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4. Results

In this chapter, the results of the performed analysis will be presented. The goal
of the analysis was to answer research questions and test hypotheses. The research
questions focused on the comparison of clustering results with and without using t-
SNE, a dimesnionality reduction technique. The research questions also explored the
usefulness of t-SNE in phenotype identification. To answer the research question four
types of experiments were performed. In this chapter the results of these experiments
will be presented. These sets of experiments are: (1) finding the best performing variable
subset; (2) exploring the parameter influence on the results; (3) exploring the variable
distributions in the t-SNE embeddings; (4) comparing results of t-SNE with clustering
done without the dimensionality reduction.

4.1 Variable subsets

As described earlier, the first step of this analysis was exploring results obtained from
different variable subsets. They were used to find a solution with the best performance
as given by the highest Silhouette coefficient.

The results of the analysis performed on the training data based on variable subsets
are in Table 4 (plots for each of the results can be found in Appendix D). This analysis
was performed with noise deleted from the Silhouette calculation. From the table, it
can be seen that one of the subsets was performing better than others, reaching the
Silhouette coefficient of 0.607. The results for all subsets were not changing with the
treatment of noise. Whether it was considered one cluster or noisy data were removed,
the Silhouette coefficient remained stable.

Table (4) Highest Silhouette coefficients for each variable subset. For each result, the values of
perplexity, epsilon (Eps) and the number of minimum points (MinPts) that were used for this
score are given.

Variable subset Perplexity Eps MinPts Silhouette

A 90 15 173.0 0.370

B 50 4.5 10.0 0.573

C 50 4.5 10.0 0.582

D 40 15 10.0 0.607

Full data 10 15 60 0.094

The full training dataset was tested with additional values of epsilon, as after
visually inspecting the plot, it seemed that the clustering might not be optimal (Figure
6). With the additional experiments, the full dataset reached a maximum Silhouette
coefficient of 0.094. It showed no difference between the results with and without noise.

The best performing combination of a variable subset (D) and parameters from
training data identified four clusters (plot d in Appendix D), which is in agreement
with the visual assessment. The combination was then applied to the validation data to
assess if the solution remained consistent. The validation data showed four clusters and
a Silhouette coefficient of 0.516 (the plot for validation data can be found in Appendix
E). The distributions of all the variables in the dataset were explored by using them as
labels. This showed an interesting pattern emerging, which was further investigated.
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Figure (6) Clustering result on the t-SNE embedding made form full data.

4.2 Distribution patterns

To explore the phenotypes within the formed clusters the distribution patterns were
explored using training data. Figure 7 shows the subset D plotted with features Sex and
Hypertension. This shows an almost perfect separation between the clusters for these
two features. It was also confirmed by the chi-square test, where p-values between the
clusters with the same category were equal or very close to 1 (e.g., male and male), while
the clusters with opposite category had a p-value of 0 (e.g., male and female). As Sex
and Hypertension were the only categorical variables in the subset, the question arose
if the separation is the result of using categorical features.

Figure (7) Plots show the perfect separation for the two categorical variables included in the
subset.

(a) Plot for the subset D showing the
variable Sex.

(b) Plot for the subset D showing the
variable Hypertension.

Another interesting pattern was seen when using numerical features as labels for
the t-SNE plot. What can be seen is a color gradient forming for some of the features
within each cluster (Figure 8). For example, when using subset D with four clusters,
some of the variables included in the subset will show a gradient within each cluster. It
is going from darkest to lightest color and representing the highest and lowest values in
the data. There is no clear separation between the clusters in terms of numerical variable
distribution like it is seen with categorical features.

To explore this, four experiments were performed using subset D on the training
data. As a first step, the variable Osteoarthritis was added to the subset, as it had no
visual separation in the previous clustering. It resulted in new clusters forming, which
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Figure (8) Numerical features plotted on the results for subset B. The top two variables were
included in the subset, while the bottom two were not.

(a) Systolic blood pressure. (b) Albumin.

(c) Height. (d) Haemoglobin.

showed perfect partition for Osteoarthritis while keeping the separation for the other
two categorical features (Sex and Hypertension). COPD, which is another variable that
had no separation, was added on top of that. This again created new, ideally separated
clusters. In both instances, new clusters were formed, going from the original four to
eight and sixteen.

Further, the variables Sex and COPD were removed, which left categorical vari-
ables, Hypertension, and Osteoarthritis. This showed four clusters that were separated
based on the two features included in the subset, but the effect of Sex and COPD
disappeared. The plots for all the experiments can be found in Appendix F.

Secondly, the effect of each categorical variable was assessed separately. Each fea-
ture was added to the subset, t-SNE, and DBSCAN were applied, Silhouette coefficient
calculated, and the feature removed. This meant that each time the subset had two
categorical variables (Sex and an added feature). The parameters used were the same as
for subset D and were not optimized for each particular combination of variables. This
had an effect on the Silhouette, which was not always the highest it could be. However,
these experiments were not done to find the best performing subset, but to explore the
impact of categorical variables on the t-SNE output and the patterns. Thus, the focus
was more on the number of visually separable clusters and the distributions behind
them, not on the high performance.

The plots for all of the binary variables showed four clusters forming, usually well
separated (examples can be found in Appendix G). They mostly resembled the results
obtained from the original subset, and for some of them, the Silhouette coefficient was
similar. The only difference between them was the size of the clusters, which could be
created by the frequency of classes. However, this would require further investigation,
as the sizes of clusters created by t-SNE are not easy to interpret. For categorical, non-
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binary variables, the number of clusters forming was related to the number of categories
in that feature. For variables with four categories, eight clusters were forming, while
those with three categories, ended up with six clusters.

Furthermore, categorical variables were added to the subset incrementally to ex-
plore the impact they have on the results. They were added one by one, both in the order
they were in the dataset, as well as the reverse until all the categorical variables were
included. For this experiment, both t-SNE and DBSCAN parameters were optimized.
Figure 9 shows the maximum Silhouette coefficient for each number of variables. With
one variable included, the result was higher than the best result for subset D, 0.611
versus 0.607. With the following values added, the Silhouette coefficient began dropping
with some spikes in the trend. A similar pattern was seen in the reverse order with
several additional spikes.

Figure (9) Silhouette coefficient value for each perplexity.

As the last step, the combination of t-SNE and DBSCAN was also optimized for
two subsets: one consisting of only numerical and one only of categorical features
(Figure H). This was done to see if any clusters would form without the inclusion of
any categorical variables. The results of this experiment can be seen in Table 5. The
numerical subset, reached a maximum of 0.346 for the Silhouette coefficient, using per-
plexity of 70, Eps of 15, and MinPts equal to 119. The results were the same, whether the
noise was included in the Silhouette calculations or not. It showed one cluster forming
with additional noise. The categorical subset had two clusters and noise and reached
a maximum Silhouette coefficient of 0.169 with perplexity 80, Eps 15, and MinPts 337.
The inclusion of noise did not affect the maximum Silhouette.

Table (5) Silhouette coefficient and algorithms’ parameters for the subset of only numerical
and only categorical variables.

Perplexity Eps MinPts Silhouette

Numerical 70 15 119 0.346
Categorical 80 15 337 0.169
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4.3 Parameter effects

The training and validation data were used to find an optimal value for the parameters
of t-SNE and the clustering algorithm. It was done for each of the variable subsets. In
this section, the impact of parameter optimization is explored.

As established in section 4.1, the training data had the best performing combi-
nation of parameters on subset D, which showed four clusters, both using DBSCAN
and visually. On that subset, 98.8% of cases, epsilon values other than 15, resulted in
DBSCAN finding only one cluster in the data. For Eps equal to 15, the average Silhouette
coefficient was equal to 0.515. The other 1.2% of the cases had Eps equal to 4.5 and were
tied to MinPts of either 10 or 64. Having only one cluster meant that it was only possible
to calculate the Silhouette coefficient when the noise was present in the clustering. In the
cases where the noise was not present, the values were treated as missing.

Plot a in figure 10 shows the performance for all of the tested perplexity values on
the training data. For each value of perplexity, the maximum (left plot) and the average

Figure (10) Silhouette coefficient for the tested parameters. Plots on the left show the maximum
performance, while plots on the right show the average Silhouette for that value. Clustering
results with only one cluster forming were removed.

(a) Silhouette coefficient for each perplexity value.

(b) Silhouette coefficient for each MinPts value.

(right plot) Silhouette coefficients are recorded. The maximum Silhouette was stable for
perplexity values between 30 and 100. Knowing that the results of the t-SNE at each
perplexity value are visually similar and have the same maximum value and adding to
that the epsilon showing more than one cluster almost entirely for the value of 15, the
rise of the average needed more exploration. This exploration showed that with higher
perplexity values, a larger range of MinPts values resulted in maximum performance.
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For each value of MinPts, the same approach as for perplexity was used. The
maximum (left plot) and the average (right plot) Silhouette coefficients are shown in
plot b in figure 10. The changes in performance for each value of MinPts showed stable
results for the values between 10 and 228. For higher values, the Silhouette coefficient
was decreasing (left part of plot b in Fig 10). The average performance for MinPts
peaked at the value of 119 and then decreased for higher values.

4.4 No dimensionality reduction

In the final step, test data were used both with and without dimensionality reduction
to assess the performance of t-SNE. The reduced data were used the same way as in
training and validation steps. The Gower distance was used with and without t-SNE,
DBSCAN was applied to those results, and the Silhouette coefficient was calculated for
both solutions.

For the model with t-SNE, the results were similar to training and validation.
The Silhouette coefficient was 0.511, and 4 clusters were identified. The plot was also
assessed visually, and it resembled the results from training and validation models (plot
b in Appendix E).

For the model without t-SNE, the results were similar to the ones with dimension-
ality reduction. The highest Silhouette coefficient was 0.5, with Eps and MinPts equal
to 1.4 and 10. Four clusters, as well as twenty-four cases of noise, were identified. The
results for this model did not differ whether the noise was included in calculating the
Silhouette or not. The Adjusted Rand Index value was very high, 0.98, which shows that
the results with and without dimensionality reduction were almost identical.
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5. Discussion

The research question in this analysis focused on the exploration if t-SNE give rise
to better clusterings of mixed high-dimensional data compared to clustering on data
without the performed dimensionality reduction and possible factors influencing that.
Moreover, the potential of t-SNE in improving the identification of distinct phenotypes
in patients with heart failure was explored. Based on these questions three hypotheses
were formed:

1. The t-SNE algorithm provides better clusterings than the same procedure
without dimensionality reduction.

2. The parameters and variables influence the performance of t-SNE.

3. The use of t-SNE can help with phenotype identification.

To answer the research questions and test the hypotheses four categories of experiments,
described in the Results section, were performed: (1) finding the best performing subset
of variables; (2) comparing the results of clusterings from t-SNE and not reduced data;
(3) exploring the influence of the parameters on the results; (4) investigating the patterns
in the t-SNE embedding by looking at variable distribution to determine if they can be
distinct phenotypes.

In the first category, the training data were used to find the subset of variables that
would give the highest Silhouette coefficient. This subset was the “Basic test” set (D),
which included variables: Age, Sex, Systolic, and Diastolic blood pressure, Creatinine,
Albumin, Bilirubin, Sodium, Urea, Potassium, Hematocrit, and Hypertension. Two
variables (Sex and Hypertension) are categorical. The final performance of this subset
on the training data gave a Silhouette coefficient of 0.607 with perplexity 40, epsilon 15,
and a minimum number of samples equal to 10. These parameters were applied to the
validation data, which showed similar results. Four clusters were identified, and the
Silhouette coefficient was 0.516. The same parameters were used on the test data. The
results were similar to the validation, four clusters were identified, and the Silhouette
coefficient was 0.511. DBSCAN identified four clusters which was consistent with the
visual assessment.

In the second set of experiments, the test data were also clustered without t-SNE.
The Gower distance was used, and DBSCAN parameters were optimized. The final
results showed a Silhouette coefficient of 0.5 and an Adjusted Rand Index equal to 0.98.

The third category of experiments was exploring the influence of parameters on t-
SNE by using the Silhouette coefficient. Perplexity between 30 and 100 gave the same
maximum result. For epsilon, in most cases, the only value that gave more than one
cluster was 15. The number of minimum samples was stable for values between 10 and
228.

The fourth category was focused on analyzing the patterns found during the train-
ing phase. The clusters showed perfect separation for any set of categorical variables
included. Each result formed clusters to accommodate every possible combination of
all the categories. Moreover, numerical variables included in the subset were showing
gradients within each cluster. The variables that were not included in the subset did not
show such gradients.
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5.1 Pipeline results

One of the results of this research was creating a pipeline for the analysis. It can be
used to assess any dimensionality reduction technique, provided that the clusters in the
data are approximately spherical. It can also be modified by changing the clustering or
validity criterion to accommodate non-convex clusters.

By using the pipeline, it was possible to evaluate performance for each of the steps.
The best training result showed a Silhouette coefficient of 0.607; for validation set, it was
0.516 and for test set 0.511. Due to the mentioned limitation of this study, it is difficult
to assess if it is a relatively good result, but it is possible to say if one solution was better
than another. However, looking back at the Silhouette definition, it is possible to assess if
the points within the clusters are closer to each other than in other clusters. That holds
in this research, as the coefficient is higher than 0.5. On average, the points are more
similar within the cluster.

DBSCAN identified four clusters for each of the sets, which was in agreement with
the visual assessment. It was also the case with data without the dimensionality reduc-
tion. The results for test data clustered without the t-SNE embeddings were similar to
those with the reduced dimensions. The Silhouette coefficient differed by 0.011. This
small difference shows that the hypothesis that t-SNE provides better clusterings of
mixed high-dimensional data compared to the clusterings done without the dimension-
ality reduction, is disproven by the results of this study.

Despite the similarity of the results, it can be argued that t-SNE, while being an
additional step, is an integral part of the pipeline. It allows for visualizing the results,
which has an added advantage. This advantage is that visualization can act as an
additional evaluation. This is especially important when using clustering as part of
the evaluation. In some cases, as with the full dataset, the clustering might not seem
visually optimal. Another possibility is that the clustering with the highest validity
criterion is not the one that is visually the best. In those cases, the researcher can adjust
the parameters or choose a more appropriate evaluation method. That would not be
possible without plotting the data.

Another aspect is that visualization helps with understanding the meaning behind
the patterns. In the research, no phenotypes were identified. However, the meaning be-
hind the patterns was explored. Plotting the results allowed for exploring an intriguing
pattern found in the data. Thanks to that, it was possible to inspect the influence the
variables in the subset had on the final result. Using only descriptive statistics and t-test
would not directly point to that occurrence.

5.2 Parameters and t-SNE

The second category of experiments investigated the effect of parameters on the perfor-
mance of t-SNE. This was done for both the t-SNE and DBSCAN parameters.

The experiments showed that the value of epsilon for DBSCAN was crucial. For
most cases where the value was other than 15, only one cluster was forming. The other
DBSCAN parameter, which specifies the minimum number of samples, also influenced
the final performance. High values (above 228) were resulting in the Silhouette coeffi-
cient not reaching its known maximum and clustering not matching the visual output.

Perplexity values that resulted in the maximum Silhouette score were between 30
and 100. Over half of those values were outside the recommended range (5 - 50). With
the recommended values covering the difference of perplexity of 45, the range that
resulted in the highest Silhouette can be considered broad. Moreover, higher perplexity
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values resulted in more compact clusters. This meant that there were more points in
the radius determined by epsilon and the broader range of the minimum number of
samples, resulting in the maximum Silhouette coefficient.

These results show that when evaluating t-SNE by using clustering, it is essential
to tune the parameters of that algorithm. A non-optimal parameter setting can result
in an undesirable evaluation that does not match the assumed good clustering. Thus,
it is imperative to choose the clustering algorithm and validity criteria that match the
structures within the data and the assumptions about what is considered a good cluster.

5.3 Distance

The third category of experiments explored patterns that were found during training
and investigating if they are a distinct phenotype. The perfect separation for all the
categorical variables needed an explanation. Four experiments were performed to test
the impact of categorical features.

From those experiments, the assumption was formed that the clusters forming and
having a clear separation is the result of used distance and not a phenotype separation.
Moreover, the gradients forming in numerical data further point toward the distance,
not capturing the information in them. The clusters forming were most likely not repre-
sentative of the structures within the data but an artifact of the used metric. Therefore,
the research question about the use of t-SNE helping improve the identification of
distinct phenotypes in patients with heart failure, could not be answered in this study.
This is because of the bias introduced by the used distance.

Gower, the used distance, normalizes the numerical features by using min-max
scaling. It then applies Manhattan distance to those variables. The normalization of
the numerical data brings all the features into a unit norm. This is done to remove the
impact that features can have on the distance when they have a broader range of values
than other variables. As the normalized values lie between zero and one, they will have
a smaller distance than binary variables, which can only be one or zero.

One of the crucial parts of this research is handling mixed-data, especially high-
dimensional. The distance used, Gower, is one of the proposed solutions for represent-
ing mixed data, as well as using them with machine learning algorithms. However,
the results from this research show that it can create artifacts in the t-SNE outputs.
This problem is most likely not solved by other distances, such as HEOM, as they also
normalize the numerical data. However, this would require additional experiments. An
option that could be worth exploring is finding optimal weights for features to remove
some of the impact of categorical variables.

5.4 Future work

Based on the findings from this research several future work opportunities arise. The
first and most important work should be focused on finding a better suited distance
metric that can appropriately scale the categorical variables. An example of that can be
an exploration of finding optimal weights for the Gower distance. It is also possible to
use dimensionality reduction techniques such as MCA or NLPCA, which are designed
explicitly for categorical and mixed data. A comparison of t-SNE, MCA, and NLPCA
could give more insight into working with mixed data and help find a better approach.

Another possibilty of further research is answering the question of phenotype
identification by using machine learning algorithms on patient data. Due to the bias
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introduced by the distance, it was not possible to answer that question in this research.
Therefore, more work should be done in order to explore this topic.

5.5 Limitations

There are two limitations of this study that should be discussed, as they had a possible
impact on the outcome. As stated in chapter 3.3 Missing data, 42 variables needed to
be removed because of the proportion of the missing data. Some of these features are
usually used to determine the phenotype of heart failure. An example of that is the
ejection fraction variable, which had almost 90% of the missing data. The inclusion of
these features could allow for better separation in the data and create a more refined
framework for analyzing phenotypes, where the final results could be compared with a
label assigned to a patient.

The second limitation involves the evaluation in an unsupervised way. This can
be done with the use of an additional step, like clustering or presenting results to an
expert in the field. The researcher must rely on data and expert knowledge. This has a
drawback that the internal validity criteria for clustering have their limitations—most of
them judge the clustering and not t-SNE itself. The output of dimensionality reduction
can be optimal, but the final validity criterion is low because of non-optimal clustering
parameters. There is no perfect solution for this problem, but visualizing the results and
evaluating them qualitatively can help assess the match between the embedding and
the clustering.
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6. Conclusion

The research goal was to assess to what extent t-SNE results in better clusterings of
high-dimensional mixed data compared to the data without the dimensionality reduc-
tion and which factors contribute to t-SNE’s performance. Potential identification of
phenotypes by visualizing the data thanks to the use of dimensionality reduction and
clustering was also explored. A pipeline created for this study helped with answering
the research question. The final output showed that the clustering results did not differ
between t-SNE and data without the reduction. The identification of phenotypes was
not possible due to the bias introduced by the used distance.

The research question explored the extent to which t-SNE results in better cluster-
ings than the data without the dimensionality reduction. The t-SNE algorithm gives
rise to a proper visualization and a likely better human understanding by applying
dimensionality reduction in high-dimensional mixed patient data. The clustering per-
formed on reduced data corresponds with the clustering done on the non-reduced
data. Hence, t-SNE does not result in adding or losing cluster information. However,
dimensionality reduction and the clustering are biased towards the distance metric
used. The current distance, Gower, is a sub-optimal solution favoring categorical over
continuous variables, which is a purpose for future research.

The other part of evaluating t-SNE is the chosen setup. It is important to remember
that the output of t-SNE was assessed by the Silhouette coefficient calculated for the
results of the clustering. Dimensionality reduction and clustering come with hyper-
parameters that need to be optimized for the best possible clustering and visualization.
The pipeline and preprocessing construction enable easy experimentation and replica-
tion of this optimization process by a grid search method. The key question is how
to assess the best possible clustering and visualization. For that, we have chosen for
a ‘proxy’ measure called the Silhouette coefficient, which reliably trade-offs cohesion
within a cluster and separation between clusters.

The factors impacting the results of t-SNE were the variables included, as well as
parameters of t-SNE and DBSCAN. The perplexity, t-SNE parameter, had a broad range
of values that resulted in the highest maximum Silhouette. The visual outputs showed
little difference between the values of perplexity. However, the changing DBSCAN
parameters affected the final Silhouette. Epsilon, one of DBSCAN’s parameters, had
the most impact on the results. It resulted in clusters forming for a small range of
values. This shows that in order to evaluate t-SNE by using a clustering algorithm, the
parameters of that algorithm need to be well-tuned. It also helps that with t-SNE, the
results can be visualized and evaluated qualitatively.

An interesting pattern was found when potential phenotype separation was ex-
plored. The pattern in the data was determined to be the result of the distance used and
was an artifact of categorical data having more impact on the final output. This effect
will be present whenever Gower distance is used with mixed data. The t-SNE algorithm
definitely adds to a better visualisation of the clustering of mixed patient data which
can help in the discovery of phenotype. Experiments with different subsets of patient
variables have demonstrated the practical use of t-SNE. However, the bias due to the
use of the distance metric requires further study before the work towards phenotyping
in heart failure.

Although t-SNE does not give rise to better clusterings than not performing a
dimensionality reduction, it can be a helpful tool in research. gives rise to a proper visu-
alisation and a likely better human expert understanding by applying dimensionality
reduction in high-dimensional mixed patient data. The clustering in the dimensionality
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reduced data corresponds with the clustering of the original data set. Hence, t-SNE does
result in adding or losing cluster information in the data. However, the dimensionality
reduction and the clustering are biased towards the distance metric used. The current
distance, Gower, is a sub-optimal solution favouring categorical variables for continu-
ous variables which is definitely purpose for future research.
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Appendices
A. Google search trend

The plot shows trends in Google search results for the whole world. The plot presents
t-Distributed Stochastic Neighbor Embedding (t-SNE), exploratory factor analysis (FA),
multiple correspondence analysis (MCA), and kernel Principal Component Analysis
(PCA). The seasonal decomposition using moving averages was performed on the time
series data taken from Google Analytics for the given themes. This plot is the trend part
of the results of the decomposition. The data and more information can be found under
this link.
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B. Proportion of cases calculation

The data were split with the proportion of 60:20:20. This means that there are five
buckets with 20% of the data in them. For each categorical variable, the probability was
set to 0.95 that at least one from all the categories in those variables will be in training,
validation, and test data. The probability of a case not ending up in either of the sets is
0.8. From this point of view, this is a binomial distribution y. Using the formula below,
the number of each case in a categorical variable was determined to be higher than 13.

1− (p)n = P

(p)n = P

n = log(P )
log(p)

n = log(1−0.95)
log(0.8) ≈ 13

(B.14)
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C. Variables

This is a table of all the variables that were available for this research after the prepro-
cessing phase. For each variable, its type is given, either categorical or numerical. The
variables in bold are the ones that were used in at least one of the subsets. For some
variables, the abbreviation is available in the parenthesis.

Variable Variable type

Angiotensin-converting enzyme inhibitor (ACE) Categorical
Acute coronary syndrome (ACS) Categorical
Age Numerical
Albumin Numerical
Aldosterone antagonist Categorical
Allopurinol Categorical
Anemia Categorical
Angiotensin receptor blocker (ARBs) Categorical
Antidepressants Categorical
Aortic aneurysm Categorical
Aortic stenosis Categorical
Asthma Categorical
Body Mass Index (BMI) Numerical
Beta blocker Categorical
Bicarbonate Numerical
Chronic obstructive pulmonary disease (COPD) Categorical
Cancer Categorical
Candesartan Categorical
Cardiac device implant Categorical
Cardiac arrest Categorical
Cardiomyopathy Categorical
Cardiomyopathy or chf Categorical
Cerebrovascular accident Categorical
Cerebrovascular disease Categorical
Clinical signs or symptoms Numerical
Connective tissue disease Categorical
Coronary artery disease Categorical
Coronary heart disease Categorical
Creatinine Numerical
Daily pill count Numerical
Dependent oedema Categorical
Depression Categorical
Diabetes Categorical
Diabetes insulin treated Categorical
Diabetes insulin treated other Categorical
Diabetes with end organ damage Categorical
Diastolic blood pressure (bp) Numerical
Digitalis Categorical
End organ damage Categorical
Gastrointestinal disorders Categorical
Haemoglobin Numerical
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Heart Rate Numerical
Heart Rhythm Categorical
Heart failure (HF) Categorical
Height Numerical
Hematocrit Numerical
History of heart failure (HF) Categorical
Hypertension Categorical
Hypertensive heart disease Categorical
Infection Categorical
Jugular venous pressure (JVP) Categorical
Left ventricular hypertrophy Categorical
Limitation in activity Categorical
Liver disease Categorical
Loop diuretic Categorical
Lung disease Categorical
Lymphocytes Numerical
Mean Corpuscular Volume (MCV) Numerical
Metastatic cancer Categorical
Myocardial infarction (MI) Categorical
New York Heart Association heart failure classification (NYHA) Categorical
Neurological disease Categorical
Nitrate use Categorical
Non-metastatic cancer Categorical
Number of alerting lab values Numerical
Osteoarthritis Categorical
Other liver disease Categorical
Palliative care Categorical
Peptic ulcer Categorical
Peripheral vascular disease (PAD) Categorical
Pleural effusion Categorical
Pneumonia Categorical
Potassium Numerical
Psychiatric disease Categorical
Pulmonary crackles Categorical
Pulmonary oedema Categorical
Pulmonary oedema in notes Categorical
Pulse pressure Categorical
QT Corrected Numerical
Renal disease Categorical
Renal dysfunction Categorical
Respiratory rate Numerical
Resting sinus tachycardia Categorical
Rheumatoid arthritis Categorical
ST-T wave changes Categorical
Sex Categorical
Smoker Categorical
Sodium Numerical
Statin Categorical
Steroids Categorical
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Stroke Categorical
Systolic blood pressure (bp) Numerical
Temperature Numerical
Thiazide Categorical
Total bilirubin Numerical
Transient ischaemic attack (TIA) Categorical
Ulcer disease Categorical
Unstable angina Categorical
Urea Numerical
Urinary tract disease Categorical
Valve disease and diabetes Categorical
Valvular heart disease Categorical
Weight Numerical
White blood cell (WBC) Numerical

36
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D. Best results for each variable subset

Figure (11) Best results for each variable subset plotted with the clustering labels.

(a) Subset A. (b) Subset B.

(c) Subset C. (d) Subset D.
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E. Validation and test set results

Figure (12) Results for validation and test sets with each color representing a label from
DBSCAN.

(a) Validation set.

(b) Test set.
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F. Adding categorical variables

Figure (13) Plots show the influence that adding a categorical variable has on the output of
t-SNE.

(a) Plot for the variable Osteoarthritis after adding
it to the subset.

(b) Plot for the variable COPD after adding it to the
subset.

(c) Plot for the variable Sex with Hypertension and
Osteoarthritis in the subset.

(d) Plot for the variable Hypertension with Hyper-
tension and Osteoarthritis in the subset.
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G. Variable distributions

Figure (14) Each of the plots was created by using two categorical variables: Sex and the one
depicted on the plot. For each of the plots the top one represents the results of the clustering,
while the bottom one shows the distribution of categories.

(a) Antidepressants. (b) Statin. (c) Dependent oedema.

(d) Candesartan. (e) Jugular venous pressure. (f) NYHA.
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H. Numerical and categorical variables

Figure (15) The best results obtained from using only numerical or only categorical variables.
Each of the colors represents a cluster defined by DBSCAN.

(a) Only numerical variables.

(b) Only categorical variables.
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