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Abstract 
This Master thesis aims at improving the predictive performance of an AdaBoost and XGBoost 

classification algorithm on an imbalanced dataset. Classification on imbalanced data, or rare events, 

is a common phenomenon in real-life that can have significant effects on individuals or the society as 

a whole and is, therefore, an active area of research. According to the literature, two ways of 

combating an unbalanced label distribution in order to improve on the predictive performance of a 

classifier are on the algorithmic level, and on the data level. In this research, the data level approach 

is implemented by applying a novel strategy of random under-sampling in combination with adding 

additional engineered features to the dataset. The course of actions proposed are captured in the 

research question: “What effect has feature engineering, in combination with random under-sampling 

on imbalanced data for classification tasks?”. A total of two experimental set-ups were proposed, only 

differing from each other in the number of feature engineering and selection runs adopted. The 

dataset consists of multivariate time series process log data of a pulp-to-paper manufacturer. It was 

found that the proposed experimental set-ups did not improve the predictive performance of the 

AdaBoost and XGBoost. However, the proposed experimental set-ups were tested also on the hybrid 

RUSBoost classifier that combines an AdaBoost with an automated random under-sampling strategy1. 

This classifier improved the benchmark F1-score of 0.114 by 84.2% to 0.21.

 
1 Random under-sampling was performed automatically by the RUSBoost classifier. So, no random under-
sampling was performed during the pre-processing (preparing the experimental set-ups), only the engineering 
of features.  
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1. Introduction 
Data-driven process control is growing in popularity. In industrial applications, data science has an 

increasing role in the analysis of data, including the detecting of rare events. As the volume at which 

industries generate raw process data continues to grow, organizations acknowledge the potential of 

data analysis to benefit their core operations. The abundance of data, combined with sophisticated 

learning algorithms and improved computational power, has enabled companies to acquire new 

insights into their business processes and act accordingly. Organizations that effectively apply the 

capabilities of data analytics, can differentiate themselves by creating significant value (Henke, et al., 

2016).  

 
This project concerns a dataset of a pulp-to-paper manufacturer that contains multivariate time series 

process log data. In previous research performed by Ranjan et al. (2018), two machine learning 

algorithms (AdaBoost and XGBoost) were applied to this particular dataset in order to discover 

patterns in the data that occur before the rare event of a production process error. This research aims 

to further improve on the predictive performance of those two models in rare event prediction by 

implementing a resampling strategy in combination with adding additional engineered features to the 

data set. Ultimately, a machine learning model that can reliably establish hazardous patterns of rare 

events will enable process operators to take timely measures against a predicted error once such a 

pattern is detected in a production run. The usage of the data will contribute to optimizing the 

production process as errors could be avoided, resulting in a reduction of downtime of machines and 

an overall increase in productivity of the factory.  

 
Rare event prediction remains a topic of discussion in the scientific community. Although various 

research has been performed (Krawczyk, 2016), there is no one-size-fits-all solution to what is the best 

machine learning method for rare event prediction; a certain machine learning algorithm might be 

superior in one rare event prediction task, but fails catastrophically in another (Mair, et al., 2000). 

Additionally, recently the focus has shifted from traditional machine learning algorithms to more 

sophisticated deep learning models. Karim et al. (2017) successfully applied Long Short Term Memory 

Fully Convolutional Network (LSTM-FCN) and Attention Long Short Term Memory Fully Convolutional 

Network (ALSTM-FCN) to rare event prediction in univariate time series data. Further research by 

Karim et al. (2019) enabled multivariate time series data as input. The results showed accuracy rates 

that outpaced a selection of respected benchmark machine learning algorithms. Nevertheless, while 

deep learning is a promising method for rare event prediction, deep learning models are regarded as 

“black boxes” that are hard to understand and to interpret (Zhang, Tan, Han, & Zhu, 2017).  
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In comparison to deep learning models, traditional machine learning algorithms are less complicated, 

better to understand, and have a proven record of success (Zhang, Tan, Han, & Zhu, 2017), and are 

therefore the method of choice in this project. Also, since Ranjan et al. (2018) only performed minor 

pre-processing modifications in their research to the dataset, it is projected that by implementing a 

resampling strategy2 in combination with adding additional engineered features to the data set, the 

predictive performance of the machine learning models will increase. This research will use the pulp-

to-paper dataset in order to answer the following research question: 

 
 “What effect has feature engineering, in combination with random under-sampling on imbalanced 

data for classification tasks?” 

 
According to the available literature, this particular question has not been answered yet. Answering 

this question will contribute to the existing scientific knowledge regarding the effect that certain 

methods have on the predictive behaviour of machine learning algorithms on imbalanced data 

classification tasks. This approach differs from the one tested by Qazi et al. (2012) as instead of a 

multiclass classification problem it is a binary classification task. The proposed course of action also is 

in line with the suggestions made by Ranjan et al. (2018) regarding their recommendations on how to 

potentially increase the predictive performance of the AdaBoost and XGBoost.  

 
Additionally, a better understanding of how to enhance predictive performance on rare event data 

will have a positive impact on society as well. Although situations of rare events are scarce in real life, 

their consequences to society can be significant. Early detection of a potential oil-spill could prevent 

an environmental disaster from happening, a reliable predictor of rare diseases could potentially save 

the lives of thousands or millions of people, and a credit card fraud detector can benefit customer 

trust in banks (Ganganwar, 2012). Moreover, rare event situations have a significant economic impact 

too. It is estimated that on average, a factory loses between 5 - 20% of its production capacity due to 

downtime (Fitchett & Sondalini, 2017). Industry experts claim that an estimated 80% of organizations 

fail to accurately predict downtime, causing a 200-300% increase of true downtime costs compared 

to forecasted numbers (Fitchett & Sondalini, 2017).  

In this research, it was found that the proposed courses of action did not result in a significant increase 

in the predictive performance of the AdaBoost and XGBoost classifier. Nevertheless, the hybrid 

RUSBoost algorithm, which essentially is an AdaBoost algorithm that automatically performs random 

under-sampling, yielded a promising F1-score of 0.21.   

 
2 The choice for random under-sampling will be further explained in chapter 3.4. 
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2. Related Work 
This section of the paper provides an overview of related work in regards to imbalanced datasets, or 

rare events. First the term “rare events” will be defined, after which a brief historical background is 

provided. Next, some more in-depth information regarding various remedies for handling imbalanced 

datasets is reported.     

2.1 Rare Events 

One definition of rare event data is a dataset of binary dependent variables with dozens to thousands 

of times fewer observations belonging to the minority class than to the majority class (King & Zeng, 

2001). Rare events “are patterns in data that do not conform to a well-defined notion of normal 

behaviour” (Chandola, Banerjee, & Kumar, 2009). This anomalous behaviour is of great interest to 

accurately predict as it indicates exceptions to the rules (Chandola, Banerjee, & Kumar, 2009). Some 

examples of anomalous events are fraudulent transaction detection (Bolton, 2002), rare disease 

classification (Santoro, et al., 2015) ,and faulty telecom network behaviour (Sasisekharan, Seshadri, & 

Weiss, 1996). 

2.1.1 Brief History of Rare Event Prediction 
One of the earliest recorded studies regarding the detection of rare event observations in data 

originates back to the 19th century (Edgeworth, 1887). Early research built on engineering and physical 

models to calculate the probability of rare events that started in the late 1970s (Rackwitz & Fiessler, 

1978). The need for sophisticated methods that could handle uncertainties in the design process of 

structural systems grew as safety requirement standards increased. In research regarding catastrophic 

failures prediction (Peck, 1969), system data was collected by observation in order to obtain useful 

information regarding the rare event of a technical failure. The Bayesian approach proved to be an 

appropriate framework to analyse the large quantities of data as it incorporated an inverse problem-

solving technique that, given the output variable, determined the probability of any input variable.  

2.1.2 Problems with Traditional ML-models 
As indicated by King & Zeng (2001), the rare event of interest is inadequately represented in the 

dataset with only the minority of all observations belonging to the positive class, while the majority is 

among the negative class. Because of the relatively few positive observations in the dataset, there is 

an unbalanced data distribution with the learning algorithm being highly biased towards the majority 

class (Wah, Rahman, He, & Bulgiba, 2016).  

As traditional algorithms assume a normal distribution of the data, machine learning performance will 

usually be low on imbalanced data (Wah, Rahman, He, & Bulgiba, 2016). As the majority class has a 

larger volume than the minority class, it will have a greater influence on the training stage of the 
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machine learning model (Hastie, Tibshirani, & Friedman, 2009). Usually, the machine learning model 

will yield a good accuracy score on the majority class, but performs poorly on the minority class. 

Achieving a minimal error rate on a test set of data is the aim of most algorithms, which is achieved by 

emphasising on the majority class. In imbalanced data classification tasks, a high accuracy score can be 

achieved by only predicting the majority class (Hastie, Tibshirani, & Friedman, 2009). However, 

although this method can result in a minimal error rate, the misclassification of the minority class is 

neglected as misclassification costs are assumed to be equal. The assumption of equal misclassification 

costs per class should be carefully examined, as this might not be applicable (Ganganwar, 2012). An 

example of unequal misclassification costs is to wrongfully classify a healthy person as unhealthy, and 

misclassify a sick person as healthy. In the latter case, the person that has been classified as healthy 

(false negative) will not receive appropriate treatment, which might lead to serious complications 

(Ganganwar, 2012). 

2.2 Remedies for Imbalanced Datasets  
To overcome the problem of imbalanced data distribution, two solutions were proposed by Abdi and 

Hashemi (2015), and include an algorithmic level, and a data level approach.  

One proposed solution to rectify class imbalance on an algorithmic level is to implement a cost-

sensitive method. This method assigns different misclassification costs to the different classes (He & 

Garcia, 2009). Bagging and Boosting are two examples of ensembled learning algorithms that 

incorporate a cost-sensitive method (Geiler, Hong, & Yue-Jian, 2010). Boosting algorithms place more 

emphasis on the weak learners (positive class), and have been widely used for imbalanced class 

prediction problems (Li, et al., 2017). Ranjan et al. (2018) used an AdaBoost and XGBoost algorithm to 

predict rare events in their research. However, the cost-sensitive method may find difficulties in 

implementation as misclassification costs are not always available or cannot be generated at all (Zong, 

Huang, & Chen, 2013). Also, boosting can lead to poor test results as the noise might be captured due 

to over-emphasising on noisy observations in the data (Maclin & Opitz, 1997). Nevertheless, ensemble 

methods have been applied to numerous real-world machine learning problems, including class 

imbalance data, and are regarded as highly versatile and effective by the data science community 

(Polikar, 2012).    

Resampling is a technique that aims to repair the unbalanced distribution on the data level 

(Wasikowski & Chen, 2010). Popular resampling techniques include over and under-sampling. 

Oversampling is a method applied to overcome class imbalance by selecting and duplicating 

observations that belong to the positive class. This process continues until the minority and majority 

class have equal observations. Minority class observations can be duplicated in a random or focused 

manner. The random selection (ROS) randomly duplicates minority class observations without any 
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further requirements, where the focused approach (FOS) randomly duplicated the border observations 

of the minority class (Wah, Rahman, He, & Bulgiba, 2016). Under-sampling is the opposite of 

oversampling and balances the dataset by excluding (RUS for randomly selected and FUS for focused 

selection) from the negative class. A research performed by Park and Jung (2019) on different methods 

of resampling techniques showed that RUS resulted in the highest sensitivity, with oversampling 

through an adaptive synthetic sampling approach as the next-best method. Nevertheless, data level 

solutions may lead to overfitting of the learning algorithm (oversampling), or misleading the learning 

algorithm by potentially removing instances that contain useful information (under-sampling) (Abdi & 

Hashemi, 2015).    

Ranjan et al. (2018) recommended to collect additional data, and so increase the training data as 

another data level approach to balance the data. In recent research by Zhu et al. (2016), the question 

was addressed if adding more training data would increase performance. To test this hypothesis, an 

SVM-model was trained and tested on a number of differently sized training sets. The results were 

contradictory to the suggestion made by Ranjan; under certain circumstances, increasing the training 

set can decrease model performance. Models tend to perform worse when more training examples 

are added if the additional data has an unbalanced distribution. As the majority of the additionally 

added examples belong to the negative class, the model will skew even more towards this class. This 

will ultimately lead to poor performance regarding correctly classifying the positive class (Zhu, 

Vondrick, Fowlkes, & Ramanan, 2016). Research by Li et al. (2017) showed that an increase in data 

could lead to an improvement in the recall score. However, the research also showed that a more 

balanced data distribution has a greater effect on the results while fewer training observations are 

required.  

2.3 Feature Selection for Combating Class Imbalance 

Feature selection is the process of selecting a subset of j features from the original set of features 

(Wasikowski & Chen, 2010). Zheng et al. (2004) describe feature selection as selecting only those 

features that effectively discriminate between two classes (in a binary classification problem), 

assigning a positive value to one feature (belonging to class X), and a negative value to another feature 

(belonging to class Y). Feature selection is highly important, yet often neglected, since it filters those 

features that are informative in regards to the Y-variable from the features that do not contribute to 

the classification of the dependent variable. Guo et al. (2006) dedicated research to the development 

of a framework to evaluate the reliability of sensor data as they argued that sensor data is inherently 

unreliable caused by technical failures as well as the tendency to capture noise. Again does this confirm 

the importance of feature selection as not all variables contribute to the dependent variable, including 

sensor data.        
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Evidence was found by van der Put and van Someren (2004) that feature selection has significantly 

more influence on the performance of a machine learning model on classification problems then the 

chosen algorithm itself. Brownlee (2014) emphasises the importance of feature selection too and 

claimed that only features that describe the inherent structures of the dataset will lead to good model 

performance. Moreover, even if an appropriate machine learning model is chosen, as the features do 

not describe the inherent structure of the data correctly, the performance will always be poor 

(Brownlee, 2014). Wasikowski et al. (2010) performed specific research on feature selection for 

imbalanced datasets and found that feature selection benefits machine learning model performance 

on unbalanced data classification tasks. Feature selection on text classification tasks yielded similar 

results, with an overall improvement of the predictive performance of the machine learning model on 

an imbalanced dataset (Wasikowski & Chen, 2010).  

In research by Qazi and Raza (2012) the effects of feature selection in combination with Synthetic 

Minority Over-Sampling (SMOTE) or under-sampling were tested on imbalanced data. This particular 

research concerned the highly unbalanced multiclass KDD CUPP99 dataset, from which only 0.845% of 

the total data accounted as the class of interest (the rare event). The researchers acknowledged the 

importance of feature selection as they assumed that a set of appropriate features enables a classifier 

to accurately identify patterns. Moreover, the class imbalance was expected to be overcome by 

applying various major and minor class manipulation techniques. Several different classifiers were 

utilized in this research, including a decision tree, Naïve Bayes, Radial basis neural network, and a 

support vector machine. It was found that feature selection in combination with under-sampling was 

more effective than applying SMOTE. Moreover, the decision tree and Naïve Bayer proved to be the 

most accurate classifiers of the four. Nevertheless, the paper concluded that first feature selection and 

then resampling the data by means of under-sampling, in combination with either a decision tree or 

Naïve Bayes classifier does not perform well on the multiclass classification task.  

2.4 Feature Engineering 
The second recommendation made by Ranjan et al. (2018) to improve predictive performance was to 

engineer new features. In research by Bahnsen et al. (2016), it was proposed to add additional features 

to an unbalanced dataset to overcome the poor predictive performance of machine learning models 

(including cost-sensitive models) on fraud detection. In their research, a set of new features was 

engineered which were derived from the original dataset. One of the new features was accumulated 

by aggregating individual customer transactions over a predetermined time interval. This new feature 

allowed for further investigation of a custom’s spending patterns as e.g. transaction types and 

countries of purchase could be examined. The results showed an increase of over 200% regarding 

predictive performance (Bahnsen, Aouada, Stojanovic, & Ottersten, 2016). Another research by Wind 
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(2014) reported on the importance of feature engineering in a case study regarding predictive 

modelling competitions on Kaggle. 

3. Experimental Setup 

3.1 Data Overview  
The dataset contains a total of 20,458 observations, with each observation consisting out of 63 

attributes. Each data point equals a two-minute interval observation of various sensors that are 

equipped lengthways the pulp-to-paper machine. The observations include a date/time stamp and are 

chronologically ordered from May 1st ,1999 - 0:00h up to and including May 31st,1999 – 23:58h. The 

dataset is characterized by an unbalanced data distribution with 20,323 observation belonging to the 

negative class, and only 135 observations belonging to the positive class, which leads to an error rate 

ratio of 0.66%. The features represent two kinds of measurements: product-specific variables for raw 

inputs (various input measures of chemical component like sulphite and silicon carbide), and 

measurements regarding the production-specific setting (e.g. fan speed, pressure, and couch load).  

The columns are made up of both integer as well as float values. The dataset is in a CSV-format and 

was imported into the Jupiter environment using the read_csv function from Pandas (API Reference, 

sd). Please see appendix I for all features. The dataset is available upon request and can be downloaded 

from here. 

Before any pre-processing actions were taken, the data was checked for NA-values (no NA-values were 

present in the dataset). Moreover, the “DataTime”, “EventPress” and “Grade&Bwt” columns were 

dropped from the data set as those columns either contained a timestamp or a categorical value.  

3.2 Early Prediction 
One of the motivations to research improving on rare event prediction is to better enable stakeholders 

(e.g. process operators in the pulp-to-paper factory) to take timely measures in order to anticipate 

upon the predicted error. Predicting the error, the dependent variable, is not the goal of this research. 

Instead, this research aims at learning patterns in the data that indicate an error before happening. 

Figure 3.1 illustrates the concept of early prediction.  

 

Figure 3.1: illustration of early prediction. Image used with permission from Ranjan (2020). 

https://docs.google.com/forms/d/e/1FAIpQLSdyUk3lfDl7I5KYK_pw285LCApc-_RcoC0Tf9cnDnZ_TWzPAw/viewform
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According to Ranjan (2020), the further away the observation is from the event of interest, the weaker 

the predictive signal becomes. Nevertheless, since the impact of a rare event can have significant 

consequences, the stakeholders should be alarmed well in advance. In the exploration of the data, it 

was discovered that the minimal gap between two errors is two observations of non-errors. The choice 

was therefore made to select the two observations that happen before the event of an error. To 

achieve this, the class column (“SheetBreak”) Y should be moved up to the prior two observations. 

Consider the event of an error as Yt, and the steps back in time are denoted as Q = 1, 2, etc. The “new” 

event of interest will be Yt – Q = Yt. Having Q = 2 results in moving back four minutes in time as one 

time step equals two minutes. An additional benefit of this approach is that the number of Y-variables 

increases from 135 to 270, which is beneficial for the class imbalance. Moreover, the “old” events of 

interest can be discarded from the dataset as they do not serve a purpose anymore.   

3.3 Feature Engineering and Selection 
After the Y-variable has been moved back four minutes in time, the next step in the pre-processing 

process was performed; feature engineering. Feature engineering by hand is a time consuming process 

of iterative engineering and testing of features and requires extensive domain knowledge (Nargesian, 

Samulowitz, Khurana, Khalil, & Turaga, 2017). To overcome the lack of domain knowledge and the 

limited amount of time available for this project, the choice was made to automate the feature 

engineering process. A number of open-source automated feature engineering libraries are available, 

including FeatureTools, tsfresh, and AutoFeat (Horn, Pack, & Rieger, The autofeat Python Library for 

Automated Feature Engineering and Selection, 2019). Nevertheless, not all libraries were found to be 

useful for this particular research as assumptions were made by the various libraries regarding the 

format of the input datasets to engineer features on. The FeatureTools library required input data to 

be in a relational database format, where the Tsfresh library was designed to engineer features for 

time-series datasets. The choice was made to deploy the AutoFeat, a recently developed general-

purpose feature engineering library (Horn, Pack, & Rieger, 2019).  

The engineering of new features was automatically performed by AutoFeatClassifier, which is a 

function from the open-source library Autofeat. In each user-specified iteration, the AutoFeatClassifier 

generates a batch of new features. The newly engineered features are derived from multiple non-

linear transformations performed on the original input features. After the function has generated a 

large pool of newly engineered features, automatic feature selection is performed in order to select 

those features that contain relevant information regarding the dependent variable. Highly correlated 

features and noisy features are removed from the set of features first before a multi-step L1-regulized 

logistic regression model performs wrapper methods feature selection strategy. In each step (default 

feature selection run is 5), the model is trained, fit, and tested on the features. The coefficients of the 
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features are then evaluated in order to determine their contribution to the prediction of the 

dependent variable. Features that have a coefficient greater than the largest known coefficient of a 

noisy feature are selected, those features that fail to meet this requirement are discarded.  

For this research, two feature engineering and selection strategies were proposed. The first strategy 

consists of one feature engineering step in combination with five feature selection runs. The second 

strategy consists of two feature engineering steps in combination with one feature selection run. Horn 

et al. (2019) showed in their research that one feature engineering step, in general, outperforms the 

linear model which is based on the original feature set only. This motivated the choice for the first 

strategy. Moreover, three feature engineering steps were found to overfit on the data, hence the 

choice for two feature engineering steps. Since the computational time and RAM-requirements for the 

feature selection grows exponentially at two feature engineering steps, it was recommended by Horn 

(2020) to set the “feature_run” parameter to one. The engineered features in the first strategy are 

limited to seven non-linear transformations, including 1/X, exp(X), log(X), abs(X), √(X), X2, X3. The 

second strategy contains both the seven non-linear transformations as well as combinations of 

combined pairs of features (original and engineered) with different mathematical operators (e.g. +, -, 

÷). For both strategies, the test size was set to 0.20. This means that 80% of the data was used to 

engineer and test3 the new features on, and the remaining 20% for validation purposes. Please see 

table 3.1 for the two proposed strategies.  

Table 3.1: Parameter setup for the two proposed strategies 

PARAMETERS EXPERIMENTAL SET-UP 1 EXPERIMENTAL SET-UP 2 

“FEATENG_STEPS” 1 2 

“FEATSEL_RUNS” 5 1 

“TEST_SIZE” 0.2 0.2 

Experimental set-up 1: After one feature engineering run a total of 270 new features were engineered 

and added to the data frame. Next, the data were scaled and five feature selection runs were 

performed. The AutoFeatClassifier selected a total of 45 engineered features out of the pool with 

generated features. The final data frame, called “data_1step_5runs”, contains 20,323 rows and 104 

feature columns. The data frame contains 58 original features, 45 engineered features, and the 

dependent variable. The new data frame yielded an accuracy score of 0.433 on the training data and 

an accuracy score of 0.441 on the validation data. The top three engineered features with the highest 

 
3 Tested in the sense that the coefficients of the newly developed features are evaluated on their contribution 
to the prediction of the dependent variable. This is necessary in order to filter useful features from features that 
do not contribute. 
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coefficient are “CouchSpd**3”  (0.000154),  “x1PrsTopDrw**3” (0.000032), and “x1PrsTopSpd**3” 

(0.000022). Please see appendix II for a complete list with all the engineered and selected features.  

Experimental set-up 2: The combined number of engineered features in two feature engineering steps 

totalled up to 53,040. The next action involved filtering the features for noise and correlation, after 

which 41,023 features remained. After scaling the features, the wrapper strategy performed one 

feature selection run. From the +40,000 engineered features, the feature selection run found two 

engineered features that contributed to the classification of the dependent variable. The two 

engineered features that were found useful include “exp(UpprHdTmpRL)/BleachedGWDFlow” 

(0.031250) and “1/(CT1BLADEPSI*RSBWSCANAVG)” (0.000295). After the engineered features were 

added to the original data frame, the new data frame called “data_2steps_1run” contains 61 columns 

and 20,323 rows. The new data frame achieved an accuracy score of 0.935 on the training data, and 

0.931 on the test data.  

3.4 Balancing the Data  
The final step of the experimental setup preparation is to resample the data. As shown in figure 3.2, it 

is clear that the class label distribution is highly unbalanced. In other words, there is an imbalance in 

the data with roughly 99.3% of the observations labelled as a non-error, and the remaining 

observations as an error. The consequences of imbalanced data have extensively been covered in 

previous chapters.  

 

Figure 3.2: Distribution of class labels 

To balance the label distribution, the choice was made to use an under-sampling strategy4. The under-

sampling strategy reduces the majority class by randomly selecting a predefined number or ratio by 

 
4 Under-sampling is preferred over oversampling as oversampling was found to be an ineffective strategy that 
contributes little to predictive performance (Drummond & Holte, 2003). 
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the user, and ignoring the remaining observations. One advantage of under-sampling is that it is less 

likely to lead to overfitting of the data, and contributes to a reduction in computational time as the 

overall size of the dataset is vastly reduced (Liu, Wu, & Zhou, 2009). The data was under-sampled via 

the RandomUnderSampler function from imbalanced-learn Python library5 

(imblearn.under_sampling.RandomUnderSampler, sd). This sampling function first divides all majority 

class observations into similar clusters before an even proportion of observations are discarded from 

all clusters until the dataset is balanced. After resampling the training data, the final training set 

contains 210 error observations (SheetBreak = 1), and 210 non-error observations (SheetBreak = 0). 

Please see figure 3.3 for the rebalanced label distribution of the training set.  

 

Figure 3.3: Distribution of class labels in training set after resampling 

In addition to the random under-sampling strategy, a promising hybrid approach proposed by Seiffert 

et al. (2010) was applied as well. Seiffert et al (2010) developed an algorithm called RUSBoost that 

combines an AdaBoost with an automatic random under-sampling strategy. This algorithm was 

developed in order to alleviate the problem of class imbalance and the poor performance of a more 

traditional algorithm. The RUSBoost algorithm was tested on 15 datasets and competed with four base 

learners plus a SMOTEBoost algorithm. The results showed that the RUSBoost algorithm outperformed 

all four base learners, and performed better than the SMOTEBoost in most of the tasks. Seiffert et al. 

(2010) highly recommend the RUSBoost algorithm in imbalanced data classification and prediction 

tasks.   

 
5 The data was first split into a train (80) and test set (20) (covered in chapter 4). Then the training set was 
rebalanced by random under-sampling in order to rebalance the label distribution. The training set therefore 
contains a total of 420 observations (210 errors and 210 non-errors). The test set was not rebalanced (Santos, 
Soares, Abreu, Helder, & Santos, 2018), and contains 4065 observations (55 errors and 4010 non-errors).  
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3.5 Summary 
In this chapter, all steps regarding preparing the data for the experiment have been covered. The first 

step taken was to check the original data set for NA-values and to discard some of the original columns 

(three in total). The next step involved shifting all SheetBreak = 1 observations four minutes back in 

time. This meant that when an observation was an error, the two observations that came prior to it 

had to be remarked as the error (y = 1), while the error observation had to be discarded. The step 

following was the feature engineering and selection process, which resulted in two different strategies 

with both a different number of independent variables (combination between the original as well as 

the newly engineered variables). The last step involved the resampling of the training data in order to 

balance the label distribution.  

4. Methods 
After the pre-processing of the data, the various strategies were evaluated on their effectiveness and 

compared accordingly. In order to prepare the data for training and testing, the data first had to be 

split into X and y variables. The X variables contain all features, and y represents the outcome variable. 

The data was split into X_train, X_test, y_train and y_test sets with the train_test_split function of the 

sklearn.model_selection library (sklearn.model_selection.train_test_split, 2020). The train-test split 

was 80/20 (or 16,258-4065 observations), with both sets containing an equal ratio of the binary y 

variable. The final step before the three classifiers could be trained and tuned was to scale the features. 

Scaling was accomplished with the StandardScaler function of the sklearn.preprocessing library. This 

function standardizes the features by removing the mean and scaling to unit variance 

(sklearn.preprocessing.StandardScaler, 2020).  

4.1 Models 
As this research aims at testing how the predictive performance of an AdaBoost and XGBoost machine 

learning algorithm on rare event data are affected after resampling training data in combination with 

adding additional engineered features, the pre-processed data is trained, tuned and tested on an 

AdaBoost and XGBoost classifier. Moreover, the RUSBoost classifier, an algorithm that automatically 

combines random under-sampling with an AdaBoost, is trained, tuned and tested as well.  

Both the AdaBoost and XGBoost are ensemble models, which are basically combinations of series of 

low performing classifiers. By combining a series of weak models, a stronger model is created. 

Ensemble models usually have a higher accuracy rate than base classifiers have individually (Geiler, 

Hong, & Yue-Jian, 2010). In an ensemble model, all individual classifiers get to vote for the label to 

predict. The label that receives the majority of votes is returned as the final predicted label. An 

advantage of ensemble models is that base estimators can be parallelized by distributing them over 
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different machines. Also, a variety of different algorithms can be applied as base estimators for a single 

model, making it a meta-algorithm that predicts based on several machine learning methods. Finally, 

an ensemble method can introduce bias by applying a boosting tactic, which benefits the learning of 

weak learners. The RUSBoost is similar to the AdaBoost classifier, apart from that it automatically 

performs random under-sampling, and will, therefore, receive the same parameter settings.  

Adaptive Boosting, or abbreviated as AdaBoost, was first introduced by Freund and Schapire (1997). 

This ensemble boosting method adjusts the weights of the base estimators according to their 

performance on uncommon observations. In each iteration, the model is trained on a subset of the 

training data, after which its performance is evaluated. Base estimators that predict well receive more 

weight and those that perform poorly are downsized in weight. Moreover, observations that were 

predicted wrongfully are increased in weight as well, increasing their probability. In accordance with 

the ensemble philosophy, the final vote is constructed by a majority voting. The process of refining the 

weight continues until a perfect fit is found, or until the user-specified iterations are met. According to 

Albon (2017), the most important hyperparameters to tune are the “base_estimator”, “n_estimators” 

and the “learning_rate”. For both the AdaBoost as well as the RUSBoost, a total of three base 

estimators will be tested, and include the default decision tree classifier, random forest classifier, and 

a support vector machine.  

Decision Tree: the first base estimator is the default Decision Tree Classifier. Since this is the default 

base estimator, no additional background information will be provided here. The four parameters that 

are considered most important to tune include “max_depth”, “min_samples_split”, 

“min_samples_leaf”, and “max_features” (Fraj, 2017). 

Random Forest Classifier: the second base estimator is the Random Forest Classifier (RFC). The RFC 

was chosen as the second base estimator as research by Lin et al. (2017) proved the effectiveness of 

an RFC in imbalanced data analysis tasks. The RFC shares similarities with the Decision Tree classifier, 

but instead of a single tree, a forest of several trees that slightly differ from each other are fitted on 

the data. The trees are different from each other since a tree is fitted on data that is randomly selected, 

hence the name Random Forest. The final verdict of this classifier is an average (or majority vote) of 

all the trees. The RFC is less prone to overfitting (in comparison to a single tree classifier), yet utilizes 

the predictive power of the single trees combined. The most important parameters to tune include 

“n_estimators”, “max_depth”, “min_samples_split”, “min_samples_leaf”, and “max_features” (Fraj, 

2017).  

Support Vector Machine: the third base estimator is the Support Vector Machine (SVM). The SVM is 

proposed as a base estimator by Li et al. (2008) as it performed well on imbalanced classification 
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problems. The SVM projects the non-linear input data (training data) to a high-dimensional feature 

space by performing a kernel trick. Ultimately this operation enables a linear separation between the 

different classes by fitting an optimal hyperplane that separates the various classes (Vapnik, 2013). The 

parameter that C is a regularization parameter that regularizes the complexity of the model. After an 

SVM has been trained, unobserved data is classified by calculating the distance between the data point 

and the support vectors. The distance measuring process is performed by the Gaussian kernel, which 

is the exponent of the Euclidean distance and Gamma parameter (determining the width of the 

Gaussian kernel) squared product. According to Li et al. (2008), the Gamma parameter σ has the 

greatest effect on the performance of the SVM. A small σ value results in a large width of the Gaussian 

kernel, a large value enlarges the width. To conclude, the parameters to tune for the SVM base 

estimator are the C and σ parameter.  

XGBoost, which is the abbreviation for Extreme Gradient Boosting, is a decision tree algorithm that 

implements gradient boosting and was introduced first in 2016 (Chen & Guestrin). The XGBoost 

algorithm mainly focusing on speed and performance by paralysing the training process over all the 

available CPUs. Similar to the AdaBoost and RUSBoost, the XGBoost is an ensemble technique. When 

the current model makes a mistake, an additional model (a decision tree) is added to the model in 

order to correct for the mistake made. This process continues until the model’s performance does not 

improve anymore. The newly added models aim to minimize the loss by applying a gradient descent, 

hence the name Gradient Boosting. There is an abundant number of parameters to tune when 

implementing an XGBoost, the most significant include “learning_rate”, “n_estimators” and “gamma” 

(Revert, 2018). 

4.2 Parameter Tuning 
In order to determine the parameter values for the proposed algorithms, a cross-validated (k=5) grid 

search was performed on the user-specified values for the various parameters. This grid search was 

performed via the GridSearchCV function from the Scikit-Learns library. See table 4.1 for an overview of 

all the algorithms and the corresponding parameters.  

Table 4.1: overview of the various algorithms and the parameters to tune. 

Model Parameters Values 

AdaBoost base_estimator [DT, RFC, SVM] 

n_estimators [10, 25, 50, 100, 200] 

learning_rate [0.001, 0.01, 0.1, 0.5, 1] 

RUSBoost base_estimator [DT, RFC, SVM] 

n_estimators [10, 25, 50, 100, 200] 
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learning_rate [0.001, 0.01, 0.1, 0.5, 1] 

XGBoost learning_rate [0.001, 0.01, 0.1, 0.5, 1] 

n_estimators [10, 25, 50, 100, 200] 

gamma [0, 1, 2, 3] 

Note: DT is Decision Tree, RFC is Random Forest Classifier and SVM is Support Vector Machine.  

As mentioned in chapter 4.1, the various base estimators have plenty of hyperparameters to tune as 

well. The tuning of hyperparameters is an important part of machine learning since the 

hyperparameter setup can significantly contribute to the model its performance (Bardenet, Brendel, 

Kégl, & Sebag, 2013). The hyperparameters that were tuned correspond to those that are in the 

description of the various base estimators. For each classifier – base estimator combination, a grid 

search was performed in order to discover the optimal parameter values. Since not every 

hyperparameter turned out to contribute to the performance of a certain classifier- base estimator 

combination, there is no dedicated table with all hyperparameter values used for optimizing the base 

estimators. The optimal hyperparameter values used can be found in the codebook, but do not include 

the various values that were experimented with. Moreover, the best performing classifier- base 

estimator combinations will be presented and discussed in chapter 4, including the set of 

hyperparameters values.   

4.3 Evaluation & Benchmark 
The performance of the proposed strategies was evaluated by benchmarking the largest F1-score 

achieved in this research with the F1-score of 0.114 that was achieved by Ranjan et al. (2018). in their 

research. The choice to use the F1-score as a measure of performance was motivated by the 

assumption that this method provides the most reliable indication of performance in rare event 

classification tasks (Ranjan, Reddy, Mustonen, Paynabar, & Pourak, 2018). Since the data set is highly 

unbalanced, the accuracy score along would yield a false impression of a very high score (Chen Y. , 

2009). The F1-score is the harmonic mean of the averaged precision and recall, with scores ranging 

from 0 to 1 (on a scale from 0 to 1, 0 being a terrible F1-score, and 1 is considered a perfect score). The 

calculation for the F1-score is shown below. 

𝑭𝟏 – 𝒔𝒄𝒐𝒓𝒆 = 
2∗(Recall∗Precision)

Recall+Precision
  

In addition to the F1-score, the precision score of the best performing model (derived from the largest 

F1-score) will be evaluated as well against a benchmark score. The precision score (which belongs to 

the F1-score of 0.114) achieved by Ranjan et al. (2018) is 0.071 and will be used as the benchmark 

score. The comparison between the precision score that belongs to the largest F1-score of this research 

https://github.com/Levy-A/Thesiscodes
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and the above-mentioned precision score is essential in order to provide a complete view of the 

effectiveness of the best performing strategy. The motivation for this decision is that a potential 

improvement in one measurer should not be at the expense of another measurer. Both the precision 

score and F1-score were automatically generated via the “classification_report” function of the 

sklearn.metric library (Pedregosa, et al., 2011).  

 

For each classifier-strategy combination, both the F1-score and the corresponding precision score are 

collected. The final evaluation verdict is a statement regarding the effectiveness of the best performing 

classifier-strategy combination. This verdict is based on whether or not the best-achieved F1-score 

exceeds the benchmark score, and on how this affects the precision score.  

4.4 Software 
The software used for the analysis of this research is Python version 3 in the Jupiter Notebook 

environment. In Table 4.2 an overview is given of the various libraries and functions used. 

Table 4.2: overview of the various libraries and functions used in this research. 

Library   Specific 

Autofeat  AutoFeatClassifier 

Imbalanced-learn imblearn.ensemble.RUSBoostClassifier 
   imblearn.under_sampling.RandomUnderSampler 

NumPy * 

Pandas * 

Scikit-learn  sklearn.ensemble.AdaBoostClassifier 
   sklearn.ensemble.RandomForestClassifier  
   sklearn.svm.LinearSVC 
   sklearn.preprocessing.StandardScaler 
   sklearn.model_selection.train_test_split 
   sklearn.model_selection.GridSearchCV 
   sklearn.metrics 

Time * 

Xgboost  XGBoost 

Matplotlib                        PyPlot 
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5. Results 
In this section of the report, the results will be presented. Since two experimental set-ups were 

proposed, both results of each set-up will be covered individually in separate sections. Each set-up was 

tested on three ensemble classifiers, which are a RUSBoost, AdaBoost, and XGBoost. Additionally, the 

RUSBoost and AdaBoost were tested on three different base estimators, which are the default decision 

tree (DT), a random forest classifier (RFC), and lastly a support vector machine (SVM). Each 

experimental set-up generated seven F1-scores and corresponding precision scores. The results in the 

tables represent the largest F1-scores achieved with optimal hyperparameter settings.  

5.1 Experimental Set-Up 1 Results 
Experimental set-up 1 concerns a random under-sampling strategy combined with features engineered 

in one feature engineering step and five feature selection rounds. Table 5.1 displays the F1-and 

precision scores that correspond to the various classifier-base estimator combinations. The scores 

represent the results obtained by the trained classifiers on unseen test data. The same test set was 

applied to all classifiers-base estimator combinations. Moreover, the values in table 5.1 represent the 

highest scores obtained by hyperparameter optimization for all classifier – base estimator 

combinations. This time-consuming process involved tuning the various parameters, training and 

testing the tuned model, and comparing the newly acquired scores with the scores generated by other 

parameter value combinations.  

Table  5.1     F1-score    Precision 

Model       RUSBoost       AdaBoost       XGBoost       RUSBoost       AdaBoost       XGBoost 

DT (default)                    0.10                0.09                0.06               0.07                 0.05                0.03 

RFC                                         0.21                0.08                   -                   0.16                 0.04                  - 

SVM                                       0.07                0.06                   -                   0.04                 0.03                  - 

Note: XGBoost has no base estimator. The F1-scores are font coloured black, and the precision scores 

are font coloured red. The bold underlined numbers represent the highest scores. 

As can be observed from the results in table 5.1, the largest overall F1-score of 0.21 is achieved by the 

RUSBoost classifier with an RFC-base estimator. The largest overall precision score of 0.16 is achieved 

by the same RUSBoost – RFC classifier combination. Both those scores exceed the benchmark 

thresholds of 0.114 and 0.071. The F1-score improved by 84.2% ((0.21-0.114)/0.114), and precision 

improved by 125.4% ((0.16-0.071)/0.071). After a five-fold cross-validation grid search with different 

learning rates, the number of estimators, and various other hyperparameters, the optimal 

hyperparameter values for this particular combination were found to be the default settings for both 
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the RUSBooster as well as the RFC. A total of 18 out of the 55 rare events of an error were classifier 

correctly by the classifier combination. See figure 5.1 for the corresponding classification report.  

Figure 5.1: Classification report of the RUSBoost – RFC classifier combination. 

    Precision Recall  F1-score Support 

    No error (0)   0.99  0.98  0.98  4010 

          Error (1)   0.16  0.33  0.21  55 

         Accuracy   *  *  0.97  4065 

      Macro avg   0.57  0.65  0.60  4065 

Weighted avg   0.98  0.97  0.97  4065 

The largest F1-score achieved by the AdaBoost classifier is 0.09 and was realized with the default 

decision tree as for the base classifier. The score of 0.05 resembles the largest precision score achieved 

by the AdaBoost classifier, again with the decision tree as the base estimator. None of the AdaBoost – 

base estimator combinations exceeds the benchmark thresholds, including the best performing 

AdaBoost – DT combination. The hyperparameters used and tuned in this classifier - base estimator 

combination include “n_estimators” and “learning_rate” for the AdaBoost classifier, and “max_depth” 

and “min_samples_leaf” for the base estimator. The corresponding classification report is shown in 

figure 5.2.  

Figure 5.2: Classification report of the AdaBoost – DT classifier combination.   

    Precision Recall  F1-score Support 

    No error (0)   1.00  0.73  0.84  4010 

          Error (1)   0.05  0.93  0.09  55 

         Accuracy   *  *  0.73  4065 

      Macro avg   0.52  0.83  0.46  4065 

Weighted avg   0.99  0.73  0.83  4065 

Note: base_estimator__max_depth (7), base_estimator__min_samples_leaf (1), learning_rate (1), 

n_estimators (200). 

The F1-and precision scores achieved by the XGBoost are 0.06 and 0.03 respectively. Both scores do 

not exceed the benchmark threshold values set. The parameters that were found to yield the best 

results are “learning_rate” (0.1) and “n_estimators” (200). From the 55 errors, the XGBoost classifier 

48 correctly. See figure 5.3 for the classification report.  
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Figure 5.3: Classification report of the XGBoost. 

    Precision Recall  F1-score Support 

    No error (0)   1.00  0.65  0.79  4010 

          Error (1)   0.03  0.87  0.06  55 

         Accuracy   *  *  0.65  4065 

      Macro avg   0.52  0.76  0.43  4065 

Weighted avg   0.98  0.65  0.78  4065 

5.2 Experimental Set-Up 2 Results 
Experimental set-up 2 applied two rounds of feature engineering, with each round having a single 

feature selection run. Similar to table 5.1, table 5.2 shows the best F1-score results achieved by the 

different classifier-base estimator combinations on the test set of data.  

Table  5.2     F1-score    Precision 

Model       RUSBoost       AdaBoost       XGBoost       RUSBoost       AdaBoost       XGBoost 

DT (default)                    0.15                0.09                0.07               0.17                 0.05                0.04 

RFC                                         0.20                0.08                   -                   0.24                 0.04                  - 

SVM                                       0.04                0.05                   -                   0.02                 0.03                  - 

Note: XGBoost has no base estimator. The F1-scores are font coloured black, and the precision is font 

coloured red. The bold underlined numbers represent the highest scores.  

The largest F1-and precision scores for experimental set-up 2 were obtained by the RUSBoost - RFC 

classifier combination. Both the F1-and precision score surpassed the benchmark threshold values, 

with the F1-score improving by 75.4% ((0.20-0.114)/0.114) and the precision score resulting in an 

improvement of 238% ((0.24-0.071)/0.071). The three hyperparameters tuned include “n_estimators” 

(100) and “learning_rate” (1) for the classifier, and “min_samples_split” (2) for the base estimator. Out 

of the 55 observations of errors, a total of nine were classified correctly. See figure 5.4 for the 

classification report.  

Moreover, the RUSBoost – DT classifier combination exceeded the benchmark threshold values too. 

The F1-score of 0.15 improved by 31.6% ((0.15-0.114)/0.114), and precision score experienced an 

improvement of 139.4% ((0.17-0.071)/0.071). The hyperparameters selected and modified for the 

classifier are the “learning_rate” (0.1) and “n_estimators” (100). The base estimator was tuned only 

on the “min_samples_leaf” (3) hyperparameter in order to achieve the best result.   
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Figure 5.4: Classification report of the RUSBoost – RFC classifier combination. 

    Precision Recall  F1-score Support 

    No error (0)   0.99  0.99  0.99  4010 

          Error (1)   0.24  0.16  0.20  55 

         Accuracy   *  *  0.98  4065 

      Macro avg   0.62  0.58  0.59  4065 

Weighted avg   0.98  0.98  0.98  4065 

The largest F1-and precision scores achieved by the AdaBoost classifier is in combination with the DT, 

0.09 and 0.05. Nevertheless, both results do not surpass the benchmark threshold values. The 

remaining classifier – base estimator combinations score below the benchmark threshold too. The 

hyperparameters values for the AdaBoost – DT classifier combination are “n_estimators” (150), 

“learning_rate” (0.1), and the base estimator hyperparameter “min_samples_leaf” (2). Figure 5.5 

provides an overview of the classification report.  

Figure 5.5: Classification report of the AdaBoost – DT classifier combination. 

    Precision Recall  F1-score Support 

    No error (0)   1.00  0.74  0.85  4010 

          Error (1)   0.05  0.89  0.09  55 

         Accuracy   *  *  0.74  4065 

      Macro avg   0.52  0.82  0.47  4065 

Weighted avg   0.99  0.74  0.84  4065 

The final model tested concerns the XGBoost. The F1-score realized by this classifier is 0.07, which is 

below the benchmark threshold value. Likewise, the precision score of 0.04 does not exceed the 

benchmark threshold set. The hyperparameters tuned for this classifier include “n_estimators” (25), 

“learning_rate” (0.5), “gamma” (0) and “max_depth” (8). From the 55 observations that represent an 

error, the XGBoost classifier 46 correctly. Please see figure 5.6 for the classification report.  

Figure 5.6: Classification report of the XGBoost classifier. 

    Precision Recall  F1-score Support 

    No error (0)   1.00  0.72  0.84  4010 

          Error (1)   0.04  0.84  0.07  55 

         Accuracy   *  *  0.72  4065 

      Macro avg   0.52  0.78  0.45  4065 

Weighted avg   0.98  0.72  0.82  4065 
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Table 5.7 shows an overall overview of the results achieved by each strategy on the different classifier 

– base estimator combinations. The black coloured font signifies the F1-score, and the red coloured 

font indicates the precision score.  

Table  5.7       Experimental set-up 1              Experimental set-up 2 

Model       RUSBoost       AdaBoost       XGBoost       RUSBoost       AdaBoost       XGBoost 

DT (default)                   0.10/0.07       0.09/0.05      0.06/0.03       0.15/0.17       0.09/0.05      0.07/0.04 

RFC                                        0.21/0.16       0.08/0.04         -                   0.20/0.24      0.08/0.04         -          

SVM                                      0.07/0.04       0.06/0.03         -                    0.04/0.02      0.05/0.02        -           

6. Discussion 
In this section, the results of this research will be evaluated in relation to the research question. The 

aim of this project was to find whether or not a resampling strategy (random under-sampling) in 

combination with adding additionally engineered features to an unbalanced dataset could improve on 

the predictive performance of an AdaBoost and XGBoost ensemble classifier. Improvement of the 

predictive performance was measured by benchmarking the F1-score of 0.114 achieved by Ranjan et 

al. (2018) to the F1-score results of this research. Two experimental set-ups were proposed and tested 

on seven different classifier – base estimator combinations. See table 5.7 in the previous chapter for a 

complete overview of the results per strategy on the different classifier – base estimator combinations.  

The results in table 5.7 show that three out of the 14 classifier – base estimator combinations have 

exceeded the benchmark threshold value. Experimental set-up 2 appears to be the superior of the two 

proposed strategies as two out of the three best results were generated after applying experimental 

set-up 2. Nevertheless, the overall best F1-score of 0.21 was realized by applying experimental set-up 

1. None of the proposed strategies however managed to exceed the benchmark threshold value with 

the AdaBoost or XGBoost classifier, but only if applied to the RUSBoost classifier. It is noteworthy to 

find that, even though the RUSBoost is an AdaBoost that automatically performs random under-

sampling, the performance of the RUSBoost is significantly better. Although this outcome might be 

contradictory, it is in accordance with the findings of the research by Seiffert et al. (2010) who found 

in their experiment that the RUSBoost outperformed four base learners and a SMOTEBoost on 15 test 

datasets. Those test datasets were highly imbalanced, similar to the dataset used for this research. It 

should, therefore, be no surprise that the RUSBoost indeed performs better than the AdaBoost and 

XGBoost on this particular dataset as it is in accordance with earlier findings by Seiffert et al. (2010). 

A remarkable discovery is the similarities between scores achieved by both strategies for the AdaBoost 

– base estimator combinations and XGBoost. Please see figure 6.1. It seems from the results that the 
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effect of the proposed strategies differ little from each other as the results are almost similar. There 

are some marginal differences between the results achieved per strategy on the AdaBoost – SVM 

combination and XGBoost, but those are negligible. From figure 6.1 it can be observed that there is a 

clear trend regarding the performance of a classifier in combination with an SVM as the base estimator. 

For both strategies goes that when an SVM is applied as the base estimator, the performance goes 

down. A similar outcome was observed by Qazi and Raza (2012), where the support vector machine 

performed worst as compared to the other classifiers tested. Moreover, the expected outcomes in 

accordance with the observations by Qazi and Raza (2012) remained absent. The proposed strategies 

did not yield the desired outcomes if applied to the AdaBoost or XGBoost.  

Figure 6.1: line graph that plots the F1-scores per strategy on different classifiers. 

 

The results for the performance of the AdaBoost and XGBoost are somewhat surprising. Although the 

recommendations made by Ranjan et al. (2018) were implemented, the F1-scores did not improve. On 

the contrary, the results deteriorated. There are three possible explanations for this outcome. The first 

explanation is that by applying a random under-sampling technique, valuable information got lost. This 

information loss could have contributed to the decrease in the ability of the classifiers utilized to 

discriminate between both classes. Abdi et al. (2015) warned for this potential consequence when 

applying a random under-sampling technique in their research. The second possible explanation for 

the decrease in performance might be derived from the fact that the classifiers used are ensemble 

methods purposed to handle well on imbalanced data classification and regression tasks. This research 

implemented a random under-sampling technique in order to create a better balanced dataset. It 

might be possible that this newly created balance is the cause of the poor performance of the classifiers 
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as those were designed to deal with unbalanced datasets. The last possible explanation is the quality 

of the engineered features. As stated by Horn et al. (2019), one feature engineering round will probably 

only yield marginal improvements, and three feature engineering rounds will likely overfit on the data, 

hence two feature engineering rounds. Nevertheless, since the limited time available for this research, 

experimental set-up 2 only received one feature selection run (five feature selection runs are default). 

Perhaps this might have contributed to the poor performance of the AdaBoost and XGBoost as well.  

Although the F1-scores did not improve, the results contribute to the knowledge on how to handle 

unbalanced datasets. It is obvious from the results of this research that adding additional engineered 

features to an unbalanced dataset in combination with a random under-sampling technique does not 

improve on the predictive performance of an AdaBoost or XGBoost. It is important to acknowledge 

this discovery so that other researchers who work with datasets that have an imbalanced label 

distribution apply other techniques apart from the one proposed in this research. This research has 

also provided additional evidence regarding the performance of the RUSBoost classifier over other 

classifiers. In addition to the research by Seiffert et al. (2010), this research has proven on yet another 

unbalanced dataset the effectiveness of the RUSBoost classifier. This might be of interest to 

researchers who seek to compare the performance of various classifiers on unbalanced datasets. To 

the pulp-to-paper manufacturer who seeks to reduce downtime, it is recommended to implement the 

experimental set-up 1 in combination with a RUSBoost – RFC base estimator classifier as this yielded a 

vast improvement in the prediction of errors.  
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7. Conclusion 
This research intended at improving the predictive performance of an AdaBoost and XGBoost classifier 

on an unbalanced dataset from a pulp-to-paper producer. Two experimental set-ups were proposed 

to increase on the benchmark F1-score of 0.114 and involved adding additionally engineered features 

to the dataset while resampling the data by means of random under-sampling.  

It was found that no improvement in the predictive performance of the originally proposed classifiers 

was made by applying the different experimental set-ups. One can, therefore, state that random 

under-sampling in combination with feature engineering is not a method to improve on imbalanced 

data classification tasks. On the other hand, if the RUSBoost classifier is taken into consideration, then 

a significant improvement on the benchmark F1-score has been made. Figure 6.1 in the previous 

chapter shows the similarity between the F1-scores achieved by both experimental set-ups as they are 

almost parallel to one each other. Nevertheless, since experimental set-up 1 yielded the overall best 

F1-score of 0.21, and did require significantly less time to engineer and select features (30 minutes for 

experimental set-up 1 compared to almost 26 hours for experimental set-up 2 in feature engineering 

and selection), it should be considered the superior of the two, although experimental set-up 2 

generated two above-benchmark scores. Nevertheless, since Ranjan et al. (2018) did not include the 

RUSBoost classifier in their research, an objective comparison between F1-scores cannot be made, and 

so it is unclear whether the F1-score of this classifier is as a result of the proposed experimental set-

ups, or the RUSBoost classifier algorithm itself.  

For future research, it is recommended to test the two proposed strategies on the RUSBoost and 

AdaBoost with different base estimators. Due to time restrictions, this research limited the 

implemented base estimators to a decision tree, random forest classifier, and support vector machine. 

Improvement in the predictive performance of the classifier could potentially be made by testing on 

other base estimators. Moreover, the feature engineering via the AutoFeat library using two rounds 

of feature engineering steps combined with five feature selection runs (similar to experimental set-up 

2, except than with more feature selection runs) could potentially enhance the predictive performance 

of the classifiers as well.  
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Appendices 
Appendix I: all original variables in the dataset. 

 
"1" "DateTime"                                                 Timestamp 
"2" "SheetBreak"                                               Y-variable 
"3" "RSashScanAvg" 
"4" "CT.1.BLADE.PSI" 
"5" "P4.CT.2.BLADE.PSI" 

 
"7" "ShwerTemp" 

"9" "C1.BW.SPREAD.CD" 
"10" "RS.BW.SPREAD.CD" 
"11" "C1.BW.SPREAD.MD" 
"12" "RS.BW.SPREAD.MD" 
"13" "C1.BW.SCAN.AVG" 
"14" "RS.BW.SCAN.AVG" 

 
"17" "CouchLoVac" 
"18" "COUCH.VAC" 
"19" "X4PrsTopLd" 
"20" "X4PrsBotLod" 

"22" "X2DryrDrw" 
"23" "X3DryrDrw" 
"24" "X4DryrDraw" 
"25" "X1PrsTopDrw" 
"26" "X4PrsBotDrw" 
"27" "FanPmpSpd" 
"28" "FlBxHdrVac" 
"29" "FlatBxVac" 
"30" "Grade.Bwt" 

"33" "HdBxLiqLvl" 
"34" "TotHead." 
"35" "HorzSlcPos" 

 
"37" "CouchLoad" 
"38" "C1MoSprdCD" 
"39" "RSMoSprdCD" 
"40" "C1MoSprdMD" 
"41" "RSMoSprdMD" 

 
 
 

"47" "RUSH.DRAG" 
"48" "Rush.Drag" 

 
"50" "HBxSlcTemp" 

 
"52" "CouchSpd" 
"53" "MachSpd" 
"54" "X1PrsTopSpd" 
"55" "X4PrsBotSpd" 
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Variables coloured in blue represent sensor data of machine settings. The yellow coloured variables are measures of input 

quantities various ingredients required for the production of the paper (Bierman, 1993).  

"59" "HBxTotHead" 
"60" "TrayCons" 
"61" "UpprHdTmpRL" 
"62" "VertSlcPos" 
"63" "EventPress"  
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Appendix II: Table with all the engineered features that were added to the data frame with 

feateng_steps=1, and featsel_runs=5. 

 

 'Abs(CouchLoVac)' 

 'BlndStckFloTPD**2' 

 'HdboxpH**2' 

 'CoatBrkFlo**3' 

 'exp(COUCHVAC)' 

 'HBxSlcTemp**2' 

 'x1PrsTopSpd**2' 

 'x1PrsTopSpd**3' 

 'Abs(x1PrsTopDrw)' 

 'Abs(RSBWSPREADMD)' 

 'Abs(P4CT2BLADEPSI)' 

 '1/CouchLoad' 

 'RwBrkFlo**3' 

 'CouchSpd**3' 

 'SilicaFlo**3' 

 'BasWgtFlo**3' 

 'RSMoSprdMD**2' 

 'Abs(RwBrkFlo)' 

 'Abs(KraftFlow)' 

 'Abs(SilicaFlo)' 

 'exp(HBxTotHead)' 

 'RSBWSPREADCD**2' 

 'exp(FlBxHdrVac)' 

 'RSBWSPREADMD**2' 

 'Abs(SodAlumFlo)' 

 'Abs(x4PrsBotLod)' 

 'Abs(HdboxpH)' 

 '1/HBxTotHead' 

 'CouchLoad**2' 

 'Abs(CouchSpd)' 

 'FlBxHdrVac**2' 

 'UnblGWDFlo**3' 

 'x1PrsTopDrw**3' 

 'Abs(RSMoSprdMD)' 

 'exp(HBxSlcTemp)' 

 'exp(C1BWSCANAVG)' 

 'BleachedGWDFlow**3' 

 'x2DryrDrw**2' 

 'ShwerTemp**3' 

 'WtNStarFlo**2' 

 'x4DryrDraw**3' 

 'Abs(HBxTotHead)' 

 'C1BWSPREADCD**3' 

 'Abs(RSBWSPREADCD)' 

 'BlndStckFloTPD**3' 


