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Predicting Academic Success Using Academic
Genealogical Data, a Data Science Approach

Joost E.S. van Weert

Many academic genealogy studies include the backtracking of ideologies or scientific concepts. In
the age of data however, many more possibilities become apparent for academic genealogical data
(information concerning an academics place in the scientific world). In this paper, one central
question is examined:

Can academic success be predicted?

To study this question, data from NeuroTree, an academic genealogy focused on neurosci-
entist, is used. In addition, the h-index is added from google scholar to serve as a measure of
success in combination with fecundity. Fecundity is a metric based on successful mentor student
relations.

This study uses two main approaches to answer the research question, prediction via regres-
sion and via classification. Regression allows variables to be accurately estimated. But due to the
messy nature of the data, classification is used in combination with a up and down sampling
strategy to balance the dataset for more robust variables.

In conclusion this study found insufficient evidence using regression models for predictive
values in academic genealogies for academic success (highest scores, Explained variance 0.085
and MAE 8.66). However, one interesting finding within this study is that there is no evidence
supporting a positive relationship between the two success metrics fecundity and h-index.

1. Introduction

Academic success often determines an academic’s value in his field and overall pro-
fessional life. However, we do not have a good and reliable measure of academic
success. Given this, research concerning academic success exists across disciplines and
multiple distinct academic literatures about it never intersect. Some studies suggest
that a successful mentorship relation is itself academic success (Marsh 2017; Heinisch
and Buenstorf 2018; Malmgren, Ottino, and Amaral 2010) while others use funding as
academic success (Rezek, McDonald, and Kallmes 2011; Bol, de Vaan, and van de Rijt
2018), other studies claim an academic’s citation or publication count as success (Li et al.
2019; Fortunato et al. 2018; Acuna, Allesina, and Kording 2012), which involves com-
plicated metrics and questionable metrics, such as the h-index, as operationalisations
of academic success (Schubert and Schubert 2019; Lazaridis 2010; Hirsch 2005). All of
these approaches use metrics that focus on a different part of an academics professional
life and can conclude different results and thus assign disparate values to individual
academics.

Furthermore, whenever a particular metric of success is defined, other questions
arise, for example: Who in a heterogenous group of academics is successful? (Vanclay
2008; Cronin and Meho 2006); Are there correlators with this particular metric? Does
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the metric correlate with other metrics of success? (Li et al. 2019; Liénard et al. 2018;
Heinisch and Buenstorf 2018; Ayaz, Masood, and Islam 2018), etc. In short, there is
an abundance of interest and research concerning academic success, but little focus.
This means that that many of the conclusions from this research contradict one another.
For example, there are studies which conclude that a top performing academic mentor
increases an individuals academic success (Li et al. 2019; Liénard et al. 2018), while
evidence that shows the exact opposite trend can also be found (Malmgren, Ottino,
and Amaral 2010; Heinisch and Buenstorf 2018), or yet other studies which suggest
that mentorship does not matter at all (Paglis, Green, and Bauer 2006). In summary,
there is a literature about the research question at the center of this thesis, but many
individual research gaps all of which demand attention (details about the literature can
be found in Section 2). Given the state of the field and the potential impact that it could
have on an individual academic’s life (through evaluations, institutional review, or
policy) more research concerning this subject is needed in general, but also specifically
at the level of the most basic questions about what academic success is, how it can
be measured, and what the value of mentorship may be. This thesis approach these
questions carefully, but with an eye to this more general problem of a lack of stable
definitions, operationalisations, and contradictory results (see Section 1.1 for details
about the specific goals of this paper).

We start with the most basic data about academic student-mentor relationships,
which can be found in an academic genealogy characterized as a family tree of aca-
demics, their communities and their work. Genealogies are a common way to ascertain
information hidden in large quantities of sparsely connected data points. Several aca-
demic fields have published some form of mentorship history (Kelley and Sussman
2007; Jackson 2007; Chang 2003). This paper focuses on the genealogy and surrounding
data from NeuroTree (https://neurotree.org 2020). Research concerning genealogies
involve relatively basic concepts such as backtracking ideologies (Kelley and Sussman
2007) to more complex subjects like mentorship-derived k-means clustering to distin-
guish subgroups within a research area (David and Hayden 2020).

Academic fecundity and the h-index are relatively basic measures of individual
academic performance. Within this paper, these metrics are used to find possible cor-
relations and characteristics of successful academics, such as the number of students
or an academics place in the scientific community. Academic fecundity is based on
the number of successful student relations of an academic (David and Hayden 2020)
(formula shown in Section 2.2). It is "one of the most lasting and important contributions
a scientist can make", adding to the importance of student guidance (Marsh 2017). The
h-index, on the other hand, is a measure of the amount of publications and citations of
an individual paper (Hirsch 2005). It is one of the most common metrics to determine
the impact of an academic, being used in several academic rankings (Cronin and Meho
2006; Vanclay 2008; Lazaridis 2010), and multiple academic success analyses (Ayaz,
Masood, and Islam 2018; Acuna, Allesina, and Kording 2012; Jensen, Rouquier, and
Croissant 2009). One study that examined the h-index found more than 6110 citings
of the paper introducing the h-index and more than 87 published different variants of
the metric (Schubert and Schubert 2019). In summary, academic fecundity and the h-
index are proven metrics of academic success, so both will be used with the addition of
aforementioned genealogical data for possible correlations. That said, they are far from
perfect in giving us a definition of what individual academic success actually is.

2



J.E.S. van Weert Success Correlators in Academic Genealogies

1.1 Research questions

The goal of this study is to add to the existing literature concerning academic success
overall and possible correlations with academic genealogical data. To improve the
current literature, this paper focuses on filling the existing gap concerning academic
success, its metrics and possible correlators. This aim can be translated into the follow-
ing general and guiding research question:

RQ: Can academic success be predicted?

To answer this research question in an organised manner, a number of hypotheses
will be tested. These are as follows:

H1 Academic genealogical data* correlates positively to the success of an academic.
H2 There is a positive relationship between the number of direct PhD students and

subsequent PhD students of students, of an academic and his success.
H3 Different metrics of academic success have a positive relation towards each other.

* : Data concerning an academic and his place in the scientific community.

These hypotheses are derived from current literature concerning the subject of aca-
demic success and details regarding an academics place in their scientific community. In
short, the current literature describes conflicting results concerning correlations towards
academic success (Liénard et al. 2018; Malmgren, Ottino, and Amaral 2010; Paglis,
Green, and Bauer 2006). This argues for more research on the respective subject and
thus a foundation for Hypothesis H1. To go into detail, a more specified hypothesis is
formulated as Hypothesis H2. This individualizes the students of an academic which
emphasizes the prestige and necessity concerning qualitative mentorship as mentioned
in the literature (Marsh 2017; Seibert, Hall, and Kram 1995; Hunt and Michael 1983).
Finally, Hypothesis H3 is a consequence of the current dilemma concerning different
metrics of academic success and their conflicting results (Chariker et al. 2017; Heinisch
and Buenstorf 2018; Waltman and Van Eck 2012). A more detailed argumentation and
association with the literature for each of these hypotheses is included in Section 2.

Due to the nature of the data and initial results of the analyses, an opportunity arose
for further interpretation and exploration of the data and possible trends or groups con-
cerning academics and their genealogical information. To exploit this opportunity and
improve on the conclusions based on testing the hypotheses, a number of unsupervised
clustering tasks (CT’s) are created. These tasks are detailed below, further details and
argumentation is shown in Section 3.2.

CT1 Clustering based on student count per academic.
CT2 Clustering based on different metrics of academic success.
CT3 Clustering based on formal academic relations of an academic.

2. Related Work

This section will focus on previous studies related to the subject of this paper. This will
involve studies concerning, academic genealogies in general (Section 2.1), fecundity and
its function (Section 2.2), other metrics of academic success (Section 2.3), and previous
research concerning academic genealogies and academic success (Section 2.4).
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2.1 Academic genealogies

The interest in genealogies has only increased in recent years (Heinisch and Buenstorf
2018; Li et al. 2019). Especially because of the growth of more sophisticated databases
such as NeuroTree (David and Hayden 2012), and the Mathematical genealogy (Jack-
son 2007) and the growing possibilities using Data Science methodologies. The most
common interest for academic genealogies is using the data to trace ideologies through
descendants and finding the root (Kelley and Sussman 2007). There are nonetheless,
many more possibilities for the information that genealogies unveil.

An academic genealogy does not differ greatly from a biological family tree. An
academic is linked via lines to his or her mentor (parent), linking to the preceding
(family of) academics. In addition, they are linked to their own students (children) and
thereby the following students of those students (grandchildren), etc. This creates a clear
visualisation of the structure that is the academic world in person.

Academic genealogies include information that is hidden in individual papers
and other collaborations. This leads to interesting metrics for an academic and his or
her field. To quickly touch on such metrics, these include, academic fertility, cousins,
descendants and generations (Rossi et al. 2018). Moreover, such relations cause an
opportunity for clustering. In (David and Hayden 2012), 60 groups were identified
within the field of neuroscience using k-means clustering, identifying and visualising
clusters with close relations. Moreover, comparable genealogies are used to determine
academic success (Malmgren, Ottino, and Amaral 2010; Heinisch and Buenstorf 2018),
and compare multiple success factors with awards won by an academic (Marsh 2017).

Moreover, recent research shows a growing interest in academic genealogies and
the possibilities they offer, especially concerning academic success (Malmgren, Ottino,
and Amaral 2010; Rossi et al. 2018; Marsh 2017; Heinisch and Buenstorf 2018) (Li et al.
2019) (more detail concerning this subject in Section 2.4). Adding to these recent papers
and the growing interest, a relatively new study concluded that female mentors reduce
female student success and the gain of new female mentors (AlShebli, Makovi, and
Rahwan 2020). Moreover, this paper was later (19-11-2020) retracted by Nature (which
published the paper) after serious complaints concerning the methods of the study,
indicating more significance for further research concerning the subject at hand.

2.2 Fecundity

By using academic genealogical data, fecundity can be calculated. This is a metric to
assess the successful student relations of an academic. This is measured in the amount
of students an academic directly mentors, adding the mentorship students of those
students, and so on. This can be described in the formula, calculating the fecundity
sum (Sugimoto 2014):

FecunditySum = n1 + n2 + ...+ nm

However, this formula counts the students of students indefinitely and equally
across generations. Therefore, this formula will favor historic academics and create a
bias causing it to be problematic as a measure of success. Thus, a normalization factor
can be introduced for a more balanced comparison (David and Hayden 2012). The same
study concluded an initial normalization factor of one, followed by a multiplication of
0.5 with each generation step suffices to mitigate the initial bias. The formula of this met-
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ric is shown below. From this point in the paper, fecundity refers to the FecundityScore
as stated in the formula. In both formulas, the notations shown in Table 6 apply.

FecundityScore = γn1 + γn2 + ...+ γnm

Table 1
FecunditySum and FecundityScore formula notation explanation

Notation Meaning

n1 Direct mentored students

n2 Students of n1

nm

The number of mentored students
stepping down through

m successive generations

γ
Normalization factor which

scales with successive generations

When examining the FecundityScore function as a metric of academic success, one
might conclude an aspect that the function ignores. In theory, academic X can have
one student that becomes a high performing mentor, thereby creating a large amount of
students himself. In this case, academic X would receive credit for his second generation
of students (and the students of those students, etc.), since they are included in the
formula. However, academic X might have contributed little to none to ascertain this
credit, making academic X a lucky and not a good mentor per se. This can also be the
other way around, where academic Y would have a lot of direct students but little to no
students of students. This could be seen as a lazy mentor, since he has a lot of students
but might have not actually guided or counseled them. To determine the practical side
of this theory, a clustering task is formed based on the sum of students per generation
(Section 3.2.3).

Within the academic community, the training of new students is of vital importance
to the upkeep and advance within a research field. The training of successful students is
perceived as one of the most important and lasting contributions (Andraos 2005; Marsh
2017). This conclusion is the cause for the specification of Hypothesis H1 to allow the
current study to explicitly address students of an academic and its relation to academic
success as stated in Hypothesis H2. Since mentoring is an essential part of the afore-
mentioned training (Campbell and Campbell 1997), this would logically extrapolate to
fecundity as a fitting metric of success. Moreover, fecundity has repeatedly been stated
as a measure of success in analytical studies (Heinisch and Buenstorf 2018; Malmgren,
Ottino, and Amaral 2010), grounding fecundity even further as a widely used metric of
success.

2.3 Measures of academic success

Firstly, as stated in Section 2.2, fecundity is a commonly used metric of success. This
would coincide with mentorship being a form of prestige besides other benefits for the
mentor himself (Hunt and Michael 1983) and (Seibert, Hall, and Kram 1995). Adding
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to these benefits, one qualitative study found that mentors perceive building close
professional relationships, satisfaction in attributing to personal growth, and the pass-
ing of knowledge as reasons to mentor (Allen, Poteet, and Burroughs 1997). Another
paper adds that mentorship is a form of upwards striving from the mentor, within a
community (Allen et al. 1997). These conclusions emphasise fecundity, not only as a
metric for how many students an academic has, but also as a metric of performance,
learning on the job and willingness to provide guidance. Adding its frequent occurrence
as a metric of success (Heinisch and Buenstorf 2018; Malmgren, Ottino, and Amaral
2010), argues the use of fecundity as a metric of academic success and will therefore be
used to (partly) test Hypotheses H1–H3.

Adding to the importance of mentorship as a role in academic success, the sheer
output of PhD students has also been used, for example, to determine success of
academic faculties (Campbell and Campbell 1997). Some other relatively simplistic
measures of success are the summation of citations or publications of an academic (Li
et al. 2019; Fortunato et al. 2018; Acuna, Allesina, and Kording 2012). Citation count has,
however, received critique for its robustness and vulnerability to extraneous variables
(Li et al. 2019). Both citation and publication count serving as success metrics were also
recognized to distribute unfair credit over coauthored papers (Hirsch 2007).

Apart from mentorship and producing new academics, success could also be seen
as the amount of funding that is trusted upon an academic. One paper concluded that
professors of radiology with an h-index under 10 (low success) where "significantly less
likely to receive [...] funding" (Rezek, McDonald, and Kallmes 2011), odds ratio 0.07;
p = .0321. However, this study found no further significant relationships between the
h-indices over 10 (more successful academics) and other funding indicators. Another
study found an upwards spiral where winners of fundings would earn more funding
later in their academic career (Bol, de Vaan, and van de Rijt 2018). Although this does
not state a clear relationship or provide evidence for funding as a metric of success, one
could argue that funding would be directed to more productive or successful academics.
Funding does, however, include considerable extraneous variables including precise
allocation of credit(s), field dependencies, and social variables allowing questionable
results (Sugimoto and Larivière 2018).

There are more approaches of assessing academic success, in fact there are several
metrics with different formulas. One of the most generally and widely used metrics
of academic success, is the h-index (Hirsch 2005; Braun, Glänzel, and Schubert 2006;
Hirsch 2007; Schubert and Schubert 2019). An example of the extensive use of the h-
index is its use in academical rankings which encompasses a wide variant of papers
including informational sciences (Cronin and Meho 2006), forestry (Vanclay 2008), and
university departments (Lazaridis 2010). The h-index focuses on the papers published
by an author and their impact, measured in cite count. For example, an h-index of 20
indicates at least 20 papers that were individually cited at least 20 times. This creates
a more robust combination of citations and publications of an academic. To put the h-
index in perspective, Einstein, Darwin and Feynman had a respective h-index of 96, 63
and 53. Furthermore, an academic with an h-index of 12 could qualify him for tenure
at a major university (Acuna, Allesina, and Kording 2012). While this metric is widely
used, there has also been proportional critique. The single use of the h-index as a metric
for academic success appeared to be inadequate and inaccurate in a multitude of studies
(Costas and Bordons 2007; Waltman and Van Eck 2012; Cerchiello and Giudici 2014). In
an attempt to mitigate the difficulties surrounding the h-index, researchers added to
this metric of success. One paper, for example, looks at an addition of a time element
where only the last x amount of years are counted (Egghe 2010). This is only the tip
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of the figurative iceberg, since another paper found more than 87 different published
adaptations of the h-index, along with 6110 citings of Hirsch’s paper (which introduces
the h-index) (Schubert and Schubert 2019). Although not perfect, the wide application
and the extensive use of the h-index, validates the use of this variable as a metric of
success and therefore, will be used to (partly) answer Hypotheses H1–H3.

2.4 Academic genealogy and success analyses

As previously stated, fecundity and mentor analysis based on genealogies is not a new
concept. Several fields of science have some published form of mentorship history,
including computer science (Chang 2003), mathematics (Jackson 2007), and primatology
(Kelley and Sussman 2007). By analysing such genealogies, some conclusions have been
drawn.

Focusing on academic success studies with genealogical data, interesting relation-
ships between academics’ positions in the scientific community and metrics of their
success were found. One conclusion entails that if an academic is in the top 10% ’core’ of
his ’coauthorship network’, his paper will be in the top 10% most cited papers after five
years of publication (Sarigöl et al. 2014). The same paper stated that these results might,
however, be a result of a confounding variable, influencing both metrics. This could,
for example, be the ’Matthew effect’ or ’preferential attachment’ which is commonly
referred to when researching academic genealogies and academic growth. It states that
the rich (a lot of connections) get richer (more connections and citations) (Perc 2014;
Jeong, Néda, and Barabási 2003; Newman 2001). Expanding on this concept, one recent
paper found a positive relation between having a top scientist (being in the top 5% of
cited authors in that field of research in the year of mentoring) as a mentor and the
students’ prestige measured in published papers in a set of academic journals (Li et al.
2019). This coincides with other studies claiming a positive relationship between mentor
and student performance (Liénard et al. 2018; Crosta and Packman 2005; Andraos 2005)
and (Chariker et al. 2017). However, as stated in papers by (Paglis, Green, and Bauer
2006) and (Li et al. 2019), these results do not account for the selection process that
mentors have for their students.

One paper by (Malmgren, Ottino, and Amaral 2010) that did take this selection
process into account, focused on a mathematics genealogy. This study found that men-
tors with small (less than 3 students) fecundity (success) train students that have a 37%
larger fecundity, that mentors train students with 31% smaller fecundity in the last third
of their career and train students with 29% larger fecundity in the first third of their ca-
reer. Another study created a database using machine learning, including academics in
applied physics and electrical engineering from German universities. This study found
that mentors with a large amount of previous students and mentors later in their career,
both produce students with a lower probability to become advisors (p<0.01) (Heinisch
and Buenstorf 2018). This complies with the findings from the previously mentioned
paper, adding to the contradiction towards the papers mentioned before. Furthermore,
this study only found little evidence to confirm their hypotheses concerning the positive
correlation between both research output and connections of the mentor, and the proba-
bility of his students becoming an advisor (thus becoming a successful mentor, student
relationship). Moreover, a longitudinal study who followed PhD students found no
significant contribution of mentorship towards student productivity or commitment to
a research career (Paglis, Green, and Bauer 2006), adding to the clashes of findings in the
literature. In total, this field of research is recognised as under-researched (Heinisch and
Buenstorf 2018) and multiple studies seem to have contradicting observations. The find-
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ings stated within this section could mean significant changes in how a good academic
is determined and how good mentorship is viewed. Adding the statement that interest
towards these studies has grown (Li et al. 2019), formulates a decent argument for this
study to focus on examining possible correlators to success, Hypothesis H1, relations
between metrics of success Hypothesis H3, and in total the main Research Question
QR.

The combination of papers as depicted in this section, raise additional questions
concerning the different metrics of academic success and their relations. A number of
studies researched these relations. One study included 3085 neuroscientists to predict
the h-index achieved over time and yielded R2=0.92 (R2=1 being a perfect predictor)
for predicting one year in the future, R2=0.67 for five years, and R2=0.48 for ten years,
all with cross-validation. The variables that were included are (with direction of cor-
relation), number of articles written (positive), current h-index (positive), years since
publishing first article (negative), number of distinct journals published in (positive),
and number of articles in prespecified respectable scientific journals (positive) (Acuna,
Allesina, and Kording 2012). In all models, the h-index has a significant (if not overshad-
owing) importance as predictor. Which coincides with another paper (Ayaz, Masood,
and Islam 2018) and a study by the person that introduced the h-index. That study
concluded that a researcher with a high h-index 12 years after his first publication is
highly likely to have a high h-index after 24 years with a predictive power of r=0.91
(Hirsch 2007). Adding to the predictive analyses concerning the h-index, one paper
examined bibliometric indicators to predict promotion for all academic fields of study. It
concluded no single indicator as best predictor over all disciplines, the h-index however,
provided the "least bad" results with 48% accuracy compared to a 30% chance baseline
(Jensen, Rouquier, and Croissant 2009). In total, as shown by papers included in this sec-
tion, the main result that keeps appearing is that h-index predicts its future self. Other
relationships for metrics of academic success are still unclear. One study concluded that
fecundity is "strongly correlated" to publication count, but argues for "substantial extra
effort" on the subject (Malmgren, Ottino, and Amaral 2010). This enforces the argument
for this paper to focus on analyzing correlations between the h-index and fecundity
(Hypothesis H3), and the h-index and genealogical data (Hypothesis H1).

3. Experimental Setup

3.1 Data

The data used in this study is obtained from NeuroTree (https://neurotree.org 2020),
which is an academic genealogy which mainly focuses on neuroscientists. This includes
a data dump from their database as of 17-06-2020. Within this dump, three .tsv files
are included. These files encompass the details of each individual (people table), all
connections between the individuals (connect table), and all the locations, defined by
the university of the individual (locations table). This includes all data NeuroTree uses
for their website. Moreover, data from Google Scholar (https://scholar.google.com/
2020) is used to add a more credible and consistent source for the h-index. This data is
attained via a self made program that that allows communication with Google Scholar,
this procedure is described in Section 3.1.2. More details about the NeuroTree data will
be discussed in the following section.

3.1.1 Raw Data. The three datasets ’people’, ’connect’, and ’locations’ each contain a
different detailed part of the information within Neurotree. The structures of these sets
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are as follows. The ’people’ dataset contains 16 columns and 758599 rows. Each row
represents one person, identified by ’pid’ (person id), which is their unique value. The
columns, or variables, are explained in Appendix A. The "connect" dataset contains 11
columns and 1501062 rows. Each row represents one connection between a mentor and
student, each connection is identified by the unique value ’cid’ (connection id). More
details concerning this dataset are displayed in Appendix B. Finally, the "locations"
dataset contains 11 columns and 31941 rows. Each row represents one location identified
with the unique ’locid’ (location id) value. The columns contain the variables shown in
Appendix C. The different tables are all connected as is visualised in Appendix D.

This study focuses on the individuals and their success. Therefore, the ’people’ set
is used as a basis and the other tables are converted via the key values to fit into the
’people’ set. Furthermore, since fecundity is not included in the data dump, the ’people’
and ’connect’ datasets are used to calculate this metric. To calculate fecundity without a
bias towards historic researchers, the fecundity score is used as is stated in Section 2.2.
In practice, the unique value ’pid’ is used to search academics in the ’connect’ dataset in
the mentor column (’pid2’) when the ’relation’ column states a mentor relation type. The
outputted student(s) (’pid1’) are used to calculate the students in the next generation,
and so on. This process creates the subsequent student sums per generation, which
are also separately included into the data(’fec1’, ’fec2’, ’fec3’, ’fec4’, ’fec5’) as can be
seen in Appendix E. For each generation the normalization factor is multiplied by
0.5 before summation as is recommended in the literature (David and Hayden 2012).
Due to computational limitations, this process is repeated till the 5th generation of
students. In addition, fecundity related variables are also calculated and implemented
into the dataset, including the summation of different relation types (see Appendix B)
per academic. Using the data as stipulated within this section, one dataframe including
all information is created containing variables as stated in Appendix E.

3.1.2 Procedure H-index Data Collection. The h-index is included in the NeuroTree data
dump. However, the h-index variable consists for 97.06% of missing data. Therefore,
Google Scholar (https://scholar.google.com/ 2020) is used as a separate source for the
h-index. Since no proper Google Scholar API exists, a custom program is created to
ascertain the h-index on a large scale.

Before data can be collected, a variable that can serve as identifier needs to be es-
tablished. The unique academic identifier ORCID (https://https://orcid.org/ 2020) is
included in the NeuroTree data dump. This variable, however, contains 99.81% missing
data and therefore has little potential as a basis for further data gathering. Without the
ORCID there is no consistently included unique identifier for the academics as to be
able to search them on Google Scholar. Therefore, the data is accumulated by inputting
the full name of an academic into the custom program.

After inputting the full name of an academic, the program activates the schol-
arly module (https://pypi.org/project/scholarly/ 2020), allowing a connection with
Google Scholar. The custom program then imports all data from the specified academic.
While importing the data, a custom search log is created to track the searches and
record metadata concerning the imports. By using this search log, unique results are
filtered and non-unique instances are deleted, counteracting the non-unique nature of
the search input variable (full name of an academic). From the unique instances, the
h-index is gathered via a text search, which are added to the full dataset as stated in
Section 3.1.1.

The custom program is not recognized by Google Scholar as a proper API. This
causes the program to receive CAPTCHA errors, which aim to prevent such large scale
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requests that intent to disturb Google Scholar’s functionality. These errors eventually
forced the search to stop. To resolve this issue, a workaround is included in the program.
This recognizes the occurrence of such errors via the custom search log and adapts the
request rate accordingly, which allowed the implementation of the h-index into the data
to continue.

3.1.3 Data cleaning. The full dataset, as stated in Section 3.1.1 is used as the raw data for
this study. This data is largely collected from NeuroTree (https://neurotree.org 2020).
NeuroTree is a crowd sourced website, meaning "any internet user can add information
about researchers and the connections between them" (David and Hayden 2012). Since
there are no limitations to the input fields, variables can take an almost limitless amount
of different values (example in Appendix F), and there are large portions not filled in.
Therefore, all missing values are first summed and divided by the amount of instances
(rows) to get insights into the percentage of missing data, these results are shown in
Appendix G. As is visualised, the columns ’award’, ’hindex’, ’orcid_id’, ’s2id’, and
’homepage’ all have missing value percentages higher than 90%. These columns are
therefore dropped from the dataset. As previously stated in Section 3.1.2, the h-index is
later replaced by data retrieved from google scholar via a self made program.

From the remainder of the data, there are five categorical variables which must first
be interpreted for overarching definitions and then clustered into a limited number of
bins. This concerns the following variables, ’degrees’, ’location’, ’country’, ’area’, and
’majorarea’. The data distributions before binning are shown in Appendix H. This
figure shows that there is a large amount of unique values that occur variety of times.
In total, the variables ’degrees’, ’location’, ’country’, ’area’, and ’majorarea’ have 2495,
23808, 121, 167786, and 1719 unique values respectively.

The ’degrees’ column is defined by the degree(s) an academic has, it contains the
abbreviation of the diploma(s). This variable mainly contains PhD values, therefore
this is contained in its own bin. Furthermore, due to frequent occurrences in the data,
doctorates in psychology and doctorates in education are also filtered in their own bins.
Furthermore, due to estimated relevance for analyses, degrees higher than a PhD, were
assigned into a specific bin. Finally, all other specific doctorates are assigned into the
’misc_doc’ bin. The resulting bins are shown in Appendix I.

The ’location’ column contains all universities, as stated within NeuroTree. This
variable contains the specific name of a university containing, 23808 unique values
(23808). Since these are so specifically named, the upper 90% of occurrences are in-
spected to ascertain a lower number of unique values. The result is 1470 unique values
which could not be logically binned, pressuring this variable to be dropped from the
dataframe.

The ’country’ column identifies the country of the university of an academic. This
variable has 65.11% missing data. Because the missing data is a significant amount of
the overall data, this variable is dropped from the dataframe.

The ’area’ column involves the research area(s) of an academic, as is reported by
NeuroTree. Within this variable an academic can enter a multitude of areas of research.
Therefore, the binning structure accounts for academics to be sorted into multiple bins.
The bins that are used within this study express the following research areas electronics,
mathematics, engineering, computer science, psychology, biology and business. All bins
are selected to encompass as much instances as possible, without losing implication.

The ’majorarea’ column describes an academics place between genealogical trees.
This stems from NeuroTree and their aim to cluster academics(David and Hayden 2020).
The unique values mainly stem from the combination of multiple groups. Consequently,
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the binning structure aims to even out its different samples without losing information
and accounts for academics to be sorted into multiple bins. The bins that are used for
this variable are as follows, neuroscience, physics, academical tree research, biology and
chemistry, sociology and education, economy and business, and a misc bin covering all
other options (the distribution is shown in Appendix I.

The steps as discussed previously in this section, totals the data cleaning for this
study. The resulting distributions of the categorical variables are shown in Appendix L
and of the continuous variables are shown in Appendix M. The resulting dataset is re-
ferred to as the ’full dataset’. This includes the fecundity and h-index variables (’fec_tot’,
’hindex’) and all other variables, as previously stated in this section which entail:

• The academic degrees of an individual, binned
• Research area of an academic, binned
• Area within scientific community, binned
• Sum of direct students of the academic
• Sum of students of first generation of students
• Sum of students of second generation of students
• Sum of students of third generation of students
• Sum of students of fourth generation of students
• Sum of undergraduate mentorship relations (mentorship role)
• Sum of grad student mentorship relations (mentorship role)
• Sum of Postdoc student mentorship relations (mentorship role)
• Sum of research scientist mentorship relations (mentorship role)
• Sum of collaboration relations (not a mentorship role)

These listed variables form all genealogical variables that are used in this study, this
is referred to as ’All genealogical data’. This forms the basis to answer Hypotheses H1-
H3, with different metrics of success (fecundity and h-index). To properly answer
these questions, however, different variables and instances need to be treated, included
or excluded. These specific approaches are formed as stated in the following section
(Section 3.1.4.

3.1.4 Preprossessing. Starting with Hypothesis H1 with the h-index variable as a metric
of success. The data for this hypothesis requires all genealogical data and the h-index
variable. The h-index is extracted from Google Scholar (as mentioned in Section 3.1.2).
Due to the lack of a unique identifier, some instances were forced to be deleted. This
caused the h-index data to have a different shape than the data from NeuroTree. Thus
the corresponding instances in the ’All genealogical data’ dataset are deleted to fit on all
instances where h-index contains a value as imputed from Google Scholar. The result of
this adaptation is shown in Appendix O. The results based on this data will also serve
as an answer for Hypothesis H2 (with h-index as a measure of success), since the sum
of students per generation is included in this data.

Continuing with Hypothesis H1 with the fecundity variable as a metric of success.
The task of answering this hypothesis involves correlating the full dataset with the
target value fecundity. To avoid the loss of any information, only the student sums per
generation (’fec1’, ’fec2’, ’fec3’, ’fec4’, ’fec5’) are excluded from all genealogical data,
since these are included in the formula to create fecundity. Therefore, the distributions
remain unchanged (see Appendices M and L).
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To enable the answering of Hypothesis H2, using fecundity as a metric of success,
one aspect of the data must be taken into account. When an academic has no students,
he can not have students of further generations and thus has a fecundity of zero (Sec-
tion 2.2. Since the data for this task consists entirely of student sums per generation (fec1
- fec5 in Appendix E) and fecundity, all included variables would default to zero. Thus,
an argument can be made to exclude all instances where fecundity is zero. Therefore
the results concerning this task will be reported both with instances where fecundity is
zero, and without these instances (see Appendices J K).

Hypothesis H3 requires both the success metric variables, fecundity and h-index.
As stated in Section 3.1.2, the h-index variable is retrieved from google scholar via a
self made program. This does not encompass all instances involved in the full data as
described in this section. Therefore the instances are adapted to properly fit the h-index
data. This results in the data distributions as shown in Appendix N.

In the raw dataset fecundity is relatively skewed towards the zero, as is visualized in
Appendix O. A too large inbalance might prove problematic for the results of analyses.
To counteract this inbalance, up and down-sampling could be a viable option. This
entails analyzing the distribution of the data and correcting its skewness by excluding
instances with frequently occurring values and extrapolating the instances with less
common values. To enable proper up and down-sampling, the data must be adapted.
Since this method works relatively poorly on continuous data, the fecundity variable
will be binned, creating a categorical variable instead.

Therefore, the tasks including fecundity will also be analyzed with categorical
prediction models. To enable classification, the fecundity variable is split into seven
different classes, with the following boundaries, 0-2, 2-4, 4-8, 8-16, 16-32, 32-64 and 64
and up. These bins are chosen according to the distribution of the fecundity data. To
adequately perform this categorical prediction task, categorical models will be included
to analyze the data as previously specified and an up and down-sampled version of it.
Through up and down-sampling, these models might have increased performance over
the regression models.

After the data is adapted for the specific tasks, all datasets for regression and
classification follow another shared pipeline. This includes the normalization of each of
its input variables, using sklearn. The function uses a simple formula as shown below
and explained in Table 2. Normalization is a common technique that allows unbalanced
variables to perform better when using predictive models (Pedregosa et al. 2011).

z = (x− u)/s

Table 2
Standardize formula notation explanation

Notation Meaning

z Standardized feature

x Input sample

u Mean of sample

s Standard deviation of training samples
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The clustering tasks as specified in Section 1.1, can be operationalized at this point
in the paper. The specification and the data used concerning each of the clustering tasks
are specified as follows:

CT1 Clustering based on sum of students per generation. This uses the same data as
specified for answering Hypothesis H2 with fecundity

CT1 Clustering based on both metrics of academic success. This uses the same data as
previously specified to answer Hypothesis H3

CT1 Clustering based on sum of academic relationship per relationship type. This uses
the ’All genealogical data’ dataset, filtered to only contain the variables concern-
ing academic relationship types (’relation_0’, ’relation_1’, ’relation_2’, ’relation_3’,
’relation_4’, in Appendix E).

For each task, the respective data is collected before normalization as previously
described for the regression and classification tasks. The selected clustering models
(Section 3.2.3) use distance in multidimensional space to split the clusters. Therefore,
outliers and different variable ranges could decrease performance of the models. To
limit these factors, the following measures are performed.

Each dataset is first run through an outlier detection analysis. Since no theoreti-
cal distribution such as Gaussian applies, the outliers are interpreted per variable by
examining what logical values are in the distribution of the selected variable. After
checking the distributions via histograms and other meta data information (for example,
from scatter plots), values who are three standard deviations greater than the mean
are deleted to handle extreme values within variables. Although it is recognized that
no Gaussian distribution is present, the resulting data has less extreme values without
losing sensible data according to the respective distributions. This data is normalized
using a MinMax scaler. This forces all variables in a range between zero and one (while
not assuming a specific distribution), thereby equalizing the distance scales between the
variables and thus allowing multidimensional space to be more equally divided. Due
to computational limitations, a sample of 10,000 instances is randomly selected from all
datasets. To achieve comparable results, a random state is selected, causing the same
sample to be selected every time.

3.2 Methods & Models

As is mentioned in Section 3.1.3, most of the tasks defined in this paper are ap-
proached by both regression models and classification models. Within this section, the
methods and models for both types are described in a corresponding section (Sec-
tions 3.2.1 and 3.2.2). Before this split is made, a number of shared methods and models
are stated.

After standardizing the data, the test set is extracted from the original dataset.
This will be used to test the performance of the predictive models. This is followed
by a Kfold train validation split. This splits the data into ’K’ amount of smaller sets
called folds. A model can then be trained using ’K-1’ of the folds as training data,
followed by a validation on the remaining fold. This process is reiterated ’K’ amount
of times, each time holding out a different part for validation. All performance metrics
are consequently averaged. This process is included for all regression and classification
tasks. In total, this method allows the data to be used more efficiently and the validation
metrics to become more robust (Pedregosa et al. 2011). Due to a large dataset in some
instances, limited processing power and comparability between tasks, a Kfold with five
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splits is selected for all regression and classification tasks. To add to the comparability,
a set random state is used to retrieve repeatable and comparable results.

Furthermore, during this study, the importance of clustering arose. The nature of
the data and initial results of the prediction models left an opportunity for further
interpretation and exploration of the data and possible trends or groups concerning the
academics and their information. Therefore, clustering models are also used within this
study, the respective methods and models are described in Section 3.2.3. By creating spe-
cific clustering tasks, a deeper understanding of the genealogical data and the metrics of
academic success might be gained. These clustering tasks are depicted in Section 1.1 and
specified according to the current data in Section 3.1.4 as CT1, CT2, and CT3. Since these
tasks are a consequence of early testing and model performance, a concise overview of
the argumentation for each task is depicted below:

CT1 For a deeper understanding concerning the formation of fecundity (Section 2.2)
and initial analytical results (Section 4.1.3)

CT2 To create further insights into the distribution of both metrics of success and
possible relationships (results leading to this argumentation are detailed in Sec-
tion 4.1.4)

CT3 To extend on possible relations and groups between the sum of different academi-
cal relations per relationship type and metrics of academic success (more detailed
explanation in Section 4.1.1)

Finally, the libraries shown in Table 3 are used throughout the study. More precisely,
all models described within this section are implemented with sklearn and all the un-
specified hyperparameters are implemented according to the default as stated sklearn
(Pedregosa et al. 2011). Furthermore, the included neural networks are created using
tensorflow.

Table 3
Used libraries, their version and their purpose within this study

Library/language Version Purpose

python 3.8.6 Programming language

pandas 1.1.3 Data handling

numpy 1.18.5 Data handling

sklearn 0.23.2 Analysis and Preprocessing

tensorflow 2.3.1 Creating neural networks

matplotlib 3.3.2 Visualisation

seaborn 0.11.0 Visualisation

scholarly v1.0b1 Google Scholar data import

3.2.1 Regression models and parameters. For the continuous regression tasks, a multi-
tude of options for models are available. Considering that this research area is relatively
under-researched, easily interpretable models are overall preferred. Moreover, the data
that is used in this study has the following key characteristics that need to be accounted
for in model selection:
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• Unbalanced variables
• Binned categorical values and continuous variables
• No Gaussian or other theoretical distribution
• Relatively large dataset in both rows and columns

These characteristics can be transformed to the following requirements for models:

• Versatility
• Does not assume any prespecified distribution
• Not compute heavy
• Works well with multidimensionality

For model selection, the sklearn website (Pedregosa et al. 2011) is consulted.
Bayesian Regression, and Nearest Neighbor Regression were considered as alternatives,
but failed to meet the requirements as previously stated. A Support Vector Regression
was used in initial testing, but was excluded from the selection due to the large amount
of required computations. In Table 4 an overview of the models that are used, is shown
with reasoning for each of them.

Table 4
Model options for regression tasks

Model name Upsides Downsides

SGDRegressor Efficiency, Versatile Sensitive to feature scaling

Lasso Tendency for more Zero coefficients Data handling

Decision forest More robust version of Decision tree Compute heavy

After defining the options for regression models, the SGDRegressor, Decision forest
and Lasso are picked as best suited models for this study due to their upsides and
compliance with the aforementioned model requirements. Moreover, the Lasso model
is included because it tends towards many zero valued coefficients, therefore effectively
reducing the number of variables included in the model and highlighting the most
important ones. Since this study aims to find relationships between many variables,
this model is well suited and could conclude high contributing variables.

Adding to the use of the Lasso model, the regression task concerning Hypothe-
sis H2 with fecundity as a metric of success, is only approached with this model. As
is defined in Section 3.1.4, only the sums of students per generation is used as input
for this task. As stated in Section 2.2, these variables are all included in the function
to calculate fecundity. Therefore, logic would dictate that that these are correlated and
thus prediction models will not retrieve useful information. The Lasso model, however,
could still imply useful information since it shows the influence of the best performing
input variables.

The SGDRegressor is implemented using the ’squared-loss’ loss function, ’l2’
penalty and an alpha of 0.0001. The hyperparameters for the Decision forest include
n_estimators = 100 (number of trees), MSE as the criterion and a maximum depth of 2.
Finally, the Lasso hyperparameters are kept at default.

All regression tasks are analyzed by running these models except the task con-
cerning Hypothesis H2 with fecundity as a metric of success. For this task, only the
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Lasso regression will be used because the interpretation of its coefficients define which
variable(s) are the best correlators.

Due to initial results of these models, a consequential neural network (NN) is added
to the regression models used in this study. Although a neural network is not easy to
interpret, early results show a possible need for a more complex model. The results
accumulated by a neural network will not show a clear correlation between specific
variables. The results could, however, show a more complex relationship concerning
the included variables.

The neural networks that are used within this study are created using the tensorflow
module. Tuning the models followed a random search approach for the optimal hyper-
parameters. This includes picking a random value from a list of pre-selected hyperpa-
rameter settings which are shown in Table 3.2.1. The epochs, number of hidden layers,
and number of neurons per hidden layer were all capped due to initial results showing a
tendency for overfitting when increasing complexity. The optimizers and loss functions
are selected based on the same criteria as the other regression models. Initially, dropout,
batch normalization and Principal Component Analysis (where multiple variables were
inputted) were tested but were later excluded from the model due to a drop in model
performance. Early stopping based on validation MAE (Mean Absolute Error) was
included, but had no impact on the performed number of epochs. The hyperparameter
settings of the best performing neural networks are shown in Appendix P.

Table 5
Features used for random search

Hyperparameter Values

Number of epochs 2, 4, 8, 16
Hidden layer activation Elu, relu, sigmoid, softplus, linear
Optimizer Adagrad, adam, SGD, rmsprop
Loss function mae, mse, CosineSimilarity
Number of hidden layers 2, 3, 4, 8, 14
Hidden layer neuron count 16, 32, 64

To determine the success of the regression models, the following performance met-
rics are included. Mean Squared Error (MSE), Mean Absolute Error (MAE), Explained
Variance (Expl. Var), and R2 score (R2). Since the MSE punishes outliers heavier than
comparable metrics, it will be useful to evaluate the error of a model. However, as stated
in Section 3.1.4 and Appendix M, the data used in this study is relatively unbalanced.
The MAE will be the main performance metric to calculate the error, since outliers could
cause the MSE to overreact. To estimate a proper fit of a model, Explained Variance and
R2 are used. Due to a lack of research concerning the subject of this paper, no baseline
can be formed. Therefore, interpretation of the fit of the models is based on the ability to
explain more than a mean estimation for each instance. The formulas for all performance
metrics are shown below.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2
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MAE =
1

n

n∑
i=1

∣∣∣Yi − Ŷ
∣∣∣

Expl.V ar = 1− V ar(y − ŷ)

V ar(y)

R2 = 1−
∑

(Yi − Ŷ )2∑
(Y − Y i)2

Table 6
FecunditySum and FecundityScore formula notation explanation

Notation Meaning

n sample size

Y True value

Ŷ predicted value

Y Mean value

3.2.2 Classification models and parameters. As argued in Section 3.1.4, all tasks con-
cerning fecundity as a metric of success are additionally approached via classification
techniques. As stated in Section 3.2.1, when testing Hypothesis H2 with fecundity
as metric of success, prediction will not yield useful information. This is due to the
correlation of the included input and output variables because of the nature of the
formula for fecundity (Section 2.2.

The classification tasks in this paper try to correctly predict the binned version of
fecundity (as stated in Section 3.1.3). Due to the multiple output variables (separate
fecundity bins), these tasks entail a multidimensional output (the fecundity bins). Fur-
thermore, the bins created from the fecundity variable are generated while accounting
for the ordered nature, allowing one class to be defined as ’larger’ or ’higher’ then its
predecessor.

The models that are used for the classification are selected on the same bases as the
models for the continuous tasks since the characteristics of the data remain unchanged.
Therefore, the SGDClassiffier is used, due to its versatile nature and a good fit for larger
datasets. Furthermore, Random Forest Classification and Support Vector Classification
are selected since both are versatile and have advantages in high dimensional spaces.
Moreover, all classifiers can be applied to multilabel classification which is a requisite,
as previously stated.

The performance metrics that are selected include Accuracy, precision, recall, and
f1-score (formulas shown below). Since each metrics covers a different component of
the performance, all are included to allow a detailed interpretation of the results. The
f1-score, however, returns a better estimation for uneven class distributions and is
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therefore the main performance metrics for the classification models. All these metrics
are implemented according to the multidimensional nature of the tasks by allowing the
metrics to calculate a ’micro’ average over the different classes. This causes the metrics
to calculate the metrics globally and count the total true positives, true negatives, false
negatives and false positives. To better interpret the performance of the models, a
random chance baseline is set (accuracy=0.143).

Accuracy =
TruePositives+ TrueNegatives

AllSamples

Precision =
TruePositives

TruePositives+ FalsePositives

Recall =
TruePositives

TruePositives+ FalseNegatives

F1score =
Precision ∗Recall
Precision+Recall

3.2.3 Clustering models and parameters. The clustering tasks included in this paper
contain no ’true’ clusters. Therefore, the clusters need to be approximated via clustering
models. Such a task is identified as an unsupervised learning task. In terms of model
selection, this means that the models needs to define the optimal number of clusters
themselves. Adding the same model requirements as stated in Section 3.2.1, sets the
total clustering model requirements for this study. When consulting the sklearn website
(Pedregosa et al. 2011), a few models fit the requirements. These are Kmeans, Mean
shift (Mshift), and Affinity propagation. Although Affinity propagation was initially
selected, early testing concluded the model being to compute heavy, which resulted in
the model being excluded from the study. The other models are explained in detail in
this section.

With Kmeans, the number of clusters needs to be identified. By adding another
method, the ’elbow method’, the number of optimal clusters can be approximated. This
uses the Kmeans model and the within cluster sum of squares to calculate the best
performing number of clusters. It is called the ’elbow method’ because one needs to
determine where the respective plot goes from a seemingly exponential function to a
linear one, creating a kink or elbow in the plot (an example is visible in Section ??). By
adding this method, Kmeans clustering suffices to the set model requirements, being a
flexible model without distribution assumptions or a need for much computing power.
One downside of Kmeans, is the initialization trap, which specifies possible complica-
tions due to a wrong starting point. Therefore, the ’Kmeans++’ value is inputted for the
initialization method hyperparameter which counteracts the initialization trap.

The Mshift model can determine the amount of clusters. However, it does need a set
bandwidth of the clusters, which is hard to define since no information regarding the
clusters is known beforehand. By using the ’estimate_bandwith’ setting for this hyper-
parameter, a separate function will calculate this unknown variable, circumventing the
need for a set bandwidth (Pedregosa et al. 2011). Adding the advantages of this model
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concerning its performance with uneven cluster sizes and non-flat geometry, completes
the argumentation for this model.

The performance metrics for the clustering models are selected on the same basis
as the clustering models. These requirements led to the following selection, Silhouette
Coefficient, Calinski-Harabasz Index, and Davies-Bouldin Index. The first two both
represent within cluster distance versus between cluster distance. The Silhouette Co-
efficient provides better comparison between different datasets since the output range
is set between -1 for incorrect and +1 for highly dense clustering. The Calinski-Harabasz
Index is mainly used during model and hyperparameter selection due to the little
computational load. Higher values for this index indicate more optimal clustering. The
Davies-Bouldin Index signifies the average similarity between clusters by comparing
the distance between clusters and size of the clusters. Lower values for this index
indicated better performance.

4. Results

The results formed in this study can be subset into multiple subsections. This paper first
divides on type of prediction task, including regression, and classification. Secondly
a split is made between the different hypotheses as stated in Section 1.1. Finally, Hy-
potheses H1 and H2 are answered using both metrics of academic success, fecundity
and h-index.

4.1 Regression

Within this section, results concerning regression tasks are addressed. The results are
accomplished and determined by the regression models and performance metrics as
stated in Section 3.2.1.

4.1.1 All genealogy data versus fecundity (as academic success) H1. As shown in
Table 7, the Explained Variance and R2 show no significant predictive power for any of
the included models. Concluding, the regression models based on the ’All genealogical
data’ dataset show no clear correlations between the variables in this dataset and the
fecundity variable (best performing model, Random Forest Regression, R2=0.079).

Furthermore, by fitting the Lasso model on the data, a select number of input vari-
ables are shown. This result shows the variables that account for the most contribution
towards a higher explained variance. The non-zero coefficients are shown in Figure 1.
By examining this graph, one can see that only the sum of the different types of relations
are included as non-zero coefficients. Moreover, relation_4 appears the most influential,
despite being the only relation type that does not depict a mentorship role. These non-
zero coefficients argue for a deeper understanding of these variables, thus arguing for
the creation of the Clustering Task CT3, answered in Section 4.3.3.

4.1.2 All genealogical data Versus H-index (as academic success), H1. By observing
Table 8, the Explained Variance and R2 show near zero results. This shows little to no
predictive power when calculating a best fit line based on the data. The best performing
model is Random Forest Regression (R2=0.085). Adding to these results, Figure 2 shows
the non-zero coefficients as determined by the Lasso model.

4.1.3 Sums of students per generation versus fecundity (as academic success), H2.
As is stated in Section 3.1.4, this task is performed on one dataset where instances
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Table 7
Model metrics for All genealogical data Versus Fecundity

Metric SGD RandForReg Lass NearalNet

Test MAE 14.77 8.664 12.826 5.36

Test MSE 21196.32 17390.08 18336.37 21087.48

Test Expl. Var -0.122 0.079 0.03 0.000

Test R2 -0.123 0.079 0.028 -0.001

Figure 1
Non-zero Lasso coefficients for All genealogical data versus Fecundity

Table 8
Model metrics for All genealogical Data Versus H-index

Metrics SGDReg RandForReg Lass NeuralNet

Test MAE 20.166 20.199 20.611 32.915

Test MSE 740.306 737.323 751.908 1856.544

Test Expl. Var 0.081 0.085 0.067 0.002

Test R2 0.081 0.085 0.067 -1.395

containing fecundity zero values are included and one where they are excluded. The
sums of students (fecundity sum) per generation are the sole input for the fecundity
variable (See FecundityScore formula in Section 2.2). Therefore, these variables have a
logical correlation, which the Lasso performance confirms for both datasets (R2=1.000),
as visible in Table 9. From the non-zero Lasso coefficients as shown in Figure 4.1.3, it
appears that the coefficients for the sums of students per generation increase with each
generation. To gain more insights into these results and the relation between the sums
of students per generation and fecundity, Classification Task CT1 is created. The results
of this task are shown in Section 4.3.1.
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Figure 2
Non-zero Lasso coefficients for All genealogical data versus H-index

Table 9
Lasso coefficients of ’Students of students’ per generation for Fecundity. Without fecundity zero
values (left) and with fecundity zero values (right)

Metric Without zeros With zeros
MAE 0.543 0.397

MSE 1.682 2.686

Var 1.000 1.000

R2 1.000 1.000

4.1.4 H-index versus Fecundity, H3. The performance metrics visualized in Table 10,
show both an Explained Variance and an R2 of near zero or less with all models. The
best performing model is SGDregression, slightly outperforming the other models on
Explained variance (Explained variance= 0.002, R2=0.000) To visualize the result, a
scatter plot is included into this section (Figure 7. This shows the data as distributed
across both variables with the best performing regression model. Due to a lack of
significant predictive power of any of the models, Clustering Task CT2 is established
which might gain further insights, the respective results are in Section 4.3.2.

Table 10
Model metrics for H-index Versus Fecundity

Metrics SGDReg RandForReg Lass NeuralNet

Test MAE 22.998 23.007 22.991 20.704

Test MSE 936.452 936.81 938.186 891.169

Test Expl. Var 0.002 0.001 0.000 -0.002

Test R2 0.000 0.000 0.000 -0.122
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Figure 3
Lasso coefficients of Students of students per generation for Fecundity. With fecundity zero
values (left) and without fecundity zero values (right)

Figure 4
H-index versus Fecundity with SGDRegression as best regressor fit for the data
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4.2 Classification

This section describes the results concerning the classification tasks of this paper. To
achieve these results and be able to adequately measure the successes, the models,
model metrics, and random chance baseline (accuracy=0.143) mentioned in Section 3.2.2
are used. Finally, all tasks are performed for both the original data and an up and down-
sampled version of this data (Section 3.1.4, both datasets comply to the descriptions in
Section 3.1.3.

4.2.1 All genealogy data versus fecundity (as academic success) H1. The performance
metrics of the classification models trained on the original data are shown in Table 11.
The best performing model for this data is the SGDclassifier (f1-score=0.900). The per-
formance metrics of the classification models trained on the up and down-sampled data
are shown in Table 12. The best performing model for this dataset is the Random Forest
Classifier (f1-score). Not that all included models on both datasets perform better than
the random chance baseline (accuracy=0.143).

Table 11
Classification model metrics for All genealogical data Versus Fecundity

Metrics SGDClass RandForClass SupVecClass

Test recall 0.900 0.873 0.078

Test precision 0.900 0.873 0.078

Test accuracy 0.900 0.873 0.078

Test f1-score 0.900 0.873 0.078

Table 12
Classification model metrics for All genealogical data Versus Fecundity, with up and
down-sampling for balance

Metrics SGDClass RandForClass SupVecClass

Test recall 0.425 0.470 0.156

Test precision 0.425 0.470 0.156

Test accuracy 0.425 0.470 0.156

Test f1-score 0.425 0.470 0.156
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4.2.2 H-index versus Fecundity, H3. The classification task regarding Hypothesis H3
concerns both the academic success metrics. The target value is fecundity, which is
predicted by the input value h-index. In Table 13 and Table 14, the model metrics for the
classification models are shown. Interpreting these results leads to the conclusion that
Random Forest Classification is the best performing model for the original dataset (f1-
score=0.203). Considering the up and down-sampled dataset, the SGDClassifier is the
best performing model (f1-score=0.160). Both models outperform the random chance
baseline of 0.143.

Table 13
Classification model metrics for H-index versus Fecundity

Metrics SGDClass RandForClass SupVecClass

Test recall 0.179 0.203 0.141

Test precision 0.179 0.203 0.141

Test accuracy 0.179 0.203 0.141

Test f1-score 0.179 0.203 0.141

Table 14
Classification model metrics for H-index versus Fecundity, with up and down-sampling for
balance

Metrics SGDClass RandForClass SupVecClass

Test recall 0.160 0.136 0.098

Test precision 0.160 0.136 0.098

Test accuracy 0.160 0.136 0.098

Test f1-score 0.160 0.136 0.098

4.3 Clustering

This section goes into detail about the results concerning the clustering tasks within
this study. Although these results are not directly linked to a hypothesis, they provide
necessary background information and extra insights to back the results as aforemen-
tioned in this Section (Section 4. The formatting of this section follows the Clustering
Tasks CT1-CT3 as depicted in Section 1.1.

4.3.1 Sums of students per generation, CT1. Beginning with the Kmeans model, as
depicted in Appendix Q, the optimal amount of clusters identified by the elbow method
is three. Using the Kmeans model, results in the scatter plots per cluster as illustrated
in Appendix R. The performance metrics shown in Table 15, portray a positive view on
the outputted clusters and their ability to distinguish groups using the current data.

When applying Mshift clustering on the current data, 155 clusters are defined by
the model. The first cluster, however, is the only one with a sample size larger than 23.
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Table 15
Performance metrics of Kmeans clustering based on sums of students per generation

Metric Metric values
Silhouette score 0.672
Calinski harabasz score 6232.254
Davies Bouldin score 1.055

Table 16
Performance metrics of Mshift clustering based on sums of students per generation

Metric Metric values
Silhouette score 0.532
Calinski harabasz score 118.025
Davies Bouldin score 0.456

Therefore, the first cluster is selected for further interpretation. A scatter plot of this
cluster is shown in Figure 5. The performance metrics regarding Mshift based on the
current data are shown in Table 16

Figure 5
Scatter plot of first cluster of Mshift clustering based on Sum of students per generation

4.3.2 Metrics of academic success, CT2. Starting with the Kmeans model. By using the
elbow method to determine the amount of clusters, an argument can be made for both
two and four clusters (Visualised in Appendix Q). When looking at the performance
metrics in Table 17, the selection for two clusters becomes apparent. When performing
Kmean clustering with two clusters, a split appears based solely on the h-index.

When looking at the Mshift model, however, a different split can be recognized.
This model shows a split on both axis, creating groups in the lower, middle and upper
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Table 17
Performance metrics of Kmeans clustering based on h-index and fecundity

Metrics 2 Clusters 4 Clusters
Silhouette score 0.589 0.505
Calinski harabasz score 16.182 16062.926
Davies Bouldin score 0.613 0.636

Figure 6
Scatter plot for Kmeans clustering based on h-index and fecundity

ranges of each axis, adding one group located in the middle of both axis (cluster 3).
Although the performance metrics of this clustering technique perform worse than the
Kmeans, the clusters show logical groups.

Table 18
Performance metrics of Mshift clustering for h-index and fecundity

Metrics Metric results
Silhouette score 0.441
Calinski harabasz score 2.184
Davies Bouldin score 0.921

4.3.3 Sum of academic relationship per relationship type, CT3. When running the
elbow method to determine the amount of clusters for the Kmeans model, a clear
preference for two clusters is shown (Appendix Q). The resulting Kmeans model returns
two clusters as is visualized in Appendix S. The corresponding performance metrics are
shown in Table 19.

Allowing the Mshift model to cluster the current data, results in four different
clusters. These clusters are shown in Appendix T. This figure shows the count of a
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Figure 7
Scatter plot for Mshift clustering based on h-index and fecundity

Table 19
Performance metrics of Kmeans clustering for sum of academic relationship per relationship
type

Metric Metric values
Silhouette score 0.681
Calinski harabasz score 3283.96
Davies Bouldin score 1.107

Table 20
Performance metrics of Mshift clustering for sum of academic relationship per relationship type

Metric Metric values
Silhouette score 0.672
Calinski harabasz score 6232.254
Davies Bouldin score 1.055

certain relationship on the y-axis and the type of relationship on the x-axis (which
follows the same numeric interpretation as the relation_0 through relation_1 as depicted
in Appendix E). By examining the plot, one can see a limit of five on the range of the
relation count (y-axis). The Mshift model appears to leave out all other values. The
corresponding performance metrics are shown in Table 20.

5. Discussion

The goal of this paper is to answer the research question "Can academic success be pre-
dicted?". And thereby fill a current gap in the body of literature. To answer this question,
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several hypotheses are formed, creating the structure of this paper. To answer the main
research question, first the hypotheses must be reexamined.

Starting with Hypothesis H1, "Academic genealogical data correlates positively to the
success of an academic.". To answer this statement, genealogical data extracted from
NeuroTree is, after some preprocessing steps, used as training data for both regression
and categorical prediction models. The result of the best performing model for regres-
sion prediction is Random Forest Regression (R2 0.079 and MAE 8.66), which does not
provide clear evidence of a correlation between the genealogical data and fecundity. The
best performing regressor for h-index was also Random Forest Regression (Explained
Variance 0.085 and MAE 20.06), which also provides no clear evidence for a positive
correlation. The results of the best models for the respective classification tasks are,
with original data SGDClassifier (f1-score 0.900), and with up and down-sampled data
for balancing, Random Forest Classifier (f1-score 0.470) for predicting fecundity. Both
perform way over their random chance baseline of 0.143, showing there is a relationship
between academic genealogical data and the success of an academic, measured in
fecundity. However, this shows no clear positive or negative relation. To answer the
same question for the h-index, the best performing regression model is Random Forest
Regression (R2 0.085 and MAE 20.20), which also provides no evidence of a significant
positive correlation. These findings coincide with other studies who aimed to predict a
future h-index of an academic. Although these papers report high predictive power, a
significant part of the explained variance seems to be attributable to current or historic
values of the h-index. This argues for the predictive power of the h-index towards its fu-
ture self but provides little argument for the predictive power of other genealogical data
(Acuna, Allesina, and Kording 2012; Ayaz, Masood, and Islam 2018; Jensen, Rouquier,
and Croissant 2009). Summarizing the result concerning Hypothesis H1, this study finds
no sufficient support to confirm this hypothesis.

One interesting discovery during the research to test Hypothesis H1, is the inter-
pretation of the non-zero lasso coefficients, presented in Section 4.1.1. when looking at
the relation between all genealogical data and fecundity. These show that relation type
4 (relation_4) is the most influential variable from the ’All genealogical data’ dataset for
predicting fecundity according to the Lasso model. One would expect some positive
relationship with the other relation types, since those are mentorship relations and are
thus indirectly included into the formula calculating fecundity. However, relation type
4 is a collaborative relation, and not a mentorship relation. In an attempt to get a deeper
understanding of the variables containing the sums of the different types of relations,
clustering models are applied (results in Section 4.3.3). The created clusters, however,
show a tendency to split based on all relation types without indicating informative
results. To better understand the relation between collaborative academic relationships
and academic fecundity, more research is needed.

Continuing with Hypothesis H2, "There is a positive relationship between the number
of direct PhD students and subsequent PhD students of students, of an academic and his
success.". As earlier stated, this hypothesis is a more detailed and specific version of
Hypothesis H1. This choice is made because the literature seems to agree that producing
new academics is an important part of being a good and successful academic yourself.
To calculate a proper model for the fecundity variable, two sets were created, one with,
and one without instances containing zero values for fecundity. This is due to the fact
that the data is skewed towards the zero, moreover, if fecundity is zero, the amount
of students is zero as well. The deletion of these instances aimed to improved results.
When training the Lasso regression model on the sum of students per generation and
allowing it to predict fecundity, resulted in an MAE of 0.543 and an R2 of 1.000. Since the
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fecundity is calculated using only the sum of students per generation, such a correlation
is not surprising. For a possible correlation with the other academic success metric, h-
index, one can look at the results depicted in Section 4.1.3, where the relation between
h-index and all genealogical data is shown. Since the sum of students per generation is
included in this input data, this will show similar to higher results. The Random Forest
Regression (R2 0.085 and MAE 20.199) does not provide clear evidence for a significant
positive relationship. This result indicates that, although mentoring of qualitative new
academics is considered of vital importance to the academic community and scientific
advancements (Marsh 2017; Andraos 2005; Allen et al. 1997; Hunt and Michael 1983),
it is not included in the h-index and thus a widely used metric of success. In total, the
results do not provide adequate support for Hypothesis H2.

However, when interpreting the Lasso non-zero coefficients, as depicted in Sec-
tion 4.1.3, some interesting details appear. These results show that the Lasso regression
increases the estimated influence with each generation of students. In combination with
the theoretical possibility of ’lucky’ and ’lazy’ mentors as stated in Section 2.2, the
argumentation for a clustering task was formed. This task includes clustering based
on the sums of students per generation to form a deeper understanding of the afore-
mentioned theory in practice and non-zero Lasso results. As visualized in Appendix R,
the second cluster (Silhouette score=0.672) resulting from the Kmeans model (in Sec-
tion 4.3.1) seems to identify mentors with relatively high direct students and relatively
low students from further generations (Gen. 1 in the plot). This cluster could identify
the aforementioned ’lazy’ mentors. However, a cause for the distribution of sums of
students cannot be determined. Still, this clustering output raises further questions
regarding the cause of such groups and how this group compares to the total data and
other groups. To answer such questions, further research is necessary.

Finally, Hypothesis H3 "Different metrics of academic success have a positive relation
towards each other.". Since there are different values of success for the same academic,
this is an interesting hypothesis. Do the metrics measure different parts of an academic’s
performance, or do they coincide? By combining data from NeuroTree and Google
Scholar, the relationship between h-index and fecundity is analyzed. When looking at
the best performing regression model, Random Forest Regression (R2 0.000 and MAE
23.01), no clear evidence is shown for a positive (or any) relationship. When examining
the classification predictors for the same task, the highest scoring model is Random
Forest Classification (f1-score 0.203), using the original dataset and SGDClassification
(f1-score 0.160) using the up and down-sampled dataset. Both show a slightly higher
performance than the random change baseline of 0.143. This indicates little predictive
power between the two metrics of success. In total the results of this paper show no
clear evidence for a positive (or any) correlation between fecundity and the h-index.
To go into more detail concerning these variables, two clustering models were used
in an attempt to identify possible groups (results in Section 4.3.3. The Kmeans model
(Silhouette score=0.532) shows only a split based on the h-index without implications
concerning fecundity. The Mshift model (Silhouette score=0.441), shows a lower perfor-
mance, but a logical grouping. It appears group academics in the middle of both variable
ranges (cluster 3). All other groups seem to be clustered based on the performance based
on either one of the success metrics (cluster 1, 4 and 6 based on h-index and 2 and 5 on
fecundity). The splits based on the single variables, add to the question concerning the
existence of any relation or overlap between the two metrics of success.

These results fit in the conflicting results in the literature concerning academic suc-
cess and possible correlations (Liénard et al. 2018; Li et al. 2019; Malmgren, Ottino, and
Amaral 2010; Heinisch and Buenstorf 2018). The current conflicts might be attributable
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to the fact that different metrics cover considerable different sections of an academic’s
performance. As is stated in several studies (Cerchiello and Giudici 2014; Waltman and
Van Eck 2012; Costas and Bordons 2007), the use of a single value to distinguish the
success of an academic might be inaccurate and inadequate.

The lack of correlation and overlap between two widely used metrics of academic
success could have a significant societal impact. Both metrics are, as stated in Section 2,
widely used to assess the performance of an academic. By adhering to one of the stated
metrics of success, academic success might be consistently misjudged. A misjudgement
of an individuals success directly links to real life consequences ranging from less
attention towards an academic’s research output up to the rejection for certain jobs.
When interpreting the results in this paper, this misevaluation could be due to an
estimation error which is inherited by the very metric(s) meant to fairly and consistently
judge performance.

In summary, this study shows little evidence for Hypothesis H1. There seems to
be some relation when accounting for the best performing categorical model predict-
ing fecundity (f1-score 0.900). A specific relation can, however, not be deducted from
these results, imploring more research on the subject. Furthermore, Hypothesis H2 is,
obviously, true for fecundity due to its nature, but shows no clear positive (or any)
correlation with the h-index. Lastly, there is little evidence supporting Hypothesis H3.
The best classification models perform only slightly better than the random chance
baseline and the best regression model resulted in near zero R2. In total, these results
answer the Research Question RQ based on the current data. Only the classification
results seem to show some predictive power of the genealogical data towards fecundity,
but no clear predictors or relations are identified. Moreover, this study found little
evidence supporting any predictive power of the genealogical data towards the h-index.
Finally, by examining the increase in interest towards studies researching academic
success (AlShebli, Makovi, and Rahwan 2020; Li et al. 2019; Heinisch and Buenstorf
2018), contradicting results in such studies (Li et al. 2019; Liénard et al. 2018; Malmgren,
Ottino, and Amaral 2010; Paglis, Green, and Bauer 2006; Waltman and Van Eck 2012),
and the results in this paper, a pressing, more fundamental question arises ’what is true
academic success, and how should it be measured?’.

As a final note, this paragraph will emphasize some difficulties concerning this
study. First and foremost, the crowd sourced nature of the data from NeuroTree caused
several obstacles. These include the numerous missing and invalid values. This caused
a multitude of assumptions, including assuming overarching definitions for categorical
data, and missed opportunities, such as the inclusion of an academics country or univer-
sity. Adding to difficulties concerning the data, due to the absence of a unique identifier
which could function as such outside the NeuroTree dataset caused an extremely sub-
optimal approach for data enrichment. The h-index importation from Google Scholar,
included a significant number of double values, which were forced to be dropped. This
might have caused an unknown bias in the data. Furthermore, without access to a
server or other tools, computational limitations caused considerable complications in
the model selection, analysis and h-index importation.
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Appendix A: People table, variable explanation

Table 1
People tsv file description

Notation Meaning

pid Unique key of an individual

degrees Degrees of an individual

location Most recent institution

locid Location unique key

area Research areas of the academic

majorarea Indication of location between genealogical trees

award Awards won by the individual

hindex h-index of an academic

orcid_id Individual unique key within orcid

s2id Individual unique key within s2

homepage The url of an academic

addedby Person that added the information

dateadded Date the information is added
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Appendix B: Connect table, variable explanation

Table 1
Connect tsv file description

Notation Meaning

cid Connection unique id

pid1 Trainee unique key

pid2 Mentor unique key

relation

Type of relation
relation_0: Undergraduate
relation_1: Grad student
relation_2: Postdoc
relation_3: Research scientist
relation_4: Collaboration–not a mentor relationship

locid Location unique key

location Most recent insitution

startdate Start date of relation

stopdate Stop date of relation

dateadded Date the information is added
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Appendix C: Raw dataset, combination of

Table 1
Locations tsv file description

Notation Meaning

locid Location unique key

location Location name

shortname Location name in short

city City name of the location

state State name of location

country Country name of location

insttype Unknown and will not be used

lon Longitude value of location

lat Latitude value of location

url Website of the location

duns_number specific duns number of the location
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Appendix D: Data structure NeuroTree data dump, visualized

Figure 1
Raw table structure
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Appendix E: Dataframe created by combining datasets from NeuroTree

Table 1
Column description of total data

Column Meaning

pid Unique key of an individual

degrees Degrees of an individual

location Most recent institution

locid Location unique key

area Research areas of the academic

majorarea Indication of location between genealogical trees

award Awards won by the individual

hindex h-index of an academic

orcid_id Individual unique key within orcid

s2id Individual unique key within s2

homepage The url of an academic

addedby Person that added the information

dateadded Date the information is added

country Country name of location

fec1 Fecundity sum over first generation of students

fec2 Fecundity sum over second generation of students

fec3 Fecundity sum over third generation of students

fec4 Fecundity sum over fourth generation of students

fec5 Fecundity sum over fifth generation of students

fec_tot Fecundity score over first five generations of students

fec_parent Fecundity score of the mentor

students pid’s of direct students

relation_0 Accumulation of relations "0", undergraduate (mentor function)

relation_1 Accumulation of relations "1", grad student (mentor function)

relation_2 Accumulation of relations "2", postdoc (mentor function)

relation_3 Accumulation of relations "3", research scientist (mentor function)

relation_4 Accumulation of relations "4", collaboration (not a mentor function)
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Appendix F: Example for freedom of input NeuroTree entry

Figure 1
Example of freedom of input NeuroTree
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Appendix G: Missing data percentages in raw combined dataset

Table 1
Missing data per variable

Column Percentage missing data

location 1.41%

degrees 0.00%

area 21.11%

majorarea 0.00%

award 99.90%

hindex 97.06%

orcid_id 99.82%

s2id 97.06%

homepage 93.72%

addedby 0.00%

dateadded 0.00%

country 65.11%

fec1 0.00%

fec2 0.00%

fec3 0.00%

fec4 0.00%

fec5 0.00%

fec_tot 0.00%

fec_parent 0.00%

students 0.00%

relation0 0.00%

relation1 0.00%

relation2 0.00%

relation3 0.00%

relation4 0.00%
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Appendix H: Raw categorical data distribution

Figure 1
Histograms of raw categorical data
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Appendix I: Distributions of categorical values, binned

Figure 1
Value counts of categorical variables in bins
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Appendix J: Distribution of student sum per generation and fecundity

Figure 1
Histograms of sum of students per generation and fecundity
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Appendix K: Distribution of student sum per generation and fecundity without
fecundity zero values

Figure 1
Histograms of student sum per generation (fec1-fec5) and fecundity
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Appendix L: Raw binned variables distributions

All binned categorical variables shown as histograms.
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Appendix M: Raw continuous variables distributions

All continuous variables shown as histograms. Note that the y axis is logarithmic.

Sum of students per generation

Fecundity per academic

H-index per academic
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Appendix N: Fecundity and H-index distribution for analyses concerning their rela-
tionship, Hypothesis H3

Both variables shown as histogram, note that the fecundity histogram has a logarithmic
y axis.

H-index histogram

Fecundity histogram
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Appendix O: H-index and all genealogical data distributions

All variables displayed as histogram.

H-index histogram

Sum of students per generation (y axis is algorithmic)

Sum of types of relations (y axis is algorithmic)
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Sum of categorical values
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Appendix P: Best performing Consequential Neural Network hyperparameters per
regression task

Table 1
Best performing Consequential Neural Network hyperparameters All genealogical data versus
Fecundity

Hyperparameter Setting
Epochs 8
Activation relu
Optimizer SGD
Loss CosineSimilarity
Final_acti linear
Layers 14
Perceptrons 32

Table 2
Best performing Consequential Neural Network hyperparameters All genealogical data versus
H-index

Hyperparameter Setting
Epochs 8
Activation relu
Optimizer SGD
Loss CosineSimilarity
Final_acti linear
Layers 4
Perceptrons 32

Table 3
Best performing Consequential Neural Network hyperparameters Fecundity versus H-index

Hyperparameter Setting
Epochs 16
Activation softplus
Optimizer Adam
Loss mae
Final_acti linear
Layers 4
Perceptrons 32

49



Data Science & Society 2020

Appendix Q: Elbow method used for all Kmeans clustering tasks

Figure 1
Elbow method for Kmeans clustering based on sums of students per generation

Figure 2
Elbow method for Kmeans clustering based on h-index and fecundity
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Figure 3
Elbow method for Kmeans clustering based on h-index and fecundity

.
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Appendix R: Scatter plots for Kmeans clustering based on Sums of students per
generation

Figure 1
Scatter plot Kmeans cluster 1

Figure 2
Scatter plot Kmeans cluster 2
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Figure 3
Scatter plot Kmeans cluster 3

.

53



Data Science & Society 2020

Appendix S: Plotted clusters of Kmeans clustering based on sum of academic rela-
tionship per relationship type

Figure 1
Scatter plot Kmeans cluster 1

Figure 2
Scatter plot Kmeans cluster 2

54



J.E.S. van Weert Success Correlators in Academic Genealogies

Appendix T: First cluster of Mshift clustering based on sum of academic relationship
per relationship type

Figure 1
Scatter plot for Mshift clustering based on sum of academic relationship per relationship type
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