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Hippocampal responses to event boundaries
as a predictor of general memory
performance: a machine learning approach

Daphne van Dijk

This thesis describes a comparative study of commonly used machine learning algorithms in
predicting general memory performance. Previous studies have shown that event segmentation
is of great importance for event-specific memory performance. However, the link between event
segmentation ability, which is reflected by hippocampal activity, and general memory perfor-
mance has not been addressed. Therefore, the aim of this study was to learn more about the link
between event segmentation ability and memory unrelated to that specific event. To achieve this,
machine learning models were applied to a dataset from the Cam-CAN project. It was explored
whether there were differences between the multilayer perceptron, logistic regression, and the
support vector machine in their ability to predict people’s performance on a general memory test
using their hippocampal time course of continuous movie-viewing. The results show that all
models were able to predict memory performance based on hippocampal time courses better than
one would expect based on chance alone. However, no significant differences were found between
the three different algorithms in terms of classification accuracy. Furthermore, a significant
difference was found between people with good versus bad memory performance in their event
segmentation consistency. In short, this study has shown that a person’s hippocampal time course
of ongoing activity provides information about that person’s general memory capacity.

1. Introduction

1.1 Context

The importance of event segmentation for memory has been discussed in many scien-
tific studies in the field of cognitive neuroscience. In 1973, Newtson discovered that
people tend to agree on where event boundaries should be placed within ongoing
activities. So there is a high degree of consistency in the segmentation of events among
people. Later studies have shown that consistent event segmentation contributes to
better memory for that specific activity (e.g. Kurby and Zacks 2018; Sargent et al. 2013).
This means that when people segment events inconsistently, they appear to have worse
memory for that particular activity. Furthermore, it is known that there is a relationship
between event boundaries and hippocampal activity: when people experience an event
boundary, there is increased hippocampal activity (Ben-Yakov and Henson 2018).

Even though a lot of research has already been conducted into this topic, the
link between people’s event segmentation ability and their overall memory capacity
is still unknown. Activity peaks in the hippocampus and event boundaries coincide,
but its significance for memory performance on a more general level has never been
explored. The purpose of this new research is therefore to extend the findings of previ-
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ous studies by gaining more insight into the interaction between event segmentation
ability, hippocampal activity, and the performance on a general memory test rather
than an event-specific memory test. This will be accomplished by applying machine
learning techniques. It will be examined whether hippocampal time courses can be used
to make reliable predictions for people’s performance on a general memory test, i.e.
the Famous Faces task. When people experience event boundaries at timepoints that
deviate strongly from the group norm, this is expected to be indicative of a lower score
on the Famous Faces task.

As noted above, this new research can provide greater understanding of the rela-
tionship between general memory capacity and event segmentation, and how this link
is reflected in brain activity. This can lead to useful new insights because the relationship
between these three key concepts is still unknown. If the hippocampal responses to
event boundaries appear to be a reliable predictor of the performance on the Famous
Faces task, it suggests that a reduced event segmentation ability is not only indicative
of event-specific memory, but also of memory performance in general. In addition to
gaining this kind of fundamental knowledge, the outcomes of this study will also have
practical implications for helping people with memory deficits.

For instance, elderly often experience problems with cognitive tasks, especially
those that involve memory (Bailey et al. 2013). They may not remember certain things
or have difficulty correctly recalling the event structure of recent activities. By gaining
more insight into the mechanisms behind event segmentation and its link to general
memory performance in a healthy population, we can also start learning more about the
mechanisms that may cause memory problems. This might make it possible to develop
training methods in the future that can slow down the advancement of these deficits,
or that may even improve the memory capacity of people suffering from such deficits.
After all, if the hypothesis is correct, improving a person’s ability to segment activities
could contribute to that person’s memory performance.

1.2 Research question

To learn more about the mechanisms behind event segmentation and its link to general
memory performance, this study aims to answer the following research question:

To what extent are hippocampal responses to event boundaries in an ongoing activity indicative
of general memory performance?

Machine learning algorithms are only able to achieve a good prediction performance
when there is a relationship between the input and the targets. Hence, the following
sub-question will be examined in order to answer the main research question:

To what extent are there differences between the multilayer perceptron, logistic regression, and
the support vector machine in their ability to predict people’s performance on the Famous Faces
task using their hippocampal time course of continuous movie-viewing?

As an additional test, it will be examined whether there is a significant difference be-
tween the level of event segmentation consistency between the good-memory group and
the bad-memory group. This will be accomplished by running an intersubject correlation
(ISC) analysis (Chen et al. 2016; Hasson et al. 2004; Nastase et al. 2019).
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1.3 Findings

This research showed that all proposed classifiers could predict memory performance
based on hippocampal time courses better than one would expect based on chance
alone. Moreover, none of these classifiers was found to perform significantly better
or worse. Lastly, a significant difference was found between the people in the good-
memory group and the bad-memory group in terms of event segmentation consistency.
This suggests that these two groups actually differ in their hippocampal activity and
therefore also in their hippocampal responses to event boundaries. In short, this study
demonstrates that hippocampal activity is at least to some extent indicative of general
memory performance.

2. Related Work

2.1 Event Segmentation Theory (EST)

When people experience everyday activities, they parse this stream of activity into
discrete, meaningful events. According to Kurby and Zacks (2008), an ’event’ can be
described as a segment of time at a certain location where you can indicate a clear
beginning and end. The understanding and perception of events is supported by so-
called ’event models’ that make predictions about what will happen next (Kurby and
Zacks 2008). When something happens that is not consistent with the prediction based
on the current event model, it will be experienced as a prediction error. Subsequently,
the current model gets an update based on the latest perceptual information (Kurby and
Zacks 2008). The timepoints at which these updates are made are referred to as ’event
boundaries’ (Kurby and Zacks 2008).

When people are explicitly asked to mark event boundaries in, for example, a
movie, it appears that people strongly agree on the location of these event boundaries
(Newtson 1973). This suggests that there is general agreement on the evaluation of event
structures in ongoing activities.

However, the fact that people can consistently chunk ongoing activities does not
mean that this is a normal and spontaneous mechanism of human information pro-
cessing. Hence, this phenomenon was also explored in later studies by using functional
magnetic resonance imaging (fMRI). For instance, in a study conducted by Zacks et al.
(2001), people were shown tapes of everyday events while at the same time their brain
activity was measured using fMRI. Participants were unaware of the segmentation
task during this stage. When these same people were later explicitly asked to mark
event boundaries in these same videos, there appeared to be a significant correlation
between transient changes in brain activity and the explicitly self-labeled event bound-
aries. In other words, around the timepoints where participants later identified event
boundaries, there was increased local brain activity. These results suggest that event
segmentation is a natural and spontaneous aspect of human information processing.

Ben-Yakov and Henson (2018) have further explored this phenomenon by specifi-
cally investigating hippocampal activity as a response to event boundaries in an ongo-
ing activity. Their study showed that increased hippocampal activity is specific and sen-
sitive in its response to subjective event boundaries. Moreover, this activity was larger at
those boundaries for which they found high consensus between the participants (Ben-
Yakov and Henson 2018). This means that strong, obvious event boundaries also trigger
stronger responses in the hippocampus. In this study, they recorded activity peaks in
the hippocampus and then analyzed the alignment between the event boundaries and
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these activity peaks. These event boundaries were identified by an independent group
of participants who did not undergo the fMRI themselves. This analysis demonstrated
that increased hippocampal activity was highly correlated with the identified event
boundaries (Ben-Yakov and Henson 2018).

In summary, these studies have shown that brain activity seems to be modulated by
event structures and that there is general agreement on those structures among people
(Ben-Yakov and Henson 2018; Newtson 1973; Zacks et al. 2001). Moreover, it has become
clear that event boundaries are reflected by peaks in hippocampal activity (Ben-Yakov
and Henson 2018; Zacks et al. 2001).

2.2 Event segmentation and memory

Numerous previous studies indicated that event segmentation of ongoing activity plays
an important role in people’s ability to remember and understand things (e.g. Baldas-
sano et al. 2017; Kurby and Zacks 2018; Sargent et al. 2013).

Baldassano et al. (2017) discovered a relationship between event boundaries and
hippocampal encoding in a movie-viewing experiment. Their research showed that the
hippocampus was triggered at the end of an event, i.e. at event boundaries, to encode
this new information about this event into memory. This implies that the segmentation
of events contributes to how memories are organized in memory. The encoding seemed
to be most powerful when the activity in the hippocampus was relatively low during
an event, but considerably high at an event boundary (Baldassano et al. 2017).

Kurby and Zacks (2018) also note that the event segmentation process is used to
update human working memory and regulate encoding in people’s long-term memory.
Worse event memory can therefore be explained by bad event segmentation ability.
Event segmentation ability can be defined as the level at which someone agrees with
a larger sample regarding the location of the event boundaries in ongoing activities
(Sargent et al. 2013). According to Kurby and Zacks (2018), if people cannot segment
events properly, these events will not be properly encoded and this in turn has a
negative effect on memory recall.

In a study conducted by Sargent et al. (2013) it was assessed whether the event
segmentation ability can predict subsequent memory. This study showed that the ability
to segment a continuous experience can accurately predict memory related to this
specific activity. In this study, people who were better at segmenting a movie were able
to remember more actions from this movie afterwards. Thus, this study also proposes
that poor memory about a specific activity can be explained by poor segmentation of
this activity while experiencing it.

In conclusion, the ability to properly segment ongoing activity is crucial for mem-
ory, but so far only event-specific memory has been explored. It is not known yet
whether a reduced event segmentation ability, which is reflected by hippocampal ac-
tivity, is also indicative of people’s memory performance on a more general level.

2.3 Machine learning and fMRI data

In recent years, interest in using machine learning models to analyze fMRI data has
grown significantly (Arbabshirani et al. 2017). The advantage of fMRI research is that
it is a non-invasive method with which it is possible to measure local brain activity
very accurately (Vemuri, Jones, and Jack 2012). Not only does this make it possible
to investigate differences in brain activity across different groups, but it also offers
possibilities for diagnostic or prognostic tools using machine learning methods.
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A classifier is a machine learning function that takes a number of features as input
and then tries to predict the corresponding class for each set of features (Müller and
Guido 2017). Thus, a classifier is basically a model that represents the relationship
between the features and the class labels in a given dataset. When there is no relation-
ship between the input and the target labels, an algorithm will fail to achieve good
classification performance.

These type of methods have been widely used in recent years to classify neurologi-
cal brain disorders such as schizophrenia, mild cognitive impairment and Alzheimer’s
disease (Arbabshirani et al. 2017). In most cases, the goal of these studies was to correctly
classify healthy control subjects and people with a certain neurological disorder (e.g. Er
et al. 2017; Mourao-Miranda et al. 2005).

When dealing with neuroimaging data, a time course of brain activity measure-
ments can be used as input features (Pereira, Mitchell, and Botvinick 2009). In such
a time course, each data point / feature represents a brain activity measurement at a
specific timepoint. Many previous studies applied machine learning models to fMRI
data to classify different patterns of brain activity (e.g. Challis et al. 2015; de Vos et al.
2018). In these studies, fMRI data was acquired while participants were exposed to a
certain stimulus. Next, patterns of brain activity for different voxels were extracted from
these data. These patterns were then used as input for a classifier that tries to predict
what a participant was experiencing. This means that classification models were trained
to learn the mapping between brain activity patterns and certain predefined stimulus
categories. The classification performance for such methods appeared to be very good
in most cases (Arbabshirani et al. 2017).

One of the most commonly used algorithms in such studies is the Support Vector
Machine (SVM), but the Logistic Regression (LR) model is also used regularly (see
Arbabshirani et al. 2017). Furthermore, in recent years there has been an increase in the
number of studies that applied deep learning methods for neuroimaging classification
(Arbabshirani et al. 2017). Deep learning is a branch of machine learning that uses
algorithms inspired by the neural network architecture of the human brain (Sarraf and
Tofighi 2016). The use of these neural network algorithms in the study of cognitive
neuroscience is still relatively new, but various studies have already shown promising
results (e.g. Güçlü and van Gerven 2017; Wen et al. 2018).

2.4 Current study

The purpose of this study is to fill the research gap described in the previous section.
Thus, this study aims to find out whether reduced event segmentation ability is indica-
tive of general memory performance, and not only event-specific memory performance.
It will therefore be examined whether the event segmentation ability, which is reflected
in people’s hippocampal time course, can be used to predict the performance on a
general memory task. This will be accomplished by applying several machine learning
algorithms to the Cam-CAN dataset. It is expected that people with impaired event
segmentation ability score worse on a general memory test.

Functional brain imaging data from a movie-viewing experiment will be used to
obtain hippocampal responses to event boundaries. The results of the Famous Faces
task will be used as the measure of general memory performance, i.e. the target labels.
By using fMRI data as input in algorithms to predict general memory performance, a
relationship between hippocampal activity and general memory performance can be
established. After all, the performance on the Famous Faces task is entirely unrelated

5



Data Science & Society 2020

to the movie-viewing experiment and an algorithm cannot achieve good classification
performance when there is no relationship between the input and the target labels.

3. Methods

Various types of classification algorithms can be implemented for the task of predicting
memory performance. In this study, the performance of the most commonly used
algorithms in this research area will be compared with each other: logistic regression
and the support vector machine. In addition, these algorithms will be compared with a
basic artificial neural network: the multilayer perceptron. The background of these three
different models will be briefly explained in the following section.

Furthermore, the intersubject correlation (ISC) can be computed to assess the con-
sistency of hippocampal time courses among participants. The background and appli-
cation of this analysis will also be explained in this section.

As a last point, the statistical technique used to compare the performance of the
different algorithms will be discussed.

3.1 Algorithms
3.1.1 Logistic Regression. Logistic regression (LR) is a supervised classification algo-
rithm that predicts the probability that an observation belongs to one out of two possible
classes (Bonaccorso 2017). The outcome variable in logistic regression is dichotomous or
binary (Hosmer Jr, Lemeshow, and Sturdivant 2013). In logistic regression, the sigmoid
function is applied to the output of a linear function x to get a probability value within
the range of 0 to 1 (Bonaccorso 2017). This function is defined as:

F (x) =
1

1 + e−x
=

ex

ex + 1

Thus, the sigmoid of x is 1 over 1 plus the exponential of negative x. We set a certain
threshold on the probability value (p), e.g. 0.5, to make the logistic regression a linear
classifier. For each training data point x, the predicted class is y. This results in predict-
ing y = 1 when p ≥ 0.5 and y = 0 when p < 0.5.

3.1.2 Support Vector Machine. A support vector machine (SVM) is a supervised learn-
ing algorithm that can be used for classification tasks. The idea behind it is that there is
some unknown dependency between input and target labels. Its goal is to find a hyper-
plane in an N-dimensional space that has the maximal margin of separation between the
two classes (Daumé III 2017). This means that the distance between the data points of
the different classes should be as large as possible to reduce the risk of misclassification.
The support vectors are the data points that are closer to the hyperplane and therefore
directly affect the position of the hyperplane (Daumé III 2017). After all, the margin is
computed as the distance from the line to only the closest points.

By applying a kernel trick, the SVM is also capable of fitting nonlinear decision
boundaries (Mourao-Miranda et al. 2005). Class labels in SVM are set to -1 and 1 and
this results in a reinforcement range that functions as boundary margins (Bonaccorso
2017). For the hyperplane there is a weight vector wp and an offset b such that:

yi

(
(wp)T vpi + b

)
> 0
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Here: yi is the class label (+1 for the class A and -1 for the class B), and vpi are the training
examples. The hypothesis for this classification model is defined as:

h (xi) =

{
+1 if w · x+ b ≥ 0
−1 if w · x+ b < 0

3.1.3 Multilayer Perceptron. The multilayer perceptron (MLP) is an example of an
artificial neural network that is composed of an input layer, one or more hidden layers
and an output layer. Each layer consists of one or more neurons. The more hidden
nodes, the more complex the model is. It is often used for pattern classification because
it is capable of learning complex patterns that are not linearly separable (Patterson and
Gibson 2017).

The input consists of a set of features that are pushed into the neurons of the input
layer: xi|x1, x2, ..., xn. There are as many neurons in the input layer as there are features.
As a result, there is a neuron with an associated weight value for each feature. The dot
product of these input values with the associated weights yields a value at the hidden
layer like this: w1x1 + w2x2 + ...+ wnxn followed by pushing this value along with a
bias term through one of the many activation functions.

The output of this procedure is used as the input for the neurons in the next layer.
In the next layer, we again take the dot product of this input with the corresponding
weights of the neurons in that new layer. This outcome is also pushed through an
activation function and passed on to the next layer. These steps are repeated until
the output layer is reached. The output in this output layer is used to make the final
classification decision. What kind of output this output layer has depends on the chosen
activation function (Patterson and Gibson 2017).

The training process involves gradually fine-tuning the randomly initialized
weights in order to minimize the error of the network. Backpropagation is used to make
these weight changes relative to the error, and the error itself is measured using the
Cross-Entropy loss function (Patterson and Gibson 2017).

3.2 Intersubject correlation (ISC)

Intersubject correlation (ISC) analysis of functional brain imaging data offers great
insight into how brain activity is correlated across different participants when they
are exposed to the same ongoing activity (e.g. movie-watching). This means that ISC
quantifies the consistency of neural responses to these kind of naturalistic stimuli
among people (Hasson et al. 2004; Nastase et al. 2019). The ISCs can be established by
computing the correlation coefficients between all possible pairs of participants. This
is known as the pairwise approach. This approach results in N(N − 1)/2 correlation
values for each possible pair of N participants.

According to Nastase et al. (2019), statistical inference for ISC analysis is compli-
cated as each participant contributes to the calculation of the ISC of all other par-
ticipants. For that reason, the assumption of independence is violated and standard
parametric tests (e.g. T-tests) are not suitable for this type of analysis.

Chen et al. (2016) demonstrated that subject-wise permutation tests are actually well
suited for comparing two groups that are expected to have different ISC values. This
non-parametric permutation test makes it possible to statistically evaluate two-sample
tests while disrupting the correlation structure among pairs (Chen et al. 2016).

For this test, a list needs to be created containing the group label for each indi-
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vidual participant. First, the observed test statistic is determined. This is the observed
difference in the median ISC value between the two groups. Subsequently, the group
labels are randomly reassigned at each iteration, and the test statistic is then calculated
at all possible rearrangements of the group labels (Chen et al. 2016; Nastase et al.
2019). This generates a null distribution against which the observed test statistic can be
statistically evaluated. This procedure results in a reliable permutation-based p-value
corresponding to the two-sided test.

3.3 Cochran’s Q Test

Cochran’s Q test is a non-parametric statistical technique to compare the performance of
multiple machine learning models (Raschka 2018). It tests the null hypothesis that there
is no significant difference between multiple classification models in their accuracy on
the same test set.

For this method, {M1, . . . ,ML} is defined as the list of classification models that
were trained and tested on the same dataset. If these L models indeed perform equally
well, then the Q statistic will be roughly distributed as χ2 where the degrees of freedom
equals L− 1.

QC = (L− 1)
L
∑L

i=1G
2
i − T 2

LT −
∑Nts

j=1 (Lj)
2

To perform Cochran’s Q test, several steps must be taken that were described by
Raschka (2020). In this equation, Gi defines the number of items out of Nts that were
correctly classified by model Mi = 1, . . . L. Furthermore, Lj can be defined as the num-
ber of models out of L that did correctly classify item zj ∈ Zts. Here, Zts = {z1, ...zNts

}
represents the test dataset that was used to test the different models. Lastly, the total
number of right number of votes among the L models is indicated by T :

T =

L∑
i=1

Gi =

Nts∑
j=1

Lj .

In machine learning, model predictions are usually organized in a binary Nts × L
matrix. In such a matrix, a 0 indicates that the model Mj incorrectly predicted data
example zi, and a 1 indicates a correct prediction.
TheQ-value can be obtained by plugging in the right values into the first equation. This
Q-value allows us to find the corresponding p-value, assuming a χ2 distribution with
L− 1 degrees of freedom. When this p-value is smaller than the significance level of α
= 0.05, the null hypothesis (i.e. that all models perform equally well), will be rejected.

4. Experimental Setup

The following section provides detailed information about the dataset, the preprocess-
ing steps, the experimental procedures, the evaluation metrics, and the software used
in this study.
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4.1 Dataset

The dataset used in this study was retrieved from the Cambridge Center for Aging and
Neuroscience (University of Cambridge 2010; Shafto et al. 2014; Taylor et al. 2017). This
Cam-CAN project uses cognitive, neuroimaging and epidemiological data to learn more
about how elderly can best maintain cognitive capacities. Only healthy people partici-
pated in this study. The following material was used from this dataset: the imaging data
(fMRI) from the movie-viewing experiment (N = 649), and the cognitive/behavioral
data with the results of the Famous Faces task (N = 660). In total there were 631
participants who took part in both experiments. One observation had to be deleted
because the behavioral data for this participant was incomplete and therefore useless.
Thus, the final dataset consisted of 630 observations. Among the participants were 315
men and 315 women with a mean age of 54.88 (SD = 18.31). The age of the participants
ranged from 18.5 to 88.92 years old.

4.2 Data description

For this current study, we worked with two types of data: Functional Magnetic Reso-
nance Imaging data (fMRI) data and behavioral / cognitive data. Background informa-
tion on these two types of data is briefly discussed in the following sections.

4.2.1 Functional Magnetic Resonance Imaging data (fMRI). The fMRI data from a
movie-viewing experiment was used to obtain the hippocampal responses to event
boundaries. Participants who took part in this movie-viewing experiment underwent
fMRI to measure brain activity while they were watching a condensed 8-minute version
of Alfred Hitchcock’s “Bang! You’re Dead”. Even though the full 25-minute video was
considerably shortened, the narrative of the video was preserved in this process.

The fMRI data were collected using a 3T Siemens TIM Trio equipped with a
32-channel head coil. High-resolution T1-weighted structural images were acquired
for each participant to depict structural properties of the brain and enable cross-
correlational functional analyses. For the functional scan, T2*-weighted echo planar
images (EPIs) were obtained using a multi-echo sequence (whole brain coverage; TR
= 2470 ms).

The acquired functional and structural images were preprocessed using SPM12 (see
http://www.fil.ion.ucl.ac.uk/spm), as implemented in the Automatic Analy-
sis pipeline system described in the paper by Cusack et al. (2015). In short, the obtained
functional images were corrected for slice-timing differences and motion. Next, the
T1 and T2 images were combined to make it possible to distinguish different tissue
classes. In order to optimize the alignment among the participants, an anatomical group
template was created using the DARTEL procedure and then transformed into Montreal
Neurological Institute (MNI) space. Lastly, the EPI images were coregistered to the T1
image and normalized into MNI space.

In this current study, the starting point is the preprocessed data from the Cam-CAN
project that comes in a MATLAB format. The preprocessing of the raw fMRI data does
not fall within the scope of this thesis project. Further details about this imaging data,
the MRI scanner, and the preprocessing pipeline can therefore be found in the paper
written by Taylor et al. (2017).

In the dataset that is used in this study, a MATLAB-file is available for each par-
ticipant who took part in the movie-viewing experiment. Each file contains 116 brain
regions-of-interest (ROIs) that were measured by MRI scanner. Only the hippocampus
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of the left and right hemisphere are of interest for this current study. The MRI scanner
stored 193 fMRI-scans over the course of the movie. For each ROI, there is a sequence
in the MATLAB-file that shows the mean activity of that brain region at each of these
193 timepoints. This means that a hippocampal time course can be obtained for each
participant: a sequence consisting of 193 timepoints at which the brain activity in the
hippocampus was quantified.

4.2.2 Behavioral data. The results of the Famous Faces task have been selected to serve
as the measure of general memory performance. It is a good measure because the
performance on this task is entirely unrelated to the movie-viewing experiment and this
task is sensitive to brain disorders such as Alzheimer’s (Estévez-González et al. 2004).
Even if people are only in the early stages of this disease, they already score significantly
worse on this test (García et al. 2020). Thus, this test is able to identify mild memory
deficits and this is desirable since only healthy people participated in the experiment.

This semantic memory test measures participants’ ability to recognize famous peo-
ple from photos. Participants were shown photos of 30 celebrities and 10 random un-
known people. Participants were asked if they recognized the person in the photo. If so,
they were asked if they knew this person’s name, and if they could provide occupational
information about this person. Records were kept of how often participants gave a
correct answer in terms of recognition, the provided name and the provided occupation.

4.3 Preprocessing

Before the data could be used for this research, some preprocessing steps had to be
performed. The preprocessing steps for both types of data and the reasoning behind
them are explained in detail in the following section.

4.3.1 Functional Magnetic Resonance Imaging data (fMRI). As mentioned earlier, a
sequence is available for each ROI that shows the mean activity of that brain region at
193 different timepoints. For each participant in this study, only the brain activity in the
hippocampus of the left and right hemisphere was of interest. Since no difference was
expected between the left and right hemisphere, the average of these two sequences was
used to represent people’s hippocampal time course. In short, for each participant two
sequences were extracted from the MATLAB-file and the average of these two was then
calculated to represent hippocampal brain activity over the course of the movie.

When analyzing these types of time courses, it is important to realize that the
level of the signal can differ substantially across people. For that reason, the obtained
hippocampal time courses were normalized (z-scored) within subjects to enable better
comparison across participants. Due to this transformation, each individual sequence
has fluctuating values within the same range. This forces the algorithms to classify
based on the pattern of the activity fluctuations rather than the signal level.

4.3.2 Behavioral data. The file with the results of the Famous Faces task shows multiple
memory aspects that were measured in the experiment. In the paper by Shafto et al.
(2014), a distinction was made between four components: (1) number of famous faces
recognized, (2) number of faces for which occupational information was given, (3)
number of faces whose full names were given, and (4) the number of unfamiliar faces
that were correctly identified as unfamiliar.

To gain a more reliable insight into people’s ability to recognize faces, the scores of
components 1 and 4 were combined into a new score. This new score takes the false
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recognitions into account. The term "false recognitions" refers to the phenomenon that
people wrongly indicate that they recognize an non-famous face. In theory, it is possible
to achieve a perfect score by always answering "yes" to the recognition questions. The
overall recognition score must therefore be compensated for the situations where people
answer "yes" when this was in fact impossible because the face shown was a non-
famous face. This compensation was accomplished by subtracting the percentage of
false recognitions (which can be deduced from component 4) from the percentage of
correct answers on component 1.

The outcome of the procedure described above, together with items 2 and 3, form
the sub-components of the final overall memory score. This means that this final overall
memory score is the sum score of these three separate components. The descriptive
statistics of these components can be found in table 1.

Table 1
The descriptive statistics per memory component.

component min max mean SD median

true recognition 20 100 87.56 14.64 90
naming 4 30 23.58 5.79 25
occupation 6 30 26.86 4.20 28
final score 39 160 138.00 21.79 144.67

Numerical scores must be discretized to enable the use of classification algorithms.
A threshold was therefore determined to differentiate between "good" and "bad" mem-
ory performance. Thus, this study deals with a binary classification problem. It has been
decided to set this threshold at the median score to minimize the class imbalance. This
same discretization technique was also applied to the scores of the three individual
memory components. This allows the classification performance of the different algo-
rithms to be compared on multiple memory aspects. The distribution of the participants
over the two classes per memory aspect is shown in figure 1.
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Figure 1
The distribution of the participants over the two classes ("good" and "bad") per memory
component.
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For a second experiment, a subset of the data was created in which only the best
10% and worst 10% of the participants were included. Which participants belonged
to the best and worst 10% was determined based on people’s original final memory
score (numerical). Duplicates were also added to this data subset. This means that all
participants who had the same score as the participant at the cutoff point, i.e. the score
of the 63rd and 567th participant in the sorted list, were also added to the subset. The
63rd because this concerns the top 10% of the total of 630 participants and the 567th
because this concerns the bottom 10%.

This procedure resulted in a subset consisting of 159 observations. This subset
included 82 men and 77 women with a mean age of 52.06 (SD = 19.24). The range of
the age values remained the same for this subset (18.5 to 88.92). The distribution of the
participants in this subset over these two classes is shown in figure 2. With considerably
more duplicates added on the top 10% side, class imbalance got worse for this subset
compared to the original dataset. This should be taken into account when interpreting
the results.

rec
ogniti

on

nam
in

g

occ
upati

on

final
sc

ore

25

50

75

100

N
um

be
r

of
pa

rt
ic

ip
an

ts good
bad

Figure 2
The distribution of the participants in this subset over the two classes "good" and "bad" per
memory component.

In this subset, the mean final score of the good-memory group (M = 159.56) and bad-
memory group (M = 88.38) were further apart than in the complete dataset (154.27 and
120.77 respectively). It was expected that this would lead to clearer differences in the
hippocampal time courses between those two groups, which in turn would benefit the
classification ability of the algorithms. Figure 3 and 4 show that the mean hippocampal
time course of the two groups do indeed differ more from each other in the subset data
than in the complete dataset.
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Figure 3
Part of the mean z-scored hippocampal time course in the complete dataset per memory group
(timepoint 120-140)

Figure 4
Part of the mean z-scored hippocampal time course in the subset of the data per memory group
(timepoint 120-140)

4.4 Experimental procedure

To be able to properly answer the research question of this study, a set of experiments
was conducted. The following section explains in detail which experiments were carried
out, how they were carried out and why these specific methods were chosen.

4.4.1 Model comparison for for predicting memory performance. The z-scored mean
array of the activity in the hippocampus of the left and right hemisphere was used as
input in three different algorithms. For these three algorithms, it was examined whether
they can be used to correctly predict four components of people’s performance on the
Famous Faces task. The following algorithms were compared: logistic regression, the
support vector machine and the multilayer perceptron.

To avoid overfitting, part of the available data was hold out as a test dataset. This
means that the dataset was divided into 80% training data and 20% test data in a
stratified fashion.

First, all classifiers were trained on the entire 80% training dataset. The models were
trained using k-fold cross-validation (k = 5) to make optimal use of the available data.
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This means that for each testing fold, 4 other folds were used to train. Secondly, to find
the optimal hyperparameters, a grid search was performed per algorithm during the
training on the binarized final memory score. The selected hyperparameters based on
these grid searches were then applied to all models for the individual memory compo-
nents. As a result, the same hyperparameters were used for each memory component
per algorithm. Thus, the hyperparameters only vary between algorithms and not across
memory components. This makes it possible to interpret the classification performance
on the various memory components more unambiguously. The hyperparameters that
gave the best results can be found in Appendix A.

Lastly, the classification performance of the algorithms was evaluated on the 20%
test dataset. This allowed the performance on the training set to be compared with the
performance on the test set, resulting in insight into possible overfitting or underfitting.
Furthermore, to test whether there were significant differences between the algorithms
in their classification performance, Cochran’s Q Tests were performed for each memory
component using the accuracy scores achieved on the test dataset.

4.4.2 Model comparison on a subset of the data. The experimental procedure described
above was repeated for the second experiment in this study. The difference between the
previous experiment is that this time only a subset of the available dataset was used.

Because this subset was substantially smaller (N = 159) than the complete data
set (N = 630), the distribution between training and test data was adjusted for this
experiment. It was decided to train on 70% of the data and to use 30% test data for
evaluation. This larger test set allows for a more reliable indication of classification
performance on unseen data. This modification made it even more important to make
efficient use of the available training data. Therefore, during k-fold cross-validation (k =
5) was changed to (k = 10). Thus, for each testing fold, 9 other folds were used to train.

For this separate experiment, new grid searches were performed for each algorithm
to find the best hyperparameters. These were also found by training on the binarized
final memory score, and then these hyperparameters were copied for the models for the
individual memory components. The hyperparameters that yielded the best classifica-
tion performances are listed in Appendix A.

Finally, Cochran’s Q Tests were also performed for this experiment to find out if
there were differences between the algorithms in their classification accuracies. These
tests were performed for each memory component separately on the 30% test data. In
addition, the test accuracy was compared to the training accuracy to gain insight into
possible overfitting or underfitting.

4.4.3 Analysis of the inter-subject correlation of hippocampal time courses. As an
additional test, it was examined whether there was a significant difference between the
level of event segmentation consistency between the good-memory group and the bad-
memory group. This was established by performing an intersubject correlation (ISC)
analysis on the hippocampal time courses (complete dataset). The ISCs were computed
using the pairwise approach. Next, a two-sample Monte Carlo approximate permuta-
tion test was performed on these ISCs using 1000 iterations. The labels belonging to the
binarized final memory score were used as the group labels. In this way, differences
were computed between the median ISC-score for within-group correlations while the
between-group correlations were excluded. Monte Carlo resampling had to be applied
because an exact test would result in an infinitely long list of possible permutations.
After all, in a two-sample test the number of possible permutations equals the factorial
of N (N = 630 in this case).
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4.5 Evaluation criteria

Several kind of evaluation metrics were implemented to evaluate and compare the
classification performance of the different machine learning models. The models were
trained using accuracy, but other metrics are preferred for evaluating classification per-
formance with unbalanced sample sizes (Arbabshirani et al. 2017). For example, when
90 percent of the observations belong to the positive class, a model can have an accuracy
of 90% by simply always predicting "positive". Thus, the accuracy score is not always
a reliable metric. For that reason, model performance was not only quantified using
accuracy, but also using precision, recall, F1-score and the Area Under the Receiver
Operating Characteristic Curve (ROC AUC). The baseline performance was set at an
accuracy score of 50% since this is the score expected by chance in such a binary
classification task. The different evaluation metrics will be briefly explained below, with
the following definitions applicable:

An outcome is labeled as a true positive (TP) when the classification model correctly
predicts the positive class, and a true negative (TN) if the negative class is correctly
predicted. On the other hand, an outcome is considered a false positive (FP) when the
classification model wrongly predicts the positive class, and a false negative (FN) when
it wrongly predicts the negative class. In this study we treat the "bad" category as the
postive class and the "good" category as the negative class. After all, the objective of the
study is to be able to detect memory problems.

Accuracy: This metric computes the fraction of predictions that the model classified
right. The equation is as follows:

Accuracy =
TP + TN

TP + TN + FN + FP

Precision: The precision score indicates the capability of a classifier to return only the
relevant instances. For this study that means the following: how many of the observa-
tions that were labeled as belonging to the "bad" class, actually belong to the "bad" class?
This is expressed in the following equation:

Precision =
TP

TP + FP

Recall: Recall is the fraction of the total amount of relevant instances that were actually
retrieved. For this study that means the following: how many of the observations
belonging to the "bad" class were correctly classified as "bad"? This is expressed in this
equation:

Recall =
TP

TP + FN
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F1-score: This metric can be described as the weighted average of the precision and re-
call score. The most optimal score is 1, and the worst value is 0. The relative contribution
of recall and precision to this F1-score are equal. The equation for the F1-score is:

F1 = 2 · precision · recall
precision+ recall

ROC AUC: The Receiver Operating Characteristic (ROC) curve is a graphical represen-
tation of the performance of binary classification models. It is built by plotting the true
positive rate (TPR) against the false positive rate (FPR) at several thresholds. The Area
Under an ROC Curve is a summary measure that can be computed from prediction
scores. It describes the performance of the model across all decision thresholds and
this can be interpreted as the degree of separability. This measure provides a complete
picture of the classification performance. The higher the AUC-score, the better the
model is at making a distinction between two classes. The at chance-level is an AUC-
score of 0.5 and a perfect classification score would be an AUC-score of 1.

4.6 Software

For this study, all (pre)processing steps were executed by using Python (version 3.7.3) in
Jupyter Notebooks (version 6.1.1). The MATLAB-files from the Cam-CAN dataset were
converted to Python format using the SciPy library (version 1.5.2). The algorithms were
implemented and defined using the scikit-learn library (version 0.23.2). Furthermore,
NumPy (version 1.19.1), pandas (version 1.1.1), glob2 (version 0.7) and Matplotlib
(version 3.3.1) were used for data preprocessing, data visualization, and the implemen-
tation of the algorithms. The Cochran’s Q Tests were implemented using the Mlxtend
library for Python (version 0.17.3). The intersubject correlation analysis was performend
using the Brain Imaging Analysis Kit for Python (see http://brainiak.org). The
implementation of this analysis kit is based on the ISC tutorial of Nastase (2019).

5. Results

In this section, the results of all experiments in this study will be presented. First, the
classification performances of the different models will be given, followed by infor-
mation on overfitting / underfitting and finally the results of the Cochran’s Q Tests.
Subsequently, these same elements will also be discussed for the analysis on the subset.
As a final point, the results of the intersubject correlation analysis will be described.

5.1 Model comparison for the classification tasks

For all three algorithms, four different models have been built, each trying to predict the
performance on a different memory component. The models were trained on the entire
dataset. The classification performances found in this experiment are shown in table 2.
The best score is shown in bold for each memory component and evaluation metric.
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Table 2
The classification performance on the test dataset per algorithm for the different memory
components. Test performance was evaluated based on accuracy, recall, precision, F1-score and
the ROC AUC score. The label of the positive class is "bad".

Classification report (classes = 2)

Component Models Accuracy Recall Precision F1-score ROC

recognition
LR 0.57 0.46 0.37 0.41 0.57
SVM 0.64 0.73 0.16 0.26 0.62
MLP 0.61 0.60 0.12 0.20 0.61

naming
LR 0.59 0.51 0.51 0.51 0.59
SVM 0.60 0.54 0.38 0.44 0.60
MLP 0.60 0.57 0.23 0.32 0.57

occupation
LR 0.62 0.50 0.46 0.48 0.58
SVM 0.63 0.60 0.12 0.21 0.62
MLP 0.56 0.40 0.29 0.34 0.58

final score
LR 0.53 0.53 0.51 0.52 0.51
SVM 0.62 0.66 0.49 0.56 0.66
MLP 0.56 0.59 0.35 0.44 0.60

All models appeared to score better than the baseline performance of 50% accuracy.
It is noticeable that the SVM model seemed to perform best in most cases. However,
when only precision scores were considered, the SVM and MLP appeared to perform
very poorly. Thus, the LR model turned out to be the best classifier in terms of precision
scores. Furthermore, no major differences were observed between the different memory
components.

As a second step, it was examined whether there was overfitting or underfitting
in this experiment. The differences between training and test accuracy for the final
memory score can be found in figure 5. This figure shows that there was no remarkable
overfitting or underfitting on the training data since the test accuracy was almost exactly
the same as the training accuracy. The differences between training and test accuracy for
the other memory components were quite similar and can be found in Appendix B.
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Figure 5
The difference between training and test accuracy on the final score per classifier.
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The next step was to find out whether there were significant differences between the
three algorithms in their classification accuracies. This was accomplished by running
Cochran’s Q Tests for each memory component using the accuracies on the test dataset.
The results of these tests can be found in table 3. Differences were considered significant
when the p-value was smaller than 0.05. Thus, no significant difference was found
between the classifiers for any memory component.

Table 3
Results of Cochran’s Q Tests: the Q-value and associated p-value per memory component.

component Q-value p-value

recognition 2.450 0.295
naming 0.195 0.907
occupation 2.577 0.276
final score 4.217 0.121

5.2 Model comparison on the data subset

The second experiment was performed on the earlier described subset of the dataset.
Again, twelve classification models were trained in this experiment: three algorithms
that each try to predict four different memory components. The classification perfor-
mances of these twelve different models can be found in table 4. Again, the best score is
shown in bold for each memory component and evaluation method.

Table 4
The classification performance for the subset data per algorithm for the different memory
components. Test performance (on the 30% unseen test data) was evaluated based on accuracy,
recall, precision, F1-score and the ROC AUC score. The label of the positive class is "bad".

Classification report (classes = 2)

Component Models Accuracy Recall Precision F1-score ROC

recognition
LR 0.61 0.53 0.53 0.53 0.65
SVM 0.63 0.55 0.58 0.56 0.71
MLP 0.61 0.53 0.47 0.50 0.59

naming
LR 0.67 0.64 0.47 0.55 0.70
SVM 0.67 0.62 0.53 0.57 0.68
MLP 0.46 0.25 0.16 0.19 0.48

occupation
LR 0.67 0.60 0.50 0.55 0.65
SVM 0.63 0.53 0.56 0.54 0.63
MLP 0.67 0.62 0.44 0.52 0.58

final score
LR 0.61 0.53 0.53 0.53 0.65
SVM 0.63 0.55 0.58 0.56 0.71
MLP 0.61 0.53 0.47 0.50 0.59
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In general, it can be concluded that the classification performance on the subset was
better than on the complete dataset. Again, all models appeared to score better than
the baseline performance of 50% accuracy. The differences between the models were
even smaller than in the previous experiment. It was therefore not possible to indicate a
winning model unambiguously. It is noticeable that the big difference between precision
scores and the other types of scores was no longer present. Furthermore, no major
differences were found between the memory components.

As a next step, it was examined whether there was overfitting or underfitting in
this second experiment. The differences between training and test accuracy for the final
memory score can be found in figure 6. This figure shows that there was overfitting on
the training data for all classifiers since the test accuracy was substantially lower than
the training accuracy. The differences between training and test accuracy for the other
memory components show a similar pattern and are listed in Appendix B.
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Figure 6
The difference between training and test accuracy on the final memory score for the three
different classifiers on the subset data.

In order to test if there were significant differences between the three classifiers in
their accuracies, Cochran’s Q Tests were performed for each memory component using
the accuracies achieved on the test dataset. An overview of the results of these tests can
be found in table 5. Scores were considered significant if p < 0.05. This means that again
no significant difference was found between the classifiers for any component.

Table 5
Results of Cochran’s Q Tests: The Q-value and associated p-value per memory component.

component Q-value p-value

recognition 0.250 0.882
naming 0.400 0.819
occupation 1.000 0.607
final score 0.250 0.882
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5.3 Intersubject correlation (ISC) analysis of hippocampal time courses

The intersubject correlation analysis revealed a median correlation of 0.439 across all
values. A two-sample Monte Carlo approximate permutation test was conducted to
compare the ISCs in the bad-memory group with the good-memory group. The actual
observed group difference in terms of the median ISC values turned out to be -0.088.
The non-parametric test showed that there was a significant difference (p = 0.014) in
the median ISC values for the bad-memory group (0.393) and the good-memory group
(0.480). Thus, the time courses correlated significantly stronger in the good-memory
group compared to the bad-memory group. This also means that there is more consis-
tency in the time courses in the good-memory group than in the bad-memory group.

6. Discussion

The purpose of this current study was to find out whether hippocampal responses to
event boundaries are indicative of general memory performance. This was examined by
comparing three different algorithms in their ability to predict people’s performance on
the Famous Faces task using hippocampal time courses of continuous movie-viewing.
As an additional test, an intersubject correlation (ISC) analysis was carried out to gain
insight into the group differences in the hippocampal time courses between people with
good versus bad memory performance.

Several classification models were trained to predict the performance on several
memory components of the Famous Faces task. As a first step, twelve models were
trained on the entire dataset: three different algorithms each on four different memory
components. All models scored slightly better than the baseline performance of 50%
accuracy, and no major differences have been observed between the different memory
components. In general, it can be concluded that the SVM model performs slightly
better on all memory components in comparison to the LR model and the MLP model.
However, the differences were extremely small and non-significant. Furthermore, com-
pletely different conclusions could be drawn if only the precision score and the F1-score
were taken into account.

The precision scores and F1-scores for the SVM models were in fact considerably
low compared to the scores on the other evaluation metrics. The MLP models also
suffered from this issue, but the LR models did not. It does make sense that this problem
arises when using the bad-memory group as the positive class rather than the good-
memory group. After all, only healthy people took part in this experiment. This means
that there were probably relatively few good representative examples in the dataset
of people with poor memory capacity. It has been decided to set the threshold at the
median final score to minimize class imbalance, but the disadvantage of this approach
is that some people labeled with "bad" memory may in fact have quite normal / average
memory performance. As a consequence, the hippocampal time course of these people
will presumably not deviate much from many people in the good-memory group. This
probably made it more difficult for algorithms to learn the relationship between the
"bad" memory label and the hippocampal time courses.

This issue may also explain why the SVM and MLP model show a large difference
between the precision scores and the scores on the other evaluation metrics. After all,
these models are nonlinear and probably created complex decision boundaries, with
many "average" observations ending up in the bad-group because those were almost
identical to the observations that truly belonged to the bad-group. The LR model uses
a less complex decision boundary since it is a linear classifier. With the LR model,
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observations were classified almost at chance-level. The difficulty the model has in
finding the right location for a linear decision boundary could possibly explain this.
In this situation, some observations will incorrectly end up in the good-group and some
incorrectly in the bad-group. While in a nonlinear model there will be a tendency to
classify too many observations as "bad", and this will result in poor precision scores.
However, this explanation is based on intuition only and must be further investigated
in follow-up research.

In the second experiment, twelve new models were trained on a subset of the data
consisting of the best 10% and worst 10% of the observations. This experiment showed
that the overall classification performance on this subset was slightly better than on
the complete data set, especially in terms of accuracy and the ROC AUC scores. This
may be explained by the greater difference between the two groups in terms of memory
capacity. After all, people with an average memory performance are difficult to classify
in a binary classification task. By excluding those observations, more strictly demarcated
groups emerged.

In contrast to the previous experiment, there were no exceptionally big differences
found between the precision scores and the scores on the other evaluation metrics. This
can be explained by the more strictly demarcated groups. Thus, it can be concluded that
removing the observations with an average memory performance has probably made
it a bit easier for algorithms to learn the characteristics of the time courses in the bad-
memory group. For the SVM model, it may also be explained by the fact that a linear
kernel was applied in this second experiment.

In this second experiment it is not possible to unambiguously identify the best algo-
rithm. The performance scores were again very close to each other and each component
had a different winner for each evaluation metric. Only the MLP model appeared to
perform relatively poorly. However, there was no significant difference in the accuracy
scores between the different models for any memory component.

The ISC analysis showed that there was a significant difference in the ISCs values
between the bad-memory group and the good-memory group. People with good overall
memory performance appeared to be more consistent in segmenting activities than
people with poor memory performance. This is reflected by the fact that the median ISC
is significantly higher in the good-memory group compared to the bad-memory group.

All these results together make it plausible that the hippocampal responses to event
boundaries are related to general memory capacity. First of all, algorithms were capable
of classifying memory performance using hippocampal time courses better than one
would expect based on chance alone. Secondly, there appeared to be a significant differ-
ence in event segmentation consistency between the two groups. Thus, what someone’s
hippocampal time course of ongoing activity looks like provides information about this
person’s overall memory capacity. However, given the research approach in this study,
it can never be established with certainty that it is actually only the event boundaries
that are indicative of the memory performance. The indicative factors in the time course
could involve other things as well. However, since the study by Ben-Yakov and Henson
(2018) indicated that activity peaks in this exact same dataset are specific to event
boundaries, it is extremely likely that the event boundaries are indeed indicative factors.

Despite the significant difference in hippocampal activity between the two groups,
classification performance turned out to be only slightly better than the baseline. A
weak classification rate like this is not uncommon in this type of research. According
to Arbabshirani et al. (2017), this can be explained by the fact that the time courses of
the different groups usually overlap to a great extent. As a consequence, a significant
group difference does not necessarily guarantee a strong classification performance.
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Especially in this study, in which only healthy subjects took part, it is very likely that
the overlap in time courses caused this rather weak classification rate. In addition, MRI
data is characterized by a lot of noise. When preprocessing the data, attempts are made
to remove this noise as much as possible. However, it is never possible to completely
remove the noise in MRI data. For instance, when people are distracted during the scan,
this will result in brain activity that is unrelated to the stimulus.

What is also striking in these results is that the MLP model only yields the best
results in a very few cases. In previous studies, the use of neural networks has proven
to be very effective for neuroimaging classification (e.g. Güçlü and van Gerven 2017;
Wen et al. 2018). However, most deep learning studies have used more complex neural
network architectures such as Convolutional Neural Networks (ConvNet / CNN) or
Recurrent Neural Networks (RNN). The MLP is one of the most basic versions of a
neural network. It is possible that the classification of complex fMRI data may require
these type of more complex neural networks. In addition, neural networks perform
especially well when a large amount of training data is available (Sun et al. 2017; Ulloa,
Plis, and Calhoun 2018). It is therefore likely that the disappointing results of the MLP
model are (partly) caused by the relatively small size of the dataset.

Another big disadvantage of a small dataset is the risk of overfitting. This study also
showed overfitting when training the models on the subset, especially when applying
the MLP model. Furthermore, previous studies have indicated that the use of small
datasets results in rather poor classification performance (e.g. Kahou et al. 2016; Ulloa,
Plis, and Calhoun 2018). The fact that the improvement in classification performance
from the complete dataset to the subset is quite minimal, can therefore be explained
by the small size of the subset. However, test performance has actually improved with
this subset, so having strictly demarcated groups almost certainly contributes to better
classification performance. These results suggest that if more data were available, the
models could potentially yield very good classification results.

In summary, only significant group differences in ISC-values and models that score
slightly above baseline, is insufficient evidence to establish a clear association between
event segmentation ability and general memory performance. However, this study
provides strong indications that such a relationship exists, but additional research is
needed to be able to make solid statements about it. It can be expected that clearer
insights could be acquired by taking the limitations described above into account in
future studies.

6.1 Future research

For future studies, it would be good to make use of larger, strictly demarcated groups.
By also collecting data from people suffering from memory deficits, it is easier to
investigate differences in the hippocampal time courses since this is expected to result in
less overlap in the time courses. This will allow stronger conclusions to be drawn about
the relationship between hippocampal activity and overall memory capacity. Moreover,
the amount of data in this dataset is not sufficient to achieve great success with deep
learning methods. More data could improve this, and it would also reduce the risk
of overfitting. Furthermore, it could also be very interesting to experiment with more
complex neural network architectures.

A major problem here is that it is often difficult to acquire a large (labeled) medical
imaging dataset due to the high costs (Sun et al. 2017). In follow-up research it may
therefore be interesting to explore ensemble learning strategies in which models are
used with low precision performance but relatively higher recall performance. If these
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models are diverse enough, it most likely means that the false positives will be diverse
as well. This then makes it possible to cancel those false positives out by averaging
the models (Ma et al. 2020). The study conducted by Ma et al. (2020) showed that this
approach can yield great results when dealing with small classes. It has also been shown
in other research areas that combining different classification models, including deep
learning methods, can yield very good results (e.g. Kahou et al. 2016; Sun et al. 2017).

Lastly, for future research it could also be interesting not to use the entire time course
as input. For example, it is possible to choose to only investigate brain activity at the
event boundaries that have a high intersubject agreement. This will make it possible to
determine with more certainty that the responses to event boundaries are indicative of
memory performance because only boundary-evoked responses are studied, meaning
that there will be less random noise in the data.

7. Conclusion

The results of this study show that all proposed classifiers were capable of predicting
memory performance based on hippocampal time courses better than one would expect
based on chance alone. Accuracy scores were found to be around 60%. These are not
exceptionally high scores, but this is expected to be partly caused by various limitations
associated with the dataset used in this study. These results suggest that hippocampal
responses to event boundaries are indeed indicative of general memory performance.

Furthermore, no significant differences were found between the performance of the
three different classifiers. This means that, based on this study, there is no good reason
to prefer one model over the others. As a final point, significant difference were found
between people with good versus bad memory in their event segmentation consistency:
people with good overall memory performance appeared to be more consistent in
hippocampal activity than people with poor memory performance. This suggests that
these groups actually differ in their hippocampal activity pattern and therefore in their
hippocampal responses to event boundaries. These results support the conclusions
drawn from the model comparison experiment.
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Appendix A: Selected hyperparameters based on grid searches

Table 1
The selected hyperparameters per algorithm based on performed the grid searches. For the
hyperparameters not mentioned, the default settings of the scikit-learn library (version 0.23.2)
have been applied.

algorithm hyperparameters

Complete dataset
LR {’C’: 1, ’penalty’: ’l1’, ’solver’: ’saga’}

SVM {’C’: 1, ’cache_size’: 100, ’kernel’: ’rbf’}

MLP
{’activation’: ’logistic’, ’hidden_layer_sizes’: 1000,
’solver’: ’adam’, ’alpha’: ’0.001’,
’learning_rate’: ’adaptive’}

Subset
LR {’C’: 0.1, ’penalty’: ’l2’, ’solver’: ’saga’,

’class_weight’: ’balanced’}

SVM {’C’: 0.25, ’cache_size’: 100, ’kernel’: ’linear’,
’class_weight’: ’balanced’}

MLP {’activation’: ’logistic’, ’hidden_layer_sizes’: 500,
’solver’: ’lbfgs’, ’learning_rate’: ’adaptive’}

26



D.C. van Dijk Masterthesis

Appendix B: The difference between training and test accuracy

Table 1
The differences between train and test accuracy for the different classifiers and components
(complete dataset).

model component training testing

LR

true recognition 0.57 0.57
naming 0.55 0.59
occupation 0.57 0.62
final score 0.56 0.53

SVM

true recognition 0.64 0.64
naming 0.61 0.60
occupation 0.61 0.63
final score 0.59 0.62

MLP

true recognition 0.62 0.61
naming 0.58 0.60
occupation 0.62 0.56
final score 0.57 0.56

Table 2
The differences between train and test accuracy for the different classifiers and components
(subset).

model component training testing

LR

true recognition 0.71 0.61
naming 0.74 0.67
occupation 0.70 0.67
final score 0.71 0.61

SVM

true recognition 0.67 0.63
naming 0.70 0.67
occupation 0.62 0.63
final score 0.67 0.63

MLP

true recognition 0.69 0.61
naming 0.70 0.46
occupation 0.66 0.67
final score 0.69 0.61
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