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Abstract

This master thesis focuses on creating an innovative and unique sentiment
analysis tool for Dutch on-line news articles. By providing the tool lots of
news articles of which the sentiment is already known, the tool is able to
learn to recognize sentiments from news articles using machine learning
techniques. The tool uses the learned knowledge about sentiments to
predict the sentiment of other news articles in terms of positive, negative
and neutral.

The sentiment analysis tool in this master thesis is created by solving
four different subproblems, i.e. collecting news articles, obtaining senti-
ment labels for the collected news articles, processing the news articles to
an usable machine learning format and creating a sentiment classification
algorithm. The classification algorithm is created using the support vec-
tor machine (SVM) learning algorithm, a well-studied machine learning
algorithm based upon OR optimization techniques. SVMs are designed
to deal with binary classification problems and small, linear separable
data sets. However, the sentiment analysis problem consists of multiple
classifications and the size of the data set tends to be very large-scale and
complex. Therefore, this master thesis also discusses multiple techniques
such as the kernel trick and multi-class heuristics to enable solving the
sentiment analysis problem using the binary classification capabilities of
SVMs.

Combining the solutions of the four different subproblems results in a
sentiment analysis tool that provides fairly accurate and reliable predic-
tions about the sentiment of most Dutch on-line news articles. Lastly, an
example is given of the sentiment analysis tool in practice. This example
shows that users reading a negative on-line news article are more likely to
click on an advertisement next to the article than users reading a positive
on-line news article. The result of this example may significantly affect
the decision making of a company with respect to advertising strategies.

Keywords: sentiment analysis, big data, text mining, machine learning,
support vector machines
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1. Introduction

Big data is considered as the next big frontier for innovation, competition and pro-
ductivity (Manyika et al., 2011). In almost every sector of the economy, data is
generated in vast volumes. For example, the largest Dutch food retailer Albert Heijn
generates lots of payment transactions every day. These payment transactions pro-
vide a massive amount of information about the products that are being bought.
Additionally, Albert Heijn also uses an intelligent system to link the transactions
to customer details. This system enables Albert Heijn to extract more information
from the data. For example, the system can see whether a particular product or
brand performs really well for customers of a specific gender in a specific age cate-
gory. Moreover, these customers might be more likely to buy different related goods.
Therefore, this system allows for better personalized marketing targeting and most
likely results in an increase of sales because of the competitive advantage the system
provides. Similar examples can also be given for social media sites, smartphones and
health care industry companies. All create vast amounts of data which can be used
to create value. Manyika et al. (2011) provided several more examples of how big
data adds value to almost any company. For example, big data can improve trans-
parency for stakeholders by making useful insights more accessible or by supporting
human decision making through automated algorithms.

The biggest challenge of big data is how to extract information from the data.
Having a large data set consisting of 350 million rows of transaction data is worthless
if there are no tools available to process and analyze such a large data set. Machine
learning is a novel field of study that combines statistical and operations research
techniques to create systems that can study and learn from large data sets. Mohri
et al. (2012) defined machine learning as “computational methods using experience to
improve performance or to make accurate predictions”. In this definition, an experi-
ence is ‘past’ information which is available for analysis. For example, an experience
could be a data set consisting of all kinds of context-related information and attached
a label (classification). For the previous Albert Heijn example, the experience could
be a data set consisting of characteristics of many customers (gender, age, location)
and for each customer the binary label ‘bought product X’. Machine learning can
then be applied to obtain predictions for whether a customer outside the data set
will buy product X based on the customers characteristics. Possible pitfalls such as
biased data or too few data points make it difficult to find reliable relationships be-
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tween customer characteristics and the purchase of product X. Therefore, the quality
and the size of the experience, e.g. the data set, is absolutely critical to obtain good
predictions.

1.1 Sentiment analysis

The research for this master thesis is done as part of an internship at the Green-
house Group in Eindhoven. The Greenhouse Group is the umbrella organization for
six digital marketing companies, all having a strong focus on on-line media. The
Greenhouse Group wants to know how the sentiment of text can affect consumer
behavior of Dutch consumers. One method to investigate how sentiment in text af-
fects consumer behavior is by analyzing the sentiment of on-line news articles. The
sentiment of these on-line news articles can then be related with and compared to
various Dutch consumer behavior-related statistics. Therefore, the goal and the de-
liverable of the internship was to create a tool that is able to predict the sentiment of
any Dutch on-line news article, i.e. a sentiment analysis tool. In general, sentiment
analysis with respect to text documents involves classifying documents as positive,
negative or neutral.

The sentiment analysis tool can be used to improve decision-making across the
company and provides several interesting marketing-related purposes. For example,
the tool makes it possible to determine the associated sentiment of an advertorial 1.
The tool can also be used to determine the sentiment of an on-line news article on
which an ad is to be displayed. Knowing the sentiment of an on-line news article
makes it possible to prevent painful combinations of advertisements and news articles,
e.g. a company advertisement next to an article that is negative about that company.

The sentiment analysis tool for analyzing on-line news articles might also help
analyze other types of text. This allows for a wide range of new applications, e.g. an
application for sentiment analytics in customer relationship management systems.
The sentiment of incoming mail of customers can be predicted and negative mails
can be given a higher priority or immediately be forwarded to the correct contact
person. A more futuristic example of sentiment analysis is improving automated
human conversations between customers and organizations. If a computer is able
to determine the sentiment of user messages, the computer can greatly reduce the
number of possible replies. Such automated human conversation technology would
certainly provide any company a big competitive advantage.

1.2 Research topic and problem definition

The scope of the sentiment analysis tool in this master thesis is limited to researching
the relationship between sentiments and Dutch consumer behavior. More precise,

1An advertorial is an advertisement in the form of a news article.
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the sentiment analysis tool is used to obtain a better understanding of the relation-
ship between advertisement performance and the sentiment of on-line news articles.
Chapter 10 discusses whether the click-through ratio (CTR) of an advertising cam-
paign is higher for on-line news articles of one particular sentiment with respect to
other sentiments. The general assumption is that a higher CTR results in more
profit. Therefore, it is desirable to know how the sentiment of on-line news articles
affects the CTR.

To investigate the relationship between advertisement performance and the sen-
timent of on-line news articles a tool that recognizes the sentiment of on-line news
articles is required. The creation of such an accurate sentiment analysis tool is the
main problem of this master thesis and is divided into multiple sub-problems. To-
gether, the solutions of the sub-problems are used to solve the main problem. The
sub-problems are roughly divided into four categories, i.e. collecting data, obtaining
sentiment labels, processing data and the creation of a classification algorithm.

The first sub-problem is collecting data, i.e. creating a large data set of Dutch
on-line news articles. It is assumed that the collected on-line news articles are all
well-structured and grammatically and syntactically correct. The latter avoids the
need of additional operations such as correcting spelling mistakes in order to obtain
reliable and meaningful data. To create an algorithm that predicts the sentiment of
any on-line news article, it is also important that this algorithm can first learn from
other on-line news articles for which the sentiment is known. Otherwise the algorithm
is not able to learn what sentiment different words contain, similar as humans for
example do not know how to read a foreign language without first knowing the
meaning of several foreign words. The data set from which an algorithm learns is
called the training set. The necessity of a sentiment-labeled training set leads to the
second sub-problem, i.e. obtaining sentiment classifications for all collected on-line
news articles. These sentiment classifications are also important to check whether the
predictions of the classification algorithm are correct, i.e. to check the performance
of the algorithm.

The third sub-problem focuses on processing the on-line news articles to an usable
sentiment classification algorithm format. It is assumed that it is possible to convert
raw text into the proper algorithm format without losing much of the sentiment
the on-line news articles contain. The fourth sub-problem is creating a sentiment
classification algorithm that can accurately predict the sentiment of any Dutch on-
line news article. Based on a relevant literature review (see Chapter 2) it is assumed
that machine learning algorithms are capable for use as classification algorithm.
Moreover, the same literature review states that the support vector machine (SVM)
learning algorithm is well-suited for this task and provides state-of-the-art results. It
is also assumed that creating a classification algorithm based on the articles of one
(1) on-line news site is sufficient to obtain accurate predictions about the sentiment
of articles from different news sites, because the articles of different news sites are
similarly structured.
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1.3 Approach

In order to construct the sentiment analysis tool, the four above discussed sub-
problems are solved. For the first sub-problem, i.e. collecting data, ‘experiences’
are needed from which a machine learning classification algorithm can learn to make
accurate sentiment predictions. In this case, these experiences consist of a large
data set of on-line news articles that are given a sentiment classification. For some
machine learning projects, the process of collecting data can be difficult due to time,
storage or budget constraints. However, collecting on-line news articles is relatively
simple, because there are a lot of on-line news sites that give free access to their news
articles. The process of collecting on-line news articles is discussed in Chapter 3.1.

Obtaining sentiment classifications for on-line news articles is more challenging.
All news articles can be classified manually, but when considering a data set of more
than 50.000 news articles, this is not a task to do manually due to time and budget
constraints. A method to obtain classified data is by letting readers of news articles
do this classification task, preferably for free. Some on-line news sites allow readers
to classify articles as belonging to one out of six different emotions. The result is
that every article has six different emotion probabilities. Converting these emotion
probabilities into one sentiment label (positive, negative or neutral) for each article
is discussed throughout Chapters 7, 8 and 9.

Using a large data set of over 50.000 on-line news articles introduces several
new problems. The first is encoding the articles to an usable format for machine
learning algorithms. That is, every article needs to be represented as a vector of
numerical features. Features can be seen as keywords representing words or phrases
that contain sentiment or other textual relationships such as negations. Note that
the values corresponding to these features have to be numerical, because machine
learning algorithms are often based on mathematical operations that are not possible
to apply on raw text. The process of obtaining numerical features is called feature
extraction and is discussed in Chapter 3.2. The number of features quickly grows
as the number of articles that need to be encoded increases, because there are, for
example, more unique words. A small data set of Dutch news articles can easily
contain more than 200.000 unique words, where every word can be seen as an unique
feature. When also relationships between different words are added as features,
the number of features increases drastically. A large number of features is difficult
to handle effectively on an ordinary computer, because of memory constraints and
scaling issues. Moreover, most of the feature values of an article are equal to zero
and are thus often redundant. Therefore, the number of features must be reduced
without losing too much of the information within an article. This process is called
feature selection and is discussed in Chapter 3.3.

Chapter 4 focuses on applying machine learning to create an algorithm that can
predict the sentiment of on-line news articles. The support vector machine (SVM)
learning model is used to obtain an accurate sentiment analysis algorithm. Note that
the sentiment analysis problem is basically a classification problem, i.e. assigning
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a sentiment classification to every news article. For classification tasks the SVM
learning model is well-suited and provides state-of-the-art predictions (Cristianini
and Shawe-Taylor, 2000). Although the size of the original data set is reduced
significantly by applying feature selection, the resulting data set is still very large.
Chapter 5 focuses on how to efficiently and effectively apply the SVM model on
this large data set. This is very important in order to reduce the solving time and
improve the performance of the SVM model. Chapter 6 discusses how to measure
the performance of a SVM and different SVM configurations.

In Chapter 7, a ‘simple’ binary sentiment analysis is performed. That is, the SVM
algorithm was used to predict binary sentiment labels, i.e. positive or negative,
of on-line news articles. The ‘simple’ refers to the simple and intuitive method
the sentiment of the news articles was labeled. The labeling method enabled the
SVM model to learn to recognize sentiments from the labeled news articles. This
simple labeling method is based on the six different emotion probabilities of each
article. Using the results of the simple binary sentiment analysis, several conclusions
were stated. One of these conclusions lead to the introduction of a new sentiment,
i.e. the neutral sentiment. Chapter 8 explains why the neutral sentiment is an
important sentiment to consider. However, the additional sentiment makes it difficult
to apply the SVM machine learning techniques, because SVMs are focused on binary
classification tasks. Therefore, this chapter also discusses three approaches to solve
the multi-sentiment problem with three sentiments using SVMs. Chapter 9 discusses
why the ‘simple’ labeling method used to automatically obtain sentiment labels for
the news articles performs poorly. A new labeling method is proposed and the new
results for the multi-sentiment analysis are analyzed and evaluated.

Chapter 10 provides a practical application of the sentiment analysis tool. This
practical application discusses the hypothesis that the sentiment of an on-line news
article affects the click-through rate of an advertisement shown next to the news
article. In Chapter 11 a summary of all the results is given and the final conclusions
are stated. Lastly, an overview of possible future research topics is provided.
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2. Previous work

The wide range of possible applications of sentiment analysis makes sentiment anal-
ysis an increasingly popular topic of research. Initial work on sentiment analysis
was based on text categorization techniques. Early examples include categorizing
text by author or news paper (Argamon-Engelson et al., 1998) and recognizing the
genre of text in terms of informative and non-informative or fiction and non-fiction
(Karlgren and Cutting, 1994). Turney (2002) is considered as one of the first that
used basic text categorization techniques for sentiment analysis purposes. His work
focused on classifying the sentiment of movie reviews by polarity, i.e. in terms of
positive and negative. Pang et al. (2002) were the first that proposed several text
categorization machine learning techniques such as support vector machines to solve
the movie review sentiment analysis problem.

Pang et al. (2002) provided the start of a wide variety of research on perform-
ing sentiment analyses using machine learning techniques such as support vector
machines. The majority of the research can be divided into four categories. One
category focuses on finding the best machine learning technique to solve a particular
sentiment analysis problem. The SVM algorithm turns out to consistently provide
a high performance for solving sentiment analysis problems (Pang et al., 2002; Ye
et al., 2009). The second category of research focuses on finding the best methods to
translate text into usable machine learning formats such as numeric feature vectors
(Melville et al., 2009; Yang and Pedersen, 1997). The third category of research
focuses on performing a sentiment analysis for a particular source of data using sup-
port vector machines. Initially this category focused on extracting sentiment from
sources such as movie reviews (Mullen and Collier, 2004) or customer reviews (Ga-
mon, 2004). However, the rise of social media such as Twitter and Facebook created
a whole new source of easily collectible text that often contain a clearly-defined sen-
timent. Recent research therefore often focuses on extracting sentiments from data
sources such as Tweets using SVMs (Go et al., 2009; Pak and Paroubek, 2010). The
last category focuses on researching the support vector machine learning technique.
Relevant research in this category is discussed throughout the whole master thesis.
However, Chapter 4 and 5 focus especially on the support vector machine learning
technique and these chapters discuss multiple relevant research papers.

Turney (2002) and Pang et al. (2002) both applied sentiment analysis on a doc-
ument level, i.e. they determined the sentiment of the whole text. More recent
research extended the scope of sentiment analysis to sentence or word level. One
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interesting recent research project on sentiment analysis at sentence/word level is
done by Socher et al. (2013). Socher et al. (2013) presented the ‘Stanford Sentiment
Treebank’, a database containing 215.154 unique phrases extracted from 11.855 sen-
tences. The big and unique advantage of this treebank is that all 215.154 phrases
are labeled on a fine-grained scale from very negative to very positive by three differ-
ent human persons. Furthermore, the community is allowed to add more sentiment
scores or phrases. To analyze the sentiment of any sentence using the approach of
Socher et al. (2013), the sentence is first chopped down to individual words. Using a
new recursive neural network machine learning technique, these individual words and
corresponding sentiment scores are combined to obtain an overall sentiment for the
whole sentence. The sentiment predictions of this new sentiment analysis approach
turned out to be very accurate and very good at capturing negations in sentences.

Note that all mentioned previous work on sentiment analysis is applied on English
documents. With respect to the Dutch language there is very few scientific work on
applying sentiment analysis on Dutch documents and no scientific work on applying
sentiment analysis on Dutch on-line news articles. The latter makes the results of
this thesis very interesting as it is unique in its kind.
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3. Data

In order to construct a sentiment analysis tool using machine learning techniques,
data is needed from which a machine can learn to recognize sentiments. In this
chapter, it is discussed how the necessary data was collected and how it was labeled
in terms of a sentiment. Moreover, several methods to reduce the collected data
to an usable machine learning format are discussed. The latter was done using the
concepts of feature extraction and feature selection.

3.1 Obtaining labeled data

To let a machine learn to recognize sentiments from on-line news articles, it is neces-
sary to provide the machine a large collection of on-line news articles. However, the
machine also needs to know what sentiment the news articles contain. Otherwise, the
machine is not able to learn what sentiment different words contain, similar as hu-
mans for example do not know how to read a foreign language without first knowing
the meaning of several foreign words. Therefore, the large collection of on-line news
articles requires that each article is labeled as a particular sentiment, i.e. positive,
negative or neutral. Therefore, several steps were performed to create the necessary
large set of sentiment-labeled on-line news articles.

The first step was to obtain a large collection of on-line news articles. A nice
property about on-line news articles with respect to other sources, such as Twitter
messages, is that the on-line news articles are often well-structured and grammat-
ically and syntactically correct. Several software tools are available for collecting
content from internet web pages. For this project, with the help of colleagues these
tools were adjusted such that is was possible to collect news articles from major
Dutch news sites. The result was a data set consisting of more than 2 million on-line
news articles, dating from 2000 to 2014.

The second step, labeling the collected on-line news articles based on their sen-
timent, was more difficult. One ‘simple’ option would be to manually label all news
articles. However, this drastically increases the amount of work and therefore sig-
nificantly reduces the number of articles that can be labeled due to time or budget
constraints. One of the major Dutch news sites, however, provides a method to ob-
tain the emotions that readers associate with an article. This news site shows next to
each article a graphical user interface (GUI) in which readers can select the emotion
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of the article. To be precise, readers can classify a page as ‘fascinerend’ (fascinat-
ing), ‘grappig’ (funny), ‘hartverwarmend’ (heart-warming), ‘ergerlijk’ (annoying),
‘beangstigend’ (frightening) and ‘deprimerend’ (depressing). A useful property of
the GUI is that it also presents for each emotion the percentage of readers that clas-
sified the news article as that emotion. It is assumed that these voting percentages
denote the emotion probabilities of an article. An example of the GUI is given in
Figure 3.1. Note that in this example, 77 % of the readers classified this news article
as fascinating.

Figure 3.1: Example of the GUI readers can use to vote for the emotion they associate
to a news article.

The above GUI partly solves the problem of how to obtain labeled on-line news
articles, because this is now done for free by the readers of the articles. Unfortu-
nately, these emotion probabilities are not flawless and introduce a certain degree of
uncertainty. For example, readers might not vote their true emotion due to the sen-
sitivity of the articles content, e.g. political articles, or readers can deliberately vote
a different sentiment (called ‘trolling’). The question is how to obtain a sentiment
label , i.e. positive, negative or neutral, from the emotion probabilities. Particularly
challenging though is how to interpret sentiments. What one person considers as
a positive article, someone else could consider as a negative article. That is, sen-
timents are individual and personal. The ‘simplest’ way is to label the message as
the sentiment with the highest probabilities of positive or negative emotions. This
simple method however raises the question which emotions are positive or negative
and in what amount the emotions contribute to the sentiment. The problem of how
to obtain a sentiment label from the six emotion probabilities is further investigated
in Chapter 7.1.

3.2 Feature extraction

The collected on-line news articles first need to be converted to a proper and usable
machine learning format, before a machine learning algorithm can be applied. Most
machine learning algorithms only work with numerical input vectors of a fixed size.
Therefore, the news articles, consisting of large phrases of words and punctuation,
need to be converted to numerical vectors of a fixed size without losing the content
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of the article in the process. To obtain vectors of a fixed size, it is necessary to create
‘features’, e.g. measurable article properties. In text analysis, a feature often refers
to a word, a phrase, a number or a symbol. All news articles are then measured in
terms of these features, resulting in numerical vectors of the same size for all news
articles.

The whole process of converting text to numerical vectors is called feature extrac-
tion and is often done in three steps: tokenization, counting and weighting. In the
remainder of this section, the three steps and possible approaches are described. Note
that feature extraction is a multi-disciplinary technique that requires both linguistic
and statistical techniques. The approaches described in this section are largely based
on research by Berry and Kogan (2010) and O’Keefe and Koprinska (2009).

3.2.1 Step 1: tokenization

The first step in obtaining numerical features is tokenization. In text analysis, tok-
enization is described as obtaining meaningful basic units from large samples of text
(Webster and Kit, 1992). For example, in physics speed can be expressed in meters
per second. In text analysis, large strings of text can be expressed in terms of basic
units called tokens. Often, these tokens correspond to words. Therefore, a simple
tokenization method to obtain tokens for the sentence ‘I am happy, because the sun
shines’ is by splitting them on whitespaces. This splitting results in seven tokens,
i.e. ‘I’, ‘am’, ‘happy,’, ‘because’, ‘the’, ‘sun’, ‘shines’. It is now possible to express
the original sentence in terms of these tokens.

This simple tokenization method however provides several new problems. For
one, this method does not filter out any punctuation and thus the token ‘happy,’
contains a comma at the end. This implies that the token ‘happy,’ and ‘happy’ are
two different tokens, although both tokens contain the same sentiment in sentiment
analysis. Therefore, all types of punctuation are filtered out, because punctuation
is almost never relevant for the sentiment in on-line news articles. Note that it
would have been relevant if the text would contain smiley faces, because in that
case punctuation combinations like ‘:-)’ contain a lot of sentiment. Therefore, if the
source of the data is for example Twitter messages, punctuation needs to be filtered
out in a more intelligent way. The smiley face example emphasizes the fact that
every data source needs its own feature extraction method.

Second, using the simple tokenization method it is possible to obtain the tokens
‘works’ and ‘working’. However, these tokens are just different forms of the same
word, i.e. ‘to work’. The same argument holds for tokens where one is the plural
form of the other. For the sentiment analysis, it is assumed that tokens originating
from the same word contain the same amount of sentiment. Therefore, the tokens
can be reduced to their stem and used as a single token. To do this, a stemming
algorithm that reduces every word to its stem is required. Note that such a stem-
ming algorithm is language specific. Unfortunately, most stemming algorithms are
focused on the English language, because an English stemming algorithm is com-
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mercially more interesting than a Dutch stemming algorithm. Therefore, a simple
Dutch stemming algorithm was created based on a Dutch dictionary containing the
stem of the majority of the Dutch words.

The third problem that arises is how to deal with combinations or negations of
words. For example, just using the individual tokens ‘happy’ and ‘not’ may not com-
pletely cover the more strongly negative sentiment of the combination ‘not happy’.
Similarly, the individual tokens ‘very’ and ‘happy’ may not completely cover the more
strongly positive sentiment of the combination ‘very happy’. Therefore, instead of
creating tokens of only one word, also tokens of two or three consecutive words are
used, called respectively bi-grams and tri-grams. Using also bi- and tri-grams, the
sentence ‘I am not happy’ translates to the tokens ‘I’, ‘am’, ‘not’, ‘happy’, ‘I am’,
‘am not’, ‘not happy’, ‘I am not’ and ‘am not happy’. It is assumed that the to-
ken ‘not happy’ has a much more negative impact on the sentiment than the token
‘happy’ has a positive impact. Therefore the entire sentence is classified as negative
when the token ‘not happy’ is present, even though the presence of the positive token
‘happy’.

Note that this tokenization method does not take into account the position and
the order of the words. For example, after tokenization it can not be said at what
position in the original sentence or article the token ‘happy’ occurred. Also, the
token itself does not mention anything about the words in front or after it. There
are other tokenization methods which take the position and order of words into
account as well. For example, Part-Of-Speech (POS) tagging also adds additional
information such as the word-class of a token, e.g. whether a token occurs as a verb,
adjective, noun or direct object. However, this requires the use of a POS-tagging
algorithm which is a very complex machine learning problem itself. Moreover, most
POS-tagging algorithms are developed for the English language. Therefore, using
POS-tagging was considered out of the scope for this thesis, but is a very interesting
future research topic.

3.2.2 Step 2: counting

In the second step, the frequency of each token in every article is counted. These
frequencies are used in the next step for weighting but also in Chapter 3.3.1 to
perform a basic feature selection, i.e. to reduce the number of features. Note that a
typical property of text analysis is that the majority of the tokens are only used in
a couple of articles. Therefore, the frequency of most tokens for an article is zero.

3.2.3 Step 3: weighting

In the last step, the tokens and token frequency counts from the previous steps are
used to convert all articles to an usable numerical machine learning format. This
is done by encoding each article to a numeric vector whose elements represent the
tokens from step 1. Moreover, a token weighting procedure is applied using the
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frequency counts from step 2. After a token is weighted, it is not any more referred
to as a token but as a feature. Hence, for the remainder of this thesis, a feature
represents a token which is extracted from the large set of on-line news articles and
weighted according to a given weighting method based on the token frequency counts.

There are several methods to determine the weight for each token. The most
basic weighting method is ‘Feature Frequency’ (FF). FF simply uses the frequency
of a token in an article as the weight for a token. For example, given the token set
{mad, happy}, the sentence ‘I am not mad, but happy, very happy’ is represented
as the vector

[
1 2

]
.

A more complex feature weighting procedure is the ‘Term Frequency and Inverse
Document Frequency’ (TF-IDF) weighting method. This method uses two scores,
i.e. the term frequency score and the inverse document frequency score. The term
frequency score is calculated by taking the frequency of a token in an article. The
inverse document frequency score is calculated by the logarithm of dividing the total
number of articles by the number of articles in which the token occurs. When
multiplying these two scores, a value is obtained that is high for features that occur
frequently in a small number of news articles, and is low for features that occur often
in many news articles.

O’Keefe and Koprinska (2009) have shown that using ‘Feature Presence’ (FP)
gives the best results in sentiment analysis. With FP, the weight of a token is
simply given by a binary variable which is 1 if the token occurs in an article and
0 otherwise. The sentence from the previous example would be represented as the

vector
[
1 1

]T
when using FP, because both tokens are present in this sentence.

An additional advantage of FP as weighting method is that a binary data set is
obtained, which does not suffer scaling problems. The issue of data scaling is further
explained in Chapter 4.4.1. FP is used as the feature extraction weighting method
in the remainder of this thesis, because of the conclusions of O’Keefe and Koprinska
(2009) and the advantages of a binary data set.

3.3 Feature selection

In text classification, a good feature selection method is very useful for improving the
classification task in terms of prediction quality and solution time (Berry and Kogan,
2010). In sentiment analysis, features selection implies selecting features based on
the amount of contained sentiment. Features that hardly contain sentiment can be
removed from the feature set to significantly reduce the size of the data set and to
improve the speed of the machine learning algorithms. In this section four different
feature selection methods are discussed. In Chapter 7 the performance of the four
different feature selection methods is measured and compared.
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3.3.1 Document Frequency selection

Document Frequency (DF) selection is the simplest feature selection method and is a
must for many text analysis problems (Berry and Kogan, 2010). DF selects features
within an unsupervised setting, i.e. without taking into account the sentiment label
of an article. One common approach is by first removing the most common Dutch
words, e.g. the Dutch words ‘de’, ‘het’ (‘the’) and ‘een’ (‘a’). After that, all features
with a very high document frequency are removed from the data set as these features
are not likely to help in differentiating articles. Similar, all features with a very low
document frequency are removed as they can make the classification worse. The
latter can happen when a feature, e.g. the word ‘hippopotamus’, only occurs once
in the set of all news articles, e.g. once in a negative article. Then this feature is
likely to get a negative sentiment impact by most machine learning algorithms, even
though most people do not consider the word hippopotamus as negative. Also, the
sentiment of future news articles containing this feature is affected negatively due to
this word. Hence, it is desirable to filter out all features with a very low or very high
document frequency.

3.3.2 Information Gain

The Information Gain (IG) method selects features based on the distribution of a
feature’s frequency over the different sentiment labels. This is a supervised feature
selection procedure, because it takes into account the sentiment label of the articles.
IG calculates the amount of information gained about the classification of an article
by using the presence or absence of a feature in a message. The assumption is that
the higher the information gain value of a feature, the better that feature is to predict
the sentiment of a news article.

The result of IG is a list of features that distribute very differently between the
sentiments. For example, the word ‘happy’ is likely to occur much more in articles
with a positive sentiment than in articles with a negative sentiment. Therefore,
the word ‘happy’ is a good feature to use to recognize positive articles and much
information is ‘gained’ about the sentiment of an article. Hence, IG is likely to select
this feature.

The IG score of the feature f about the classification c is calculated by

IG(f, c) =
∑

c′∈{c, c̄}

∑
f ′∈{f,f̄}

p(f ′, c′)log

{
p(f ′, c′)

p(f ′)p(c′)

}
,

where

• p(c) = probability that a news article has (sentiment) classification c,

• p(f) = probability that a feature f occurs in a message,

• p(f , c) = probability of f & c occurring,
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• c̄ represents the complement of classification c, i.e. p(c̄) is the probability of
not classification c occurring,

• f̄ represents the complement of feature f , i.e. any feature but not feature f .

Note that all probabilities can be estimated by using the frequency of features and
sentiment labels in the data set. A high IG score of a feature f given a classification
c means that the feature f contains much information about the classification c of an
article. Vice versa, a low IG score implies that the feature f contains few informa-
tion about that classification c of an article. Therefore, it is desirable to only select
the features with the highest IG scores. This significantly reduces the number of
features, while keeping the features that contain a lot of sentiment and thus provide
much information about the classification of an article.

The number of features to select is still an issue though. Similarly as in the DF
feature selection method, keeping features that do not contain much sentiment can
make the performance of the classification algorithm worse. Vice versa, removing
too many features implies that features that contain much sentiment are removed,
making it more difficult for the algorithm to learn recognize sentiments. Also, the
less features, the shorter the time the classification algorithm needs to find a good
classifier function. Therefore, there is a trade-off between the number of features and
the performance of the classification algorithm.

It is assumed that the ‘optimal’ number of features, i.e. the number of features
that gives the highest classification performance, lies somewhere in the middle (Yang
and Pedersen, 1997). To solve this issue, Chapter 7 compares the results of select-
ing different numbers of features. Comparing the performance of the classification
algorithm using the different configurations provided more insight in the ‘optimal’
number of features to select.

3.3.3 χ2 statistic

Similar as the IG method, the χ2 statistic is a supervised feature selection method.
The χ2 statistic is used to measure the independence between a feature and a classi-
fication (Yang and Pedersen, 1997). The χ2 statistic value of the feature f and the
classification c is calculated by

χ2(f, c) =
N ×

[
p(f, c)× p(f̄ , c̄)− p(f, c̄)× p(f̄ , c)

]2
p(f)× p(f̄)× p(c)× p(c̄)

and

χ2(f) =
1

|C|

|C|∑
i=1

χ2(f, ci),

where the notation is identical to the notation in the IG method. A high value
for the χ2(f) statistic implies a high dependence of the feature f to one of the
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classifications. Therefore, it is desirable to only select the features with the highest
χ2 statistic values. However, similar as with IG, the ‘optimal’ number of features to
select can not be calculated directly. Therefore, Chapter 7 compares the classification
algorithm performance of selecting different numbers of features.

3.3.4 Random Projection

Random Projection (RP) is an unsupervised dimensionality reduction method and
is used in several applications where the high-dimensionality of the data leads to
computational problems (Bingham and Mannila, 2001). RP can also be used for
feature selection in text classification problems, because text analysis problems also
quickly become high-dimensional due to the large number of features. To reduce the
dimensionality of a matrix, RP projects the matrix to a lower-dimensional space,
while trying to contain as much of the variation in the matrix as possible. The result
is that there is a trade-off between the accuracy of the classification algorithm and
the size of the problem. The more random projections are applied, the lower the
dimensionality and the smaller the problem size will be at the cost of a lower accu-
racy. A smaller problem size results in less computational work and thus the solving
time of the classification algorithms significantly reduces. Moreover, less memory is
needed to store the problem and relevant calculations. Li et al. (2006) were also able
to improve RP by applying sparse random projections. As a consequence, the re-
sulting lower-dimensional matrix is sparse and the computational effort and memory
needed for RP was significantly reduced.

A particular useful property of RP is that the Johnson-Lindenstraus lemma makes
it possible to control the decrease in accuracy (Johnson and Lindenstrauss, 1984).
The lemma states that it is possible to embed any n row matrix in O(logn ε−2)
columns while the Euclidean distances between the rows are not changed more than
a factor 1± ε. This is a useful property, because many classification algorithms work
with the Euclidean distances between points. Also, using this lemma, it is possible
to calculate the minimum number of columns, i.e. features, needed to obtain an
embedding with an accuracy of ε.

Table 3.1 provides an example of this lemma for the numeric feature representa-
tion of the on-line news articles data set. From this table it follows that, as the value
for ε gets smaller, drastically more features are needed to ensure a random projection
embedding satisfying accuracy ε. It is important to note though that this lemma only
provides a general rule on the loss of accuracy. It could still be possible to achieve
the same (or less) loss in accuracy when using less than the minimum number of
samples and features provided by this lemma. However, there is no guarantee.

It is important to note that the sentiment the features contain is not important
when applying RP. In contrast to IG and the χ2 statistic, RP does not look whether a
feature contains few or much sentiment. Therefore, RP does not eliminate the possi-
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Number of news articles (n)
ε 100 1.000 10.000

0.01 370.886 556.329 741.772
0.1 3.947 5.920 7.894
0.5 221 331 442

Table 3.1: The minimum number of features needed to ensure that a random pro-
jection embedding changes the original Euclidean distances between the articles not
more than a factor (1 ± ε). The minimum number of features is given for various
combinations of the parameters n and ε.

ble classification performance problems of using features that contain few sentiment.
It might be wise to apply RP after filtering out features that do not contain much
sentiment using the IG or χ2 statistic feature selection method. Lastly, note that the
sparsity and binarity of the numeric feature representation of the news articles data
set is lost when using RP. The data set is still sparse, but the data set might suffer
scaling problems due to not being binary. Chapter 4.4.1 discusses the necessity of
scaling the data.

3.4 Final notes on feature extraction and selection

As a last remark on this chapter it is stated that in any text classification application
the feature extraction and feature selection method have a very big impact on the
final results (Berry and Kogan, 2010). For example, a bad feature selection method
implies that features that contain a lot of sentiment are being removed. This can
lead to the classification algorithm failing to find the correct sentiment of an article,
making future sentiment predictions inaccurate.

Moreover, feature extraction and selection requires a multidisciplinary approach
as it combines techniques from different fields such as statistics and linguistics. As
the focus of this thesis is not developing a new feature extraction or selection method,
the methods discussed in this chapter are used for the remainder of this thesis.

To be more precise, FP is used as feature extraction weighting method in the
remainder of this thesis, because FP is the only discussed feature extraction method
that transforms the on-line news articles data set in a sparse and binary matrix.
Chapter 4.4.1 discusses why sparsity and binarity of the data is desirable. Addition-
ally, Chapter 7 compares the four discussed feature selection methods in terms of
classification performance.



17

4. Support Vector Machine

Support vector machine (SVM) is nowadays a state-of-the-art machine learning tech-
nique and is used in many real-life classification problems (Cristianini and Shawe-
Taylor, 2000). For example, SVMs are often used for all kinds of recognition problems
such as handwriting, speech, faces and objects in images. SVMs are also used for
weather and financial time series forecasting and for less obvious studies such as
studying the effects of different health indicators on the probability of diseases (Kec-
man, 2001). This chapter starts with a detailed introduction on SVMs, followed by
an extensive analysis on the different methods to model the SVM learning problem
as an OR optimization problem. The chapter is concluded by stating several remarks
on ‘training’ SVMs.

4.1 Introduction on SVMs

Performing a sentiment analysis is basically solving a text categorization problem.
That is, given a set of sentiments, each text needs to be categorized as one of the
possible sentiments. Therefore, the sentiment analysis problem is a classification
problem where the goal is to classify every text as a particular class, e.g. a sentiment.
The challenge of most classification problems is to find a well-performing classification
rule, i.e. a function that takes any news article as input and returns the correct
sentiment the article contains.

From the previous chapter it follows that, using the numerical feature represen-
tation, every on-line news article can be represented as a point in a D-dimensional
space, where D is the number of features. For example, consider a data set consist-
ing of fourteen news articles (N = 14) with two features (D = 2) and two possible
sentiment classifications. Also, assume that the first seven articles have an opposite
sentiment than the last seven. The news articles can now easily be plotted in a 2-
dimensional space as is done in Figure 4.1. Using this figure, it can also be seen that
any line that divides the sample points of both sentiments can be used as a classifi-
cation rule, because all points on one side of the line are classified as one sentiment,
whereas all points on the other side are classified as the opposite sentiment.

Note that this line corresponds to a hyperplane when the dimension, and thus the
number of features, is greater than 2. Because both sides of the hyperplane represent
a different classification, this hyperplane is often denoted as a separating hyperplane,
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a decision boundary, a classifier or as a classification rule. Any new sample point is
classified based on which side of the separating hyperplane the point lies. Therefore,
a separating hyperplane is very useful for quickly making predictions about the class
of new samples.

A SVM tries to find the best separating hyperplane, i.e. the best hyperplane that
separates the points of two classes. The question is how to define the best separating
hyperplane. In most cases, there are multiple hyperplanes possible that separate the
two classes. Figure 4.1 gives an illustration of multiple separating hyperplanes. The
problem of finding the best separating hyperplane was first discussed by Vapnik in
1965 (Vapnik and Kotz, 1982) and his work is nowadays considered as the starting
of SVMs. Cortes and Vapnik (1995) provided an improved version of the original
research. They stated that the best separating hyperplane is the hyperplane that
maximizes the margin between the two classes. Figure 4.2 and Figure 4.3 provide
graphical examples of separating hyperplanes that maximize the margin between two
classes.

A sentiment analysis algorithm to predict the sentiment of any on-line news article
using SVMs is created in two steps. In the first step, a SVM is trained by finding
the best separating hyperplane for a given set of samples, i.e. on-line news articles.
This set of samples is called the training set. The separating hyperplane is defined
by H = {x : wTx = b} or by H = {x : wTx + b = 0} 1. Training a SVM is thus
done by finding the values for the vector w and the scale parameter b such that the
resulting separating hyperplane maximizes the margin between two classes.

In the second step, the trained SVM is used to make predictions about the senti-
ment of new samples that were not in the training set. The sentiment predictions of
new sample points are made by using the best separating hyperplane from the first
step. This is generalized for any sample point x by stating that if wTx + b ≥ 0, the
article is classified as class ‘+1’, e.g. positive. Otherwise, if wTx+ b < 0, the article
is classified as class ‘−1’, e.g. negative. The predicted sentiment classification of
article i is denoted by ŷi and is calculated by ŷi = sign{wTxi + b}. A separate set of
samples that were not in the training set is often used for testing the performance of
the SVM. Therefore, this set of samples is called the testing set. Chapter 6 explains
the importance of separate training and testing sets.

4.2 Training the SVM using a linear classifier

Training a SVM, i.e. finding the best separating hyperplane, is done by using a
wide range of OR optimization techniques. By the end of this chapter, the problem
of finding the best separating hyperplane is formulated as an optimization problem.
However, first of all, a clear definition about the margin between two classes is needed.

1It does not matter whether +b or −b is used, because there is no restriction on the sign of b.
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4.2.1 Defining the margin

Consider a data set consisting of samples that are classified as only two different
possible classifications, i.e. a positive classification with label +1 and a negative
classification with label -1. Also, assume that the sample points of this data set are
strictly linear separable. Strictly linear separable means that there always exists at
least one separating hyperplane that exactly separates the sample points of the two
different classes and no sample points are lying on this hyperplane.

Figure 4.1 provides an example of a strictly linear separable data set with three
possible separating hyperplanes, i.e. H1, H2 and H3. In this figure, all three
hyperplanes perfectly separate the sample points of both classifications. However,
problems may occur when using hyperplanes H1 and H2 to make predictions about
the classification of any new sample point. For example, consider a new sample point
with classification ‘sentiment 2’ (circle) that lies at coordinate

[
3 1

]
. Note that this

new sample point lies very close to the existing sample points of the ‘sentiment 2’
class, and therefore this new sample point intuitively also belongs to the ‘sentiment
2’ class. However, when using H1 as separating hyperplane, this new sample point
falls on the other side of the hyperplane and is therefore classified as ‘sentiment 1’.
Using H1 as separating hyperplane thus gives inaccurate classification predictions.
A similar example can also be created for H2. Therefore, Cortes and Vapnik (1995)
defined the best separating hyperplane to be the hyperplane that maximizes the
distance between the separating hyperplane and the nearest sample points of both
classes. By this definition, the hyperplane H3 in the example in Figure 4.1 is the
best separating hyperplane.

Figure 4.1: Example of how two classes (square and circle) can be separated in three
different ways using three different hyperplanes. The question is how to find the ‘best’
separating hyperplane.

Assume the sample point that is nearest to the separating hyperplane Hw,b is
denoted by x. The Euclidean distance between Hw,b and x can be seen as the margin
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M for which it holds that no sample points lie within this distance to Hw,b. Also,
the value of the margin M provides a minimum bound on the distance between the
points of both classes that are nearest to each other. The best separating hyperplane
H3 of the example in Figure 4.1 and its margin M are also given in Figure 4.2. In
addition, Figure 4.3 provides a similar example.

Figure 4.2: The best separating hyperplane H3 of the example in Figure 4.1 and its
margin M .

Figure 4.3: A graphical example of a separating hyperplane for which the margin
around the separating hyperplane is maximized. The accentuated area is the margin
M around the separating hyperplane.
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4.2.2 The hard-margin SVM optimization problem

The size of the margin M is dependent on the separating hyperplane Hw,b and the
margin is therefore denoted by M = M(w, b). The Euclidean distance between Hw,b

and any point x is denoted by Dw,b(x). It follows that the size of the margin M is
given by

M = M(w, b) = inf
x∈X

Dw,b(x), (4.1)

where X is the matrix containing all sample points xi. In the sentiment analysis
problem, the matrix X thus contains the numeric feature vector representation of all
N on-line news articles. The best separating hyperplane is the separating hyperplane
that maximizes the margin (Cortes and Vapnik, 1995). Finding the best hyperplane
can then be formulated as an optimization problem as follows

max
w,b, x∈X

inf Dw,b(x). (4.2)

Solving the model in Equation (4.2) gives the best separating hyperplane. However,
the solution is not unique as there are multiple best separating hyperplanes with
the same value for the margin M . For example, consider the separating hyperplane
−2x1 − 2x2 + 8 = 0. This hyperplane can be multiplied by any constant to obtain
the same separating hyperplane, but then given by different parameters w and b.
Therefore, the separating hyperplanes are scale invariant. To ensure only one unique
best separating hyperplane is obtained, a scaling constraint is necessary and is given
by

|wTxn + b| = 1, (4.3)

where xn is the point that is nearest to the separating hyperplane. Note that it is
always possible to make the scaling constraint hold without affecting the separating
hyperplane, because the parameters w and b can be scaled such that the scaling
constraint holds. Additionally, because of the scale invariance property, the scaling
constraint does not affect the resulting best separating hyperplane.

Also note that the vector w is always perpendicular to the hyperplane. For
example, take any point y′ and y′′ on the separating hyperplane. Then it holds that

wTy′ + b = 0 and wTy′′ + b = 0 ⇒ wT (y′ − y′′) = 0.

The perpendicular property is used to calculate the distance between any point x
and the separating hyperplane. Consider the sample point x and a point y on the
separating hyperplane. It was shown that the vector w is always perpendicular to the
separating hyperplane for any point y on the separating hyperplane. However, the
vector x−y is not always perpendicular to the separating hyperplane. Therefore, the
Euclidean distance between the points x and y is not always equal to the Euclidean
distance between the separating hyperplane and the sample point x. A projection
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Figure 4.4: Projection of the vector x− y on the vector w.

of the vector x − y onto the vector w is used to obtain the distance between the
separating hyperplane and any sample point x in terms of w. Figure 4.4 gives a
graphical illustration of this projection. Using basic geometry and algebra rules, the
projection of x− y on the perpendicular vector w is calculated by

projection =
wT

||w||
(x− y), (4.4)

where w
||w|| is the unit vector of w. The projection in Equation (4.4) is used to

calculate the distance of any point x to the separating hyperplane Hw,b by

Dw,b(x) =

∣∣∣∣ wT||w||(x− y)

∣∣∣∣ =
1

||w||
∣∣wT (x− y)

∣∣ =
1

||w||
∣∣wTx+ b

∣∣ .
Note that by definition of xn and strict linear separability it also holds that the
distance of any other point xi is at least greater than or equal to 1. So Dw,b(xi) =
|wTxi + b| ≥ 1 for all i = 1, ..., N . Therefore, the scaling constraint in Equation (4.3)
is rewritten to

mini=1,...,N |wTxi + b| = 1

and the margin in Equation (4.1) is simplified as follows

M = inf
x∈X

Dw,b(x) = inf
x∈X

1

||w||
∣∣wTx+ b

∣∣ =
1

||w||
min

i=1,..,N

∣∣wTxi + b
∣∣

=
1

||w||
.

The optimization problem in Equation (4.2) can then be rewritten to

max
1

||w||
(4.5)

s.t. mini=1,...,N |wTxi + b| = 1

w ∈ RD, b ∈ R.
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Note that the scaling constraint also puts a bound on the objective function. With-
out the scaling constraint, the vector w can be set such that the objective goes to zero.

Using the assumption that the data set is strictly linear separable, it follows
that all points are classified correctly by the best separating hyperplane. Assume
all sample points with classification label yi = +1 lie on the side of the separating
hyperplane for which it holds that wTxi + b ≥ 0. Vice versa, all points with classifi-
cation label yi = −1 lie on the side of the separating hyperplane for which it holds
that wTxi + b < 0. Then, it holds that

|wTxi + b| = yi(w
Txi + b). (4.6)

Also, note that maximizing 1
||w|| is equivalent to

max
w

1

||w||
⇔ min

w
||w|| ⇔ min

w
||w||2 ⇔ min

w

1

2
||w||2 ⇔ min

w

1

2
wTw (4.7)

Hence, using Equations (4.6) and (4.7) the optimization problem in (4.5) is rewritten
to

min
1

2
wTw (4.8)

s.t. mini=1,...,N yi(w
Txi + b) = 1.

Note that the constraint in the optimization problem in (4.8) is almost linear. Remov-
ing the minimum function in the constraint makes the constraint linear. Therefore,
the following equivalent optimization problem is given

min
1

2
wTw (HM-P)

s.t. yi(w
Txi + b) ≥ 1 ∀i = 1, .., N.

w ∈ RD, b ∈ R,

To show that (HM-P) and (4.8) are equivalent, note that by Equations (4.3) and
(4.6) it holds that yn(wTxn + b) = 1. For all other xi where i 6= n, the distance
to the separating hyperplane is greater than or equal to the distance of xn to the
hyperplane, so yi(w

Txi + b) ≥ 1 for all i = 1, ..., N . Suppose (HM-P) gives a solution
where yi(w

Txi + b) > 1 for all i = 1, ..N , then the scaling constraint of Equation
(4.3) does not hold. Also, such a solution can not be the global minimum, because
by scaling down w and b it is always possible to find a better solution such that
yi(w

Txi + b) = 1 for at least one i. Hence, (4.8) is equivalent to (HM-P). Moreover,
the latter is called the primal form of the hard-margin SVM optimization problem,
where the data set has only two possible classifications and is strictly linear separable.
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4.2.3 The soft-margin SVM optimization problem

The model in (HM-P) was developed for the ideal scenario where the two possible
classifications in a data set are strictly linear separable. However, as in practice this
is not often the case, the model in (HM-P) is not valid, because it no longer holds
that the best separating hyperplane correctly separates all sample points. Therefore,
the constraint yi(w

Txi+b) ≥ 1 for all i = 1, .., N no longer holds, because for example
a misclassified sample point i would imply that yi(w

Txi + b) < 0. Figure 4.5 gives
an example of a scenario with such misclassifications.

To solve this problem, Cortes and Vapnik (1995) introduced the soft-margin
support vector machine which deals with the problem of non-separability by intro-
ducing an error-variable ξi. The soft-margin SVM allows sample points to violate the
margin constraint yi(w

Txi+b) ≥ 1 by softening this constraint to yi(w
Txi+b) ≥ 1−ξi,

where ξi ∈ R and ξi ≥ 0. However, data points that violate this constraint and thus
the margin are penalized. This is done by adding ξi to the objective function, so
that sample points are penalized by the proportion of which the point violates the
margin. Note that if a data point is correctly classified and lies outside the margin,
ξi is equal to zero and there is no penalty. The following optimization problem is
obtained using the new constraint.

min
1

2
wTw + C

N∑
i=1

ξi (SM-P)

s.t. yi(w
Txi + b) ≥ 1− ξi ∀i = 1, .., N

ξi ≥ 0 ∀i = 1, .., N

w ∈ RD, b ∈ R, ξ ∈ RN ,

where C is a parameter that determines how much violations are penalized. As now
also the ξi’s are minimized, it follows that the resulting hyperplane maximizes the
margin while simultaneously minimizing the number of sample points that violate
this margin. It follows that there is a trade-off between the size of the margin and
the number and size of the violations. Moreover, the value of C has a significant
impact on this trade-off. The result is that for different values of C, different ‘best’
separating hyperplanes are obtained, making it difficult to conclude which value of
C gives the overall best separating hyperplane. Therefore, it is necessary to have
a method to test the performance of a SVM for different values of C. Chapter 6
discusses how the performance of a SVM can be measured.

4.3 Training the SVM using a non-linear classifier

Using a linear classifier is a very restricting method of separating the data set and
in practice, this method not always provides good results (Cristianini and Shawe-
Taylor, 2000). For example, Figure 4.6 gives an example of a data set that can not
be separated accurately using a linear classifier.
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Figure 4.5: Example of sample points that are not strictly linear separable. Any
separating hyperplane therefore has sample points that lie on the wrong side of the
separating hyperplane or violate the (accentuated) margin M .

Figure 4.6: Example of a data set that can not be separated accurately using a linear
classifier.

Using the soft-margin SVM for the example data set in Figure 4.6 still gives
a separating hyperplane. However, due to the linearity of the resulting separating
hyperplane, the data is not separated very accurate, i.e. many sample points are
misclassified. Figure 4.7 plots the soft-margin SVM decision boundary of the example
data set of Figure 4.6. From Figure 4.7 it follows that many of the points are
misclassified when a linear classifier is used.
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Figure 4.7: Example showing that using the soft-margin SVM with a linear classifier
on a not linear separable data set does not always yield accurate results. All points
to the left of the decision boundary are classified as ‘class 2’, whereas all points to
the right of the decision boundary are classified as ‘class 1’. Note that many sample
points lie on the wrong side of the separating hyperplane and are thus misclassified.

4.3.1 Mapping the data to a higher dimension

A method to make non-linear data separable using a linear SVM classifier is by
mapping the data to a higher dimension (Aizerman et al., 1964). Figure 4.8 provides
an example of a simple mapping function, i.e. φ(

[
x1 x2

]
) =

[
x1 x2 |x1x2|

]
), that

maps a not linear separable 2D dataset to a 3D dimension. In the 3D dimension the
data set can then be separated using a linear classifier. In Figure 4.9, the separating
hyperplane of the 3D dimension is reduced to a non-linear classifier for the original
2D dimension.

Using a mapping function φ, non-linear classifiers can be created for data sets that
can not be separated linearly. However, the mapping results in a higher dimensional
data set. Therefore, the mapping increases the number of variables of (SM-P), i.e.
more wi’s are necessary. In the example in Figure 4.9, the dimension of the matrix
X went from R300×2 → R300×3. However, suppose X ∈ RN×D and a polynomial
mapping of degree 2 is needed in order to obtain linear separability in the higher
dimension. The polynomial mapping of degree 2 is given by

φ(x) =
[
x2

1, . . . x
2
D, x1x2, x1x3, . . . , xD−1xD−2, xDx1, . . . , xDxD−2, xDxD−1

]
.

(4.9)

The mapping in Equation 4.9 implies calculating the square of all features and the
cross product of all features. This mapping would imply that φ(x) : RD 7→ R 1

2
D(D+1).

If, for example, N = 300 and D = 100, this polynomial mapping would imply that
the matrix X : R300×100 7→ R300×5.050 and as a result w : R100 7→ R5.050. Text analysis
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Figure 4.8: Example of how mapping data points to a higher dimension enables them
to be linearly separated.

Figure 4.9: Non-linear decision boundary for the example data set in Figure 4.6

often implies using a large number of features, because there are lots of possible
words that contain sentiment. Therefore, the value of D is often very large and
using the polynomial mapping thus results in a very large matrix X that can be
very time and memory expensive to compute. Additionally, the mapping results in
a larger number of variables and thus increases the problem size significantly. In
general, the larger the problem size, the more time and memory expensive it is to
find the optimal solution of the problem. Especially for quadratic optimization prob-
lems such as the support vector machine model. Therefore, using this polynomial
mapping to achieve linear separability is in practice not useful for sentiment analysis.
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A method to create a mapping φ without calculating the entire mapping to the
higher dimensional space is known as the kernel trick (Boser et al., 1992). The
trick is that calculating the inner products between the N samples generates the
same meaningful information as mapping all examples to a higher dimensional space.
Therefore, the kernel trick makes the mapping independent of the size of a sample,
i.e. the value D. Using the kernel trick, it is possible to map X : RN×D 7→ RN×N . As
a result, the dimension of the variable w only increases slightly, i.e. w : RD 7→ RN . In
the previous polynomial mapping example, this would imply X : R300×100 7→ R300×300

and w : R100 7→ R300. This is a big difference compared to the polynomial mapping
function φ in Equation (4.9) that mapped X to R300×5.050 and increased w to R5.050.
The kernel trick is discussed in Chapter 4.3.3. However, to benefit from the advantage
of the kernel trick, (SM-P) is first reduced to the Lagrangian dual formulation.

4.3.2 The dual representation of the SVM

Cortes and Vapnik (1995) showed that (SM-P) can be rewritten using the Lagrangian
dual optimization technique (Boyd and Vandenberghe, 2009). First note that the
generalized Lagrangian of (SM-P) is defined by

L(w, b, ξ, α, β) =
1

2
wTw + C

N∑
i=1

ξi −
N∑
i=1

αi
[
yi(w

Txi + b)− 1 + ξi
]
−

N∑
i=1

βiξi,

(4.10)

where α, β ∈ RN are Lagrange multipliers. The Lagrangian duality theory states
that

d∗ = max
α≥0,β≥0

min
w,b,ξ
L(w, b, ξ, α, β) ≤ min

w,b,ξ
max

α≥0,β≥0
L(w, b, ξ, α, β) = p∗, (4.11)

where p∗=(SM-P). Moreover, when strong duality holds, it holds that d∗ = p∗.
Therefore, in order to use the dual formulation d∗ to solve (SM-P), it is necessary to
have strong duality. Note that the following two conditions are sufficient for strong
duality to hold (Boyd and Vandenberghe, 2009):

1. the primal problem needs to be convex w.r.t. the variables w, b, ξ.

2. Slater’s condition needs to hold.

The constraints of (SM-P) are affine and thus convex w.r.t. w, b and ξ. The objective
function of (SM-P) is convex because it is an Euclidean squared norm plus an affine
function. Therefore, (SM-P) is a convex problem and condition 1 for strong duality
is satisfied. Slater’s condition holds if there exists an x ∈ relint(D) such that

fi(x) < 0, i = 1, ..., N , Ax = b,
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where D =
⋂m
i=0 dom(fm) (Boyd and Vandenberghe, 2009). Therefore, Slater’s con-

dition holds if a feasible point is found such that all inequality constraints strictly
hold. Take any w and b. Set ξi = max

{
2− yi(wTxi + b), 1

}
. Then

−yi(wTxi + b) + 1− ξi ≤ −1 < 0 and − ξi ≤ 1 < 0 for all i.

Both inequalities hold strictly, so Slater’s condition holds. Therefore, the two suffi-
cient conditions for strong duality hold for (SM-P). As the problem is differentiable
and there is strong duality, it holds that the KKT conditions are necessary and suf-
ficient for global optimality (Boyd and Vandenberghe, 2009). This is useful when
solving the SVM dual optimization problem, because any solution that satisfies all
KKT conditions is guaranteed to be the global optimum. Chapter 5 uses this prop-
erty to find the global solution of the optimization problem.

From the first order conditions it follows that at the minimum of L w.r.t. w, b
and ξ it holds that

5wL = w −
N∑
i=1

αiyixi = 0⇔ w =
N∑
i=1

αiyixi, (4.12)

∂L
∂b

=
N∑
i=1

αiyi = 0, (4.13)

∂L
∂ξi

= C − αi − βi = 0⇔ αi + βi = C. (4.14)

First note that the objective function in Equation (4.10) can be rewritten to

L =
1

2
wTw + C

N∑
i=1

ξi −
N∑
i=1

αi
[
yi(w

Txi + b)− 1 + ξi
]
−

N∑
i=1

βiξi

=
1

2
wTw + C

N∑
i=1

ξi −
N∑
i=1

αi
[
yi(w

Txi + b)− 1
]
−

N∑
i=1

αiξi −
N∑
i=1

βiξi

=
1

2
wTw + (C − αi − βi)

N∑
i=1

ξi −
N∑
i=1

αi
[
yi(w

Txi + b)− 1
]
. (4.15)

Substituting (4.14) in (4.15) gives

L =
1

2
wTw −

N∑
i=1

αi
[
yi(w

Txi + b)− 1
]
. (4.16)
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Additionally, substituting (4.13) in (4.16) gives

L =
1

2
wTw −

N∑
i=1

αi
[
yi(w

Txi + b)− 1
]

=
1

2
wTw +

N∑
i=1

αi − b
N∑
i=1

αiyi −
N∑
i=1

αiyiw
Txi

=
1

2
wTw +

N∑
i=1

αi −
N∑
i=1

αiyiw
Txi. (4.17)

Finally, substituting (4.12) in (4.17) gives

L =
1

2
wTw +

N∑
i=1

αi −
N∑
i=1

αiyiw
Txi

=
1

2

(
N∑
i=1

αiyix
T
i

)(
N∑
i=1

αiyixi

)
+

N∑
i=1

αi −
N∑
i=1

αiyi

(
N∑
i=1

αiyix
T
i

)
xi

=
N∑
i=1

αi +
1

2

(
N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj

)
−

(
N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj

)

=
N∑
i=1

αi −
1

2

(
N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj

)
. (4.18)

The result is a Lagrangian function that only depends on α. Moreover, from Equation
(4.14) and βi ≥ 0, it follows that the value of C is an upper bound on the value of
α. Therefore, the Lagrangian dual optimization problem d∗ is given by

d∗ = max
α≥0
L

s.t. αi ≤ C ∀i = 1, .., N

N∑
i=1

αiyi = 0 ∀i = 1, .., N

= max
α

N∑
i=1

αi −
1

2

(
N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj

)
s.t. 0 ≤ αi ≤ C ∀i = 1, .., N

N∑
i=1

αiyi = 0 ∀i = 1, .., N
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⇔

d∗ = min
α

1

2

(
N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj

)
−

N∑
i=1

αi

s.t. 0 ≤ αi ≤ C ∀i = 1, .., N

N∑
i=1

αiyi = 0 ∀i = 1, .., N

⇔

d∗ = min
α

1

2
αT


y1y1x

T
1 x1 y1y2x

T
1 x2 . . . y1yNx

T
1 xN

y2y1x
T
2 x1 y2y2x

T
2 x2 . . . y2yNx

T
2 xN

...
...

...
...

yNy1x
T
Nx1 yNy2x

T
Nx2 . . . yNyNx

T
NxN

α− (1)Tα

s.t. 0 ≤ α ≤ C

yTα = 0.

Define Q =


y1y1x

T
1 x1 y1y2x

T
1 x2 . . . y1yNx

T
1 xN

y2y1x
T
2 x1 y2y2x

T
2 x2 . . . y2yNx

T
2 xN

...
...

...
...

yNy1x
T
Nx1 yNy2x

T
Nx2 . . . yNyNx

T
NxN

 and e as a vector of ones of

length N . Note that Q consists solely of the parameters x and y. Therefore, Q
is considered as input in the model. Hence, the Lagrangian dual problem of the
soft-margin SVM is given by

d∗ = min
α

1

2
αTQα− eTα (SM-D)

s.t. 0 ≤ α ≤ C

yTα = 0.

Solving (SM-D) gives the optimal vector α∗. With the help of α∗, the best separating
hyperplane is constructed. First, using Equation (4.12), w∗ is calculated by

w∗ = wX,y(α
∗) =

N∑
i=1

α∗i yixi. (4.19)

The value of b∗ is found using the complementary slackness conditions of the KKT-
conditions. The complementary slackness conditions are given by

αi
(
1− ξi − yi(wTxi + b)

)
= 0 ∀i = 1, ..., N, (4.20)

βiξi = 0 ∀i = 1, ..., N. (4.21)
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Take any point i for which 0 < αi < C. Then from Equation (4.20) it follows that

1− ξi − yi(wTxi + b) = 0⇔ 1− ξi = yi(w
Txi + b). (4.22)

From Equation (4.14) it follows that βi > 0 and thus from Equation (4.21) it follows
that ξi = 0. Hence, from (4.22) it follows that yi(w

Txi + b) = 1 and b = 1− yiwTxi.
Therefore,

b∗ = bX,y(α
∗) = 1− yi

(
N∑
i=1

α∗i yixi

)T

xi (4.23)

The soft-margin SVM primal problem (SM-P) and the soft-margin SVM dual
problem (SM-D) are both linear constrained quadratic optimization problems. How-
ever, the two problems differ significantly in problem size. Consider a data set of N
samples and D features. The primal formulation consists of N +D+ 1 variables and
2N constraints. The dual formulation consists of N variables and N + 1 constraints.
It follows that the problem size of the dual problem is smaller, especially when the
number of features, i.e. D, is high. Additionally, it turns out that the dual formula-
tion is advantageous when mapping non-linear separable data to a higher dimension
in order to achieve separability. This advantage is discussed in Chapter 4.3.3.

4.3.3 Applying the kernel trick

Chapter 4.3.1 explained that non-linear classifiers for not linearly separable data sets
can be created by mapping data to a higher dimension. In (SM-D), the sample points
x only appear in the matrix Q. Therefore, the mappings x→ φ(x) are implemented
by changing Q to

Q =


y1y1φ(x1)Tφ(x1) y1y2φ(x1)Tφ(x2) . . . y1yNφ(x1)Tφ(xN)
y2y1φ(x2)Tφ(x1) y2y2φ(x2)Tφ(x2) . . . y2yNφ(x2)Tφ(xN)

...
...

...
...

yNy1φ(xN)Tφ(x1) yNy2φ(xN)Tφ(x2) . . . yNyNφ(xN)Tφ(xN)

 .
Chapter 4.3.1 showed that the mapping φ(x) can significantly increase the dimension
of the vector x. Therefore, calculating the inner products of φ(xi) and φ(xj) for all
i and j in the matrix Q also significantly becomes more demanding in terms of
calculations and memory as the number of samples N or the dimensionality of the
mapping increases.

The kernel trick avoids the need to fully calculate all mappings and inner products
(Boser et al., 1992). The trick is that kernel functions K exist such that K(x, z) =
φ(x)Tφ(z), making it possible to rewrite Q to

Q =


y1y1K(x1, x2) y1y2K(x1, x2) . . . y1yNK(x1, xN)
y2y1K(x2, x2) y2y2K(x2, x2) . . . y2yNK(x2, xN)

...
...

...
...

yNy1K(xN , x2) yNy2K(xN , x2) . . . yNyNK(xN , xN)

 .
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Note that the function K(x, z) can be created by taking the inner product of the
higher-dimensional mappings φ(x) and φ(z). However, proper kernel functions K
enable K(x, z) to be calculated much faster using the dimensional-space of the input
vectors x. For example, consider the mapping function

φ(x) =
[
x1x1 . . . x1xD x2x1 . . . xD−1xD xDx1 . . . xDxD

]T
.

Note that φ can be computed using O(D2) calculations. It follows that K(x, z) =
φ(x)Tφ(z) requires O(D2) calculations. However, the kernel function K(x, z) is
equivalent to

K(x, z) = φ(x)Tφ(z) =
n∑

i,j=1

(xixj)(zizj) =

(
n∑
i=1

xizi

)(
n∑
i=1

xizi

)
= (xT z)2.

Note that (xT z)2 can be computed using O(D) calculations. So, for this example,
using K(x, z) = (xT z)2 is significantly faster then calculating the inner product of
the higher-dimensional mappings φ(x) and φ(z). Similarly, other mapping functions
φ can be reduced to a much less computational expensive kernel function K. Well-
known common kernel functions in machine learning are the

i) Linear kernel:
K(x, z) = xT z,

ii) Polynomial kernel of degree d with constant c:
K(x, z) = (xT z + c)d,

iii) Radial Basis Function (RBF) or Gaussian kernel with sensitivity parameter σ:

K(x, z) = exp
(
− ||x−z||

2

2σ2

)
= exp (−γ||x− z||2), where γ = 1

2σ2 .

Note that the linear kernel does not perform any mapping and thus gives a linear
classifier. Also, the RBF kernel is a special type of kernel, because the underlying
mapping φ maps the input x to an infinite-dimensional space (Cristianini and Shawe-
Taylor, 2000). Moreover, note that the RBF kernel function K requires more complex
mathematical operations, i.e. norm, exponent, division and square, than the other
kernels. Therefore, the RBF kernel is often slower than the other kernels, because
calculating the full matrix Q implies applying the more complex RBF kernel function
N2 times. However, the RBF kernel often provides the best results in practice and
is therefore a widely-used kernel (Hsu et al., 2003).

4.3.4 Support vectors

The support vectors of a SVM optimization problem are the sample points that
define the separating hyperplane (Cortes and Vapnik, 1995). By this support vector
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definition, all non-support vector sample points can be removed from a data set
without affecting the best separating hyperplane obtained by the SVM.

Recall that the best separating hyperplane is the separating hyperplane that
maximizes the margin. Chapter 4.2.1 showed that for a linear separable data set,
the margin around the separating hyperplane is defined by the sample points of both
classifications that lie nearest to that separating hyperplane. As a result, the support
vectors of a linear separable data set are the points that lie on the boundary of the
margin around the separating hyperplane. Figure 4.10 shows the support vectors of
the strictly linear separable data set from the example in Figure 4.3. Figure 4.10
also shows that removing all non-support vector sample points will not affect the
best separating hyperplane.

Figure 4.10: Support vectors for the linear separable data set of the example in Figure
4.3.

For a not linear separable data set the support vectors are not only the sample
points that lie on the margin. Chapter 4.2.3 showed that the best separating hyper-
plane for a not linear separable data set can be obtained by using the soft-margin
SVM optimization problem (SM-P). The soft-margin SVM allows sample points
to violate the margin by introducing the penalty variable ξi. However, all sample
points that violate this margin also affect the best separating hyperplane. Therefore,
sample points violating the margin are also support vectors. Figure 4.11 shows the
support vectors of the not linear separable data set from the example in Figure 4.5.

After mapping a not linear separable data set to a higher dimension to achieve lin-
ear separability, the best separating hyperplane is again found using (SM-P). There-
fore, the support vectors are all sample points that violate or lie on the boundary
of the margin. Figure 4.12 shows the higher dimensional support vectors of the not
linear separable example in Figure 4.6. To obtain the higher dimensional support
vectors of the last example required a full mapping of the original data set to a
higher dimension in which the data set is linearly separable. Chapter 4.2.1 however
discussed that this mapping is very time and memory-expensive to compute and
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Figure 4.11: Support vectors of the not linear separable data set of the example in
Figure 4.5

Figure 4.12: Support vectors of the not linear separable example in Figure 4.5, how-
ever, mapped to an higher dimension where it is linear separable.
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significantly increases the SVM problem size. The kernel trick avoided the need to
calculate the full mapping. Figure 4.13 shows the support vectors, obtained using the
kernel trick, of a non-linear classifier for the not linear separable example in Figure
4.6.

Figure 4.13: Support vectors of a non-linear classifier for the not linear separable
example in Figure 4.5.

Note that (SM-D) provides an additional easier method to find the support vec-
tors. From Equations (4.19) and (4.23) it follows that the best separating hyperplane
is defined by the sum over all weighted sample vectors, where the weights are the
values for α and y. Therefore, all samples for which α∗i = 0 do not contribute to
the best separating hyperplane and can thus be removed. Hence, all sample points
for which α∗i > 0 are support vectors of the problem. It follows that, to store the
best separating hyperplane found by (SM-D), only the support vectors and their
corresponding α∗i ’s need to be stored. Also, Chapter 5.2 shows that using the value
of α to determine whether a sample point is a support vector makes it easier to find
the global optimal solution of (SM-D).

4.4 Remarks on SVM training

Some important remarks on training a SVM first need to be stated, before proceeding
on how (SM-D) can be solved efficiently.

4.4.1 Feature scaling

First of all, before training a SVM to find the best separating hyperplane, it is
important to apply feature scaling (Hsu et al., 2003). Feature scaling prevents that
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feature value outliers may dominate other very low-valued features. Also, feature
scaling prevents numerical issues during the calculation of large numbers. Preventing
numerical issues is especially useful when calculating kernel values. For example,
kernel functions often calculate the inner product of two vectors. When these vectors
get larger or contain higher numbers, numerical problems may occur when calculating
inner products. In general, scaling and normalization techniques are applied such
that all feature values are standard normally distributed or are in the range of [0, 1].
If feature values are not properly scaled, one of the following two possible scaling
techniques is often applied:

1. Min-Max scaling: scale all feature values to the range of [0, 1] by applying

X =
X −min(X)

max(X)−min(X)
.

2. Standardization: scale all feature values to be standard normally distributed
by applying

X =
X − X̄
SX

.

Chapter 3.2 stated that, in text analysis, the matrix X is often very sparse. How-
ever, the two scaling techniques above result in dense matrices and thus the sparsity
of the matrix X is lost. The dense matrices result in higher memory-requirements
and longer computational times, e.g. for calculating inner products. Chapter 3.2
also showed that some feature extraction weighting methods result in feature values
that are already properly scaled. That is, the chapter showed that FP as weighting
method resulted in all feature values being binary, i.e. 0 or 1. Using FP as feature
extraction weighting method is advantageous, because it avoids the need of feature
scaling and thus preserves the sparsity of X. Therefore, in the remainder of this
thesis, FP is used as the feature extraction weighting method.

4.4.2 Choosing penalty and kernel parameters

The second remark is about choosing the best values of the penalty parameter C and
the kernel parameters such as the type of kernel and corresponding kernel parameters
(γ, c, d, ...). Recall that the value C in the soft-margin SVM optimization problem
penalizes sample points proportional to the violation of the margin. Note that a high
value of C severely penalizes violations of this margin. Therefore, a high value of C
implies that the best separating hyperplane is the hyperplane that correctly classifies
all sample points used to train the SVM. However, this introduces the problem of
overfitting as shown in Figure 6.1 and discussed in Chapter 6.1. A low value of
C hardly punishes data points that violate the margin. Therefore, a low value of
C results in bad separating hyperplanes with lots of samples points that violate



4.4 Remarks on SVM training 38

the margin or are misclassified. Hence, the value of C has a large impact on the
performance of the SVM and therefore has to be chosen carefully.

Similarly, the choice of kernel also has a big impact on the performance of a
SVM. From the previous sections it follows that using a linear kernel on a not linear
separable data set results in many sample points being misclassified. However, using
a RBF kernel on a data set that is linear separable is a waste of computation time,
because the RBF kernel involves more complex calculations. Ideally, the type of
kernel is chosen based on prior knowledge of the data set. If there is not such
knowledge, the RBF kernel is commonly used because of it is good capabilities to
catch non-linear relationships (Cristianini and Shawe-Taylor, 2000).

After a kernel is chosen, some kernels require additional parameters to be set. For
example, the polynomial kernel requires setting the values of c and d, whereas the
RBF kernel requires setting the value of γ. Similarly as choosing the value of C, the
kernel parameters have a very big impact on the result. Failing to choose proper ker-
nel parameter values results in kernels failing to map the original not linear separable
data to a higher dimension in where it is linear separable. The result is an inaccurate
separating hyperplane with many sample points that are misclassified. Moreover, an
inaccurate separating hyperplane also implies that classification predictions of new
sample points are inaccurate.

One of the best methods to determine the best values of the penalty and kernel
parameters is to perform a grid search (Hsu et al., 2003). A grid search consists of
iterating over a range of possible values for all parameters. For each combination of
parameter values, a SVM is trained and its performance is measured. The combina-
tion of parameter values that gives the highest SVM performance is considered the
best. For example, in the case it is known that a RBF kernel is necessary, perform-
ing a grid search implies training and testing a SVM for a large number of different
(C, γ) combinations.

Although smarter methods to determine the optimal parameter values exist, the
simple grid search method is still very effective, i.e. easy to implement, almost
equal in performance and not much slower (Hsu et al., 2003). Moreover, additional
searching techniques can be applied on the grid search method to improve the grid
search performance. For example, the grid search can first be restricted to iterating
over a rough range of parameter values. After good rough parameter values are
found, the grid search can then be intensified around promising rough parameter
values.
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5. Solving the SVM training problem

Chapter 4 discussed several methods to model the SVM learning problem as an opti-
mization problem. The optimization problem (SM-D) was considered to be the best
formulation. However, it was not mentioned how (SM-D) can be solved efficiently,
i.e. how to obtain the vector α∗ that gives the best separating hyperplane. This
chapter discusses possible approaches to efficiently solve the SVM problem. Also,
the pros and cons of each approach are evaluated.

5.1 Quadratic Programming

The optimization problem (SM-D) consists of a quadratic objective function subject
to linear constraints. Therefore, the most intuitive approach to solve these problems
is using Quadratic Programming (QP). Quadratric Programming is a thoroughly
studied method of optimization and multiple algorithms to solve QP problems are
available, e.g. interior point or conjugate gradient algorithms. Moreover, well-known
solvers such as C-Plex, GUROBI and MOSEK have built-in algorithms to solve QP
problems. Therefore, the pro of using a QP approach is that the SVM optimization
problem is easy to implement.

However, in general, QP is a very slow and computational- and memory-expensive
method that does not scale well with the number of samples in the data set. Most QP
algorithms require calculating the Hessian of the quadratic objective function and
this Hessian calculation often leads to problems. For example, consider the convex
quadratic formula f(x) = xTQx where x ∈ RN and Q is a N ×N matrix consisting
of random values. Calculating the Hessian of f implies first calculating N partial
derivatives, followed by calculating N2 second derivatives. Suppose N = 1.000,
then calculating the Hessian of f requires 1.000.000 Hessian values to be calculated.
Therefore, evaluating the Hessian of a quadratic formula quickly becomes more com-
putational expensive as the dimension of the input variable increases. Moreover,
because all values of the Hessian need to be stored in the memory too, the prob-
lem also quickly becomes more memory-expensive. Therefore, the QP approach for
solving SVMs is in practice only applicable on relatively small data sets. Otherwise,
time or memory issues can be expected.
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5.2 Sequential Minimal Optimization

Platt et al. (1998) developed the Sequential Minimal Optimization (SMO) algorithm
to overcome the computational difficulties of solving a very large QP problem. SMO
breaks the large QP problem of (SM-D) into very small QP subproblems, i.e. QP
problems consisting of only two variables. Using the smaller QP subproblems, the
global solution for the large QP problem is found iteratively. The small QP problems
consisting of only two variables can be solved fast and analytically. Moreover, the
small QP problems are very memory-efficient making the SMO method much better
scalable with the number of samples than the QP approach of Chapter 5.1.

To find the global solution of the large QP problem given by (SM-D), the SMO
algorithm iteratively optimizes the variables of (SM-D), i.e. all αi’s, until all KKT-
conditions of (SM-D) are satisfied. For a positive definite QP minimization problem,
the KKT-conditions ensure a solution is optimal (Chinneck, 2006). To make (SM-D)
a positive definite QP problem, the matrix Q in (SM-D) must be positive definite, i.e.
the kernel function K must satisfy Mercers conditions (Cortes and Vapnik, 1995).
Note that popular kernels such as the linear, polynomial and RBF kernel all satisfy
Mercer conditions. Moreover, the KKT-conditions for (SM-D) can be reduced to a
particular simple version given by

αi = 0⇒ yif(xi) ≥ 1,

0 < αi < C ⇒ yif(xi) = 1,

αi = C ⇒ yif(xi) ≤ 1,

where f(xi) = wTxi + b.
At every iteration of the algorithm, SMO chooses two Lagrange multipliers αi

(called the working set), where one of the multipliers currently violates the KKT-
conditions. The two Lagrange multipliers are jointly optimized such that they both
satisfy the KKT-conditions and the improvement in objective function is maximized.
Then the objective function and the number of KKT-violations are updated and a
new working set is selected. Therefore, at every iteration, SMO reduces the number
of Lagrange multipliers that violate the KKT-conditions and improves the objective
function. The SMO algorithm stops when there are no more Lagrange multipliers
that violate the KKT-conditions. At this point, the found αi’s satisfy all KKT-
conditions and the globally optimal solution α∗ is obtained.

Platt et al. (1998) showed how the small QP problems consisting of two Lagrange
multipliers can be solved analytically. An important step in the algorithm is choosing
the two Lagrange multipliers to optimize in an iteration, i.e. the working set to select.
Note that the working set selection determines the speed of the convergence to the
optimal solution and thus also the solving time of the algorithm. Platt et al. (1998)
therefore also proposed a heuristic to determine the best working set. This heuristic
first iterates over all sample points in the data set until a sample point is found
that violates the KKT conditions. This sample point is used as the first Lagrange
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Figure 5.1: An illustration of the processes in the SMO algorithm.

multiplier in the working set. The second multiplier is then chosen such that the
improvement in objective function for that iteration is likely to be maximized.

The SMO method is considered as a big breakthrough in SVM theory, because
it suddenly became possible to efficiently solve large-scale SVMs without any opti-
mization software. Many papers therefore also give Platt et al. (1998) a large part
of credit for the increased popularity of SVMs. Although the working set selection
heuristic proposed by Platt et al. (1998) provided good results, several improvements
or alternative working set selection methods have been proposed (Fan et al. 2005,
Glasmachers and Igel 2006). Nowadays, many commercial software packages such
as MatLab and Scikit-Learn solve the SVM optimization problem using the SMO
algorithm of Platt et al. (1998) in combination with the working set selection method
of Fan et al. (2005).

5.3 Second Order Cone Programming

Debnath et al. (2005) proposed a Second Order Cone Programming (SOCP) method
to solve the SVM problem. The SOCP method formulates the large QP problem of
the dual soft-margin SVM into a new, also large, SOCP problem consisting of only
linear and second-order cone constraints. Using a chunking decomposition method on
the kernel matrix, the problem is split into multiple small SOCP problems that can
be solved more efficiently. Similar as SMO, the solving time of the SOCP method de-
pends on the decomposition method. The convergence of the decomposition method
is determined by the working set selection method, i.e. the method that creates
the SOCP subproblems. In contrary to the SMO method, the SOCP working set
selection method is not restricted to using only two sample points. Debnath et al.
(2005) slightly adapted the working set selection approach of Hsu and Lin (2002b)
to deal with multiple sample points as the working set.

Although Debnath et al. (2005) claim to be faster than the SMO algorithm, there
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are some remarks that need to be made. For one, the SOCP method was compared
against the SMO algorithm and the working set selection method developed by Platt
et al. (1998). As mentioned in the previous section, several improvements have been
proposed for this SMO working set selection method. Therefore, it is uncertain
whether the SOCP method is still faster than the SMO algorithm in combination
with the improved working set selection method by Fan et al. (2005).

Secondly, the SOCP method uses a Cholesky factorization on the kernel matrix
to reformulate the large QP problem into a SOCP problem. Because the dual SVM
problem is a convex QP and the matrix Q is positive semi-definite, it is possible
to decompose the matrix Q = GGT using Cholesky factorization. However, some
software packages such as MatLab still have problems when trying to calculate this
decomposition. The problems are mainly caused by numerical precision errors. Ad-
ditional steps are necessary to find the proper decomposed matrix G. Therefore,
the SOCP method is more subject to numerical precision problems than the SMO
method.

Lastly, the chunking decomposition method used in the SOCP method is based
on the notion that the best separating hyperplane does not change if all non-support
vectors are removed, i.e. removing all rows for which αi = 0. This reduces the large
SOCP problem into smaller SOCP subproblems. All SOCP subproblems are solved
to find all of the non-zero αi’s. The non-zero αi’s of multiple subproblems are then
combined, split again in subproblems and solved to find the new non-zero αi’s of all
subproblems. This process is repeated until all of the the non-zero αi’s of the large
SOCP problem are found. The last step thus solves the large SOCP problem and
provides the global optimal solution.

Note that this chunking method performs the best when most of the αi’s are
equal to zero, because that implies a lot of samples can be removed. The chunking
method thus performs the best when there are few support vectors. If the number
of support vectors is almost equal to the number of samples in the data set, the
problem that is solved at the last iteration of the algorithm is almost as large as
the full and large SOCP problem. A high number of support vectors thus makes
the chunking decomposition method almost useless. Simple preliminary calculations
show that the sentiment analysis problem contains many support vectors, because of
the high number of features. Each feature contains sentiment and is thus very likely
to affect the best separating hyperplane. Because of the high number of support
vectors, it is doubtful whether the SOCP method indeed gives better results than
the SMO method when performing a sentiment analysis.
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6. Measuring the performance of a SVM

A method to measure the performance of a SVM is required to compare the results of
different SVMs or different SVM configurations such as different penalty and kernel
parameter values. Moreover, a performance indication helps decide which SVM or
SVM configuration provides the best sentiment predictions of new sample points,
i.e. new on-line news articles. It is important to have an unbiased performance
indication. Otherwise it might happen, for example, that a SVM achieves a very high
performance for one particular data set, but a very low performance for different data
sets. The latter example must be avoided to obtain reliable sentiment predictions of
new samples. This chapter discusses two scoring functions as a method to measure
the performance of a SVM. However, first, cross-validation is proposed as a method
to obtain an unbiased performance indication.

6.1 Cross-validation to prevent overfitting

Assume that the performance of a SVM is determined by the SVMs accuracy with
respect to classification predictions. Kohavi et al. (1995) defined the accuracy of a
classifier as the probability of correctly classifying a randomly selected sample. This
definition implies that the accuracy of a SVM is given by the probability that any
sample from the data set is correctly classified. However, this induces a very large
bias, because a SVM classifier is obtained by learning from the data set. Therefore,
SVMs are often able to achieve an 100% accuracy on the data set by overfitting
it. Overfitting occurs when a SVM interprets the noise in a data set as part of the
relationship between the dependent and independent variables. The dashed line in
the example in Figure 6.1 shows how a very accurate classifier for any data set can
be obtained by overfitting it. The solid line in this figure provides a more intuitive
classifier for this example, i.e. labeling all samples left of the line as ‘-1’ and all
samples right of the line as ‘+1’.

The problem of overfitting a data set is that it results in inaccurate predictions
of new sample points, i.e. sample points outside the data set. For example, consider
a new sample point in Figure 6.1 at coordinate

[
4.5 3

]
with classification −1 . As

it lies very close to all other samples with classification −1, it intuitively makes
sense that the new sample point also has classification −1. However, the overfitted
classifier (dashed line) classifies this new sample point as classification +1. The
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more intuitive classifier (solid line) classifies the new sample point as the correct
classification though. The example shows that an overfitted classifier results in a low
classification accuracy on samples outside the data set. Therefore, overfitting makes
it difficult to obtain an unbiased, low-variance estimate of the accuracy of a SVM.

Note that an overfitted classifier is the result of choosing wrong SVM penalty and
kernel parameters. Especially the penalty parameter C has a big impact on overfit-
ting. Chapter 4.2.3 showed that the penalty parameter C proportionally penalizes
sample points that violate the margin or lie on the wrong side of the classifier. It
follows that as the value of C increases, misclassified sample points are penalized
more. Therefore, the best separating hyperplane is adjusted such that less sample
points are misclassified and thus less penalties are incurred. The result is that the
best separating hyperplane is scrambling to correctly classify all samples and weird
counter-intuitive classifiers such as the dashed line in Figure 6.1 are obtained.

Figure 6.1: An example of a SVM that overfits the data (dashed line). Note that the
solid line would provide a more intuitive decision boundary in this scenario.

Kohavi et al. (1995) proposed using stratified ten-fold cross-validation to obtain
the best unbiased, low-variance estimation of a classifiers accuracy, even in case of
overfitting. Define T = {1, 2, ..., k}. In regular k-fold cross-validation, the data set D
is randomly divided into k subsets of equal size, denoted byD1, ...,Dk. For each t ∈ T ,
a SVM is trained using the training data set given by D \Dt and then tested on the
test data set given by Dt. Testing is done by calculating the predicted classification
for each sample in the test data set. The percentage of correct classifications of the
test set Dt is called the accuracy of Dt. After training and testing all k SVMs, an
accuracy score is obtained for each subset Di. The cross-validation accuracy is given
by the average over all subset accuracies.

The difference between regular k-fold cross validation and stratified k-fold cross-
validation is that stratified requires that all subsets contain approximately the same
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distribution of classifications as the full data set. For example, if the full data set
contains 60% positive and 40% negative classifications, then stratified implies each
subset also needs to contain 60% positive and 40% negative classifications.

Note that in case a SVM is heavily overfitted, it follows that a low accuracy is
obtained when using the SVM to predict the classifications of the samples in the test
set. Moreover, to prevent that an overfitted SVM accidentally gives a high accuracy
on the test set too, the whole process is performed k = 10 times to average out these
incidental outliers. In the end, an almost unbiased low-variance estimation of the
classifiers accuracy is obtained (Kohavi et al., 1995).

In this section, the problem of overfitting and the necessity of cross-validation
was illustrated using accuracy as a scoring function to measure the performance of a
SVM. However, the problem of overfitting and the necessity of cross-validation also
hold for other performance measure functions, i.e. cross-validation is necessary to
obtain an unbiased estimation of any performance indicator function.

6.2 F1 score

A common performance indicator in many classification problems is accuracy. How-
ever, Powers (2011) showed that accuracy is not a complete performance measure
and other scoring functions provide better insights into the performance of a SVM.
The F1-score and the Precision-Recall Area Under The Curve (PR-AUC) score are
often seen as better SVM performance indicators.

The F1 and the PR-AUC score are both calculated using a confusion matrix. The
confusion matrix compares the real classification of samples against the predicted
classification and shows the results in a small matrix. Table 6.1 provides an example
of a confusion matrix. In this example, 130 out of 200 samples are classified correctly,
whereas 70 out of 200 samples are misclassified. Moreover, the confusion matrix in
Table 6.1 shows that slightly more of the misclassifications are caused by negative
samples that are predicted as the classification positive. To generalize the notion of

Predicted class
Positive Negative Total

Actual class
Positive 70 30 100
Negative 40 60 100
Total 110 90 200

Table 6.1: An example of a confusion matrix given two classes, i.e. positive and
negative. The values in the table represent the number of samples that met two
criteria, i.e. the actual class and the predicted class.

a confusion matrix, positive samples that are predicted as positive are called true
positives (TP ). Also, positive samples that are predicted as negative are called false
negatives (FN). Vice versa, there are also true negatives (TN) and false positives
(FP ). Table 6.2 provides the general form of a confusion matrix.
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Using a confusion matrix, two new performance scoring functions can be com-
puted, i.e. the precision and recall score. Powers (2011) defined the precision of
the classification Ω as the number of samples that have predicted and (real) labeled
classification Ω divided by the number of predicted samples that have classification
Ω. For example, consider the confusion matrix in Table 6.1, i.e. a test set containing
200 samples where 100 samples are labeled as positive. Assume 110 samples are
predicted as positive, however, only 70 samples out of these 110 positive predictions
are also labeled as positive. Then the precision of the classification positive is given
by 70

110
= 0.636. Note that precision can also be seen as classification accuracy using

the accuracy definition of Kohavi et al. (1995). In terms of the confusion matrix, the
precision of the class ‘positive’ is given by

Precisionpos = Ppos =
TP

TP + FP
. (6.1)

Powers (2011) defined the recall of the classification Ω as the ability to correctly
identify all samples with classification label Ω. For example, consider again the con-
fusion matrix in Table 6.1, i.e. a test set containing 200 samples where 100 samples
are labeled as positive. Assume 110 samples are predicted as positive, however, only
70 samples out of these 110 positive predictions are also labeled as positive. Then
the recall of the classification positive is given by 70

100
= 0.7. In terms of the confusion

matrix, the recall of the class ‘positive’ is given by

Recallpos = Rpos =
TP

TP + FN
. (6.2)

Similarly, the precision and the recall score of other classifications, e.g. ‘negative’, is
calculated. To obtain an precision or recall score over all classifications, the classifi-
cation scores are weighted according to their sample distribution in the data set.

Using the precision and the recall score, the F1 score is defined as the harmonic
mean of the precision and the recall score (Powers, 2011). Therefore, the F1 score of
a classification is given by

F1class = 2
Pclass ×Rclass

Pclass +Rclass

. (6.3)

The F1 score is a performance indication based on a weighted average between the
precision and recall score. In order to obtain a high F1 score, the precision and the

Predicted class
Positive Negative

Actual class
Positive True Positives (TP ) False Negatives (FN)
Negative False Positives (FP ) True Negatives (TN)

Table 6.2: A more generalized confusion matrix in terms of true and false positives
or negatives.
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recall score need to be jointly optimized. However, typically there is a conflicting
relationship between the precision and recall scores (Raghavan et al., 1989). That
is, if one score improves, the other score is likely to decrease. For example, the
recall score of a classification can be improved by increasing the number of samples
that are predicted as that classification. However, it follows that eventually this
leads to more wrong predictions being made, which decreases the precision score.
Because of the conflicting nature between the precision and recall score and the
harmonic mean average, it follows that the F1 score leads to good performance
on both precision and recall simultaneously. Taking precision or recall as the only
performance indicators can result in extremely high performance on one indicator,
but a very poor performance on the other.

6.3 PR-AUC score

A different commonly accepted performance measurement indicator is the Precision-
Recall Area Under the Curve (PR-AUC) score (Davis and Goadrich, 2006). The
PR-AUC score is calculated by plotting the Precision-Recall curve and calculating
the area under the curve. Because the maximum values for precision and recall are
equal to 1, the maximum area under the PR curve can also be at most 1.

Multiple precision-recall pairs are calculated for different thresholds to obtain
the PR-curve. These thresholds are different cut-off values for the classifier. For
example, in the binary classification case, the threshold to determine a samples
predicted classification is zero, i.e. wTx ≥ 0 (see Chapter 4). However, using different
thresholds leads to different classification predictions and thus different precision-
recall pairs. The precision-recall pairs are plotted and a curve is obtained from
these points using an unique PR interpolation technique (Davis and Goadrich, 2006).
Moreover, an ‘area under the curve’ score is obtained using a simple integral.

Sokolova et al. (2006) stated that the PR-AUC score is particularly useful in
applications with imbalanced data sets, i.e. data sets containing much more samples
of a particular classification. Imbalance is often the case in experimental sciences
such as medical sciences. For example, a study of the effects of different health
indicators on a particular disease often contains much more people that do not have
the disease. The on-line news articles data set used in this thesis only contains a
small imbalance. The small imbalance is solved by removing some samples of the
dominant class. The result is a balanced on-line news articles data set. Also, the
PR-AUC score is focussed on classification problems containing only two possible
classifications. If more classifications are possible, the precision-recall pairs need
to be plotted in a higher dimensional space and difficulties occur when trying to
calculate the PR-curve or the area under the curve. Therefore, the F1 score is used
in this thesis as the performance indicator of a SVM.
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7. Binary sentiment analysis

A binary sentiment analysis is performed in this Chapter. That is, a SVM that clas-
sifies the sentiment of on-line news articles is trained, tested and evaluated. Binary
sentiment classification implies only two possible sentiment classifications are con-
sidered, i.e. positive or negative. However, this requires a method to translate the
emotion probability vectors of all on-line news articles collected in Chapter 3.1 to
binary sentiment labels. Moreover, the best-performing parameters of the SVM such
as the penalty and kernel need to be found using a grid search approach and evalu-
ated using the F1 score as performance indicator. After the best SVM parameters
are found, the results of the binary sentiment analysis are analyzed and conclusions
are made.

The SVM is trained using the SMO algorithm from Chapter 5.2. SMO is incor-
porated in major mathematical software packages such as MatLab and Scikit-Learn.
A software package to solve SVMs using SMO is preferred above coding the SMO
algorithm from scratch, because the software packages apply techniques that drasti-
cally improve the performance of the SMO algorithm in terms of computation time
and memory size. For example, the software packages apply techniques to efficiently
store large-scale kernel matrices in the memory, efficiently calculate gradient calcu-
lations for the working set selection or kernel function calculations and use parallel
computations where possible. The Greenhouse Group prefers open-source software
above commercial software such as MatLab due to cross-platform and application
implementation issues and money or licensing constraints. Therefore, Scikit-Learn
(Pedregosa et al., 2011) was chosen as software package, because it is a well-known
and commonly-used open-source machine learning library for Python.

The choice for Scikit-Learn resulted in Python as the programming language.
Moreover, because Scikit-Learn is only a library of machine learning functions,
Python coding was still essential. For example, Python coding was needed to collect
and store the on-line news articles from the web and MySQL databases, to extract
and select features from the news articles or to perform a grid search to find the best
SVM parameters. The result of this thesis was a deliverable in the form of a Python
application. The deliverable handled all necessary tasks for collecting news articles
and training, testing and evaluating a SVM. Most importantly, the deliverable was
able to make predictions about the sentiment of any new on-line news article.
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7.1 Obtaining ‘simple’ sentiment labels

Chapter 3.1 described how all on-line news articles in the data set were classified by
readers as one out of six possible emotions, i.e. fascinating, funny, heart-warming,
irritating, frightening or depressing. The result was a vector of different emotion
probabilities for each news article. However, because the goal is to analyze senti-
ments, a method is necessary to convert the emotion probabilities to a particular
sentiment, i.e. positive or negative.

An intuitive method to convert the emotions into sentiments is by dividing the
emotions into positive and negative emotions. Three of the six emotions tend to
be positive, i.e. fascinating, funny, heart-warming. The other three emotions tend
to be negative, i.e. irritating, frightening and depressing. Therefore, an intuitive
and simple method to obtain sentiment labels from the emotion probabilities is by
applying a majority-rule principle. A news article is labeled as positive if the sum
of the positive emotion probabilities is larger than the sum of the negative emotion
probabilities. Vice versa, a news article is labeled negative if the sum of the negative
emotion probabilities is larger than the sum of the positive emotion probabilities.
Equation 7.1 shows the resulting ‘simple labeling method’.

SimpleSentimentLabeli =



Positive if P(Fascinating)i
+P(Funny)i
+P(Heartwarming)i ≥ 50,

Negative if P(Irritating)i
+P(Depressing)i
+P(Frightening)i > 50

(7.1)

7.2 Creating a data set

The full set of news articles with corresponding emotion probabilities collected in
Chapter 3.1 consisted of more than 80.000 various news articles, e.g. articles re-
garding domestic and foreign news, articles describing sports events and articles
describing showbizz-related news. It can be argued that the type of news category
also contributes to the sentiment of a news article. For example, foreign news arti-
cles often describe negative events from abroad. Therefore, foreign news could be on
average more negative than other news categories.

The difference in sentiment between news categories might make it beneficial
to train a SVM for each different news category. However, this implies that the
predicting power of a SVM is limited to the news category the SVM was trained for.
Therefore, it is necessary to know in advance what news category an article belongs to
before it is possible to obtain an accurate sentiment prediction. Moreover, additional
problems might occur such as not having enough news articles for one news category
to properly train a SVM for that news category. Therefore, a general SVM that
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combines all news categories is considered in this thesis. Also, by combining all
categories, the prediction results of one news category might benefit from the found
verbal and contextual sentiment relationships in a different news category. However,
it is assumed that not all news categories are useful for training the general SVM,
because of possible sentiment bias in a news category. Two measures are taken to
reduce the bias.

The first measure to reduce the bias is eliminating all articles from the data
set that have less than ten votes. This measure is taken to prevent users from
‘trolling’ and voting a totally different non-fitting emotion on purpose. Because of
the anonymity on the internet, trolling is a frequently seen habit. Moreover, using
the Weak Law of Large Numbers (Feller, 1971), a higher number of votes imply
that the emotion probabilities lie closer to their expected mean values. Therefore,
more votes reduces the risk of incidental outliers in the emotion probabilities. The
limit is set at ten votes, because this drastically reduces the variance of the emotion
probabilities. Moreover, the probability of several people ‘trolling’ the voting system
and thus significantly affecting the emotion probabilities is considered very small.
Also, using the limit of ten votes, lots of on-line news articles can still remain in the
data set.

The second measure to reduce the bias is eliminating all sports related articles
from the data set. An analysis upon the data set showed that the emotion voting
with respect to sports articles is very diverse, especially articles about soccer. This
diversity can be explained because people are supporting a sports team or are fan
of an individual sports player. So, if their team loses they tend to vote negative,
whereas people supporting their rivals team or player tend to vote positive. The
result is that it is difficult to obtain a unbiased sentiment label for sport articles.
Therefore, all sports articles are left out of the data set.

25.099 articles remain in the data set after applying the above two measures.
The huge reduction is mainly caused by filtering out the sports articles. For the
grid searching part of the binary sentiment analysis, a data set consisting of 5.000
randomly selected articles was created, where half of the articles are labeled as pos-
itive and the other half are labeled as negative using the simple sentiment labeling
method in Equation (7.1). Note that the number was set at 5.000, because this
number allows a SVM to be trained in a reasonable amount of time, i.e. in the order
of 10 minutes given that the number of features is less than 40.000. Although the
nature of the sentiment analysis problem does not necessarily require such a time
constraint, it is very useful for the grid searching part where many SVM parameter
combinations are tried using a 10-fold cross validation scheme. Therefore, trying
5 possible combinations of SVM parameters implies training 50 SVMs. After the
best-performing SVM parameters for 5.000 articles have been found, a SVM can be
trained using more articles. It is assumed that the SVM parameters that performed
good for 5.000 articles also perform good for SVMs trained on a higher number of
articles. Another 500 articles were randomly selected and taken out of the data set
as well. These 500 articles are used to create a manually labeled test set in Chapter
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9. The manually labeled test set is used to measure the performance of the labeling
method.

7.3 Grid searching

The penalty and kernel parameters of the SVM are optimized using a grid search
(see Chapter 4.4.2). To start simple, the following parameters are considered (Hsu
et al., 2003).

C = {0.1, 0.5, 1},
Kernels = {Linear, RBF},

RBFγ = {0.0001, 0.0005, 0.001, 0.005}.

Chapter 3.3 also discussed four possible feature selection methods. Each feature
selection method also has one parameter that directly affects the number of features
that are selected. Therefore, the grid search is extended with the following feature
selection methods.

Feature Selection method = {None, DF, IG, χ2, RP},

where the possible corresponding parameters for each feature selection method are
given by

ParamsDF = Min. feature document frequency (% of documents)

= {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6},
ParamsIG = Percentage (%) of features with highest IG score

= {5, 10, 20, 30, 40, 50, 70, 90},
Paramsχ2 = Percentage (%) of features with highest χ2 statistic score

= {5, 10, 20, 30, 40, 50, 70, 90},
ParamsRP = Percentage (%) of features remaining after random projections

= {10, 20, 30, 50, 70, 80, 90}.

The grid search consists of training a SVM using 10-fold cross-validation for each
combination of the possible penalty, kernel and feature selection parameters. The
possible parameters imply that 4.650 SVMs need to be trained to fully conduct the
grid search using 10-fold cross-validation. Given the assumption that training a
SVM using 5.000 news articles having less than 40.000 features can be solved in the
order of 10 minutes, the full grid search would take at most 775 hours. Because
of feature selection, some of the SVMs are small enough in terms of memory to be
processed in parallel though. Parallel SVM training significantly reduces the total
grid search time. However, a maximum of 5 SVMs can be processed in parallel due
to computational reasons.
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Even with parallel SVM training, a smarter grid search is necessary to avoid
waiting very long for the results. It can be argued that it makes sense to always
apply DF as a feature selection method. Without DF, the set of 5.000 articles would
contain more than 1.000.000 features. Moreover, most of these features only occur
once in the 5.000 news articles. Training a SVM on 5.000 articles having more
than one million features leads to very time expensive kernel computations, i.e. 25
million inner products of two vectors having 1 million values. Also, troubles occur
when storing a matrix of 5.000 rows and 1.000.000 columns in the memory. When a
minimum feature document frequency of 2 is used, the number of features in the data
set is already reduced to approximately 85.000. This is a much better usable number
of features that does not lead to memory problems. Therefore, DF is a must-have
feature selection method.

However, it is not known yet what a good-performing minimum feature document
frequency bound is. Therefore, the first part of the grid search is restricted to search
for the best DF feature selection parameter, i.e. the best minimum feature docu-
ment frequency bound. This restriction implies 1.050 SVMs need to be trained and
tested. Given the approximate upper bound of 10 minutes to train one SVM having
less than 40.000 features, this DF grid search is done in at most 175 hours. However,
the problem size quickly becomes small enough to allow parallel training of 5 SVMS.
Moreover, the higher the minimum feature document frequency bound, the less fea-
tures are selected and the smaller the problem size becomes. A smaller problem size
significantly reduces the necessary SVM training time. The parallel training and the
gradually decreasing SVM training time makes it possible to perform the full DF grid
search in approximately 12 hours, e.g. one night. The results of the DF grid search
are shown in Figure 7.1. The results are also presented in Table A.1 in the Appendix.

Minimum feature None 3 5 10
document frequency bound (0.00%) (0.05%) (0.1%) (0.2%)

Number of features 1.041.822 40.559 19.641 8.569
SVM training time (min.) Out of 8GB 11.9 6.1 2.7

memory error

Minimum feature 15 20 25 30
document frequency bound (0.3%) (0.4%) (0.5%) (0.6%)

Number of features 5.465 4.012 3.162 2.611
SVM training time (min.) 1.6 1.2 1 0.8

Table 7.1: The number of features selected and the SVM training time for different
minimum feature document frequency bounds. Note that these values hold for the
binary sentiment analysis data set consisting of 5.000 randomly selected news articles.
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Using the results of the partial grid search for the best DF bound, the following
conclusions were made.

1. The RBF kernel outperforms the linear kernel. It is evident that the
RBF kernel provides an higher SVM performance for every combination of the
proposed parameters. Chapter 4.3.3 stated that the RBF kernel is a more
computational expensive kernel than the linear kernel. However, this partial
grid search shows that the extra time needed for the RBF kernel is worth the
increase in performance.

2. The RBF kernel performs less as γ increases. Although the differences
are only small, it can be seen that in most cases the performance of a SVM
decreases as the value of γ increases. Especially when C = 1, this effect is
noticeable.

3. The highest performance scores are obtained when the DF threshold
K is below 0.4 %. It is difficult to state what DF bound performs the
best, because the differences are very small. However, the highest performance
scores in this grid search, i.e. 0.695, were obtained for multiple bounds below
0.4%. Recall that the higher the DF bound, the smaller the problem size and
the faster the SVM is trained. A small problem size is therefore preferred,
because it significantly reduces the time necessary to perform the grid search
for the additional feature selection methods or to try additional combinations
of the kernel and penalty parameters. Therefore, it is concluded that the bound
K = 0.4% performs the best for the binary sentiment analysis.

The main result from the partial DF grid search is that the minimum feature
document frequency is set at 0.4%, i.e. a feature has to occur in at least 20 different
documents given a training data set of 5.000 articles. Applying this bound on the
training data set of 5.000 articles results in only 4.012 features that are selected, a
significant reduction of the original number of features. The reduction in features
also allows 5 SVMs to be trained in parallel within 2 minutes. In the second part
of the grid search, other feature selection methods are evaluated using a DF bound
of 0.4%. The option of the linear kernel is no longer considered in the second part
of the grid search, because the RBF kernel clearly outperformed the linear kernel in
the first part of the grid search. Therefore, the remainder of the grid search consists
of iterating over the following parameters.

C = {0.1, 0.5, 1},
RBFγ = {0.0001, 0.0005, 0.001, 0.005},

Feature Selection method = {IG, χ2, RP},

where the possible corresponding parameters for each feature selection method are
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Figure 7.1: Results of the grid search for the best bound of the minimum feature
document frequency bound. The search was done for various minimum bounds and
different SVM parameters.
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given by

ParamsIG = Percentage (%) of features with highest IG score

= {5, 10, 20, 30, 40, 50, 70, 90},
Paramsχ2 = Percentage (%) of features with highest χ2 statistic score

= {5, 10, 20, 30, 40, 50, 70, 90},
ParamsRP = Percentage (%) of features remaining after random projections

= {10, 20, 30, 50, 70, 80, 90}.

A full grid search over all the above parameters implies training 2.760 SVMs. Con-
sidering the fact that 5 SVMs can be trained in parallel in at most 2 minutes, the
full grid search can be done in at most 18 hours. However, all three feature selection
methods and corresponding parameters reduce the problem size and thus also reduce
the training time of the SVM. Therefore, the grid search can be done in much less
than 18 hours. Figures A.1, A.2 and A.3 in Appendix A.1 show the results of the
grid search for the three different feature selection methods. The results are also
presented in a tabular format in Table A.2, A.3 and A.4 in Appendix A.1. The
following conclusions were made using these results.

1. χ2 feature selection provides the best performance. The χ2 method im-
proves the best SVM performance score to 0.715. This is a small improvement
compared to the score of 0.695 with only DF as feature selection method. RP
is not able to obtain an increase in the SVM performance score. IG is also able
to obtain an higher SVM performance score, but IG is much less consistent
than the χ2 method, i.e. the difference in SVM performance between various
IG bounds is much larger than for the χ2 method. Therefore, the performance
of the χ2 method is much less dependent on the chosen parameter value which
is an useful property.

2. The best performing penalty and kernel parameters are C=1 and
γ=0.005. Although the results show that the values for C and γ have less
impact on the results than the method of feature selection, the highest per-
formance score of 0.715 is obtained using χ2 feature selection with C = 1 and
γ = 0.005.

3. χ2 feature selection obtains the best results when the 40% highest
χ2-scoring features are selected. The best selection percentage depends on
the penalty and kernel parameters. However, for all possible parameters, the
values between 20 and 50% often perform well. When using less than 20% or
more than 50% the results tend to decrease, especially for some penalty and
kernel combinations. Note that the best score was obtained when using the
40% highest χ2-scoring features.

4. Random projection deteriorates the performance. For all possible val-
ues for the kernel and penalty parameter, the SVM performance when using RP
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is worse than when not applying RP. This deterioration makes sense, because
RP is an unsupervised feature selection method and is based on trading in a
small amount of accuracy in return for reducing the dimension of the problem.
Therefore, although the dimension of the problem is significantly reduced, RP
gives a lower SVM performance.

5. Random projection is of more use when the number of features is
higher. Although the SVM performance with RP is worse than without RP,
the difference in performance is only small when the random projections do
not reduce the number of features to less than 30% of the original number.
Therefore, RP is useful when the number of features is high, because then a
significant increase in speed is obtained in return for a slightly worse perfor-
mance. However, for this sentiment analysis, the DF and χ2 feature selection
methods reduce the problem size to such a small size that this increased speed
is not necessary. Therefore, RP is considered as not useful for this sentiment
analysis.

7.4 Results binary sentiment analysis

Note that the best-performing parameters in the grid search were C = 1 in combi-
nation with the RBF kernel with γ = 0.005. Also, DF feature selection was applied
such that a feature had to occur in at least 0.4% of the documents and. After the DF
filtering, only the 40% of the features with the highest χ2 score were selected. The
full binary sentiment analysis is conducted with these best-performing SVM param-
eters. The full binary sentiment analysis is performed by significantly increasing the
number of articles with which to train and test the SVM. Normally, the entire grid
search operation has to be repeated when increasing the number of training samples,
because the additional samples might change the feature-sentiment relationships that
were found for the data set consisting of 5.000 samples. Therefore, it could be that
the additional samples lead to different best-performing SVM parameters. However,
recall that this grid search is a very time-consuming operation that takes significantly
more time when the number of articles increases. Therefore, it is assumed that the
best-performing parameters for 5.000 articles also perform well when the number of
articles in the training set is increased. This assumption eliminates the need for a
time consuming grid search.

Figure 7.2 shows that this assumption seems to hold. The figure shows that as
the number of articles in the training set increases, the SVM performance decreases
slightly. Several possible reasons for this effect can be given. For one, the best-
performing parameters for the grid search using 5.000 articles simply might not be
the best-performing parameters when using 22.000 articles. However, recall that it
takes too long to perform a full grid search on 22.000 articles, and therefore, the
assumption was made that the best-performing parameters for 5.000 articles also
perform well on more articles.
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Another possible reason is that the randomly selected set of 5.000 articles could
be easier to classify, i.e. the articles might contain more sentiment which makes
it easier to identify the sentiment. For example, Figure 7.3 provides an example
of a SVM trained on a data set consisting of articles that contain few sentiment
versus a data set consisting of articles that were voted as a highly positive or highly
negative emotion and are thus assumed to contain more sentiment. The figure shows
that the data set containing more sentiment resulted in a significantly higher SVM
performance. A larger randomly selected data set is more likely to prevent this effect,
because the probability of only selecting the articles that contain much sentiment
decreases as the number of selected articles increases.

Figure 7.2: Results of the grid search for different number of training samples, given
DF=0.4%, C = 1 and RBF kernel with γ = 0.005.

Figure 7.3: Performance of a SVM trained on two different data sets. The first data
set consists of news articles containing few sentiment. The second data set consists
of news articles that were voted as a highly positive or highly negative emotion and
are therefore assumed to contain more sentiment. It can be seen that the second data
set gives a significantly better SVM performance.
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7.5 Conclusions binary sentiment analysis

The results of the binary sentiment analysis lead to three main conclusions. For one,
the performance of the binary sentiment SVM is approximately 0.70. Considering
that randomly predicting the sentiment yields an average performance of 0.50, this
is not that big of an increase, because it still implies predicting approximately 1 out
of 3 articles as the wrong sentiment. More importantly, because wrong predictions
are predictions of a totally opposite sentiment, this really limits the range of possible
practical applications. For example, an application that analyzes the sentiment of
a brand in on-line news articles is difficult when 1 out of 3 articles are predicted as
the wrong sentiment. It could be that, due these misclassifications, the sentiment
about a brand is falsely interpreted as positive or negative. The latter can then lead
to wrong decision making.

Secondly, the binary sentiment analysis shows that articles that contain much
sentiment can be classified much better (see Figure 7.3). However, the full data set
appears to have a lot of articles that do not contain that much sentiment. Therefore,
the full data set is harder to classify as either positive or negative and thus the
SVM performance decreases. To improve the results, it is necessary to improve the
sentiment labels or the sentiment predictions. These improvements can be realized by
either improving the SVM to better deal with the articles that contain few sentiment
(Chapter 8) or by improving the method to obtain sentiment labels from the emotion
probabilities (Chapter 9).

Lastly, from the grid search on 5.000 articles it followed that the DF and χ2

feature selection methods provided the best results. Moreover, particular values for
the kernel parameters, penalty parameter and DF and χ2 feature selection methods
were found. It was assumed that these parameters would also perform well when
using more articles to train and test the SVM. Although the performance decreased
slightly when using more articles, the differences were not big enough to state that
it was a significant decrease (Figure 7.2). Therefore, this assumption seems to hold
and is therefore repeatedly used in the remainder of this thesis.
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8. Multi-sentiment analysis

In this chapter, the binary sentiment analysis is extended to a multi-sentiment analy-
sis by introducing the neutral sentiment. The first section discusses why the neutral
sentiment is a necessary sentiment to reduce the number of ‘heavy’ misclassifica-
tions, i.e. a prediction of positive while the real sentiment is negative, or vice versa.
However, because SVMs are designed to solve binary classification problems, the
multi-sentiment analysis cannot be solved using the previously used SVM technique.
The second section addresses this problem and discusses three possible heuristics to
solve the multi-sentiment analysis problem using SVMs. The chapter concludes with
the results of the multi-sentiment analysis.

8.1 Introducing the notion of neutral

The binary sentiment analysis in Chapter 7 only considered two sentiments, i.e.
positive and negative. As as result, all news articles were classified as either positive
or negative and all features tended to have either a positive or a negative impact on
the sentiment. Considering only the positive and the negative sentiment is however
a rough simplification of sentiments, because not all news articles or features are
positive or negative. For example, a feature such as the phrase ‘it is time‘ does not
contain much sentiment and can be either positive or negative. Therefore, it could
be considered as a new sentiment classification, i.e. neutral. Despite the presence of
a neutral sentiment, the neutral classification is often ignored in sentiment analysis
problems, because of the following two assumptions (Koppel and Schler, 2006):

• More can be learned from documents containing a clearly-defined positive or
negative sentiment than from documents containing a neutral sentiment.

• When solving the binary positive/negative sentiment analysis problem, neutral
articles will lie more to the boundary of the classifier. Therefore, the binary
sentiment analysis problem also solves the multi-sentiment analysis problem,
i.e. the problem considering the positive, negative and neutral sentiment.

Koppel and Schler (2006) showed that both assumptions do not hold and overall
results can be improved when neutral is taken into consideration as a separate sen-
timent classification. Moreover, the impact of ‘misclassifications’ can be reduced.
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In the binary sentiment analysis, every misclassification implied that a totally op-
posite sentiment was predicted, i.e. a positive prediction for a negative sample or
vice versa. In the remainder of this thesis, these type of misclassifications are called
heavy misclassifications. With the additional neutral classification misclassifications
can also imply that a positive or negative article is classified as neutral. Depending
on the desired application of the sentiment analysis problem, classifying a positive or
negative sample wrongly as neutral is intuitively less wrong than a heavy misclassifi-
cation. Moreover, even humans do not always agree whether something is neutral or
positive/negative. As the misclassifications in the binary sentiment problem are all
heavy misclassifications, it makes sense to extend the binary sentiment problem to a
multi-sentiment problem containing neutral as additional sentiment classification to
reduce the number of heavy misclassifications.

8.2 Extending the simple sentiment labeling method

Chapter 7.1 discussed a simple method to obtain a sentiment label from the emo-
tion probabilities of an article. However, because of the introduction of the neutral
classification, this method is extended to

SimpleSentimentLabeli =


Positive if PositiveRatei ≥ 75,
Negative if NegativeRatei ≥ 75,
Neutral otherwise,

(8.1)

where i represents news article i, PositiveRatei is given by the sum of the probabilities
for the three positive emotions (fascinating, funny and heartwarming) of article i and
NegativeRatei is given by the sum of the probabilities for the three negative emotions
(irritating, frightening, depressing) of article i. Using the ‘extended simple labeling
method’ given by Equation (8.1), roughly 50% of the articles in the data set is
labeled as neutral. Moreover, only very distinctive articles are labeled as positive or
negative. It is expected that this labeling method significantly improves the precision
of positive and negative predictions.

8.3 Heuristics to solve the multi-class SVM

The multi-sentiment problem leads to new difficulties in training the machine. Be-
cause SVMs are designed to solve binary classification problems, it is not possible
to use a single SVM to solve the multi-sentiment problem with three possible sen-
timent classifications. However, by using heuristics and combining the results of
multiple SVMs, it is possible to solve the multi-sentiment problem using SVMs. In
this section, three heuristics are discussed and evaluated.
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8.3.1 One-versus-all

One of the earliest and most common heuristics to solve the multi-class SVM problem
is the ‘one-versus-all’ approach (Hsu and Lin, 2002a). For each possible classification
c ∈ C, a binary SVM is trained with one class being all samples with as label
classification c and the other class being all samples whose label is not equal to
classification c. Mathematically, the first class gets label yi = 1 and the other class
gets label yi = −1. The result is a SVM with only two classes and that can be
solved using the standard SVM training techniques such as SMO. Moreover, every
SVM results in a separating hyperplane. It follows that, after training |C| binary
SVMs, also |C| separating hyperplanes are obtained, given by wTc x+ bc = 0. Figure
8.1 gives an example of a 3-class problem for which three separating hyperplanes are
obtained.

Figure 8.1: Example of three separating hyperplanes found using the one-versus-all
heuristic. The used data set is the Iris machine learning data set (Fisher, 1936).

Similarly as in the binary classification problem, the |C| separating hyperplanes
are used to make predictions. Note that the distance between a sample point x and
the separating hyperplane belonging to class c tells how likely that sample point is
to belong to the class c. Also note that this distance is given by wTc x + bc . The
more positive this distance, the better this points fits in class c. Vice versa, the more
negative this distance, the more it fits to the ‘rest’ class, i.e. all classes except class c.
Therefore, the distance wTc x+ bc can be seen as a score for class c. The classification
c that gives the highest score is selected as the predicted sentiment classification.
Figure 8.3 gives an illustration of this prediction process.

For example, assume it is desired to know the prediction of the new sample point
x =

[
5 3.5

]
for the example in Figure 8.1. From Figure 8.1 it is evident that this

new sample point belongs to class 1. Using the generalized prediction approach as
given in Figure 8.3, first the respective sentiment scores need to be calculated. The
sentiment scores for the point x are given by the distance of x to the three separating
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Figure 8.2: The resulting three one-versus-all classification regions for the example
in Figure 8.1.

hyperplanes, i.e.
[
1.86 −1.65 −1.45

]
. Because the score for the first class is the

highest, the predicted classification for point x is 1. Figure 8.2 shows the classifier
regions for the example in Figure 8.1 using the one-versus-all heuristic.

Figure 8.3: Illustration of the prediction proces of the one-vs-all SVM approach.

8.3.2 One-versus-one

Another common heuristic to solve the multi-class SVM problem is the ‘one-versus-
one’ heuristic (Hsu and Lin, 2002a). The one-versus-one heuristic compares each pos-
sible classification c ∈ C against each other possible classification c ∈ C, i.e. SVMs
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are trained for all possible pairs of classifications in C. The one-versus-one heuristic
results in 1

2
K(K − 1) binary classification problems, where K = |C|. These binary

classification problems can be solved using the standard SVM training techniques
such as SMO. It follows that the one-versus-one heuristic also results in 1

2
K(K − 1)

separating hyperplanes, where each hyperplane is functioning as a classifier between
two classifications. Figure 8.4 gives an example of a 3-class problem for which three
separating hyperplanes are obtained using the one-versus-one heuristic.

Figure 8.4: Example of three separating hyperplanes found using the one-versus-one
heuristic. Note that each separating hyperplanes focusses on separating a classifica-
tion pair, e.g. class 1 versus class 2 or class 2 versus class 3. The used example data
set is the Iris machine learning data set (Fisher, 1936).

Figure 8.5: The resulting three one-versus-one classification regions for the example
in Figure 8.4.

The one-versus-one separating hyperplanes in combination with a majority voting
method are used to predict the classification of any new sample point x. First, the
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predicted classification of the point x for all the 1
2
K(K − 1) separating hyperplanes

is calculated. Note that the predicted classification for point x by the separating

hyperplane that separates class i and j ∈ C is given by y(i,j) = sign
{
wT(i,j)x+ b(i,j)

}
.

If y(i,j) = +1, the predicted classification of x is class i. Else, if y(i,j) = −1, the
predicted classification of x is class j. The sample point x is classified as the class that
is predicted by the majority of the separating hyperplanes. For example, consider a
new sample point x =

[
5 3.5

]
in the example in Figure 8.4. The three separating

hyperplanes, respectively separating class 1 and 2, class 1 and 3 and class 2 and 3,
predict the classifications

[
class 1 class 1 class 2

]
for the point x. The majority of

the separating hyperplanes predict class 1 for the point x. Therefore, the point x is
classified as class 1. Figure 8.5 shows the classifier regions for the example in Figure
8.4 using the one-versus-one heuristic.

In case of a tie, the distances to the separating hyperplanes are used as decisive
factor. Note that the distance between a sample point and a separating hyperplane
that separates class i and class j provides information on how likely the sample point
belongs to class i or class j. For example, if the sample point lies very far on the side
of the separating hyperplane that classifies a point as class i, this large distance tells
that this sample point is very unlikely to belong to class j. Vice versa, a sample point
that lies very close to the separating hyperplane is not very convincingly classified
as one of the two classes, because a small change in the separating hyperplane or the
sample point could lead to a different classification. Therefore, it is assumed that
the higher the distance, the higher the probability that the predicted classification
is correct. This assumption makes distances a good measure to solve ties in the
majority voting method. Figure 8.6 provides a generalized prediction approach for
the one-versus-one heuristic.
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Figure 8.6: Illustration of the prediction proces of the one-versus-one heuristic.

8.3.3 Hierarchical SVM

A different and less often used approach to solve the multi-class problem using SVMs
is hierarchical classification (Silla Jr and Freitas, 2011). Hierarchical classification
divides the problem in a hierarchical manner. At the top of the hierarchy, similar
classes are combined. Therefore, at the top level a rough prediction about the clas-
sification can be made. At lower levels of the hierarchy, the similar classes of the top
level are divided into groups of less similar classes, up until the final prediction is a
group that only consists of one class. When combining SVMs and hierarchical clas-
sification, typically top-down tree-like decision models as in Figure 8.7 are obtained,
because of the SVMs binary classification ability.

The advantage of the hierarchical classification heuristic is that relatively easy
rough classification distinctions can be made at the top of the hierarchy. At lower
levels of the hierarchy, SVMs are trained solely on making much more difficult dis-
tinctions between similar classes, without other classes affecting the predictions, i.e.
without noise of other classifications. For example, a possible hierarchical SVM
heuristic for the example in Figure 8.1 is to first make a prediction whether a point
belongs to class 1 or class 2/3. If the prediction of a point is class 2/3, a different
SVM is used to make a prediction of whether the point belongs to class 2 or class 3.
Note that the latter SVM is therefore strictly trained on points that are labeled as
class 2 or 3. Therefore, the resulting best separating hyperplane is thus not affected
by points of class 1.

The disadvantage of the hierarchical SVM heuristic is that if a prediction at the
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top of the hierarchy is wrong, the mistake can not be repaired. As a result, if at the
top of the hierarchy a wrong rough prediction about a sample is made, the sample
is guaranteed to end with the wrong predicted classification. Such a problem is
partly solved by adding interrelationships between classifications. Figure 8.8 gives
an example of such a hierarchical classification tree with interrelationships between
classifications.

The hierarchical SVM heuristic can also be applied on the multi-sentiment prob-
lem. One possible approach is to group the classifications that contain a clear senti-
ment at the top, i.e. the positive and the negative sentiment. This group is denoted
by the polar(ity) group. At the top level of the hierarchical classification tree, a SVM
predicts whether an article is polar or neutral. If an article is polar, a second SVM
is used to predict whether the article is positive or negative. Figure 8.9 gives an
illustration of the decision tree of such an ‘hierarchical polar-neutral SVM’.

The hierarchical polar-neutral SVM is not the only possible approach to create
a hierarchical SVM for the multi-sentiment problem. A different approach is to
make a distinction between the positive and negative sentiment at the top level.
If an article is predicted as positive at the top, a second SVM checks whether the
article tends to be more positive or more neutral. Vice versa, the same is done for
negative predictions. Figure 8.10 gives an illustration of the decision tree of such an
‘hierarchical positive-negative SVM’.

Figure 8.7: A typical tree-like hierarchical SVM structure with no interrelations be-
tween nodes.
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Figure 8.8: A typical hierarchical SVM structure with interrelations between nodes.

Figure 8.9: A hierarchical SVM approach where the top layer focusses on making
a distinction between polar or neutral articles. If an article is polar, the second
layer checks whether is positive or negative. This approach is called the ‘hierarchical
polar-neutral SVM’ heuristic.

Figure 8.10: A hierarchical SVM approach where the top layer focuses on making a
distinction between articles that then to be positive or to be negative. In the second
layer it is checked whether an article expresses more polar than neutral sentiment.
This approach is called the ‘hierarchical positive-negative SVM’ heuristic.
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8.4 Results

Recall that in order to obtain a good performing SVM, a grid search is often executed
to find the best-performing parameters for the kernel, penalty and feature selection
methods. In the multi-sentiment case, it is even necessary to perform multiple grid
searches, because the one-versus-all, the one-versus-one and the hierarchical SVM
methods consist of multiple SVMs. All of these SVMs can be fine-tuned to achieve
a better performance.

It is not possible to take the best-performing parameters from the binary sen-
timent analysis, because the introduction of the neutral sentiment might require
different parameter values. For example, it is very likely that neutral and posi-
tive articles are more similar than positive and negative articles. Therefore, differ-
ent kernel parameters might be required to accurately separate the sentiments in a
higher-dimensional space. A new grid search is therefore necessary to find the new
best-performing SVM parameter values.

Chapter 7.3 already showed that a full grid search is too time-consuming and
therefore proposed a faster ‘partial’ grid search method. This partial grid search
method is again applied, because the multi-sentiment problem requires even more
grid searches. However, the possible feature selection methods are limited to the χ2

statistic feature selection method as this method provided the best performance in
the binary sentiment analysis. Therefore, the second part of the partial grid search
method focuses on finding the best χ2 statistic parameter. The limitation to the χ2

statistic feature selection method significantly shortens the second part of the partial
grid search method.

Additionally, only 7.500 articles were used for training to speed up the grid search.
For each sentiment, 2.500 news articles were randomly selected and added to the
training set to obtain a balanced training set. Similar as in the binary sentiment
analysis, it is assumed that the best-performing SVM parameters for 7.500 news
articles also perform well for SVMs trained with more articles.

Note that individually optimizing the different SVMs within a heuristic does
not imply that the overall performance of the heuristic is optimized. To optimize
the overall performance of a heuristic, a grid search over all possible configurations
of the SVMs in the heuristic needs to be executed. This drastically increases the
number of SVMs that need to be trained. For example, consider the one-versus-
all heuristic and a grid search method that tries 100 parameter combinations to
obtain the best-performing parameters for a single SVM. In this example, 1003 =
1.000.000 SVM parameter combinations need to be calculated to obtain the overall
best-performing parameters for the one-versus-all heuristic consisting of 3 SVMs.
Even when assuming that, in the best case, a SVM can be trained for a single
parameter combination in one minute, training 1 million SVMs to grid search over
1 million different SVM parameter combinations takes far too long. Therefore, the
grid search for the multi-sentiment analysis is restricted to individually optimizing
the SVMs within the heuristics. Additionally, a grid search is executed to find the
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best-performing joint set of parameters for each heuristic, i.e. using one set of SVM
parameters for all SVMs in a heuristic.

Table 8.1 provides the new best-performing parameters for the individual SVMs
and the joint SVM parameter heuristics. A full multi-sentiment analysis was executed
using the best-performing SVM parameters. Figure 8.11 provides the results of
this analysis. It follows that the one-versus-one method slightly outperforms the
hierarchical positive-negative method.

One-versus-all SVMs
SVM Min. DF-bound (%) χ2-bound (%) C γ
Positive vs. rest 0.4 0.2 2 0.05
Negative vs. rest 0.4 0.2 2 0.05
Neutral vs. rest 0.4 0.2 2 0.05

One-versus-one and hierarchical SVMs
SVM Min. DF-bound (%) χ2-bound (%) C γ
Positive vs. negative 0.5 0.4 2 0.005
Positive vs. neutral 0.6 0.4 0.5 0.005
Negative vs. neutral 0.6 0.3 0.5 0.005
Polar vs. neutral 0.2 0.2 2 0.01

Joint SVM parameter heuristics
SVM Min. DF-bound (%) χ2-bound (%) C γ
Joint one-versus-all 0.3 0.5 2 0.005
Joint one-versus-one 0.4 0.4 2 0.005
Joint polar-neutral hierarchical 0.3 0.6 2 0.01
Joint pos-neg hierarchical 0.3 0.6 2 0.001

Table 8.1: The new best-performing SVM parameters for the individual SVMs and
joint SVM heuristics obtained using the partial grid search method. Joint implies
that all SVMs in the heuristic have identical SVM parameters, e.g. all SVMs in the
heuristic having C = 2.
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Figure 8.11: A bar chart providing the best performance scores for the different
heuristics to solve the multi-class SVM. Note that the ‘random predictions column’
represents randomly predicting the sentiment of an article.
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9. Improving the sentiment labels

The extended simple sentiment labeling method from Chapter 8.2 provided an intu-
itive, easily implementable and fast method to obtain sentiment labels from emotion
probabilities. However, the results of this simple labeling method turn out to very
poor when compared to manual sentiment labeling. The first section in this Chapter
defines a generalized method to measure the performance of any sentiment label-
ing method. The second section discusses three new innovative methods to obtain
improved sentiment labels by applying a clustering algorithm on the emotion proba-
bilities. The new improved sentiment labeling method is used to update the results
of the multi-sentiment analysis. The chapter is concluded by an evaluation and
discussion of the new results.

9.1 Performance of a sentiment labeling method

There are several possible methods to obtain sentiment labels from emotion prob-
ability vectors. The simple sentiment label method from Chapter 8.2 is only one
possible method. For example, a different sentiment labeling method is to label all
emotion probability vectors with a low standard deviation as neutral. A low stan-
dard deviation makes it difficult to attach the label positive or negative as all emotion
probabilities are relatively close to each other. Therefore, the label neutral seems to
be the best sentiment label. Another different sentiment labeling method is obtained
by adjusting the probability bounds for the sentiment labels in the simple sentiment
labeling method of Chapter 8.2, i.e. changing the probability bounds for the positive
or negative sentiment label.

In order to compare the different labeling methods, a method to measure the
labeling performance is necessary. The F1-score statistic as discussed in Chapter 6 is
also well-suited for measuring the labeling performance. The sentiment labels that
follow from a sentiment labeling method can be seen as the ‘predicted’ sentiment
labels. However, the ‘real’ sentiment labels are not known. That is, the overall sen-
timent readers attach to a news article is not known, only the emotion probabilities.
Therefore, it is not possible to generate a confusion matrix from the real sentiment
labels and the sentiment labels given by the labeling method. It is not possible to
calculate the F1-score directly without the confusion matrix.

The problem of not having the real sentiment labels of news articles is solved by
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creating a manually labeled test set. Recall from Chapter 7.2 that 500 randomly
selected on-line news articles were excluded from the training data set. These 500
news articles were shown to three different users, who labeled every article as one
out of the possible three sentiments. Note that the sentiment a user associates with
a news article is personal and can therefore differ from person to person. Hence,
to obtain a more general overall sentiment label, a majority vote system was used
on the three manually obtained sentiment labels to create one sentiment label. The
majority-vote sentiment label is considered as the ‘real’ sentiment label. In the rare
case, all three users voted a different sentiment (one positive, one neutral and one
negative), the label neutral was assumed to be the majority vote label. For the
500 articles having a real sentiment label, a confusion matrix and F1-score can be
calculated to measure the performance of any sentiment labeling method.

Table 9.1 provides the performance statistics of the extended simple labeling
method from Chapter 8.2 in terms of precision, recall and F1-score. Note that from
the confusion matrix in Table 9.1 it follows that the majority of misclassifications
are positive-neutral or negative-neutral misclassifications. Intuitively, these are less
wrong than positive-negative misclassifications, because the difference between neu-
tral and a polar sentiment is very personal. This also makes it difficult for the ma-
chine to distinguish between the neutral and polar sentiment. Recall that Chapter
8.1 denoted positive-negative misclassifications as ‘heavy’ misclassifications.

Labeled class
Positive Negative Neutral Total

Real (manual) class

Positive 47 25 65 137
Negative 3 109 44 156
Neutral 27 78 102 207
Total 77 212 211 500

Sentiment No. of labels No. of labels Precision Recall F1 score
in test set by labeling

method
Positive 77 137 0.610 0.343 0.439
Negative 212 156 0.514 0.699 0.592
Neutral 211 207 0.483 0.493 0.488
(Weighted) total 500 500 0.516 0.557 0.507

Table 9.1: The confusion matrix and general performance statistics for the extended
simple labeling method (see Chapter 8.2).
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9.2 Cons of the simple sentiment labeling method

The simple sentiment labeling method is easy to implement and intuitively easy to
understand. However, there are some issues with the underlying assumptions. For
one, it assumes that every emotion represents one particular polar sentiment, i.e.
positive (fascinating, funny, heartwarming) or negative (irritating, frightening and
depressing). Secondly, it assumes that the emotions all contain the same amount of
sentiment, for example, the positive emotions are all equally positive.

An analysis of the manually labeled test set and the full news articles data set
shows that these two assumptions do not hold. For example, the manually labeled
test set contains 35 samples that have a ‘funny’ emotion probability larger than 50%.
Out of those 35 samples, only 5 were manually labeled as positive, 10 as negative
and 20 as neutral. Therefore, the emotion ‘funny’ tends to be a neutral emotion
when comparing its probability to the manual labels. However, the simple sentiment
labeling method considered the emotion ‘funny’ as a positive sentiment. Therefore,
the first assumption fails. Also, a closer look at the 5 positive samples that have
a funny probability over 50 % shows that their funny rate is actually very high,
i.e. higher than 75 %. So this leads to the assumption that only very high funny
probabilities should be considered as positive and thus the second assumption also
fails. A better approach could be to use a quadratic relationship on the effect of
the emotion funny on the sentiment positive. For lower probabilities, the effect of
the emotion funny should be low, whereas higher probabilities should have a higher
impact.

Checking if the same problem also occurs for different emotions gives a remark-
able result. The as negative considered emotions, i.e. irritating, frightening and
depressing, have a really large resemblance with the manually labeled sentiment neg-
ative. That is, samples with larger negative emotion probabilities are very likely to
also be manually labeled as negative. On the other hand, the as positive considered
emotions, i.e. fascinating and heart-warming, tend to suffer the same effect as the
emotion funny.

Discussing the issue of translating emotions to sentiments with an expert in the
field of Psychology resulted in a referral to the research of Marsha M. Linehan, a
professor at the department of Psychology at the University of Washington. Linehan
reduces the diversity of emotions to four basic emotions, i.e. happy, afraid, mad and
sad (Linehan, 1993). Each basic emotion also has different gradations. Note that the
first basic emotion, happy, can be seen as positive. The other three basic emotions
are negative. Using the notion of basic emotions, each emotion can be reduced to
a gradation of a basic emotion. For example, the emotion ‘terrified’ is a high grade
of the negative basic emotion afraid. Therefore, the emotion terrified is also very
negative. Depending on the gradation of the basic emotion, an emotion can also be
neutral. For example, the emotion ‘worried’ can be seen as a low grade of the basic
emotion afraid and is therefore more neutral than negative.



9.3 Semi-supervised clustering 74

The six emotions of the collected on-line news articles data set can also be mapped
to a gradation of the basic emotions. Four of the six emotions are clear gradations of a
basic emotion, i.e. irritating→ mad, frightening→afraid, depressing→sad and heart-
warming→happy. The other two emotions in the data set, funny and fascinating,
are more difficult to map to a single basic emotion, because these two emotions are
not pure emotions, i.e. the brain is required to understand them. For example,
humans consider things as funny, because their brains tells them something is funny.
Without the brain, humans are not able to understand the relationship between
several objects or events that cause them to find something funny. Similar for the
emotion fascinating, the brain is needed to consider something fascinating. For
example, the fact that Usain Bolt can run 100 meters in 9.58 seconds is fascinating,
because our brain tells us that running that fast is nearly impossible for humans.

Several samples in the data set confirm that, because two of the emotions in the
data set are not pure, strange things happen with the sentiment people associate
with a news article. For example, a news article titled ‘four killed in mortar attack
in Somalia’ is rated by 33% as funny and by 40% as depressing. The content of
the article is clearly very negative though and describes an innocent family with two
children being killed in a mortar attack. Using the simple labeling method, this
article would be labeled as neutral because of the high probability of the emotion
funny. Voting as a reader for the emotion funny in this example seems questionable.
Unfortunately the reason why readers vote for funny can not be found out, because
of the anonymity of the voting process. However, one possible reason is that people
express their madness about a particular subject, for example Somalian piracy or
African criminality, through the non-pure emotion funny. In this example, Somalian
piracy as the underlying reason implies that the underlying basic emotion is mad and
the sentiment of the article is thus negative. On the contrary, different examples can
be given where the emotion funny is reduced to the positive basic emotion happy. It
follows that the emotion funny or other non-pure emotions are difficult to directly
relate to sentiments, as the sentiment of non-pure emotions is largely dependent on
the context and other emotion probabilities.

9.3 Semi-supervised clustering

Because the basic assumptions of the simple labeling method do not hold, a new
labeling method is required to improve the performance of the labeling. The new
method needs to take into account the different non-linear effects of the various
emotions on the sentiments. Also, it has to deal with the non-pure emotions that
have different effects on the sentiment, depending on the context of the article or the
other emotion probabilities.

A clustering algorithm is proposed to capture the complex relationships between
the six emotion probabilities and the three sentiments. However, when applying an
unsupervised clustering algorithm, the resulting clusters might not relate at all to
sentiments, but to other factors such as how well emotions stand out. For example,
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a sample run of an unsupervised clustering algorithm gave as first cluster all articles
where the probability of one of the emotions was very high (> 80%), as second
cluster all articles where two or three probabilities were also high but close to each
other and as third cluster all other articles. These three clusters can not be directly
related to a sentiment, because the problem of assigning an emotion to one sentiment
still exists. Applying a supervised clustering algorithm is also difficult, because that
would need more than 500 manually labeled samples in order to obtain a good
clustering. Therefore, a semi-supervised clustering algorithm is used.

Semi-supervised clustering implies that a subset of the data is labeled, whereas
the rest of the data set is not labeled. However, the labeled data provides the
basic framework around which the clusters are created. There are several clustering
methods that can be used for semi-supervised clustering. A commonly used semi-
supervised clustering method is label propagation (Zhu and Ghahramani, 2002). The
idea of label propagation is that the labeled samples propagate their sentiment label
to their neighbors. The propagation is repeated until all samples are labeled.

Zhu and Ghahramani (2002) proposed two different methods to define neighbors.
Both methods start by creating a fully-connected graph where each node represents
a sample, i.e. an emotion probabilities vector belonging to a news article. The edge
for each node i and j is weighted using a weighting function. The first method uses
the k-nearest neighbors (kNN) method and the weights are given by

wij = {1 if xj ∈ kNN(xi), 0 otherwise},

where kNN(x) is the set consisting of the k nodes with the lowest Euclidean distance
to x. The second method uses the RBF kernel method and the weights are given by

wij = exp
(
−γ||xi − xj||2

)
,

where γ is a sensitivity parameter. Using the RBF kernel results in weights that
get significantly larger as the Euclidean distance between xi and xj gets smaller.
The benefit of the kNN method is that the resulting weighting matrix is a sparse
matrix, which is much easier to store in the memory and thus better scalable with
the number of samples. The RBF kernel results in a dense and thus less memory-
efficient, weighting matrix, but in turn provides a higher clustering performance (Zhu
and Ghahramani, 2002).

The label propagation algorithm starts after the weighting matrix has been cal-
culated and the neighbors for each sample are defined and weighted. The algorithm
starts by propagating known labels to other nodes. The probability of a label of
node xi being propagated to node xj is determined by the weights wij. That is, the
probability of a label jumping from xi to xj is given by

Pi,j = P(xi → xj) =
wij∑N
k=1wkj

.

Together all these probabilities form the probabilistic transition matrix P . Addi-
tionally, a matrix Y t ∈ RN×3 is defined, where the ith row represents the sentiment
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probabilities of node xi and t represents the iteration number. Note that Y 0 corre-
sponds to all labeled nodes having probability one for their known class label and all
unlabeled nodes having probability zero for all three sentiments. At each iteration t
of the algorithm, two steps are executed:

Step 1: All nodes propagate their label according to the probabilistic transition ma-
trix, i.e. Y t = PY t−1.

Step 2: All labels of nodes with known labels are reset, i.e. Y t
i,k = 1 if xi has known

label k, and zero if xi has known label not equal to k.

Note that after every iteration, all rows in Y t are normalized such that P(Y t
i ) = 1.

Zhu and Ghahramani (2002) have shown that this algorithm eventually converges
to a unique and fixed solution, where every node has one sentiment label with a
probability equal to one. The label propagation algorithm was used to obtain new
improved sentiment labels. However, there are multiple different methods on how
to apply this clustering algorithm. In the remainder of this chapter, three possible
methods are discussed.

9.3.1 Clustering on emotion probabilities

The first method is to apply clustering on the six different emotion probabilities.
Assume that for each news article, the vector xi represents the emotion probabilities
belonging to article i. Also, a fraction of the samples is labeled using a basic label-
ing rule that was constructed using the new knowledge of ‘basic’ emotions. Recall
that Chapter 9.2 discussed how emotions are reduced to certain gradations of basic
emotions. These basic emotions are then divided into positive and negative basic
emotions. Also, it is assumed that if the emotion probabilities are lying relatively
close to each other, there is no clear emotion and thus the sentiment tends to be
neutral.

A grid search method was executed to find the best probability thresholds for
the (semi-)labeling rule. Note that emotions that are very high graded in terms of a
basic emotion, such as depressing and frightening, have a lower probability threshold.
Also note that the emotion ‘funny’ was left out because it can be reduced to multiple
different basic emotions such as ‘happy’ and ‘anger’, both expressing a different
sentiment. The grid search method was also used to find the best performing γ-value
for the RBF kernel in the label propagation method. Using the grid search to find
the best probability thresholds and the value of γ in terms of SVM performance, the
best (semi-)labeling rule as given in Equation (9.1) was obtained. The performance
of the clustering method and the performance of the SVMs is given in Figure 9.1
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and Table 9.2.

Labeli =



Positive if P(Fascinating)i ≥ 80
or P(Heartwarming)i ≥ 80,

Negative if P(Irritating)i ≥ 75
or P(Depressing)i ≥ 60
or P(Frightening)i ≥ 60,

Neutral if σP(emotionsi) ≤ 16,
No label otherwise.

(9.1)

Figure 9.1: Performance of different multi-class SVM heuristics for the clustering
on emotion probabilities method.

From the results in Table 9.2 it follows that the labeling performance (0.529) is
slightly better than the labeling performance of the extended simple labeling method
(0.507). Moreover, Table 9.2 shows that the number of ‘heavy’ misclassifications is
reduced from 5% to only 3%. Additionally, Figure 9.1 shows that the performance
of the SVM is improved from 0.547 to 0.571. The combination of a slightly higher
sentiment labeling performance, less ‘heavy’ misclassifications and an increased SVM
performance is a desirable outcome, because it results in a more accurate sentiment
analysis. Therefore, it can be concluded that clustering improves the overall perfor-
mance of the sentiment analysis.

9.3.2 Clustering on features

A different clustering approach is to apply clustering on the numeric feature vector
representation of the on-line news articles, i.e. to cluster on similar features. The
emotion probabilities are still used to construct a rule to label a fraction of the data
set. It can be argued that this type of clustering is a form of ‘cheating’, because it is
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Labeled class
Positive Negative Neutral Total

Real (manual) class

Positive 29 4 44 77
Negative 12 104 96 212
Neutral 33 47 131 211
Total 74 155 271 500

Sentiment No. of labels No. of labels Precision Recall F1 score
in test set by clustering

Positive 77 74 0.392 0.377 0.384
Negative 212 155 0.671 0.491 0.567
Neutral 211 271 0.483 0.621 0.543
(Weighted) total 500 500 0.549 0.528 0.529

Table 9.2: The confusion matrix and other statistics of the labeling performance when
clustering on emotion probabilities.

very likely that this clustering improves the performance of the SVMs as relatively
similar feature vectors are given the same labels. The latter makes it easier for a SVM
to obtain a good-performing classifier as similar articles have the same label. On the
other hand, because emotion probabilities are not longer taken into account for the
clustering part, it also seems very likely that the labeling performance decreases.
That is, the obtained sentiment labels are less close to the manually labeled test set.
Therefore, the expectation is that there is a trade-off between SVM performance and
labeling performance. Similar as before, multiple different basic emotion rules were
used to label a fraction of the data set. A grid search method was again executed to
find the best probability thresholds for the (semi-)labeling rule and also to find the
best performing γ-value for the RBF kernel in the label propagation method. The
best performing (semi-)labeling rule is given in Equation (9.2). Figure 9.2 provides
the SVM performance of the clustering on features method. Table 9.3 provides the
labeling performance.

Labeli =



Positive if P(Fascinating)i ≥ 75
or P(Heartwarming)i ≥ 75,

Negative if P(Irritating)i ≥ 75
or P(Depressing)i ≥ 60
or P(Frightening)i ≥ 60,

Neutral if σP(emotionsi) ≤ 15,
No label otherwise.

(9.2)

From Figure 9.2 it immediately follows that again the one-versus-one multi-class
SVM heuristic performs the best. Moreover, the F1 score of 0.600 means a significant
increase in SVM performance compared to the simple labeling method score of 0.547.
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Figure 9.2: Performance of different multi-class SVMs for the clustering on features
method.

Labeled class
Positive Negative Neutral Total

Real (manual) class

Positive 6 5 66 77
Negative 9 65 138 212
Neutral 11 14 186 211
Total 26 84 390 500

Sentiment No. of labels No. of labels Precision Recall F1 score
in test set by clustering

Positive 77 26 0.231 0.078 0.117
Negative 212 84 0.774 0.307 0.439
Neutral 211 390 0.477 0.882 0.619
(Weighted) total 500 500 0.565 0.514 0.465

Table 9.3: The confusion matrix and other statistics of the labeling performance when
clustering on features.
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However, note that the labeling performance of this method is not that good. Table
9.3 shows that the majority of the predictions is set to neutral, allowing for a high
neutral recall score and thus a high neutral F1 score. The high neutral F1 score
results in a weighted labeling performance F1 score of 0.465, otherwise it would
have been much lower. Another remark is that the clustering on features method
does not perform well at distinguishing positive and neutral articles. Almost all
positive articles are predicted as neutral. On the other hand, the precision of the
negative predictions is very high, so the negative predictions that are made are very
reliable. The negative recall score is however very low, so a lot of the negative articles
are not identified. That is, two third of them are actually predicted as neutral.

9.3.3 Clustering on features using manually obtained labels

In the previous two methods, the notion of basic emotions and their various grada-
tions was used to construct basic rules to obtain sentiment labels for a fraction of the
data set. However, a different approach is using the manually obtained labels from
the test set. It is assumed that these labels are very close to the ‘real’ sentiment
classification of an article, because three persons gave their sentiment opinions about
those articles. A disadvantage of this method is that only 500 articles were manually
labeled, because it is a very time-expensive and costly method. Nonetheless, the
hypothesis is that the 500 manually labeled articles might make it possible to obtain
good sentiment labels for the remainder of the samples.

Label propagation was again used as the clustering algorithm. Also, the clus-
tering was again done on the feature vectors, because from the previous results, the
clustering on features method seems the most promising in terms of SVM perfor-
mance. A grid search was executed to obtain the best performing value for the RBF
kernel parameter γ of the label propagation method. Figure 9.3 provides the SVM
performance for the newly obtained sentiment labels.
It can be seen that, compared to all previous results, this clustering method provides
the best SVM performance. That is, the one-versus-one method achieves a perfor-
mance F1 score of 0.626. Moreover, note that in the previous clustering on features
method, the hierarchical polar-neutral SVM heuristic performed very poor (0.402).
This was caused by difficulties in distinguishing neutral and polar articles, because
the majority of the articles were predicted as neutral. However, using this new clus-
tering approach, the hierarchical polar-neutral SVM heuristic performs much better.
Therefore, this new clustering approach results in sentiment labels that are easier
for the SVM to distinguish between neutral and polar. One of the possible reasons
for this is that, in this case, the clustering approach gives much more neutral labels
than the previous methods. That is, 64% of the 24.599 articles in the data set are
labeled as neutral. Therefore, the articles that are labeled as positive or negative
might contain a more clearly defined polar sentiment, making it easier to identify
the sentiment and a higher SVM performance is achieved.
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Figure 9.3: Performance of different multi-class SVMs for the clustering on features
method.

The drawback of this clustering method is that it is very difficult to accurately
measure the labeling performance. Recall that in the previous sections, the labeling
performance of the clustering method was measured by comparing the test set labels
of the clustering method against the manually obtained test set labels. However, in
this case, the manual test set labels were used to create the clustering method. The
result is that, when using this clustering method on the test set, all labels are equal
to their manually obtained label. As a result, the labeling performance F1 score
is equal to 1.00, a perfect fit. Common sense and experience tells that whenever a
perfect fit is obtained, there is likely to be overfitting or a bug in the program. In
this case, there is a drastic overfit, making it impossible to obtain an unbiased and
reliable labeling performance score.

One method to solve this issue would be to create a new second manually labeled
test set. The labeling performance of the clustering method can then be calculated
using this second manually labeled test set. However, creating such a second test
set requires again three persons to manually label 500 articles, a very time-expensive
and thus costly procedure. A different method is by applying a stratified 10-fold
cross validation procedure on the clustering labeling performance as well. That is,
450 out of the 500 articles in the manual labeled test set are selected and used
in the clustering method. The clustering labeling performance is then calculated
based on the remaining 50 articles in the manual labeled test set. Stratified 10-fold
cross-validation was used to obtain an unbiased estimator (see Chapter 6.1) and
a grid search was performed to find the best value of γ. The result is a very poor
labeling performance of 0.362 for the clustering on manual sentiment labels method.
So, although the SVM performance of the clustering on manual sentiment labels
method is higher than the other clustering methods, the labeling performance is very
worse and even close to random. It follows that the predicted sentiments using this
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clustering method are not very similar to the ‘real’ manual obtained sentiment labels.
A low similarity between the predicted and the ‘real’ sentiment makes it difficult to
obtain reliable conclusions from the SVM sentiment predictions. Therefore, decision
making based on the predicted sentiments can be totally wrong.

9.4 Conclusions on clustering

The main conclusion of this chapter is that a clustering approach is able to obtain
better sentiment labels and improves the overall quality of the sentiment analysis.
That is, the clustering on emotion probabilities method increased the performance
of the SVM while simultaneously achieving a slightly higher labeling performance
with less ‘heavy’ misclassifications. It was shown that other clustering methods were
able to obtain a higher SVM performance, but a lower labeling performance.

Note that both factors, i.e. the SVM and the labeling performance, together
define the overall quality of the predicted sentiments of a SVM. For example, a high
SVM performance implies that the SVM can very accurately predict the sentiment
that was labeled to a news article. However, if the labeling performance was very
low, this implies that the sentiment that was labeled to a news article is not very
close to the ‘true’ sentiment, i.e. the sentiment humans attach to a news article.
Therefore, the overall quality of such a SVM is low.
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10. Sentiment analysis in practice

In this chapter, a practical application of the sentiment analysis algorithm is given.
As all research for this thesis was done at an on-line marketing company, this practical
application was designed to create new insights into on-line marketing strategies.
Also, because the company monitors the on-line media campaigns for several top
brands in The Netherlands, lots of relevant data was available for analysis.

10.1 Hypothesis

The practical application focuses on researching the relationship between the senti-
ment of on-line news articles and the performance of on-line advertising campaigns
shown next to on-line news articles. Therefore, the following null hypothesis was
researched.

Null hypothesis 1 The sentiment of an on-line news article does not affect the
click-through rate of an on-line advertisement shown next to the article.

The click-through rate (CTR) is a common marketing term and is a method to
measure the performance of an online advertising campaign. It is defined by the
number of clicks an online advertisement or campaign receives (i.e. the number of
clicks) divided by the number of times the advertisement or campaign was shown
to an user (i.e. the number of impressions). The result is a score between 0 and 1
representing the ratio of impressions of an advertisement or campaign that resulted
in a click on that advertisement or campaign.

CTR =
Clicks

Impressions
.

As more users click on an advertisement, more users are redirected to the companies
promotional website. Note that the latter results in possible sales or engagement
and therefore, more users on a companies promotional website is considered to be
better. However, because companies nowadays have to pay per impression of an
advertisement, it is desirable to have a large number of impressions converted into
clicks and thus to keep the cost per click (CPC) low. Otherwise, the possible sales
resulting from clicks do not outweigh the costs of generating clicks. It follows that a
higher CTR thus implies a higher advertisement or campaign performance.
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The null hypothesis states that the sentiment of an on-line news articles does not
affect the CTR of an on-line advertisement shown next to the article. However, it
could be for example that a positive news article results in a happier user who is
more likely to buy the product that is advertised on an advertisement. Therefore,
such a happier user is thus more likely to click on the advertisement. Vice versa, it
could also be the case that negative news articles result in depressed users who are
more likely to buy products to feel better.

10.2 Results

The hypothesis was researched by analyzing the results of an on-line advertising
campaign of a particular major brand in The Netherlands (confidential) on one of
the largest Dutch on-line news sites, i.e. NU.nl. Over the course of half a year
a particular advertisement was shown to readers of that news site. Note that the
content of the shown advertisement was independent of the content of the news
articles. However, advertisements can be targeted to a specific group of users, e.g.
desktop or mobile users. Therefore, the results of this research might only hold for
this specifically targeted group, unless it can be shown that this targeted group is a
thorough representation of the Dutch population.

All impressions of the advertisement resulted in lots of clicks on the advertisement.
Table 10.1 provides an overview of the impressions, clicks and click through rates
grouped by the predicted sentiments of the on-line news articles. Note that all non-
news articles of the news website such as index and news overview pages are filtered
out of the results.

Predicted Number of Number of Number of CTR
sentiment articles clicks impressions (%)
Positive 338 c 1.43d 0.6172-ε
Negative 284 1.07c d 0.6405-ε
Neutral 473 1.74c 2.11d 0.6249-ε
Total 1.095 3.81c 4.54d 0.6259-ε

Table 10.1: An overview of the number of articles, clicks, impressions and CTR for
each sentiment. The real results are obfuscated, because of confidentiality reasons.

It follows that negative articles result in higher click-through rates. However, it is
first tested whether the differences in CTR are statistically significant. By calculating
the variances for each sentiment, the t-test scores in Table 10.2 were obtained. Using
the t-test scores, it is concluded that the CTR of positive with respect to negative
news articles is statistically different at a 95% confidence level. That is, the negative
CTR is statistically significant higher than the positive CTR. Therefore, negative
articles perform better than positive articles in terms of CTR. and the sentiment of
an on-line news article can thus affect the CTR of an advertising campaign shown on
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the same page. Therefore, the null hypothesis is rejected when comparing the CTR
of positive with negative on-line news articles.

Unfortunately, the CTRs of the positive or negative sentiment with respect to the
neutral sentiment are not statistically different at a 95% confidence level. Therefore,
it can not be concluded with certainty that the CTR of negative articles is always
higher than for neutral articles or the CTR for positive articles is always lower than
neutral articles. Therefore, the null hypothesis can not be rejected when comparing
the CTR of positive or negative news articles with the CTR of neutral articles.

Non-paired t-test Positive Negative Neutral
Positive - -2.21 -0.97
Negative 2.21 1.53
Neutral 0.97 -1.53

Table 10.2: The unpaired t-test scores for testing whether the CTRs are equal at a
95% confidence level. From the t-test scores it follows that the positive and negative
CTRs are not equal with respect to each other. That is, the negative CTR is indeed
higher than the positive CTR.
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11. Summary and future research topics

The main contribution of this master thesis is a sentiment analysis tool. This tool is
able to predict the sentiment of most Dutch on-line news articles, assuming the news
articles are grammatically well-structured and syntactically correct. The creation
of the sentiment analysis tool consisted of solving four different subproblems, i.e.
collecting news articles, obtaining sentiment labels for the collected news articles,
processing the news articles to an usable machine learning format and creating a
sentiment classification algorithm.

The first subproblem, collecting data, was solved by collecting news articles from
multiple Dutch on-line news sites. The benefit of using on-line news sites as data
source is that these sites provide a large number of news articles, sometimes dating
back to the year 2000. Moreover, the number of news articles on these news sites
still significantly increases as more news is published every day. The result after
investigating only a few news sites was a data set consisting of more than 2 million
on-line news articles.

The second subproblem, obtaining sentiment labels for the collected news articles,
was partially solved by using a news site that provided an emotion poll next to most
of the news articles. Note that sentiment labels are necessary to let the classification
algorithm learn to recognize sentiments. Similar as humans, these algorithms first
need to know, for example, how a cat looks like in order to be able to recognize
cats. The emotion poll enabled readers of a news article to vote for the emotion
the reader attached to that news article. The result of this emotion poll was that
more than 80.000 news articles had six different emotion probabilities, e.g. an article
could have a 80% probability of being ‘depressing’ and a 20% probability of being
‘irritating’. Multiple methods to translate the emotion probabilities into sentiment
labels were discussed in this thesis. A ‘simple’ labeling method was dividing the
six emotions into positive and negative emotions. The sentiment of an article was
then determined based on the sum of the positive and negative emotion probabilities.
However, it turned out that this simple method had some flaws, e.g. an emotion such
as funny can be positive and negative depending on the context. A different method
to obtain sentiment labels from the emotion probabilities was applying a clustering
algorithm on the emotion probabilities. The clustering on emotion probabilities
method provided a slightly better labeling and SVM performance than the simple
labeling method. Two different clustering methods were also able to obtain a higher
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SVM performance, but performed worse in terms of labeling performance, i.e. a
lower similarity between the obtained cluster sentiment labels and the ‘real’ manual
sentiment labels.

The third subproblem, processing data to an usable machine learning format,
was solved by applying feature extraction and feature selection. Feature extraction
extracts words and phrases from the news articles and translates these words and
phrases into weighted numerical features. The ‘feature presence’ weighting method
was considered to be the best feature extraction weighting method as it resulted in a
sparse and binary data set. The sparsity and binarity of the data set is a very useful
property, because it prevents memory and computational issues with the very large
size of the data set. Feature extraction led to a very high number of features, e.g.
more than 1 million features for a small data set consisting of 5.000 news articles.
As most classification algorithms can not deal with a problem of such a large size,
feature selection was necessary to reduce the size of the problem. Most feature
selection methods do this by removing irrelevant features, i.e. features containing
few sentiment. The χ2 statistic numerically proved to be the best feature selection
method, because it gave the highest SVM performance. Moreover, it significantly
reduced the number of features, i.e. from more than 1 million features to ±5000
features considering a data set of 5.000 news articles.

The fourth subproblem, the creation of a sentiment classification algorithm, was
solved by applying machine learning techniques. A literature study showed that the
support vector machine learning algorithm provides a consistently high performance
for most classification problems. The literature study also showed that SVMs perform
very good in handling the large dimensionality of sentiment-classification problems.
However, the original SVM optimization problem still suffered three problems. For
one, the original SVM optimization was still limited to small data sets as it does not
scale well with an increasing number of samples in a data set. Secondly, the original
SVM optimization problem was limited to a linear separation between classifications,
which turned out to give inaccurate results when separating news articles based on
their sentiment. Third, the original SVM optimization problem was designed for
handling binary classification problems, i.e. only two possible classifications. As the
sentiment analysis problem consists of three possible classifications, i.e. positive,
negative and neutral, the original SVM optimization problem is thus not suited for
solving the sentiment analysis problem.

Several improvements were made to the SVM algorithm to solve the above de-
scribed three SVM problems. That is, the original SVM optimization problem was
improved using the ‘kernel trick’ to provide for better separating between sentiments.
It was numerically shown that this kernel trick resulted in a higher SVM performance.
Moreover, the original SVM optimization problem was reduced to its Lagrangian dual
problem to allow the SVM algorithm to use large-scale data sets without running
into time or computational problems. Lastly, four possible heuristics were proposed
to solve the 3-class sentiment analysis problem while using the binary classification
abilities of SVMs. The one-versus-one heuristic, where a SVM was trained for each
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possible pair of classifications, proved to give the highest SVM performance.

By combining all four sub-problems, a SVM algorithm was obtained that learns
to recognize sentiments of on-line news articles by providing it a large collection of
on-line news articles for which the sentiment is already known and attached as a
label. The SVM algorithm uses the learned knowledge about sentiments in news
articles to predict the sentiment of other on-line news articles for which the senti-
ment is not yet known. A full sentiment analysis showed that the SVM algorithm
was able to give fairly good predictions about the sentiment of on-line news articles.
The majority of the wrong predictions turned out to be positive-neutral or negative-
neutral misclassifications where one of the polar sentiments is misclassified as neutral
or vice versa. Note that the difference between a polar and the neutral sentiment is
often very subjective and even humans do not always agree on whether something is,
for example, positive or neutral. Therefore, it was assumed that these polar-neutral
misclassifications are better than ‘heavy’ positive-negative misclassifications where
a news article is falsely classified as a totally opposite sentiment. Therefore, con-
sidering the relatively high number of correct classifications (depending on the used
clustering method and multi-class heuristic) and the fact that the majority of the
wrong predictions are polar-neutral misclassifications, it was concluded that the final
SVM algorithm provides usable and accurate sentiment predictions for on-line news
articles.

The final SVM algorithm was used to provide an example of sentiment analysis in
practice. The example showed that the sentiment of an on-line news article can affect
consumer behavior. That is, users reading a negative on-line news article are more
likely to click on an advertisement next to the article than users reading a positive
on-line news article. The result of this example may affect the decision making of
a company or other advertising strategies. For example, as clicks lead to possible
sales, it could be desirable to only show your advertisement next to negative news
articles.

11.1 Future research

Although this master thesis covered a wide spectrum of expertises and possible ap-
proaches to create a sentiment analysis tool, there are still several possible topics for
future research. One interesting topic for future research is changing the scope of the
sentiment analysis from a document level to a sentence level. The current sentiment
analysis tool looks at the entire article to determine the sentiment of a news article.
This leads to several problems though. For example, analyzing at the document
level implies that all sentences of a news article are important. However, a news
article often contains only a few relevant key sentences that contain the sentiment
of a news article such as the title or the intro paragraph. Other sentences are used
to provide, for example, background on the subject matter and do not really con-
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tribute to the sentiment of the article. When analyzing at a sentence level, these key
sentences could be identified and be used to determine a ‘better’ overall sentiment
of the article.

Another interesting future research topic is improving the SVM parameter grid
search as the grid search is the most time-consuming step in the entire process
of creating an accurate sentiment analysis tool. Additionally, the SVM parameters
largely determine the classification performance of the SVM and thus well-performing
SVM parameters are essential. The grid search method discussed in this thesis is
based on a ‘simple’ iteration over all possible parameter values which are multiplied
by a factor five at each iteration, e.g. γ = {0.0001, 0.0005, 0.001, 0.005}. Hsu et al.
(2003) claimed that this simple grid search approach is not much slower than other
SVM parameter estimating heuristics, because the simple grid search approach is
very scalable. Every combination of SVM parameters is independent of the other
combinations and thus the simple grid search can be performed in parallel for multiple
different SVM parameter combinations. Better heuristics for finding well-performing
SVM parameters are often faster, but are less scalable as they often use iterative
processes which are not independent of each other. Therefore, these better heuristics
are harder to perform in parallel and are thus often not faster than a parallel-executed
simple grid search. Creating an improved heuristic that is faster than the simple grid
search approach and can be executed in parallel could significantly reduce the time
for the entire grid search operation.

Lastly, a different possible future research topic is developing a robust model
to deal with uncertainty in the sentiment labels. Recall that the sentiment labels
in this master thesis were obtained by applying a clustering algorithm on emotion
probabilities. For one, this clustering algorithm therefore introduces a certain degree
of uncertainty in the sentiment labels, because not all news articles are necessarily
labeled correctly as was shown by the labeling performance indications in Chapter
9. Moreover, the emotion probabilities were obtained by letting readers vote for
the emotion they attach to the news articles. This voting process also induces a
new kind of uncertainty in the sentiment labels because readers could deliberately
vote for a different emotion. For example, the sensitivity of a political news article
might make readers vote for a different emotion than they actually attach to an
article. The latter also emphasizes the fact that sentiments are subjective, i.e. they
can differ from person to person and there is not necessarily one ‘correct’ sentiment
label. Therefore, a more robust model to deal with the uncertainty in the sentiment
labels might be useful.
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Notation

C C = {c1, c2, c3} = {Positive, Negative, Neutral} denotes the set of possible
sentiment classifications of an on-line news article.

D Denotes the number of features after feature extraction and selection trans-
formation Θ has been applied on all N news articles.

F F = {f1, f2, ..., fD} denotes the set of all D features after the feature
extraction and selection transformation Θ has been applied on all N news
articles.

M M = {m1, m2, ..., mN} denotes the set of N on-line news articles. The entire
collection of all news articles is called the document or the corpus. A single
news article mi is called an article or a sample.

N Denotes the number of on-line news articles in the used data set.

X The matrix containing the numeric vector representation xi of all N articles,

i.e. X =


− x1 −
− x2 −

...
− xN −

 ∈ RN×D. Note that it holds that X ∈ {0, 1}N×D, be-

cause FP is used as the feature extraction weighting method for the sentiment
analysis in this master thesis.

Ψ ŷi = Ψ(xi) : RD 7→ R denotes the prediction function of a trained SVM with
as input the numerical feature vector xi corresponding to article mi. The
function returns the predicted sentiment ŷi ∈ C for article mi.

Θ xi = Θ(mi) : RC → RD is the feature extraction and selection transformation
with as input on-line news article mi ∈ RC. The function returns the numeric
feature vector representation xi ∈ RD of article mi.

χ2 Abbreviation of χ2-statistic feature selection method (Chapter 3.3.3).

xi Denotes the numeric vector representing the feature values of all features
f ∈ F for article mi. The numeric feature vector of article mi is given by
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xi =
[
xf1 xf2 ... xfD

]
∈ RD, where xfj represents the numeric feature

value of feature fj.

yi yi ∈ C denotes the sentiment classification of article mi.

CTR Abbreviation of click-through rate of an on-line advertisement or on-line ad-
vertising campaign.

DF Abbreviation of Document Frequency feature selection method (Chapter 3.3.1).

FE Abbreviation of Feature Extraction (Chapter 3.2).

FP Abbreviation of Feature Presence feature extraction weighting method (Chap-
ter 3.2.3).

FS Abbreviation of Feature Selection (Chapter 3.3).

IG Abbreviation of Information Gain feature selection method (Chapter 3.3.2).

RP Abbreviation of Random Projection feature selection method (Chapter 3.3.4).

SVM Abbreviation of Support Vector Machine learning algorithm (Chapter 4).
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A. Tables and figures

A.1 Binary sentiment analysis

A.1.1 Table: grid search DF

Min. doc. Parameters Kernel
frequency Linear RBFγ
bound C 0.0001 0.0005 0.001 0.005
3 (0.05%) 0.1 0.646 0.695 0.689 0.685 0.655

0.5 0.645 0.695 0.688 0.685 0.675
1 0.645 0.695 0.691 0.683 0.676

5 (0.1%) 0.1 0.632 0.688 0.689 0.690 0.670
0.5 0.631 0.688 0.689 0.691 0.678
1 0.631 0.688 0.686 0.684 0.676

10 (0.2%) 0.1 0.630 0.695 0.693 0.690 0.674
0.5 0.621 0.695 0.693 0.689 0.685
1 0.621 0.695 0.688 0.683 0.680

15 (0.3%) 0.1 0.621 0.694 0.693 0.691 0.679
0.5 0.596 0.694 0.693 0.683 0.677
1 0.596 0.694 0.685 0.679 0.671

20 (0.4%) 0.1 0.633 0.695 0.694 0.690 0.686
0.5 0.603 0.695 0.694 0.689 0.678
1 0.600 0.695 0.687 0.680 0.676

25 (0.5%) 0.1 0.623 0.685 0.685 0.689 0.684
0.5 0.587 0.685 0.685 0.687 0.682
1 0.586 0.685 0.685 0.686 0.672

30 (0.6%) 0.1 0.632 0.689 0.691 0.694 0.687
0.5 0.606 0.689 0.691 0.686 0.679
1 0.599 0.689 0.683 0.680 0.671

Table A.1: Results of the first part of the grid search, i.e. searching for the best
minimum feature document frequency bound. Note that the search was done for
different minimum bounds and different SVM parameter combinations.
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A.1.2 Table: grid search χ2

% of features Parameters Kernel
with highest RBFγ
χ2 score C 0.0001 0.0005 0.001 0.005
5 % 0.1 0.694 0.695 0.695 0.698

0.5 0.694 0.695 0.694 0.688
1 0.694 0.693 0.687 0.695

10 % 0.1 0.697 0.697 0.697 0.698
0.5 0.697 0.697 0.696 0.700
1 0.697 0.695 0.694 0.702

20 % 0.1 0.701 0.701 0.700 0.702
0.5 0.701 0.701 0.699 0.708
1 0.701 0.698 0.700 0.708

30 % 0.1 0.702 0.702 0.704 0.706
0.5 0.702 0.702 0.700 0.704
1 0.702 0.700 0.701 0.709

40 % 0.1 0.700 0.700 0.700 0.705
0.5 0.700 0.700 0.705 0.710
1 0.700 0.704 0.707 0.715

50 % 0.1 0.704 0.704 0.702 0.701
0.5 0.704 0.704 0.699 0.700
1 0.704 0.698 0.697 0.700

70 % 0.1 0.700 0.703 0.700 0.695
0.5 0.700 0.702 0.699 0.695
1 0.700 0.696 0.696 0.695

90 % 0.1 0.689 0.689 0.691 0.684
0.5 0.689 0.689 0.684 0.684
1 0.689 0.684 0.681 0.678

Table A.2: The results of the second part of the grid search, i.e. searching for the
best parameters of different feature selection methods. This table shows the F1 per-
formance scores for different minimum χ2 score bounds and different SVM parameter
combinations.
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A.1.3 Table: grid search IG

% of features Parameters Kernel
with highest RBFγ
IG score C 0.0001 0.0005 0.001 0.005
5 % 0.1 0.691 0.691 0.691 0.689

0.5 0.691 0.691 0.687 0.683
1 0.691 0.684 0.680 0.690

10 % 0.1 0.659 0.662 0.664 0.684
0.5 0.659 0.662 0.677 0.696
1 0.659 0.679 0.688 0.700

20 % 0.1 0.696 0.697 0.698 0.697
0.5 0.696 0.697 0.692 0.699
1 0.696 0.690 0.694 0.703

30 % 0.1 0.696 0.697 0.700 0.708
0.5 0.696 0.697 0.700 0.706
1 0.696 0.698 0.702 0.711

40 % 0.1 0.694 0.694 0.691 0.702
0.5 0.694 0.694 0.698 0.699
1 0.694 0.698 0.698 0.706

50 % 0.1 0.676 0.678 0.683 0.697
0.5 0.676 0.678 0.695 0.700
1 0.676 0.692 0.696 0.701

70 % 0.1 0.696 0.699 0.699 0.696
0.5 0.696 0.699 0.696 0.695
1 0.696 0.695 0.696 0.696

90 % 0.1 0.687 0.686 0.689 0.684
0.5 0.687 0.686 0.687 0.684
1 0.687 0.686 0.688 0.681

Table A.3: The results of the second part of the grid search, i.e. searching for the
best parameters of different feature selection methods. This table shows the F1 perfor-
mance scores for different minimum IG score bounds and different SVM parameter
combinations.
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A.1.4 Table: grid search random projection

% of original Parameters Kernel
features remaining
after random RBFγ
projection C 0.0001 0.0005 0.001 0.005
10 % 0.1 0.554 0.601 0.630 0.642

0.5 0.555 0.617 0.626 0.618
1 0.555 0.623 0.628 0.618

20 % 0.1 0.656 0.664 0.673 0.670
0.5 0.656 0.668 0.664 0.644
1 0.656 0.661 0.650 0.636

30 % 0.1 0.673 0.676 0.680 0.673
0.5 0.673 0.676 0.664 0.660
1 0.673 0.659 0.658 0.656

50 % 0.1 0.686 0.685 0.683 0.680
0.5 0.686 0.685 0.677 0.669
1 0.686 0.676 0.671 0.661

70 % 0.1 0.666 0.671 0.677 0.681
0.5 0.666 0.672 0.683 0.669
1 0.666 0.681 0.669 0.669

80 % 0.1 0.679 0.679 0.685 0.677
0.5 0.679 0.677 0.680 0.663
1 0.679 0.681 0.670 0.658

90 % 0.1 0.678 0.685 0.690 0.682
0.5 0.678 0.685 0.679 0.675
1 0.678 0.679 0.674 0.669

Table A.4: The results of the second part of the grid search, i.e. searching for the
best parameters of different feature selection methods. This table shows the F1 per-
formance scores for different number of random projections and different SVM pa-
rameter combinations.
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A.1.5 Figures: grid search χ2, IG and RP

Figure A.1: Results of the grid search for the best χ2-score bound. The search was
performed for various K, i.e. the percentage of features with the highest χ2-score to
select. Note DF=0.4% was used for all calculations.
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Figure A.2: Results of the grid search for the best IG-score bound. The search was
performed for various K, i.e. the percentage of features with the highest IG-score to
select. Note DF=0.4% was used for all calculations.
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Figure A.3: Results of the grid search for various K, i.e. the percentage of features
that remain after random projections are applied. Note that this implies that the
number of necessary mappings is given by (100%−K)× 4.012. Note DF=0.4% was
used for all calculations.
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A.2 Multi-sentiment analysis

A.2.1 Table: positive vs. rest grid search

Min. doc. Parameters Kernel
frequency RBFγ

bound C 0.001 0.005 0.01
0.3% 1 0.014 0.402 0.448

2 0.239 0.491 0.507
0.4% 1 0.010 0.397 0.448

2 0.218 0.482 0.508
0.5% 1 0.009 0.394 0.439

2 0.204 0.477 0.499
0.6% 1 0.006 0.381 0.428

2 0.199 0.463 0.496
0.7% 1 0.006 0.385 0.442

2 0.182 0.475 0.504

Table A.5: The results of the first part of the grid search, i.e. the F1 performance
scores for different minimum document feature frequency bounds and different SVM
parameter combinations.

% of features Parameters Kernel
with highest RBFγ
χ2 score C 0.005 0.01 0.05 0.1
20 % 0.8 0.302 0.410 0.508 0.435

1 0.351 0.435 0.524 0.474
2 0.434 0.489 0.542 0.507

30 % 0.8 0.335 0.443 0.495 0.304
1 0.390 0.471 0.517 0.380
2 0.475 0.514 0.539 0.431

40 % 0.8 0.356 0.451 0.449 0.176
1 0.396 0.479 0.486 0.260
2 0.494 0.522 0.517 0.328

50 % 0.8 0.364 0.464 0.390 0.080
1 0.407 0.487 0.448 0.151
2 0.500 0.534 0.491 0.227

60 % 0.8 0.369 0.454 0.297 0.026
1 0.418 0.489 0.379 0.075
2 0.504 0.531 0.447 0.141

Table A.6: The results of the second part of the grid search, i.e. the F1 perfor-
mance scores for different minimum χ2 score bounds and different SVM parameter
combinations.
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A.2.2 Table: negative vs. rest grid search

Min. doc. Parameters Kernel
frequency RBFγ

bound C 0.001 0.005 0.01
0.3% 1 0.037 0.376 0.414

2 0.267 0.459 0.478
0.4% 1 0.038 0.372 0.410

2 0.253 0.452 0.496
0.5% 1 0.027 0.376 0.411

2 0.249 0.451 0.482
0.6% 1 0.030 0.371 0.416

2 0.239 0.450 0.480
0.7% 1 0.024 0.376 0.412

2 0.239 0.440 0.474

Table A.7: The results of the first part of the grid search, i.e. the F1 performance
scores for different minimum document feature frequency bounds and different SVM
parameter combinations.

% of features Parameters Kernel
with highest RBFγ
χ2 score C 0.005 0.01 0.05 0.1
20 % 0.8 0.355 0.427 0.503 0.338

1 0.388 0.452 0.516 0.425
2 0.452 0.499 0.528 0.485

30 % 0.8 0.370 0.438 0.453 0.195
1 0.400 0.460 0.492 0.268
2 0.467 0.504 0.526 0.357

40 % 0.8 0.364 0.435 0.355 0.105
1 0.398 0.457 0.431 0.163
2 0.473 0.501 0.488 0.249

50 % 0.8 0.371 0.439 0.293 0.072
1 0.405 0.466 0.369 0.115
2 0.479 0.517 0.443 0.173

60 % 0.8 0.369 0.434 0.236 0.034
1 0.410 0.458 0.309 0.071
2 0.479 0.511 0.388 0.109

Table A.8: The results of the second part of the grid search. This table shows the
F1 performance scores for different minimum χ2 score bounds and different SVM
parameter combinations.
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A.2.3 Table: neutral vs. rest grid search

Min. feat. doc. Parameters Kernel
frequency RBFγ

bound C 0.001 0.005 0.01
0.3% 1 0.032 0.373 0.409

2 0.262 0.456 0.484
0.4% 1 0.037 0.383 0.419

2 0.263 0.470 0.491
0.5% 1 0.032 0.368 0.412

2 0.246 0.450 0.475
0.6% 1 0.025 0.375 0.404

2 0.233 0.446 0.470
0.7% 1 0.025 0.371 0.419

2 0.230 0.451 0.482

Table A.9: The results of the first part of the grid search. This table shows the F1
performance scores for different minimum document feature frequency bounds and
different SVM parameter combinations.

% of features Parameters Kernel
with highest RBFγ
χ2 score C 0.005 0.01 0.05 0.1
20 % 0.8 0.358 0.429 0.505 0.342

1 0.383 0.453 0.520 0.429
2 0.455 0.492 0.530 0.496

30 % 0.8 0.361 0.438 0.456 0.196
1 0.395 0.459 0.494 0.275
2 0.464 0.500 0.526 0.356

40 % 0.8 0.376 0.444 0.368 0.108
1 0.404 0.467 0.437 0.165
2 0.476 0.517 0.501 0.251

50 % 0.8 0.374 0.443 0.299 0.070
1 0.412 0.469 0.366 0.113
2 0.477 0.514 0.444 0.167

60 % 0.8 0.367 0.434 0.242 0.031
1 0.409 0.467 0.304 0.065
2 0.478 0.515 0.389 0.114

Table A.10: The results of the second part of the grid search. This table shows the
F1 performance scores for different minimum χ2 score bounds and different SVM
parameter combinations.
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A.2.4 Table: positive vs. negative grid search

Min. feat. doc. Parameters Kernel
frequency RBFγ

bound C 0.0005 0.001 0.005 0.01
0.2 % 0.5 0.741 0.750 0.755 0.750

1 0.750 0.755 0.761 0.760
2 0.756 0.761 0.760 0.758

0.3 % 0.5 0.733 0.741 0.750 0.749
1 0.744 0.746 0.756 0.757
2 0.747 0.753 0.754 0.754

0.4 % 0.5 0.737 0.742 0.749 0.747
1 0.744 0.747 0.754 0.752
2 0.748 0.749 0.751 0.749

0.5 % 0.5 0.739 0.739 0.754 0.751
1 0.740 0.747 0.755 0.760
2 0.748 0.755 0.759 0.760

0.6 % 0.5 0.727 0.737 0.740 0.740
1 0.736 0.739 0.742 0.740
2 0.739 0.742 0.738 0.740

Table A.11: The results of the first part of the grid search. This table shows the F1
performance scores for different minimum document feature frequency bounds and
different SVM parameter combinations.

% of features Parameters Kernel
with highest RBFγ
χ2 score C 0.0005 0.001 0.005 0.01
20 % 0.5 0.747 0.747 0.757 0.757

1 0.747 0.752 0.758 0.761
2 0.752 0.755 0.760 0.761

30 % 0.5 0.742 0.745 0.752 0.756
1 0.744 0.746 0.756 0.759
2 0.746 0.752 0.759 0.760

40 % 0.5 0.742 0.743 0.756 0.761
1 0.743 0.750 0.762 0.767
2 0.749 0.755 0.767 0.766

50 % 0.5 0.742 0.743 0.751 0.755
1 0.740 0.746 0.761 0.760
2 0.744 0.751 0.759 0.758

60 % 0.5 0.741 0.743 0.758 0.760
1 0.744 0.747 0.760 0.767
2 0.747 0.756 0.763 0.765

70 % 0.5 0.740 0.748 0.753 0.756
1 0.746 0.746 0.758 0.759
2 0.746 0.751 0.760 0.761

Table A.12: The results of the second part of the grid search. This table shows the
F1 performance scores for different minimum χ2 score bounds and different SVM
parameter combinations.
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A.2.5 Table: positive vs. neutral grid search

Min. feat. doc. Parameters Kernel
frequency RBFγ

bound C 0.0005 0.001 0.005 0.01
0.2 % 0.5 0.673 0.662 0.644 0.634

1 0.657 0.646 0.639 0.635
2 0.647 0.645 0.633 0.636

0.3 % 0.5 0.674 0.669 0.639 0.641
1 0.664 0.650 0.642 0.640
2 0.647 0.639 0.631 0.628

0.4 % 0.5 0.674 0.660 0.636 0.634
1 0.656 0.650 0.630 0.623
2 0.647 0.633 0.609 0.605

0.5 % 0.5 0.674 0.663 0.639 0.641
1 0.661 0.652 0.635 0.635
2 0.651 0.635 0.626 0.624

0.6 % 0.5 0.676 0.662 0.637 0.635
1 0.659 0.648 0.633 0.633
2 0.645 0.632 0.628 0.621

0.7 % 0.5 0.674 0.665 0.639 0.639
1 0.664 0.652 0.634 0.634
2 0.646 0.636 0.623 0.624

Table A.13: The results of the first part of the grid search. This table shows the F1
performance scores for different minimum document feature frequency bounds and
different SVM parameter combinations.

% of features Parameters Kernel
with highest RBFγ
χ2 score C 0.0005 0.001 0.005 0.01
20 % 0.5 0.678 0.677 0.669 0.667

1 0.678 0.674 0.669 0.671
2 0.673 0.670 0.669 0.670

30 % 0.5 0.677 0.676 0.659 0.666
1 0.676 0.668 0.667 0.664
2 0.668 0.659 0.665 0.666

40 % 0.5 0.680 0.678 0.658 0.660
1 0.677 0.663 0.659 0.667
2 0.663 0.656 0.667 0.663

50 % 0.5 0.679 0.673 0.650 0.654
1 0.673 0.658 0.655 0.658
2 0.657 0.650 0.659 0.662

60 % 0.5 0.677 0.670 0.649 0.651
1 0.670 0.655 0.649 0.654
2 0.653 0.648 0.649 0.653

70 % 0.5 0.679 0.670 0.655 0.658
1 0.669 0.657 0.658 0.653
2 0.656 0.650 0.649 0.650

Table A.14: The results of the second part of the grid search. This table shows the
F1 performance scores for different minimum χ2 score bounds and different SVM
parameter combinations.
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A.2.6 Table: negative vs. neutral grid search

Min. feat. doc. Parameters Kernel
frequency RBFγ

bound C 0.0005 0.001 0.005 0.01
0.2 % 0.5 0.682 0.678 0.664 0.649

1 0.678 0.675 0.653 0.644
2 0.671 0.664 0.639 0.635

0.3 % 0.5 0.681 0.679 0.662 0.646
1 0.679 0.667 0.651 0.647
2 0.666 0.662 0.637 0.628

0.4 % 0.5 0.680 0.681 0.654 0.647
1 0.679 0.669 0.645 0.642
2 0.667 0.655 0.634 0.625

0.5 % 0.5 0.682 0.680 0.662 0.654
1 0.679 0.667 0.652 0.649
2 0.665 0.658 0.641 0.633

0.6 % 0.5 0.684 0.680 0.658 0.646
1 0.679 0.670 0.644 0.637
2 0.667 0.653 0.631 0.622

0.7 % 0.5 0.683 0.684 0.658 0.651
1 0.683 0.669 0.647 0.641
2 0.669 0.657 0.633 0.629

Table A.15: The results of the first part of the grid search. This table shows the F1
performance scores for different minimum document feature frequency bounds and
different SVM parameter combinations.

% of features Parameters Kernel
with highest RBFγ
χ2 score C 0.0005 0.001 0.005 0.01
20 % 0.5 0.688 0.690 0.689 0.685

1 0.691 0.689 0.682 0.684
2 0.689 0.689 0.684 0.685

30 % 0.5 0.692 0.691 0.688 0.688
1 0.691 0.686 0.686 0.682
2 0.687 0.688 0.682 0.682

40 % 0.5 0.688 0.689 0.682 0.677
1 0.689 0.683 0.678 0.674
2 0.683 0.681 0.675 0.666

50 % 0.5 0.691 0.689 0.679 0.674
1 0.688 0.687 0.673 0.674
2 0.685 0.679 0.674 0.668

60 % 0.5 0.687 0.688 0.675 0.675
1 0.687 0.682 0.675 0.668
2 0.681 0.678 0.667 0.658

70 % 0.5 0.688 0.687 0.673 0.669
1 0.686 0.677 0.667 0.664
2 0.676 0.672 0.658 0.653

Table A.16: The results of the second part of the grid search. This table shows the
F1 performance scores for different minimum χ2 score bounds and different SVM
parameter combinations.
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A.2.7 Table: polar vs. neutral grid search

Min. feat. doc. Parameters Kernel
frequency RBFγ

bound C 0.0005 0.001 0.005 0.01
0.2 % 0.5 0.651 0.641 0.563 0.543

1 0.635 0.578 0.575 0.575
2 0.573 0.570 0.567 0.563

0.3 % 0.5 0.571 0.576 0.539 0.542
1 0.563 0.538 0.566 0.571
2 0.530 0.544 0.575 0.575

0.4 % 0.5 0.512 0.521 0.521 0.540
1 0.510 0.500 0.539 0.546
2 0.497 0.518 0.542 0.550

0.5 % 0.5 0.486 0.472 0.531 0.542
1 0.502 0.502 0.555 0.556
2 0.502 0.535 0.554 0.559

0.6 % 0.5 0.558 0.554 0.543 0.553
1 0.573 0.546 0.560 0.568
2 0.543 0.543 0.569 0.573

0.7 % 0.5 0.640 0.627 0.550 0.556
1 0.626 0.562 0.557 0.562
2 0.555 0.554 0.554 0.558

Table A.17: The results of the first part of the grid search. This table shows the F1
performance scores for different minimum document feature frequency bounds and
different SVM parameter combinations.

% of features Parameters Kernel
with highest RBFγ
χ2 score C 0.0005 0.001 0.005 0.01
20 % 0.5 0.656 0.642 0.583 0.626

1 0.631 0.550 0.639 0.665
2 0.550 0.580 0.669 0.690

30 % 0.5 0.672 0.667 0.603 0.633
1 0.666 0.602 0.636 0.659
2 0.601 0.608 0.665 0.681

40 % 0.5 0.670 0.647 0.605 0.631
1 0.644 0.582 0.639 0.657
2 0.587 0.608 0.662 0.672

50 % 0.5 0.667 0.661 0.612 0.625
1 0.657 0.601 0.640 0.654
2 0.599 0.610 0.664 0.661

60 % 0.5 0.608 0.588 0.598 0.610
1 0.591 0.565 0.630 0.633
2 0.561 0.595 0.639 0.639

70 % 0.5 0.666 0.666 0.605 0.606
1 0.662 0.607 0.613 0.611
2 0.605 0.606 0.622 0.621

Table A.18: The results of the second part of the grid search. This table shows the
F1 performance scores for different minimum χ2 score bounds and different SVM
parameter combinations.
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A.2.8 Table: joint one-versus-all grid search

Min. feat. doc. Parameters Kernel
frequency RBFγ

bound C 0.0005 0.001 0.005 0.01
0.3 % 1 0.495 0.492 0.497 0.485

2 0.490 0.493 0.517 0.504
0.4 % 1 0.494 0.488 0.487 0.482

2 0.495 0.489 0.510 0.495
0.5 % 1 0.486 0.483 0.484 0.484

2 0.489 0.492 0.499 0.496
0.6 % 1 0.481 0.471 0.476 0.476

2 0.479 0.480 0.500 0.498
0.7 % 1 0.479 0.479 0.473 0.476

2 0.480 0.480 0.498 0.491

Table A.19: The results of the first part of the grid search for the joint one-versus-
all heuristic. This table shows the F1 performance scores for different minimum
document feature frequency bounds and different SVM parameter combinations.

% of features Parameters Kernel
with highest RBFγ
χ2 score C 0.0005 0.001 0.005 0.01
20 % 1 0.479 0.476 0.471 0.479

1 0.480 0.475 0.480 0.486
2 0.477 0.474 0.501 0.511

30 % 0.8 0.478 0.475 0.476 0.480
1 0.482 0.474 0.485 0.496
2 0.483 0.481 0.515 0.502

40 % 0.8 0.484 0.481 0.484 0.489
1 0.485 0.481 0.489 0.495
2 0.481 0.488 0.511 0.499

50 % 0.8 0.489 0.485 0.487 0.479
1 0.487 0.483 0.489 0.497
2 0.486 0.491 0.517 0.506

60 % 0.8 0.487 0.489 0.483 0.479
1 0.492 0.483 0.490 0.495
2 0.491 0.494 0.512 0.506

Table A.20: The results of the second part of the grid search for the joint one-versus-
all heuristic. This table shows the F1 performance scores for different minimum χ2

score bounds and different SVM parameter combinations.
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A.2.9 Table: joint one-versus-one grid search

Min. feat. doc. Parameters Kernel
frequency RBFγ

bound C 0.0005 0.001 0.005 0.01
0.3 % 1 0.466 0.504 0.525 0.525

2 0.507 0.517 0.516 0.515
0.4 % 1 0.470 0.505 0.524 0.527

2 0.507 0.517 0.519 0.516
0.5 % 1 0.468 0.499 0.517 0.520

2 0.501 0.511 0.512 0.507
0.6 % 1 0.466 0.498 0.510 0.517

2 0.502 0.511 0.510 0.505
0.7 % 1 0.466 0.498 0.516 0.516

2 0.500 0.511 0.510 0.510

Table A.21: The results of the first part of the grid search for the joint one-versus-
all heuristic. This table shows the F1 performance scores for different minimum
document feature frequency bounds and different SVM parameter combinations.

% of features Parameters Kernel
with highest RBFγ
χ2 score C 0.0005 0.001 0.005 0.01
20 % 0.8 0.436 0.489 0.537 0.542

1 0.456 0.502 0.539 0.548
2 0.503 0.527 0.548 0.551

30 % 0.8 0.448 0.498 0.544 0.553
1 0.479 0.511 0.549 0.555
2 0.513 0.537 0.554 0.557

40 % 0.8 0.451 0.501 0.552 0.555
1 0.479 0.513 0.553 0.558
2 0.516 0.540 0.561 0.556

50 % 0.8 0.454 0.505 0.548 0.551
1 0.480 0.516 0.551 0.552
2 0.518 0.539 0.555 0.557

60 % 0.8 0.461 0.509 0.547 0.553
1 0.487 0.522 0.549 0.551
2 0.527 0.541 0.554 0.553

Table A.22: The results of the second part of the grid search for the joint one-versus-
all heuristic. This table shows the F1 performance scores for different minimum χ2

score bounds and different SVM parameter combinations.
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A.2.10 Table: joint polar-neutral hierarchical SVM grid search

Min. feat. doc. Parameters Kernel
frequency RBFγ

bound C 0.0005 0.001 0.005 0.01
0.3 % 1 0.389 0.393 0.410 0.402

2 0.394 0.414 0.484 0.472
0.4 % 1 0.389 0.392 0.408 0.401

2 0.392 0.407 0.474 0.467
0.5 % 1 0.386 0.391 0.409 0.403

2 0.393 0.405 0.466 0.460
0.6 % 1 0.387 0.392 0.402 0.401

2 0.392 0.404 0.456 0.458
0.7 % 1 0.386 0.387 0.406 0.396

2 0.391 0.400 0.451 0.462

Table A.23: The results of the first part of the grid search for the joint polar-neutral
hierarchical heuristic. This table shows the F1 performance scores for different mini-
mum document feature frequency bounds and different SVM parameter combinations.

% of features Parameters Kernel
with highest RBFγ
χ2 score C 0.0005 0.001 0.005 0.01
20 % 0.8 0.380 0.385 0.420 0.446

1 0.384 0.388 0.433 0.458
2 0.386 0.397 0.475 0.485

30 % 0.8 0.381 0.386 0.420 0.448
1 0.385 0.389 0.436 0.454
2 0.388 0.402 0.474 0.487

40 % 0.8 0.384 0.388 0.420 0.432
1 0.384 0.390 0.431 0.451
2 0.392 0.406 0.481 0.485

50 % 0.8 0.385 0.390 0.413 0.409
1 0.385 0.391 0.430 0.438
2 0.391 0.410 0.482 0.491

60 % 0.8 0.380 0.389 0.407 0.407
1 0.386 0.391 0.427 0.430
2 0.393 0.409 0.480 0.494

Table A.24: The results of the second part of the grid search for the joint polar-neutral
hierarchical heuristic. This table shows the F1 performance scores for different min-
imum χ2 score bounds and different SVM parameter combinations.
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A.2.11 Table: joint positive-negative hierarchical SVM grid
search

Min. feat. doc. Parameters Kernel
frequency RBFγ

bound C 0.0005 0.001 0.005 0.01
0.3 % 1 0.494 0.512 0.514 0.501

2 0.515 0.523 0.510 0.499
0.4 % 1 0.485 0.506 0.514 0.499

2 0.514 0.518 0.512 0.502
0.5 % 1 0.492 0.510 0.508 0.500

2 0.508 0.512 0.511 0.497
0.6 % 1 0.491 0.505 0.505 0.496

2 0.510 0.513 0.509 0.492
0.7 % 1 0.487 0.512 0.508 0.490

2 0.502 0.508 0.501 0.493

Table A.25: The results of the first part of the grid search for the joint positive-
negative hierarchical heuristic. This table shows the F1 performance scores for dif-
ferent minimum document feature frequency bounds and different SVM parameter
combinations.

% of features Parameters Kernel
with highest RBFγ
χ2 score C 0.0005 0.001 0.005 0.01
20 % 0.8 0.463 0.495 0.513 0.508

1 0.480 0.499 0.515 0.513
2 0.496 0.518 0.519 0.506

30 % 0.8 0.478 0.499 0.520 0.505
1 0.485 0.504 0.519 0.508
2 0.503 0.516 0.519 0.508

40 % 0.8 0.479 0.496 0.509 0.502
1 0.489 0.508 0.515 0.511
2 0.509 0.519 0.515 0.508

50 % 0.8 0.485 0.505 0.519 0.503
1 0.491 0.509 0.512 0.504
2 0.510 0.524 0.518 0.507

60 % 0.8 0.484 0.506 0.511 0.501
1 0.494 0.508 0.514 0.501
2 0.513 0.523 0.517 0.505

Table A.26: The results of the second part of the grid search for the joint positive-
negative hierarchical SVM heuristic. This table shows the F1 performance scores for
different minimum χ2 score bounds and different SVM parameter combinations.
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