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Abstract 

This thesis examines and compares the performance of the parametric mixture model and the two 

nonparametric, kernel regression and neural network models, with the intention of estimating option 

implied risk-neutral densities. Pseudo option prices are generated using Monte Carlo simulations for four 

different data-generation processes over three maturities. The simulated option prices are further used to 

estimate the risk-neutral densities of the underlying asset using the three different models. The models’ 

performance is then evaluated by comparing the estimated risk-neutral densities with the theoretical 

densities corresponding to the known underlying parameters used in data-generation processes. The results 

show that the nonparametric models outperform the parametric model, while the neural network provides 

more consistent results over the majority of test cases.  
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1. Introduction 

Option pricing theory is widely accepted as a tool for assessing valuable information of future 

expectations and risk preferences in the financial markets. The risk-neutral density (RND) is a fundamental 

concept in asset pricing theory and can be applied to many different financial frameworks. The information 

incorporated in option implied RNDs can be used for determining future market beliefs, pricing of illiquid 

derivatives, hedging purposes and monetary policies (Aıt-Sahalia & Lo, 2000; Jackwerth, 2004). The 

amount of information that can be analyzed from intraday data has increased tremendously in recent years, 

allowing researchers to find new, heavily data driven approaches or further develop existing methods to 

estimate option implied RNDs. 

 

RND estimation is a fairly new research topic within the field of asset pricing and risk-neutral 

valuation theory. The concept of risk-neutral measures for pricing derivatives was first introduced by Black 

and Scholes (1973) and Merton (1973) with their novel, closed-form solution for pricing option contracts. 

Their model demonstrated that the price of a European option is equivalent to the expected payoff of the 

underlying asset and a risk-free bond, discounted by the risk-free. Based on Black, Scholes and Merton’s 

revolutionizing theoretical framework, Cox, Ross, and Rubinstein (1979) introduced their binomial tree 

model  for pricing derivatives in a complete and arbitrage free market. Based on the concept of risk-neutral 

valuation, the model introduced a convenient way to replicate future payoffs of the underlying stock in 

discrete time. However, these models require rigid assumptions regarding the underlying process of the 

asset, thus Rubinstein (1985) proposed a new methodology of obtaining implied parameters, such as the 

RND and implied volatility, from observed option contracts in the market, and subsequently utilizing these 

observed parameters to estimate option prices.  

 

In a complete market, where every contingent claim can be replicated, Ross (1976) demonstrated 

how one can recover the complete RND from a set of European option prices. Breeden and Litzenberger 

(1978) continued the work of Ross and showed how the RND can be obtained from option prices with a 

continuum of strike prices, by taking the second partial derivative of the call option price with respect to 

the strike price. Since the findings of Breeden and Litzenberger, numerous methods of estimating the option 

implied RND have been proposed. The different methods can be classified into two subcategories: 

parametric and nonparametric, both with their respective advantages and drawbacks. Here, we will briefly 

cover some of the more prominent methods proposed in earlier literature.  
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For the parametric methods, Jarrow and Rudd (1982) successfully presented how one can retrieve 

the full option implied RND using a parametric Edgeworth expansion, where the authors adjusted the well-

known Black-Scholes model to account for different statistical moments in the return distribution, such as 

skewness and kurtosis. Coutant, Jondeau, and Rockinger (2001) investigated the performance of an 

expansion method based on Hermite polynomials, where they could approximate option prices based on 

skewness and kurtosis and subsequently obtain the RND. Rompolis and Tzavalis (2007) introduced an 

expansion method based on an exponential form of a Gram-Charlier series expansion, which allowed the 

authors to constrain the RND and further incorporate statistical moments, similar to Jarrow and Rudd (1982), 

to account for known return probability distribution features such as skewness and kurtosis. Similarly to 

the method used in this thesis, Ritchey (1990), Bahra (1997), Söderlind and Svensson (1997) and Gemmill 

and Saflekos (2000) utilized parametric Gaussian mixture models to estimate the RND, where the authors 

assume the asset return probability distribution can be modeled with a combination of normal densities, 

fitted to the observed option data.  

 

Shimko (1993) was one of the first to introduce the nonparametric approach, where one first 

transforms the option prices into implied volatilities, interpolate the implied volatilities and subsequently 

inverse the fitted implied volatilities back to option prices. The RND is then derived by taking the second 

partial derivative of the option price with respect to the strike price, proposed by Breeden and Litzenberger 

(1978). This simple, but yet effective approach paved the way for new intriguing nonparametric approaches 

to be used for estimating the RND. Aït-Sahalia and Lo (1998) used a kernel regression model to estimate 

the state-price density across five independent variables: stock price, strike price, time to maturity, interest 

rate and dividend yield.1 However, the authors argue that the approach is requires a substantial amounts of 

data and only becomes feasible when combining multiple days of data. Pritsker (1998) implemented a 

kernel method for estimating the RND obtained from options derived from interest rates. The author found 

that the kernel estimator’s choice of optimal kernel bandwidth is sensitive to persistence in the US interest 

rates, but quite insensitive to the frequency at which the data is sampled. Thus, Pritsker argue that the use 

of kernel methods might be problematic due to the fact that asymptotic distributions do not depend on 

persistence, while the sample might do. Rockinger and Jondeau (2002) utilized a maximum entropy method 

for obtaining the RND, by characterizing the skewness and kurtosis features and subsequently fitting the 

option prices and the estimated RNDs. Yatchew and Härdle (2006) utilized nonparametric regression to 

estimate a constrained call price function over strike prices. The authors incorporated monotonicity and 

convexity constraints to ensure that the call function is a decreasing convex function over strike prices and 

                                                           
1 See section 2.2.2 for a further explanation on state-prices.  
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further ensures that the stat price density is a valid density function, or more specifically that the function 

is non-negative and integrate to one. A more recent study by Feng and Dang (2016), where the authors 

presented a constrained support vector machine as a regression technique for interpolating the bid-ask 

spread and subsequently estimating the RNDs incorporating the Breeden-Litzenberger approach.  

 

The complexity and variety of the option implied RND makes it practically impossible to derive a 

single method that can perfectly estimate a profound and well-behaved RND for every asset, at different 

points in time. Thus, several comparison studies have been made to evaluate the most prominent methods 

for obtaining the RND. However, the issue of comparing the methods is that the theoretical or true RND 

cannot be observed from market data, since it is impossible to accurately determine the underlying asset 

return distribution. Cooper (1999) was one of the first to effectively study the performance of these different 

approaches by generating pseudo option prices using Monte Carlo simulations, and thus, he remained in 

full control over the underlying distribution and could adequately evaluate the performance of the different 

methods.  

 

Since the novel approach of simulating option prices, numerous studies have been conducted to 

compare different methods and their ability to estimate the option implied RND. Jondeau and Rockinger 

(2000) compared three different methods, a parametric, semi-parametric and nonparametric, with varying 

results. The nonparametric approach provided a good fit, but was unable to provide as much information 

as the parametric. Bu and Hadri (2007) evaluated the performance of the nonparametric method of 

smoothing the implied volatility and the semi-nonparametric confluent hypergeometric method, based on 

pseudo-priced options using the stochastic volatility model proposed by Heston (1993). The authors found 

that the semi-nonparametric method outperformed the nonparametric method both in terms of accuracy and 

stability. Bouden (2007) evaluated the performance of four parametric and two nonparametric approaches. 

The author compared the methods based on their ability to replicate the true density, pricing of options and 

forecasting performance and found that the nonparametric methods were superior. Grith, Härdle, and 

Schienle (2012) compared the performance between kernel-based methods, where two of the methods used 

local features (local polynomials), while a third method utilized global curve fitting. The authors found that 

all three approaches performed similarly. At the same time, they pointed out that the local polynomial 

methods are highly sensitive to bandwidth selection, similar to the findings of Pritsker (1998). Lai (2014) 

compared three different nonparametric methods. The three different methods used were kernel regression, 

spline interpolation and a neural network model, where the kernel regression proved to be the best approach. 

On the other hand, the author concludes that the estimation error depends on both the nature of the option 

data and that specific models are better suited for different set of options. Even more recent work, Celis, 
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Liang, Lemmens, Tempere, and Cuyt (2015) investigated the performance of the parametric mixture 

method and the two nonparametric, interpolating methods: smoothing of the implied volatility surface and 

the rational interval interpolation. The authors found that the rational interval interpolation method proved 

to be more robust and more adequate for estimating tail distributions, especially for longer maturities. 

Santos and Guerra (2015), examined the performance of four different methods, based on parametric, semi-

parametric and nonparametric approaches to estimate the RND. They found that the best performing 

methods were surprisingly the two parametric methods: Hypergeometric function and Mixture Lognormal 

method. Hence, we recognize that earlier literature is divided regarding the preferred approach for obtaining 

the RND. For a comprehensive overview of the earlier research and theoretical framework within the field 

of risk-neutral distribution and option pricing, see Jackwerth (1999, 2004) or the more recent work by 

Figlewski (2018).  

 

The main purpose of this thesis is to investigate and examine how one can efficiently estimate and 

measure the performance of option implied RNDs, and further determine which of the selected models is 

best suited for the purpose of estimating them. In the next segment, section 2, we will cover the theoretical 

framework behind risk-neutral valuation and densities, option pricing and how certain market aspects 

influence how market agents price derivatives. In section 3, we review the methodology and the different 

approaches for estimating the option implied RND and in detail define the three models: the mixture model, 

the kernel regression model and the neural network model. Based on the work of Cooper (1999), section 4 

introduces the four known option pricing models used in this thesis, namely the famous Black and Scholes 

(1973) model, the stochastic volatility model introduced by Heston (1993), the jump diffusion model 

derived by Merton (1976) and lastly the stochastic volatility and jump diffusion model proposed by Bakshi, 

Cao, and Chen (1997). The option pricing models are subsequently used to evaluate the theoretical or ‘true’ 

RNDs and simulate corresponding option prices, which in turn are used to train our models. Section 5 

presents the model estimated RNDs and how well they correspond to the true RNDs. We have divided the 

result section into four segments, where we want to answer the following questions,  

 

1) Which model can best replicate the statistical moments of the true RND?  

2) Are the model estimated RNDs statistically identical to the true RND?  

3) Which model’s RND function can most efficiently price hypothetical options?  

 

We proceed to answer these questions in section 5.1, where we begin with comparing the RNDs’ 

characteristics in terms of mean, standard deviation, skewness and kurtosis. Section 5.2 introduces the 

nonparametric Mann-Whitney U-test, where we investigate if two specific distributions statistically 
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originates from the same population distribution. In section 5.3 we compare the model estimated RNDs’ 

option valuation capabilities. Lastly, in section 5.4 we evaluate the models’ performance of real market data 

consisting of historical S&P 500 index option prices. In the last section, section 6, we discuss the concluding 

findings from the thesis and further the limitations and future research within the field of risk-neutral asset 

return probability distributions.   
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2. Theoretical Framework 

Obtaining the option implied RND is often a challenging task, due to the complexity of the 

underlying processes. Today’s research, conducted on option implied information, mainly focuses on 

extracting, understanding and making use of the valuable information regarding investors’ expectations and 

risk preferences contained in option prices, where volatility has attracted by far the most attention 

(Figlewski, 2018). However, obtaining the RND is considered to be a crucial step in pricing derivatives. 

With a comprehensively estimated RND, one can price any derivative deriving from the same underlying 

security with the same time to expiration. This is especially useful for illiquid derivatives and derivatives 

with low trading volume. Further, one can gain useful insights about the actual probabilities and future risk 

premiums from the RND in conjunction with the pricing kernel, obtaining future market beliefs that are 

necessary for fiscal policy makers, market agents and other financial institutions (Jackwerth, 2004).  

2.1 Risk-Neutral Valuation and Underlying Economics 

It is necessary to understand the theory behind risk-neutral valuation, how the risk premium is 

incorporated in derivative prices and the complexity of a representative investor when modeling derivatives, 

before one proceeds to estimate and interpret the option implied RNDs. 

 

A derivative market is constituted by two representative agents, hedgers and speculators. Keynes 

(1930) argued that hedgers utilize the derivative contracts to hedge their exposure in the spot market, while 

speculators buy the particular derivative contract with the associated risk from the hedgers and in return 

gets compensated with a profit. The interplay between these two parties subsequently results in the so called 

risk premium, which is paid by the hedgers and received by the speculators, and is dependent on a 

magnitude of factors that change over time (Figlewski, 2018). However, modern rational pricing theory 

debates that in an arbitrage free and frictionless market, there is no additional risk-premium for derivative 

contracts. For explanation purposes, consider a basic forward contract. A forward contract locks in the 

current price 𝐹𝑡 at which the underlying asset 𝑆 will be purchased on a future date 𝑇. According to the law 

of one price, two assets with the same payoff ought to have the same market price and assuming the 

underlying is not paying any dividends, the price of a forward contract has to be equivalent to the spot price 

and the continuously compounded risk-free interest rate 𝑟, 

 

 𝐹𝑡 = 𝑒𝑟(𝑇−𝑡)𝑆𝑡. (2.1) 
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If 𝐹𝑡 > 𝑒𝑟(𝑇−𝑡)𝑆𝑡, an investor could profit from an arbitrage by buying the asset and short the forward 

contract of the asset. If 𝐹𝑡 < 𝑒𝑟(𝑇−𝑡)𝑆𝑡, the investor could short the asset and buy the forward contract on 

that asset (Hull, 2017). Due to this reasoning, there is no risk premium incorporated in the price of a forward 

contract. When the payoff of a derivative can be exactly replicated by a portfolio of securities available 

today, rational investors force the prices of the derivatives into a state of risk-neural equilibrium. This 

concept of replicating a payoff under a riskless arbitrage scenario is the fundamental concept of risk-neutral 

valuation and the reason why the representative investors’ risk preferences are assumed to be irrelevant 

when pricing derivatives. 

2.1.1 Option Pricing 

A European call option contract gives the holder the right, but not the obligation to buy the 

underlying asset at a predetermined date and price. The predetermined date is called the expiration date, 

which is the date when the option contract can be exercised to buy the underlying asset for the 

predetermined price, which in turn is called the strike price. The payoff of an option, compared to the payoff 

of forward, is significantly more complex, since the option’s payoff is non-linear and thus difficult to 

replicate with other securities. It was not until the groundbreaking work of Black and Scholes (1973) and 

Merton (1973), who introduced their closed-form solution, the Black-Scholes-Merton model, here  referred 

to as the Black-Scholes model, for estimating option prices. Black and Scholes showed that in a complete 

and frictionless market, an investor can replicate the option payoff with the underlying stock and a bond, 

which means that all the associated risk with holding the option contract can be hedged away, also referred 

to as delta hedging. Hence, since an investor can hedge all their risk associated with the option, the expected 

return of an option should be equal to the risk-free rate. Based on this theory, the expected payoff of the 

option can be estimated by integrating the payoff function over a risk-neutral density function2. Further, the 

model proposes that any parameters implied from the arbitrage free relationship between the stock and 

option are not affected by investors’ risk preferences, and therefore, all option payoffs have to be discounted 

with the risk-free rate, which is the discount rate a risk-neutral investor would apply. By introducing the 

concept of risk-neutral valuation and asset returns, the model permanently changed the fundamental 

perception of asset pricing theory.  

 

However, the Black-Scholes model has its limitations and has been criticized on multiple occasions. 

The Black-Scholes model, as many other theoretical valuation models, makes rigid assumptions about the 

market, including lognormal return distributions, frictionless markets and the absence of arbitrage 

                                                           
2 See section 2.3 for an example. 
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opportunities. Academics have tried to propose countless improvements and expansions to the Black-

Scholes formula since its publication. Merton (1974) was quick to re-formulate the model to incorporate a 

stochastic interest rate. Other extensions include jump-diffusion and pure jump models presented by Merton 

(1976), Bates (1991) and Madan, Carr, and Chang (1998). However, two of the most prominent and most 

cited extensions to the model are the stochastic volatility model, proposed by Heston (1993), and stochastic 

volatility jump-diffusion model, introduced by Bakshi et al. (1997).   

2.1.2 Implied Volatility 

The models developed based on the work of Black and Scholes, generally relied on the same 

fundamental procedure for pricing options. One began with making assumptions regarding the underlying 

stochastic process, for example a geometric Brownian motion, which described the movement of the 

underlying asset’s price. Then one continues to evaluate the stochastic process under risk-neutral conditions 

and lastly discount the expected option payoff under the risk-neutral measures to price the option (Jackwerth, 

1999). However, Rubinstein (1985) argued that these conventional models neglect real world characteristics 

associated with observed asset prices. His findings showed that out-of-the-money options with shorter time 

to maturities were overpriced in the market compared to the prices estimated by theoretical models. These 

findings indicated that the market puts more emphasis on extreme probabilities than assumed under risk-

neutral measures. Rubinstein therefore proposed a reversed methodology for option pricing, where one 

instead observes the market prices and subsequently estimates the underlying implied distribution and 

stochastic processes based on the observed prices. This novel approach changed the way researchers and 

investors priced options, and instead began to derive the implied model parameters from observed prices in 

the market. This approach further addressed the problem of the implied volatility, a necessary parameter 

for the Black-Scholes formula that was assumed to be constant, and further cannot be observed in the market. 

The implied volatility could now be estimated by reverse engineering the Black-Scholes model using 

observed option prices.  

 

The original theory behind the Black-Scholes model stated that the implied volatility is constant 

across strike prices and over the life span of an option, hence plotting the implied volatility across strike 

prices would result in a straight line. However, Rubenstein (1985) showed that plotting market implied 

volatilities across strike prices resulted in a particular pattern, where one could observe that the implied 

volatility was considerably greater for options with strike prices deep out-of-the-money or in-the-money, 

referred to as the ‘volatility smile’. After the U.S. stock market crash of 1987, researchers found that the 

volatility smile had changed its shape and sloped downwards as the strike price increased, creating a skewed 

volatility smile. This new pattern is nowadays more commonly referred to as the ‘volatility skew’, where 
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the out-of-the-money puts experience a higher volatility than out-of-the-money calls. Mayhew (1995) and 

Toft and Prucyk (1997) found evidence for the negatively skewed volatility pattern for individual stock 

options for the American market. Further, Tompkins (2001) studied the volatility for international markets 

and found convincing patterns for a downward sloping volatility skew for Japanese, German and British 

index options as well.  

 

There are many theories for the observed volatility skew. One more notable explanation is the 

leverage effect, where researchers have found a negative correlation between equity returns and volatility. 

The leverage effect was first proposed by Black (1976), Christie (1982) and Schwert (1989) who argued 

that the negative correlation is due to an increased debt-to-equity ratio since the company's equity falls, but 

its debt stays constant. This increase in leverage will subsequently increase the volatility of the stock. 

Another proposed explanation of the leverage effect is the insurance characteristics of an out-of-the-money 

put option. These relatively expensive out-of-the-money put options provide a hedge for risk-averse 

investors in case of a market crash and are therefore willing to pay a premium. Franke, Stapleton, and 

Subrahmanyam (1999), Mayshar and Benninga (1997), Grossman and Zhou (1996) and Bates (2008) tried 

to explain this increased investor risk aversion in bear markets by modeling certain investor behavior by 

introducing a group of heterogeneous investors with another exogenous group who demanded portfolio 

insurance. However, these results were not consistent with the volatility skew, but rather resulted in 

moderately sloped volatility smiles. Lastly, it is evident that only a few market participating agents, such 

as banks and institutions are willing to write more risky contracts, such as deep out-of-the-money put 

options. Thus, the price of these contract increases, which consequently increases the implied volatility, 

resulting in a more prominent volatility skew (Jackwerth, 2004). 

 

 Recognizing that the implied volatility is skewed is a crucial step for estimating the RND, since 

the RND is implied from option prices, which subsequently are determined by the implied. Due to the 

skewed volatility across strikes, the option implied RND will subsequently become skewed and leptokurtic 

(Jackwerth, 2004). Skewed asset return distributions, which are observed to frequently be left skewed, 

would hypothetically indicate to a certain extent the markets anticipation of more extreme negative returns. 

Thus, fatter left tails distribute more probability to lower asset returns, while fatter right tailed distributions 

indicate a higher probability for particularly higher asset returns. Leptokurtosis, or simply kurtosis, allow 

the distribution to allocate more probability to the more extreme events in the tails, while remain a certain 

‘peakedness’ around the mean. This would hypothetically imply that there is a higher probability of small 

and large price changes, while there is a lower probability for intermediate sized price changes (Jackwerth, 

2004). Dennis and Mayhew (2002) found convincing evidence of a negative skew in the RND implied from 
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individual stock options. They conclude that stock option prices cannot be exclusively determined by no-

arbitrage arguments and thus market risk should be incorporated when theoretically evaluating option prices. 

The observation of skewed risk-neutral distributions paved the way for further research based on the 

characteristics of the RNDs. Lynch and Panigirtzoglou (2002) investigated the relationship between RND 

features and macroeconomic events, but did not manage to find any significant results. Steeley (2004) on 

the other hand, investigated the relationship between the features of the RND and interest rate 

announcements and found that there is a relationship between the two. Han (2007) investigated the 

statistical moments of the RND and investor sentiment. The author concluded that the RND becomes more 

left skewed, or negatively skewed, when market professionals exhibit bearish characteristics. Conrad, 

Dittmar, and Ghysels (2013) explored the relationship between the implied volatility, skewness and kurtosis 

of risk-neutral distributions implied from individual stock options and their respective equity returns. They 

could conclude that there is a strong evidence between returns and the different characteristics of the 

particular RND. Martin (2017) and Martin and Wagner (2018) further derived a formula estimating the 

expected return on the market and also individual stocks, by incorporating the certain characteristics of the 

option implied RND. They confirmed that there is a relationship between the features of risk-neutral 

densities used in their model and future expected returns, which they argued, can be applied to many real-

world applications and frameworks. 

2.2 Option Implied Risk-Neutral Distribution 

Security prices can be thought of as the expected value of future cash flows. These expected payoffs 

constitute a certain probability distribution that indicates the likelihood of these expectations coming true. 

In case of only one priced security, and under risk-neutral measures, that price would yield one location of 

that probability distribution, where the expected return on the distribution would be equal to the risk-free 

rate. However, if one were to observe multiple securities, like option contracts, that derive from same 

underlying, with the same time to maturity, but different strike prices, one would have information on 

multiple locations of the distribution, which can be utilized to specify the security’s expected return 

distribution, which we further refer to as the option implied return probability distribution. We further know, 

based on the theory presented by Black and Scholes (1973), that options are ought to be priced under risk-

neutral measures, since the contract holder can hedge away all risk,3 and thus, the option implied return 

distribution should in theory be risk-neutral or referred to as the RND. Therefore, it is important to recognize 

that options offer a prominent tool for obtaining securities’ RNDs (Jackwerth, 2004). However, asset 

                                                           
3 Assuming a frictionless and arbitrage-free market, as well as no transaction costs and homogenous, risk-neutral representative 

market agents.  
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pricing theory defines two probability distributions, the actual and the risk-neutral probability distribution, 

where the interplay between these two is constantly subjected to market forces such as representative agents’ 

risk-aversion.  

2.2.1 Actual and Risk-neutral Valuation  

 To fully understand the difference between actual and risk-neutral probabilities, we need to 

recognize the underlying factors, such as utility functions and risk-aversion that are altering the actual world 

from being a risk-neutral world. The utility function is a common term within the field of rational choice 

theory and behavioral finance that tries to measure the utility or satisfaction an individual receives from 

making a choice over another (Munk, 2013). For instance, why an individual prefers a sure payment, also 

known as the certainty equivalent, over a fair gamble with the same expected payoff. The shape of the 

utility function is further determined by the agent’s so-called risk aversion. For instance, an individual that 

dislikes risk, or referred to as a risk-averse agent, would rather receive a certainty equivalent of $45 than a 

fair gamble with the expected payoff of $50. Thus, we can interpret the agent’s utility function as concave, 

where the utility of the expected value of the certainty payment is increasing at a decreasing rate for higher 

uncertainty payments. The more risk-averse the agent is, the greater the curvature of the utility function and 

subsequently less appreciation for higher uncertainty payoffs. For risk-seeking agents on the other hand, 

the utility function is convex, where the utility of the expected value of the certainty payment is increasing 

at an increasing rate for higher uncertainty payments. The difference in value between agent’s utility of the 

certainty equivalent and the expected payoff of the fair gamble is referred to as the risk premium (Munk, 

2013). In a risk-neutral world, however, the utility function is simply constituted by a linear function, where 

the investors are indifferent between the certainty equivalent and the fair gamble with the same expected 

payoff and thus the risk-premium is equal to zero (Jackwerth, 2004). Determining the market representative 

utility function is a challenging task but can in turn provide insightful knowledge about market beliefs and 

future asset returns. As proposed by Figlewski (2018), by obtaining the market implied RND and further 

assume the asset return process or the representative agents utility function, one can subsequently obtain 

the full actual return distribution.  

The first academics to explore the concept of risk-neutral pricing were Cox and Ross (1976) who 

showed, by introducing stochastic processes and jumps, that the risk-neutral option valuation problem itself 

is equivalent to the problem of determining the distribution of the terminal stock price, and subsequently 

presented the link between option valuation and the stochastic processes of stocks.  Rubinstein (1976), and 

further improvements by Brennan (1979), developed a risk-neutral valuation method of securities and 

uncertain income streams, with respect to the risk-averse investor utility function. They argued that the 
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market representative investor’s risk aversion does matter and thus proved that only under a constant 

investor utility function and when returns are log normally distributed, the Black-Scholes model is a 

sufficient method for pricing European options.  

 

 Black and Scholes (1973) showed that derivatives traded on an arbitrage free market ought to be 

priced based on the assumption that all investors are risk-neutral. Assuming a risk-neutral world has two 

beneficial features: first, the expected return on a stock is the risk-free rate and secondly, the discount rate 

of an expected payoff on any derivative is equivalent to the risk-free rate (Hull, 2017). However, if we 

instead incorporate actual probabilities, constituted by agents’ utility and risk-aversion, the derivative 

associated with more risk in its payoff distribution should have a greater expected return, and thus a lower 

price, than a derivative associated with less risk. Hence, the relationship between the risk-neutral and actual 

probabilities depends on how much the market representative agent is willing to pay for risk (Conrad et al., 

2013).  

To further investigate the relationship between actual and risk-neutral distributions, we can 

construct an example, as shown by Jackwerth (2004), based on the influential work of Cox et al. (1979) and 

their fundamental “binomial model” for pricing options. Here we assume a complete and arbitrage free 

market, which can only take on two states in one year, perceptually equivalent to a binomial tree.4 In our 

example, we define the current stock price (𝑆0) as $100, in the up-state (𝑆𝑇
𝑢) the price as $120, and in the 

down-state (𝑆𝑇
𝑑) as $80. The actual probabilities of the two future states are 0.8 (𝑝𝑢) and 0.2 (𝑝𝑑) , 

respectively. The bond (𝐵0)  is priced at $100 today and $105 in the two future states (𝐵𝑇), which is 

equivalent to a risk-free rate (𝑟) of 5%. To price a call option on that particular stock with the strike (𝐾) of 

$100, one can estimate the discounted payoff under the given actual probabilities. With only these two 

states, up and down, the price of the call option (𝑐) at time 𝑇 = 1 can be defined as, 

 
𝑐 =

1

(1 + 𝑟)𝑇
[𝑝𝑢𝐶𝑇

𝑢 + 𝑝𝑑𝐶𝑇
𝑑], 

 

(2.2) 

for,  

 0 ≤ 𝑝𝑢 ≤ 1,    𝑝𝑑 = 1 − 𝑝𝑢,  

 

where 𝐶𝑇
𝑖  is the payoff of the call option at time 𝑇 expressed as, 

 𝐶𝑇 = max (0, 𝑆𝑇 − 𝐾). (2.3) 

                                                           
4 For a complete definition of binomial trees for option pricing, see the inspiring work of Cox et al. (1979). 
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Thus, the expected payoff is equivalent to $20 ∗ 0.8 + $0 ∗ 0.2 = $16. Further discounting the payoff, one 

can obtain the option price $16 (1 + 0.05) = $15.2381⁄ . However, for this option the market price is 

$11.9048. The reason for these two different call prices is the representative market investors’ utility 

function and corresponding risk-aversion. The representative investor has less appreciation for the payoff 

in the good state when she is already wealthy, thus is willing to pay less for the call option than implied by 

the actual probabilities. Hence, to evaluate the market price of the option, one has to utilize the concept of 

risk-neutral pricing and state-prices.  

 

The state-price is simply referred to as the price an investor is willing to pay for a certain payoff in 

that particular state of the economy. Here we denote 𝜋𝑢 as the state-price in the good state and 𝜋𝑑 as the 

state-price in the bad state. Elaborating on the example given earlier, one can set up the equation system 

for the stock and the bond to calculate the state-prices in both states as follows,  

   

 𝑆0 = 𝜋𝑢𝑆𝑇
𝑢 + 𝜋𝑑𝑆𝑇

𝑑 , 𝐵0 = 𝜋𝑢𝐵𝑇 + 𝜋𝑑𝐵𝑇 . (2.4) 

 

Solving the equation systems, results in 𝜋𝑢 = 0.5952 and 𝜋𝑑 = 0.3571. The sum of the state-prices has to 

be equal to the price of a zero-coupon bond that pays $1 in both states (Jackwerth, 2004). Continuing, 

multiplying the state-prices with the inverse of this unit bond results in the risk-neutral probabilities 𝑞𝑖,  

 
 𝑞𝑖 = (1 + 𝑟)𝑇𝜋𝑖. (2.5) 

   

Thus, the risk-neutral probabilities are 𝑞𝑢 = 0.6250 and 𝑞𝑑 = 0.3750. Using the risk-neutral probabilities 

in equation (2.2), substituting the actual probability 𝑝 for the risk-neutral 𝑞, one can evaluate the price of 

the call option at time 𝑇 to be equivalent to $11.9048. In this simple, complete market scenario, any 

security with payoff at time 𝑇 can be evaluated once the risk-neutral distribution is obtained.  

 

Assuming no arbitrage, the state-prices and actual probabilities contain valuable information about 

the representative market agent (Syrdal, 2002). The ratio between the two probabilities, referred to as the 

pricing kernel (𝑚) or the stochastic discount factor, which represents the investor’s expected marginal 

utility growth (Jackwerth, 2004). The pricing kernel is defined as, 

 
𝑚𝑖 =

𝜋𝑖

𝑝𝑖
. 

 

(2.6) 

 

In the example given, the pricing kernel is equivalent to 𝑚𝑢 = 0.7441 in the up-state and 𝑚𝑑 = 1.8750 in 

the down-state. Thus, the investor has a larger marginal utility in the down-state than in the up-state and, 
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thus, has more appreciation for a certainty equivalent payoff in the down-state than in the up-state. The 

pricing kernel here reveals that the market agent in this example is risk averse and want to be compensated 

for the down-state exposure.   

 

As stated earlier, common asset pricing theory is based on the assumption that market agents are 

risk-averse. That means, in complete markets, with risk-averse investors and common true beliefs, the 

pricing kernel can be interpreted as a convex function or a decreasing function over increased wealth. 

However, Jackwerth (2000) showed in his work of recovering risk aversion from option prices, which the 

implied pricing kernel of the S&P 500 is not decreasing, but rather increasing with aggregated resources, 

to a certain point of wealth, after a financial crash. Thus, proving the opposite of what common financial 

behavior theory would suggest. This pricing kernel puzzle implies that instead of investors being risk-averse, 

they are risk-seeking and would rather pay for a fair gamble than pocketing the certainty equivalent. The 

pricing kernel puzzle was further observed by Rosenberg and Engle (2002) for the S&P 500 index and later 

Jackwerth (2004) showed that the puzzle seem to appear internationally on the indices of Germany, United 

Kingdom and Japan.  

2.3 Estimation of the Risk-neutral Density  

A complete market is present when the complete set of possible future states of the world can be 

constructed with existing assets, which have linearly independent payoffs. In the example above, there were 

two states, up and down, as well as two securities, one stock and one bond, thus simulating a complete 

market. The theory behind complete markets can be traced back to Arrow and Debreu (1954), Debreu (1959) 

and Arrow (1974), who proved mathematically the existence of a general market equilibrium. Both Arrow 

and Debreu were awarded the Nobel Prize for their work, mainly due to their work within the field of 

complete markets and how to apply the theory to the problem of general equilibrium. Ross (1976) was one 

of the first to investigate the complete market efficiency and how it impacts option prices and subsequently 

the option implied RND. Ross showed that one can determine the complete European option implied RND 

from a set of European option prices, while assuming the market is complete. Two years later, Breeden and 

Litzenberger (1978) showed that option prices, which are only dependent on the uncertainty of the future 

state of the underlying, can be expressed as a function 𝐶(𝐾) across strikes 𝐾 and were able to derive a 

formula for the state-prices as a function of future stock prices.  
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Consider the equation for the price of a call option with the payoff given in equation (2.3,) 

 

𝑐(𝑆𝑡 , 𝐾) = 𝑒−𝑟𝑇 ∫ (𝑆𝑇 − 𝐾)𝑞(𝑆𝑇)𝑑𝑆𝑇

∞

𝑆𝑇=𝐾

, 
 

 

(2.7) 

   

where the integral is over the distribution when the call has a positive payoff 𝑆𝑇 ≥ 𝐾, 𝑞(𝑆𝑇) is the risk-

neutral probability density function of the terminal stock price. If we differentiate the equation with respect 

to 𝐾 once, we get the following equation, 

 𝜕𝑐

𝜕𝐾
= −𝑒−𝑟𝑇 ∫ 𝑞(𝑆𝑇)𝑑𝑆𝑇

∞

𝑆𝑇=𝐾

. 
 

 

(2.8) 

   

Differentiate once more with respect to 𝐾,  

 

 𝜕2𝑐

𝜕𝐾2
= 𝑒−𝑟𝑇𝑞(𝐾), 

 

(2.9) 

   

where the risk-neutral density function 𝑞(𝑆𝑇), for 𝐾 = 𝑆𝑇, is equal to, 

 

 
𝑞(𝑆𝑇) = 𝑒𝑟𝑇

𝜕2𝑐

𝜕𝐾2
|
𝐾=𝑆𝑇

. 
 

(2.10) 

   

Thus, indicating that the RND is equivalent to the forward value of the second partial derivative of the call 

option price with respect to its strike price.5 Rewriting the risk-neutral probability function from (2.10) 

with the result from equation (2.5), shows that the state-price is equivalent to the second derivative of a 

call option with respect to its strike price when the future underlying asset is equal to the strike price  

 

 
𝜋(𝑆𝑇) =

𝜕2𝑐

𝜕𝐾2
|
𝐾=𝑆𝑇

. 
 

(2.11) 

   
Breeden and Litzenberger showed that in a complete market, with a strike price for every possible state of 

the future stock price, one can obtain the risk-neutral density with the equation (2.10). However, under 

actual market conditions strike prices are far apart, thus, option prices have to be interpolated from models 

based on estimated parameters, such as implied volatility. The interpolation of option prices can further be 

a challenging task, since a majority of option markets are illiquid and especially deep-out-of-the-money 

and deep-in-the-money options are rarely traded.   

                                                           
5 See appendix a) for a complete derivation of the Breeden-Litzenberger equation. 
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3. Methodology 

Obtaining the RND is a crucial, but often overlooked step in pricing derivatives. With a 

comprehensively estimated RND one can price derivatives that derive from the same underlying security 

and with the same time to expiration. Thus, one can estimate the RND from a set of liquid options and 

continue to price illiquid options. These options can have exotic payoffs, but they have to follow European 

exercise restrictions, since RNDs do not accommodate for early exercises (Jackwerth, 1999). Further, one 

can gain useful insights about the actual probabilities and future risk premiums from the RND in 

conjunction with the pricing kernel (Jackwerth, 2004). A wide variety of approaches have been proposed 

to estimate the RND from option prices. In this section we will review the different methods and approaches 

for obtaining the option implied RND, as well as discuss and elaborate on the three specific methods chosen 

for the purpose of this thesis, namely the mixture model, kernel regression model and neural network model. 

According to Jackwerth (1999) there are three approaches to estimate the option implied RND. The 

first approach involves establishing a reasonable probability distribution with assumed underlying 

parameters, then fit the resulting option prices, based on the estimated density, to observed option prices 

and minimize the error to subsequently optimize the underlying parameters. Second approach is to estimate 

a function of option prices across strike prices, based on observed option prices. Then use the methodology 

proposed by Breeden and Litzenberger (1978), discussed in section 2.3, to retrieve the RND. The third and 

more stable approach, first proposed by Shimko (1993), is to instead estimate a function of implied 

volatilities across strike prices based on the observed market data. Based on the function of implied 

volatilities, estimate the option prices using the Black-Scholes model (Black & Scholes, 1973) and again 

use the Breeden-Litzenberger approach to obtain the RND.  

The three different approaches are conducted through applying different methods or models to 

succeed with the desired task. There are numerous methods suggested in academic literature for each of the 

three approaches mentioned. 6  Jackwerth (1999, 2004) categorize these methodologies into two main 

categories: parametric and nonparametric methods, based on the survey articles from Cont (1997) and Bahra 

(1997). Other researchers such as Jondeau and Rockinger (2000) and Bu and Hadri (2007) introduce semi-

parametric methods as an intermediate category. However, for the purpose of this thesis, we will focus on 

the two main categories parametric and nonparametric.  

 

                                                           
6 See Jackwerth (2004) for a detailed overview of the different methods for each approach. 
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3.1 Parametric and Nonparametric Methods 

Both parametric and nonparametric methods are used estimate the RND by calibrating the 

underlying parameters associated with the desired model. However, parametric methods define the model 

as a function of a finite number of parameters and thus have to make assumptions regarding the specific 

characteristics of the implied RND (Lai, 2014). In general, a parametric model starts with assuming a 

predetermined RND with designated features such as skewness or excess kurtosis, as well as defining the 

associated parameters to optimize for the model. The model calibrates these parameters by minimizing the 

error between the model’s estimated option prices and observed option prices (Jackwerth, 1999). Thus, with 

a set of optimized parameters, one can easily obtain the estimated RND. Parametric methods are usually a 

popular alternative, since they are generally intuitive and easy to interpret. Further, parametric methods are 

less computationally demanding and do not require a substantial amount of data, due to their small set of 

parameters over which to optimize. However, the models require predetermined assumptions regarding the 

underlying data-generation process, which is often difficult to validate (Santos & Guerra, 2015).  

Compared to parametric methods, nonparametric methods have hypothetically an infinite number 

of parameters, with more degrees of freedom and are thus a lot more flexible (Lai, 2014). Nonparametric 

methods try to directly estimate the function 𝑦̂(∙) on the underlying data 𝑍∗, without the need of making 

any major assumptions regarding the underlying data-generation process and regression function. This 

makes nonparametric methods easy to utilize in scenarios where extensive data is available and one can 

only make vague assumptions regarding the underlying data process. When it comes to estimating option 

implied RNDs, nonparametric methods are in general used to fit the implied volatility 𝜎(∙)  on the 

underlying data 𝑍 that is represented by a set for features 𝑍 = {𝐾, 𝑆, 𝜏, 𝑟, 𝛿}, such as strike price (𝐾), spot 

price (𝑆), time to maturity (𝜏), risk-free rate (𝑟) and dividends (𝛿). However, nonparametric methods are 

in general more computationally demanding and often require extensive datasets. Nonparametric methods 

are again usually harder to interpret and tend to be regarded as a black-box.   

3.2 Mixture Model 

 Black and Scholes (1973) assumed that the underlying asset price follows a geometric Brownian 

motion, which in turn generates a simple log-normal return probability distribution, inadequate for real 

world scenarios. A mixture model is essentially an extension of the original Black-Scholes model, where 

the model utilizes the added flexibility from multiple simple distributions to capture the features of a certain 

return distribution, such as skewness and leptokurtosis. Most famously Bahra (1997), but also other 

academics like Melick and Thomas (1997), Söderlind and Svensson (1997), Gemmill and Saflekos (2000) 
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and Schittenkopf and Dorffner (2001), argued that the option implied RND is simply constituted by a linear 

combination of weighted average log-normal densities, for 𝐾 = 𝑆𝑇 , defined as, 

 
𝑞(𝑆𝑇) = ∑[𝑤𝑖𝐿𝑖(𝛼𝑖 , 𝛽𝑖; 𝑆𝑇)

𝑛

𝑖=1

]|

𝐾=𝑆𝑇

 

 

 

(3.1) 

where 𝑞(𝑆𝑇)  is the RND evaluated for 𝑆𝑇 , 𝐿𝑖(𝛼𝑖 , 𝛽𝑖; 𝑆𝑇)  is the lognormal density with the unknown 

parameters 𝛼𝑖 and 𝛽𝑖, 𝑖 = 1,… , 𝑛, where 𝑛 is the number of densities used to evaluate the RND. We further 

can define the 𝑖-th lognormal density as, 

 
𝐿𝑖(𝛼𝑖 , 𝛽𝑖; 𝑆𝑇) =  

1

𝑆𝑇𝛽𝑖√2𝜋
𝑒[−(ln(𝑆𝑇)−𝛼𝑖)

2/2𝛽𝑖
2], 

 

 

 
𝛼𝑖 = ln(𝑆𝑡) + (𝜇𝑖 −

1

2
𝜎𝑖

2) 𝜏, 
 

   

 𝛽𝑖 = 𝜎𝑖√𝜏, (3.2) 

   

where 𝜇𝑖  is the instantaneous drift, 𝜎𝑖 is the volatility of the associated return distribution and 𝑤𝑖 is the 

weight of the distribution, where 𝑤𝑖 ≥ 0 and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1. By optimizing these parameters, 𝜇𝑖 , 𝜎𝑖, 𝑤𝑖, and 

subsequently summarize the number of 𝑛-distributions, one can achieve enough flexibility to obtain a well 

behaved RND from a cross-sectional set of option prices. Following the methodology of Bahra (1997), we 

can optimize our parameters by first pricing the respective call and put options, defined as follows,7 

 
𝑐(𝐾, 𝜏) = 𝑒−𝑟𝜏 ∑𝑤𝑖 [exp (𝛼𝑖 +

1

2
𝛽𝑖

2)𝑁(𝑑𝑖) − 𝐾𝑁(𝑏𝑖)]

𝑛

𝑖=1

, 
 

 
𝑝(𝐾, 𝜏) = 𝑒−𝑟𝜏 ∑𝑤𝑖 [𝐾𝑁(−𝑏𝑖) − exp (𝛼𝑖 +

1

2
𝛽𝑖

2)𝑁(−𝑑𝑖)]

𝑛

𝑖=1

, 
 

(3.3) 

   

where we define, 

 
𝑑𝑖 =

− ln(𝐾) + 𝛼𝑖 + 𝛽𝑖
2

𝛽𝑖
, 

 

 𝑏𝑖 = 𝑑𝑖 − 𝛽𝑖 , (3.4) 

                                                           
7 See Jondeau, Poon, and Rockinger (2007) for a more detailed derivation of the equation. 
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where 𝑁(𝑑𝑖) is the cumulative density function of the standard normal distribution. Thus, the combination 

of log-normal densities results in a linear combination of Black-Scholes equations, where the call option 

price depends on the parameter vector  𝜃𝑖 = {𝜇𝑖, 𝜎𝑖, 𝑤𝑖} . In order to find the optimal parameters for 

associated distribution, one has to minimize the following loss function,  

 

𝜃𝑖 = 𝑎𝑟𝑔  𝑚𝑖𝑛
𝜇𝑖,𝜎𝑖,𝑤𝑖

∑[𝑐𝑡,𝑗 − 𝑐̂(𝐾, 𝜏)𝑡,𝑗]
2

𝑁

𝑗=1

+ [𝑝𝑡,𝑗 − 𝑝̂(𝐾, 𝜏)𝑡,𝑗]
2
, 

 

(3.5) 

   

where 𝑐𝑡  and 𝑝𝑡  are the market observed call and put prices at time 𝑡  and 𝑐̂(𝐾, 𝜏)𝑡 , 𝑝̂(𝐾, 𝜏)𝑡  are the 

estimated call and put prices at time 𝑡 from equation (3.3). The optimized parameter vector 𝜃 is then used 

in equation (3.1) to obtain the RND.   

Bahra (1997) utilized a relatively simple mixture model, consisting of only two mixture 

distributions, but theoretically one could use a greater number of distributions to estimate the RND. 

However, the added flexibility of more distributions comes at a cost of more parameters to be optimized. 

For instance, utilizing three distributions would require one to estimate eight parameters, two for each 

distribution and two weights, where the third weight is the result from the constraint that the sum of weights 

has to be equal to one. Further, increase the number of distributions and the model becomes prone to 

overfitting the in-sample data, where Giamouridis and Tamvakis (2002) argue that more than three 

distributions is enough for a mixture model to start overfitting the data. Thus, the model developed for the 

purpose of this thesis will constitute of three mixture distributions to be able to accommodate for the 

complexity in the return distributions of option prices, without overfitting the in-sample data. Hence, the 

model evaluates a total of eight parameters for every time to maturity 𝜏 at time 𝑡.  

3.3 Kernel Regression 

Kernel regression is nonparametric technique that is utilized to estimate the conditional expectation 

of a random variable. In the case of pricing options, the model is used to fit the nonlinear function of the 

call option price to the associated, underlying factors 𝑍. However, it is more common to estimate the 

implied volatility function 𝜎(𝑍) due to the frequent changes in option prices compared to the minor changes 

in implied volatility over a trading day (Jackwerth, 2004). Thus, kernel regression models are constructed 

to estimate the true function for implied volatility 𝜎(𝑍) in high dimensional data using identical weighted 

functions called kernels (𝑘). Suppose we want to estimate the relationship between two variables, 𝑍𝑖 and 

𝜎𝑖 that satisfy the following nonlinear relationship, 
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 𝜎𝑖 = 𝜎(𝑍𝑖) + 𝜀𝑖 ,          𝑖 = 1,… , 𝑛,  

where 𝜎(∙) is an nonlinear function and 𝜀𝑖 is white noise. The kernels are used to estimate the unknown 

function  𝜎(∙) at each specific point 𝑍𝑖0 = 𝑧0 , by taking the weighted average of observations 𝜎𝑖0

(𝑗)
, 𝑗 =

1,… , 𝑛 around point 𝑧0. The further away the observations are from the point 𝑧0, the lower the likelihood 

that the true function goes through that distant point, and thus, is assigned less weight (Aït-Sahalia & Lo, 

1998). Hence, to obtain the estimated function, we have to compute a weighted average of the observations 

𝜎𝑖 for each value of 𝑧 in the domain of 𝜎(∙). 

For the purpose of this thesis, we will only cover the basic derivation of the kernel estimator used 

for regression purposes. For a thorough derivation, see the work of Efromovich (2008) and Chacón and 

Duong (2018). We begin by defining the kernel regression as the conditional expectation of 𝑌 given 𝑋 as,  

 
𝐸(𝑌 | 𝑋) = ∫𝑦𝑓(𝑦 | 𝑥)𝑑𝑦, 

 

 
=

∫𝑦𝑓(𝑥, 𝑦)

𝑓(𝑥)
𝑑𝑦, 

(3.6) 

where 𝑓(𝑦|𝑥) is the conditional density function of 𝑌 given 𝑋 = 𝑥, 𝑓(𝑥, 𝑦) is the joint probability density 

function of 𝑌 and 𝑋 and 𝑓(𝑥) is the marginal density function of 𝑋. With the given observations 𝑋𝑖, 𝑖 =

1,… , 𝑛, with each 𝑋𝑖 ∈ ℝ, we can estimate the density function 𝑓(𝑥) using a so-called kernel estimator,  

 
𝑓(𝑥; ℎ) =

1

𝑛ℎ
∑𝑘 (

𝑥 − 𝑋𝑖

ℎ
)

𝑛

𝑖=1

, 
 

(3.7) 

where we for simplicity denote our kernel 𝑘 as,  

 
𝑘ℎ(𝑥) =

1

ℎ
𝑘 (

𝑥

ℎ
), 

(3.8) 

so we can further simplify our kernel estimator as,  

 
𝑓(𝑥; ℎ) =

1

𝑛
∑𝑘ℎ(𝑥 − 𝑋𝑖)

𝑛

𝑖=1

, 
 

 
𝑘ℎ(𝑥 − 𝑋𝑖) = 𝜙(𝑥; 𝑋𝑖 , ℎ

2) =
1

ℎ√2𝜋
𝑒𝑥𝑝 [−

(𝑥 − 𝑋𝑖)
2

2ℎ2
] , 

(3.9) 

where kernel 𝑘ℎ, dependent on the bandwidth ℎ, is the density of a normal distribution 𝑁(𝑋𝑖, ℎ
2), where 

the bandwidth ℎ for this univariate kernel estimator is the standard deviation, that determines the spread of 

the kernel around the data point 𝑋𝑖. Too high bandwidth and the function becomes too smooth, while a too 
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low bandwidth will result in overfitting the data.8 Further, we need to define the kernel estimator that can 

be extended for multivariate data. We can specify the multivariate kernel estimator 𝑓 evaluated at 𝑥, for a 

𝑑-dimensional data sample 𝑋𝑖 for 𝑖 = 1,… , 𝑛, with each 𝑋𝑖 ∈ ℝ𝑑 as, 

 
𝑓(𝑥;𝐻) =

1

𝑛|𝐻|1/2
∑𝑘(𝐻−1/2(𝑥 − 𝑋𝑖))

𝑛

𝑖=1

, 
 

(3.10) 

where 𝑘 is referred to as a multivariate kernel, that depends on the 𝑑 × 𝑑 bandwidth matrix 𝐻. To simplify 

the expression, similar to equation (3.8), we can denote the multivariate kernel as,  

 
𝑘𝐻(𝑥) = |𝐻|−

1
2𝑘 (𝐻−

1
2𝑥), 

 

(3.11) 

hence, we can express the multivariate kernel estimator, similarly to (3.9), as,  

 
𝑓(𝑥;𝐻) =

1

𝑛
∑𝑘𝐻(𝑥 − 𝑋𝑖)

𝑛

𝑖=1

, 
 

 

 
𝑘𝐻(𝑥 − 𝑋𝑖) = 𝜙(𝑥; 𝑋𝑖 , 𝐻) =

𝑑

√2𝜋|𝐻|
 𝑒𝑥𝑝 [−

(𝑥 − 𝑋𝑖)
2

2𝐻
], 

 

(3.12) 

where 𝐾𝐻 is the normal density centered at the mean 𝑋𝑖 and with variance matrix 𝐻. The bandwidth matrix 

provides increased flexibility, but with an increased number of bandwidth parameters to be selected. Thus, 

to increase computational efficiency, we instead consider a positive diagonal bandwidth matrix 𝐻 =

𝑑𝑖𝑎𝑔(ℎ1
2, … , ℎ𝑑

2) (Epanechnikov, 1969), where we incorporate dot-product kernels for the multivariate 

kernel estimator as follows,  

 
𝑓(𝑥; ℎ) =

1

𝑛
∑𝑘ℎ1

(𝑥1 − 𝑋𝑖,1) ×

𝑛

𝑖=1

…× 𝑘ℎ𝑑
(𝑥𝑑 − 𝑋𝑖,𝑑), 

 

(3.13) 

where we recognize that ℎ = [ℎ1, … , ℎ𝑑] is the vector of bandwidths. Utilizing the multivariate kernel 

estimator (3.13), we can further express the joint density function 𝑓(𝑥, 𝑦), for a given two dimensional 

sample 𝑋𝑖, 𝑌𝑖 for 𝑖 = 1,… , 𝑛 and where our bandwidths are defined as ℎ = [ℎ1, ℎ2], as follows, 

 
𝑓(𝑥, 𝑦; ℎ) =

1

𝑛
∑𝑘ℎ1(𝑥 − 𝑋𝑖)𝑘ℎ2

(𝑦 − 𝑌𝑖)

𝑛

𝑖=1

, 
 

(3.14) 

Substituting (3.14) in the numerator of equation (3.6), we can rewrite the numerator as,  

                                                           
8 Brief explanation of overfitting is covered in section 3.4.  



 
THE OPTION IMPLIED RISK-NEUTRAL DISTRIBUTION 22 

 

 
∫𝑦𝑓(𝑥, 𝑦; ℎ)𝑑𝑦 = ∫𝑦 [

1

𝑛
∑𝑘ℎ1(𝑥 − 𝑋𝑖)𝑘ℎ2

(𝑦 − 𝑌𝑖)

𝑛

𝑖=1

] 𝑑𝑦 
 

 
=

1

𝑛
∑𝑘ℎ1

(𝑥 − 𝑋𝑖)

𝑛

𝑖=1

∫𝑦𝑘ℎ2
(𝑦 − 𝑌𝑖)𝑑𝑦 

 

 
=

1

𝑛
∑𝑘ℎ1

(𝑥 − 𝑋𝑖)

𝑛

𝑖=1

∫𝑦𝑓(𝑦)𝑑𝑦. 
(3.15) 

As shown by Nadaraya (1964) and Watson (1964), we can write the function, after some manipulations, as, 

 
∫𝑦𝑓(𝑥, 𝑦; ℎ)𝑑𝑦 =

1

𝑛
∑𝑘ℎ1

(𝑥 − 𝑋𝑖)

𝑛

𝑖=1

𝑌𝑖 . 
 

(3.16) 

Using (3.16) and (3.9) in equation (3.6), we obtain the kernel regression formula, also known as the 

Nadaraya-Watson estimator, which is given by, 

 

𝐸̂(𝑌 | 𝑋 = 𝑥) =

1
𝑛

∑ 𝑘ℎ(𝑥 − 𝑋𝑖)
𝑛
𝑖=1 𝑌𝑖

1
𝑛

∑ 𝑘ℎ(𝑥 − 𝑋𝑗)
𝑛
𝑗=1

. 

 

(3.17) 

Using the Nadaraya-Watson estimator we can define our initial framing of the problem, where the 

expectation of the implied volatility 𝜎 conditional on underlying data 𝑍, to find 𝜎(𝑍) = 𝐸̂(𝜎|𝑍), 

 

𝐸̂(𝜎|𝑍) =

1
𝑛

∑ 𝑘ℎ(𝑍 − 𝑍𝑖)
𝑛
𝑖=1 𝜎𝑖 

1
𝑛

∑ 𝑘ℎ(𝑍 − 𝑍𝑗)
𝑛
𝑗=1

 

 

 
= ∑[

𝑘ℎ(𝑍 − 𝑍𝑖)

∑ 𝑘ℎ(𝑍 − 𝑍𝑗)
𝑛
𝑗=1

] 𝜎𝑖

𝑛

𝑖=1

. 
 

(3.18) 

If we define the weight as follows,  

 

 
𝑊𝑖 =

𝑘ℎ(𝑍 − 𝑍𝑖)

∑ 𝑘ℎ(𝑍 − 𝑍𝑗)
𝑛
𝑗=1

, 
(3.19) 

we can further simplify the notation as, 

 

 
𝐸̂(𝜎|𝑍) = ∑𝑊𝑖𝜎𝑖

𝑛

𝑖=1

. 
 

(3.20) 

where the set of weights sum to one, ∑ 𝑊𝑖(𝑍)𝑛
𝑖=1 = 1. Thus, we can see that the Nadaraya-Watson estimator 

estimates the conditional expectation of the implied volatility as a weighted average of the observed implied 

volatilities at each point 𝑧𝑖 . 
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As stated earlier, bandwidth selection is a crucial part of kernel regression and there are numerous 

suggestions for choosing the optimal bandwidth. For the purpose of this thesis, we will use one of the more 

common alternatives, the so-called least squares cross-validation. We can look at selecting the bandwidth 

ℎ by minimizing the error between observed implied volatilities 𝜎𝑖 and the function 𝜎̂(𝑍; ℎ) such that,  

 
ℎ̂ = 𝑎𝑟𝑔 𝑚𝑖𝑛

ℎ>0

1

𝑛
∑[ 𝜎𝑖 − 𝜎̂(𝑍𝑖; ℎ)]2
𝑛

𝑖=1

. 

 

 

(3.21) 

However, this will in the majority of cases lead to ℎ̂ = 0. Thus, we have to restrict ℎ̂ > 0 and instead use a 

so called leave-one-out cross-validation, where we compare 𝜎𝑖 with 𝜎̂−𝑖(𝑍𝑖; ℎ), where we leave out the 𝑖-

th starting point, resulting in the least square cross-validation error,9 

 
𝐶𝑉(ℎ) =

1

𝑛
∑[ 𝜎𝑖 − 𝜎̂−𝑖(𝑍𝑖; ℎ)]2
𝑛

𝑖=1

, 
 

(3.22) 

where we define ℎ̂ as, 

 ℎ̂ = 𝑎𝑟𝑔 𝑚𝑖𝑛
ℎ>0

𝐶𝑉(ℎ). (3.23) 

With the estimated function 𝜎̂(𝑍), we can evaluate the implied volatility at each strike price 𝐾𝑖. Utilizing 

the estimated implied volatility, we use the Black-Scholes formula for our option pricing function and lastly, 

estimate the implied RND using the Breeden-Litzenberger equation (2.13), by taking the partial derivative 

of the option pricing function with respect to the strike price twice.  

The kernel regression method requires only a few assumptions other than the smoothness of the 

function and certain specifications and boundaries in the data used to estimate it. However, the method is 

data-intensive and requires a considerable amount of data to properly fit the estimated function (Aït-Sahalia 

& Lo, 1998). Further, kernel regressions tend to perform poorly on data that exhibit gaps, where the function 

is unable to fit a smooth continuation of the function across gaps observed for implied volatilities distributed 

over a  discrete set of strike prices (Jackwerth, 2004). 

3.4 Artificial Neural Network 

An artificial neural network, or simply referred to as a neural network, is a significantly simplified 

version of the extremely convoluted biological neural networks and is one of many subcategories in the 

                                                           
9 For a detailed explanation on least squares cross-validation, see the works of Efromovich (2008) Chacón and Duong (2018). 
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field of machine learning. A neural network model is composed of weighted interconnections between 

different nodes, which together have the benefit of evaluating nonlinear functions and find relationships in 

the data. Similar to the kernel regression, the neural network model for the purpose of regression analysis 

is trying to estimate the implied volatility function 𝜎̂ = 𝑓(𝑥) directly to the underlying data 𝑍, without the 

need for any major assumptions regarding the underlying distribution or regression itself. There are multiple 

different types of neural networks, with different architectures for specific tasks. However, for the purpose 

of this thesis, we will cover the multilayer perceptron model, or more commonly referred to as the 

feedforward network, for regression analysis.  

The interconnected nodes in the feedforward network are arranged in three distinct sections: The 

input layer, the hidden layers and the output layer, where each layer is vector-valued. The input layer 

consists of input nodes, where each node 𝑋𝑓 corresponds to one of the associated features included in the 

dataset. The nodes 𝑋𝑓 , 𝑓 = 1… , 𝑛, where 𝑛 is the number of features, in the input layer are connected 

through weights 𝑊𝑗,𝑘
(𝑙)

 to the nodes in the hidden layer, where the notation order is reversed, thus 𝑘 

represents the node in the previous layer, 𝑗 the node in the following layer, where 𝑙 indicates the layer. Next, 

we have the hidden layers, which are constituted by activation nodes, where one node 𝐴𝑘
(𝑙)

, in layer 𝑙, is 

connected to every node 𝐴𝑗
(𝑙+1)

, 𝑗 = 1,… , 𝑚, in layer 𝑙 + 1, as well as to every node 𝐴ℎ
(𝑙−1)

, ℎ = 1,… ,𝑀, 

in layer 𝑙 − 1, thus we can think of the layers as representing a vector-to-scalar function, where each layer 

represents a function 𝑓(𝑙)(𝑥;𝑊, 𝑏), where 𝑏 is the bias from previous layer. Further, for the input layer and 

each hidden layer we add one bias node with no input and connected with its own weight to the activation 

nodes in the next layer. The bias node is a simple node that only outputs the value 1 and thus provide more 

flexibility to the model as it allows the network to fit the data when all input features are equal to zero 

(Goodfellow, Bengio, & Courville, 2016). The activation nodes and bias in the last layer in the hidden layer 

𝐿 − 1, are in turn connected through weights to the last layer, the output layer 𝐿. The output layer is 

represented by one node 𝑌, which combines the linear input from the hidden layers to subsequently produce 

the estimated regression value 𝜎̂. The name feedforward network indicates that the information flows 

forward through the network, from the input nodes, through the hidden layers and is ultimately evaluated 

at the output layer.  

Each activation node (𝐴𝑘
𝑙 ) consists of two parts. The first part is constituted by a summarization 

function, denoted 𝑧𝑘
𝑙 , that evaluates the linear input from the previous layer as follows,  
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 𝑧𝑘
(𝑙)

= 𝑏(𝑙) + ∑ 𝑊𝑘,ℎ
(𝑙)

𝑎ℎ
(𝑙−1)

ℎ=1

, (3.24) 

where 𝑏𝑙 represents the bias in layer 𝑙, 𝑎ℎ
(𝑙−1)

 is the activation function from the previous layer 𝑙 − 1 and 

𝑊𝑘,ℎ
(𝑙)

 is the weight between the summarization function 𝑧𝑘
(𝑙)

 and activation function 𝑎ℎ
(𝑙−1)

. The second part 

of the activation node is the activation function [𝑎𝑘
𝑙 (𝑧𝑘

𝑙 )] that takes the summarization function as an 

argument and proceeds to evaluate a linear or nonlinear function. The specific activation function is decided 

upon in advance, with multiple variations of activation functions to choose from. For the purpose of this 

thesis we will cover the hyperbolic tangent function or Tanh function, 𝑇𝑎𝑛ℎ(𝑧). While other activation 

functions, such as the rectified linear unit function (ReLu), are more commonly used in today’s models, the 

Tanh function is suitable for predicting implied volatility, since we are generally estimating a value between 

zero and one. Thus, the selected Tanh function will in return predict a smoother option implied RND. The 

comparison between the RNDs estimated by the Tanh activation function and ReLu activation function is 

illustrated in figure 1. We can define the Tanh function as follows,  

 𝑇𝑎𝑛ℎ(𝑧) = 2𝜗(2𝑧) − 1, (3.25) 

where 𝜗 is a simple sigmoid function,  

 
𝜗(𝑧) =

1

1 + 𝑒−𝑧
. 

(3.26) 

 

FIGURE 1. DENSITY ESTIMATION FOR THE TANH AND RELU ACTIVATION FUNCTION 

 

The figure illustrates the difference between the Tanh and ReLu activation function, where one can observe the clear 

difference in density generalization made by the two functions. 
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To measure the performance of our model, we need to measure its prediction capabilities. We can 

do this by defining a simple loss function, in this case the mean squared error loss function, where we set 

to minimize the mean squared error between the estimated and the observed implied volatilities. We can 

define our loss function as,  

 
𝐽(𝑥) =

1

𝑛
∑[ 𝜎𝑖(𝑥) − 𝜎̂𝑖(𝑥;𝑊, 𝑏)]2
𝑛

𝑖=1

. 
 

(3.27) 

where 𝜎𝑖(𝑥) is the observed implied volatility at point 𝑥. To effectively reach a sufficiently small error for 

our loss function, we need to implement an optimization algorithm, more specifically a gradient-based 

optimizing algorithm. A gradient-based algorithm is used to find the gradient, or the first partial derivative 

of the cost function with respect to every weight and bias in the network. By obtaining the gradient, one 

can efficiently optimize the corresponding weights and biases and subsequently minimize the desired cost 

function. To compute the gradient of the cost function, neural networks utilize the back-propagation 

algorithm introduced by Rumelhart, Hinton, and Williams (1988). For the purpose of this thesis we will 

only briefly touch upon the subject of backpropagation. For a thorough coverage of backpropagation, see 

the works of Rumelhart et al. (1988) and Goodfellow et al. (2016).  

The back-propagation algorithm operates by utilizing the chain rule of calculus, which states that 

one can calculate the derivatives of functions formed by other composite functions whose derivatives are 

known. Thus, by back propagating through the network, starting at the output layer’s scalar cost function, 

the algorithm can evaluate the first partial derivative of that cost function with respect to every weight and 

bias in the network. By finding the first partial derivative of the cost function, ∇𝐽(𝑊, 𝑏), for each weight 

and bias, the model can incrementally adjust these weights and biases accordingly to minimize the desired 

cost function. In the proposed model, our output variable 𝜎̂ is defined by the weighted sum of the activation 

functions in the last hidden layer 𝐿 − 1, plus a bias, obtained from equation (3.24) and denoted as 𝑧(𝐿). 

Hence, we define our cost function 𝐽1 for one training iteration over one observation as, 

 𝐽1 = (𝜎1 − 𝑧(𝐿))2. (3.28) 

Further, we can calculate the partial derivative of the cost function 𝐽1 with respect to the weights 𝑊𝑗
(𝐿)

 in 

layer 𝐿, utilizing the chain rule, as such,  

 𝜕𝐽1

𝜕𝑊𝑗
(𝐿)

=
𝜕𝑧(𝐿)

𝜕𝑊𝑗
(𝐿)

𝜕𝐽1
𝜕𝑧(𝐿)

 
 

(3.29) 

where,  
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 𝜕𝑧(𝐿)

𝜕𝑊𝑗
(𝐿)

=
𝜕

𝜕𝑊𝑗
(𝐿)

𝑏(𝐿) + ∑𝑊𝑗
(𝐿)

𝑎𝑗
(𝐿−1)

𝑚

𝑗=1

= 𝑎𝑗
(𝐿−1)

,    
𝜕𝐽1

𝜕𝑧(𝐿)
= 2(𝜎1 − 𝑧(𝐿)) 

 

 

where 𝑎𝑗
(𝐿−1)

= 𝑡𝑎𝑛ℎ(𝑧(𝐿−1)) and 𝑗 = 1,… ,𝑚, where 𝑚 is the total number of nodes in the 𝐿 − 1 layer. 

Further, we can continue to apply the chain rule to calculate the partial derivative of the cost function with 

respect to the weights 𝑊𝑗𝑘
(𝐿−1)

 in the previous layer, 𝐿 − 1, that are connected to the 𝑘-th node in layer 𝐿 −

2 and the 𝑗-th node in layer 𝐿 − 1, by the same principle,  

 𝜕𝐽1

𝜕𝑊𝑗𝑘
(𝐿−1)

=
𝜕𝑧𝑗

(𝐿−1)

𝜕𝑊𝑗𝑘
(𝐿−1)

𝜕𝑎𝑗
(𝐿−1)

𝜕𝑧𝑗
(𝐿−1)

𝜕𝑧(𝐿)

𝜕𝑎𝑗
(𝐿−1)

𝜕𝐽1

𝜕𝑧(𝐿)
 

 

(3.30) 

where, 

 𝜕𝑎𝑗
(𝐿−1)

𝜕𝑧𝑗
(𝐿−1)

= 𝑡𝑎𝑛ℎ′ (𝑧𝑗
(𝐿−1)

) ,
𝜕𝑧(𝐿)

𝜕𝑎𝑗
(𝐿−1)

= 𝑊𝑗
(𝐿)

, 
 

 

and 𝑘 = 1,… ,𝑀, where 𝑀 is the total number of nodes in the 𝐿 − 2 layer. The chain rule can be applied to 

any of the functions in the network. On the other hand, as one evaluates the activation functions further 

back in the network, for instance calculating the partial derivative of 𝑧𝑗
(𝐿−1)

 with respect to 𝑎𝑘
(𝐿−2)

, one has 

to acknowledge that the 𝑧𝑗 functions is influenced by all the activation functions in layer 𝐿 − 2, since 𝑎𝑘
(𝐿−2)

 

is connected to all summarization functions 𝑧𝑗
(𝐿−1)

 in the next layer. Generally speaking, the activation 

functions in layers further away from the output layer indirectly affect the cost function through multiple 

paths throughout the network. Thus, we have to evaluate the partial derivative of the cost function with 

respect to 𝑎𝑘
(𝐿−2)

, to calculate the activation function’s total impact on the cost function. We do this by 

summarizing the chain rule of partial derivatives of the functions in layers 𝐿 − 1 and 𝐿. We define the 

partial derivative of the cost function 𝐽1 with respect to 𝑎𝑘
(𝐿−2)

 as, 

 𝜕𝐽1

𝜕𝑎𝑘
(𝐿−2)

= ∑
𝜕𝑧𝑗

(𝐿−1)

𝜕𝑎𝑘
(𝐿−2)

𝜕𝑎𝑗
(𝐿−1)

𝜕𝑧𝑗
(𝐿−1)

𝜕𝑧(𝐿)

𝜕𝑎𝑗
(𝐿−1)

𝜕𝐽1
𝜕𝑧(𝐿)

𝑚

𝑗=1

, 
 

(3.31) 

where,  

 𝜕𝑧𝑗
(𝐿−1)

𝜕𝑎𝑘
(𝐿−2)

= 𝑊𝑗𝑘
(𝐿−1)

, 
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and 𝑚 is the number of nodes in layer 𝐿 − 1. Hence, when we know the gradient of the cost function with 

respect to the activation functions in layer 𝐿 − 2, we can further repeat the process of calculating the partial 

derivatives of the cost function with respect to the weights and biases that feeds in to activation nodes in 

layer 𝐿 − 2. For instance, the partial derivative of the cost function with respect to the weights in layer 𝐿 −

2, can be written as,  

 𝜕𝐽1

𝜕𝑤𝑘,𝑚
(𝐿−2)

=
𝜕𝑧𝑘

(𝐿−2)

𝜕𝑤𝑘,𝑚
(𝐿−2)

𝜕𝑎𝑘
(𝐿−2)

𝜕𝑧𝑘
(𝐿−2)

𝜕𝐽1

𝜕𝑎𝑘
(𝐿−2)

. 
 

(3.32) 

The same principle applies for obtaining the partial derivative of the cost function with respect to the biases 

in the network,  

 𝜕𝐽1

𝜕𝑏(𝐿)
=

𝜕𝑧(𝐿)

𝜕𝑏(𝐿)

𝜕𝐽1

𝜕𝑧(𝐿)
, 

(3.33) 

where,  

 𝜕𝑧(𝐿)

𝜕𝑏(𝐿)
= 1. 

We can continue this sequence until we find the partial derivative of every weight and bias in our model. 

However, this is now only conducted for one iteration on one observation in our training data. To get the 

final gradient ∇𝐽 for each weight and bias, we evaluate the average for all the observations in our training 

data,  

 𝜕𝐽

𝜕𝑊𝑘
(𝐿)

=
1

𝑛
∑

𝜕𝐽𝑖

𝜕𝑊𝑘
(𝐿)

,

𝑛

𝑖=1

 
 

(3.34) 

where 𝑛 is the number of observations. After we have solved the partial derivative of the cost function with 

respect to each weight and bias, we can now use these gradients in order to minimize the cost function by 

changing the specific weights and biases in the opposite sign of the corresponding gradient. This procedure 

is subsequently done over a specified interval of iterations to reach a global minimum for the cost function. 

This methodology of progressively calculating the gradient and further minimizing the cost function is also 

known as gradient decent and was first introduced as early as 1847, by mathematician Augustin Cauchy 

(Cauchy, 1847). We can define the gradient decent algorithm in one equation as,  

 Θ𝑖+1 = Θ𝑖 − 𝛼∇𝐽(Θ𝑖) (3.35) 

where Θ𝑖  is the current value of the weight or bias and 𝛼  is the designated learning rate set as a 

predetermined parameter. Thus, the learning rate regulates the adjustments to the weights and biases and 

subsequently controls how quickly the cost function converges to a minimum. For more on optimization 

and variations of gradient decent algorithm, see the works of Goodfellow et al. (2016). 
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The model presented in this thesis is constituted by 4 input nodes, one for each feature  𝜃 =

{𝐾, 𝑆𝑡 , 𝜏, 𝑟}, five hidden layers, first hidden layer (𝐿 − 4) is constituted by twelve activation nodes, the last 

hidden layer (𝐿 − 1) by four activation nodes and the intermediate layers by twenty nodes each. The 

activation function used for the hidden layers is the Tanh activation function, covered earlier. An overview 

of the architecture of the model is illustrated in figure 2. Further, we recognize the crucial challenge of not 

overfitting the training data when working with neural network models, meaning that the model maintains 

a too high degree of flexibility and tries to fit the function to every single data point, instead of generalizing 

the function over all data points (Goodfellow et al., 2016). Thus, to prevent overfitting, the model is 

restricted by a simple early stopping method. Essentially, early stopping prevents the data from iterating 

after a certain threshold for the loss function on the out-of-sample data has been fulfilled over a specified 

number of iterations.   

To estimate the RND, we follow the same procedure as for the kernel regression in section 3.3. We 

estimate the implied volatility function, then proceed to calculate the option prices using the implied 

volatility function in the Black-Scholes model. Finally, to obtain the RND, we take the second partial 

derivative of the option pricing function with respect to the strike price.  

 

FIGURE 2. NEURAL NETWORK MODEL ARCHITECTURE 

 

Graphical representation of the neural network model’s architecture. There is a total of seven layers, including the 

input layer and output layer. There are subsequently six layers of weights and biases connecting the intermediate 

layers.   
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4. Theoretical RND and Data-Generation  

In this section we will go through the process of simulating the desired option data, define the different 

data-generation processes used in this thesis and discuss their different features and desirable characteristics. 

Further, we will specify how one can obtain the theoretical, or also referred to as the true RND from the 

different data-generation processes. Additionally, this section will also cover the parameters used for the 

data-generated processes and briefly present the descriptive statistics of the simulated data. 

4.1 Data-Generation Processes  

This thesis is conducted with the intention of comparing the efficiency and robustness of the three different 

models presented in section 3 for obtaining the option implied RND, which are generated under different 

data-generation processes. The first data-generation process that we will cover is assumed to follow a 

geometric Brownian motion, identical to the underlying process in the Black-Scholes model (Black & 

Scholes, 1973). The second process is a diffusion process with stochastic volatility, presented by Heston 

(1993). The third process is based on the jump diffusion model proposed by Merton (1976). Lastly, the 

fourth process is a diffusion process with both stochastic volatility and jump(s), introduced by Bakshi et al. 

(1997). The different data-generating methods capture certain features associated with observed, historical 

stock returns, such as skewed and leptokurtic probability distributions. Further, by generating the data 

ourselves through Monte Carlo simulations, we have knowledge of the underlying parameters used in the 

data-generation processes and, thus, we can obtain the true RNDs by utilizing the close-form option pricing 

formulas incorporating the different data-generation processes. The true RND will subsequently be used to 

evaluate the performance of the proposed models. The RNDs generated for these tests are generally 

dependent on multiple factors. However, for the purpose of this thesis we will only focus on the RND as a 

function of the terminal spot price 𝑆𝑇 . 

4.1.1 Geometric Brownian Motion 

The data-generation process for the underlying asset assumed by Black and Scholes (1973) follows a 

geometric Brownian motion with the following notation,10  

 𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 , (4.1) 

                                                           
10 For simplicity, we will refer to the geometric Brownian motion as simply the Brownian motion in the remaining sections of 

this thesis. 
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where 𝑆𝑡 constitutes the price process of the underlying asset with constant volatility 𝜎, 𝑟 is the constant 

drift under risk-neutral measures, where the underlying is not paying any dividends and 𝑊𝑡 is a standard 

Wiener process. To generate our option prices through Monte Carlo simulations, we need to define the 

stock process in discrete time. We can do that by applying Ito’s formula to the stochastic differential 

equation (4.1).11 Hence, we get the stock price process in terms of ln (𝑆) given as, 

 

 
𝑑𝑙𝑛(𝑆𝑡) = (𝑟 −

𝜎2

2
)𝑑𝑡 + 𝜎𝑑𝑊𝑡. 

 

(4.2) 

We can further integrate the equation and hence obtain the analytic solution for the stock process as follows, 

 

 𝑆𝑡 = 𝑆0𝑒
(𝑟−0.5𝜎2)𝑡+𝜎𝑊𝑡 . (4.3) 

Following the Brownian motion data-generation process, we can define the corresponding option pricing 

formula according the Black-Scholes model, where the European call option 𝑐 with time to maturity 𝜏 =

𝑇 −  𝑡, assuming the underlying is not paying any dividends, with strike 𝐾 and constant volatility 𝜎 and 

risk-free rate 𝑟, as follows, 

 𝑐𝐵𝑆(𝑆𝑡, 𝐾, 𝜏, 𝑟, 𝜎) = 𝑆𝑡𝑁(𝑑1) − 𝐾𝑒−𝑟𝜏𝑁(𝑑2)  

   

 

𝑑1 =
𝑙𝑛 (

𝑆𝑡
𝐾) + (𝑟 +

1
2𝜎2)𝜏

𝜎√𝜏
 

 

 

 𝑑2 = 𝑑1 − 𝜎√𝜏. (4.4) 

Following the approach of Aït-Sahalia and Lo (1998), who showed that by acknowledging the findings of 

Breeden and Litzenberger (1978) and equation (2.13), one can conclude that the RND obtained from the 

Black-Scholes formula is simply a log-normal density with mean [(𝑟 +
1

2
𝜎2) 𝜏] and variance (𝜎2𝜏) for 

ln (
𝑆𝑇

𝑆𝑡
). Thus, we can evaluate the RND for 𝑆𝑇, when 𝐾 = 𝑆𝑇, as follows, 

 
𝑞𝐵𝑆(𝑆𝑇) =  𝑒𝑟𝜏

𝜕2𝑐

𝜕𝐾2
|

𝐾=𝑆𝑇

 
 

 

=
1

𝑆𝑇√2𝜋𝜎2𝜏
𝑒𝑥𝑝

[
 
 
 
−

[𝑙𝑛 (
𝑆𝑇
𝑆𝑡

) − (𝑟 +
1
2𝜎2) 𝜏]

2

2𝜎2𝜏
]
 
 
 
. 

 

(4.5) 

                                                           
11 See Hull (2017) for a complete derivation of the SDE. 
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4.2.2 Stochastic Volatility 

The diffusion process with stochastic volatility, introduced by Heston (1993), adds a stochastic volatility 

component to replicate the non-constant volatility observed in markets, here referred to as the variance 

process. Thus, Heston proposed the following stochastic differential equation, with time-varying volatility 

as, 

 𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + √𝑉𝑡𝑆𝑡𝑑𝑊1,𝑡,  

 𝑑𝑉𝑡 = 𝜅(𝜃 − 𝑉𝑡)𝑑𝑡 + 𝜎𝑣√𝑉𝑡𝑑𝑊2,𝑡,  

 𝑐𝑜𝑣(𝑑𝑊1,𝑡, 𝑑𝑊2,𝑡) =  𝜌𝑑𝑡, (4.6) 

 

where St is the price process, Vt is the variance process, which is a mean reverting process with θ as the 

long-run mean value and κ is the reversion rate towards the mean. 𝑟 denotes the constant drift under risk-

neutral measures, 𝜎𝑣  is the corresponding volatility of the variance process. Further, the additional 

stochastic Wiener process 𝑊2,𝑡,  is correlated with the other Wiener process 𝑊1,𝑡  by parameter  𝜌 . By 

changing 𝜌 we can replicate the negative correlation between the asset returns and volatility, and thus, 

obtain skewness and leptokurtosis. An example of the specific features can be observed in figure 3b. The 

figure illustrates the difference between a normal distribution and a risk-neutral density estimated based on 

a stochastic volatility process for an option with a volatility of 20% and with one month until maturity. The 

density based on the stochastic volatility process has a skewness of -0.77 and kurtosis of 3.56, while the 

normal distribution has a skewness of 0 and kurtosis of 3. 

For the purpose of our Monte Carlo simulations, we need to define the stock process in discrete time. Thus, 

we incorporate the Euler scheme (Rouah, 2011) to derive a discrete solution for both the variance and stock 

price processes. The Euler approach defines the Wiener process in discrete time as ∆𝑊𝑡 = 𝑊𝑡+𝑑𝑡 − 𝑊𝑡, 

which is equal in distribution to √𝑑𝑡𝑍, where 𝑍~𝑁(0,1). According to the Euler scheme, the variance 

process can be written as follows, 

 
𝑉𝑡+𝑑𝑡 = 𝑉𝑡

+ + 𝜅(𝜃 − 𝑉𝑡)𝑑𝑡 + 𝜎𝑣√𝑉𝑡
+𝑑𝑡𝑍2, 

 

(4.7) 

where 𝑍2~𝑁(0,1) and 𝑉𝑡
+ = max (0, 𝑉𝑡). The Euler scheme further defines the stock price process as,  

 
𝑆𝑡+𝑑𝑡 = 𝑆𝑡𝑒𝑥𝑝 [(𝑟 −

1

2
𝑉𝑡)𝑑𝑡 + √𝑉𝑡𝑑𝑡𝑍1], 

 

(4.8) 

where 𝑍1 = 𝜌𝑍2 + √1 −  𝜌2𝑍3, with 𝑍3 being equivalent to a standard normal variable, 𝑍3~𝑁(0,1). 
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However, to obtain the true RND, one needs to define the option pricing model as a closed-form solution. 

Heston (1993) stated that the stochastic differential equation (4.6) can be solved by using a Fourier 

transform. He showed that the associated price of a European call option 𝑐𝑆𝑉(𝑆𝑡, 𝐾, 𝜏, 𝑉𝑡) under a diffusion 

process with stochastic volatility, where the underlying is not paying any dividends and maturing at time 

𝑇 = 𝜏 + 𝑡, is defined as, 

 𝑐𝑆𝑉(𝑆𝑡, 𝐾, 𝜏, 𝑉𝑡) = 𝑆𝑡𝑃1 − 𝐾𝑒−𝑟𝑡 𝜏𝑃2, (4.9) 

where, 

for 𝑗 = 1,2 and where,  

 
𝑢1 =

1

2
, 𝑢2 = −

1

2
, 𝑎 = 𝜅𝜃, 𝑏1 = 𝜅 + 𝜆 − 𝜌𝜎, 𝑏2 = 𝜅 + 𝜆, 𝑅𝐸[∙] ∈ ℝ. 

 

 

Equation (4.10) is slightly different compared to the model introduced by Heston (1993), where we add a 

minus sign in front of the variable 𝑑𝑗. Albrecher, Mayer, Schoutens, and Tistaert (2007) showed that the 

new solution does not affect the option price, but instead the model now produces stable results for the 

whole parameter space. We can evaluate the RND for 𝑆𝑇, when 𝐾 =  𝑆𝑇, by taking the partial derivative of 

equation (4.9) with respect to the strike price 𝐾 twice, and thus end up with the following solution for the 

RND function,  

 

    𝑞𝑆𝑉(𝑆𝑇) =
1

𝜋
∫ 𝑅𝑒 [

𝑒−𝑖𝜙 𝑙𝑛(𝐾)𝑓2
𝑆𝑇

] 𝑑𝜙

∞

0

|

𝐾=𝑆𝑇

, 
 

(4.11) 

where 𝑓2(𝑆𝑡, 𝑉𝑡, 𝜏, 𝜙) is defined as,  

 

𝑃𝑗(𝑆𝑡, 𝑉𝑡, 𝜏; 𝑙𝑛 (𝐾)) =
1

2
+

1

𝜋
∫ 𝑅𝑒 [

𝑒−𝑖𝜙 𝑙𝑛(𝐾)𝑓𝑗(𝑆𝑡, 𝑉𝑡, 𝜏; 𝜙)

𝑖𝜙
] 𝑑𝜙

∞

0

, 
 

 𝑓𝑗(𝑆𝑡, 𝑉𝑡, 𝜏, 𝜙) = 𝑒𝑥 𝑝[𝐶𝑗( 𝜏; 𝜙) + 𝐷𝑗( 𝜏; 𝜙)𝑉𝑡 + 𝑖𝜙 𝑙𝑛(𝑆𝑡)],  

 
𝐶𝑗( 𝜏; 𝜙) = 𝑖𝑟𝜙 𝜏 +

𝑎

𝜎𝑣
2 [(𝑏𝑗 − 𝑖𝜌𝜎𝑣𝜙 + 𝑑𝑗)𝜏 − 2 𝑙𝑛 (

1 − 𝑔𝑗𝑒
𝑑𝜏

1 − 𝑔𝑗
)], 

 

 
𝐷𝑗( 𝜏; 𝜙) =

𝑏𝑗 − 𝑖𝜌𝜎𝑣𝜙 + 𝑑𝑗

𝜎𝑣
2 (

1 − 𝑒𝑑𝜏

1 − 𝑔𝑗𝑒
𝑑𝜏), 

 

 
𝑔𝑗 =

𝑏𝑗 − 𝑖𝜌𝜎𝑣𝜙 + 𝑑𝑗

𝑏𝑗 − 𝑖𝜌𝜎𝑣𝜙 − 𝑑𝑗
, 

 

 
𝑑𝑗 = −√(𝑖𝜌𝜎𝑣𝜙 − 𝑏𝑗)

2
− 𝜎𝑣

2(2𝑖𝑢𝑗𝜙 − 𝜙2), 
(4.10) 
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 𝑓2(𝑆𝑡, 𝑉𝑡, 𝜏, 𝜙) = 𝑒𝑥𝑝[𝐶2( 𝜏; 𝜙) + 𝐷2( 𝜏; 𝜙)𝑉𝑡 + 𝑖𝜙 𝑙𝑛(𝑆𝑡)]. (4.12) 

 

4.2.3 Jump Diffusion 

The diffusion process with jumps proposed by Merton (1976), compared to the original Black-

Scholes model, allows the underlying asset to have random jump dynamics and can thus replicate the 

notorious implied volatility smile and subsequently fatter tails and excess kurtosis in the return distribution. 

Merton’s inclusion of jumps to the stock’s diffusion process gave rise to a new set of models incorporating 

unpredictability and random events, more known as jump-diffusion models. Here, Merton assumed that the 

average interval between and the size of the jumps in spot prices are known, but the exact timing and size 

of each individual jump is random. Thus, Merton proposed that the jumps follow a compounded Poisson 

process. He defined the stochastic differential equation as follows, 

 𝑑𝑆𝑡 = (𝑟 − 𝑟𝐽)𝑆𝑡𝑑𝑡 + 𝜎𝑡𝑆𝑡𝑑𝑊𝑡 + 𝑆𝑡𝑑𝐽𝑡, 

𝑟𝐽 = 𝜆(𝑒𝜇𝐽+𝛿2 2⁄ − 1), 

 

(4.13) 

where St is the asset price process, 𝑟 is the constant drift under risk-neutral measures and 𝜎𝑡 is the volatility 

of the underlying asset. 𝑟𝐽 is the drift correction term for the jump, where λ is the number of jumps annually, 

𝜇𝐽 is the expected jump size, 𝛿 is the volatility of the jump and 𝑊𝑡 is a standard Wiener process. The jump 

event, which is denoted as the third part in equation (4.13), is determined by the compounded Poisson 

process 𝐽𝑡,  

 

𝐽𝑡 = ∑(𝑌𝑗 − 1)

𝑁𝑡

𝑗=1

, 

 

(4.14) 

where 𝑁𝑡 is the Poisson process with intensity 𝜆 and 𝑌𝑗 is the random jump size, where 𝑌𝑗~𝑁(𝜇𝐽 , 𝛿
2) and 

{𝑌𝑗}𝑗≥1
 is denoted a sequence of independent random variables. Thus, one can define an average jump size, 

but at the same time allow for the jumps to remain independent and randomly distributed with the mean 𝜇𝐽 

and standard deviation 𝛿2. Finally, we acknowledge that the processes 𝑊𝑡 ,  𝑌𝑗 and 𝑁𝑡 are presumed to be 

independent from each other.  

The next step is to define the model in discrete time for our Monte Carlo simulations. The 

discretization of the jump diffusion process, following the Euler discretization scheme, where the Wiener 

process is defined in discrete time as ∆𝑊𝑡 = 𝑊𝑡+𝑑𝑡 − 𝑊𝑡, which is equal in distribution to √𝑑𝑡𝑍, where 

𝑍~𝑁(0,1), is defined as,  
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𝑆𝑡+𝑑𝑡 = 𝑆𝑡 {𝑒𝑥𝑝 [(𝑟 − 𝑟𝑗 −

1

2
𝜎2)𝑑𝑡 + 𝜎√𝑑𝑡𝑍1]

+ (𝑒𝑥𝑝[𝜇𝐽 + 𝛿2 + 𝑍2] − 1 )𝑦𝑡}, 

 

 

(4.15) 

where 𝑦𝑡 is a Poisson distributed variable with intensity 𝜆, 𝑍1 and 𝑍2 are standard normal variables and 𝑦𝑡 , 

𝑍1 and 𝑍2 are assumed to be independent from each other (Hilpisch, 2015).  

Further, we want to estimate the true RND for the jump diffusion process utilizing a closed-form 

solution. However, for models with discrete compounding, closed-form solutions are generally impossible 

to derive (Kou, 2002). Thus, we will have to resort to approximation methods to obtain the true RND. For 

the purpose of this thesis, we will not cover the lengthy derivation of the jump diffusion model. For a 

thorough derivation of the Merton jump diffusion stochastic differential equation, see the works of Cont 

and Tankov (2004), Applebaum (2009) and Tankov and Voltchkova (2009). Following the methodology 

presented by Cont and Tankov (2004), who applied Itô’s formula to the stochastic differential equation 

(4.13) provided the following final solution for the ln(𝑆𝑡) process as follows, 

 

𝑙𝑛(𝑆𝑡) = 𝑙𝑛(𝑆0) + 𝜎𝑊𝑡 + (𝑟 − 𝑟𝐽 −
1

2
𝜎2) 𝑡 + ∑𝑙𝑛(𝑌𝑗)

𝑁𝑡

𝑗=1

, 

 

(4.16) 

where the process evolves like a Brownian motion between jumps and after each jump the value of 𝑙𝑛(𝑆𝑡) 

is multiplied by 𝑒𝑌𝑗 (Shonkwiler, 2013). Further, if we consider the log-returns, 𝑙𝑛 (
𝑆𝑡

𝑆0
), for the process to 

be conditional on the event 𝑁𝑡 = 𝑖, we can rewrite the log-return process as,  

 

𝑙𝑛 (
𝑆𝑡

𝑆0
) = 𝜎𝑊𝑡 + (𝑟 − 𝑟𝐽 −

𝜎2

2
) 𝑡 + ∑𝑙𝑛 (𝑌𝑗)

𝑖

𝑗=1

  

~𝑁 [(𝑟 − 𝑟𝐽 −
𝜎2

2
) 𝑡 + 𝜇𝐽, 𝜎

2𝑡 + 𝑖𝛿2]. 

 

 

 

 

(4.17) 

Thus, we can now define the RND of log returns 𝑞𝐽𝐷(𝑥𝑡), where 𝑥𝑡 = ln (
𝑆𝑡

𝑆0
), to be estimated utilizing a 

converging series, defined as follows, 

 
𝑞𝐽𝐷(𝑥𝑡) = ∑

𝑒−𝜆𝑡(𝜆𝑡)𝑖

𝑖!
𝑁 {𝑥𝑡; (𝑟 − 𝑟𝐽 −

1

2
𝜎2) 𝑡 + 𝑖𝜇𝐽, 𝜎

2𝑡 + 𝑖𝛿2}

∞

𝑖=0

, 
 

(4.18) 

where, 
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𝑁 {𝑥𝑡; (𝑟 − 𝑟𝐽 −

1

2
𝜎2) 𝑡 + 𝑖𝜇𝐽 , 𝜎

2𝑡 + 𝑖𝛿2}

=  
1

√2𝜋(𝜎2𝑡 + 𝑖𝛿2)
𝑒𝑥𝑝{−

[𝑥𝑡 {(𝑟 − 𝑟𝐽 −
1
2𝜎2) 𝑡 + 𝑖𝜇𝐽}]

2

2(𝜎2𝑡 + 𝑖𝛿2)
}. 

 

 

 

(4.19) 

Thus, the RND is expressed as a weighted sum of normal densities, with Poisson probability mass function  

𝑃(𝑖) =
𝑒−𝜆𝑡(𝜆𝑡)𝑖

𝑖!
, representing the probability of the asset jumping 𝑖 times during the time interval (0; 𝑡].  

4.2.4 Stochastic Volatility and Jumps  

Lastly, we will cover the diffusion process with stochastic volatility and jumps introduced by 

Bakshi et al. (1997). The original model is described as a unifying option pricing model, incorporating 

stochastic volatility, jump(s) and stochastic interest rate. For the purpose of this thesis, we will only cover 

the stochastic volatility and jump(s), excluding the stochastic interest rate. Bakshi et al. (1997) defined the 

stochastic differential equation as follows, 

 𝑑𝑆𝑡 = (𝑟 − 𝑟𝐽)𝑆𝑡𝑑𝑡 + √𝑉𝑡𝑆𝑡 𝑑𝑊1,𝑡 + 𝑆𝑡𝑑𝐽𝑡,  

 𝑑𝑉𝑡 = 𝜅(𝜃 − 𝑉𝑡)𝑑𝑡 + 𝜎𝑣√𝑉𝑡𝑑𝑊2,𝑡,  

 𝑟𝐽 = 𝜆(𝑒𝜇𝐽+𝛿2 2⁄ − 1),  

 

𝐽𝑡 = ∑(𝑌𝑗 − 1)

𝑁𝑡

𝑗=1

, 

 

 𝑐𝑜𝑣(𝑑𝑊1,𝑡 , 𝑑𝑊2,𝑡) =  𝜌𝑑𝑡, (4.20) 

where St is the price process, Vt is the variance process, 𝑟 is the constant drift under risk-neutral measures, 

𝑊1,𝑡  and 𝑊2,𝑡  are Wiener processes with correlation parameter 𝜌 . θ is the long-run volatility, κ is the 

reversion rate towards the long-run volatility and 𝜎𝑣 is the corresponding volatility of the variance process. 

𝑟𝐽 is the drift correction term for the jump, where λ is the number of jumps annually, 𝜇𝐽 is the expected 

jump size, 𝛿 is the volatility of the jump, 𝐽𝑡 is the compounded Poisson process, where 𝑁𝑡 is a standard 

Poisson process with intensity 𝜆  and 𝑌𝑗  is the random jump size, where 𝑌𝑗~𝑁(𝜇𝐽, 𝛿
2) and {𝑌𝑖}𝑖≥1  is a 

sequence of  independent random variables. Further, we state that 𝑁𝑡 , Vt, 𝑌𝑗 are independent from each other, 

as well as independent from 𝑊1,𝑡 and 𝑊2,𝑡 . 

For the Monte Carlo Simulations we define the stock price process following a stochastic volatility 

with jump diffusion in discrete time. Similarly to earlier processes, we define the stock process in  according 
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to the Euler discretization scheme, where we define the Wiener process in discrete time as ∆𝑊𝑡 = 𝑊𝑡+𝑑𝑡 −

𝑊𝑡, which is equal in distribution to √𝑑𝑡𝑍, where 𝑍~𝑁(0,1). According to the Euler scheme, the discrete 

stock process 𝑆𝑡 and variance process 𝑉𝑡 for the stochastic volatility and jump diffusion process can be 

evaluated as follows,   

 
𝑆𝑡+𝑑𝑡 = 𝑆𝑡 {𝑒𝑥𝑝 [(𝑟 − 𝑟𝐽 −

1

2
𝑉𝑡)𝑑𝑡 + √𝑉𝑡𝑑𝑡𝑍1]

+ (𝑒𝑥𝑝[𝜇𝐽 + 𝛿2 + 𝑍4] − 1 )𝑦𝑡}, 

 

 

 
𝑉𝑡+𝑑𝑡 = 𝑉𝑡

+ + 𝜅(𝜃 − 𝑉𝑡)𝑑𝑡 + 𝜎𝑣√𝑉𝑡
+𝑑𝑡𝑍2, 

(4.21) 

where 𝑦𝑡 is a Poisson distributed variable with intensity 𝜆, 𝑍1 = 𝜌𝑍2 + √1 −  𝜌2𝑍3, where 𝑍2, 𝑍3 and 𝑍4 

are standard normal variables and 𝑦𝑡, 𝑍3 and 𝑍4  are assumed to be independent from each other, as well as 

from 𝑍1and 𝑍2 (Hilpisch, 2015).  

The solution for the stochastic differential equation, that has to be solved in order to obtain a closed-

form solution and subsequently the RND, is similar to that of the stochastic volatility process proposed by 

Heston (1993). Bakshi et al. (1997) solved equation (4.20) utilizing the Fourier transform method and 

worked out the following pricing model for a European call option 𝑐𝑆𝑉𝐽𝐷(𝑆𝑡, 𝐾, 𝜏, 𝑉𝑡), assuming not paying 

any dividends, and maturing at time 𝑇 = 𝜏 + 𝑡, as follows, 

 𝑐𝑆𝑉𝐽𝐷(𝑆𝑡, 𝐾, 𝜏, 𝑉𝑡) = 𝑆𝑡𝑃1 − 𝐾𝑒−𝑟𝑡 𝜏𝑃2, (4.22) 

where, 

 

𝑃𝑗(𝑆𝑡, 𝑉𝑡, 𝜏; 𝑙𝑛 (𝐾)) =
1

2
+

1

𝜋
∫ 𝑅𝑒 [

𝑒−𝑖𝜙 𝑙𝑛(𝐾)𝑓𝑗(𝑆𝑡, 𝑉𝑡, 𝜏; 𝜙)

𝑖𝜙
] 𝑑𝜙

∞

0

, 
 

 𝑓𝑗(𝑆𝑡 , 𝑉𝑡, 𝜏, 𝜙) = 𝑒𝑥 𝑝[𝐶𝑗( 𝜏; 𝜙) + 𝐷𝑗( 𝜏; 𝜙)𝑉𝑡 + 𝐸𝑗( 𝜏; 𝜙) + 𝑖𝜙 𝑙𝑛(𝑆𝑡)],  

 
𝐶𝑗( 𝜏; 𝜙) = 𝑖𝑟𝜙 𝜏 +

𝑎

𝜎𝑣
2 [(𝑏𝑗 − 𝑖𝜌𝜎𝑣𝜙 + 𝑑𝑗)𝜏 − 2 𝑙𝑛 (

1 − 𝑔𝑗𝑒
𝑑𝜏

1 − 𝑔𝑗
)], 

 

 
𝐷𝑗( 𝜏; 𝜙) =

𝑏𝑗 − 𝑖𝜌𝜎𝑣𝜙 + 𝑑𝑗

𝜎𝑣
2 (

1 − 𝑒𝑑𝜏

1 − 𝑔𝑗𝑒
𝑑𝜏), 

 

 

 𝐸𝑗( 𝜏; 𝜙) = 𝜆(1 + 𝜇𝐽)𝜏 [(1 + 𝜇𝐽)
𝑖𝜙

𝑒𝑥𝑝[(𝑖𝜙 2⁄ )(1 + 𝑖𝜙)𝛿𝐽
2] − 1]

− 𝜆𝑖𝜙𝜇𝐽𝜏, 

 

 
𝑔𝑗 =

𝑏𝑗 − 𝑖𝜌𝜎𝑣𝜙 + 𝑑𝑗

𝑏𝑗 − 𝑖𝜌𝜎𝑣𝜙 − 𝑑𝑗
, 
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𝑑𝑗 = −√(𝑖𝜌𝜎𝑣𝜙 − 𝑏𝑗)

2 − 𝜎𝑣
2(2𝑖𝑢𝑗𝜙 − 𝜙2), 

(4.23) 

for 𝑗 = 1,2, where, 

 
𝑢1 =

1

2
, 𝑢2 = −

1

2
, 𝑎 = 𝜅𝜃, 𝑏1 = 𝜅 − 𝜌𝜎𝑣, 𝑏2 = 𝜅, 𝑅𝐸[∙] ∈ ℝ. 

 

Applying equation (4.23) to equation (4.22), and by differentiating twice with respect to the strike price 𝐾, 

where 𝐾 = 𝑆𝑇 , we obtain the true RND for the option pricing model as follows, 

 

𝑞𝑆𝑉𝐽𝐷(𝑆𝑇) =
1

𝜋
∫ 𝑅𝑒 [

𝑒−𝑖𝜙 𝑙𝑛(𝐾)𝑓2
𝑆𝑇

] 𝑑𝜙

∞

0

|

𝐾=𝑆𝑇

 

 

(4.24) 

where 𝑓2 is defined as, 

 𝑓2(𝑆𝑡, 𝑉𝑡, 𝜏, 𝜙) = 𝑒𝑥𝑝 [𝐶2( 𝜏; 𝜙) + 𝐷2( 𝜏; 𝜙)𝑉𝑡 + 𝐸2( 𝜏; 𝜙) + 𝑖𝜙 𝑙𝑛(𝑆𝑡)] (4.25) 

The closed-form solution for the diffusion process with stochastic volatility and jump(s) is rather similar to 

the solution for the option price model proposed by Heston (1993) with only stochastic volatility. The only 

difference is the function 𝑓𝑗(𝑆𝑡, 𝑉𝑡, 𝜏, ϕ) and the added characteristics function 𝐸( 𝜏; ϕ), approximating for 

the accommodating jump diffusion. Similar to equation (4.10) in section 4.2.2, we incorporate a minus sign 

for 𝑑𝑗 in equation (4.23) for it to be able to produce more stable results.   
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FIGURE 3. DATA-GENERATION PROCESSES RND VS. NORMAL DISTRIBUTION 

 

   

 

   

The figures illustrates the different data-generation processes and their corresponding RND to a normal distribution, 

where both densities in each graph have the same mean and standard deviation. The RNDs are generated from a 

range of options with strike price ranging from 70 to 130, with a underlying spot price of a 100. The time to maturity 

is 21 days and the annualized volatility is 20%.  

 

4.3 Data Overview 

The parameters associated with the data-generating processes are based on the historical option 

prices deriving from the Standard and Poor’s 500 (S&P 500) index. The spot price (𝑆0), is the underlying 

S&P 500 index price on December 29th, 2017. The risk-free rate (𝑟) is based on the one-month U.S. treasury 

bill observed on December 29th, 2017. The underlying volatility (𝜎) used is based in the seven-year average, 

annualized volatility of the S&P 500 from December 29th, 2010 to December 29th, 2017. This period is 

considered to be a quite stable period and hence we obtain a relatively low volatility of  16.6%. The 

a) b) 

c) d) 
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annualized volatility of the volatility (𝜎𝑣) is assumed to be 40%. 12 The long-run volatility (√θ) is further 

assumed to be 20% . The mean reversion rate (𝜅)  for the underlying volatility towards the long run 

volatility is assumed to be 1. The correlation (𝜌) between volatility and returns is assumed to be negative, 

−0.80, to reflect the leverage effect observed in spot markets. The annual jump frequency (𝜆) is assumed 

to occur 1 time annually, while the jump size (𝜇𝑗) is −10% to emulate negative market jumps. Lastly the 

volatility of the jumps (∆) is assumed to be 10%.13 An overview of the parameters is presented in table 1. 

Our assumptions regarding the parameters are mainly based on the desired characteristics we are looking 

for in of our simulated RNDs in terms of skewness and kurtosis.  

 

To verify the performance and robustness of the models, we simulated the option prices over three 

different maturities: one month, three months and six months, or more specifically 21, 63 and 126 trading 

days, where there are 252 trading days annually. Further, to obtain a sufficient number of option prices 

from our Monte Carlo simulations, we simulated options on different strike prices, ranging from 1875 to 

3475, with an interval of 25, resulting in 65 option prices for each maturity and data-generation process. 

We further simulated each set of option prices, per maturity, 100 times to obtain a total of 6,500 option 

prices for each maturity, thus we end up with total of 19,500 call and put options respectively for each data-

generation process. Each option price was simulated using 250 paths and averaged over 100,000 different 

iterations. To emulate real world mispricing, due to a limit set on the smallest possible tick size for quoted 

prices, we added a small error term to each simulated option price that consists of a small random number 

between -0.5 and 0.5 of the smallest tick size allowed for SPX options.14 Further, we recognized that the 

Monte Carlo simulations generated unrealistically low implied volatilities for relatively deep out-of-the 

money and deep in-the-money options with low maturities. Thus, to address these underpriced options, we 

utilized the put-call parity to price them. The results of the True RNDs and estimated RNDs are all given 

in terms of simple moneyness 𝜉 =  𝑆𝑇 /𝑆𝑡, where 𝑆𝑇 is the terminal spot price and 𝑆𝑡 is the spot price at 

time 𝑡 = 0. 

 

 

                                                           
12 The volatility of the volatility over the relatively stable period from December 29th, 2010 to December 29th, 2017 was roughly 

35% and thus, we consider our assumption of 40% to be suitable. 
13 Notice the change in notation here compared to earlier sections, due to the introduction of the dividend notation. 
14 Minimum tick for options trading below 3.00 is 0.05 and for all other series 0.10.  
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TABLE 1. PARAMETERS FOR THE DATA-GENERATION PROCESSES 

 

4.3.1 Implied Volatility and True RND 

The simulated average implied volatilities generated through Monte Carlo simulations from the 

four different data generation processes and the three maturities 21 days, 63 days and 126 days are presented 

in figure 4. We can observe that the Heston (1993) SV data-generation process shows a negative correlation 

between implied volatility and asset returns, to reflect the leverage effect observed in the markets. The 

effect of the negative correlation between asset returns and implied volatilities can further be observed in 

figure 5 and table 2, where we recognize the negative skew for the densities generated from the SV process 

and Bakshi et al. (1997) SVJD process for all maturities. However, the negative skewness can likewise be 

observed for densities generated by the Merton (1976) JD process for options with shorter maturities, due 

to the negative jump component, inducing a negative correlation between implied volatilities and asset 

returns. Further, in figure 4 we can observe the distinct volatility skew generated by the JD process as well 

as the SVJD process. Thus, the densities generated from the two processes also exhibit significantly higher 

kurtosis for the two processes compared to the SV and BM processes for the options with 21 days to 

maturity, seen in table 2. However, the implied volatility skew diminished for the JD and SVJD process 

over longer maturities, and thus the densities exhibit lower kurtosis for options with longer maturities. The 

BM data-generation process exhibits constant implied volatility over the entire range of strike prices and 

maturities, therefore we can further observe the log-normal density features in table 2, where the skewness 

is positive over all maturities and the density is characterized by a kurtosis close to zero.  

Parameters BM SV JD SVJD

S0 2673.61 2673.61 2673.61 2673.61

rf 0.01299 0.01299 0.01299 0.01299

δ 0.00 0.00 0.00 0.00

σ 0.166 0.166 0.166 0.166

σv 0.40 0.40

√θ 0.20 0.20

κ 1.00 1.00

ρ -0.80 -0.80

λ 1.00 1.00

μj -0.10 -0.10

Δ 0.10 0.10

Summary of the parameters used for the four different data-generation processes, where BM is the

Brownian motion process, SV is the stochastic volatility process, JD is the jump diffusion process and SVJD

is the stochastic volatility and jump diffusion process.
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FIGURE 4. SIMULATED IMPLIED VOLATILITIES 

  

 

The average implied volatilities simulated by the four different data-generation processes: Brownian motion, 

stochastic volatility, jump diffusion and stochastic volatility with jump diffusion, over three maturities: 21, 63 and 126 

days.   
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TABLE 2. SUMMARY STATISTICS, DATA-GENERATION PROCESSES 

  

Statistics BM SV JD SVJD

Mean 1.0011 1.0010 1.0010 1.0025

Std. Dev. 0.0480 0.0477 0.0605 0.0593

Skewness 0.1440 -0.6257 -0.8174 -1.1916

Kurtosis 3.0369 3.3117 5.8663 5.9590

Statistics BM SV JD SVJD

Mean 1.0031 1.0028 1.0014 1.0059

Std. Dev. 0.0833 0.0819 0.1037 0.1009

Skewness 0.2461 -0.8658 -0.1702 -0.7177

Kurtosis 3.0817 3.8996 3.3941 3.4309

Statistics BM SV JD SVJD

Mean 1.0009 1.0014 0.9871 1.0049

Std. Dev. 0.1157 0.1092 0.1399 0.1362

Skewness 0.3460 -0.5739 0.3564 -0.1627

Kurtosis 2.9146 3.2865 2.7304 2.5206

126 Days to Maturity

21 Days to Maturity

63 Days to Maturity

Summary statistics for the four different data-generation processes following a geometric

Brownian motion (BM), stochastic volatility (SV), jump diffusion (JD) and stochastic volatility

with jump diffusion (SVJD) for 21, 63 and 126 days to maturity. The mean and standard deviation

(Std. Dev.) is given in terms of moneyness (ST/St), while skewness and kurtosis are reported in

units of statistical moments. For reference, a Gaussian distribution is constituted by a skewness

of 0 and a kurtosis of 3.
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FIGURE 5. THEORETICAL RISK-NEUTRAL DENSITIES  

 

Graphical representation of the true RNDs generated from the four different data-generation processes for three 

maturities: 21, 63 and 126 days.   
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5. Empirical Evidence 

In this section we present the option implied RNDs estimated by the mixture, kernel regression and 

neural network model, and compare them with the true RNDs given by the closed-form solutions of the 

four different data-generation processes. In section 5.1, we cover the summary statistics of the first four 

statistical moments of the RNDs. In section 5.2, we investigate the statistical differences between the 

densities through the nonparametric Mann-Whitney U test. In section 5.3, we examine the estimated RND 

functions’ performance on pricing different derivatives. Lastly, in section 5.4, we further evaluate the 

estimated RND’s performance on real market data. 

To estimate the RNDs, each model is trained on the same set of option prices for a specific data-

generation process over the three maturities. Further, each model estimates the risk-neutral density for each 

maturity 100 times to accommodate for the different optimization outcomes. We then calculate the average 

of the 100 different RND functions to subsequently end up with the final estimated RND for each maturity. 

This process is done for each data-generation process, leaving us with a grand total of twelve RNDs for 

each model.   

5.1 Summary Statistics 

The summary statistics of the RNDs are an essential measurement for the analysis of the 

performance of the models presented in this thesis. To effectively measure the efficiency, we evaluate the 

estimated RNDs’ first four statistical moments in terms of mean, standard deviation, skewness and kurtosis 

compared to the statistical moments of the true RNDs. 15  The summary statistics results are presented in 

terms of moneyness, 𝜉 =  𝑆𝑇 /𝑆𝑡. 

Table 3 presents the summary statistics of the Brownian motion data-generation process, where the 

implied volatility is assumed to be constant for all maturities and across strike price, resulting in log-normal 

RNDs. As can be interpreted from table 3, accompanied by figure 6, one can argue that each model can 

effectively estimate the RND for all maturities, if the asset’s return probability distribution follows a log-

normal distribution.  

The summary statistics for the stochastic volatility process can be viewed in table 4, as well as a 

graphical representation of the results in figure 7. As can be observed from table 4, the most prominent 

result is the extensive excess kurtosis estimated by the mixture model for both 21 and 63 days to maturity. 

                                                           
15 See appendix b. Computation of Moments for a brief overview of the statistical moments. 
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Thus, we can conclude that the mixture model assumes that the data is characterized by an implied volatility 

smile or skew and estimates more probability to the more extreme events far out in the tails of the density. 

However, illustrated in figure 4, we can observe that the implied volatility is rather downward sloping than 

exhibit the shape of a distinct smile or skew. Further, we recognize that both the mixture model and the 

kernel regression model underestimate the excess skewness generated from the negative relationship 

between asset returns and implied volatility for the shorter maturities. Meanwhile, we can observe that the 

kernel regression model achieves the most similar results to the true RND for the 126 days to maturity. 

Meanwhile, the neural network performs reasonably well for the two shorter maturities compared to the 

other two models.  

Table 5 and corresponding figure 8 represents the summary statistics for the true RND and 

estimated RNDs following the jump diffusion data-generation process. Observing table 5, we see that the 

results are varying in terms of performance over time for the different models. The mixture model manages 

to capture the kurtosis for all three maturities, but again underestimates the negative skewness for all 

maturities. The kernel model performs sufficiently well for the shorter maturities compared to the other 

models. However, for the 126 days to maturity we notice that the kernel model underestimates the positive 

skewness and further exhibits an inaccurately estimated right tail for the density illustrated in figure 8c. The 

neural network cannot accurately estimate the RND for the two shorter maturities, while redeeming itself 

for the 126 days maturity RND. Lastly, we can observe that the absolute percentage error is considerably 

higher for all models for the 63 days to maturity RNDs.  

Finally, table 6 represents the summary statistics for the true and estimated RNDs based on the 

stochastic volatility and jump diffusion data-generation process. The most prominent findings observed in 

figure 9a, is the peaked distribution predicted by the mixture model. However, interpreting the results 

presented in table 6, we notice that the mixture model has a significantly lower kurtosis than the true RND. 

To understand the relationship between the kurtosis and shape of the mixture model’s density, we examine 

the visual representation of the cumulative probability distribution of the left tail for the 21 days to maturity 

RNDs in figure 10. We see that the mixture model has a considerably thinner left tail than the other densities, 

and as discussed in the earlier sections, kurtosis is defined by the tail distributions, where fatter tails result 

in higher kurtosis. Thus, we can conclude that the mixture model cannot sufficiently capture the prominent 

volatility skew presented in figure 4 and subsequently estimates less probability for the extreme events. 

Continuing, both the kernel regression and neural network model are able to sufficiently capture the features 

of the RND for the options with 21 days to maturity. For the 63 days to maturity, we observe that the neural 

network model performs adequately well compared to the other models. On the other hand, illustrated in 

figure 9b, the kernel model displays a volatile pattern for the left tail of the distribution, indicating that the 
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model is most likely overfitting the data for 𝜉 < 0.85.16 However, for the longer maturity of 126 days, we 

see that all three models struggle to fit the RND properly.  

As a conclusion, we recognize that the mixture model struggles to estimate the RND for shorter 

maturities, where the implied volatility skew is most significant. Further, the mixture model tends to 

underestimate the negative skewness features characterizing the true RND. These findings are aligned with 

Cooper (1999), who made similar conclusions regarding the mixture model. The Kernel regression model 

performs consistently over all data-generation methods and maturities, and we find that the model has 

considerably lower absolute percentage errors, especially for the two jump diffusion processes and can thus 

estimate the moments of the RND more precisely than the other two models The results are further 

consistent with the findings of Lai (2014). On the other hand, we acknowledge that the kernel model tends 

to underestimate the significance of the skewness on a couple of occasions. In particular, we observe that 

the kernel model further shows signs of overfitting the data on one occasion, thus one suggestion would be 

to revise the bandwidth optimization. The neural network performs reasonably well for all data-generation 

processes, but is lacking in precision, especially for the RNDs with longer maturities. Lastly, based on table 

7, we can determine that the kernel regression model best replicates the summary statistics of the true RND 

over all maturities and data-generation processes by a small margin to the neural network model. However, 

the neural network model is superior compared to the other two models when it comes to estimating the 

skewness of the RND.  

                                                           
16 See section 3.4 for a brief explanation on overfitting.  
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TABLE 3. SUMMARY STATISTICS BROWNIAN MOTION 

    

Statistics True Mixture Model Kernel Regression Neural Network

Mean 1.0011 1.0010 1.0011 1.0011

(0.004) (0.000) (0.000)

Std. Dev. 0.04800 0.04801 0.04795 0.0482

(0.025) (0.093) (0.371)

Skewness 0.1440 0.1428 0.1448 0.1446

(0.809) (0.568) (0.454)

Kurtosis 3.0369 3.0495 3.0372 3.0369

(0.415) (0.012) (0.001)

Statistics True Mixture Model Kernel Regression Neural Network

Mean 1.0031 1.0031 1.0031 1.0031

(0.004) (0.000) (0.000)

Std. Dev. 0.0833 0.0833 0.0833 0.0836

(0.007) (0.065) (0.364)

Skewness 0.2461 0.2482 0.2489 0.2471

(0.850) (1.149) (0.432)

Kurtosis 3.0817 3.0789 3.0794 3.0807

(0.093) (0.076) (0.032)

Statistics True Mixture Model Kernel Regression Neural Network

Mean 1.0009 1.0008 1.0009 1.0007

(0.005) (0.002) (0.015)

Std. Dev. 0.1157 0.1157 0.1157 0.1161

(0.024) (0.009) (0.3141)

Skewness 0.3460 0.3467 0.3472 0.3484

(0.190) (0.323) (0.672)

Kurtosis 2.9146 2.9126 2.9111 2.9113

(0.068) (0.119) (0.114)

Brownian Motion - 63 Days

Brownian Motion - 163 Days

Summary statistics for the mixture model, kernel regression and neural network compared to the

true RND for the Brownian motion data-generation process with 21, 63 and 126 days to maturity.

The mean and standard deviation is given in terms of moneyness (ST/St). The absolute

percentage error, calculated as the difference between the estimated and true statistic times 100,

is presented in parentheses with percentage points as unit of measurement. 

Brownian Motion - 21 Days
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FIGURE 6. RISK-NEUTRAL DENSITIES FOR THE BROWNIAN MOTION PROCESSES 

 

Graphical representation of model estimated and true RNDs based on the Brownian motion process for the three 

maturities: 21, 63 and 126 days.   

a) 

b) 

c) 
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TABLE 4. SUMMARY STATISTICS STOCHASTIC VOLATILITY 

  

Statistics True Mixture Model Kernel Regression Neural Network

Mean 1.0010 1.0005 1.0011 1.0011

(0.045) (0.010) (0.010)

Std. Dev. 0.0477 0.0456 0.0473 0.0475

(4.390) (0.826) (0.396)

Skewness -0.6257 -0.2261 -0.3775 -0.5861

(63.868) (39.665) (6.324)

Kurtosis 3.3117 4.9013 3.1217 3.5021

(45.000) (5.735) (5.750)

Statistics True Mixture Model Kernel Regression Neural Network

Mean 1.0028 1.0026 1.0033 1.0030

(0.018) (0.045) (0.021)

Std. Dev. 0.0819 0.0794 0.0823 0.0817

(2.969) (0.525) (0.174)

Skewness -0.8658 -0.4967 -0.7031 -0.8916

(42.632) (18.788) (2.989)

Kurtosis 3.8996 4.1551 3.7570 3.9702

(6.553) (3.657) (1.811)

Statistics True Mixture Model Kernel Regression Neural Network

Mean 1.0014 1.0040 1.0033 1.0023

(0.262) (0.197) (0.091)

Std. Dev. 0.1092 0.1109 0.1087 0.1105

(1.533) (0.505) (1.168)

Skewness -0.5739 -0.5978 -0.5758 -0.6759

(4.163) (0.324) (17.773)

Kurtosis 3.2865 3.2050 3.2394 3.4885

(2.480) (1.434) (6.146)

Stochastic Volatility - 126 Days

Stochastic Volatility - 63 Days

Summary statistics for the mixture model, kernel regression and neural network compared to the

true RND for the stochastic volatility data-generation process with 21, 63 and 126 days to

maturity. The mean and standard deviation is given in terms of moneyness (ST/St). The absolute

percentage error, calculated as the difference between the estimated and true statistic times 100,

is presented in parentheses with percentage points as unit of measurement. 

Stochastic Volatility - 21 Days
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FIGURE 7. RISK-NEUTRAL DENSITIES FOR THE STOCHASTIC VOLATILITY PROCESSES 

 

Graphical representation of model estimated and true RNDs based on the stochastic volatility process for the three 

maturities: 21, 63 and 126 days.   

a) 

b) 

c) 
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TABLE 5. SUMMARY STATISTICS JUMP DIFFUSION 

  

Statistics True Mixture Model Kernel Regression Neural Network

Mean 1.0010 1.0015 1.0016 1.0025

(0.052) (0.062) (0.155)

Std. Dev. 0.0605 0.0598 0.0600 0.0613

(1.128) (0.761) (1.392)

Skewness -0.8174 -0.7628 -0.7816 -0.6742

(6.680) (4.375) (17.521)

Kurtosis 5.8663 5.4790 5.4016 5.2911

(6.602) (7.921) (9.805)

Statistics True Mixture Model Kernel Regression Neural Network

Mean 1.0014 1.0020 1.0013 1.0029

(0.058) (0.012) (0.148)

Std. Dev. 0.1037 0.1014 0.1060 0.1054

(2.161) (2.198) (1.691)

Skewness -0.1702 -0.0110 -0.1897 -0.2907

(93.564) (11.487) (70.791)

Kurtosis 3.3941 3.2839 3.2448 3.7063

(3.249) (4.399) (9.198)

Statistics True Mixture Model Kernel Regression Neural Network

Mean 0.9871 0.9808 0.9845 0.9841

(0.645) (0.272) (0.304)

Std. Dev. 0.1399 0.1393 0.1355 0.1387

(0.437) (3.133) (0.874)

Skewness 0.3564 0.2435 0.2549 0.3315

(31.693) (28.495) (6.994)

Kurtosis 2.7304 2.6468 2.5252 2.8605

(3.062) (7.514) (4.764)

Jump Diffusion - 63 Days

Jump Diffusion - 126 Days

Summary statistics for the mixture model, kernel regression and neural network compared to the

true RND for the jump diffusion data-generation process with 21, 63 and 126 days to maturity. The

mean and standard deviation is given in terms of moneyness (ST/St). The absolute percentage

error, calculated as the difference between the estimated and true statistic times 100, is presented

in parentheses with percentage points as unit of measurement. 

Jump Diffusion - 21 Days
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FIGURE 8. RISK-NEUTRAL DENSITIES FOR THE JUMP DIFFUSION PROCESSES 

 

Graphical representation of model estimated and true RNDs based on the jump diffusion process for the three 

maturities: 21, 63 and 126 days.   

a) 

b) 

c) 
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TABLE 6. SUMMARY STATISTICS STOCHASTIC VOLATILITY AND JUMP DIFFUSION 

  

Statistics True Mixture Model Kernel Regression Neural Network

Mean 1.0025 1.0014 1.0018 1.0010

(0.110) (0.066) (0.144)

Std. Dev. 0.0593 0.0571 0.0610 0.0597

(3.734) (2.907) (0.603)

Skewness -1.1916 -0.1623 -1.1580 -1.1366

(86.377) (2.814) (4.616)

Kurtosis 5.9590 4.2822 5.9806 5.9500

(28.140) (0.362) (0.150)

Statistics True Mixture Model Kernel Regression Neural Network

Mean 1.0059 1.0027 1.0031 1.0011

(0.319) (0.280) (0.479)

Std. Dev. 0.1009 0.0988 0.1044 0.1032

(2.013) (3.533) (2.272)

Skewness -0.7177 -0.4033 -0.8626 -0.6583

(44.378) (20.187) (8.286)

Kurtosis 3.4309 3.4178 3.6818 3.6064

(0.381) (7.314) (5.114)

Statistics True Mixture Model Kernel Regression Neural Network

Mean 1.0049 1.0022 0.9955 0.9949

(0.268) (0.941) (0.998)

Std. Dev. 0.1362 0.1389 0.1372 0.1387

(2.020) (0.792) (1.876)

Skewness -0.1627 -0.2323 -0.1028 -0.0852

(42.803) (36.785) (47.639)

Kurtosis 2.5206 2.5069 2.5342 2.5011

(0.543) (0.541) (0.775)

Stochastic Volatility and Jump Diffusion - 63 Days

Stochastic Volatility - 126 Days

Summary statistics for the mixture model, kernel regression and neural network compared to the

true RND for the stochastic volatility and jump diffusion data-generation process with 21, 63 and

126 days to maturity. The mean and standard deviation is given in terms of moneyness (ST/S t ). The 

absolute percentage error, calculated as the difference between the estimated and true statistic

times 100, is presented in parentheses with percentage points as unit of measurement. 

Stochastic Volatility and Jump Diffusion - 21 Days
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FIGURE 9. RISK-NEUTRAL DENSITIES FOR THE STOCHASTIC VOLATILITY AND JUMP DIFFUSION 

PROCESSES 

 

Graphical representation of the model estimated and true RNDs based on the stochastic volatility and jump diffusion 

process for the three maturities: 21, 63 and 126 days.   

b) 

a) 

c) 
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FIGURE 10. CUMULATIVE PROBABILITY, LEFT TAIL, SVJD - 21 DAYS 

 

The figure illustrates the cumulative probability observed in the left tail for the densities with the stochastic volatility 

and jump diffusion process as the underlying data-generation process, with 21 days to maturity.  

 

TABLE 7. MODEL PERFORMANCE SUMMARY STATISTICS OVERVIEW  

 

 

Statistics 21 63 126 21 63 126

Mean NN KR KR NN MM NN

Std. Dev. MM MM KR NN NN KR

Skewness NN NN MM NN NN KR

Kurtosis NN NN MM KR NN KR

Statistics 21 63 126 21 63 126

Mean MM KR KR KR KR MM

Std. Dev. KR NN MM NN MM KR

Skewness KR KR NN KR NN KR

Kurtosis MM MM MM NN MM KR

Brownian Motion Stochastic Volatility

Jump Diffusion Stochastic Volatility &Jump Diffusion

Overview of the best performing model in terms of replicating the summary statistics of the true

RND for each maturity and data-generation processes. The ranking presented in the table is based

on the smallest absolute percentage error. Here, MM refers to the mixture model, KR to the kernel

regression model and NN to the neural network model. 
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5.2 Mann-Whitney U-Test 

To further quantify the estimated RNDs’ goodness of fit, we conducted the nonparametric, two-

sided Mann-Whitney U test introduced by Mann and Whitney (1947). The test compares two sample 

distributions and determines if the two independent sample distributions originate from a population with 

the same distribution. Thus, we want to investigate if our estimated RND originates from the same data-

generation process as the true RND. The Mann-Whitney U test compares the ranks of each observation in 

the two distributions and verifies whether the ranks are evenly dispersed across both groups.  

We can define our null hypothesis as, 

𝐻0: 𝐵𝑜𝑡ℎ 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. 

The Mann-Whitney U test is conducted by ranking each observation in both distributions, or referred to as 

groups, from highest to lowest, where the lowest value from both data groups gets the value 1 and the 

highest gets the value 𝑛 = 𝑛1 + 𝑛2, where 𝑛1 is the number of observations in data group 1 and 𝑛2 the 

number of observations in data group 2. For the purpose of this test, we evaluate 1000 observations across 

𝑆𝑇 for each density function and categorize the estimated RND observations as group 1 and the true RND 

observations as group 2. We continue by summarizing the ranks of each group, where the sum of ranks for 

group 1 is denoted as 𝑅1, group 2 as 𝑅2, and the total sum of the ranks 𝑅 = 𝑛(𝑛 + 1) 𝑛⁄ .  

According to our null hypothesis, we would expect that the values of 𝑅1 and 𝑅2 are similar to each 

other. However, 𝑅1 could be equal to 𝑅2 by coincidence and not because the ranks are dispersed evenly 

across the groups’ observations. Thus, we have to compute the Mann-Whitney U test statistic, denoted as 𝑈, 

and compare it to a probability distribution. The test statistic 𝑈 is defined as, 

𝑈 = {
𝑈1, 𝑓𝑜𝑟 𝑈1 ≤ 𝑈2

𝑈2, 𝑓𝑜𝑟 𝑈1 > 𝑈2
, 

where, 

 
𝑈𝑗 = 𝑛1𝑛2 +

𝑛𝑗(𝑛𝑗 + 2)

2
− 𝑅𝑗, 

(5.1) 

for 𝑗 = 1 ,2. The standardized 𝑧 score is given by,  

 
𝑧 =

𝑈 − 𝜇𝑈

𝜎𝑈
, 

(5.2) 

where the mean 𝜇𝑈 and standard deviation 𝜎𝑈 of 𝑈 is defined as, 
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 𝜇𝑈 =
𝑛1𝑛2

2
,  

 

𝜎𝑈 = √
𝑛1𝑛2

12
[(𝑛1 + 1) − ∑

𝑡𝑖
3 − 𝑡𝑖

𝑛(𝑛 − 1)

𝑘

𝑖=1

] , 

 

(5.3) 

   

where 𝑡𝑖 is the number of observations that have the same score and subsequently share the same rank. 

Here, we conduct the Mann-Whitney U test as a two-sided test, thus our critical values are defined as -1.96 

and 1.96 , where we reject the null hypothesis if 𝑧 < −1.96 or 𝑧 > 1.96, or equivalent to a p-value < 0.05. 

The results from our Mann-Whitney U test can be observed in table 8 and table 9.  

Interpreting the results of the Brownian motion data-generation process, presented in table 8, one 

can observe that we fail to reject the null hypothesis for all densities, over all three maturities. These findings 

are consistent with the results reported in section 5.1, where we concluded that all of the models can 

sufficiently estimate a nearly identical RND to the true RND if the asset returns are log-normal.  

Observing the results from the stochastic volatility processes in table 8, we find we reject the null 

hypothesis for the mixture model estimated RNDs for 21 and 63 days to maturity. These results are coherent 

with the findings from the previous section, where we concluded that the mixture model neglected the 

excess skewness, observed in table 4 and illustrated in figures 7a and 7b. We further find that we reject the 

null hypothesis for the RND with 21 days to maturity estimated by the kernel regression model. However, 

observing the results in table 4 and figure 7a, it is hard to verify why we reject the null hypothesis. Thus, 

we have to investigate the tails of the two densities. Interpreting the data, we found that the right tail of the 

density estimated by the kernel regression model converges almost instantaneously to zero at 𝑆𝑇 = 3100, 

which is illustrated in figure 11. Due to the rapid convergence towards zero, the ranks for the true density 

are considerably higher compared to the density estimated by the kernel regression for the last 500 

observations in the densities’ right tails, illustrated in figure 12. Meanwhile, considering the estimated 

RNDs for the neural network, we can conclude that we fail to reject the null hypothesis for all maturities. 

Continuing by interpreting the results from the jump diffusion processes, observed in table 9, we 

recognize that we fail to reject the null hypothesis for all models over all three maturities. However, we 

recognize that the p-values are lower for the mixture model and kernel regression compared to the neural 

network, but never significant.   

Lastly, we can observe the results reported in table 9 for the stochastic volatility and jump diffusion 

process, where we reject the null hypothesis for the mixture model at the 21 days to maturity. This is further 
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supported by the findings from table 6, where we see that the mixture model underestimates the skewness 

of the SVJD process for the 21 days to maturity. Further, we can conclude that we fail to reject the null 

hypothesis for the remaining results across models and maturities.  

As a conclusion, we can verify that the mixture model’s estimated RND proves to be statistically 

different from the true RND for the SV and SVJD data-generation processes, with 21 days to maturity, as 

well as for the SV processes with 63 days to maturity. We further validated that the kernel regression 

model’s estimated RND is statistically different from the true RND for the SV data-generation processes 

with 21 days to maturity, while we conclude that the RNDs estimated by the neural network model is 

statistically identical to the true RNDs for all data-generation processes and maturities.    
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TABLE 8. MANN-WHITNEY U TEST, BM AND SV 

 

TABLE 9. MANN-WHITNEY U TEST, JD AND SVJD 

 

  

Time to 

Maturity

Mixture 

Model

Kernel 

Regression

Neural 

Network

Mixture 

Model

Kernel 

Regression

Neural 

Network

21 Days 494421.0 498291.0 496116.5 589210.0 463648.5 488386.5

(0.666) (0.895) (0.764) (0.000)* (0.005)* (0.369)

63 Days 496547.5 499302.5 497712 525509.5 501992 501251.5

(0.789) (0.957) (0.859) (0.048)* (0.877) (0.923)

126 Days 499414.5 498816.5 498557.5 500862 499224 502995

(0.964) (0.927) (0.911) 499224 (0.952) (0.817)

Reported results from the two-sided Mann-Whitney U test for the three different models: the mixture model, kernel

regression model and neural network model, for the Brownian motion and stochastic volatility data-generation processes over

the three maturities: 21 days, 63 days and 126 days. The results are reported in terms of U statistics and the p-values are

reported in parentheses. Significance level:  p* < .05.

Brownian Motion Stochastic Volatility

Time to 

Maturity

Mixture 

Model

Kernel 

Regression

Neural 

Network

Mixture 

Model

Kernel 

Regression

Neural 

Network

21 Days 483083.0 486302.0 493373.5 474682.5 519288.0 502707.0

(0.190) (0.289) (0.608) (0.0499)* (0.974) (0.834)

63 Days 493787.0 499966.0 503627.5 516148.0 489554.0 516551.0

(0.616) (0.998) (0.779) (0.211) (0.419) (0.200)

126 Days 495905.5 488854.5 501142.0 508250.0 502127.5 496747.0

(0.751) (0.388) (0.930) (0.523) (0.869) (0.801)

Jump Diffusion Stochastic Volatility & Jump Diffusion

Reported results from the two-sided Mann-Whitney U test for the three different models: the mixture model, kernel

regression model and neural network model, for the jump diffusion and stochastic volatility with jump diffusion data-

generation processes over the three maturities: 21 days, 63 days and 126 days. The results are reported in terms of U

statistics and the p-values are reported in parentheses. Significance level:  p* < .05.
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FIGURE 11. RIGHT TAIL PROBABILITY DISTRIBUTION, SV - 21 DAYS 

 

The probability distribution observed in the right tail for the true and kernel regression estimated RND, where the 

underlying follows a stochastic volatility process with 21 days to maturity.  

 

FIGURE 12. MANN-WHITNEY U RANKS, RIGHT TAIL, SV – 21 DAYS 

 

Box diagram for the last 500 Mann-Whitney U ranks distributed over the right tail of the true and kernel regression 

estimated RND, following a stochastic volatility process with 21 days to maturity. The uneven distribution of ranks 

suggests that the two densities do not come from the same population data-generation process.   
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5.3 Empirical Pricing of Options 

To evaluate the theoretical valuation capabilities of the estimated RNDs, we conducted a simple 

risk-neutral valuation analysis for a set of different derivatives. To price the derivatives, we utilize the 

fundamental risk-neutral valuation equation observed in section 2.3, equation (2.7). However, for the 

purpose of this thesis and for the reader to be able to easily interpret the results, we will simplify the payoff 

structure similarly to that of a binary option, where the call option pays 100 if the terminal stock price is 

equal to or above the strike price and the put options pays 100 if the terminal stock price is equal to or 

below the price strike. We define the payoff for the call (𝐶) and put (𝑃) options as follows,  

𝐶 = { 
0,        𝑓𝑜𝑟 𝑆𝑇 < 𝐾
100,   𝑓𝑜𝑟 𝑆𝑇 ≥ 𝐾

, 𝑃 =  { 
0,        𝑓𝑜𝑟 𝑆𝑇 > 𝐾
100,   𝑓𝑜𝑟 𝑆𝑇 ≤ 𝐾

. 
(5.4) 

 

Thus, utilizing equation (2.10) we can further define the price of the theoretical, binary call and put options, 

incorporating our payoff structure in equation (5.4), simply as, 

 

𝑐(𝑆𝑡 , 𝐾) = 𝑒−𝑟𝑇 ∫ 𝐶𝑞(𝑆𝑇)𝑑𝑆𝑇

∞

𝑆𝑇=𝐾

, 
 

 

𝑝(𝑆𝑡, 𝐾) = 𝑒−𝑟𝑇 ∫ 𝑃𝑞(𝑆𝑇)𝑑𝑆𝑇

𝑆𝑇=𝐾

0

, 

 

(5.5) 

where 𝑐(𝑆𝑡, 𝐾) is the current price of the call option, 𝑝(𝑆𝑡, 𝐾) is the current price of the put option and 

𝑞(𝑆𝑇) is the risk-neutral density evaluated at 𝑆𝑇. We want to investigate the robustness of the models’ 

valuation efficiency; thus, we will proceed to evaluate two call and two put options. First, we define one 

call and one put option with strike price equal to the spot price, 𝐾=2673.61. Further, we define a call option 

with strike price equal to 3000, with the purpose of analyzing the densities’ right tails. Lastly, we define a 

put option with a strike price equal to 2300, with the purpose of analyzing the densities’ left tails. To further 

examine the robustness, we evaluate each option over three different maturities: 21, 63 and 126 trading 

days. The valuation results are presented in tables 10 – 17.  

The valuation results for the options where the underlying follows a Brownian motion process is 

presented in table 10 and table 11. As concluded in the earlier sections, we see that the models replicate the 

true option price reasonably well, especially for the longer maturities. The two more exceptional errors can 

be observed for the shorter maturity of 21 days. We see that the neural network undervalues the 21 days to 

maturity call option with a strike price equal to 3000, thus we can conclude that the neural network estimates 

lower probability for the right tail outcomes, while the mixture model undervalues the 21 days to maturity 

put option with a strike price equal to 2300, hence the model estimates a lower probability for the left tail 
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outcomes. In general, we see that the true densities have fatter right tails than the estimated RNDs, where 

practically all models undervalue both call options for all maturities, however, not considerably.  

We proceed by investigating the results given in table 12 and table 13, where the underlying follows 

a stochastic volatility process. The most striking result is the mixture model’s estimated price for the 21 

days to maturity call option with a strike price of 3000, where the price percentage error is quite salient. 

This result suggests that the estimated RND has a noticeable fatter right tail than the true RND. Observing 

the results in table 4 we see that all models and particularly the mixture models underestimate the negative 

skew of the true RND for the 21 days to maturity. Hence, we can confirm that all three models, and 

especially the mixture model, overestimate the probability of the spot price surging over 3000 at maturity 

𝑇=21 days. Moreover, we observe that the kernel regression model prominently overvalues the 𝐾=3000, 

63 days to maturity call option, that is justified by the kernel regression’s heavier right tail observed figure 

7b in section 5.1. Interpreting the results for the put options, we can conclude that the kernel regression 

does reasonably well for the 𝐾=2300 put options for all maturities, while the mixture and neural network 

models undervalues the 21 days to maturity put option. However, observing the results for the 𝐾=2673.61 

call and put options, for all maturities, we recognize that the mixture model manages to estimate the prices 

quite sufficiently for all maturities compared to the other models.  

Continuing, by observing the outcomes from the valuation of options following the jump diffusion 

process, in table 14 and table 15, we examine similar, inconclusive results to the ones observed in the 

summary statistics, in section 5.1. We can see that all models perform quite insufficiently, with the neural 

network as the only exception for the 21 days to maturity call and put option with 𝐾=3000 and 𝐾=2300, 

respectively. For the jump diffusion process in general, we might argue that the neural network is the best 

performing, or at least the best performing model in terms of consistency for both the put and call options 

for all maturities. More strikingly, we see that for the longer maturity of 126 days, the models undervalue 

the call options and overvalue the put options, concluding that the models allocate higher probability to the 

asset returns occurring in the left tail of the density and less probability to the returns in the right tail. These 

findings are further confirmed when observing figure 8c. 

Finally, we interpret the results from table 16 and table 17, where the underlying security follows 

a stochastic volatility and jump diffusion process. Similar to the results from the stochastic volatility process, 

we recognize that the mixture model overvalues the shorter 21 days to maturity call option with 

strike 𝐾=3000. This result can clearly be verified by observing figure 9a and table 6, where we see the 

salient right tail estimated by the mixture model and further underestimated negative skewness. Observing 

the same option, we notice that both the kernel regression and neural network models overvalue the call 
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option 𝐾=3000, indicating heavier right tails. However, more interestingly, we see that both models, the 

kernel regression and neural network, further overvalue the 21 days to maturity 𝐾=2300 put option, 

implying that the model estimated RNDs have heavier left tail and right tails compared to the true RND. 

However, observing the summary statistics in table 6, we see that the true RND and two models further 

have almost similar kurtosis and skewness. To fully investigate the given results, one has to closely observe 

the RNDs’ tails, presented in figure 13. Observing the figure, we can infer that the true density distributes 

higher probabilities to events occurring at strikes lower than 𝐾=2100, compared to the kernel and neural 

network models. Thus, to properly capture the features of the tail and more extreme negative values, one 

would have to price a deeper out-of-the-money put option. Overall, we see that in the majority of cases the 

models overvalue the put options and undervalue the call options, indicating that the models have estimated 

fatter left tails and thinner right tails, similar to the results observed for the jump diffusion process. As a 

conclusion, one can argue that the neural network model once more outperforms, at least in terms of 

consistency, the two other models for all observed cases similar to the results presented for the jump 

diffusion process.  

Table 18 presents an overview of the model with the lowest absolute percentage error for each data-

generation process and maturity. Interpreting the table, we can conclude that the mixture model has on most 

occasions the lowest absolute percentage pricing error for the call options, and especially for the at-the-

money options. However, recognizing the results for both the call and put options, we see that the neural 

network has the lowest absolute percentage pricing error on most occasions overall, followed by the mixture 

model and lastly the kernel regression model.  

As a conclusion, we can see that the valuation of the binary options, where the underlying follows 

a Brownian motion, are coherent with our earlier results from previous tests, where all three models were 

able to predict the prices with reasonable accuracy for all maturities. In general, we recognize that the 

mixture model is able to predict the option prices efficiently well for the at-the-money options, while falling 

short on options based on a RND with a distinct negative skew, observed for the stochastic volatility 

processes. The kernel regression tends to overvalue the price of the call options with 𝐾=3000, especially 

for the options following a stochastic volatility process and with shorter maturities. The neural network on 

the other hand performs reasonably well compared to the other models, especially for the put options with 

strike 𝐾=2300, for options with longer maturities and for the options where the underlying follows a jump 

diffusion process. Lastly, we recognized that the neural network had the lowest absolute percentage pricing 

error on most occasion considering both the call and put options for all maturities.    
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TABLE 10. CALL OPTION VALUATION - BROWNIAN MOTION 

 

TABLE 11. PUT OPTION VALUATION - BROWNIAN MOTION 

 

 

 

 

 

Time to 

Maturity True

Mixture 

Model

Kernel 

Regression

Neural 

Network True

Mixture 

Model

Kernel 

Regression

Neural 

Network

21 Days 49.7619 49.4108 49.4033 48.7093 0.8127 0.7922 0.7888 0.7242

(-0.706) (-0.721) (-2.115) (-2.516) (-2.935) (-10.891)

63 Days 49.6599 49.4420 49.4173 49.3559 8.2088 8.1216 8.1187 7.9478

(-0.439) (-0.489) (-0.612) (-1.062) (-1.097) (-3.179)

126 Days 49.0943 48.9329 48.9381 48.8760 15.7611 15.6595 15.6550 15.4744

(-0.329) (-0.318) (-0.445) (-0.645) (-0.673) (-1.819)

Pricing of a hypothetical call option that has a payoff of a 100 if the spot price (ST) is greater than or equal to the

strike price (K), otherwise the payoff is 0, for the three different maturities: 21, 63 and 126 days. The price of the

option is compared between the true RND, the mixture model, kernel regression and neural network where the

underlying data-generation follows a Brownian motion process. The values are presented as option prices with

corresponding percentage errors in parentheses with percentage points as unit of measurement. The percentage

error is calculated as the percentage difference between the true and the model's estimated price, times 100.

K = 3000K = 2673.61

Time to 

Maturity True

Mixture 

Model

Kernel 

Regression

Neural 

Network True

Mixture 

Model

Kernel 

Regression

Neural 

Network

21 Days 50.1299 50.3692 50.3888 50.8833 0.0835 0.0744 0.0836 0.0831

(0.477) (0.516) (1.503) (-10.972) (0.116) (-0.509)

63 Days 50.0072 50.1213 50.1507 50.0136 3.4797 3.5076 3.4761 3.3773

(0.228) (0.287) (0.013) (0.802) (-0.103) (-2.942)

126 Days 49.8569 49.9214 49.9228 49.8059 9.9505 10.0035 10.0308 9.7630

(0.129) (0.132) (-0.102) (0.533) (0.807) (-1.884)

K = 2300K = 2673.61

Pricing of a hypothetical put option that has a payoff of a 100 if the spot price (ST) is less than or equal to the strike

price (K), otherwise the payoff is 0, for the three different maturities: 21, 63 and 126 days. The price of the option is

compared between the true RND, the mixture model, kernel regression and neural network where the underlying data-

generation follows a Brownian motion process. The values are presented as option prices with corresponding percentage

errors in parentheses with percentage points as unit of measurement. The percentage error is calculated as the percentage

difference between the true and the model's estimated price, times 100.
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TABLE 12. CALL OPTION VALUATION - STOCHASTIC VOLATILITY 

 

TABLE 13. PUT OPTION VALUATION - STOCHASTIC VOLATILITY 

 

 

 

Time to 

Maturity
True

Mixture 

Model

Kernel 

Regression

Neural 

Network
True

Mixture 

Model

Kernel 

Regression

Neural 

Network

21 Days 55.2289 55.5281 54.2285 54.3328 0.0361 0.9039 0.0468 0.0451

(0.542) (-1.811) (-1.623) (2,400.992) (29.414) (24.898)

63 Days 58.6892 58.8209 56.0840 58.2869 2.9792 3.6578 4.5768 3.2110

(0.224) (-4.439) (-0.686) (22.776) (53.623) (7.777)

126 Days 60.7648 60.6397 60.3106 61.9207 11.5098 12.3035 12.2141 10.6114

(-0.206) (-0.748) (1.902) (6.896) (6.119) (-7.806)

Pricing of a hypothetical call option that has a payoff of a 100 if the spot price (ST) is greater than or equal to the

strike price (K), otherwise the payoff is 0, for the three different maturities: 21, 63 and 126 days. The price of the option is

compared between the true RND, the mixture model, kernel regression and neural network where the underlying data-

generation follows a stochastic volatility process. The values are presented as option prices with corresponding percentage

errors in parentheses with percentage points as unit of measurement. The percentage error is calculated as the percentage

difference between the true and the model's estimated price, times 100.

K = 2673.61 K = 3000

Time to 

Maturity
True

Mixture 

Model

Kernel 

Regression

Neural 

Network
True

Mixture 

Model

Kernel 

Regression

Neural 

Network

21 Days 44.6630 44.1969 45.5637 45.4593 0.7311 0.5440 0.7332 0.6447

(-1.044) (2.017) (1.783) (-25.592) (0.279) (-11.817)

63 Days 40.9162 40.6408 43.4919 41.0502 6.1996 6.0925 5.6937 5.7749

(-0.673) (6.295) (0.328) (-1.728) (-8.16) (-6.85)

126 Days 37.7023 38.2794 38.2307 36.2706 10.4894 11.7359 10.3176 9.8981

(1.531) (1.402) (-3.797) (11.884) (-1.637) (-5.637)

K = 2300K = 2673.61

Pricing of a hypothetical put option that has a payoff of a 100 if the spot price (ST) is less than or equal to the strike

price (K), otherwise the payoff is 0, for the three different maturities: 21, 63 and 126 days. The price of the option is

compared between the true RND, the mixture model, kernel regression and neural network where the underlying data-

generation follows a stochastic volatility process. The values are presented as option prices with corresponding percentage

errors in parentheses with percentage points as unit of measurement. The percentage error is calculated as the percentage

difference between the true and the model's estimated price, times 100.
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TABLE 14. CALL OPTION VALUATION - JUMP DIFFUSION 

 

TABLE 15. PUT OPTION VALUATION - JUMP DIFFUSION 

  

Time to 

Maturity
True

Mixture 

Model

Kernel 

Regression

Neural 

Network
True

Mixture 

Model

Kernel 

Regression

Neural 

Network

21 Days 55.4099 52.7766 52.9747 52.1095 1.5787 1.3262 1.3591 1.6016

(-4.752) (-4.395) (-5.956) (-15.992) (-13.905) (1.450)

63 Days 56.7847 56.9267 57.7848 54.3400 13.6552 13.8241 14.6971 13.3927

(-0.19) (0.060) (1.568) (1.237) (7.630) (-1.923)

126 Days 56.3352 53.9882 53.6013 54.6009 24.2279 22.3083 22.4365 22.3835

(-4.166) (-4.853) (-3.079) (-7.923) (-7.394) (-7.613)

Pricing of a hypothetical call option that has a payoff of a 100 if the spot price (ST) is greater than or equal to the

strike price (K), otherwise the payoff is 0, for the three different maturities: 21, 63 and 126 days. The price of the

option is compared between the true RND, the mixture model, kernel regression and neural network where the

underlying data-generation follows a jump diffusion process. The values are presented as option prices with

corresponding percentage errors in parentheses with percentage points as unit of measurement. The percentage

error is calculated as the percentage difference between the true and the model's estimated price, times 100.

K = 2673.61 K = 3000

Time to 

Maturity
True

Mixture 

Model

Kernel 

Regression

Neural 

Network
True

Mixture 

Model

Kernel 

Regression

Neural 

Network

21 Days 44.5771 47.0653 47.2150 47.4684 2.0227 2.5724 2.5712 1.9976

(5.582) (5.918) (6.486) (27.173) (27.117) (-1.241)

63 Days 42.9231 45.8532 45.5862 44.5247 6.6509 6.5254 7.4682 6.8175

(6.826) (6.204) (3.731) (-1.887) (12.288) (2.505)

126 Days 41.7355 43.8481 43.9925 42.5929 11.7831 13.9491 13.4177 12.6625

(5.062) (5.408) (2.054) (18.382) (13.872) (7.462)

Pricing of a hypothetical put option that has a payoff of a 100 if the spot price (ST) is less than or equal to the strike

price (K), otherwise the payoff is 0, for the three different maturities: 21, 63 and 126 days. The price of the option is

compared between the true RND, the mixture model, kernel regression and neural network where the underlying data-

generation follows a jump diffusion process. The values are presented as option prices with corresponding percentage errors

in parentheses with percentage points as unit of measurement. The percentage error is calculated as the percentage difference

between the true and the model's estimated price, times 100.

K = 2673.61 K = 2300
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TABLE 16. CALL OPTION VALUATION - STOCHASTIC VOLATILITY AND JUMP DIFFUSION 

 

TABLE 17. PUT OPTION VALUATION - STOCHASTIC VOLATILITY AND JUMP DIFFUSION 

 

 

 

 

Time to 

Maturity
True

Mixture 

Model

Kernel 

Regression

Neural 

Network
True

Mixture 

Model

Kernel 

Regression

Neural 

Network

21 Days 58.7233 55.8921 57.2959 58.6401 0.3040 2.0514 0.5752 0.4815

(-4.821) (-2.431) (-0.142) (574.841) (89.224) (58.407)

63 Days 60.3896 58.2663 58.6229 59.2587 8.7643 8.0809 7.8616 7.7856

(-3.516) (-2.925) (-1.873) (-7.797) (-10.299) (-11.166)

126 Days 59.7377 58.6443 57.4401 57.9493 25.8016 22.1535 22.2551 21.9937

(-1.83) (-3.846) (-2.994) (-14.139) (-13.745) (-14.758)

Pricing of a hypothetical call option that has a payoff of a 100 if the spot price (ST) is greater than or equal to the

strike price (K), otherwise the payoff is 0, for the three different maturities: 21, 63 and 126 days. The price of the option is

compared between the true RND, the mixture model, kernel regression and neural network where underlying data-generation

follows a stochastic volatility and jump diffusion process. The values are presented as option prices with corresponding

percentage errors in parentheses with percentage points as unit of measurement. The percentage error is calculated as the

percentage difference between the true and the model's estimated price, times 100.

K = 2673.61 K = 3000

Time to 

Maturity
True

Mixture 

Model

Kernel 

Regression

Neural 

Network
True

Mixture 

Model

Kernel 

Regression

Neural 

Network

21 Days 41.1494 43.8570 42.5657 41.0527 2.7139 1.4974 3.0292 2.9715

(6.580) (3.442) (-0.235) (-44.826) (11.617) (9.492)

63 Days 38.9834 41.1838 40.6895 39.5582 9.2795 9.7655 10.0249 9.6223

(5.644) (4.376) (1.474) (5.238) (8.033) (3.694)

126 Days 37.9488 39.8142 40.0663 39.0479 13.6750 16.5484 14.7918 14.6343

(4.916) (5.580) (2.896) (21.012) (8.166) (7.015)

Pricing of a hypothetical put option that has a payoff of a 100 if the spot price (ST) is less than or equal to the strike

price (K), otherwise the payoff is 0, for the three different maturities: 21, 63 and 126 days. The price of the option is

compared between the true RND, the mixture model, kernel regression and neural network where underlying data-generation

follows a stochastic volatility and jump diffusion process. The values are presented as option prices with corresponding

percentage errors in parentheses with percentage points as unit of measurement. The percentage error is calculated as the

percentage difference between the true and the model's estimated price, times 100.

K = 2673.61 K = 2300
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FIGURE 13. PROBABILITY DISTRIBUTION, LEFT TAIL, SVJD – 21 DAYS 

 

Illustration of the left tail distribution for the true and model estimated RNDs, where the underlying follows a 

stochastic volatility and jump diffusion processes, with 21 days to maturity. The purpose of the figure is to illustrate 

the heaver tail for the true RND with strikes lower than 2100 compared to the other model estimated RNDs.  

 

TABLE 18. OVERVIEW OF OPTION VALUATION PERFORMANCE 

  

Call Option

BM SV JD SVJD BM SV JD SVJD

21 Days MM MM KR NN MM NN NN NN

63 Days MM MM KR NN MM NN MM MM

126 Days KR MM NN MM MM KR KR KR

Put Option

BM SV JD SVJD BM SV JD SVJD

21 Days MM MM MM NN KR KR NN NN

63 Days NN NN NN NN KR MM MM NN

126 Days NN KR NN NN MM KR NN NN

The table represents the model estimated RND with smallest absolute percentage pricing error compared to

prices based on the true RNDs, for each data-generation processes and maturity. The first section of the

table represents the results from the binary call options, while the second part represents the results from the

binary put options. 

K = 2673.61 K = 3000

K = 2673.61 K = 2300
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5.3.1 Summary Statistics and Absolute Pricing Error 

As a last test for the pricing of the theoretical binary options, we want to investigate the relationship 

between the difference in option valuation and summary statistics, where we intend to study the impact of 

skewness, kurtosis and time to maturity on the pricing errors for the 𝐾=2300 put option. We conducted a 

simple multivariate regression, constituted by the absolute pricing error,  

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑝𝑟𝑒𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑝𝑟𝑖𝑐𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 =  |𝑝𝑟𝑒𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑝𝑟𝑖𝑐𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟|, 

as the dependent variable and skewness, kurtosis observed from the true density, as well as time to maturity 

as the independent variables. We further divide the results into two different regressions for each model, 

where we also control for the specific data-generation process. The data for the independent variable 

skewness is converted to ‘absolute’ skewness for accurate regression results. For the test we define two 

corresponding null hypotheses for the two statistical moments as, 

𝐻01: A change in skewness does not have a statistical effect on the absolute percentage pricing error  

𝐻02: A change in kurtosis does not have a statistical effect on the absolute percentage pricing error  

The regression results are presented in table 19. However, it is important to emphasize the fact that these 

results are only representable for the pricing error of a binary put option, with payoff defined in equation 

(5.4) and with a strike price of 2300. Further and most notably, the test is only conducted on twelve 

observations, thus, these results are only intended as indications of the models’ pricing error given the 

summary statistics of the true densities.  

Interpreting table 19, we observe that the mixture model does not show any relationship between 

the error produced from pricing the theoretical options and any of the summary statistics. Thus, this suggests 

that the mixture model is statistically indifferent of the density features such as skewness and kurtosis when 

pricing this particular put option and thus we fail to reject both null hypotheses. Observing the results for 

the kernel regression, we can verify that the kurtosis feature is statically significant at the 5% level. We can 

interpret the result as when the RND is associated with an increased kurtosis, we additionally examine an 

increase in the mispricing of the option. Thus, the kernel regression model performs worse for pricing put 

options with a strike price of 2300, where the underlying asset’s RND is characterized by a higher kurtosis. 

Hence, we can reject our second null hypothesis 𝐻02. Further, we notice that the kernel regression model is 

also statistically significant for skewness at the 10% level, and thus we reject our first null hypothesis 𝐻01 

when controlling for the data-generation process. However, this relationship is the opposite of what one 

would initially assume, where the results suggest that the mispricing decreases with higher skewness. 
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Investigating the relationship by observing the results for table 14 and table 15, we notice the kernel 

regression model’s higher pricing errors for the jump diffusion process, accompanied by lower skewness 

for the two longer maturities. Thus, the results associated with the jump diffusion process, as well as the 

low number of observations, contribute to the negative relationship between skewness and the pricing error 

for the kernel model. Lastly, observing the results for the neural network model, we recognize that the 

skewness is statistically significant at the 5% level when we do not control for the underlying process and 

10% level when we do. Thus, the results suggest that the neural network model price options more 

accurately when the terminal asset return distribution exhibits less skewness, a relationship that would 

confirm ones initial expectations and thus we can reject our first null hypothesis 𝐻01. However, interpreting 

the results for the kurtosis, we can conclude that the variable is not statistically significant, therefore we fail 

to reject our second null hypothesis 𝐻02.  

In conclusion, we presented a simple multivariate OLS-regression to examine the relationship 

between mispricing of the 𝐾 = 2300 put option and the density characteristics associated with skewness 

and kurtosis. The regressions showed that kurtosis and skewness have an impact on the valuation for the 

kernel regression and neural network model respectively, but due to only a few observations for the 

regressions the results should be interpreted with some skepticism. 
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TABLE 19. MULTIVARIATE REGRESSION, PRICING ERROR AND SUMMARY STATISTICS 

  

Variables

Skewness 5.3102 2.1132 -14.6847 -16.2905* 11.6807** 11.0091*

(19.253) (18.871) (8.819) (8.455) (4.837) (4.891)

Kurtosis 6.4624 4.7875 9.2461** 8.4048** -2.7893 -3.1412

(6.604) (6.555) (3.025) (2.937) (1.659) (1.699)

Time to Maturity 1.3377 -7.7034 15.9229 11.3816 -1.8277 -3.7269

(27.162) (27.386) (12.442) (12.271) (6.824) (7.097)

No. Observations 12 12 12 12 12 12

Data-Generation 

Processes
No Yes No Yes No Yes

R
2

0.3979 0.5036 0.5846 0.6723 0.4245 0.4952

Adjusted R
2

0.1721 0.2199 0.4288 0.4851 0.2087 0.2067

F-Statistics 1.7620 1.7753 3.7529 3.5904 1.9673 1.7165

Prob > F 0.2319 0.2381 0.0598 0.0675 0.1976 0.2498

The following table represents the results from the multivariate regressions, with the dependent variable absolute 

percentage pricing error in terms of percentage points from the put option with K=2300. The mean values of regression

coefficients are presented as units, while the independent variable time is presented in terms of years and standard

deviations are reported in parentheses. The significance levels are defined as ***, **, * for a statistical significance of 1%,

5% and 10% respectively. 

Mixture Model Kernel Regression Neural network
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5.4 Pricing of S&P 500 Options 

Until this point, we have only measured the performance of the three specific models on artificially 

simulated data. As a last test, we want to investigate the models’ performance on real world market data, 

containing exceptionally more noise than our generated data. However, as concluded earlier, the real market 

RND cannot be observed directly. Thus, instead of directly comparing the RNDs, we estimate the RNDs 

from market data and value the option based on the estimated RND using equation (2.7), similar to the 

pricing of the hypothetical binary options in previous segment, but now with a conventional payoff structure, 

similar to equation 2.3 in section 2.2.1.  

For this test we evaluated the RND for two different time to maturities options on two different 

trading dates. The data analyzed is based on the historical SPX European option prices observed between 

June 1st, 2017 and December 29th, 2017, where the S&P 500 index is the underlying security. The risk-free 

rate is the observed one-month U.S. Treasury bill on that specific trading date and the spot price is simply 

the closing price of the S&P 500 on that specific trading date. The option prices are calculated as the average 

closing price between the bid and ask price of the option contract. To minimize noise in the dataset we 

further discarded option contracts with less than 20 open interests. The options were selected based on open 

interest and settled agreements and are thus assumed to be efficiently priced, liquid options. The descriptive 

statistics as well as the implied volatilities for the different time to maturities can be observed in table 20 

and figure 14, respectively. The given summary statistics and estimated RNDs for the models can be 

observed in table 21 and figure 15, respectively.  

The most noticeable observations from the summary statistics in table 21 are the considerably 

higher kurtosis compared to the kurtosis generated from our simulations covered in section 5.1. Thus, we 

notice that the volatility skew, observed in figure 14, is prominently reflected in the RND and thus one 

could argue that the jump diffusion process is more dominate as a underlying process of the spot price. This 

observation is aligned with the findings of Jackwerth (2004), who argues that the volatility skew generated 

by jump diffusion models cannot sufficiently capture the skew observed in stock indices. Further, we can 

observe in the figure 15, that the majority of probability is concentrated around the mean, while we have 

higher probabilities on the more extreme values on the left tail, incorporating possible stochastic factors, 

such as negative market jumps. Therefore, one could further make the claim that the market prices 

incorporate a jump premium. We further see that the skewness is negative for all options. Thus, we can 

confirm the existence of a negative correlation between volatility and asset returns, similarly to the findings 

in previous literature. Lastly, as concluded from the previous sections, we observe from table 21 that the 

mixture model is underestimating the negative skewness compared to the other models. 
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Table 22 represents the results from pricing the SPX call options based on the model estimated 

RNDs on two different trading dates with two different maturities respectively. Interpreting the table, we 

observe that the models can more accurately replicate the price of the two options with 17 and 111 days to 

maturity, both of which have lower estimated kurtosis and skewness compared to the other two options. 

We observe once more how the mixture model is able to fairly accurately predict the valuation of the call 

options with lower strikes but fall short for options with higher strike prices. Similar results can be 

interpreted from the pricing of a binary put option in previous section 5.3. We further notice that all models 

greatly overvalue the 39 days to maturity call option, concluding that the models estimate a higher 

probability to the right tail events than implied by the market. Moreover, we notice the pricing errors are 

relatively small for all models for the 111 days to maturity options, however, inspecting figure 15b, we 

notice that the kernel regression has allocated substantially more probability on the right tail of the density 

compared to the other two models. Observing the interval between moneyness 1.05 and 1.14, pricing a call 

option with a strike price within that region, utilizing the kernel estimated RND, would most certainly lead 

to a substantial overvaluation. Meanwhile, for the 17 days to maturity, we recognize that the models, 

especially the kernel regression model, undervalues the call option. More noticeable, from figure 16b, we 

observe that the same call option is well over the strike price (𝐾=2375) on maturity, where the S&P 500 

closed on $2500.23. Lastly, one might reason that the neural network once more performed better, or at 

least more consistently, compared to the other two models for all options and maturities, in terms of pricing 

SPX call options. 

As a conclusion, real market data undoubtedly consists of more noise than our previously simulated 

option data. Thus, predicting well-behaved RNDs for the S&P 500 is a difficult task. Observing the results 

from table 21 and figure 15, we notice that the estimated RNDs are characterized by additional excess 

kurtosis and negative skewness, indicating that the market prices may very well incorporate considerable 

jump diffusion processes. Pricing the call options, we notice that call options with higher strikes are, as 

expected, harder to adequately value, especially for the mixture model, which overvalues both options 

substantially. Moreover, one could make the argument that once again the neural network proved to be the 

most consistent model for valuating SPX call options based on the estimated RND.    
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TABLE 20. DESCRIPTIVE STATISTICS S&P 500 INDEX OPTIONS 

 

FIGURE 14. S&P 500 INDEX OPTIONS IMPLIED VOLATILITIES  

   

Visual representation of the implied volatilities over strike prices observed on July 21st and August 21st, 2017 for the 

different time to maturities. The closing spot price on the 21/07/2017 was $2472.52 and $2428.37 on the 21/08/2017.  

Trading Date 21/07/2017 21/07/2017 21/08/2017 21/08/2017

Time to Maturity 

(Trading Days)
39 111 17 80

Spot Price 2472.54 2472.54 2428.37 2428.37

Strike Price 2520 2025 2375 2600

Option Price 7.75 448.85 66.10 3.15

Risk-Free Rate 0.012304 0.012304 0.012308 0.012308

Implied Volatility 0.065 0.2012 0.1373 0.0817

Descriptive statistics for the four different call options with different time to maturities, at two different

trading dates. Time to maturity is rounded to the closest date in terms of trading days, where there are 252

trading days annually. The spot price represents the closing price of S&P 500 index on the specific trading

date. The risk-free rate is represented by the one-month U.S. Treasury bill. 
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TABLE 21. SUMMARY STATISTICS ESTIMATED RNDS, S&P 500 INDEX OPTIONS 

  

Statistics
Mixture

Model

Kernel

Regression

Neural

Network

Mixture

Model

Kernel

Regression

Neural

Network

Mean 1.0005 1.0019 1.0033 0.9970 0.9999 1.0026

Std. Dev. 0.0487 0.0363 0.0396 0.0822 0.0722 0.0766

Skewness -0.5240 -1.7712 -2.2018 -0.5339 -0.6876 -0.7950

Kurtosis 6.1989 7.4940 8.9064 5.2513 4.5755 5.4970

Statistics
Mixture

Model

Kernel

Regression

Neural

Network

Mixture

Model

Kernel

Regression

Neural

Network

Mean 0.9986 1.0015 1.0197 0.9993 1.0022 1.0038

Std. Dev. 0.0305 0.0389 0.0423 0.0711 0.0745 0.0574

Skewness -0.1769 -0.6998 -0.6096 -0.7226 -1.4984 -1.5448

Kurtosis 5.5613 5.8431 5.6744 5.0273 7.0228 6.8045

Summary statistics of the risk-neutral implied denstities estimated by the mixture model, kernel regression and

neural network models on S&P 500 index options. The densities are evaluated over two different dates with two

different maturities, respectively. The values for the mean and standard deviation are reported in terms of

moneyness (ST/St).

111 Days

17 Days 80 Days

21/08/2017

21/07/2017

39 Days
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FIGURE 15. MODEL ESTIMATED RISK-NEUTRAL DENSITIES, S&P 500 INDEX 

 

    

 

    

Illustration of the model estimated RNDs based on S&P 500 option data for four different options maturities, on two 

different trading dates. Figures a) and b) represent the estimated RNDs for the options observed on the 21/07/2017, 

where a) has 39 days to maturity and b) has 111 days to maturity. Figures c) and d) represent the estimated RNDs for 

the options observed on the 21/08/2017, where c) has 17 days to maturity and d) has 80 days to maturity. 

 

 

 

 

 

 

 

a) b) 

c) d) 
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TABLE 22. S&P 500 INDEX CALL OPTION VALUATION 

 

FIGURE 16. S&P 500 CLOSING PRICE MOVEMENT 

 

  

Visual representation of the closing prices of the S&P 500 index for two time intervals, where we further observe the 

maturity dates for the options as 𝜏𝑖 = 0. Figure a) represents the time interval between 21/07/2017 to 29/12/2017, 

where 𝜏1 = 0  on 15/09/2017 and 𝜏2 = 0  is on the 29/12/2017. Figure b) represents the time interval between 

21/08/2017 to 15/12/2017, where 𝜏1 = 0 on 15/09/2017 and 𝜏2 = 0 is on the 15/12/2017. 

 

Time to Maturity True Mixture Model Kernel Regression Neural Network

39 Days 7.7500 19.1970 11.8331 11.9541

(147.704) (52.685) (54.246)

111 Days 448.8500 448.0497 465.1584 465.5493

(-0.178) (3.634) (3.720)

Time to Maturity True Mixture Model Kernel Regression Neural Network

17 Days 66.1000 63.8314 56.5342 62.0606

(-3.432) (-14.472) (-6.111)

80 Days 3.1500 9.1159 4.5695 2.5374

(189.392) (45.064) (-19.447)

The following table represents the results from pricing four different S&P 500 call options on two

different dates, with two different maturities each. The valuations are based on the RNDs estimated

by the mixture, kernel regression and neural network models. The results are given as price in dollars

at the given trading date and percentage pricing error is given in parentheses as the percentage

difference from the true price, times 100, with percentage points as unit of measurement. 

21/07/2017

21/08/2017

𝜏2 = 0 
𝜏2 = 0 

𝜏1 = 0 

a) b) 
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6. Conclusions 

This thesis was conducted with the purpose of investigating how one can efficiently obtain and 

compare the performance of estimated option implied RNDs, and subsequently conclude which model is 

best suited for the purpose of obtaining the RNDs. The thesis presented the parametric mixture model, as 

well as the two nonparametric kernel regression and neural network models for estimating the option 

implied RNDs. By simulating the option prices, utilizing four different data-generation processes, the 

geometric Brownian motion, stochastic volatility, jump diffusion and stochastic volatility with jump 

diffusion, we remain in full control of the underlying stock process and can thus, by utilizing the closed-

form solutions for the diffusion processes, obtain the theoretical or ‘true’ RND for the corresponding option 

prices. We continued by reporting the test results in section 5 and further answer our three main research 

questions. 1) By calculating the first four statistical moments of the RNDs, the mean, standard deviation, 

skewness and kurtosis, we can compare the moments of the estimated RNDs to the true RNDs and 

subsequently investigate which model can adequately imitate the features of the true RND. The results vary 

over data-generation processes and maturities; however, there is evidence identifying the flaws associated 

with the mixture model, where it falls short for options with shorter maturities, when the implied volatility 

skew is more evident. The kernel regression and neural network models’ estimated RNDs are almost 

identical in terms of performance. However, we can conclude that the kernel regression model can replicate 

the moments slightly more efficiently in terms of precision with lower absolute percentage errors. 2) Using 

the Mann-Whitney U test we can statistically compare the estimated RNDs to the true RND, where we 

reject the null hypothesis if the two distributions do not originate from the same population distribution. 

We find that we reject the null hypothesis for the mixture model on three occasions, when the RNDs are 

characterized by a distinct negative skew. We further reject the null hypothesis on one occasion for the 

kernel regression estimated RND following the stochastic volatility process. However, we fail to reject the 

null hypothesis for the neural network model for all data-generation processes and maturities. 3) 

Constructing hypothetical binary call and put options, we investigate the valuation capabilities of the 

estimated RNDs compared to the options priced by the true RND. We recognized that the mixture model 

performed well on at-the-money options and the call options in general. However, we conclude that the 

neural network model is more consistent and further able to price both the call and put options adequately 

compared to the other models. In conclusion, considering all the results, we conclude that the nonparametric 

models are better suited for the purpose of obtaining the option implied RND for the tests conducted in this 

thesis, whereas the neural network is slightly more reliable in terms of overall performance. However, the 

mixture model has desirable aspects, where it outperforms the nonparametric models on smaller datasets 

and in terms of computational efficiency.  
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6.1 Limitations and Future Research 

One of the main limitations of the conducted research is the use of a limited dataset of simulated 

options. For the purpose of this thesis we limited the set of simulated options to one trading date over three 

maturities. Thus, by adding more scenarios in terms of periods with higher volatilities, longer maturities or 

conduct different tests for different sets of simulation parameters, one can more efficiently test the 

robustness and determine the models’ strengths and shortcomings. Secondly, due to time limitations, we 

recognize that 19,500 options per data-generation process is considered to be a relatively small training set. 

We further realize that the chosen number of iterations for the Monte Carlo Simulations might not be 

considered sufficiently for spot prices following a stochastic volatility process or jump diffusion, where 

further implementations of improved simulations techniques, such as variance reduction, would have been 

a positive contribution in terms of increased precision. Lastly, we recognize the limitation of our small 

sample of true RNDs, where it is difficult to fully determine the overall model performance for each data-

generation process and maturity with a limited set of observations.  

For future research, we propose to further investigate the performance of nonparametric methods 

for estimating the option implied RND, where new approaches and models are constantly being developed. 

Secondly, by utilizing diversified datasets, constituted by higher and lower volatilities and different 

underlying processes such as stochastic interest rates, one can better determine the beneficial characteristics 

of certain methods and approaches. Further, by analyzing the RNDs of different options, such as interest 

rates and macroeconomic derivatives, one can conceivably gain valuable insights into future market 

conditions and beliefs. Lastly, by observing real market implied RNDs for periods with low and high 

volatility, for instance before and during the crash of 2008, one can better investigate the differences in 

RND characteristics and how changes to future market beliefs impact the option implied RNDs.  

The research conducted on option implied RNDs is still in its early stages and there is still a 

substantial amount of work to be done within the field of option implied information and return probability 

distributions. The information contained in RNDs in terms of market representative agent’s utility, future 

asset returns and macroeconomic events are still an unexplored field for many researchers, financial 

institutions and fiscal policy makers. Meanwhile, we recognize that the choice of a state-of-the-art method 

for estimating the option implied RND is practically impossible, since different methods are able to capture 

certain aspects of the underlying factors that determine the option implied RND better than others. Thus, 

by recognizing those underlying processes, such as stochastic volatility and jump diffusion, one can instead 

determine the most reliable method for obtaining the RND for a specific purpose.  
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Appendix 

a. Derivation of the Breeden-Litzenberger equation 

Breeden and Litzenberger (1978) stated that in a market with a continuum of quoted strikes, the risk-neutral 

forward transition density equals the price of an infinitely small butterfly spread portfolio strategy, such 

that,  

𝜕2𝑐(𝑆, 𝐾)

𝜕𝐾2
= 𝑒−𝑟𝑇𝑞(𝑆𝑇)𝐾=𝑆𝑇

= lim
𝜀→∞

𝑐1 + 𝑐3 − 2𝑐2

𝜀2
. 

If 𝑐𝑖 is the value of the 𝑖-th call option in a cross-sectional set of option prices, on the underlying asset 𝑆, 

where 𝑡 = 0, we can define the option price under risk-neutral measure as, 

𝑐(𝑆, 𝐾) = 𝑒−𝑟𝑇𝐸𝑄{max(0, 𝑆𝑇 − 𝐾)}, 

which we can express as follows, 

𝑐(𝑆, 𝐾) = 𝑒−𝑟𝑇 ∫(𝑆𝑇 − 𝐾)𝑞(𝑆𝑇)𝑑𝑆𝑇

∞

𝐾

, 

where 𝑞(𝑆𝑇) is the risk-neutral distribution at 𝑆𝑇 . By differentiating the call price once with respect to 𝐾,  

𝜕

𝜕𝐾
𝑐(𝑆, 𝐾) =

𝜕

𝜕𝐾
𝑒−𝑟𝑇 [−(𝐾 − 𝐾)𝑞(𝐾) + ∫(−1)𝑞(𝑆𝑇)𝑑𝑆𝑇

𝐾

∞

], 

which results in the simplified solution,  

= −𝑒−𝑟𝑇 ∫ 𝑞(𝑆𝑇)𝑑𝑆𝑇

∞

𝐾

. 

Taking the partial derivative of 𝑐(𝑆, 𝐾) with respect to 𝐾 a second time,  

𝜕2

𝜕𝐾2
𝑐(𝑆, 𝐾) =

𝜕2

𝜕𝐾2
𝑒−𝑟𝑇 [− ∫ 𝑞(𝑆𝑇)𝑑𝑆𝑇

∞

𝐾

], 
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= 𝑒−𝑟𝑇 ∫ 𝑞(𝑆𝑇)𝑑𝑆𝑇

𝐾

∞

, 

where ∫ 𝑑𝑆𝑇
𝐾

∞
= 1, thus we get the final derivation, provided by Breeden and Litzenberger (1978), 

𝜕2𝑐(𝑆, 𝐾)

𝜕𝐾2
= 𝑒−𝑟𝑇𝑞(𝑆𝑇), 

or more commonly expressed as,  

𝑞(𝑆𝑇) = 𝑒𝑟𝑇
𝜕2𝑐(𝑆, 𝐾)

𝜕𝐾2
. 

b. Computation of Moments 

Given random variable 𝑋 with its density function 𝑔(𝑥), we can define the first four moments, mean, 

variance, skewness and kurtosis. The first moment, the mean, is the weighted average of random variable 

𝑋 and defined as, 

𝑚 = ∫ 𝑥𝑔(𝑥)𝑑𝑥

∞

−∞

. 

The second moment, the variance, is the weighted average of squared deviation from the mean and measures 

the dispersion of a density. We can define the variance as,   

𝑣 = √ ∫(𝑥 − 𝑚)2𝑔(𝑥)𝑑𝑥

∞

−∞

. 

The third moment, skewness, is a measurement of asymmetry in the density and defines the existence and 

magnitude of distinct tails in the density, where a Gaussian density, or normal density has a skewness of 0. 

Positive skewness indicates that the density has a larger right tail or positively skewed, while negative 

skewness indicates a larger left tail and is thus left skewed. We can define skewness as,  

𝑠 =
1

𝑣3
∫(𝑥 − 𝑚)3𝑔(𝑥)𝑑𝑥

∞

−∞

, 



 
THE OPTION IMPLIED RISK-NEUTRAL DISTRIBUTION 88 

 

The fourth moment, the kurtosis, defines the “tailedness” of a density, where a density with higher kurtosis 

has fatter tails and subsequently assigns a higher probability to more extreme events. Kurtosis of a certain 

density is measured relative to a Gaussian distribution that has a kurtosis equal to 3. We can define kurtosis 

as,  

𝑘 =
1

𝑣4
∫(𝑥 − 𝑚)4𝑔(𝑥)𝑑𝑥

∞

−∞

 

Given that we know the density function 𝑔(𝑥) for the random variable 𝑋, we can compute the four first 

moments by numerically computing the integrals defined earlier. Calculations of the defined moments are 

performed numerically utilizing the trapezoidal integration rule (Syrdal, 2002).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


