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Nomenclature 

ANN: Artificial Neural Network  

ATC: Anatomical Therapeutic Chemical Classification System 

AUC: Area Under Curve  

BSD: Bitset Based Subgroup Discovery 

CHD: Coronary Heart Disease  

DT: Decision Tree  

DV: Dependent variable 

E10: Type 2 Diabetes  

E10-E14: Diabetes Mellitus  

E11: Type 1 Diabetes  

FP: False Positive  

IFG: Impaired Fasting Glycemia  

IGT: Impaired Glucose Tolerance  

IHD: Ischaemic Heart Disease  

IV: Independent variable 

R73: Prediabetes  

RF: Random Forest  

SD: Subgroup Discovery  

SN: Sensitivity 

SP: Specificity  

T2D: Type 2 Diabetes  

TN: True Negative  

TP: True Positive 
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Abstract 
 

The current study has been carried out in cooperation with Dôvera healthcare insurance company, to 

aid in developing a model for predicting high-risk individuals affected by type 2 diabetes and 

prediabetes, and in detecting the indicators of the diseases. The application of machine learning 

algorithms has been widely used in epidemiological studies for predicting the incidence of diabetes. 

The current study introduces an original approach to the landscape of state-of-the-art healthcare 

research by conducting an exploratory data analysis followed by a prediction analysis. The research 

uses subgroup discovery, decision tree, and random forest algorithms. The exploratory data analysis 

uses the subgroup discovery algorithm aimed at exploring patient groups at high risk for the diseases.  

Moreover, the method proposes a way for a unique feature selection method, applied during the 

predictive analysis. For predictions, random forest, and decision tree baseline were compared and 

evaluated based on sensitivity, specificity, area under the ROC curve, accuracy, and F1-score. The 

study demonstrates the importance of using evaluation metrics other than accuracy and F1-score. For 

instance, as skewed classes cause a bias towards the minority class, the results might often be 

misleading, and thus, the emphasis has been put on sensitivity and area under the ROC curve. Due to 

a severe class imbalance, oversampling methods SMOTE, and down-sampling were applied. Main 

findings of this research were related to the predictive power of the approach. Generally, the random 

forest model outperformed the decision tree baseline in all cases. The subgroup discovery feature 

selection has been successful in improving the models' sensitivity, while in almost all cases, it 

decreased the specificity. However, the application of feature selection did not outperform the models 

of random forest trained on down-sampled sets that used all predictor variables in the predictions of 

both diseases. The final random forest model predicting diabetes achieved an AUC of 68.34%, a 

sensitivity of 73.11%, a specificity of 63.58%, an F1-score of 71%, and an accuracy of 64.80%. The 

final random forest model predicting prediabetes achieved an AUC of 56.10%, a sensitivity of 

61.40%, a specificity of 50.80%, an F1-score of 57%, and an accuracy of 54.59%. 
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Introduction 
 

 The present research attempts to build a model for predicting type 2 diabetes and prediabetes 

and determine risk factors of both diagnoses. Diabetes is one of the most prevalent chronical diseases 

in the 21st century, having a detrimental impact on individuals and societies with expected global rise 

over the next few decades (Barber, Davies, Khunti & Gray, 2014; DÔVERA Health Insurance 

Company, 2017a). There is a growing body of literature that recognizes different data mining 

algorithms in diabetic research, to improve clinical predictions and find patterns, previously unknown 

to medics. The results are varying across the studies, depending on social, environmental, and 

individual influences, as well as data types available to researchers (Bhopal, 2002). Dôvera is a 

healthcare insurance company based in Slovakia that launched screening for Type 2 Diabetes 

(henceforth T2D) and prediabetes. With the use of patients' medical data, their effort lies within 

developing a useful tool in detecting high-risk individuals, when the diseases are yet unknown to 

them. 

Type 2 Diabetes and Prediabetes  
 Chronic illnesses pose significant challenges for the health care system, both in the 

socioeconomic and clinical sphere (Stock et al., 2019). The World Health Organization estimates that 

diabetes was the seventh leading cause of death in 2016 and is currently the most common disease in 

the 21st century (WHO, 2018). According to data from the National Health Information Centre, the 

prevalence of diabetes in Slovakia is about 8.6%, from which around 27% of individuals are not 

aware of the illness (National Health Information Center [NCZI], 2018). The medics recognize three 

types of diabetes: Type 1, Type 2, and Gestational diabetes (DÔVERA Health Insurance Company, 

2017b). 

 T2D, comprises the majority of people affected by the disease (91% in Slovakia) (NCZI, 

2018), and will be researched in the course of this study. Physical inactivity and excess body weight 

cause ineffective use of insulin. This is one of the most common triggers for T2D. The condition is 

linked to severe malfunctions of the bodily system including heart disease, blindness, kidney disease, 

amputations and even shorter life expectancy (Barber et al., 2014). The estimated burden on the 

health-care system was around 9% out of the total healthcare expenses in Europe in 2015 

(International Diabetes Federation, 2015).  

 Moreover, we will focus on the transition state between normality and diabetes called 

impaired glucose tolerance (IGT) and impaired fasting glycemia (IFG), also known as a prediabetic 

stage. Patients with prediabetes are at a high risk of developing T2D, although preventive measures 

could be taken. As the evidence suggests, in around 20% of the cases, TD2 is preventable, and thus 

targeting those individuals becomes essential (WHO, 2016), (Ramazenkhani et al., 2014).  

 In detecting affected individuals, Dôvera launched screening for their patients in general 
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practice as a part of their initiative “Dôvera Helps Diabetics”. The screening consists of three tests 

patients can take: random glycemia, fasting glucose and oral glucose tolerance test (OGTT), Figure 1 

presents detailed information (Szalay, Jankó, Mužík, Melo, & Benková, 2017). Currently, the patients 

are targeted randomly, leaving a significant number of affected patients unidentified (B. Benková, M. 

Poliak, personal communication, October 06, 2018). Therefore, they focus their efforts on developing 

a strategy, essential for early illness detection and treatment, with the help of the current research 

(DÔVERA Health Insurance Company, 2018). 

 

Figure 1. The standard procedure for glycemia screening. The program developed by Dôvera Insurance Company with its 

initiative "Dôvera Helps Diabetics".  

Problem Formulation and Research Questions  
 In the quest of identifying risk factors of diabetes and prediabetes, we propose a 

model in which we apply subgroup discovery (henceforth SD) algorithm to explore the 

relationships in the data, and predictive tree-based algorithms, to establish a model with 

the best predictive power. Commonly, when building models, researchers choose 

exploratory variables included in a model in advance. For example, subgroup analyses are 

aimed at measuring specific treatments and outcomes, where a specific hypothesis is 

developed (Rui Wang, Lagakos, Ware, Hunter, & Drazen, 2007). In other research 

settings, such as ours, the exploratory variables are not predetermined, and identifying 

them becomes a part of an analysis. Therefore, we conducted an exploratory data analysis 

(henceforth EDA), using the SD algorithm. In comparison to other algorithms such as 

20-MINUTE OGTT 
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frequent pattern mining or rule association, SD allows for a flexible definition of an 

applied quality function or interestingness measure, which determines the quality of the 

induced rules and is suitable for the medical domain setting. Furthermore, the method 

scrutinizes all data by searching for relations between independent variable and 

dependent variable (henceforth, IV and DV, respectively) and can lead to novice 

knowledge discovery (Atzmüller, 2015). For example, SD has been implemented onto the 

discovery for coronary heart disease risk detection and has been successful in identifying 

rules suitable for representation of the affected individuals (Gambergera, Lavrac, & 

Krstačić, 2003). Therefore, we formulated the research questions as follow: 

RQ1: Which features contribute most to detecting high-risk individuals affected by T2D and 

prediabetes? 

RQ2: To what extent can the Subgroup Discovery algorithm contribute to successfully detecting high-

risk individuals affected by T2D and prediabetes? 

 In light of the prediction analysis, extensive research covers the application of various models 

for diabetes incidence and analyses of which courses of action prove useful. Data from several studies 

suggest that tree-based algorithms achieved the best results in epidemiological research. In a study 

predicting diabetes and prediabetes, researchers compared logistic regression, decision tree, and 

Artificial Neural Network (henceforth LR, DT, and ANN, respectively), to determine the best 

classification performance. The models were evaluated based on selected criteria (accuracy, 

sensitivity, and specificity). Following the criteria, the decision tree algorithm achieved the highest 

results with an accuracy of 77.87%, sensitivity of 80.68%, and specificity of 75.13% (Meng, Huang, 

Rao, Zhang, & Liu, 2013). However, the literature suggests that when comparing algorithms of the 

random forest (henceforth RF) to those of a decision tree, they appear to achieve better classification 

predictive power (James, Witten, Hastie & Ibshirani, 2013). In a large longitudinal study, Esmaily et 

al. (2018) investigated the incidence of diabetes, by comparing DT and RF models. The RF model 

surpassed the results of the DT by the difference in accuracy, sensitivity, specificity and area under 

the ROC curves (henceforth AUC) of 6.2%, 6.8%, 3.1%, and 8.7% respectively (Esmaily, Tayefi, 

Doosti, Ghayour-Mobarhan, & Amirabadizadeh, 2018). Consequently, we implemented a random 

forest algorithm for classification and a decision tree algorithm as a baseline comparison for our 

study. Hence, the final research question sounds as follow:  

RQ3: To what extent can Logistic Regression, Decision Tree, and Random Forest algorithms 

successfully detect high-risk individuals affected by T2D and prediabetes? 
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Related Work 

Exploratory Analysis  
 Exploratory data analysis is an approach that analyzes datasets beyond formal modelling or 

hypothesis testing, inevitable in exploring raw data and findings patterns. SD is one of the techniques 

used for identifying the most interesting relationships inside the data statistically, given specific 

interestingness criteria, formalized by a quality function (Atzmüller, 2015). The method allows 

researchers to identify relationships between several IVs and DV, and thus contributes to the 

understanding of the groups and their forms. The subgroup discovery setting is mostly based on 

defining the target variable and the search space, the quality function that corresponds to statistical or 

other user-defined quality criteria, and choosing the search strategy such as heuristic or beam search 

algorithms (Atzmueller & Puppe, 2006).  

 Up to this date, SD has not been applied onto the diabetic research. However, its algorithms 

were successfully used for other chronical diseases such as coronary heart disease (CHD) (Gamberer, 

Lavrac & Krstac, 2003). During this research, the data has been collected from patients screening at 

the Institute for Cardiovascular Prevention and Rehabilitation. The database consists of a variety of 

clinical data such as amnestic parameters, laboratory test results, or echocardiography results. The 

induction process has been conducted by implementing an if-then rule form, Class←Cond, where 

Cond is a conjunction of conditions (conjunction of features describing the illness). This rule was 

induced by using the generality parameter, which constructs rules with high specificity. For 

constructing the rules describing a subgroup, a combination of machine learning based induction and 

statistical analysis of the detected subgroups has been developed, guided by a domain expert. For 

individual rule construction heuristic Algorithm SD with pseudocode and a covering algorithm 

involving example weighting for the rule set construction Algorithm DMS with pseudocode were 

used. Each of the five discovered subgroups A1, A2, B1, B2, and C1 were evaluated based on the 

sensitivity (TP) and specificity (FP) and were successful in discovering CHD patients. Table 1 

presents the performance of each rule, evaluated by specificity and sensitivity (Gambergera, Lavrac, 

& Krstačić, 2003). 

 
Table 1. Results of the five discovered subgroups applied onto the test set and independent employee set. The final line 

represents results for domain expert classification for employee data.  
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Reprinted from “Active subgroup mining: a case study in coronary heart disease risk group detection,” by D. Gambergera, 

Nada Lavrac, G. Krstačić,2003, Artificial Intelligence in Medicine, p. 48. Copyright 2003 by Elsevier.  

 

 Similarly to the previous research, SD has been applied in the discovery process of relevant 

coexisting risk factors of brain ischemia (Gamberger, Lavrač, Krstačić, & Krstačić, 2007). The dataset 

consists of patients records treated at the department of neurology at the University Hospital Centre, 

including amnestic data, physical examination data, laboratory test data, and ECG data and 

information of previous therapies. The process has been consulted numerously by experts, mainly for 

rule selection and interpretation. The subgroup mining was used in the same way as in the 

aforementioned research, using if-then rules of the form Class←Cond, by application of SD and DMS 

algorithms, inducing 15 rules. Table 2 represents the results of the evaluation. The results indicate that 

the subgroups are suitable representations of characteristics of groups of individuals suffering from 

brain ischemia, providing a deeper understanding of the disease and its forms (Gamberger, Lavrač, 

Krstačić, & Krstačić, 2007).  

 

Table 2. Induced rules per generalization parameter, measured based on specificity and sensitivity  
Reprinted from “Clinical data analysis based on iterative subgroup discovery: experiments in brain ischemia data analysis” 

by D. Gambergera, Nada Lavrac, A. Krstačić, G. Krstačić, 2007, Applied Intelligence, p. 212. Copyright Springer 

Science+Business Media, LLC 2007.  

 

Predictive Analysis  

 The use of prediction models became a conventional method in medical research for 

estimating a risk that a specific disease or condition is present (Collins, Johannes B. Reitsma, Altman, 
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& Moons, 2015) and many have been successful in predicting diabetes mellitus. The choice of 

classification algorithms varies across studies, with most frequently used and achieving the highest 

predictive power being tree-based algorithms (Esmaily, Tayefi, Doosti, Ghayour-Mobarhan & 

Amirabadizadeh, 2018; Ment et al., 2013; Nai-aruna & Rungruttikarn, 2015, Ramezankhani et al., 

2016a). The use of multiple algorithms has been studied by Meng et al. (2013), who implemented 

three predictive models of DT, LR, and ANN. The models used 12 predictive variables based on 

generally known risk factors and one output variable. The predictive variables were selected based on 

the Chi-square feature selection. For example, some of the predictive variables are body mass index, 

alcohol consumption, physical activity, or family history of diabetes. The researchers used accuracy, 

specificity, and sensitivity for evaluating the results. The results established that the DT model 

produced the best-achieved classification accuracy of 77.87%, with a sensitivity of 80.68% and 

specificity of 75.13% (Meng et al., 2013).  

 The decision tree algorithm has also proven to be useful in identifying low-risk individuals 

for T2D. The model was applied to 6647 individuals without diabetes during a 12 years follow-up 

study, by analyzing diverse patient data ranging from clinical to laboratory data. In total, 60 input 

variables and one output variable were used in the research. The identified risk factors are fasting 

plasma glucose, body mass index, triglycerides, mean arterial blood pressure, family history of 

diabetes, educational level, and job status. Model's attributed were measured based on information 

gain, Gini index, and gain ratio, and the evaluation criteria were accuracy, specificity, sensitivity, 

precision, and F1-score. The overall classification accuracy was 90.5%, with 31.1% sensitivity and 

97.9% specificity (Ramezankhani et al., 2014). Notably, the lower sensitivity rate, demonstrates a 

result of class imbalance, causing classifiers to produce high accuracy over that of the majority class 

(Ramezankhani et al., 2016b).  

 Various solutions can be applied to neutralize the influence of unbalanced classes, such as 

synthetic oversampling method (henceforth SMOTE). In medical research, Ramezanhkami et al. 

(2015), evaluated the impact of the SMOTE algorithm on the performance of the probabilistic neural 

network (PNN), Naïve Bayes (NB) and DT, for predicting diabetes. The data was collected in a cohort 

of the Tehran Lipid and Glucose study, from non-diabetic patients. The models were built with 21 

common risk factors. Both original and oversampled sets were used to establish the models' power. 

The results indicate that a wholly balanced sample increased the accuracy of PNN, DT, and NB by 

64%, 51% ad 5%, respectively. Finally, the model of NB achieved the best results both before and 

after oversampling. However, the research concludes that DT is an optimal classifier in predicting 

diabetes, especially when the class is imbalanced (Ramezankhani et al., 2016b).  
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Table 3. Results of original training datasets and over-sampled training dataset, using SMOTE.  

Reprinted from “The impact of oversampling with SMOTE on the performance of 3 classifiers in prediction of Type 2 

Diabetes” by A. Ramezankhani, O. Pournik, J. Shahrabi, F. Azizi, F. Hadaaegh, D. Khalili., 2014, Medical Decision 

Making, 36, p.142. Copyright SAGE Journals 2016.  

Note DT= decision tree, PNN= probabilistic neural network, NB= Naïve Bayes, SMOTE= synthetic oversampling technique  

 Using the predictive power of decision trees has been a suitable method for diabetes 

prediction. However, evidence suggests, that robustness of the model can be improved when building 

random forests models. In broad terms, RF models build several random decision trees, resembling 

"forests", which are later combined to yield a single consensus. As decision trees grow very deep and 

can overfit their training sets, introducing low bias but a very high variance, random forest average 

multiple decision trees trained on different parts of the same training set, aiming to reduce the 

variance. This might come at the expense of a slight increase in the bias but it generally enhances the 

final model performance (Esmaily et al., 2018). Various studies have assessed the predictive power of 

RF over the DT. Notable examples include studies where DT and RF were directly compared. In a 

study comparing DT and RF, the RF model achieved higher results when determining risk factors 

associated with T2D. Specifically, the model achieved accuracy of 71.1%, sensitivity of 71.3%,  

specificity of 69.9%, and AUC of 77.3% (Esmaily, Tayefi, Doosti, Ghayour-Mobarhan, & 

Amirabadizadeh, 2018).  

 The comparison has also been conducted in an empirical research study by Nai-arun and 

Moungmai (2015). In their study, they firstly analyzed DT, ANN, LR, Naïve Bayes, and RF. Next, the 

models have been tuned based on boosting and bagging. The clinical data were collected from 

Primary Care Units in Sawanprachrak Regional Hospital in 2013-2014. After selecting a subset of 10 

input variables, based on a consultation with medical specialists, the models have been built and 

compared. The evaluation criteria, such as AUC, sensitivity, and specificity, were used in the analysis, 

similar to the current evaluation design. Finally, the random forest produced the best results, with an 

accuracy of 85.56% and AUC of 91.20%. Figure 2 shows that the use of bagging and boosting 

improved the performance of AUC, in all models used. The RF model was eventually chosen as a 

diabetes risk assessment tool (Nai-aruna & Rungruttikarn, 2015).   
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Figure 2.  Comparison of ROC values of all models,  
Reprinted from “Comparison of classifiers for the risk of diabetes prediction” by N. Nai-Aruna, M. Rungruttikarnvrac, 2015, 

Procedia Computer Science, 69, p.140. Copyright Elsevier 2015.  

Contribution of the Current Research  

 In the current research, we propose a methodological model comprising of two main parts: 

EDA and predictive analysis, with methods stemming from the established literature review. In the 

first part, we applied SD algorithms to answer the RQ1 and RQ2. Despite the remote findings in the 

literature, concerning the diabetes, SD is a promising tool for exploring the target variables and sub-

populations inside the data. Moreover, as we did not predetermine any set of predictive variables, the 

inducted subgroups were used instead of a feature selection method, for building prediction models. 

For the predictive analysis, we implemented algorithms of random forest and decision tree. As the 

literature review established, the RF model is a promising and robust algorithm, and thus, the DT 

served as a baseline comparison in the analysis.  

 Essentially, an establishment of a relevant model for detecting T2D and prediabetes opens 

opportunities for developing risk assessment tools, which could aid in designing preventive measures 

against the diseases. For instance, the detection of risk factors could aid health care professionals to 

locate affected individuals at an early stage, and prevent the diseases from intensifying. Moreover, a 

risk assessment tool can be also beneficial for Dôvera, to make their procedures more effective and 

precise.  

Methods 

Procedure  
 The procedure of this research consisted of extensive pre-processing of two datasets, 

exploratory analysis conducted with the SD algorithm and predictive analysis for which we built RF 

and DT algorithms. In the analysis, the DT provided a baseline comparison. During the exploratory 
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analysis, we inducted sub-populations within diabetic and prediabetic patients. Further in the research, 

we extracted features explored during the SD and applied them in the predictive models, instead of 

other feature selection techniques. Therefore, we constructed the models using two sets of predictors: 

(1) all 103 predictor variables, and (2) selected variables from induced subgroups. All models were 

trained on training sets, optimized for precision, and the hyperparameters determined and tuned by 

grid search with a 5-fold validation (Razavian et al., 2015). Finally, the models were evaluated on the 

test set, according to the chosen metrics. Figure 3 depicts a representation of the models' procedure.  

 

Figure 3. Representation of the model's design and procedures 

Dôvera Datasets  
 The exploratory and predictive analyses were performed on longitudinal data from Dôvera 

health insurance company. Two datasets IKAP and VSZP comprise data recorded from September 

2015 to September 2018, of patients insured under Dôvera, who were screened for T2D and 

prediabetes in between November 2017 until June 2018 at the general practice in Slovakia. The study 

scrutinized data of 5482 patients aged between 6 and 94 (M= 55.38, Mdn=57, SD=15.03). The former 

dataset contains demographic information pertaining subject id, age, gender, location, economic 
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activity, insurance type, information on the screening frequency and the screening date. The latter 

dataset pertains utilization data such as time of the check-up, screening date, ICD-10 codes (the 

International Statistical Classification of Diseases and Related Health Problems), subgroup code, ATC 

(Anatomical Therapeutic Chemical Classification System), specific care (type of visited medical 

specialist), healthcare costs and points derived from the level of difficulty of medical examinations.  

 

Figure 4. Distribution of age per gender of patients in Dôvera  

Data Pre-processing  
 The first step in the process was to compose a new dataset with predictive and response 

features selected and re-coded from the two datasets. We transformed the data by conducting 

binarization and discretization of variables. Predictor variables in the analysis were created by 

combining IKAP (age, gender, location, and economic activity) and VSZP datasets (ICD10 codes, 

ATC codes), and were selected after consultation with Dôvera specialists. In the first step, the ATC 

codes and ICD10 codes were re-coded from two multiclass variables into 318 binary variables each 

corresponding to a specific code, with classes “1= presence of an event” and “0= no event”. The 

ICD10 codes variables were grouped according to the ICD10 codes index categories (e.g., all codes 

between A30 and A49, resulting in A30.A49 implying “other bacterial diseases”). The ATC codes 

were grouped based on the first three signs (e.g., A02BC01 and A02BC02, resulting in A02). 

Furthermore, we assigned the variables to patients uniquely and considered them present (i.e., 1= 

presence of an event) only under the condition that they were recorded during two different months 

(e.g., a patient diagnosed with G00-G99 at two different check-ups). Due to this, some variables had 0 

occurrences, and thus, were removed from the analysis (e.g., A75.A79 implying rickettsioses). To 
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reduce the models' dimensionality, we filtered out all variables that had an occurrence of 1 below 150, 

resulting in 103 explaining variables. Additionally, the categorical variables “location”, “sex”, and 

“economic activity” were encoded into numeric quantities. There were no missing values in the 

dataset.   

 The target variables were re-coded based on ICD10 index classification, that defines both 

diabetes and prediabetes (i.e., E10-E14 for T2D and R73 for prediabetes). Moreover, in case a patient 

has been diagnosed with prediabetes, which later progressed into diabetes, we assigned diabetes to 

those patients only.  

Training and Test Set 

 For the analysis, we divided the dataset into train and test set, with a ratio of 30:70. The train 

set (70%) served for fitting the models and parameter tuning with grid search and 5-fold cross-

validation. The results were tested on the unseen data in the test set (30%) (Esmaily, Tayefi, Doosti, 

Ghayour-Mobarhan, & Amirabadizadeh, 2018). Figure 5 represents the class distribution of both 

target variables in the dataset.   

    

                       

 

Figure 5. Class distribution of Diabetes and Prediabetes  
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The unbalanced distribution of classes, known as class imbalance, has a significant influence on the 

predictive power of the algorithms (Menardi & Torelli, 2012). In the current dataset, both targets have 

a majority class “0 = no event”. The imbalanced classes caused data to overfit and disabled classifiers 

to correctly detect the minority class “1= presence of an event” (Ramezankhani et al., 2016b). In 

medical settings such as ours, the minority class is usually the critical class, which is preferred to be 

predicted with higher accuracy (Chawla, Bowyer, Hall, & Kegelmeyer, 2002). The characteristics of 

the data led us to apply resampling methods such as down-sampling and SMOTE, in order to improve 

the predictive power of algorithms.  

 We used down-sampling to eliminate data from the majority to match the minority class, and 

SMOTE to oversample the minority class at 100%, by creating “synthetic” examples. Both 

resampling techniques were used based on the prior research (Merandi & Torelli, 2012; 

Ramezankhani et al., 2016b). Rather than copying the instances, such as in down-sampling, the 

SMOTE algorithm resamples the data by taking each minority class and introducing synthetic 

examples along with the line segments, which joins the k minority class nearest neighbors. Afterward, 

it discomposes one attribute of an instance at a time by a random number within the range of k 

neighboring instances (Chawla et al., 2002). Table 4 represents class distribution in all of the training 

sample sets.  

 Diabetes Prediabetes 

Original set 1= 492, 0= 3344 1=1385, 0=2451 

SMOTE set at 100% 1= 3344, 0=3344 1=2451, 0=2451  

Down-sample set 1= 492, 0=492 1=1385, 0=1385  

Table 4. Class distribution of Diabetes and Prediabetes response variables on original oversampled and down-sampled 

training sets. 

 

Subgroup Discovery Algorithm BSD  
 We conducted the subgroup discovery aiming to discover k best subgroups in between 

predictor variables by considering the whole subspaces of the search space. The subgroup description 

is defined by a combination of selectors or expressions: sd = {e1, e2, . . . , en}, which are selections on 

domains of attributes ai ∈ ΩA, Vi ⊆ dom(ai). The Ωsd is defined as a set of all possible subgroup 

descriptions. 

 In the current research, we used bitset based subgroup discovery algorithm (henceforth BSD), 

which is a vertical mining algorithm, that combines vertical bit-set based representation of the data in 

the search-space, with advanced pruning strategies and an efficient relevance check (Atzmüller, 

2015), (Atzmueller and Lemmerich 2009). The search consists of two main phases. In the first phase 

(line1-17 in Figure 6) all relevant selectors 𝑠𝑒𝑙𝑟𝑒𝑙, consisting of  𝑠𝑒𝑙𝑐𝑜𝑛𝑑, the current conditioned 
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selectors and 𝑠𝑐𝑢𝑟𝑟, the new selector, are being considered. The bit-set is computed, when all positive 

labeled classes 𝑡𝑝, fulfill the new description. The quality function is always given by the subset 

which holds the positive cases, and the amount is sufficient to compute an optimistic estimate for the 

current combination of selectors.  

 The estimate is used in two ways. Firstly, only if the optimistic estimate reaches a certain 

point, the bit-set of negatives for the current combination of selectors is computed. After that, 

positives and negatives are counted and the quality of the subgroup is computed. By doing this, the 

negatives are considered only for promising selector combinations, essentially leading to significantly 

shorter runtime. Secondly, only if the optimistic estimate indicates an improvement in the current 

subgroup, with a new selector that has a sufficient quality to be added into the final results, the 

selector is added to the list for the next level of search. In a relevance check, subgroup relevance is 

tested, and only the most relevant subgroups are stored. In phase two, the list of all relevant selectors 

is sorted according to their optimistic estimate (line 18 Figure 6), allowing the algorithms to evaluate 

more promising paths first. Finally, every relevant selector is added to the list of conditioned 

selectors, resulting in a recursive search using the respective bit-set and the conditioned selectors 

(Lemmerich, Rohlfs, & Atzmueller, 2010).  

 We applied the algorithm in subgroup search of both target variables. Moreover, except 

implementing the SD for exploring the targets, we constructed a new feature selection method that 

uses selectors found during the SD task. The feature selection was implemented into models of RF 

and DT trained on the three different sample sizes, each run on grid search and 5-fold cross-

validation. Consequently, all results were cross-validated on the test set.  
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Figure 6. Representation of BSD algorithm by F. Lemmerich, M. Rohlfs, M. Atzmueller, 2010, Fast Discovery of Relevant 

Subgroup Patterns. In Proc. 23rd International FLAIRS Conference, p. 430. Copyright Mary Ann Liebert 2015., AAAI 

Press. 

Decision Tree 
 A decision tree algorithm was built as a baseline and benchmark to compare the performance 

of the RF model, on all training samples. Classification decision trees consist of “if-then-else” rules, 

generally used in predicting qualitative tasks. By recursive partitioning, the algorithm breaks down a 

dataset into smaller subsets with a decrease in depth of a tree. Classification trees predict that each 

observation belongs to the most frequently occurring class of training observations (James, Witten, 

Hastie, & Ibshirani, 2013). Initially, all features are assigned to the root, from which the most 

important features are selected. The root-node represents an entire population and is further divided 

into two or more homogenous sets, by taking one feature at a time and test a binary condition. For the 

binary splits, we either used Gini index or entropy, depending on the selection of best parameters, of 

grid search and 5-fold cross validation (James, Witten, Hastie, & Ibshirani, 2013). Grid search is an 

exhaustive brute-force search that uses a specified list of values for different hyperparameters and 
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subsequently evaluates the model performances for each combination of hyperparameters (Raschka, 

2016).  

The Gini index is defined by:  

 

The formula represents a measure of total variance across K classes. Here the 𝑝̂𝑚𝑘 represents the 

proportion of training observations in the 𝑚𝑡ℎ region that are from the 𝑘𝑡ℎ class. Gini takes values 

that are close 0 or 1 and thus, is referred to as node purity, which indicates that a node contains mainly 

observations from a single class.  

Entropy is defined by:  

 

Here entropy will take a value near zero or one. Thus, similarly to Gini index, the entropy will also 

take a small value if the 𝑚𝑡ℎ node is pure (Bruce & Bruce, 2017), (James, Witten, Hastie, & 

Ibshirani, 2013).  

Random Forest   
 For the binary classification task, we build a RF model as the algorithm is believed to 

substantially improve the predictive performance of trees (James, Witten, Hastie, & Ibshirani, 2013). 

The two main tasks of RF are bagging and random subspace method. In the random subspace method, 

the algorithm generates many classification trees by selecting subsets of given datasets where subsets 

of predictor variables are selected randomly to create any tree. A newly generated bootstrapped 

datasets are later combined to yield a single consensus prediction. For each bootstrap, the algorithm 

creates a new tree, and when classifying the input data, the data is passed through each tree and 

produces an output which can be denoted by  𝑌 = {𝑦1, 𝑦2 … . 𝑦𝑠}, where  𝑌 represents the output. The 

final prediction represents a majority vote on the final set (James, Witten, & Hastie, Ibshirani, 2013). 

The model's prediction is estimated by out of bag error (OOB), which represents the error rate for the 

trained models, applied to the data left out of the training set for a particular tree (Bruce & Bruce, 

2017).  

 We tuned the model's parameters by grid search and 5-fold cross-validation. All different 

sample sizes were fit to the RF models and repeated the process with feature selection, to test for 

increase in the models' performance. Generally, the feature selection was not necessary as the 

algorithm already performs an embedded variables selection (Olivera et al., 2017). The RF has a built-

in function that estimated the importance of each variable, by measuring the degree of association 
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between a given variable and the classification result (Ramezankhani et al., 2016a). Two measures of 

variable importance are mean decrease accuracy and a total decrease in node impurity. The former 

measures the mean decrease of accuracy in predictions on the out of bag samples when a certain 

variable is excluded from the model. The latter measures the total decrease in node purity that results 

from splits over a variable, averaged over all trees, by deviance (James, Witten, Hastie, & Ibshirani, 

2013).  

Evaluation Methods 
 To assess the performance of the predictive power of the DT baseline and the RF model, we 

applied several evaluation methods, as accuracy has been found insufficient evaluation metric, 

especially in medical data (Chawla et al., 2002). Each model was 5-fold cross-validated and 

generalized on the test set. In our model we used conventionally used evaluation methods such 

accuracy, sensitivity, specificity, and AUC, as suggested by prior research (Bhopal, 2002). Those 

methods were also chosen in the current research.  

 The classification accuracy measured the proportion of cases which were correctly classified. 

Moreover, the measure of sensitivity (TP) represents a fraction of positive cases that are correctly 

classified as positive, and the measure of specificity (TN) represents a fraction of negative cases that 

are correctly identified as negative. Followed are corresponding formulas, where TP represent true 

positive, TN true negative, FP false positives, and FN false negatives rate: 

1. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)
 

2. 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 

3. 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝐹𝑃 + 𝑇𝑁 

 We also evaluated the models based on AUC, which can only be used on binary target 

variables. The AUC measures how well a parameter can distinguish between two diagnostic groups 

and gives a probability that a predicted risk for a participant with an event is higher than for a 

participant without an event. ROC plots the TP rate on y-axis and FP rate on the x-axis for a particular 

decision threshold. Therefore, the TP rate represents fraction of cases which are correctly identified as 

“diabetic” or “prediabetic”, while the FP rate represents fraction of classes which were falsely 

identified as positive classes. In addition, ROC curves are useful for comparing different classifiers, 

since they take into account all possible thresholds (James, Witten, Hastie, & Ibshirani, 2013) 

 Finally, the results were evaluated based on F1-score, which is a combination of precision and 

recall.  

1.  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

TP + FP
 

2.  𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

TP + FN
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3.  𝐹1 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Precision determines how many of the predicted positives are actual positives and recall determines 

the ability of a model to find all actual true positives (diabetic and prediabetic patients). The F1-score 

represents a harmonic mean of precision and recall (Raschka, 2016) 

 

Programming Software and Packages   
 For merging, transforming and further pre-processing the dataset, Python version 3.7.2 

(Python Software Foundation, 2019) with preprocessing, pandas and numpy packages, and R Studio 

version 1.1.456 (Anaconda Documentation, 2019) with caret and stats packages. Both EDA and 

predictive analysis were conducted in Python. For EDA we used rsugroup package. The datasets were 

split and resampled using train_test_split, SMOTE, and RandomUnderSampler packages. Moreover, 

the classifiers were built and trained by using RandomForestClassifier, DecisionTreeClassifier and 

GridSearchCV. The results were evaluated using metrics, roc_curve, auc, cross_val_predict, 

confusion_matrix, and accuracy_score, and classification report packages (Python Software 

Foundation, 2019). Finally, the results were visualized by using Python package matplotlib (Python 

Software Foundation, 2019), and R Studio package ggplot (Anaconda Documentation, 2019).  

Results 
 

 This section scrutinizes the results of EDA analysis with the SD algorithm and predictive 

model of the random forest compared to the baseline model of the decision tree. Due to the class 

imbalance, we resampled the original dataset using SMOTE and down-sampling algorithms. We 

constructed the models using three different training sets for each target variable, with two sets of 

predictors: (1) all 103 predictor variables, and (2) selected variables from induced subgroups. In total, 

the SD algorithm generated ten different subgroup conjunctions for the response variable “Diabetes” 

and 10 for the response variable “Prediabetes”. Out of those, we used 12 selectors for predicting 

diabetes and 14 for predicting prediabetes. The model's parameters were optimized on precision by 

grid search and 5-fold cross-validation, run on all samples. Finally, we evaluated and compared the 

models' performance.  

 In general, 704 (12.84%) people had diabetes, 1973 (36%) had prediabetes, and 2804 

(51.16%) had neither of the diagnoses. Of the diabetic individuals, 395 (56.11%) were female and 305 

(43.32%) male, with the majority (92.47%) between 50 to 80 years old. From the prediabetic patients, 

106 (56.06%) were female and 867 (43.94%) male participants, most of them (70.16%) between 40 to 

70 years old. Moreover, out of the diabetic people, 140 (19.89%) were economically active, and 564 

(80.11%) were economically inactive patients, and of the 1937 prediabetics 692 (35.73%) were 
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economically active, and 1281 (66.13%) were economically inactive. Finally, out of the studied 

sample, the highest incidence of both diabetes and prediabetes is in Kosice.  

Exploratory Data Analysis  
  In the exploratory part of the analysis, we conducted subgroup discovery, a broadly 

applicable descriptive data mining technique, that determines interesting subgroups, regarding the 

target variable of interest (Atzmüller, 2015). Moreover, in this research, we proposed subgroup 

discovery as a feature selection technique, extracting unique induced selectors of both target variables 

and applied them on the predictive models. The first phase consisted of selecting subgroup objects, 

such as response variables and the search space. For both targets, we used the full search space, using 

all 103 predictor variables. The next step defined the SD task, with result size, depth of the 

conjunction of selectors, and simple binomial quality function. These values were set up manually for 

different searches, in order to achieve different conjunctions, with varying sizes. For simplifying the 

rule interpretation and improvement of actionability, the quest was aimed at finding rules between 2-4 

patterns. Finally, the process was completed at subgroup description with a stored list of selectors, 

interpreted as a conjunction.  

 For constructing the rules of the target variable diabetes, a BSD algorithm was used. In total, 

ten different subgroups were found, consisting of 12 unique selectors, reaching the target share below 

50%, signifying a limited amount of available information (Gamberger, Lavrac, & Krstac, 2003). All 

selected conjunctions form subgroups where the binary selectors have the class 1. In general, we run 

the code in 4 different settings. The variable that has been predominant in the majority of the 

conjunctions was “Economic activity= inactive patients”. Firstly, the two rules A1 and A2 both 

achieved a target share below 50%. Both subgroups consist of 4 conditions. A1 consists of 

economically inactive patients, diagnosed with E70.E90 (metabolic disorders other than diabetes), 

G40.G47 (episodic and paroxysmal disorders) and H49.H52 (disorders of ocular muscles, binocular 

movement, accommodation, and refraction), with target share 35%. A2 represents economically 

inactive patients diagnosed with F09 (mental and behavioral disorders), G40.G47 (episodic and 

paroxysmal disorders, and disorders of ocular muscles, binocular movement, accommodation, and 

refraction), with 40% target share.  

 B1 and B2 were built based on two conditions: In B1 economically inactive patients 

diagnosed with M80.M85 (disorders of bone density and structure) were grouped, while in B2 

economically inactive patients diagnosed with G40.G47 (episodic and paroxysmal disorders were 

grouped). Subgroups C1-C4 were established based on two to three pattern conditions. C1 and C2 

achieved a target share above 38%, while both C3 and C4 reached below 35%. The subgroup C1 

represents patients diagnosed with I10.I15 (hypertensive diseases) and prescribed with drugs C03 

(diuretics) and C10 (lipid modifying gents), commonly prescribed for patients with cardiovascular 

diseases (Nordqvist, 2017). Similarly, the C2 group consists of patients prescribed with C03 
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(diuretics) and C10 (lipid modifying agents). C3 subgroup consists of patients with 10.I15 

(hypertensive diseases), and I20.I25 (ischaemic heart diseases) prescribed with C03 (diuretics). In C4 

patients with I20.I25 (ischaemic heart diseases) prescribed with C03 (diuretics) and C10 (lipid-

modifying agents) are located. The final SD group D consists of 3 rules, all with two different 

conditions achieving ±20% target share. The ruling class found in all groups is Economic activity= 

inactive patients, under state aid. The second condition in D1 are patients diagnosed with I60.I69 

(cerebrovascular diseases), in D2 patients diagnosed with K70.K77 (diseases of liver) and in D3 with 

L80.L99 (other disorders of the skin and subcutaneous tissue). Table 5 presents all the induced rules.  

 Rules Subgroup Size  Target Share  

A1 Economic activity= state aid AND E70.E90= 1 and 

G40.G47=1 AND H49.H52=1 

20  35% 

A2 Economic activity= state aid AND F0.F09=1 AND 

G40.G41=1 AND H49.H52=1 

10 40% 

B1 Economic activity= state aid AND G40.G47=1 311 19.30% 

C1 I10.I15=1 AND C03=1 AND C10=1 276 38.77% 

C2 C03=1 AND C10=1  284 38.03% 

C3 I10.I15=1 AND C03=1 AND I20.I25=1  357 34.27% 

C4 I20.I25=1 AND C03=1 378 34.13% 

D1 Economic activity= state aid AND I60.I69=1  263 25.10% 

D2 Economic activity= state aid AND K70.K77=1  279 23.66% 

D3 Economic activity= state aid AND L80.L99=1  162 18.53% 

Table 5. Rules induced during subgroup discovery analysis concerning diabetes  

 We used the same procedure for exploring the response variable prediabetes. The rules were 

selected based on selector conjunctions in which all binary variables corresponded to the class 1. In 

total, ten conjunction rules were constructed with 14 unique selectors. The first set of selectors in A1 

represents patients living in Kosice who are between 52 and 61 years old and are diagnosed with 

M5.M14 (inflammatory polyarthropathies). In the second construction of subgroup objects, groups 

B1-B6 were induced, with a dominant variable Location= Kosice. In B1 patients from Kosice who are 

above 68 years old and are prescribed with A02 (drugs for acid-related disorders) were located. Group 

B2 consists of patients from Kosice who are above 68 years old and are diagnosed with F30.F39 

(mood affective disorders). Group B3 consists of female patients living in Kosice. Similarly, group B4 

consists of female patients living in Kosice and are above 68 years old. In B5 female patients from 

Kosice diagnosed with L60.L75 (disorders of skin appendages) were grouped and in B6 patients 

living in Kosice who are above 68 years old, diagnosed with M5.M14 (inflammatory 

polyarthropathies) were grouped.  
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 Rules Subgroup Size Target Share 

A1 Location= Kosice AND Age=52-61 AND 

M5.M14=1 

9 66.67% 

B1 Location= Kosice AND Age >= 68 AND A02=1 62 66.13% 

B2 Location= Kosice AND Age >= 68 AND 

F30.F39=1 

23 52.18% 

B3 Location= Kosice AND Sex = 1 AND F30.F39=1   45  53.33% 

B4 Location= Kosice AND Age >= 68 AND Sex= 1 

  

126 51.59% 

B5 Location= Kosice AND Sex=1 AND L60.L75=1  18 50% 

B6 Location= Kosice AND Age>=68 AND M5.14=1 30 60% 

 K80.K87=1 AND R03=1  38  

 H90.H95=1 AND M05=1  22  

 K80.K87=1 AND C04=0 AND R03=1  37  

Table 6. Rules induced during subgroup discovery analysis, concerning prediabetes  

 

Diabetes Classification   
 For predicting the incidence of diabetes, we constructed the models of RF and DT using three 

different training sets, with two sets of variables. In order to achieve the best possible predictive 

power, we optimized the models for precision by grid search and 5fold cross-validation. All results 

provided in this section were established during the generalization step on the test data. 

 Importantly, the uneven distribution of classes (492 diabetic and 3344 nondiabetic patients in 

the training set), caused a bias towards majority class and thus, higher misclassification rate for the 

minority class (Ramezankhani et al., 2016b; Lopez, Fernández, García, Palade, & Herrera, 2013). As 

can be seen in Table 7, when the models were fitted on unbalanced samples using all predictor 

variables, classifiers were sensitive towards class imbalance, and while in both instances the accuracy 

achieved more than 85% and F1-score above 80%, it failed to identify diabetic patients achieving a 

sensitivity of ± 1%. Therefore, it is important to note that measures such as accuracy and F1-score are 

often insufficient for evaluation, introducing misleading outcomes. By conducting the SD feature 

selection on the unbalanced training set on both classifiers, the true positive rate slightly improved. 

The RF sensitivity rose by 3.28% (1.42% - 4.7%) and by 1.5% (0.9% - 2.4%) on the DT baseline. 

However, such low results on sensitivity do not pose a solid representation for making predictions. 

Table 7 provides full results of the evaluation in terms of the selected metrics of RF models and its 

DT baselines. 
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 Classifiers AUC SEN SP F1 Accuracy 

Unbalanced DT 50.22% 0.9% 99.51% 81% 86.80% 

 RF 50.67% 1.42% 99.93% 82% 87.23% 

 DT, SD features  51.07% 2.4% 99.80% 82% 87.23% 

 RF, SD features 51.56% 4.7% 98.40% 82% 86.32% 

SMOTE DT 52.36% 26.41% 78.30% 75% 71.61% 

 RF 55.23% 33.02% 77.46% 75% 71.73% 

 DT, SD features  52.36% 26.41% 78.30% 75% 71.61% 

 RF, SD features 62% 57.55% 66.43% 71% 65.29% 

Down-sampled DT 61.09% 69.81% 54.36% 63% 56.35% 

 RF 68.34% 73.11% 63.58% 71% 64.80% 

 DT, SD features 67.15% 65.57% 68.74% 73% 68.33% 

 RF, SD features 67.25% 69.81% 64.69% 71% 65.35% 

Table 7. Results of random forest and decision tree baseline models using all predictor variables compared to results of 

random forest and decision tree baseline using subgroup discovery feature selection — results provided in %.  

 Due to a class imbalance, we implemented ensemble resampling techniques SMOTE and 

down-sampling and used new sample sizes for building the RF and baseline models. In general, the 

random forest models outperformed the decision tree baseline on all sample sets, which is consistent 

with previous studies (Esmaily et al., 2019; Chawla, Bowyer, Hall & Kegelmeyer, 2012; Nai-aruna & 

Rungruttikarn, 2015). Most notably, the RF trained on SMOTE sample set achieved better results in 

AUC of 2.87% (55.23%- 52.36%) and SEN of 6.61% (33.02%- 26.41%), when compared to the 

baseline identifying 70 diabetic patients correctly and misclassifying 148 patients. The difference in 

accuracy and the F1-score was negligible. The RF using selected features finally enhanced the model's 

performance by 6.77% in AUC (62%- 55.23%), and by 24.53% in sensitivity (57.55%- 33.02%), 

when compared to the model using all predictors. Still, with the selected features the rate of true 

negative decreased by 11.03% (77.46%- 66.43%), which lead to decrease in F1-score by 4% (75%-

71%) and 6.44% in accuracy (71.73%-65.29%). However, the results of sensitivity are a rather 

unexpected outcome, as the literature suggests steep improvements in performance when 

oversampling with SMOTE algorithm (Chawla et al., 2002; Ramezankhani et al., 2016b). The rate of 

correctly classified patients was finally higher with the RF model trained on down-sampled sets, with 

155 correctly classified and 57 incorrectly classified diabetic patients. Similarly to other models, the 

RF model produced higher results than the DT baseline by 7.25% on AUC (68.34%-61.09%), 3.3% 

on SEN (73.11%-69.81%), 9.22% on SP (63.58%-54.36%), 8% on F1-score (71%-63%) and 8.45% 

on accuracy (64.80%-56.35%).  

 Inconsistently with previous results of applying selected features, the method caused the 

classifiers to perform worse on AUC by 1.09% (68.34%-61.09%), and sensitivity by 3.3% (73.11%-

69.81%). The specificity (tn) was slightly higher by 1.11% (64.69%-63.58%) and accuracy by 0.55% 
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(65.35%-64.80%). However, none of these differences were significant.  

 Overall, the SD feature selection increased the performances of models trained on unbalanced 

and SMOTE samples, while decreased the performance of a model trained on the down-sampled 

training set. Moreover, comparison of the ensemble models (using selected features) to the models 

using all predictors indicates, that by application of feature selection, the performance improved in the 

identification of the true positive cases with higher sensitivity and AUC while achieving lower 

performance in specificity, F1-score, and accuracy. In general, all random forest models outperformed 

its decision tree baselines, when being compared. Overall, out of all models, the random forest model 

trained on down-sampled set using all 103 predictor variables, achieved the best performance on AUC 

and sensitivity and therefore, was chosen for predicting the incidence of diabetes.  

 Besides measuring the model performances, we also focused on identifying explaining 

features of T2D, for which we used RF built-in function to select important features (Esmaily etl al., 

2018). The function was run on the initial unbalanced sample set, as resampled sets do not reflect a 

real representation of the patient's data. Figure 7 shows feature importance computed with mean 

decrease Gini, measuring the average gain of purity by splitting induced variables (Bruce & Bruce, 

2017). The model generated 10 variables: Age, Location, C08 (calcium channel blockers), C03 

(diuretics), I20.I25 (ischaemic heart diseases), C07 (beta blocking agents), E70.E90 (metabolic 

disorders), H30.H36 (disorders of choroid and retina), Sex, C10 (lipid modifying gents) and C02 

(antihypertensives).  

 

Figure 7. Ten most important variables when predicting diabetes in ascending order, generated by the random forest built-in 

function feature importance.  
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Out of these variables, the majority are directly linked to diagnoses caused by diabetes. For example, 

the ICD 10 code variable I20.I25 represents different forms of heart diseases which have been 

previously researched and confirmed as a strong predictor of the disease (Barber et al., 2014; Olivera 

et al., 2017, Razavian et al. 2015). Moreover, all the variables C02, C03, C07, C08 fall under the 

drugs used for the cardiovascular system, for lowering blood pressure, protecting against heart 

attacks, and improving the outlook for people with heart failure (Nordqvist, 2017). Other variables 

such as H30.H36 has also been previously subjected to diabetes in several studies, as T2D is one of 

the leading causes of open-angle glaucoma (eye diseases in which the optic nerve degenerates) 

(NIDDK, 2017).  

 From the demographic variables, Age, Location, and Sex were found significant, which is 

consistent with previous studies (Oliviera et al., 2017; Meng et al., 2013). Further inspection revealed 

that with increasing age, the incidence of diabetes increased as well. These results are somewhat in 

line with subgroups established during EDA, in which economically inactive patients were grouped. 

Furthermore, Figure 9 compares the distribution of age among diabetic and prediabetic patients, and 

as the curve suggests, prediabetes occurs at a younger age, in comparing to diabetes (i.e., 30-40 and 

steeply rises to 60-70 years). Figure 8 reveals that the majority of diabetic people are living Kosice, 

Komarno, and Snina.   

 

 

Figure 8. 15 Prevalence of diabetes among eastern cities in Slovakia.  
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Figure 9. 15 Prevalence of diabetes among eastern cities in Slovakia.  

 

Prediabetes Classification   
  Prediction of prediabetes followed the same sets of procedures as when predicting diabetes. 

We constructed the RF and DT baseline models using the unbalanced training set, balanced with 

SMOTE and balanced by down-sampling training sets, using all 103 predictor variables and selected 

variables during the subgroup discovery. In general, the RF model achieved better predictive power 

using all three sample sets, when compared to the DT baseline, which is in line with the previous 

findings (Chawla, Bowyer, Hall, & Kegelmeyer, 2002).  

 As the classes of the target variable were severely imbalanced (1=1385, 0=2451), we 

encountered the same bias towards the minority class, as when predicting diabetes. The RF trained on 

the unbalanced sample set hardly outperformed the DT baseline by only a few percentages on all 

metrics except specificity, which was higher for the DT. While on both models of RF and DT, the 

accuracy was ± 64% and F1-score ±54%, the sensitivity did not exceed 10%. The feature selection 

improved the model´s accuracy only slightly, most notably on sensitivity by 3.2% (9.7%-6.5%), while 

it decreased the performance on specificity, F1-score, and accuracy.  

 The RF model trained on the SMOTE sample compared to the DT baseline, produced AUC 

better by 0.87% (54.72%-53.85%), sensitivity by 2.89% (46.43%-43.54%), and F1-score by 1% 

(58%-57%). The difference in accuracy was almost indistinguishable. By implementing feature 

selection, the sensitivity rose by 5.61% (46.43%-40.82%). On other metrics, the improvement was 

only marginal. The balanced sample set with down-sampling achieved the best predictive power, 

while outperforming the DT by 5.19% on AUC (56.10%-50-91%), by 12.03% on sensitivity (61.40%-

48.47%), by 2% on the F1-score (55%-53%), and by 2.98% on accuracy (54,59%-51.61%).  
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 Feature selection improved the model's sensitivity by 2.20% (63.60%-61.40%). Surprisingly 

on all other metrics, the performance decreased. Overall, the feature selection performed on all sample 

sets, increased sensitivity (tp), while in all cases, decreased specificity (tn). Moreover, despite the fact, 

the down-sampled model using selected features achieved the highest performance on sensitivity, the 

down sampled model using all features performed higher on all other evaluation metrics and was 

therefore chosen for predicting prediabetes. Table 8 presents the full results of the RF and DT models 

using the SD feature selection.   

 Classifier AUC SEN SP F1 Accuracy 

Unbalanced DT 50.89% 5.2% 96.50% 53% 63.89% 

 RF 51.53% 6.5% 96.60% 54% 64.38% 

 DT, SD features 50.36% 5.4% 95.27% 53% 63.16% 

 RF, SD features 51.95% 9.7% 94.03% 55% 63.95% 

SMOTE DT 52.50% 37.24% 67.74% 57% 56.84% 

 RF 53.38% 40.82% 65.94% 57% 56.97% 

 DT, SD features 53.85% 43.54% 64.14% 57% 56.78% 

 RF, SD features 54.72% 46.43% 63% 58% 57.08% 

Down-

sampled 

DT 50.91% 48.47% 53.36% 53% 51.61% 

 RF 56.10% 61.40% 50.80% 55% 54.59% 

 DT, SD features 54.90% 59.86% 49.96% 54% 53.49% 

 RF, SD features  55.54% 63.60% 47.69% 54% 53.38% 

Table 8. Results of random forest and decision tree baseline predicting response variable Prediabetes, compared to results of 

random forest and decision tree baseline using subgroup discovery feature selection.  

  The important features were evaluated based on the Gini index. In Figure 10, two variables 

Location and Age are visibly more significant, while the node impurity remains almost steady for the 

rest: Sex, J0.J6, J01, M50.M54, M01, K20.K31, C07. As already established, C07 (beta blocking 

agents) are drugs commonly used for individuals with cardiovascular diseases. As research suggests, 

early detection of prediabetes can reduce the risk of developing cardiovascular diseases (Brannick & 

Dagogo-Jack, 2018), meaning that those are symptoms that usually arise when the prediabetic stage is 

already present. M50.M54 (other dorsopathies) represents any disorder of back or spine and seems to 

be an interesting outcome, as the comorbidity between back pain and diabetes have been previously a 

subject of medical research, where diabetes and back pain have been developed simultaneously. In 

addition, patients with T2D usually have more severe symptoms (Iskra, 2018).  

 Moreover, a link has been established between J01 (antibacterials for systemic use) and 

prediabetes, as infectious diseases are more severe and frequent at diabetic and prediabetic patients 

(Casqueiro & Alves, 2012). Notably, diabetes also increases the propensity for both chronic and acute 
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infections seemingly as a part of the impaired immunity and therefore strongly linked to J0.J6 (acute 

upper respiratory infections) as established in a prior research (Aburawi, Liuba, Pesonen, Ylä-

Herttuala, & Sjöblad, 2004). K20.K31 (diseases of oesophagus, stomach and duodenum) has been 

previously found as a strong predictor of diabetes, as it affects almost every part of the gastrointestinal 

tract from the esophagus to the rectum (Yarandi & Srinivasan, 2014). However, the link to 

prediabetes has not been previously established. Similarly, M01 (anti-inflammatory and antirheumatic 

products) has not been directly linked to prediabetes in the literature.  

 

Figure 10. Random Forest feature selection results of 10 most important variables when predicting prediabetes.  

 Further research revealed that the majority of the people affected by both diagnoses are 

between 60-70 years old, as shown in Figure 9. Interestingly, in comparison to diabetic patients, 

prediabetes affects more people who are between 30-50 years old. In Figure 11, the incidence of 

prediabetes among eastern cities in Slovakia can be observed, with the highest incidence in Kosice.  
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Figure 11. Incidence of prediabetes among eastern cities in Slovakia 

Discussion  
 

 The study was aimed at developing the best performing predictive model to estimate the 

probability of Type 2 Diabetes Mellitus and prediabetes incidence and help in high-risk individual 

identification. In this chapter results of the study are being evaluated, regarding their implications to 

the prediction of diabetes and prediabetes. The methodological approach in designing the predictive 

models, combined with the EDA analysis, is somewhat original to the landscape of state-of-the-art 

healthcare research. During EDA analysis (subgroup discovery), interesting subgroups pertaining a 

unique set of conjunction selectors were found, regarding both target variables, describing the 

diagnoses and their forms. By conducting the exploratory analysis, we laid a unique approach in 

selecting explaining variables for further prediction analysis and explored whether models achieved 

any improvement in their performances. The models used were RF and DT baseline. We used the RF 

built-in function to identify the most important models' features. Those were compared to the SD 

selectors, and variables reoccurring in both methods were selected for consideration. The current 

study found that for predicting diabetes, variables E70.E90, C03, and I20.I25 are suitable. Age, 

Location, and Sex were found significant for predicting prediabetes. Thus, those features contribute 

most to predicting diabetes and prediabetes incidence from the patient demographic and utilization 

data, available to the analysis.  

 For the research, SD was postulated as a tool for exploring the targets and for selecting 

features when building predictive models. In this study, it was found that the SD feature selection 
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technique caused a successful improvement of the model's sensitivity and AUC. We mostly focused 

on improving sensitivity and AUC, as we aimed at identifying the critical class (tp). It is important to 

note that different research goals and settings require different evaluation metric. Therefore, an 

essential finding, in line with the previous studies, is that accuracy, and F1-score as performance 

criterions are not sufficiently robust measures, mostly when classes are skewed (Chawla et al., 2002). 

The most notable improvement of SEN and AUC was observed on the RF model using SMOTE when 

the SEN rose from 55.23% to 62% and AUC from 33.02% to 57.55%.  

 Surprising is that, while the SD feature selection secured higher rates of identified diabetic 

and prediabetic patients, it decreased the rates of correctly classified negative cases, which resulted in 

lower performance of F1-scores and accuracy. Another surprising outcome is that feature selection 

performed well on all models, but those trained on down-sampled sets. Even though the general 

findings suggest that feature selection is an effective method in the light of improving performance of 

predictive models, it did not suffice in outperforming the RF models trained on down-sampled sets 

using all 103 explaining variables when predicting both diabetes and prediabetes. Hence, it could 

conceivably be hypothesized that subgroup discovery could be a promising tool for feature selection, 

but it did not improve the performance of the RF trained on down-sampled sets, using all 103 

predictor variables. 

 Finally, the present study was designed to determine the extent to which models of random 

forest and decision tree contribute to diabetic and prediabetic identification. In the analysis, the DT 

served the purpose of a baseline comparison, which was surpassed in all instances by the RF model. 

In accordance with the present results, previous studies have demonstrated that RF algorithm boosts 

the robustness of the model (Esmaily et al., 2018). Due to a severe class imbalance of both targets, 

that lead to a bias towards the minority class (true positive class), the models were resampled by using 

SMOTE and down-sampling algorithms. Some studies have shown satisfactory improvement in 

predictive models when using SMOTE (Chawla et al., 2002; Ramezankhani et al., 2016b). This does 

not appear to be the case in the current analysis. Regardless of the fact, that comparison of the RF 

using SMOTE and unbalanced set improved sensitivity by 31.06%, achieving 32.02% for predicting 

diabetes and by 34.32% resulting into 40.82% when predicting prediabetes, the results are not 

sufficient for making predictions.  

 Moreover, while resampling seems to improve the sensitivity, it decreases the specificity and 

accuracy of models, which has been previously sketched in other studies as well (Chawla et al., 2002). 

Finally, the RF model using down-sampling achieved satisfactory predictive power in both instances, 

and thus is considered suitable for predicting diabetes and prediabetes. With the prediction of 

diabetes, the model achieved an AUC of 68.34%, a sensitivity of 73.11%, a specificity of 63.58%, an 

F1-score of 71%, and an accuracy of 64.80%. With the prediction of prediabetes, the model achieved 

an AUC of 56.10%, a sensitivity of 61.40%, a specificity of 50.80%, an F1-score of 57%, and an 

accuracy of 54.59%. Due to the fact, models were fitted on the down-sampled data; the results need to 
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be interpreted with caution, as some substantial variables may have been cut-out of the analysis 

(Menardi & Torelli, 2012). 

 The implications for further research stem mainly from the design limitations. Skewed classes 

of the target variables posed one of the biggest pitfalls and resampling them becomes an inevitable 

part of the analysis, mainly in the medical domain. Results of the SMOTE models suggest that 

exploring SMOTE at different percentages (e.g., 200%, 300%, 700%) of its original size, could 

potentially achieve higher prediction results in the analysis. However, exploring different sampling 

techniques is limited by a time constraint and usually forms a central topic of research (Ramezankhani 

et al., 2016b). Future research could also explore the usage of other machine learning models applied 

to the predictions of diabetes and prediabetes.  

 Furthermore, another pitfall of using healthcare data is that records can be often misleading 

and inaccurate. Practitioners are prone to record patient's data inaccurately, lacking details or 

distinction in between closely related diagnoses. This may result in confusing diagnoses or leaving out 

important information (B. Benková, M. Poliak, personal communication, November 05, 2018). For 

example, the target variable representing T2D had to be built by a combination of all ICD10 diabetes 

codes (E10-E14), which comprise all diabetes types rather than only using an ICD code corresponding 

to T2D. Therefore, the analysis was unable to retain detailed information specific to T2D only. A 

possible solution to diminish the consequences is setting up an experiment, such as a longitudinal 

study, in which practitioners would be provided thorough guidelines for recording patients' data. 

 Moreover, in further studies, researchers could conduct a time-varying analysis. However, it 

is suggested that before starting such an analysis, a considerable amount of data should be collected. 

This could be especially beneficial for analyzing the transition from prediabetic to the diabetic stage. 

A thorough inspection of the diagnoses could reveal patterns in diagnoses over time, and potential 

indicators of the transition. Furthermore, a time-varying analysis could be also beneficial for 

inspecting the diagnoses independently by building several time frames, with each representing a 

different stage of the diagnoses. Such an analysis could unveil changes in the diseases over time and 

provide a better understanding of its forms.  

Conclusion 
 

 In this research, we proposed a methodological design consisting of exploratory and 

predictive analyses. During the EDA, by using the subgroup discovery algorithm BSD, we induced 

sets of interesting rules for diabetes mellitus and prediabetes. In the predictive analysis, we examined 

the predictive power of two models, to predict the incidence of T2D and prediabetes. Due to the fact 

that both target variables had skewed classes, we resampled the training set by using SMOTE and 

down-sampling algorithms. In order to improve the models' performance, we used several ensemble 

techniques such as parameter tuning by grid search and 5-fold cross-validation and feature selection. 
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We used selectors explored in the subgroup discovery as a feature selection method. This study has 

identified that the RF model, using down-sampling for skewed classes and all 103 predictor variables 

achieved the highest results, predicting both diabetes and prediabetes. The second major finding was 

an identification of predictors of both diseases, which could assist Dôvera in identifying high-risk 

individuals and creating a valuable tool to help practitioners in screening for T2D and prediabetes. 
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Appendix A 
 
 Table A1: The importance of the 12 input variables in three models  

Order Logistic regression Artificial Neural Network (B-P) Decision tree (C5.0) 

1.  Age Age Age 

2.  Family history of diabetes Family history of diabetes Education level 

3.  Marital status Duration of sleep Family history of diabetes 

4.  Education level Preference for salty food Marital status 

5.  Work stress Marital status Preference for salty food 

6.  Duration of sleep Education level Drinking coffee 

7.  Physical activity Work stress Duration of sleep  

8.  Preference for salty food Physical activity Body mass index 

9.  Gender  Drinking coffee Work stress 

10.  Eating fish Gender Eating fish 

11.  Drinking coffee Body mass index Physical activity 

12.  Body mass index  Eating fish Gender  

Table A1. The order according to importance, from the most to the least important. Reprinted from “Comparison of three 

data mining models for predicting diabetes or prediabetes by risk factors” by X. H. Meng, Y. X. Huang, D. P. Rao, Q. 

Zhang, Q. Liu, 2013, The Kaohsiung Journal of Medical Sciences, 29, p.97. Copyright Elsevier 2012.  

Appendix B 
 

Table B1: Groups identified by decision tree models for men (Tehran Lipid and Glucose Study 1999–

2012) 

Models Groups Definition Probability Predicted class  

Model (1) 1 FPG<4.9 and 2h-PCPG<7.7 0.90 Non-diabetic 

 2 9<FPG<5.3 and 2h-PCPG<7.7 and WHtR<0.6  0.72 Non-diabetic 

 3 FPG>5.3 and 2h-PCPG<4.4 and age <43  0.67 Non-diabetic 

 4 4.9<FPG<5.3 and 2h-PCPG<7.7 and WHtR>0.6  0.53 Diabetic 

 5 FPG<5.3 and 2h-PCPG>7.7  0.70 Diabetic 

 6 FPG>5.3 and 2h-PCPG<4.4 and age >43  0.68 Diabetic 

 7 FPG>5.3 and 2h-PCPG>4.4 0.79 Diabetic 0.79 Diabetic 

Model (2) 1 FPG<4.9  0.86 Non-diabetic 

 2 4.9<FPG<5.3 and WHItR<0.56 0.70 Non-diabetic 

 3 4.9<FPG<5.3 and WHtR>0.56 and FHD=‘no’ 0.58 Non-diabetic 

 4 FPG>5.3 and 0.4<WHtR<0.49and MAP<92  0.75 Non-diabetic 

 5 4.9<FPG<5.3 and WHtR>0.56 and FHD=‘yes’  0.78 Diabetic 

 6 FPG>5.3 and WHtR<0.45  0.56 Diabetic 

 7 FPG>5.3 and 0.45<WHtR<0.49 and MAP>92  0.67 Diabetic 

 8 FPG>5.3 and<0.49<WHtR<0.56  0.74 Diabetic 

 9 FPG>5.3 and WHtR>0.56 0.84 Diabetic 

Table B1. Model (1) was developed based on 15 variables which included 2h-PCPG. 

Model (2) was developed based on 14 variables (2h-PCPG was excluded). 

*The percentage of population in the defined subgroup, which can be interpreted as probability of an outcome. +Predicted 

outcome for men who belong to the defined subgroup. 

2h-PCPG, 2-hour postchallenge plasma glucose (mmol/L); FHD, family history of diabetes; FPG, fasting plasma glucose 

(mmol/L); MAP, mean arterial blood pressure (mm Hg); WHtR, waist-to-height ratio. 

Reprinted from “Decision tree-based modelling for identification of potential interactions between type 2 diabetes risk 

factors: a decade follow-up in a Middle East prospective cohort study.” by A. Ramezankhani, E. Hadavandi, O. Pournik, J. 

Shahrabi, F. Azizi, F. Hadaegh, 2016, BMJ Open, 6, p.11. BMJ Publishing Group 2016.  
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Table B2: Groups identified by decision tree models for women (Tehran Lipid and Glucose Study 

1999–2012) 

Models Groups Definition Probability Predicted class  

Model (1) 1 FPG≤5.2 and WHtR≤0.55  0.88 Non-diabetic 

 2 2 FPG≤5.2 and 0.55<WHtR≤0.66 and 2h-PCPG≤7.4  0.72 Non-diabetic 

 3 3 FPG≤5.2 and WHtR>0.66 and 2h-PCPG≤6.9  0.57 Non-diabetic 

 4 4 FPG>5.2 and WHtR≤0.52 0.74  0.74 Non-diabetic 

 5 5 FPG≤5.2 and 0.55<WHtR≤0.66 and 2h-PCPG>7.4  0.69 Diabetic 

 6 6 FPG≤5.2 and WHtR>0.66 and 2h-PCPG>6.9  0.75 Diabetic 

 7 7 FPG>5.2 and WHtR>0.52  0.81 Diabetic 

Model (2) 1 Model (2) 1 FPG≤5.2 and WHtR≤0.55  0.88 Non-diabetic 

 2 2 FPG≤4.9 and 0.55<WHtR≤0.66 0.73 Non-diabetic 

 3 3 4.9<FPG≤5.2 and 0.55<WHtR≤0.66 and MAP≤97  0.64 Non-diabetic 

 4 4 FPG≤5.2 and WHtR>0.66 and MAP≤99  0.59 Non-diabetic 

 5 5 FPG>5.2 and WHtR≤0.52  0.74 Non-diabetic 

 6 6 4.9<FPG≤5.2 and 0.55<WHtR≤0.66 and MAP>97  0.67 Diabetic 

 7 7 FPG≤5.2 and WHtR>0.66 and MAP>99  0.66 Diabetic 

 8 8 FPG>5.2 and WHtR>0.52  0.81 Diabetic 

 9 9 FPG>5.2 and WHtR>0.56  0.84 Diabetic 

Table B2. Model (1) was developed based on 20 variables which included 2h-PCPG. 

Model (2) was developed based on 19 variables (2h-PCPG was excluded). 

*The percentage of population in the defined subgroup, which can be interpreted as probability of an outcome. 

†Predicted outcome for women who belong to the defined subgroup. 2h-PCPG, 2-hour postchallenge plasma glucose 

(mmol/L); FPG, fasting plasma glucose (mmol/L); MAP, mean arterial blood pressure (mm Hg); WHtR, waist-to-height 

ratio. 

Reprinted from “Decision tree-based modelling for identification of potential interactions between type 2 diabetes risk 

factors: a decade follow-up in a Middle East prospective cohort study.” by A. Ramezankhani, E. Hadavandi, O. Pournik, J. 

Shahrabi, F. Azizi, F. Hadaegh, 2016, BMJ Open, 6, p.12. BMJ Publishing Group 2016.  

Appendix C 
 

Table C1: The rules extracted through the random forest and decision tree models 

Random Forest Model 

Rl: FF TG=204.5 and bs-CRP=1.32 and occupation=employment, THEN class: a person without diabetes (187.236 or 79.2%) 

R2: FF TG=204.5 and bs-CRP-:1.32 and occupation=retired and TC=:257, THEN class: a person without diabetes (43:72 or 59.7%) 

R3: IF TG:204.5 and bs-CRP-:1.32 and occupation=retired and TC:-257 and LDL=:110.9, THEN class: a person without diabetes 

(22:23 or 91.3%) 

R4: IF TG:=204.5 and hs-CRP-:1.32 and occupation=retired and TC:+257 and LDL--110.9, THEN class: a person with diabetes (5:9 

ar 55.5%) 

R5: IF TG=204.5 and bs-CRP-1.32 and occupation=unemployment and hs-CRP:-4.66, THEN class: a person with diabetes (9:10 or 

90%) 

R6: IF TG=204.5 and hs-CRP-:1.32 and occupation=unemployment and hs-CRP-4.66 and BPD~:57.9, THEN class: a person without 

diabetes (138'199 or 69.3%) 

RU: IF TG:204.5 and bs-CRP-1.32 and occupation=mnemployment and bs-CRP-4.66 and BPD:-57.9 and FHD=yes, THEN class: a 

person with diabetes (14:16 or 87.5%) 

R&: IF TG=204.5 and bs-CRP-:1.32 and occupation=unemployment and bs-CRP=4.66 and BPD: 57.9 and FHD=no, THEN class: a 

person without diabetes (25.32 or 78.1%) 

RO: IF TG=204.5 and hs-CRP- 1.81 and age=46.10, THEN class: person without diabetes (569'753 or 79.1%) 

R10: IF TG=204.5 and hs-CRP-1.81 and age=46.10 and HDL--67.5 and TG>227 and BMI» 24.61, THEN class: a person with 

diabetes (8:9 or 88.8%) 

R1t: IF TG=204.5 and hs-CRP-=1.81 and age=46.10 and HDL--67.5 and TG=227 and BMI<=:24.61. THEN class: a person without 

diabetes (5'9 or 55.5%) 
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R12: IF TG=204.5 and hs-CRP-1.81 and age=46.10 and HDL: 67.5 and TG=227, THEN class: a person without diabetes (11,12 or 

91.6%) 

R13: IF TG=204.5 and hs-CRP--1.81 and age=46.10 and HDL=67.5 and PAL=2.18, THEN class: a person without diabetes (129/136 

or 94.8%) 

R14: IF TG=204.5 and hs-CRP--1.81 and age=46.10 and HDL=67.5 and PAL=:2.18 and BPS=128.16, THEN class: a person without 

diabetes (48 or 50%} 

R15: IF TG=204.5 and hs-CRP--1.81 and age=46.10 and HDL=67.5 and PAL=2.18 and BPS:>128.16, THEN class: a person with 

diabetes (8'12 or 66.6%) 

Decision Tree Model 

Rl: IF FHD=no and TG-184, THEN class: a person without diabetes (3604/3921 or 92%) 

RQ: IF FHD=no, TG::184 and age-48, THEN class: a person without diabetes (340/386 or 88%) 

R3. IF FHD=no, TG=184, age-48, and hs-CRP-:2 2, THEN class: a person without diabetes (272/307 or 88%0) 

R4: IF FHD=no, TG=184, age-48, and hs-CRP2.2, THEN class: a person with diabetes (100/198 or 51%) 

RS. IF FHD=ves, age--48 and SBP=140. THEN class: a person without diabetes (809894 or 90%) 

R6: IF FHD=yes, age-48 and SBP::140, THEN class: a person with diabetes (72/133 or 54%) 

R77. IF FHD=ves, age48, SBP::130, DBP=81 and PAL--1.6, THEN class: a person without diabetes (1629 or 55%) 

R8: IF FHD=yes, age48, SBP:=130, DBP=81 and PAL=:1.6, THEN class: a person with diabetes (37'47 or 79%) 

RO: IF FHD=yes, age:-48, SBP:=130, DBP281, HDL=:29, THEN class: a person with diabetes (1113 or 85%) 

R10: IF FHD=yes, age:48, SBP:2130, DBP::81, HDL:229, LDL<:148 and hs-CRP-6.8, THEN class: person without diabetes (96'138 

or 70%) 

R1t: IF FHD=yes, age48, SBP=130, DBP81, HDL=29, LDL=148, and hs-CRP:6.8, THEN class: a person with diabetes (17/33 or 

52%) 

R12: IF FHD=yes, age:48, SBP:-130, DBP:2831, HDL=29, LDL: 148 and occupation=employed, THEN class: a person without 

diabetes (7'9 or 78%) 

R13: IF FHD=yes, age:48, SBP-=}30, DBP-31, HDL:=29, LDL=148 and occupation=other, THEN class: person with diabetes (34,58 

or 59%) 

R14: IF FHD=yes, age=48, SBP=130, BMI--23. THEN class: a person without diabetes (324'442 or 73%) 

R15: IF FHD=yes, age::48. SBP=130, BMI:23 and education=low, THEN class: a person with diabetes (15/20 or 75%) 

R16: IF FHD=yes, age>48, SBP=130, BMI::23 and education=high &moderate, THEN class: person without diabetes (15/26 or 58%) 

Table C1. (FHD: family history of diabetes; TG: Triglycerides; DBP: diastolic blood pressure; hs-CRP: high sensitivity C-

reactive protein; BMI: Body mass index; SBP: systolic blood pressure; HDL: high-density lipoprotein; LDL: low-density 

lipoprotein). Reprinted from “A Comparison Between Decision Tree and Random Forest in Determining the Risk Factors 

Associated with Type 2 Diabetes” by H. Esmaily, M. Tayefi, H. Doosti, M. Ghayour-Mobarhan, H. Nezami, A. 

Amirabadizadeh, Journal of Research in Health Sciences, 18, p.5. Open Journal Systems 2018.  

 


