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Uplift Models: Can They Be Used to Identify 
and Rank Heart Failure Patients Expected to 
Benefit From a Clinical Telehealth Program? 

Atilla Asar 

It is of importance to identify people with chronic or life-threatening diseases that can be recruited for 
particular treatments where they will receive optimal benefits and health gains in the field of health care. 
In this study, we assessed treatment response uplift modeling to motivate the take-up of uplift modeling in 
clinical settings. We presented the applications of four different uplift modeling techniques on a real-world 
dataset from a randomized clinical trial testing an intervention in a heart failure patient cohort, TEN-HMS 
study (The Trans-European Network-Home-Care Management System) and a synthetic dataset 
comprising an intervention and control in synthesized heart failure patient cohort. We demonstrated and 
evaluated the implementation of two-model, dummy treatment, pessimistic, and generalized Lai’s 
approaches. We made performance and stability experiments which show that generalized Lai’s approach 
(glai) is the model of choice with consistently higher performance and stability, in comparison to the other 
three methods. The stability experiments were performed with five different random samples with half of 
the observations of our generated dataset. The implementation of the glai approach demonstrated that 
recruitment of the patients according to their NYHA (New York Heart Association), BMI (Body Mass 
Index), and a number of prior hospitalizations can be used together. We demonstrated that uplift modeling 
could be used to identify a subgroup of patients with heart failure who will benefit most from an HTM 
intervention based on its clinical characteristics.  

1. Introduction

1.1. Problem Statement 

Randomized clinical trials (RCTs) are the gold standard for evidence-based medicine to test the 
effect of a treatment on a specified outcome. The main result of an RCT gives the average effect 
of treatment across the tested population (Deaton 2018). Even if RCTs provide good evidence of 
treatment effects on a population, this can be misleading on an individual level. In some 
significantly positive trials, some of the treated patients, both within and outside the clinical trials, 
may receive little or no benefit, or even harm from a treatment (Kent 2007). Such nonrandom and 
explainable variations in treatment effects, called heterogeneity of treatment effects, raises an 
important question: “are there subgroups of patients in a trial who are more likely or unlikely to 
derive benefit from a treatment, and can we stratify the ones who will receive the optimal 
benefit?”  

A common strategy used in medical sciences to investigate the heterogeneity of treatment 
effects is subgroup analysis. Subgroup analysis is the evaluation of treatment effects across a 
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number of subgroups of patients using a particular variable, one variable at a time, or a 
combination of variables (Meinert 2009)(pg 288-290). There are many limitations for the subgroup 
analyses (Austin 2006). In reality, there can be myriad subgroup analyses possible in any given 
RCT, thus researchers have to use their expertise in the field to choose the variables, which 
introduces a bias in the feature selection. Furthermore, analyzing each of these variables “one 
variable at a time” (e.g., male vs female, old vs young) will risk spurious false-positive subgroup 
results. As a result, subgroup analyses mostly ignore the joint influence of covariates and may 
fail to detect clinically significant multiple covariates causing the variations in treatment effects 
(Kornegay 2013).  

The traditional machine learning methods can be applied on RCTs; however, the essential 
problem with them is that they do not identify the subgroups of patients that would benefit most 
from an intervention. The traditional classification methods only predict the probability of 
responding rather than the increase in the probability of responding based on intervention. In 
other words, conventional classification methods can only model what happens after the 
intervention, which individuals will experience a particular outcome, but cannot model what 
happens due to the intervention, which patient or subgroup of patients will benefit from a specific 
treatment. The main reason for this shortcoming is that these models do not take into account 
what would have happened if the intervention were not implemented. On the other hand, during 
a standard randomized clinical trial, a random group of patients is subjected to treatment and 
another random group to an alternative treatment. Random distribution guarantees that there 
will be no systematic differences in factors, both known and unknown, that may affect the 
outcome (Sibbald 1998). The patients assigned to the treatment to be tested is called the treatment 
group, whereas the other counterpart is called the control group. In contrast to traditional 
classification methods, uplift modeling allows for the presence of control groups and can predict 
which individual patients will benefit from a specific treatment based on their specific 
characteristics. This is why we chose uplift modeling in this project to address which subgroup 
of patients with heart failure will get the optimal benefit from a remote telemonitoring.   

Uplift modeling is a type of predictive machine learning technique, aims of which to detect 
the incremental gains of an outcome from an intervention on a population (Lo 2015). The 
predicted results from uplift modeling are unlabeled because, in a randomized experiment, the 
outcome cannot be observed simultaneously for a single individual (the person either receives a 
treatment or does not receive it). This is the phenomenon known as the Fundamental Problem of 
Causal Inference (Holland 1986). To overcome this problem, uplift models depends essentially on 
randomized experiments. A detailed overview of uplift modeling techniques that 
have been implemented throughout this project is provided in Section 2.1. 

1.2. Context-of-use 

In order to report the viability of the uplift modeling on RCTs, we tested different approaches on 
two benchmark datasets. The first is the clinical trial data collected during TEN-HMS study (The 
Trans-Europian Network-Home-Care Management System) which investigated the effect of 
home telemonitoring treatment effects on patients with heart failure (Cleland 2005). The second 
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is synthetic dataset retaining the structure of the first one. A detailed overview of the datasets 
used in this project is provided in Section 3.1. 

Heart failure (HF) is a chronic, progressive and complex cardiovascular disorder having high 
prevalence and incidence worldwide. In the case of untreated or not well-managed conditions, 
deterioration of HF may require frequent and prolonged hospitalization, which can worsen the 
prognosis for the disease and the subsequent survival among affected patients (GJ de Vries 2013, 
Martirosyan 2017, Roth 2015). Globally cardiovascular deaths increased by 41% between 1990 and 
2013, whereas age-specific death rates fell by 39% (Roth 2015). Most of the management schemes 
for Patients with heart failure undergoing standard care consists of close clinical follow-up. 
Although patients with heart failure undergoing standard care frequently attend the scheduled 
office visits and follow-ups, unplanned cardiovascular hospital readmissions and mortality rates 
among these patients are still high (Chioncel 2017). Additionally, these intense face-to-face 
follow-up strategies are too costly and add extra load on the patients because of their demands 
on the patient’s time and travel needs, which might, as well, limit the number of patients who 
can participate in such schemes. 

Home telemonitoring (HTM) can address above-mentioned issues and might be a benefit for 
the patients with heart failure and the whole healthcare system with respect to cost efficiencies 
and clinical effectiveness. HTM is a form of non-invasive, remote patient monitoring strategy 
which consists of a digital transmission of physiological data e.g. electrocardiogram, blood 
pressure, weight, pulse oximetry, respiratory rate, and other data (self-care, education, lifestyle 
modification, and medicine administration) (Stewart 2011). By remotely collecting data on a 
regular basis, HTM patient management strategy allows health-care providers to monitor 
patients’ symptoms and guide them, using telecommunications as an alternative to or alongside 
in-person visits. Therefore, caregivers can detect clinical decompensation of patients with heart 
failure earlier, and take on-time interventions to prevent HF-related mortality cases or further 
deterioration of the patient condition.  

Remote monitoring of patients with heart failure also provides access to specialist care for a 
much larger number of patients, particularly for those living in remote geographical areas or the 
frail ones who are housebound, as well as those at high risk of deterioration. A series of recent 
randomized clinical trials (RCT) indicate that HTM can reduce the proportion of day lost due to 
unplanned cardiovascular hospital admissions and all-cause mortality risks among patients with 
heart failure (Koehler 2018, Yun 2017). Most importantly, these studies emphasized that HTM 
initiated some potentially life-saving hospital admissions, even if it slightly decreases the overall 
number of HF caused hospital admission days. 

Despite the fact that HTM has shown significant improvements in health-related quality of 
life for patients with heart failure, it is not possible to offer this treatment to every patient (Inglis 
2015, Yun 2018). First, as mentioned in the above section, each patient with heart failure might 
not receive similar beneficial effects from HTM, some patients even might get little to no benefit. 
Clearly, a one-size-fits-all approach will not work for every patient. Patients are diverse in terms 
of their demographic and clinical profiles. Second, the cost of recruiting every patient to HTM 
intervention is not a financially viable option to the standard care (Inglis 2015, McDowell 2015, 
Williams 2016). Therefore, patients with heart failure need to be ranked due to the 
aforementioned reasons. If there is an adequate risk stratification among these patients for HTM 
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recruitment, they may benefit most from this intervention; it can extend their lives in years and 
can improve their health-related quality of life.  

To best of our knowledge, there has been no previous research using uplift modeling to select 
the optimal treatment for patients with heart failure. As mentioned before, the prediction of the 
most efficient treatment from HTM and usual care based on patients’ characteristics is of special 
interest. This brings the following research questions to be answered: 

• “Can uplift models be used to identify patients with heart failure who benefit most from
the home telemonitoring treatment based on clinical benefits?”

• “If so, which uplift model technique will give the most stable and efficient performance
in our benchmark datasets?”

Using two benchmark datasets, the TEN-HMS trial and artificially generated synthetic 
datasets, this thesis applied different uplift modeling techniques to define subgroups of patients 
with heart failure who will potentially benefit most from the HTM intervention. Moreover, the 
HTM intervention impact on the selected patients with respect to their hospital admissions and 
mortality was predicted. The successful application of uplift modeling in this project will show 
which individual patients with given baseline characteristics have a higher likelihood of receiving 
a benefit in hospital-free survival from HTM.  

The rest of this thesis is organized as follows: Section 2 gives an overview of the related work. 
Section 3 describes the datasets that we used during this project, the construction of uplift 
modeling techniques, and their evaluation process. Section 4 presents the experimental results 
and evaluation of the models. Section 5 discusses the main findings and provides directions for 
future research. Finally, Section 6 concludes with the list of what has been done during this project 
and the main findings.  

2. Related Work

In this section, we first briefly introduce uplift modeling and uplift modeling techniques that have 
been implemented throughout this project. Subsequently, a comprehensive literature review on 
uplift modeling is provided.  

2.1. Uplift Modeling and Uplift Modeling Techniques 

Uplift modeling is a type of predictive machine learning technique, aims of which to detect the 
true differences in the probability of an outcome from intervention in a population of individuals 
(Lo 2015). The predicted results from uplift modeling are unlabeled because, in a randomized 
experiment, the outcome cannot be observed simultaneously for a single individual (the person 
either receives the treatment or does not receive it). This is the phenomenon known as the 
Fundamental Problem of Causal Inference (Holland 1986). To overcome this problem, uplift models 
depends essentially on randomized experiments. These models can be defined as follows:  
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𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑥𝑥𝑖𝑖) = 𝑃𝑃(𝑌𝑌 = 1|𝑥𝑥𝑖𝑖; 𝑈𝑈𝑖𝑖 = 1) − 𝑃𝑃(𝑌𝑌 = 1|𝑥𝑥𝑖𝑖; 𝑈𝑈𝑖𝑖 = 0) (1) 

As a formal definition, let X be a vector of predictor or independent variables, 𝑋𝑋 = {𝑥𝑥1, … , 𝑥𝑥𝑚𝑚} 
and 𝑌𝑌𝑌𝑌{0,1}  be the binary dependent class variable whose behavior is to be modeled. 𝑌𝑌 = 1 is 
assumed to be the positive outcome (success), and 𝑌𝑌 = 0, negative. In addition, 𝑇𝑇𝑌𝑌{0,1} represents 
whether or not a given object is in the treatment group, 𝑇𝑇 = 1, or in the control group, 𝑇𝑇 = 0. 
Finally, 𝑃𝑃 denotes a probability as predicted by a model. Figure 1 provides a conceptual overview 
of uplift modeling.   

Two-Model Approach 
This approach builds on the traditional classification models and consists of two separate 
predictive models 𝑀𝑀𝑇𝑇 and 𝑀𝑀𝐶𝐶, using the treatment group data and the control group data, 
respectively. Subtracting the estimate from 𝑀𝑀𝐶𝐶 from the estimate from 𝑀𝑀𝑇𝑇 gives the final uplift.  

 𝑀𝑀𝑈𝑈𝑈𝑈𝑈𝑈𝑖𝑖𝑈𝑈𝑈𝑈 = 𝑀𝑀𝑇𝑇 −  𝑀𝑀𝐶𝐶 
= 𝑃𝑃(𝑌𝑌 = 1|𝑥𝑥𝑖𝑖; 𝑈𝑈𝑖𝑖 = 1) − 𝑃𝑃(𝑌𝑌 = 1|𝑥𝑥𝑖𝑖; 𝑈𝑈𝑖𝑖 = 0) (2) 

The main advantage of this approach is its simplicity. Its implementation is straightforward, 
allowing users to use any state-of-the-art machine learning algorithms, such as logistic regression 
or support vector machines for building the treatment and the control models.    

In contrast, the major drawback of this approach is its limited applications in the simplest 
cases or, in other words, its practical failure in real-world situations (Radcliffe 2011). One reason 
for this is both the treatment and the control models are built independently and they focus on 
predicting the outcome separately without taking into account one another and they do not 
explicitly estimate the uplift. This approach could also result in having different sets of predictor 
variables for each model because of the independent construction of the models. For example, 
each model can prioritize different variables that are having high predictive power to estimate 
the outcome while disregarding the variables that best estimate the uplift across two models. 

Figure 1 
The general representation of uplift modelling 
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The two-model approach is an indirect means of estimating uplift and as a result, having 
associated problems and limitations. However, these can be overcome by building a single model 
that directly predicts the uplift using the entire dataset without separating it into the treatment 
and the control groups. 

Dummy Treatment Approach 
This approach combines the treatment and the control groups into a development sample and 
creates a dummy treatment variable in that sample. Based on logistic regression, it estimates the 
uplift via variables and their interactions with the dummy treatment variable, 𝑇𝑇 (Lo 2002). It will 
assign 𝑇𝑇 = 1 for the observations from the treatment group and 𝑇𝑇 = 0 for the control group. This 
method consists of predictor variables 𝑋𝑋 capturing the baseline estimates for the control group, 
treatment variable 𝑇𝑇, and interaction variables 𝑋𝑋 ∙ 𝑇𝑇 capturing the uplift estimate:   

𝑃𝑃𝑖𝑖 = 𝐸𝐸(𝑌𝑌𝑖𝑖|𝑋𝑋𝑖𝑖) =  
exp (∝ +𝛽𝛽′𝑋𝑋𝑖𝑖 + 𝛿𝛿𝑇𝑇𝑖𝑖 + 𝛾𝛾′𝑋𝑋𝑖𝑖𝑇𝑇𝑖𝑖)

1 + exp (∝ +𝛽𝛽′𝑋𝑋𝑖𝑖 + 𝛿𝛿𝑇𝑇𝑖𝑖 + 𝛾𝛾′𝑋𝑋𝑖𝑖𝑇𝑇𝑖𝑖)
(3) 

 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐿𝐿𝐿𝐿(𝑥𝑥) = 𝑃𝑃𝑖𝑖|𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑈𝑈 −  𝑃𝑃𝑖𝑖|𝑐𝑐𝑐𝑐𝑡𝑡𝑈𝑈𝑡𝑡𝑐𝑐𝑈𝑈 

=
exp(∝ +𝛾𝛾 + 𝛽𝛽′𝑋𝑋𝑖𝑖 + 𝛿𝛿′𝑋𝑋𝑖𝑖)

1 + exp(∝ +𝛾𝛾 + 𝛽𝛽′𝑋𝑋𝑖𝑖 + 𝛿𝛿′𝑋𝑋𝑖𝑖)
−  

exp(∝ +𝛽𝛽′𝑋𝑋𝑖𝑖)
1 + exp(∝ +𝛽𝛽′𝑋𝑋𝑖𝑖)

(4) 

where ∝,𝛽𝛽, 𝛾𝛾, and 𝛿𝛿 are parameters to be estimated. 
While the interaction variables make this model account for the heterogeneity in the treatment 
response originated by patients’ characteristics, they may also introduce collinearity issues into 
the model. These variables, for instance, are used both as baseline and interaction variables. This 
can result in instability and overfitting (Kane 2014).  

Transformation Approach 
This approach was first proposed by Lai (2006) for customer classification in direct marketing by 
using outcome variable transformation. In direct marketing, the customer population is generally 
stratified into four groups on whether a customer responds when treated or not (Figure 2).  

Figure 2 
The categorization of observations based on whether an individual was treated and whether the 
individual responded. 

From four known outcomes 
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Lai’s method labels control non-responders (CN) and treated responders (TR) as positive targets 
while labeling control responders (CR) and targeted non-responders (TN) as negative targets. 
Any supervised classification technique can be used to estimate the outcome probabilities of these 
four quadrants. Labeling these quadrants transforms the target variable into a binary target 
variable, and as a result, it converts the uplift modeling into a binary classification problem. 
Hence, the uplift of treatment can be calculated as follows by subtracting the probability of 
negative targets from the positive ones: 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐿𝐿𝐿𝐿𝑖𝑖(𝑥𝑥) = [𝑃𝑃(𝑇𝑇𝑇𝑇|𝑥𝑥) + 𝑃𝑃(𝐶𝐶𝐶𝐶|𝑥𝑥)] −  [𝑃𝑃(𝑇𝑇𝐶𝐶|𝑥𝑥) + 𝑃𝑃(𝐶𝐶𝑇𝑇|𝑥𝑥)] (5) 

Kane et al. (2014) have proved that Lai method is mathematically correct only when both the 
treatment and the control groups have the same size of observations and are randomly selected. 
Imbalance group sizes might introduce bias to the estimated probabilities. In practice, 
randomized experiments and RCTs most often have imbalanced treatment and control 
observations and this limits the application areas of this approach to a great degree.   

By weighing the probability scores of each quadrant, Kane et al. (2014) correct or generalizes 
the Lai’s method and recognizes the impact of the treatment-to-control ratio on the estimated 
uplift. The proposed equation for the uplift is as follows:  

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝑈𝑈𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 𝐿𝐿𝐿𝐿𝑖𝑖(𝑥𝑥) =
𝑃𝑃(𝑇𝑇𝑇𝑇|𝑥𝑥)
𝑃𝑃(𝑇𝑇)

+
𝑃𝑃(𝐶𝐶𝐶𝐶|𝑥𝑥)
𝑃𝑃(𝐶𝐶)

−
𝑃𝑃(𝑇𝑇𝐶𝐶|𝑥𝑥)
𝑃𝑃(𝑇𝑇)

+
𝑃𝑃(𝐶𝐶𝑇𝑇|𝑥𝑥)
𝑃𝑃(𝐶𝐶) (6) 

where 𝑃𝑃(𝑇𝑇) represents the proportion of individuals in the treatment group and 𝑃𝑃(𝐶𝐶) the 
proportion of individuals in the control group, and 𝑃𝑃(𝐶𝐶) = 1 − 𝑃𝑃(𝑇𝑇).  

A similar transformation approach was also proposed by Shaar et al. (2016). Their approach 
is as follows: they develop re-weighted Lai’s approach (7), at the same time; they calculate the 
reflective uplift (8).  The proposed reflective uplift predicts the probability of an individual being 
treated given the individual has responded by applying a two-model approach, 𝑀𝑀𝑅𝑅 for the 
responders and 𝑀𝑀𝑁𝑁 for the non-responders. Finally, they combine the reflective uplift and re-
weighted Lai’s approach in order to get the pessimistic uplift (9). They state that their model 
minimizes the effect of the noise in the data by using the reflective uplift as a stabilizer.    

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅𝐺𝐺−𝑤𝑤𝐺𝐺𝑖𝑖𝑤𝑤ℎ𝑈𝑈𝐺𝐺𝐺𝐺 𝐿𝐿𝐿𝐿𝑖𝑖(𝑥𝑥) = [𝑃𝑃(𝑇𝑇𝑇𝑇|𝑥𝑥) + 𝑃𝑃(𝐶𝐶𝐶𝐶|𝑥𝑥)] ∗ 𝑃𝑃 �
𝑇𝑇𝑇𝑇 + 𝐶𝐶𝐶𝐶
𝑈𝑈𝑐𝑐𝑈𝑈𝑝𝑝𝑈𝑈𝑡𝑡𝑈𝑈𝑈𝑈𝑐𝑐𝑡𝑡

� 

 −[𝑃𝑃(𝑇𝑇𝐶𝐶|𝑥𝑥) + 𝑃𝑃(𝐶𝐶𝑇𝑇|𝑥𝑥)] ∗  𝑃𝑃 �
𝑇𝑇𝐶𝐶 + 𝐶𝐶𝑇𝑇
𝑈𝑈𝑐𝑐𝑈𝑈𝑝𝑝𝑈𝑈𝑡𝑡𝑈𝑈𝑈𝑈𝑐𝑐𝑡𝑡

� 
(7) 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅𝐺𝐺𝑈𝑈𝑈𝑈𝐺𝐺𝑅𝑅𝑈𝑈𝑖𝑖𝑅𝑅𝐺𝐺(𝑥𝑥) = 𝑃𝑃𝑅𝑅𝐺𝐺𝑈𝑈𝑈𝑈𝐺𝐺𝑅𝑅𝑈𝑈𝑖𝑖𝑅𝑅𝐺𝐺(𝑃𝑃𝑐𝑐𝑃𝑃𝑈𝑈𝑈𝑈𝑈𝑈𝑃𝑃𝑡𝑡|𝑥𝑥) −  𝑃𝑃𝑅𝑅𝐺𝐺𝑈𝑈𝑈𝑈𝐺𝐺𝑅𝑅𝑈𝑈𝑖𝑖𝑅𝑅𝐺𝐺(𝐶𝐶𝑡𝑡𝑁𝑁𝑡𝑡𝑈𝑈𝑈𝑈𝑃𝑃𝑡𝑡|𝑥𝑥) (8) 
𝑃𝑃𝑅𝑅𝐺𝐺𝑈𝑈𝑈𝑈𝐺𝐺𝑅𝑅𝑈𝑈𝑖𝑖𝑅𝑅𝐺𝐺(𝑃𝑃𝑐𝑐𝑃𝑃𝑈𝑈𝑈𝑈𝑈𝑈𝑃𝑃𝑡𝑡|𝑥𝑥) =  𝑃𝑃𝑀𝑀𝑅𝑅(𝑇𝑇|𝑇𝑇) ∗ 𝑃𝑃(𝑇𝑇𝑇𝑇) + 𝑃𝑃𝑀𝑀𝑁𝑁(𝐶𝐶|𝐶𝐶) ∗ 𝑃𝑃(𝐶𝐶𝐶𝐶) 
𝑃𝑃𝑅𝑅𝐺𝐺𝑈𝑈𝑈𝑈𝐺𝐺𝑅𝑅𝑈𝑈𝑖𝑖𝑅𝑅𝐺𝐺(𝐶𝐶𝑡𝑡𝑁𝑁𝑡𝑡𝑈𝑈𝑈𝑈𝑃𝑃𝑡𝑡|𝑥𝑥) =  𝑃𝑃𝑀𝑀𝑁𝑁(𝑇𝑇|𝐶𝐶) ∗ 𝑃𝑃(𝑇𝑇𝐶𝐶) + 𝑃𝑃𝑀𝑀𝑅𝑅(𝐶𝐶|𝑇𝑇) ∗ 𝑃𝑃(𝐶𝐶𝑇𝑇) 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑃𝑃𝐺𝐺𝑃𝑃𝑃𝑃𝑖𝑖𝑚𝑚𝑖𝑖𝑃𝑃𝑈𝑈𝑖𝑖𝑅𝑅 =  
1
2
∗ (𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅𝐺𝐺−𝑤𝑤𝐺𝐺𝑖𝑖𝑤𝑤ℎ𝑈𝑈𝐺𝐺𝐺𝐺 𝐿𝐿𝐿𝐿𝑖𝑖 + 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑅𝑅𝐺𝐺𝑈𝑈𝑈𝑈𝐺𝐺𝑅𝑅𝑈𝑈𝑖𝑖𝑅𝑅𝐺𝐺) (9)
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The advantage of the Lai and its generalized version is that it converts an arbitrary 
probabilistic classification model into a single model that directly predicts the uplift. Thus, it 
allows users to use traditional supervised classification techniques. Whereas, the pessimistic 
uplift provide a more stable model. 

2.2. Literature Review 

Many studies have been conducted to investigate the effect of HTM on patients with HF 
compared to standard care. These RCTs demonstrated that HTM intervention reduced the risk of 
all-cause mortality, heart failure-related hospitalizations, and improvements in health-related 
quality of life (Cleland 2005, Koehler 2018, Inglis 2015)(Koehler 2018, Inglis 2015, Cleland 2005). 
In those trials, authors mainly propose regression analysis based approaches for modeling the 
difference between the treatment and the control groups. Although they are very insightful, the 
purpose of those methods is different from the problem discussed here. Those studies are not 
addressing the subject heterogeneity; they only focus on the overall effect of the treatment across 
the full population of interest. Whereas, the main purpose of this thesis is to define the subgroup 
of HF patient in which the treatment be most beneficial.   

A large number of existing literature on uplift modeling concentrated mainly on the field of 
direct marketing (Coussement 2017, Devriendt 2018, Lo 2015, Marinakos 2017, Rzepakowski 
2012a). Because of the drawbacks of the two model approaches as reported by Radcliffe et al. 
(2011), there are several studies proposing direct modeling of the uplift using different 
approaches. Logistic regression with transformation approach (Kane 2014, Rudaś 2018, Lai 2006), 
Support Vector Machines (Zaniewicz 2013), and k-Nearest Neighbors (Berezin 2015). 
Additionally, there are other uplift modeling studies adapting decision trees to split treatment 
group data (Radcliffe 2011, Rzepakowski 2012b), while there are also other studies combining 
decision trees into ensemble methods (Guelman 2014, Sołtys 2015). 

Despite its practical importance in the medical context, there has been limited attention to 
the uplift modeling for patient stratification for medical treatments. Jaroszewicz et al. converted 
the uplift modeling problem into a binary classification problem by using a transformation 
approach (2012). They tested this approach on three publicly available datasets from R statistical 
system packages. The first dataset covers patients who received two types of a bone marrow 
transplant, the second focuses on the treatment of breast cancer with tamoxifen, and the last one 
consists of survival of patients with hepatitis. The performance of the method was not satisfactory 
and was outperformed by two model approach. Later, Rzepakowski together with Jaroszewicz 
proposed decision tree construction for uplift modeling and tested this method with the above-
mentioned datasets (2012b). The authors modify the splitting criteria and a tree pruning for the 
uplift modeling case and demonstrated significant improvement in the performance of the model. 
This method further combined into ensemble methods by Sołtys et al., and their experiments on 
the same datasets showed performance improvements (2015). The same authors also applied a 
variety of boosting algorithms with uplift modeling and showed that AdaBoost applicability with 
the same medical datasets (2015b). 

Finally, the above-mentioned studies demonstrated the performances of their uplift models 
on publicly available datasets which are available in various R packages. There are studies using 
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RCT datasets directly from universities and clinics, as well. Chang et al. (2019) 
presented successful patients subgrouping for whom ambulatory surgical cleft lip repair is 
more likely to be beneficial. The researchers applied uplift modeling with two model approach 
based on logistic regression in their study. Moreover, logistic regression based uplift modeling 
was demonstrated using three uplift modeling approaches, mentioned in Section 2.1, by 
Biswas et .al (2018) to stratify patients with regard to electronic alert for a cute kidney injury. 

3. Experimental Setup

3.1. Data 

We investigated and evaluated various methods of uplift modeling on two benchmark 
datasets. One of them is a real-world dataset from a randomized clinical trial testing an 
intervention in a heart failure patient cohort and the other one is a set of generated data 
comprising an intervention and control in synthesized heart failure patient cohort. Table 
1 summarizes the main characteristics of these datasets.  

The clinical trial data is from a previously published randomized trial of the 
remote monitoring treatments on patients with heart failure, TEN-HMS study (The Trans-
European Network-Home-Care Management System) (Cleland 2005). Briefly, 426 patients with 
heart failure were assigned randomly to receive home telemonitoring (HTM), nurse telephone 
support (NTS), and usual care (UC) in a 2:2:1 ratio. The main comparison of interest in our 
project is between HTM and UC groups. The UC group was used as a control group to 
predict the incremental benefits of the HTM treatment on the subgroup of the patients. The 
trial took place in Germany, the Netherlands, and the United Kingdom over a median follow-
up of 484 days. There are 118 features in the dataset. All of the outcome features were created 
using related features from the dataset, except for the vital status outcome. Table 2 provides 
the main characteristics of these features. The “signal-to-noise ratio” is the difference 
between the positive respond rates of treatment and control groups over that of the control 
group (Kane 2014). The positive response rate refers to the ratio of the positive (favorable) 
outcome observations over negative (unfavorable) ones. We defined the outcome features as 
follows:  

Table 1  
The overview of datasets used in the experiments. 

Variable TEN-HMS dataset Synthetic dataset 

No. of observations 242 24200 

No. of treatment observations 162 15272 

No. of control observations 80 8928 

No. of variables 88 26 

Treatment-to-control size ratio 2.0:1 1.7:1 
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Binary outcome features 

• Vital Status:
Participants who were still alive during the trial were assigned with favorable outcome
value, 1, while the ones who were lost due to all-cause death were assigned with
unfavorable outcome value, 0.

• Death or all-cause hospitalization:
Participants who were still alive and did not readmit to hospital during the trial were
assigned with favorable outcome value, 1, while the ones who were lost due to all-cause
death or readmitted to the hospital at least once because of any cause were assigned with
unfavorable outcome value, 0. Any first hospital readmission within the 30 days of the
patient’s enrolment to the trial was neglected because HTM or UC treatments have no
effect on those readmissions.

• Death or heart failure-related hospitalization:
Participants who were still alive and did not readmit to the hospital because of HF during
the trial were assigned with favorable outcome value, 1, while the ones who were lost due
to all-cause death or readmitted to the hospital at least once because of HF was assigned
with unfavorable outcome value, 0. Any first hospital readmission within the 30 days of
the patient’s enrolment to the trial was neglected because HTM or UC treatments have no
effect on those readmissions.

• 240-day all-cause hospitalizations:
Participants who did not readmit to the hospital within the 240 days after their enrolment
to the trial were assigned with favorable outcome value, 1, while the ones who readmitted
to the hospital due to any cause in this period were assigned with unfavorable outcome
value, 0. Any first hospital readmission within the 30 days of the patient’s enrolment to
the trial was neglected because HTM or UC treatments have no effect on those
readmissions.

Table 2 
The overview of datasets used in the experiments. 

Variable TEN-HMS dataset Synthetic dataset 
No. of observations 242 24200 
No. of treatment observations 162 15272 
No. of control observations 80 8928 
No. of variables 88 26 
Treatment-to-control size ratio 2.0:1 1.7:1 

Table 2  
The overview of the outcome features used in the experiments. 

TEN-HMS dataset Synthetic dataset 

Outcome 
Features 

Treatment 
positive 

rate 

Control 
positive 

rate 
Signal-to-

noise ratio 

Treatment 
positive 

rate 

Control 
positive 

rate 
Signal-to-

noise ratio 
Vital Status 74.70% 62.50% 19.52% 70.90% 56.64% 25.18% 
Death or all-
cause 
hospitalization 

37.60% 32.50% 15.69% 42.10% 34.90% 20.63% 

Death or heart 
failure-related 
hospitalization 

61.10% 56.20% 8.72% 57.50% 51.07% 12.59% 

240-day all-cause
hospitalizations 51.20% 43.70% 17.16% 55.90% 49.26% 13.48% 
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The outcome feature creations were all done before performing any experiments in order to 
avoid biasing the results. During the experiments, we omitted all of the features that were used 
for creating outcome features in order to prevent any data leakage. One of the reasons for the 
data leakage is when the dataset used for the training of a machine learning model happens to 
have one or more features that are inherently proxy for the outcome.  

The simulated data was generated using the Synthpop package in the R statistical system. 
We generated 100 datasets and combined them together for our experiments.  The generated 
datasets mimic the original TEN-HMS dataset and preserve the relationship between the features. 
Especially, the distribution of selected outcome features was estimated conditional on all of the 
predictor features. Further details about the package features are described by Nowok et al. 
(2016). 

3.2. Method 

We describe the mathematical formulation of the uplift models that we used during this project 
in Section 2. If there is a randomized control group in a dataset, then modeling the uplift in a 
study is straightforward. One can calculate the uplift predictions for different uplift techniques 
according to equations provided in Section 2.2. The full overview of the approaches that we 
implemented during this study is shown in Table 3. On the other hand, assessing the performance 
of an uplift model is more complex than assessing more conventional machine learning models. 
In practice, the standard evaluation for a traditional model is to use cross-validation. Cross-
validation can be explained as: partitioning a part, generally 80 percent, of the dataset into 
training and validation sets, training the model on the training set, predicting the targets on the 
validation set, and finally validating the model’s performance by comparing it to the ground truth 
(the target values of the testing set). In uplift modeling, although we can still use the cross-
validation, we cannot validate the predicted results by comparing them to the ground truth. The 
predictions of the uplift models are probability differences between two groups. There is no 
ground truth for the predictions of uplift models due to the Fundamental Problem of Causal 
Inference which was mentioned in Section 2.1. For a given individual, we cannot observe the 
effect of being treated or not treated at the same time. Subsequently, the uplift, or the target 
variable, on a given individual is not observable; we cannot directly calculate the error of an uplift 
model by comparing the predicted outcomes at a level of a single identity.  

Due to the aforementioned issues related to the fundamental problem of causal inference, we 
cannot use only an independent test set to evaluate uplift models; different evaluation measures 
and visual evaluation approaches are necessary. The first step for the evaluation is randomly 
splitting the dataset into training and test datasets. A related point to consider is keeping the same 
distribution of treatment and control group observations, and also the distribution of the outcome 
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feature within these subsets during random dataset partitioning in order to prevent possible bias 
sources. Consequently, the following evaluation approaches can be applied: 

Uplift by Segment 
For each observation in the test set, we compute the predicted uplift scores. As described in 
Section 2, the predicted uplift scores can be calculated according to equations (2), (4), (6) and (9); 
for a two-model (tma), dummy treatment (dta), transformation (generalized Lai, glai and 
pessimistic, pess) approaches, respectively. Afterward, we rank all of the observations from both 
the treatment and control groups in descending order and group them in segments of equal 
observations number. Here the number of segments is arbitrary and should be chosen according 
to the size of the test set. For each segment, we calculate the average scores of the treatment and 
the control groups and take the differences between them to calculate the actual uplift. The 
comparison between treatment and control in each segment is based on an assumption that 
individuals from the treatment group who were assigned similar uplift scores are actually having 
a counterpart in the control group. Presenting the predicted score differences per segment side 
by side in a bar plot, we can have an idea of the uplift per segment and visually asses how the 
model performs.  

Qini R-squared metric 
This metric is the R-squared (𝑇𝑇2) of a regression line fitted on semi-segment values of the uplift 
by segment chart. An ideal uplift model yields an uplift by segment chart that displays uplift 
scored segments in descending order from left to right with smoothly declining uplift scores per 
segment, which gives the highest R-squared value of 1 for the fitted regression line. However, in 
practice, most uplift models yield a chart with unevenly declining segments, which, as a result, 
decreases the R-squared value. Therefore, Qini R-squared metric can be used as a secondary 

Table 3  
The overview of the outcome features used in the experiments and used hyperparameters. 

Uplift modeling 
approach Code Classifier Performance metric 

Two-model approach tma Logistic regression Receiver Operating Characteristics 

Dummy treatment 
approach dta Logistic regression Receiver Operating Characteristics 

Generalized Lai’s 
approach glai Stochastic gradient boosting Receiver Operating Characteristics 

Pessimistic approach pess Logistic regression Receiver Operating Characteristics 

Hyperparameter settings for the stochastic gradient boosting 

Max tree depth No. of boosting iterations Min. Terminal Node Size Shrinkage 

1 50 10 0.1 
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metric to compare the smoothness of the declining segment sequences of the uplift be segment 
charts.   

Qini Curves 
Qini curve is an alternative visual performance assessment for uplift models. Qini curve, or 
cumulative uplift, was introduced by Radcliffe (2007). In order to obtain the Qini curve, we 
subtract the cumulative uplift scores of the control group from the treatment group for each 
segment in the test set. Next, we plot these cumulative uplift score differences as a function of the 
fraction of the individuals treated; from no one treated to full population treated. Before the plot, 
the different fraction of individuals is sorted by the predicted uplift in the descending order. The 
Qini curve can be formulated as:   

𝑄𝑄(𝑈𝑈) = 𝑇𝑇𝑈𝑈𝑇𝑇 −  
𝑇𝑇𝑈𝑈𝐶𝐶𝐶𝐶𝑈𝑈𝑇𝑇

𝐶𝐶𝑈𝑈𝐶𝐶
(10) 

where the 𝑈𝑈 subscript indicates first 𝑈𝑈 observations. 𝑇𝑇𝑈𝑈𝑇𝑇 and 𝑇𝑇𝑈𝑈𝐶𝐶 are the sum of the predicted uplift 
scores, and 𝐶𝐶𝑈𝑈𝑇𝑇 and 𝐶𝐶𝑈𝑈𝐶𝐶 are the total number of observations in the segment for the treatment and 
the control groups, respectively. It is important to note that Qini curves evaluate uplift 
performance by comparing groups of individuals rather than single individuals. Qini curves 
allow us to identify the possible highest uplift by a model, and the uplift for any segment.  

Qini Measures 
Although the above-mentioned uplift evaluation methods are useful, they do not provide any 
means to compare different models accurately. Qini measure, on the other hand, is the most 
detailed and direct measure. It was introduced by Radcliffe (2007) and similar to the area under 
the uplift curve (AUUC) (Rzepakowski 2010). It is adapted from the Gini measures from 
economics (Lerman 1984). The Qini measure is the area between the Qini curve of the uplift model 
and the diagonal line of the random targeting. 

Top 20% Qini Measure 
It is Qini measure value for the top 20 percent of uplift scores. Qini measure evaluates uplift 
model performance over the full population. However, the aim of uplift modeling is to rank the 
population and identify a subgroup of individuals who are expected to have an increased effect 
from the treatment.  For our case, we are interested in the observations with predicted uplift 
scores that are in the 20% highest ranked. Here, the top percent value is arbitrary and it can be 
modified for any given application.  

All of the experiments were conducted in the open-source statistical software R together with 
the caret package (R Development Core Team 2016, Kuhn 2017). 
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4. Results

In this section, we present the uplift model applications to the problem of identifying subgroups 
of patients that receive benefit from an HTM intervention based on the datasets described in 
Section 3.1. In all of the experiments, we compare the performances of two-model (tma), dummy 
treatment (dta), generalized Lai (glai), and pessimistic (pess) approaches. 

4.1. TEN-HMS Dataset 

As can be seen from Table 1 in Section 3, TEN-HMS dataset includes many variables. If a high 
number of variables are used as predictor variables in an uplift model, this may cause overfitting 
due to correlations between the predictor variables and an increase in complexity of the model 
(García 2015). Compared to the high number of variables, the number of observations in TEN-
HMS dataset is quite low. To reduce the number of variables that can run as a predictor candidate 
in the model, we have performed the variable pre-selection using subject knowledge by 
consulting experts in the field. A list of 17 candidate predictor variable was selected from a total 
of 88 variables for the experiments.  

It is also worth mentioning that the evaluation of the models was performed using TEN-
HMS dataset without any data splitting for hold-out or cross-validation. We have conducted a 
self-test in which the test set to evaluate the uplift models is exactly the same as the training set 
to train the uplift models. Considering an 80 percent split of the dataset for the model validation, 
the test sets would only contain 48 observations after the data splitting. This number of 
observations is not sufficient to have a proper uplift model evaluation. This is further discussed 
in Section 5. 

The performances of four approaches in terms of the Qini measure, Top 20% Qini measure, 
and the Qini R-squared metric are reported in Table 4 for TEN-HMS dataset. Comparison of the 
model's performances with respect to their Qini measures is shown in Figure 3. From the results, 
it is clear that generalized Lai’ approach (glai) outperforms other approaches across all of the 
outcome features. It generates higher values for all of the three Qini evaluation measures. 
Additionally, tma and dta approaches produce identical results across all of the outcome features. 
Although the pess approach yields higher scores in Qini measures for all of the outcomes, its 
performance is below the performance of the baseline model tma, with respect to the Top 20% 
Qini measure.  

The effect of the number of predictor variables on the model performance in terms of the 
Qini measure is shown in Figure 4. For this purpose, we used the outcome feature with the highest 
Qini value, “Death or heart failure-related hospitalization”. As shown in Figure 4, the best 
performance is achieved when the highest number of predictor variables is used in the model; 
that is 17 features for the glai method. The performance of the pess approach shows a descending 
trend after the addition of 14 variables, whereas this descending trend starts after the addition of 
11 variables for both tma and dta approaches. For both of glai and pess methods, the performances 
increase slightly with the use of 17 features.  



A. Asar TEN-HMS Dataset 

15 

We perform visual evaluation techniques to have further details on the performances of the 
models and for their comparisons. Figure 4 lists the uplift by segment and the Qini curve charts 
of all techniques with the above-selected outcome, “Death or heart failure-related hospitalization”.  

The uplift by segment chart can be interpreted as follows: the leftmost bar corresponds to the 
uplift in the first segment, in this case, quintile; the subsequent bar corresponds to the first 40 
percent, and so on. As described in Section 3.2, the number of segments should be chosen 
according to the size of the dataset. For larger datasets, deciles are generally chosen as the 
segments. The R-squared of a fitted straight line on the uplift by segment chart gives an estimate 
for the model repeatability, which is Qini R-squared value. The ideal chart displays uplift scored 
segments in descending order from left to right, resulting in the highest R-squared value of one. 
As there is a direct association between the Qini curve and the uplift by segment chart, the higher 
bars in the chart generates higher Qini curve above the diagonal line of the random targeting.  

We can interpret the Qini curve as follows: the x-axis represents the percentage of the 
population on which treatment is performed, and the y-axis shows the cumulative uplift 
difference. The 100% on x-axis gives the estimated cumulative uplift if the entire population 
would be treated. The slope of the diagonal line of random targeting gives an idea about the 
impact of the treatment on the entire population. The positive slope of this line implies an overall 
beneficial effect of the treatment when the entire population would be targeted.   

As can be seen from the Figure 5, the outcome feature, “Death or heart failure-related 
hospitalization”, achieve the highest uplift of approximately 29% with glai method when the 
treatment is applied on 60% of the population, while an uplift of approximately 5% is achieved 
when the entire population is treated. Additionally, with the glai method, more symmetrical 
uplift by segment chart is generated with a high Qini R-squared value of 0.866 (Table 1). Both tma 
and dta approaches generate only around 17% uplift when 60 percent of the population is treated. 

Figure 3 
The effect of predictive variable number on the uplift models with the outcome feature of “Death or heart 
failure-related hospitalization” in TEN-HMS dataset 
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Using the glai approach, we map the characteristics distribution of the patients who will 
benefit most from the treatment (Figure 6). It appears that the patient’s characteristics as NYHA 
(New York Heart Association), BMI (Body Mass Index), a number of prior hospitalizations, and 
ejection fraction levels can be used together in the recruiting process of patients with heart failure 
for an HTM treatment. From the distribution, it can be seen that patients with NYHA level of two 
(mild symptoms with mild shortness of breath and/or angina, and slight limitation during 
ordinary activity), having BMI around 22 (healthful weight), less than 5 prior hospitalization, 
together with the ejection fraction level of around 20 (pumping ability of the heart is severely 
below normal) will most likely get the highest benefit if they will be recruited into an HTM 
treatment. 

Table 4  
Model Performance for each approach across the outcome features on TEN-HMS dataset 

tma dta 

Outcome Feature Qini 
Top 

20% Qini 
Qini 

R-squared Qini 
Top 

20% Qini 
Qini 

R-squared

Vital Status 0.066 0.0093 0.836 0.066 0.0093 0.836 

Death or all-cause 
hospitalization 0.0707 0.01 0.891 0.0707 0.01 0.891 

Death or heart failure-
related hospitalization 0.088 0.0065 0.759 0.088 0.0065 0.759 

240-day all-cause
hospitalizations 0.0407 0.0066 0.773 0.0407 0.0066 0.773 

pess glai 

Outcome Feature Qini 
Top 

 20% Qini 
Qini 

R-squared Qini 
Top 

20% Qini 
Qini 

R-squared

Vital Status 0.088 0.009 0.871 0.1737 0.0145 0.988 

Death or all-cause 
hospitalization 0.0838 0.0069 0.819 0.137 0.0132 0.93 

Death or heart failure-
related hospitalization 0.0923 0.0058 0.674 0.1701 0.0154 0.866 

240-day all-cause
hospitalizations 0.0573 0.0034 0.65 0.1369 0.0124 0.916 
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4.2. Synthetic Dataset 

As described in Section 3.1, the synthetic dataset is generated to mimic the TEN-HMS dataset, 
consisting of the same 17 predictive variables and outcomes features from the TEN-HMS 
dataset. We evaluated all four uplift approaches by applying fivefold stratified cross-
validation with a fixed seed in order to rerun experiments and validate results. To ensure 
consistency in model comparisons, the same test set was used for obtaining figures and tables. 

Table 5 shows the performances of four approaches in terms of the Qini measure, Top 20% 
Qini measure, and the Qini R-squared metric. The results show that glai outperforms other 
approaches across all of the outcome features with respect to all three uplift evaluation metrics. 
The highest Qini and Top 20% Qini are achieved with the outcome feature “Death or heart failure-
related hospitalization”. tma and dta approaches produce identical results across all of the outcome 
features. The pess approach performs worst than our baseline model tma. When compared to 
TEN-HMS dataset, the model performances decrease for the synthetic dataset. This decrease is 
further discussed in Section 5. 

For the synthetic dataset, we compare the robustness of the model performances using the 
same three metrics as used previously. We assess the robustness by applying the models on five 
different random sample sets of the synthetic dataset and the entire dataset. Each sample set 
consist of 50 percent of the synthetic dataset. For this experiment, we choose the outcome feature 
of “Death or heart failure-related hospitalization”, with which the highest metric values are achieved 
(Table 5). Table 6 depicts the predicted metric values from this experiment. The results confirm 
that for the glai approaches, the Qini measure shows little variance. The little standard deviation 
in all three metrics highlights the stability of the glai model. For each outcome feature and uplift 
approach, we used the same sample sets of the synthetic dataset, which are randomly taken from 
the dataset while keeping the same distribution of treatment and control group observations, and 
outcome feature distribution within these subsets.  

Figure 7 lists the uplift by segment and the Qini curve charts of all techniques with the above-
selected outcome feature.  The highest uplift of approximately 12% is achieved with glai method 
when the treatment is applied on 60 percent of the population, while an uplift of approximately 

Figure 4  
The effect of predictive variable number on the uplift models with the outcome feature of “Death or heart 
failure-related hospitalization” in TEN-HMS dataset 
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9% is achieved when the 20% of the population is treated. The glai method generates an uplift by 
segment chart which is declining smoothly across the deciles with the Qini R-squared metric of 
0.835. On the other hand, both tma and dta approaches, which performed better than the pess 
approach, generate only around 6% uplift when 70 percent of the population is treated. The uplift 
by segment chart generated by tma and dta has the top deciles lower than the 6th and 8th deciles 
which are interrupting the declining trend of the deciles. Therefore, we can conclude that these 
two approaches yielding the chart are not performing well and have limited practical value for 
ranking the patients for the synthetic dataset.  

In our model evaluations of the two datasets, generalized Lai’s approach appears to be the 
best model with generating metrics that are outperforming the other models across all of the 
outcome features. Especially, the Top 20% Qini metrics from the glai approach are all above the 
diagonal line of the random targeting and the other models corresponding values. From a 
practical perspective, it is more motivating to reach highest uplift scores on the smaller fraction 
of the population. The aim of the uplift modeling is to rank and subgroup the population for 
which the treatment is expected to have an increased effect.  

Using the glai approach, we also map the characteristics distribution of the patients who will 
benefit most from the treatment (Figure 8). From the distribution, it can be seen that patients with 
NYHA level of one (no symptoms and no limitation in ordinary physical activity), having BMI 
around 22 (healthful weight), together with less than 5 prior hospitalizations will most likely get 
the highest benefit if they will be recruited into an HTM treatment. 
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Figure 5 
Uplift by segments charts and Qini curves from TEN-HMS dataset: (a) two-model approach (tma) and 
dummy treatment approach (dta); (c) pessimistic approach (pess); (c) generalized Lai approach (glai) with 
the outcome feature of “Death or heart failure-related hospitalization” 

b 

c 

a
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Table 5  
Model Performance for each approach across the outcome features on the synthetic dataset 

tma dta 

Outcome Feature Qini 
Top 

20% Qini 
Qini 

R-squared Qini 
Top 

 20% Qini 
Qini 

R-squared

Vital Status 0.0066 0.0006 0.283 0.0066 0.0006 0.283 

Death or all-cause 
hospitalization 0.0257 0.0013 0.561 0.0257 0.0013 0.561 

Death or heart failure-
related hospitalization 0.0138 0.0012 0.371 0.0138 0.0012 0.371 

240-day all-cause
hospitalizations 0.0264 0.0028 0.703 0.0264 0.0028 0.703 

pess glai 

Outcome Feature Qini 
Top 

20% Qini 
Qini 

R-squared Qini 
Top 

20% Qini 
Qini 

R-squared

Vital Status 0.003 0.0007 -0.116 0.0553 0.0074 0.68 

Death or all-cause 
hospitalization 0.0016 0.0002 -0.034 0.0507 0.0033 0.811 

Death or heart failure-
related hospitalization 0.0113 0.0020 0.814 0.0652 0.0084 0.835 

240-day all-cause
hospitalizations 0.0097 0.0008 0.079 0.0619 0.0053 0.857 
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Table 12  
Stability of different approaches achieved with the outcome feature “Death or heart failure-related 
hospitalization” on 50% samples and the full synthetic dataset 

tma dta 

Data Sample Qini 
Top 20% 

Qini 
Qini 

R-squared Qini 
Top 

20% Qini 
Qini 

R-squared
50% Sample 1 0.0202 0.0014 0.765 0.0202 0.0014 0.765 
50% Sample 2 0.0167 0.0029 0.282 0.0167 0.0029 0.282 
50% Sample 3 0.0185 0.0014 0.475 0.0185 0.0014 0.475 
50% Sample 4 0.0052 0.0003 -0.125 0.0052 0.0003 -0.125
50% Sample 5 0.0225 0.0033 0.474 0.0225 0.0033 0.474
Full Sample (100%) 0.0138 0.0012 0.371 0.0138 0.0012 0.371
Standard Deviation 0.0066 0.0011 0.3107 0.0066 0.0011 0.3107 

pess glai 

Outcome Feature Qini 
Top 

20% Qini 
Qini 

R-squared Qini 
Top 

20% Qini 
Qini 

R-squared
50% Sample 1 0.0243 0.0021 0.803 0.0674 0.0077 0.864 
50% Sample 2 0.0177 0.001 0.374 0.0588 0.0059 0.806 
50% Sample 3 0.0125 0.0019 0.471 0.0656 0.0067 0.851 
50% Sample 4 0.0081 0.0023 -0.046 0.0571 0.0065 0.94 
50% Sample 5 0.0278 0.0016 0.499 0.0698 0.008 0.908 
Full Sample (100%) 0.0113 0.0020 0.814 0.0652 0.0084 0.835 
Standard Deviation 0.0073 0.0005 0.2794 0.0066 0.0010 0.0519 

 Figure 6 
Characteristics distribution of the patients from TEN-HMS dataset; the top 20 percent segment in which 
patients will benefit most from the treatment, and the bottom 20 percent segments in which patients will 
benefit less from the treatment 
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Figure 7 
Uplift by segments charts and Qini curves from synthetic dataset: (a) two-model approach (tma) and 
dummy treatment approach (dta); (b) pessimistic approach (pess);  (c) generalized Lai approach (glai) with 
the outcome feature of “Death or heart failure-related hospitalization”. 
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a

c



Table 6  
Stability of different approaches achieved with the outcome feature “Death or heart failure-related 
hospitalization” on 50% samples and the full synthetic dataset 

tma dta 

Data Sample Qini 
Top 20% 

Qini 
Qini 

R-squared Qini 
Top 

20% Qini 
Qini 

R-squared
50% Sample 1 0.0202 0.0014 0.765 0.0202 0.0014 0.765 
50% Sample 2 0.0167 0.0029 0.282 0.0167 0.0029 0.282 
50% Sample 3 0.0185 0.0014 0.475 0.0185 0.0014 0.475 
50% Sample 4 0.0052 0.0003 -0.125 0.0052 0.0003 -0.125
50% Sample 5 0.0225 0.0033 0.474 0.0225 0.0033 0.474
Full Sample (100%) 0.0138 0.0012 0.371 0.0138 0.0012 0.371
Standard Deviation 0.0066 0.0011 0.3107 0.0066 0.0011 0.3107 

pess glai 

Outcome Feature Qini 
Top 

20% Qini 
Qini 

R-squared Qini 
Top 

20% Qini 
Qini 

R-squared
50% Sample 1 0.0243 0.0021 0.803 0.0674 0.0077 0.864 
50% Sample 2 0.0177 0.001 0.374 0.0588 0.0059 0.806 
50% Sample 3 0.0125 0.0019 0.471 0.0656 0.0067 0.851 
50% Sample 4 0.0081 0.0023 -0.046 0.0571 0.0065 0.94 
50% Sample 5 0.0278 0.0016 0.499 0.0698 0.008 0.908 
Full Sample (100%) 0.0113 0.0020 0.814 0.0652 0.0084 0.835 
Standard Deviation 0.0073 0.0005 0.2794 0.0066 0.0010 0.0519 
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Figure 8 
Characteristics distribution of the patients from the synthetic dataset; the top 20 percent segment in which 
patients will benefit most from the treatment, and the bottom 20 percent segments in which patients will 
benefit less from the treatment 
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5. Discussion

Models to recruit patients for a specific treatment that are most beneficial to them have great 
potential to deliver the most effective and beneficial treatments to improve the health of patients. 
In this section, we will cover the approach and the limitations of this study which is followed by 
steps to overcome the limitations and lastly the results. We ran this study on evaluating treatment 
response uplift modeling to endorse the take-up of uplift modeling in clinical settings. As a result, 
we found that uplift modeling could be used to identify a subgroup of patients with heart failure 
who will benefit most from an HTM intervention based on its clinical characteristics. The main 
insight of the study is that although there is a large variability in terms of performance of some 
uplift modeling techniques, there is a promising technique, namely generalized Lai’s approach 
(glai), performing consistently well and yielding robust models.  

The objective of this study is to answer the research questions by experimentally evaluating 
uplift models on TEN-HMS dataset, comprising the data collected during a randomized clinical 
trial on assessing the effect of home telemonitoring in patients with heart failure. However, the 
dataset has its limitations. Due to the small size of it, 162 and 80 observations for the treatment 
and control groups, respectively, we could not reliably apply general model validation 
techniques, such as hold-out or k-fold cross-validation. Therefore, for the uplift model evaluation 
on the TEN-HMS dataset, we have conducted a self-test in which the test set to evaluate the uplift 
models is exactly the same as the training set to train the uplift models. Splitting the data into a 
training set and test set resulted in subsets, that were too small to obtain stable uplift models. Too 
few observations in the test set led to an uplift model evaluation of insufficient quality. As 
reported by Radcliffe and Surry (2011), for modeling binary outcomes, the product of the overall 
favorable response and the size of each population should be at least 500. For example, if the 
overall positive response rate is is 30%, there must be at least 1667 observations for each of the 
treated and the control group. In addition, many conventional validation methods specific for 
small datasets cannot be applied in our case. Notably, the leave-one-out cross-validation 
(LOOCV) is impractical for the evaluation of the uplift models with our dataset. As described in 
Section 3.2,  the error of an uplift model cannot be computed from the predicted outcome of a 
single identity. Likewise, in the case of the leave-p-out cross-validation (LpO CV), the number of 
observation in the test set p has to be large enough to get reasonable results from uplift models. 

To overcome the size limitations of the dataset, we generated 100 datasets having similar 
statistical characteristics with found in the TEN-HMS dataset, and combined them for our 
experiments. This lets us apply fivefold cross-validation to evaluate model performances and 
perform experiments to verify the stability of these models. Consequently, our results revealed 
that not all models yield similar performances and robustness across different experiments, 
except for glai approach, which in all experiments yields the highest uplift evaluation metrics and 
highest stability with lowest standard deviations in between those metrics. Contrary to the 
findings of Devriendt et al. (2018),  the use of glai method yields the highest and the most stable 
results during our experiments. They have reported that they could not achieve stable and good 
results with this method on their experiments. The stability and the high performance of glai in 
our case might be due to the higher positive response rates than that of reported by Devriendt et 
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al. However, this hypothesis must be tested in future research with generated dataset samples 
with varying positive responds rates in their treatment and control groups. 

The two-model approach (tma) was used as the baseline model during all experiments, 
instead of traditional classifier methods. In our case, it is theoretically wrong to use traditional 
classifier models as a baseline is because these models do not take into account what would 
happen if the treatment was not implemented. These models only predict the probability of 
responding rather than the increase in the probability of responding based on intervention. 

Although accepted in academic literature, Qini metrics suffer from some limitations due to 
their dependencies on characteristics of the applications. They are not normalized measures; 
therefore, Qini values of uplift models obtained on different datasets for different treatment 
cannot be compared across datasets. 

The results from the synthetic dataset are similar in quality as to those from TEN-HMS 
dataset. However, the performances are lower for the synthetic dataset. One of the main reason 
for this might be due to the testing of the model performances on unseen test sets, whereas, for 
TEN-HMS dataset, testing of the models is performed on the already seen dataset. This most 
probably led to overfitting of the models on TEN-HMS dataset and have an inflation impact on 
the performance.  

With both datasets, we were able to map the characteristics distribution of the patients who 
will benefit most from the treatment by using generalized Lai’s approach. It appears that the 
patient’s characteristics as NYHA (New York Heart Association), BMI (Body Mass Index), a 
number of prior hospitalizations, and ejection fraction levels can be used together in the recruiting 
process of patients with heart failure for an HTM treatment. For example, for TEN-HMS dataset, 
it can be concluded that patients with NYHA level of two (mild symptoms with mild shortness 
of breath and/or angina, and slight limitation during ordinary activity), having BMI around 22 
(healthful weight), less than 5 prior hospitalizations, together with the ejection fraction level of 
around 20 (pumping ability of the heart is severely below normal) can be recruited for an HTM 
treatment and they will most likely get the highest benefits from the treatment. 

Overall, the results demonstrated that glai approach is a stable model, which can be 
recommended for datasets with varying sizes. However, for each application of uplift modeling, 
there are some important factors to consider. First, there should be a randomly selected control 
group in the dataset. Second, the treatment and the control groups from the dataset must have 
reasonable outcome observations. Although not supported by empirical or theoretical evidence, 
Kane et al. (2014) point out that a high “signal-to-noise ratio”, the response rate difference 
between treatment and control groups over that of the control group, is important. Last, dataset 
size must be sufficiently large considering the stratified splitting for model evaluation and having 
a sufficient number of observations in both treatment and control groups. 
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6. Conclusion

Uplift modeling has tremendous potential in the health care field, especially in identifying people 
with chronic or life-threatening diseases who can be recruited for specific treatments where they 
will receive optimal benefits and health gains. In this study, we presented the applications of four 
different uplift modeling techniques on a real-world dataset from a randomized clinical trial 
testing an intervention in a heart failure patient cohort and a synthetic dataset comprising an 
intervention and a control group in synthesized heart failure patient cohort. We demonstrated 
and evaluated the implementation of two-model, dummy treatment, pessimistic, and generalized 
Lai’s approaches. We showed that generalized Lai’s approach (glai) is the model of choice with 
consistently higher performance and stability, in comparison to the other three methods. 

During the study, we have built the models according to literature (Kane 2014, Lo 2002, Shaar 
2016). As conventional evaluation methods are not applicable to uplift models, we have used 
specific evaluation methods for uplift modeling. The overall model evaluation approach that we 
used can be summarized as follows. We sort the observations from treatment and control groups 
in descending order of their predicted uplift scores, separately. Then, we divide them into 
different segments of equal size. Consequently, we take the pairwise differences of the uplift 
averages per segments to obtain an idea on the effectiveness of the treatment for each segment. 
For a more precise evaluation, Qini measure together with Qini curve was used, which depict the 
overall cumulative uplift due to the treatment effect on the certain fraction of population that 
ranked by the uplift model.  

Results of the experiments, as presented in this study, highlight several conclusions. We can 
apply the uplift modeling methods on the real-world clinical trial dataset to stratify patients with 
heart failure into an HTM treatment with respect to patient characteristics at baseline. In 
particular, the implementation of the glai approach demonstrated that recruitment of the patients 
according to their NYHA (New York Heart Association), BMI (Body Mass Index), and a number 
of prior hospitalizations can be used together. For TEN-HMS dataset, it can be concluded that 
patients with NYHA level of two, having BMI around 22 together with less than 5 prior 
hospitalizations should be recruited for an HTM treatment for the highest benefit.  

We have performed performance stability tests of the uplift methods in our generated 
dataset. In this regard, we took five different random samples having half of the observations of 
our generated dataset and compared the results with those from the entire dataset.  For the 
stability experiments, the glai approach yields the highest performance metrics while showing 
less variance in the average Qini and Qini Top 20% measures per experiment.  

To our knowledge, this is the first study, showing the application of uplift modeling methods 
to select the optimal treatment for patients with heart failure. Our study can be used as a guide 
to applying uplift models on datasets from clinical cohort studies. However, for each application 
of uplift modeling, there are some important factors to consider. The treatment and the control 
groups from the dataset must have reasonable outcome observations. Although not supported 
by empirical or theoretical evidence, Kane et al. (2014) point out that a high “signal-to-noise ratio” 
is important which is response rate difference between treatment and control groups over that of 
the control group. Dataset size must be sufficiently large considering the stratified splitting for 
model evaluation and having a sufficient number of observations in both treatment and control 
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groups. As Radcliffe and Surry (2011) reported, for modeling binary outcomes, the product of the 
overall favorable response and the size of each population should be at least 500. For example, if 
the overall favorable response is 0.1%, this means that both the treated and the control group 
need to be at least 500,000. 

Finally, further research can be implemented to check the behavior of the uplift modeling 
approaches in multiple treatment setups. For example, we can make experiments with varying 
signal-to-noise, treatment-to-control groups’ size, and respond observations ratios in order to 
have a better idea on the behaviors of those approaches. We can as well build models to predict 
continuous target variables. In addition, we can build further uplift models together with 
ensemble methods and neural networks to compare the performances on our generated datasets. 
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