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Abstract

This thesis investigates the cognitive states of pilots during experiments, using data
which relate to physiological attributes. Although expired, a challenge was initiated by
consulting firm Booz Allen Hamilton, during which data scientists were encouraged to
build a model with detection capabilities to prevent aviation accidents and incidents.
The overarching question this thesis investigates is: Can the cognitive state of a pilot be
predicted from physiological measurements?
Previous research has found that cognitive state detection can improve aviation safety.
During this research the Human Factor Classification and Analysis System was con-
sulted to place the findings in a broader perspective. The task investigated in this thesis
is two-folded: (1) cognitive state classification and (2) cognitive state change detection.
The key problem which is addressed, is the engineering of features from complex data.
Therefore frequency domain analysis and sliding window time analysis are performed.
Out of 73 variables, the five variables that contribute the most to the model’s perfor-
mance are selected. The proposed model achieves an F1 score of 0.67 in detecting the
appropriate cognitive state for a specific pilot in the test data. The average F1 score on
the testing data is 0.55, which is higher than the benchmark model without engineered
features (0.48). Especially during startle surprise and diverted attention classification,
lower performance is observed. In addition, not all pilots show predictive characteris-
tics. The model reveals potential success in the field of cognitive state prediction, and
therewith increasing aviation safety. For further application, improvement in perfor-
mance is necessary. Cognitive state prediction appears to be complex, nevertheless, it
could hold the key to further increase the safety within aviation.
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Predicting a Pilot’s Cognitive State from
Physiological Measurements

J.A. Crijnen

1. Introduction

Although operations within aviation become increasingly automated, a substantial part
of the decision making in the aircraft’s cockpit is human based (Kelly and Efthymiou
2019). Decades ago, the possibilities of Artificial Intelligence (AI) in aviation were
discovered. For example, automating Air Traffic Control (ATC) (Gosling 1987). Gosling
refers to Rich’s definition of Artificial Intelligence as being “...the study of how to make
computers do things at which, at the moment, people are better", and he expected a
wide range of possibilities for this development in aviation (Rich 1983). In 1994, the
U.S. Department of Transportation published a document indicating various aviation
based possibilities of AI (Harrison, Saunders, and Janowitz 1994). In addition to ATC,
maintenance, air space efficiency, reducing flight costs and pilot decision making were
mentioned promising applications. The latter is what this thesis investigates. Because
of the increasing amount of knowledge in the field of AI, this research aims to increase
the safety of aviation by means of improving the decision making process. This can be
achieved by informing the flight crew of their cognitive state. Oster, Strong, and Zorn
(2013) argue for switching to a proactive strategy with regards to aviation safety:

The next generation of safety challenges now requires development and understanding
of new forms of data to improve safety in other segments of commercial aviation, and
moving from a reactive, incident-based approach toward a more proactive, predictive
and systems-based approach. (p. 163)

The necessity to improve aviation safety does not need further explanation.

1.1 Research

This thesis investigates the cognitive states of pilots using physiological data provided
by Kaggle (Kaggle 2018). Although expired, a challenge was initiated by consulting firm
Booz Allen Hamilton, where data scientists were encouraged to build a model with
detection capabilities, to prevent accidents and incidents (Booz Allen Hamilton 2019).
At the time of writing this thesis, no winner has been appointed yet.
The subtitle of the data information web-page by Kaggle states: “Can you tell when
a pilot is heading for trouble?". This seems to define the problem statement concisely,
although perhaps, it might be too optimistic and informally formulated. A more sci-
entific approach is to investigate if the cognitive state of a pilot can be predicted from
physiological measurements.
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1.2 Problem statement

The research investigates the following overarching questions.

RQ: Can the cognitive state of a pilot be predicted from physiological measurements?

This is broken down into the following sub-questions.

SQ1: What is the relative contribution of the physiological features when predicting a
pilot’s cognitive state?

SQ2: Are some cognitive states easier to predict than others?

SQ3: Are all pilots suitable for the application of cognitive state prediction?

These sub-questions consider the predictive capabilities of the features. Because
of the complex dataset, the research focuses on which features can be engineered
to enable the training of predictive models. SQ1 discusses the contribution of the
dependent variables to the predictions on the test data. Additionally, this contains
the level of difficulty in applying cognitive state prediction in flight operations. If
the situation arises that relatively basic physiological measurements contain decent
predicting capabilities, then practical issues regarding the montage of equipment to
pilots, will be less of a limitation. For example, wearing heart rate detection sensors has
relatively low impact compared to equipment for brain activity registration.
SQ2 explains the performance of the proposed model to recognize each cognitive state.
Presumably, not all cognitive states occur as frequently as others. Because no distinction
is made in importance of recognizing a certain cognitive state, identifying the less
frequent cognitive states might be challenging. This thesis stresses to prevent the
model to be only accurate. It should also be unbiased in the prediction of less frequent
cognitive states. This performance trade-off is clarified in more detail in section 3.5.
To entirely place the results in perspective it is important to investigate the
generalisability of the model, which is specified in SQ3. To enable cognitive state
prediction within a broad range of human physiological characteristics, overfitting of a
model trained on few pilots is a high risk (Obermeyer and Emanuel 2016). Additionally,
complex models tend to train on noise (besides the desirable signal), which is expected
to be present in the consulted dataset (Skocik et al. 2016).
Finally, the results of the experiments will be discussed to place the findings in a
broader perspective with regards to aviation safety. To understand in detail the impact
of possible cognitive state detection, it is investigated in which manner aviation safety
can benefit from this application. The Human Factor Analysis and Classification
System (HFCAS) framework will be used to elaborate on the findings. This framework
is derived in cooperation with the Federal Aviation Authority (FAA) to examine
underlying human causal factors in aviation incidents and accidents. It classifies unsafe
acts and preconditions for unsafe acts. Adverse mental and physiological states are
recognized as unsafe aircrew conditions. Therefore, detection of those states is required
to allow for shift to a safe cognitive state.
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1.3 Outline of the thesis

This thesis continues with a literature review of related work. Thereafter, the exper-
imental set-up is discussed in Chapter 3. This includes the description of the data,
emphasized on the different cognitive states and physiological features. Furthermore,
the proposed models are elaborated on in combination with the design procedure.
Chapter 4 presents the results and validity of the models. Finally, the discussion and
conclusion is provided in respectively Chapter 5 and Chapter 6. The software packages
used in this thesis, can be found in Appendix A and will not be explained in detail.
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2. Related Work

This thesis builds on research conducted by the National Aeronautics and Space
Administration (NASA) on attention management in commercial aviation (Harrivel
et al. 2016). The research makes use of a similar dataset as this thesis. However,
in contrast to this thesis, NASA also possesses qualitative data gathered during
questionnaires conducted after the experiments. Harrivel et al. successfully apply
Gradient Boosting, Deep Neural Network and Random Forest methods to classify
the pilot’s cognitive state and use the means of the three independent results for the
overall performance. The sequel of this research has been published in January 2017,
and indicates the effort of NASA to improve their own research and recommendations
(Harrivel et al. 2017). Finally, a second sequel was published in January 2019 (Training
for Airplane State Awareness using Biofeedback). However, this has been withdrawn on the
request of the authors. The reason for this is unknown, however, it does indicate the
relevance and possibly the quick development within this field. This is corroborated by
Kaggle’s competition.

NASA’s first paper contains research in which non-flight related experiments were
performed to simulate cognitive states that can occur during flights. In the subsequent
investigation, Harrivel et al. let their participants perform experiments in a motion
based simulator for which exercises were defined to simulate the different cognitive
states (Stephens et al. 2017). Furthermore, they focus on deriving additional features
from one sensing modality. This has for example been accomplished by summarizing
statistics over time and by frequency filtering. In total, 1810 features contributed in
the prediction of cognitive states. The final findings comprise a prediction accuracy
between 0.50 and 0.78 for each individual pilot. It should be noted that this investigation
distinguishes seven cognitive states instead of four (additional are high workload,
low workload and confirmation bias). Only the average of the applied methods’
performance is shared, not the results for each prediction method separately. The
qualitative results indicate that most of the pilots (21 pilots out of 24) share none to
minimal concerns about performance limitations because of obstruction by equipment.

As well as focusing on the models, it is important to investigate the impact of
variables and differences in performance of each cognitive state prediction. Besides
the cognitive state classification, researching the cognitive state change (binary
observation) might reveal potential capabilities which can be combined with a model
capable of predicting state. NASA recommends an emphasis on participant dependent
performance. Hence, this research discusses performance of the proposed models for
each pilot separately. Due to computational limitations, in contrast to NASA, there will
be less focus on overall performance.

2.1 Contribution to aviation safety

The impact of pilot’s cognitive prediction on aviation safety is stated by the Commer-
cial Aviation Safety Team (2014) (CAST). One of the Safety Enhancements is named:
‘Airplane State Awareness - Training for Attention Management’ and focuses on the
limitations of human performance within aviation. In 16 out of 18 accidents or inci-
dents, where loss of aircraft control was experienced, issues with flight crew attention
were involved. Therefore CAST urges the need for research in attention management
by government, industry and academia. As a consequence, NASA published the first
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research in this field in 2016. Therefore, minor research has been performed in cognitive
state prediction for pilots. According to CAST, potential obstacles for applications in
cognitive state prediction can be cost-effectiveness and operationality of practical mea-
sures.
Shappell and Wiegmann (2000), fulfilled cooperative research between the Federal
Aviation Authority and the University of Illinois. They state, that 70 to 80 percent of
the civil and military accidents implicate human error. Additionally, they distinguish
nine conditions, which account for an adverse mental state. To increase aviation safety,
those should be prevented from happening. In this thesis, three cognitive states and a
baseline state are mentioned.
A literature review by Borghini et al. (2014), reveals the relation between physiological
characteristics and high mental workload, mental fatigue and drowsiness. Despite the
possibilities to detect mental states by physiological measurements, there is only partial
common ground with the previous mentioned research by NASA. Borghini et al. focus
on research in single state classification, as well for different cognitive states. The
results they provide, indicate an increase or decrease of physiological characteristics
when entering a cognitive state. The relative contribution of variables to cognitive state
prediction indicate possibilities for EEG, heart rate and eye blink rate measurements.
This relates to SQ1. Within the research by Borghini et al. (2014) there is referred to
the Turkish Airlines accident at Amsterdam Schiphol Airport in 2009. During this fatal
accident, the flight crew was not able to recognize the cause of the auto throttle system
reducing the thrust of the engines (namely, the malfunction of the radio altimeter) (van
Vollenhoven 2010). Within a crucial time span, this moment of seemingly channelized
attention, led to an aircraft state from which the crew was unable to recover. It might
be difficult to predict in what sense a cognitive state notification could have prevented
this accident from happening. Note that the awareness of being in a cognitive state does
not solve the problem. The solution however, lies in appointing the adverse mental
states to the pilot, such as complacency, overconfidence and misplaced motivation
(Shappell and Wiegmann 2000). If a dangerous situation arises, and an algorithm would
be able to assign such mental states to the flight crew, they cannot ignore the unsafe
condition. Therefore, improvement within the field of cognitive state prediction holds a
component to further increase aviation safety.
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3. Experimental Set-up

The experimental set-up is explained following a description of the dataset, the feature
engineering methods and the prediction models.

3.1 Dataset

The dataset, which is used to predict pilots’ cognitive states, is provided by Kaggle
and contains approximately six gigabytes of data (Kaggle 2018). Herein lies a challenge
because the data include millions of observations and are raw, which therefore contain
noise and artefacts. The physiological data of nine flight crews, in total eighteen pilots,
are gathered. The crews are always situated as a couple in seat 0 (left/captain) and
seat 1 (right/first officer), also when performing non-flying experiments. All variables
are measured at a frequency of 256 Hz. However, due to computational limitations,
the training data are sampled to derive sixteen observations within each second. The
sampling has been performed to safe time during the training procedure, after the data
visualization and data processing. As a consequence of the complex characteristics of
the dataset, this thesis stresses the importance of feature engineering.
The training dataset comprises activity measurements which are categorized into four
cognitive states. Using this data the model will be trained and validated, after which the
test data, a line oriented flight training (LOFT), should be tested for the classification ca-
pabilities of the model. Because at the time of writing, the actual cognitive sates related
to the LOFT have not been released, the model will be tested on the data of two flight
crew couples which are separated from the training data. The training set comprises
crew 1, 2, 5, 6 and 8, the validation data crew 3 and 7, and the test set crew 4 and 9.
The task is to detect the cognitive states according to physiological measurements. Each
observation is related to one cognitive state.

Table 1: Cognitive States

Cognitive state Abbr. Description

Baseline BL No specific state occurs.
Channelized attention CA The state of being focused on one task.

Diverted attention DA The state of diverting one’s attention by decision mak-
ing through action or thought.

Startle/Surprise SS The state of experiencing rush and adrenaline by ob-
serving abrupt change.

3.1.1 Cognitive states. During three experiments for each crew, the data are gathered to
train a model which should be capable of predicting the cognitive states during flight
operations. In this research four cognitive states are distinguished, namely, channelized
attention (CA), diverted attention (DA) and startle/surprise (SS). Finally, a baseline (BL)
record is provided within each experiment. As a consequence, only two states can occur
within each experiment, namely, the cognitive state which is triggered and the baseline
state. Table 1 indicates the distinguished cognitive states. A visualization of the training
data distribution over time, is presented in Figure 1.

Throughout the three experiments the following is observed for the flight crews
within the training data:
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1. All experiments take approximately 6 minutes. For each pilot, three experiments
are performed which result in roughly 275,000 observations. The total training
data comprise 2,649,052 observations before sampling each sixteenth observation.

2. The BL (58%) and CA (34%) state are the most frequent. The DA (5%) and SS (3%)
state are the least frequent.

3. In the CA experiment, the CA state is maintained after a short period of BL (a
maximum of ten seconds).

4. The SS and DA state occur during multiple periods in its experiment; approxi-
mately two periods (SS state) and eight periods (DA) for each pilot.

In contrast to NASA’s research, the experiment strategy is only described in a rela-
tively general manner by Kaggle. However, in the upcoming paragraphs the cognitive
states are explained on the basis of relevant literature.

Channelized Attention. CA is the state of being focused on one task to the exclusion of all
others. During the experiment, this has been achieved by having the pilots perform an
engaging puzzle task. As indicated in Figure 1, the pilots stay within the CA state for
approximately 6 minutes. This cognitive state involves the ignoring of other tasks and
therefore could entail dangerous situations. According to Cheung (1998), channelized
attention is “a pilot’s attempt to perform a demanding or unfamiliar task, which allows
his attention to be confined to one aspect of the task. He/She therefore fails to make
optimum use of information about the aircraft orientation.” Warning a flight crew about

Figure 1: Distribution of cognitive states for all training data pilots during the three
experiments.
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reaching a CA state, could enable them to consciously approach a certain situation
without being channelized to one aspect.

Diverted Attention. DA is the state of having one’s attention diverted by actions or
thought processes associated with a decision. During the experiments, the pilots per-
formed a display monitoring task which was periodically interrupted by a mathematical
question. In flight operations, diverted attention can lead to dangerous situations which
result, for example, in late response and inadequate acting (Cheung 1998). Fatigue could
cause being in a DA cognitive state. This indicates the relevance of detecting this mental
state.

Startle/Surprise. During the performed experiments, SS is simulated by having the par-
ticipants watch movie clips with jump scares. Jump scares are experienced by abrupt
change, in this case visually and auditory. As a consequence, the participants notice
a feeling of rush and adrenaline. According to Rivera et al. (2014), the impact of ex-
periencing SS can have a negative impact on flight safety because of its distracting
and interrupting nature. After a ‘high intensity stimulus’, recovery time can take up
to 60 seconds, in which flight performance is reduced (Thackray and Touchstone 1969).
Detection of SS is therefore relevant for aviation safety.

3.1.2 Variables. The dataset consists of four groups of variables indicated in Table 2.

Group 1: Electrocardiography. Electrocardiography measurements are used to create an
electrocardiogram (ECG). The measurements consist of a 3-point montage and are
spread over a wide range of voltages as can be seen in Figure 2a. Each pilot has their
measurements normally distributed around a personal average. ECG data can be used
to derive multiple heart related characteristics, of which the most known are heart rate
(Hr) and heart rate variability. Both are indicators of stress, arousal and mental health
(Kim et al. 2018; Kimhy et al. 2010). To enable generalisability, adequate predicting and
to derive well-understood variables, it is desirable to retrieve the heart rate from the raw
ECG data. By detecting the peak interval within the desirable frequency range the heart

Table 2: The four groups of physiological measurements.

Variable Abbr. Unit Description

Electrocardiogram ECG microvolt
(µV)

Heart monitoring data. Mainly used to
derive the heart beat frequency and
variability.

Electroencephalogram EEG microvolt
(µV)

Monitors the electric activity of the
brains which are presented as brain
waves.

Galvanic Skin Response GSR microvolt
(µV)

Refers to the changes in sweat gland
activity that are reflective of the inten-
sity of our emotional state, otherwise
known as emotional arousal.

Respiration R microvolt
(µV)

The action of breathing, a measure of
the rise and fall of the chest.
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rate is calculated. The ECG data are expected to be relevant in between 0.6 and 4 Hz
(equal to 36 and 240 heart beats per minute). This has been performed trough frequency
domain analysis. Because the ECG processing is highly related to feature engineering,
this is further elaborated on in section 3.2.1. The heart rate distribution is visualized
in Figure 2b. Variability in heart rate is derived though the sliding window method
(section 3.2.2).

Figure 2: The ECG data prior and after processing, subdivided per crew and seat.

(a) The raw ECG data. (b) The derived heart rate data.

Group 2: Electroencephalogram. Electroencephalogram (EEG) data describe the brain ac-
tivity of the pilots with the use of twenty electrodes. Those electrodes are likely to detect
every local peak in brain activity (Jasper 1958). Unfortunately, no further information
is provided by Kaggle about the equipment, nor the montage of the sensors. Several
methods of montage are described by Fraga et al. (2011), and tested for support vector
machine and logistic regression applications in the diagnosis of Alzheimer disease. The
Longitudinal Bipolar method is the second preferred montage method. It is applied
in this thesis, simply because all individual EEG sensor data are available for this
method. The most preferred method is Bipolar Counterpart, however, by applying this
method the data of five sensors would be ignored. Note that finding an appropriate
method after the data are gathered is not optimal. This is supported by the fact that
the data of an additional sensor are presented within the dataset, namely sensor Poz. To
enable generalisability to other pilots, relative EEG values are preferred. This is achieved
by calculating voltage differences between two sensors. The sensor connections are
visualized in Figure 3. The naming of the sensor is related to the location of the sensor
on the head. Sensor Poz is located in between Pz, O1 and O2 (Wild 2007). To enable
the use of this sensor’s data, Poz is linked to sensor Pz. The voltage differences are
calculated from the front of the head to the rear (Maitland 2019). However, different
linking directions might function as well and could influence the results on top of the
decision to apply the Longitudinal Bipolar method. Nineteen features are derived by
calculating the voltage differences between sensors, namely:
Fp1 - F7, F7 - T3, T3 - T5, T5 - O1, Fp1 - F3, F3 - C3, C3 - P3, P3 - O1, Fz - Cz, Cz - Pz, Pz
- Poz, Fp2 - F8, F8 - T4, T4 - T6, T6 - O2, Fp2 - F4, F4 - C4, C4 - P4 and P4 - O2.

9
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Figure 3: Longitudinal Bipolar EEG sensor montage (Fraga et al. 2011).

In the result section of this thesis, these features are presented in small letters and
connected with an underscore instead of a hyphen sign (eg. fp1_f7). No further data
preprocessing has been applied to the EEG data, therefore power grid interferences can
be expected. However, this is considered to be negligible because of the use of relative
values. The noise is diminished by subtracting the sensor measurements. The noise
caused by power grid interference is expected to be equal for all sensors per observation.
In EEG research, spectral peaks are often studied to observe the brain state of the patient,
such as the Theta band (4-7 Hz), which represents drowsiness, the Alpha band (7-13 Hz),
which indicates relaxation and the Beta band (13-35 Hz), which reveals focus (Roohi-
Azizi et al. 2017). This is highly related to the cognitive states which are described above.
Due to a large amount of sensors, the features are not filtered for frequency. However, a
sliding window analysis has been applied to the EEG sensor differences (3.2.2).

Group 3: Galvanic Skin Response. The Galvanic Skin Response (GSR) describes the elec-
trodermal activity, also known as sweat gland permeability. This is measured by means
of skin resistance to small electrical currents (Critchley and Nagai 2013). According to
Fernandes et al. (2015), GSR supports the determination of stress and complements the
detective capability of the ECG and respiration data. It should be noted that a contro-
versy against GSR exists, because of its unscientific nature (Novella 2015). According
to critics, GSR measures merely sweat instead of detecting stress and psychological
state. It solely measures skin conductivity, and therefore no distinction can be made
concerning the cause of electrodermal activity (e.g. mental stress, anxiety, startle and
fear). However, it should be noted that during the research this argument might be
applicable to multiple physiological variables.
GSR is not represented as a sinusoidal signal for which the peak interval is relevant.
Therefore no frequency filtering is applied to the data. Processing of the data has been
performed according to a sliding window analysis (section 3.2.2).

Group 4: Respiration. The respiration data represent the rise and fall of the chest by mea-
suring muscle activation. One’s emotional state influences the respiratory characteristics
which is therefore an appropriate indicator to identify cognitive states (Feleky 1916;
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Homma and Masaoka 2008). Respiratory rate increases as a result of anxiety or stress.
As can be seen in Figure 4a, each pilot has their measurement values normally dis-
tributed. Remarkably, the data acquired from pilots in the left seat have a significantly
higher average, compared to the right seat. This could be due to equipment characteris-
tics.

Figure 4: The Respiration data prior and after processing subdivided per crew and seat.

(a) The raw respiration data. (b) The derived respiration rate data.

Because respiration data are typically shaped sinusoidally, the interval between
peak observations might reveal predictive capabilities. Retrieving the respiratory rate
(Rr) would also diminish the effect of unequally distributed raw data. After applying
noise filtering and locating the peak observations, the respiratory rate is derived. This
has been performed through frequency domain filtering, which is further explained in
section 3.2.1. The processed respiration data distribution is visualized in Figure 4b.

3.2 Design & Procedure

After the variable analysis, features are extracted from the variables by the application
of a frequency domain analysis and sliding window strategy.

3.2.1 Frequency domain analysis. A frequency domain analysis is applied to engineer
new features from the complex ECG and respiration data. From the frequency domain
filtered signals, the heart rate and respiratory rate are derived. The specific frequency
domain which is investigated relates to the external factors of the measured signal. For
example, influences of electricity waves are considered noise, whilst the influence of
respiration to the ECG data might hold interesting features.

The frequency domain analysis has been performed by a simple low pass filter,
which should be seen as a blockage of all frequencies above a set value (Bogner,
Constantinides, and Yuen 2008). The filtering is performed by the adjustment of ob-
servations according to a smoothing factor (α) to the input signal and to the previous
filtered observation (Equation 1). α is based on the relation between the interval of
the observed data (Equation 3) and the recursive coefficient factor, depending on the

11
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frequency to filter (Equation 4). Filters which use a recurrence relation are also called
Infinite Impulse Response filters. This means that values are defined as a function of the
preceding observation, indicated by Outputi−1.

Ouputi = α Inputi + (1 − α) Ouputi−1 (1)

α =
∆t

∆t+RC
(2)

∆t =
1

fsampling
(3)

RC =
1

2πffilter
(4)

To diminish the effect of frequencies above a certain level, the ffilter is set. The
recursive coefficient and the smoothing factor (α) depend on the filtered frequency
only, because the ∆t remains equal (considering a stable sampling frequency). The
lower the frequency to let pass, the more the filtered signal is defined according to its
preceding filtered output (because of a larger RC and smaller α). This is also referred to
as exponential smoothing properties.

The derivation of the heart rate from the raw ECG data is presented in Figure 5a.
This data represent one pilot during the SS experiment. The baseline state is interrupted
by the SS cognitive state, indicated by the red bars. As can be seen in the top row, this
specific pilot, during this specific SS experiment, shows noise in the ECG measurement.
To filter out the low frequencies, a threshold is set at 0.6 Hz. This matches a 36 beats
per minute heart rate. Lower heart rate values are not expected and additionally, this
is an appropriate filter to detect respiration influences. The high frequency filtering
typically rules out the higher frequencies from muscle activity and external electricity
waves. This is set at 4 Hz (heart rate of 240 beats per minute). The low frequency filter
data are subtracted from the high frequency filter data (ecg_rate = ecg_high - ecg_low).
This leaves the ECG data which can be used to detect the heart rate. The heart rate is
derived by detecting the interval of voltage peaks for the ecg_rate time series. To deal
with missing values, the last observation carried forward method is applied to fill the
interval between heart beat observations. In Figure 5b a more detailed visualization of
one ECG peak is shown. Compared to the (raw) ECG data in the top row, clearly a more
distinguishable peak can be detected in the clean ECG data (ecg_rate). The moment a
peak is detected, the new ECG peak interval results in a change in heart rate (unless the
peak interval is equal to its previous interval). Note that the y-axis voltage range differs
for each (filtered) ECG plot, and heart rate is presented in beats per minute.
Similar to the ECG data processing, a frequency window is determined to retrieve the
desirable respiration data. Because respiration normally occurs at a rate of 8 to 35 per
minute, the frequency window is expected to be relevant between approximately 0.1
and 0.6 Hz. The results after filtering the appropriate frequencies are shown in Figure 1
in Appendix B. The signal of frequencies below 0.1 Hz is subtracted from the signal
of frequencies below 0.6 Hz. This leaves the data of the desirable respiratory rates
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Figure 5: Retrieving the heart rate from ECG data, visualized for one pilot during a SS
experiment.

(a) Display of the full experiment

(b) Display of 0.4 seconds within the experiment.

(r_clean = r_high - r_low). Peak detection and determination of the interval results in the
respiratory rate (Rr), indicated in the bottom bar. The last observation carried forward
method is applied to fill the interval between respiration observations.
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3.2.2 Sliding window analysis. To retrieve temporal patterns out of the dataset, the
sliding window approach is applied. This is an appropriate method to observe and de-
tect trends in data, presented as time series (Kontaki, Papadopoulos, and Manolopoulos
2005). To enable the use of standard classification models, it is required to retrieve tem-
poral features out of the dataset. The classification models do not consider the sequence
of observations within time series data. Therefore features which do not depend on time
are required.
Table 3 indicates which features are derived from the variables over a specified time

window. Figure 6 visualizes the observed data for the first seconds of one pilot perform-
ing the DA experiment. The colour of the variable corresponds to the dashed line of its
related time window. Only the Fp1 - F3 feature is indicated in the plot as EEG input, to
prevent from indistinctiveness. The y-axis contains no values because the data represent
a different scale for each variable. The window slides over the visualized data and de-
scribes the trend along with the observed cognitive state. These observations form a new
dataset. The temporal trend can be described according to various data characteristics
within the sliding window. In this thesis, patterns in data are distinguished according
to the following calculations:

1. Mean: The mean function is applied to smoothen values within the time frame
and derive long term trends (affix to feature: _mean).

Figure 6: Sliding window time analysis. The dashed boxes indicate the related window
size for each variable.
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2. First derivative: This function defines the average change of the variable within its
time window by subtracting the first observation from the last observation (affix
to feature: _der).

3. Standard deviation: This derives variability of all observed values within the time
window (affix to feature: _SD).

4. Maximum - minimum value: Detects the difference of the most outlying observa-
tions within each time window (affix to feature: _MM).

To allow for a wide variety of patterns being detected, the feature engineering is
hardly limited, beyond computational capacity. This is supported by the research of
Harrivel et al. (2017). They retrieve 1810 features out of a similar dataset as this thesis.
Because the variables hold different temporal patterns, different window sizes are
applied. The decision to select a one second time window for the EEG and GSR data
is based on visual clues in Figure 6. The EEG and GSR data show fluctuations within
each second, which can be represented as a sliding window feature. Because heart
rate and respiratory data are less frequently imputed (because of derivation from EEG
and respiratory data), the related time windows are enlarged. Temporal patterns for
heart rate are analysed within a sliding time window of 4 seconds and respiratory rate
for 8 seconds. Due to less imputations of the heart and respiratory rate, the temporal
observation holds less information compared to the EEG and GSR measurement in the
same time window.
All four sliding window analysis calculations are applied to the GSR data because for
this variable the only feature engineering is performed through this method. For the
heart rate, respiratory rate and EEG sensor differences (from nineteen connections) there
is focused on the variability features because of their fluctuating patterns.

Table 3: Sliding window features

Variable Window size Calculations Features

Heart rate 4 seconds Maximum Hr - minimum Hr
Mean Hr 2

EEG sensor differences 1 second Maximum - minimum value
Standard deviation 19 x 2

GSR 1 second

Maximum - minimum value
Standard deviation
Mean value
First derivative

4

Respiratory rate 8 seconds Maximum Rr - minimum Rr
Mean Rr 2

Total sliding window features 46

3.3 Methods

During this research two classification methods are applied. Gradient Boosting Machine
(GBM) is used to classify the cognitive states (task 1), and logistic regression is used for
the binary classification of cognitive state change (task 2). The sliding window features
and the frequency domain features are tested for their predictive performance. Also the
initial ECG, GSR, respiration measurements and the EEG sensor differences are tested. If
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only to validate the contribution of the complete set of variables. As a result of this thesis
stressing the importance of feature engineering from variables, there was not focused on
testing multiple classification methods. Despite the awareness of retrieving more robust
results when testing for various methods.
For both tasks, the independent variables, including crew, seat, time and the experiment
title, are left out. A benchmark model is trained to validate the use of engineered
features in performing task 1. This enables the comparison between a GBM model with
and without engineered features.

3.3.1 Task 1: Cognitive state classification. The classification of cognitive states is
accomplished by a Gradient Boosting Machine (GBM) method (Friedman 2002). GBM
typically applies to classification and regression problems, and benefits in execution
speed and accuracy from a randomization procedure by sampling the training data.
According to a loss function, the learner is modified and improved with each iteration.
GBM is characterized by the use of a pseudo residual, which is the gradient of the
loss function. GBM is suitable for this research because of the following. Compared
to standard classification tree analysis, GBM is less limited because of combining the
multiple trees iteratively (Lawrence et al. 2004). Additionally, GBM is less affected by
outliers, inaccurate training data and unbalanced datasets. Finally, GBM is capable of
dealing with complex models and the contribution of large amounts of features to the
prediction task. In previous research, GBM appeared to be effective in various fields,
such as chemistry (Babajide Mustapha et al. 2016), ecology (Moisen et al. 2006) and
medical science (Xu et al. 2017). Boosting is generally referred to as the increase of
accuracy in existing machine learning methods and therefore not necessarily related
to stochastic gradient methods only (E. Schapire 2002).
Whereas the initial GBM model to derive the data’s feature importance ran on default
settings, the final model’s tuning parameters were set according to three parameters.
The number of trees and the interaction depth indicate the complexity of the model.
The learning rate refers to the adaptive amplitude to the loss function. The parameters
settings are presented together with the results in section 4.1. Cross validation is used
during the training procedures to derive the predictive probability losses.

3.3.2 Task 2: Cognitive state change detection. To fulfil task 2, a relatively simple
logistic regression method is applied. The detection of a cognitive state change is a
binary decision. The data are sampled to retrieve one observation for each second. An
additional column is added, which indicates whether a change of cognitive state has
occurred compared to the previous observation. Only True or False is presented, the ini-
tial state, or subsequent state is not mentioned. The use of multiple predictors allow for
logistic regression in binomial data (McDonald 2014). Thereby, logistic regression can
be used to derive the predictive capabilities of the features independently. A literature
review by Christodoulou et al. (2019), found no evidence that for binary classification
within clinical research, machine learning algorithms outperform logistic regression.
This substantiates the use of this method.

3.4 Software

The data processing and modification are performed in the R environment. The pack-
ages consulted are specified in Appendix A. The standard packages, which do not entail
characteristics needed for reproduction of the experiments, are left out. Most of the
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predictive functions are applied according to the caret package manual (Kuhn et al.
2018).

3.5 Evaluation Criteria

The models’ performance will be derived according to task specific methods. For the
cognitive state classification model (task 1), the F1 score will be consulted. This metric
is a trade off between the precision, which indicates the amount of True Positives over
all the Positive predictions, and the recall, which indicates the True Positives over all
actual Positives. This enables the detecting of less frequent cognitive states. For example
reviewing the accuracy (which Harrivel et al. (2016) apply), would be inappropriate
because of the frequent occurrence of the baseline cognitive state. The model is
internally optimized according to the mean F1 metric with the use of cross validation.
To enable the comparison with the results from NASA, accuracy is mentioned in the
results as well. Feature selection of the GBM model is accomplished by reviewing the
cross entropy loss function. This indicates the contribution in predictive probability of
each feature to the classification task (Janocha and Czarnecki 2017).

The logistic regression model’s performance is reviewed according to the Area Under
Curve (AUC) value. This measures the performance for different threshold values
for the binary classification prediction probabilities. Similar to task 1, performance in
cognitive state change detection could be measured according to the F1 score. However,
this does not indicate which probability threshold is used to determine the binary
decision. The feature selection for task 2 is based on standard statistical analysis.
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4. Results

The results of both performed classification tasks are presented, after which they are
discussed in Chapter 5. For the cognitive state classification task, a benchmark to feature
engineering is provided. This enables the validation of applying engineered features
compared to the raw unprocessed variables.

4.1 Task 1: Cognitive state classification

The task 1 model is trained on a sample of the measurements (each sixteenth observa-
tion) from the pilots of crew 1, 2, 5, 6 and 8. The feature importance is tested on crew
3 and 7. According to the most contributing features, the adapted model is trained and
validated on the previous mentioned flight crews. Finally, the performance is tested on
a separated test set, which include the pilots of crew 4 and 9.

Figure 7: Top ten predictive contributors according a cross entropy (ce) loss function.

Table 4: Feature explanation of Figure 7

Feature Explanation

gsr_mean The sliding window (1 second) mean of the GSR .
r_low The low pass, low frequency (0.1 Hz) filter of the respiration data.
ecg_low The low pass, low frequency (0.6 Hz) filter of the ECG data.
r_high The low pass, high frequency (0.6 Hz) filter of the respiration data.
ecg_high The low pass, high frequency (4 Hz) filter of the ECG data.
gsr_der The sliding window (1 second) derivative of the GSR .

t4_t6_SD The sliding window (1 second) standard deviation of the difference
in voltage between EEG sensors T4 and T6. .

fp1_f7_SD The sliding window (1 second) standard deviation of the difference
in voltage between EEG sensors Fp1 and F7.

Rr_mean The sliding window (8 seconds) mean of the respiratory rate.

t5_o1_SD The sliding window (1 second) standard deviation of the difference
in voltage between EEG sensors T5 and O1.

To eliminate the least contributing features, initially task 1 is performed on default
settings. The feature contribution is derived from the validation data, and is visualized
in Figure 7. For each feature a short explanation is indicated in Table 4. The top ten out
of 73 contributors are indicated, in which a clear distinction can be identified for the
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best five predictive features. The feature importance is derived according to a ’leave-
one-out’ principle. The cross entropy loss, is therefore the highest when leaving out the
sliding window mean of the GSR. It should be interpreted as losing the highest level of
predictable probability, when leaving out this variable.
The adapted version of the task 1 model predicts the cognitive state event based on
the sliding window mean of the GSR (gsr_mean), the 0.1 Hz frequency filter of the
respiration (r_low), the 0.6 Hz filter of the ECG (ecg_low), the 0.6 Hz filter of the
respiration (r_high) and the 4 Hz frequency filter of the ECG (ecg_high). The frequency
domain analysis seems therefore to contribute considerably in the derivation of relevant
features. The settings of the parameters of the adapted model are indicated in Table
5. A wide range of numbers of trees and interaction depth is chosen to allow for
the research of complex and less complex model settings. Computational restrictions
affected the parameter settings, such as the testing of a lower learning rate. The training
and validation is performed on 233,804 sampled observations of the five mentioned
features. The test dataset contains 1,102,736 observations from flight crew 4 and 9, and
is not sampled.

Table 5: GBM settings

Parameter Setting

Number of trees 3, 6, 9
Interaction depth 50 : 250
Learning rate 0.1
Loss metric Mean F1
Train control 5 fold cross validation

The results of the adapted model for task 1 are presented in Table 6. Additionally,
the performance of a benchmark model with respect to the feature engineering is
shown. These are retrieved from a model trained, validated and tested according to
the same parameters and flight crews. However, this benchmark model uses the initial
unprocessed variables of the dataset to predict cognitive state. Consisting of raw data
from ECG, GSR, Respiration and twenty EEG sensors.

Table 6: Task 1 performance (F1 score)

Engineered features Unprocessed variables

Training/validation Test Training/validation Test
BL 0.92 0.73 0.89 0.64
SS 0.77 NA 0.56 NA
CA 0.88 0.33 0.88 0.31
DA 0.59 0.04 0.49 0.005
Weighted F1 score 0.89 0.55 0.86 0.48

The results contain the predictions during the experiments of all pilots combined.
The confusion matrix for both the training/validation and the test dataset are shown
in Appendix C. As well for the benchmark model. The F1 score is presented for each
separate classification and as a weighted overall performance score. Notice that no SS
states are predicted for the test dataset. Especially prediction of the DA and SS cognitive
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Figure 8: The optimization function of the GBM.

state score remarkably lower on the test dataset, compared to the training/validation
data. The overall F1 score is weighted according the occurrence of each cognitive state,
and indicates a 0.34 lower F1 score for the testing data. This suggests overfitting of the
training data. The weighted F1 score of the engineered features (0.55) are considerably
higher compared to the unprocessed variables (0.48) for the test dataset. Only for
detecting the CA state in the training/validation data, feature engineering does not
improve the performance.

The learning process of the model is visualized in Figure 8. The model has picked
the optimal setting according to a 5 fold cross validation. Which results in an interaction
depth of 9, and 250 as the optimal number of trees for this model. Due to computational
limitations, no more boosting iterations are performed and no ‘deeper’ models are
tested, although the F1 score did not converge to its optimum yet. This indicates no
complete retrieval of information from the training data. However, overfitting is already
observed when comparing the training and testing F1 score.

Table 7: Inidvidual performance on task 1

Pilot F1 Score Accuracy

Crew 4, left seat 0.44 0.59
Crew 4, right seat 0.44 0.59
Crew 9, left seat 0.67 0.69
Crew 9, right seat 0.45 0.56

4.1.1 Pilot dependent results. Pilot dependent performance has been investigated be-
cause of the recommendation by Harrivel et al. (2017). The prediction of the left seat
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Figure 9: Cognitive state prediction for the pilot of crew 9, in the left seat.

pilot of crew 9 is visualized in Figure 9. Out of four pilots, this figure represents the
best predictive values. The F1 score for this pilot’s result is the highest out of four,
namely 0.69 (Table 7). The plots of the three remaining pilots in the test set are shown
in Appendix D. Note that for predicting solely the BL state, an F1 score of 0.44 is
achieved. Three out of four pilots in the test set indicate similar F1 scores (around
0.45). Remarkably, the pilot in the left seat of crew 9, scores considerably higher than
the other pilots within the test dataset. This indicates little capacity of the task 1 model
to generalise the training data to the four pilots of the test set.
To enable a comparison to the research by NASA, also the accuracies of each pilot
dependent prediction is presented. These vary between 0.56 and 0.69.

4.2 Task 2: Cognitive state change detection

Initially, the task 2 model is trained on a sample of the measurements (each sixteenth
observation) from the pilots of crew 1, 2, 3, 5, 6, 7 and 8. The statistical feature contribu-
tion is derived from the summary function of this model. According to the significant
contributing features, the adapted logistic regression model is trained on the same
pilots’ measurements. The task 2 performance is tested on a test set, which comprises
the pilots of crew 4 and 9.
All variables with a significant impact (P < 0.05) on predicting cognitive state change,
are indicated in Table 8. Of significant contribution are the heart rate (Hr), the difference
between EEG sensor C4 and P4 (c4_p4), the sliding window maximum value minus
the minimum value of the difference between EEG sensor C3 and P3 (c3_p3_MM) and
the sliding window mean of the GSR (gsr_mean). The logistic regression model derived
from those features result in a predictive model which scores an AUC of 0.532 on the
test dataset. This represents the performance of both flight crews combined (4 and 9).
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Table 8: Logistic regression feature contribution.

Variable Estimate (10e-2) Standard Error (10e-2) P Value

Hr 0.700 0.268 0.009 **
c4_p4 -2.56 1.10 0.019 *
c3_p3_MM 2.50 0.942 0.008 **
gsr_mean -0.040 0.013 0.002 **

Figure 10 visualizes the ROC curve and indicates the threshold settings for the
logistic regression predictions. The best predictive results are achieved with a decision
threshold in between 0.02 and 0.03 (the indicated threshold values times 10e-2). The
AUC for this binary classification is close to random binary prediction. Therefore it
should be remarked, that although the four mentioned features contribute significantly,
they contribute in low performance predictions. The performance on task 2 is not
discussed for each pilot separately.

Figure 10: ROC plot for logistic Regression with AUC = 0.53. Indicated threshold values
times 10e-2.
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5. Discussion

The results are discussed according to the research questions.

The first research question investigates whether the cognitive state of a pilot can
be predicted from physiological measurements. This thesis affirms the research
question up to a certain extent. The model achieves an F1 score of 0.55 on this task,
which is fulfilled according to a GBM model. Major differences in performance exist
between the training and test dataset. Overfitting of the training data is observed and
should be diminished to improve cognitive state classification.

The first sub-question researches the relative contribution of the variables, which
is focused on in this thesis. Feature engineering through frequency domain analysis
and sliding window analysis, revealed predictive capabilities of the variable groups
beyond what it initially measured. According to the frequency domain analysis, the
respiration and ECG data were divided into three features. A low pass high frequency
filter, a low pass low frequency filter and the difference between those. Determination
of the frequency filtered domain, depends on the nature of the variable. For example,
the low frequency filter of the ECG data, is set at 0.6 Hz to detect respiratory influences.
This feature appears to be considerably contributing to the prediction of task 1
(cognitive state classification). According to a cross entropy loss function, the ECG
low filter contains better predictive characteristics than the feature which is designed
to derive the respiration data from the respiratory measurements. This is interesting,
because the ECG equipment is not intended to retrieve respiratory measurements.
Figure 7 indicates that out of the five most contributing features, four were derived
according to the frequency domain analysis. Both the high and low frequency filters
of the ECG and respiration variables. The highest contribution is achieved by the one
second sliding window mean of the GSR. The model which applied the engineered
features achieves a 0.07 higher F1 score performance compared to unprocessed data
(benchmark). This validates the use of engineered features.
With regards to task 2, detection of cognitive state change, four features appeared to be
contributing significantly. Namely, the sliding windows mean of the GSR, heart rate,
the EEG sensors difference of C4 and P4, and the sliding window maximum value
minus the minimum value of the difference between EEG sensors C3 and P3. It should
however be noted, that these features contribute significantly to a low performance
prediction.
Frequency domain analysis and sliding window analysis are successful strategies to
enable feature engineering. Performance in the prediction task is improved by applying
the retrieved features. Feature engineering is hardly limited because of the high amount
of possibilities in time series trend detection. Also the frequency domain can be adapted
for analysis of each measured frequency. The main remark to the feature engineering in
this thesis is the lack of research in frequency band analysis for the EEG data. This was
mentioned to be promising, however, because of a large amount of features it is ignored.

The second sub-question considers the relative difficulty in prediction of various
cognitive states. The results indicate clear differences in predictability. The results
of all pilots within the test dataset are combined. The predictability of the baseline
state scores the highest (F1 = 0.73). The SS state has not been predicted during all
experiments within the testing data, whilst for the training data an SS F1 score of 0.77
is achieved. The DA state scores low on predictability (F1 = 0.04) in the test dataset,
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however this state already indicated lower performance on the training data (F1 =
0.59) compared to the other cognitive states. Prediction of the CA state appeared to be
reasonably possible for the left seat pilot of crew 9 only.
The most frequent occurring cognitive states show better performance in predictability.
This might be prevented by focusing on the training of SS and DA states separately.
For further research, the data could be balanced for the occurrence of cognitive states.
However, it was expected that the GBM method is capable of dealing with unbalanced
datasets.

The third sub-question considers the pilot dependent performance on task 1. Out
of the four pilots in the test dataset, large differences are observed within the F1 score.
Three pilots indicate similar performance (F1 = 0.44/0.45) whilst the left seat pilot of
crew 9 scores 0.67 on F1 performance. This is a major difference, and therefore the
question arises whether a single prediction model would fit a physiological diverse
set of pilots. According to the predictive results of the two flight crews within the test
dataset, this would not the possible. Either a more generalisable method is needed to
enable task 1 by a pilot independent model, or pilot dependent models should be fitted.

The presented quantitative results indicate the possibility as well as the difficulty
of predicting cognitive states for pilots. The applicability of the model depends mostly
on the predictive performance, which at the moment, is not sufficient for all pilots. A
more generalisable manner for predictions is required, which is substantiated by the
large differences in F1 scores between the training and test data, and differences in test
data results per pilot.
Prediction of cognitive state change does not reveal promising characteristics. The
AUC score of 0.532 is close to random prediction of change in state. Now, one second
of detection time is used. Allowing for a longer detection time, might contribute to a
less complex logistic regression model and more accurate prediction.
Further research should however, focus on complementation of logistic regression
models to the more sophisticated machine learning algorithms. Herein lies an
interesting observation, namely, detection of the specific cognitive state occurs multiple
times within the appropriate experiment according to the GBM model, as indicated
in Figure 9. However, not at the exact moment in time. Therefore, a combination of
classification models could entail performance improvement.

5.1 Related Work

Several times throughout this thesis, a comparison is made to NASA’s complex pre-
dictive models. Their pilot dependent accuracy scores lie in between 0.50 and 0.78,
which is similar to the results presented in this thesis (accuracy of 0.56 to 0.69) (Harrivel
et al. 2017). The necessity of more complex models, and the use of large amounts of
features is therefore not supported. Although the computational resources of NASA are
expected to be larger compared to this research, the same problems arise during their
research. Generalisability of the data to a physiologically diverse set of pilots, appears to
be challenging. This could be solved by tailoring a model for each pilot. Obviously, this
would come with a tremendous amount of labour. Unfortunately, no results are shared
for each model independently, which makes it impossible to validate the performance
of the GBM method specifically.
Research by Shappell and Wiegmann (2000), presents the Human Factors Analysis and
Classification System (HFCAS), which indicates the various classifications of unsafe acts
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within aviation, and the possible pre-conditions for those unsafe acts. Especially the
adverse mental and physiological states require attention. During this thesis only three
potentially unsafe cognitive states are presented. In the HFCAS, nine adverse mental
states are presented, of which channelized attention is one of them. Elaboration beyond
the current researched cognitive states (CA, DA and SS) is therefore required.

5.2 Further research

Improvement of task 1 and 2 performance might be achieved by normalizing the trained
data and the incubation of calibration procedures during the experiments. NASA al-
ready has more data at their disposal in their latest research, and also this thesis could
benefit from more pilots performing cognitive states experiments. It should however
be noted that this thesis makes use of sampled data. And therefore not utilises the full
capacity of the data.
Although mentioned in this thesis, also a frequency domain analysis should be applied
to the EEG data to detect frequency bands related to cognitive states. Unfortunately
this is left out in this research. Additionally, less complex models could solve the
large performance discrepancy between the training and testing data. Overfitting of
the training data is observed, and future research should prevent this by researching
more ‘shallow’ models. The research could be broadened by testing different kinds of
predictive models.
Finally, fully understanding of the data and determination of cognitive states depending
features shape the recommendation for similar research in the future. Harrivel et al.
(2017), already researched the possibilities of applying different measurements, such as
eye tracking. Possibly, the currently researched physiological characteristics of a pilot,
do not contain the key to enable higher performance in cognitive state prediction.
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6. Conclusion

The conclusions drawn from this thesis are presented according to five key findings.

Key finding 1. It can be concluded that the applied feature engineering enabled the pre-
diction of cognitive states. The sliding window analysis, and especially the frequency
domain analysis, result in retrieval of contributing features out of the complex dataset.
Feature engineering on GSR, ECG and respiration data contributes the most. In com-
parison to cognitive state classification according to unprocessed features, engineered
features perform on average 0.07 higher on F1 score.

Key finding 2. Task 1, cognitive state classification, can be achieved according to an
F1 score of 0.55. This does not show improved performance with regards to previous
research. However, in this thesis, this was not the point of focus. The accuracy of the
model lies in between 0.56 and 0.69 for each pilot within the test dataset. This is in line
with the performance of NASA’s research.

Key finding 3. Cognitive state change is difficult to detect according to the retrieved
features from the physiological measurements. An AUC of 0.53 has been achieved.

Key finding 4. Major differences exist in detectability of cognitive state. The most chal-
lenging cognitive states to classify are SS and DA. The SS prediction did not take place
during all experiments of the test dataset. The F1 score of 0.73 for the baseline state in
the test dataset, indicates relatively good detectability

Key finding 5. Task 1 performance is highly influential per pilot. Out of four pilots within
the test dataset, one revealed obvious better classification characteristics compared to
the others. The left seat pilot of crew 9 scored at least 48 percent higher on F1 score than
other pilots. The cognitive state prediction depends on individual characteristics which
require more attention in further research.

The model reveals potential success, however, for further application, improvement
is necessary. Cognitive state change prediction might hold a feature which could
improve the performance of the cognitive state prediction model. However, its current
performance is not sufficient to contribute. The relevance of this area of research has
been proven by conducting literature research, and is supported by the fact that NASA
and the FAA strive to improve aviation safety, among other things, by prediction of
pilots’ cognitive states.
This thesis contributes in the search for decent feature engineering methods, to
retrieve information out of the complex dataset. The results of the research expose
the difficulty in generalisability of the model. Physiological characteristics depend on
the individual. Reaction to the different cognitive states vary per person as well. The
complex physiological data contain a key to the pilots’ cognitive state and therewith
the aircraft state. In combination with modern AI technology it has potential capability
to increase aviation safety, which should never be omitted.
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Appendix A: R Packages

Table 1: R Packages

Title Describtion Developers

caret Training and testing environment for creating
predictive classification models. Kuhn et al. (2018)

GBM Additional package to enable gradient boost-
ing machine methods in the Caret package. Greenwell et al. (2019)

ISLR Logistic regression software. James et al. (2017)
pROC ROC curve and AUC retrieval. Robin et al. (2011)
iml Derivation of the feature importance. Molnar and Bischl (2018)

zoo Performs last observation carried forward for
missing data imputation. Zeileis and Grothendieck (2005)
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Appendix B: Respiration frequency domain analysis

Figure 1 shows the retrieval of respiratory rate from raw respiration data as explained
in section 3.2.1. The plot represents one pilot during the SS experiment.

Figure 1: The retrieval of the respiratory rate from respiration data.
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Appendix C: Task 1: Confusion matrices

In Table 1 the confusion matrix indicates the results of cognitive state prediction on the
training and validation dataset. Table 2 indicates the confusion matrix for both pilots
of crew 4 and 9. Table 3 and 4 indicate the results of the same flight crews for the
benchmark model.

Table 1: Confusion matrix for the training and validation dataset predictions.

Actual

Prediction BL SS CA DA
BL 141963 2009 15244 6592
SS 526 4230 2 0
CA 380 34 56689 6
DA 758 0 1 5370

Table 2: Confusion matrix for predictions on the test dataset (crew 4 and 9).

Actual

Prediction BL SS CA DA
BL 580293 29035 279534 42494
SS 0 0 0 0
CA 65524 1705 88152 9950
DA 4920 0 0 1129

Table 3: Confusion matrix for the benchmark predictions on the training and validation
dataset predictions.

Actual

Prediction BL SS CA DA
BL 123094 2790 7785 5942
SS 2329 3325 24 0
CA 10451 100 72209 1660
DA 225 26 0 3844

Table 4: Confusion matrix for the benchmark predictions on the test dataset (crew 4 and
9).

Actual

Prediction BL SS CA DA
BL 454657 21285 259702 38470
SS 3 0 0 0
CA 191965 9375 106884 14972
DA 2041 80 32 131
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Appendix D: Task 1: Pilot dependent results

Figure 1: Cognitive state prediction for the pilot of crew 9, in the right seat.

Figure 2: Cognitive state prediction for the pilot of crew 4, in the left seat.
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Figure 3: Cognitive state prediction for the pilot of crew 4, in the right seat.
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