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Abstract 

Recent research developments in voice acoustics have motivated this thesis, i.e., the 

successful prediction of future behavior by humanly judged voice utterances. The approach in 

this thesis deviates from that of earlier studies, by applying machine learning models to a data 

set that is constructed from real-world speech recordings. The aim is to predict consumers’ 

switching behavior regarding health insurance by analyzing the acoustics of the consumers’ 

voices. A data set of 3,887 conversations is built from a comparison website’s call center 

recordings. Prosodic and spectral feature are extracted from thin slices of the speech recordings 

and enriched with fiver non-acoustic features about the call and the customer to complete a data 

set of 114 features. Five experiments are executed with a different combination of features each 

to determine the predictive capacity of voice acoustics as indicators of future switching 

behavior. Results show that non-acoustic features by themselves manage to outperform a 

random guessing baseline. The addition of features from the extracted pitch and intensity 

improves the performance of the non-acoustic features, highlighting the potential of voice 

acoustics in the prediction of future behavior. Models trained on a data set that included 

extracted MFCC features or consisted of only acoustic features did not prove successful 

performance. Implications for future research are discussed to build upon these preliminary 

findings.   
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1. Introduction  

This thesis aims to predict consumers’ switching behavior regarding health insurance 

by analyzing the acoustics of the consumers’ voices. Since the introduction of free provider 

choice in the Netherlands in 2006, consumers struggle to switch health insurance effectively. 

Well-informed switching decisions are difficult in the current market’s complexity as the search 

for information is too complicated and confusing (Lako, Rosenau, & Daw, 2011; Van Beest, 

Lako, & Sent, 2012). Assistance comes from comparison websites, increasing the chance of 

consumers switching as they are assisted in their choice of health policy (Han & Urmie, 2017). 

Their service can be improved and personalized by analyzing data from customer interactions 

and applying machine learning models to measure consumers’ attitudes and behaviors (Rust & 

Huang, 2014).  

Besides support via their websites, comparison websites provide counselling over the 

phone through their call centers. Data that flows from these conversations is huge and 

potentially rich in information. Therefore, insights in the customer-specific decision-making 

process might be derived from this data, since voice to voice communication offers more 

emotional cues than written communication (e.g. Goldberg, & Grandey, 2007; Rueff-Lopes et 

al., 2015). The analysis of recorded call center speech with modern big data techniques is a 

challenging task, but predicting switching behavior from this data can open up the next step in 

personalization and customer service for call centers.  

1.1 The case at Independer  

This thesis project is carried out in cooperation with Independer. Independer is a Dutch 

comparison website for insurance and other financial products. The website is built to be self-

explanatory for customers. However, Independer’s call center is available for support and it is 

possible to close a contract over the phone. Call center conversations, numbering 173,416, were 

recorded from September 23, 2016, up until January 3, 2017. These recordings are the data that 

is used for this thesis. In 2016, a total of 173,432 customers closed a contract for new health 

insurance via Independer, either online or via the phone. In the Netherlands, a total of 1.17 

million people switch health insurance (Nederlandse Zorgautoriteit, 2016), giving Independer 

a market share of 14.8% of all customers who switch. In this thesis, Independer will be further 

referred to as ‘the company’.  

1.2 Problem statement 

This thesis focusses on call center interactions between customers and agents from a 

comparison website. Speech data from recorded calls is analyzed, both acoustic and non-

acoustic parameters are extracted to predict switching behavior of health insurer.  
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The problem statement is: To what extent can acoustic features from call center speech 

successfully predict switching behavior of health insurer? 

To support the structure of this research, five experiments are executed that each contributes by 

addressing the formulated research objectives:  

Research objective 1: To identify the extent to which non-acoustic features from call 

center speech can successfully predict switching behavior of health insurer.   

Research objective 2: To establish the effect of adding pitch and intensity from call 

center speech to models using non-acoustic features on the performance of predicting switching 

behavior. 

Research objective 3: To establish the effect of adding MFCCs from call center speech 

to models using non-acoustic features, pitch and intensity on the performance of predicting 

switching behavior. 

Research objective 4: To identify the extent to which pitch and intensity from call center 

speech can successfully predict switching behavior of health insurer. 

Research objective 5: To establish the effect of adding MFCCs from call center speech 

to models using pitch and intensity on the performance of predicting switching behavior. 

1.3 Scientific relevance 

In the past, predictive models based on acoustic features of speech have been used to 

classify emotions by using databases with acted speech fragments (e.g. El Ayadi, Kamel, & 

Karray, 2011). The approach in this thesis deviates from that of earlier studies, by using natural 

speech data instead of acted speech. Although acted speech differs in articulatory movements 

from natural speech (Erickson, Menezes, & Fujino, 2004), the demonstrated predictive ability 

opens the potential for using acoustic features from natural speech. Classifying emotions is not 

a straightforward task, but predicting long-term decisions from momently speech acoustics 

might be even more challenging. However, predicting future behavior from speech has been 

done before. Human judges managed to predict future voting behavior of citizens by analyzing 

nonverbal characteristics of telephone speech utterances (Rogers, ten Brinke, & Carnay, 2016). 

The likelihood of voting was successfully predicted by the level of confidence in the voice from 

people making self-predictions on their voting behavior. The use of machine learning 

techniques from previous studies in voice acoustics combined with the potential of predicting 

future behavior from voice shows the relation to multiple research fields and the opportunity of 

them combined.  
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1.4 Practical relevance 

The insights from a model that relates acoustic speech features to future behavior have 

practical implications for customer service companies. Because this thesis makes use of 

automated analysis where no human judges are needed, the development of automated human-

robot interactions, like chatbots, will benefit from the insights. Chatbots are emerging in many 

online service delivering businesses and will be an important subject of innovation (Pereira et 

al., 2016). Besides, predictions on future behavior allow robots to anticipate and therefore better 

assist customers in, for example, choosing the right health insurance. Even when bots are not 

used yet, the prediction of switching customers has benefits for service or insurance companies 

as they can adjust their assistance to the expected behavior of the customer.    
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2. Related work 

This section describes the scientific context of this thesis and discusses the related 

research fields. Previous research about behavior predictions from voice, the production of 

speech within the human body, influences between speakers in a conversation, and consumers 

switching behavior regarding health insurances are discussed.  

2.1 Predicting behavior from speech  

Linking voice characteristics from call center speech to predicting future behaviour is a 

premature research topic. Voice activity, interruption, and hesitation were found to be valuable 

features for identifying successful calls in a call center (Atassi & Smékal, 2014). That means 

calls that resulted in a sale. Furthermore, the rate of speaking from customers is successfully 

used to label problematic calls (Pandharipande & Kopparapu, 2012). These features reveal 

promising outcomes in call center research but do not yet extricate the predictive potential from 

prosodic features.  

Conversations contain much more data in the form of acoustic features from the caller’s 

voice, than call structures or dialogue features can reveal. By using, for example, the frequency, 

the intensity and the energy of the caller’s voice, researchers managed to detect emotional states 

of the caller (Devillers, Vaudable, & Chastagnol, 2010; Vaudable & Devillers, 2012). These 

studies are important first steps in the field of real-life speech research in call center settings. 

An important finding that results from these research efforts is the successful application of 

prosodic features for automated predictions of emotional states. These preliminary works 

substantiate the use of acoustic features, but additional research should be looked upon to 

predict behavior from voice.  

Although the assessment of voice features for predicting behavior currently makes use 

of human judgements, the potential in the automated use of voice features is visible in this field 

of research. Judgements on thin slices of voice clips managed to successfully predict the 

effectiveness of salespeople, by assessing their personality, trustworthiness, motivations and 

affect (Ambady, Krabbenhoft, & Hogan, 2006). The availability of semantic content had no 

impact on the quality of the predictions, indicating the value of speech characteristics. A closer 

link to predicting behavior is found in the work of Rogers, ten Brinke and Carney (2016): 

human observers managed to successfully predict people’s future voting behavior. Thin sliced 

speech fragments with self-stated predictions on voting were used by the observers. People’s 

voices were successfully judged and used to differentiate between people that would follow 

through on their predictions or not. Uncertainty and deception are the psychological traits 

causing the vocal cues that were used to separate between voters. Uncertainty is detected in a 
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voice within milliseconds by a human observer due to the quiet voice and the rise of the pitch 

at the end of a sentence (Jiang & Pell, 2015). Deception comes from a combination of cognitive 

load and arousal, which may result in a higher pitch in the voice as an effect of tensions and 

nervousness (Zuckerman, DePaulo, & Rosenthal, 1981). If these humanly observed voice 

features resulted in successful predictions of future behavior, the potential of automated 

retrieval and modelling of voice features is promising.  The challenge remains in extracting the 

right features in a reliable way, building data sets from real-life speech data, and successfully 

applying models to disclose the potential of acoustic features (Eyben et al., 2016).  

2.2 Speech production  

To build a data set from acoustic features of speech, it is essential to scrutinize the way 

speech is produced in the human body. This illustrates the connections of the relevant muscular 

movements and will provide insight into the parameters that can be extracted for automated 

analysis. The exposition focusses solely on phonetics: the acoustic, perceptual, and production  

Figure 1. Speech organs in the human body,  Figure 2. Vocal cords in the human body, 

(adapted from Goswami et al., 2013)   (adapted from Story, 2002) 
aspects of spoken language, in contrast to linguistics, which deal with written language 

(Schuller et al., 2013).  

The production of speech in the human body involves multiple speech organs, as 

illustrated in figures 1 and 2. The signal starts from the air in the lungs that is forced through 

the vocal folds (or cords) and the space between them (glottis) into the pharynx. The generated 
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airflow is controlled by the tension and length of the vocal folds, which modulate the size of 

the glottis forming different frequencies of the speech signal. From that voice source, the signal 

enters the pharynx where it is affected by articulatory muscles as the velum, the tongue, the 

jaw, the lips, and movements of the tongue. The interplay between the voice source activities 

and the articulatory controls shape the total waveform of the speech signal (Lee et al., 2014). 

This is an automatic process where changes in any muscle’s tension will impact the dynamics 

of the vocal tract (Cummins et al., 2015). The result is a complex interplay of speech muscles, 

making the extraction of valuable parameters challenging.  

The distinctive components of the voice signal can be represented by features. These 

features can be extracted from the pure speech signal by representing the distinctive elements 

of the voice in an abstract manner (Kinnunen & Li, 2010). In total, many different features can 

be extracted, but three categories are distinguished: prosodic, source, and spectral features. 

Prosodic features are characterized by variations in the stress, rhythm, speech rate, and 

intonation of the voice. Source features give information about the source of the speech signal, 

with jitter and shimmer as important measures. Spectral features represent the speech spectrum, 

which is the distribution of different frequencies in the voice (Lee et al., 2014; Cummins et al., 

2015). These features are examples of standard features that are used for automated emotion 

detection, better known as low-level descriptors (LLD’s). This thesis will focus on three 

specific features. 

2.2.1 Pitch  

The first extracted feature is the pitch. This parameter is determined by the rate of 

vibration from the vocal folds and the opening of the glottis (Praksah & Gaikwad, 2015), they 

work as a filter for the speech signal passing through it and have its reflection on formant 

frequencies. Pitch relates to the fundamental frequency or formant 0 (f0). Hertz is the unit of 

measurement and relates to the number of speech wave cycles per second.  

 One of the major challenges when extracting pitch is to use a robust estimation 

algorithm since pitch extraction is prone to errors (Schuller et al., 2011). For this thesis, the 

extraction technique from the COVAREP toolbox (Degottex et al., 2014) is used, which has 

proven itself as a robust measure. Besides errors in the estimation of pitch values, personal 

differences like gender play a role in pitch differences as well. Table 1 displays the differences 

between genders and low-pitched and high-pitched voices.  
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Note. The data in Table 1 is derived from “Effect of the tone of voice and the perception of the face in 

the formation of impressions on media speakers”, by M. T. Soto Sanfiel, 2008, Comunicación y 

sociedad, 10, p. 143.  

As part of prosodic speech, pitch is a feature that is strongly influenced by emotions and 

represents important cues for affective speech (Cowie et al., 2001; Lee et al., 2014). Among 

others, researchers found support for pitch as a predictor of happiness (Kim, Lee, & Narayanan, 

2010), stress and anger (Eyben et al., 2016), arousal (Yildirim et al., 2004), and for boredom 

(Goudbeek & Scherer, 2010). As shown above, pitch is a widely-used feature in emotion 

classification and is found to be a robust parameter. At last, using pitch features is found to be 

most suited for binary emotion classification (Busso, Lee, & Narayanan, 2009), strengthening 

the support for the use of pitch in this thesis.  

2.2.2 Intensity  

The second extracted feature is intensity (or loudness). Like pitch, this feature is part of 

the prosodic features and originates from the source signal (Koolagudi & Rao, 2012). The 

source signal is formed when air from the lungs is pressed through the vocal folds in the larynx 

(Lee et al., 2014). This creates signal energy sound pressure (measured in Pascal (Pa)), which 

is normally described as an amount of pressure per unit of time. The variation of pressure 

differences in the atmosphere is enormous, but when speaking of sound pressure, levels 

between 10-5 Pa and 102 Pa are relevant (Zwicker & Fastl, 2013). The sound pressure level 

(SPL) is introduced to coop with the wide range of pressure differences: 

𝑆𝑃𝐿 = 20 log
𝑝
	𝑝,	

𝑑𝐵 

𝑝, = 20𝜇 Pa as the reference level of pressure.  

Just as the SPL, the intensity (I) of sound is a logarithm of a ratio power, though with 

an energy reference level instead of pressure. The equitation of the sound intensity level (SIL) 

is therefore similar to that from the sound pressure level:  

𝑆𝐼𝐿 = 10 log
𝐼
	𝐼,	

𝑑𝐵 

𝐼, = 10-12 W/ m2 as the reference level of energy.  

Table 1 

Differences in pitch value 

  

Gender Low-pitched voice (Hz) High-pitched voice (Hz) 

Male 98-125 152-178 

Female 115-151 189-225 
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Like the sound intensity level, when the intensity increases, the perceived sound increases 

logarithmically by the observation of the human ear (Schuller et al., 2011). However, measures 

of intensity or loudness strongly depends on frequencies: 100dB at 100Hz results in a different 

perceived intensity than 100dB at 500Hz. Therefore, to make the measurement of intensity 

closer to the human hearing, the intensity from the speech signal is weighted in different 

frequency ranges (Weninger et al., 2013). The intensity in dB is then calculated by taking the 

sum of all frequency ranges and apply this to the logarithmic scale. In this thesis, the methods 

from the COVAREP initiative are used to extract the intensity form the voice signal (Degottex 

et al., 2014).  

The intensity of the voice has proven to be a valuable indicator of different emotional 

states. Prosodic features in general, with intensity as an important part of them, are found to be 

relevant as a predictor of arousal in humans (Scherer, 2003; Goudbeek & Scherer, 2010). Next 

to classifying emotional states, intensity has also proved valuable in classifying distinct 

emotions such as high intensity in human voices, that is related to joy, anger, stress, and fear 

and low intensity, that is associated with disgust and sadness (Ramakrishnan, 2012; Ververidis 

& Kotropoulos, 2006; Scherer, 2003). Altogether, intensity proved to be an important feature 

in classifying speech instances.  

2.2.3 MFCC  

 The third and last feature that is extracted is the Mel-Frequency Cepstrum Coefficient 

(MFCC). MFCCs are part of spectral shape parameters and are one of the most used features in 

speech recognition research from the last decades (Eyben et al., 2016; Cutajar et al., 2013). 

They represent energy in different frequency bands, like the cochlear human auditory system’s 

operation. Compared to pitch and intensity, MFCCs are rather complex and a diversity of 

algorithms is used in the extraction process (Zheng, Zhang, & Song, 2001). This process 

consists of a sequence speech signal transformations. This paragraph provides a step-by-step 

description of these techniques.   

MFCCs are extracted from the frequency domain, which is converted from the initial 

time-based speech signal. Short time windows, typically 25 ms or 30 ms, are shifted with 10 

ms steps to cover the full audio fragment (Young et al., 2002; Cutajar et al., 2013). Within each 

window, the spectrogram of the signal is transformed into a spectrum by making use of a 

Fourier transform. This transformation represents the sum of multiple sine and cosine functions 

and reveals where energy is located in the speech signal (Harris, 1978). The peaks in the 

spectrum display the dominant frequency areas in the signal, the fundamental frequency and 
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the formants are visible as peaks of the spectrum (Cummins et al., 2015). The energy-frequency 

representation of the spectrum enables further extraction of the MFCC.  

In the human auditory perception, frequencies are non-linearly dispersed over the 

spectrum causing the need for applying filter banks to the spectrum to obtain a linear frequency 

distribution (figure 3). The human perception of sound is linear up and until 1000 Hz, but  

Figure  3.  Spectrum  of  speech  signal  and  Mel  scale  filter  bank.  

increases logarithmic from there. To mimic this distribution of frequencies, the spectrum is 

filtered using the Mel scale. This scale is constructed to deal with the subjective distance 

between frequencies at different levels (Wicks, 1998). The conversion to a linear Mel frequency 

scale is done with the formula suggested by Fant (1973):  

𝐹345 =
1000
log	 2

∗ 1 +
𝐹89
1000

 

The obtained spectrum with linear frequency distribution has Mel frequencies (𝐹345) as unit of 

measurement and supports the further calculation of MFCC’s.  

 Since MFCCs represent energy from frequency bands, the energy is calculated from 

each Mel-filter bank. To retrieve this energy, first, the Mel spectrum is transformed with an 

inverse Fourier transform. The output from this transform is called the cepstrum (Bogert, 1963). 

From this cepstrum the log energy output is calculated with this formula (Cutajar et al., 2013; 

Ganchev, Fakotakis, & Kokkinakis, 2005):  

𝑋; = 𝑙𝑜𝑔?, 𝑋 𝑘 ∙ 𝐻; 𝑘
CD?

EF,

 

for 𝑖 = 1, 2, … ,𝑀  
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Individual filter banks are represented in the formula by 𝐻; 𝑘  and the number of coefficients 

is given by 𝑀. Accordingly, the real algorithmic energy is represented from the filter band’s 

spectrum. A cosine transformation is used to obtain the cepstrum coefficients and therefore 

complete the calculation of the MFCCs. The formula that is used for this transformation is 

(Davis & Mermelstein, 1980; Zheng, Zhang, & Song, 2001; Mporas et al., 2007):  

𝑀𝐹𝐶𝐶L = 	 𝑋;	𝑐𝑜𝑠
O

;F?

𝑗 ∙ 𝑖 −
1
2

𝜋
𝑀
	  

for 𝑗 = 1, 2, … , 𝐽 − 1 that is the number of MFCC’s that are needed.  

In the full procedure of extracting the MFCC from a speech signal, many detailed 

changes can be made by, for example, varying the number of coefficients that are used and the 

inclusion of the 0th coefficient (Zheng, Zhang, & Song, 2001). The 0th coefficient is referred to 

as the spectrum’s average value or, said differently, the collection of energy from all frequency 

bands (Picone, 1993). Due to questions about the reliability of the measure, this 0th coefficient 

is excluded in most researches. That practice is followed in this thesis, congruent to the 

approach from the COVAREP initiative (Degottex et al., 2014). Besides the exclusion of the 

0th coefficient, the number of total MFCCs used has an impact on the performance of a model. 

Lower coefficients were found to carry more phonetic speech information and the higher 

coefficients more non-speech information, as found in research that discriminates speech 

signals from music signals using MFCCs (Mubarak, Ambikairajah, & Epps, 2005). The lower 

frequency MFCCs are linked to the distribution of spectral energy (Eyben et al., 2016), making 

them suitable to classify emotions in speech (e.g. Neiberg, Elenius, & Laskowski, 2006). 

MFCCs from the higher frequency bands are more related to small energy dispersions in the 

speech signal, which makes them more reliable to identify semantic content (Eyben et al., 

2016). For that reason, a balanced number of MFCC coefficients should be used that fits the 

scope of the research.  

Overall, MFCCs are found to be robust against noise in the signal but tend to be affected 

by the textual content (Schuller et al., 2011). Poor performance is often also related to this 

textual dependency (Ververidis & Kotropoulos, 2006). LFPCs are proposed because they 

include pitch values. However, pitch is already included as a feature in the feature set of this 

thesis, taking away the disadvantages from using MFCCs. Therefore, the use of MFCCs seemed 

to be justified in the research context of this thesis.  
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2.3 Interspeaker influence in call center conversations 

Even when acoustic features can be extracted from the voice of a customer and it is 

understood how these features are produced within the human body, it is important to 

understand the theory regarding human to human interaction. The interspeaker influence in 

telephone calls has implications for the measurements of the customer’s voice and should be 

considered when natural speech data is analyzed. General theories of human interaction are 

applicable, as well as more specific findings from studies executed in call centers.  

People have the tendency to adjust their speech and vocal patterns towards others in a 

conversation. Communication accommodation theory shows how people modify their speech 

when interacting with others. Social differences are the reason of speech adjustment in this 

theory, divergence is used to emphasize the contrast and convergence is used to minimize the 

inequality between people (Giles, Coupland, & Coupland, 1991). Synchrony and similarity in 

a conversation build rapport and affiliation (Bernieri, Reznick, & Rosenthal, 1988) and since 

call centers focus on the assistance of customers, minimizing the social difference between 

expert and customer is beneficial. Therefore, convergence is expected to be more dominantly 

present in the calls than divergence.  

Both the expert and the customer adjust their speech to be more like the other. This 

accommodation of the voice is also called vocal mimicry (Sun, Truong, Pantic, & Nijholt, 

2011). Verbally, mimicry can result in copying words or expressions of the other in a 

conversation (e.g. Gonzales, Hancock, & Pennebaker, 2010). Non-verbal mimicry is about the 

imitation of the way of talking, the effects have a long history in the literature. For example, 

people were found to mimic speech rate (e.g. Webb, 1972), the rhythm of speech (Capella & 

Planalp, 1981), and speech accents (Giles, 1973). Mimicry can be beneficial in a customer 

service call center setting for the outcome of the final decision because peoples’ general social 

orientation is affected by it, making them more inclined to help others (Van Baaren et al., 2004). 

For that reason, the adjustments in speech that come from interspeaker influences can have a 

positive impact on telephone conversations in which experts give advice to consumers on 

switching health policies.  

The effect of speech adjustment in dyadic interaction goes beyond imitation of the vocal 

signal. Vocal mimicry is part of an overarching theory, called emotional contagion. This theory 

describes the synchronization of vocal features (mimicry) as the first phase and emotional 

conversion that succeeds as the second phase, called feedback (Hatflied, Caciopo, & Rapson, 

1993). After mimicking vocal cues, an emotional state is experienced that is compatible with 

those vocal cues. Therefore, the emotional states of an individual are affected by the vocal cues 
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of another person in a conversation (Hatfield et al., 1995). Emotional contagion is one of the 

most influential processes in interpersonal communication and is found to happen fast and 

unconscious when two people interact in a call center. Furthermore, vocal mimicry was found 

to be stronger for negative emotions than for positive emotions (Rueff-Lopes et al., 2015). 

Altogether, vocal signals are automatically copied by both the expert and the customer and the 

congruent emotions are experienced by the other person in the conversation.  

The management of emotions in a call center interaction has implications for the 

outcomes of that call. In general, emotions are found to be a valuable predictor for the emotions 

of the customer in service encounters (Pugh, 2001; Berger & Grandey, 2006). Furthermore, the 

emotional competence of an employee in customer service has a positive effect on the loyalty 

and satisfaction of the customer (Delcourt et al., 2013). To this extent, positive emotions 

expressed by call center experts can be expected to have positive effects on the outcome of a 

call. This is partially proven by the emotional contagion theory. Considering that the emotional 

expressions from a call center expert, via speech, spontaneously have an impact on the emotions 

of the customer. Beyond this automatic process, adopting the right strategy to deal with 

customer emotions will decrease negative and increase positive emotions from the customer in 

a call center (Little et al., 2013). Both conscious and unconscious processes affect the 

conversation in a call center, yet positive emotions can be expected to have the most beneficial 

influences on the outcome of the call.  

2.4 Consumers’ switching behavior  

When predictions are made on switching health insurer, it is valuable to understand the 

differences in the probability of switching within the customer population. Not every customer 

in the health insurance market is as likely to switch like any other. Since the introduction of the 

regulated competition in the Dutch health insurance market in 2006, 37 % of all consumers 

switched insurer at least once (Romp & Merckx, 2017). Nevertheless, differences are found in 

demographics between switching and non-switching customers. Young, healthy people are 

more likely to switch health policies than elderly people with poorer health (Boonen, Laske-

Aldershof, & Schut, 2016; De Jong, Van den Brink-Muinen, & Groenewegen, 2008; 

Duijmelinck, & van de Ven, 2016). Results about gender differences are more ambiguous, as 

women were found to be less likely to switch health insurer (Hendriks et al., 2010) and, at the 

same time, they are more inclined to search for information about the different policies 

(Rademakers et al., 2014). These findings show a bit of the disunity in switching behavior of 

Dutch consumers.  
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To predict switching behavior of customers, differences in demographics do not appear 

to provide sufficient information. The distinctions found in groups of consumers switching 

policy are set in a different perspective by the study of Hendriks et al. (2010). The rate of 

consumers switching health policies is consistent over different groups at 31%, but only when 

people intend to switch. Consumers differ in their intention to switch, but not in the conversion 

to actual switching behavior. For that reason, it is important to look at possible bumps in the 

road towards formulating the intention to switch health insurance when looking to predict 

switching behavior.  

Defining the construct of having the intention to switch is not a clear-cut task. Recent 

literature finds no support for critical reflection on price and service quality by customers, even 

though an active role of the consumer is an important aspect of the new health insurance system 

(De Jong, Van den Brink-Muinen, & Groenewegen, 2008). It is found that consumers rather 

hand over the switching to a group purchasing organization, because of lower transaction costs 

for the individual (Lako et al., 2011). Furthermore, the number of choice options, the available 

information, and the possibility to switch via the internet are other reasons not to switch health 

insurer (Duijmelinck, Mosca, & van de Ven, 2015). However, when individuals search for 

health plan information, their likelihood of switching increases as well as their sensitivity to 

price (Boonen et al., 2016). Therefore, the searching behavior from customers seems to be 

closely linked to the intention to switch. In this thesis, consumers that actively search for 

information and compare different policies are considered to have the intention to switch. 

Hence, completely satisfied consumers have no interest in searching for information on 

alternative policies.  

Defining switching behavior is more straightforward. In 2017, customers had a choice 

between 24 different health insurers (Romp & Merckx, 2017). For the definitions of switching 

between these insurers, this thesis will use the definition of the Dutch Healthcare Authority. 

They consider a consumer to be switching when he or she changes health insurance provider, 

only changing to a different package from the same insurance company is not considered 

“switching” (Nederlandse Zorgautoriteit, 2016).  

Understanding the conversion from the intention to switch to actual switching behavior 

is important. Theory of planned behavior describes perceived behavioral control as an important 

aspect of the intention towards a certain action (Ajzen, 2002). Lesser perceived behavioral 

control over switching behavior can be experienced by consumers when they face barriers in 

their intention to switch, like the time and effort needed to find alternative policies and the 

uncertainty about the quality of service from the new insurance (Hendriks et al., 2010). 
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Research from the US’ health insurance market supports the finding that perceived behavioral 

control is a valuable predictor for the way consumers process information in their search of new 

health insurance, as well as assistance in choosing the right policy (Han & Urmie, 2017). 

Assistance comes from knowledgeable experts that provide counselling via websites or over 

the phone. When consumers perceive that the benefits outweigh the costs of changing health 

policy, actual switching occurs (Duijmelinck, Mosca, & van de Ven, 2015). Therefore, 

perceived behavior control and assistance from experts are important conditions for converting 

the switching intentions into actual switching behavior.  
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3. Methods  

In this section, multiple data sources are described that are used to construct a data set. 

The steps towards building the final data set for the experiments are defined and the 

mathematical models are introduced that are trained for the classification task of this thesis.  

3.1 The data  

The data that is received from the company comes in a variety of forms and in different 

files. Most importantly, 173,416 call center calls are recorded and provided by the company. 

Furthermore, internal planning data and additional characteristics of the call and the customer 

is provided as meta data. 

3.1.1 Speech data  

The company has recorded calls from their call center in the period from September 23, 

2016, till January 3, 2017. The distribution of different all the calls in this period is visualized 

in figure 5.  

Figure 5, distribution of call center calls from 23-09-2016 till 03-10-2017.  

All the recordings are stored in folders per day, which contain folders of hours per day 

(for example 09:00 – 10:00). Each individual call comes as a .wav audio file, with a unique 

filename, an example given: “094543086ZxO&^1018_+33.012.wav”. This filename consists 

of some meaningful sub-parts. The numbers “094543086” from the example refer to the time 

of the day that the call was recorded, accurate in tens of microseconds (10-5th second). 

Furthermore, the “O” refers to an outbound call, “1018” refers to the workstation from where 

the call was recorded and “33.012” refers to the length of the conversation in seconds (accurate 

till a thousandth of a second).  
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3.1.2 Non-acoustic data  

The meta data on the characteristics of each call and the planning of all workstations is 

provided in two separate files.  The calls’ characteristics consist of a file with 173,416 rows and 

47 columns. From this data, useful features are extracted after deleting 18 columns with 

redundant features. Columns are redundant when they contained duplicate information from 

other rows, contained no values at all, or had inexplicable information like 

“757ac46ede1df0c25”. Additionally, columns were deleted that contained sensitive private 

information from the customer with no value for the analysis (for example the name of the 

customer). The exact features extracted and there meaning are described in section 3.3.  

The planning of the workstations consists of 158,341 rows and 5 columns. This data 

covers the name of the agent, the workstation, the initials of the agent, the product group that 

the agent was assigned to, and the date plus time. The planning covers information from 

October 1, 2016 untill December 31, 2016. For these days, every workstation is connected to 

an agent’s name, a product group, and a time of the day. This information allowed to assign a 

product group to each call center conversation by making use of the date and workstation 

number. Unfortunately, workstation numbers do not correspond to one product group per day. 

It is possible that someone has a call from a different product group in between. An explanation 

for this might be the fact that when the telephone’s exchange capacity is full on one product 

group but has free agents on another, a call can be directed to that free agent from a different 

product group. Forasmuch as the time in the planning, this does unfortunately not correspond 

to the times of the call center calls. For that reason, calls could not be connected to a product 

group by their time on the day. The solution to this is found in assigning the most occurring 

product group per workstation per day to all calls from that day and workstation. This approach 

allows a few calls to be assigned to the wrong product group, though this is only true for a very 

small number of calls because of the reason mentioned above.  

3.2 Constructing the data set  

For the analysis of the calls, not all 173,416 calls will be used. Multiple selection criteria 

contribute to the construction of a subset for the experiments. In the next subsections, all criteria 

are specified and illustrated.  
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3.2.1 Product group 

As stated above, the full data set of 173,416 calls comes from a range of different 

product groups, these need to be limited down to calls about health insurance. Because the 

planning is limited to data from October up to and including December, the data set is reduced 

to this range in dates. The total number of calls that remains is 157,438 (90.8%). Furthermore, 

the planning revealed a total of 2,403 incorrect agent names (for example: “%13668%”). These 

names and all corresponding calls were omitted from the full data set, resulting in a data set of 

130,913 calls (75.5%). In this set, the present product groups are “Auto”, “Bancair Leven”, 

“BZR”, and “Pakket en TP”.  

Figure 6, distribution of the product groups.  

Since the health insurance calls need to be extracted, only the “BZR” calls (about health 

insurance, fire insurance and travel insurance) are selected from the 130,913 calls, leaving 

32,032 conversations (18.5%). From these calls, another selection is made. Calls are selected 

from the health insurance season. Health insurers in the Netherlands are obliged by law to 

publish their premium six weeks before the end of the year (art 17 clause 7, Health Insurance 

Act 2005). In 2016 this meant before November 19. Thereby, as of November 19, 2016, all 

premiums from Dutch health insurers are published, allowing customers to make a fully 

informed comparison. Switching health insurance provider is only possible until December 31. 

The period that allows a customer to effectively compare and change health insurers is from 

the November 19, up to and including the December 31 (also called the health insurance 
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season). Calls from that period are selected for further analysis in this thesis. This leaves 23,155 

conversations in the data set (13.4%).  

3.2.2 Duration of the call  

The duration of the recorded calls varies from 0 to 3,592 seconds, with different 

occurrences for every duration. The distribution of the telephone calls’ duration is visualized 

by figure 7.  

Figure 7, distribution of the calls’ duration in seconds.  

Listening to a sample of the conversations revealed that short calls appeared to be not 

valuable for the analyses. Zero, one, or two seconds is logically not enough to build an 

informative conversation between the customer and the agent. However, a conversation from 

around 30 seconds can already contain valuable information for the analysis. Therefore, the 

right threshold had to be found to conclude which calls should be excluded from the analyses. 

Based on expert knowledge (M. van Os, personal communication, February 14, 2017) and 

insights derived from data exploration, the threshold is set to a minimum duration of 30 seconds. 

This assumption is tested by taking a random sample of 50 calls with a duration of 20 to 30 

seconds from the full data set. Results from the sample show no reasons to change the threshold 

to a shorter duration in seconds, as shown by table 3.  
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Table 3 

Results from calls with a duration of 20 to 30 seconds  

Sample  N Percentage Mean Standard deviation Min Max 

Total calls  50 100% 24.8 4.3 6 30 

Uninformative conversation 35 70% 24.6 4.7 6 30 

Informative conversation 15 30% 25.3 3.1 21 30 

All the calls with a duration of 29 seconds or less were excluded from the analysis, 

resulting in a total set of 20,824 calls (12%) after removing 2,331 short conversations.  

3.2.3 Direction of the call  

The 20,824 calls consist out of inbound and outbound calls, with a division of 14,894 

inbound (71.5%) and 5,916 outbound calls (28.4%). For 14 calls, the direction was not known 

and therefore these calls were omitted from the data set. Characteristics of inbound and 

outbound calls can be different, as found during data exploration. This is also confirmed by 

expert knowledge from the company (M. van Os, personal communication, February 14, 2017). 

Inbound calls always start with a customer calling the company, whereas in outbound calls the 

agent calls a customer and might even never talk to the customer if the phone is not answered. 

This assumption is tested by taking a random sample of 50 outbound calls from the 5,916 total 

of outbound calls. This sample showed that outbound calls are not useful for the analysis, 

because the number of real conversations between an agent and a customer is too low. Frequent 

problems in outbound calls appeared to be agents calling insurance companies, agents leaving 

voicemails to customers, and internal calls of agents calling colleagues. All these defective 

conversations in outbound calls resulted in the exclusion of all outbound calls, leaving 14,894 

inbound calls (8.6%) for the analysis.  

Table 4   

Results from the outbound call sample 

Sample  N Percentage 

Total calls  50 100% 

Informative calls  23 46% 

Uninformative calls   27 54% 

Call to other company  10 20% 

Voicemail from customer 7 14% 

Internal call  5 10% 
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3.2.4 Data about the customer  

From the 14,894 calls, a further selection is made based on the availability of more data 

from the caller. This data was found in the company’s customer database. The telephone 

number from which the call was made connects the call to the customer’s profile from which 

the data could be retrieved. Not all phone numbers were recognized in the company’s database. 

Only when a caller has been a customer before, is a current customer, or has a contract with a 

future start date, a profile in the company’s database could be found.  

Since this thesis focusses on switching behavior, first time insured should be excluded 

from the analysis. That means that every 18-year-old (at that age people are legally bound to 

have their own health insurance) is removed from the data set, leaving 3,887 (2.2% of the total 

recorded) calls for the final analysis. The birthdate from the caller was used to calculate the age. 

This is done by dividing the number of weeks from the caller’s birthdate by 52.25 and rounding 

it to the lowest whole number.  

3.3 Features from meta data 

The meta data that is provided by the company is used for more purposes than 

constructing the final data set. The non-audio data that was provided from the customer 

database also adds features to the data set that can be used for the classification task. From the 

customer’s profile, valuable data was retrieved: birthdate and gender.  

Five non-acoustic features in total are derived from the meta data: the duration of the 

call, the hour of the day the call was made, the customer’s gender, the customer’s age, the 

number of days till the deadline of the health insurance season, and the target feature of this 

research. That is the binary feature indicating if a customer has switched health insurance or 

not.  

3.4 Acoustic features  

To analyze the speech from the selected calls, acoustic features are extracted. The first 

step in this procedure is selecting the right short time window for the analysis, called a thin 

slice. Afterwards, features are extracted and high statistical functions calculated from them.  

3.4.1 Thin slices  

A short section from each conversation is taken for analysis: a thin slice. Support for 

taking thin slices is found in widely used speech databases for speech and emotion recognition. 

These databases are built out of audio fragments of a few seconds (Schuller, Steidl, & Batliner, 

2009; Schuller et al., 2010) or only one sentence (Burkhardt et al., 2005; Bänziger, Mortillaro, 

& Scherer, 2012; Grimm, Kroschel, & Narayanan, 2008). Whereas these databases hold short 

recordings in their full length, other research uses the same approach as this thesis. Segments 
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were used with a fixed length, meaning that a longer signal was cut down to a certain time limit 

(Povolny et al., 2016). More general, thin slices were found to have an important predictive 

value in social psychology (Ambady, Bernieri, & Richeson, 2000). 

Before any thin slice was taken, the right time window in the selected calls should be 

found. A hundred calls were selected randomly from the 3,887 recordings. These calls were 

manually listened to with the purpose of establishing the common structure of an inbound call 

and the time that each distinctive part of the call lasted on average. Six distinctive segments 

were found in the structure of the calls: the introduction of the agent, the introduction of the 

customer, main question from the customer, exchange of information and answering the 

question, conclusion, and the ending.  

Figure 8, An example structure of a call with a duration of 120 seconds.  

The focus of this thesis is on the conclusion of the conversation. This section was found 

to be the crux of the whole call since the agent gives the final solution on the questions from 

the customer. On average, the conclusion took 9 seconds (standard deviation = 6.24 seconds), 

as well as the ending of the call (standard deviation = 7.00 seconds). For the thin slice, the 

chosen time window is calculated by starting at the end of the conversation. Accordingly, the 

start of the thin slice is -14 seconds and the end is -9 seconds (total length of 5 seconds), as it 

aims at selecting the end of the conclusion from the call. The full structure and selection of the 

thin slice is graphically displayed in figure 8.  

Another random sample of 100 recording was taken to check the proportion of speech 

from the agent and the customer in the conclusion (results of the sample can be found in table 

A1 in Appendix I). Results revealed that in the conclusion, on average, both the agent and the 

customer were present. Furthermore, some calls did not have a clear conclusion, for example, 

because the customer was connected to another agent. 
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3.4.2 Acoustic feature extraction  

Acoustic features were extracted by making use of the COVAREP toolbox (Degottex et 

al., 2014). The COVAREP project aims at more reproducible research in the field of voice 

analysis by making state-of-the-art algorithms for feature extraction freely available. Their 

extraction methods are chosen for pitch and intensity in this research. The work of Pandit (2015) 

was used for extracting the MFCC. The basic structure of Pandit’s MFCC extraction is very 

much related to the approach from the COVAREP project. Octave (an open source Matlab tool) 

is used for the feature extraction since the extraction algorithms from COVAREP and Pandit 

are provided in this coding language.  

3.4.3 High-level statistical functions  

High-level statistical functions (HSFs) are calculated from the low-level descriptors, 

being the basic extracted prosodic features (pitch and intensity) and the spectral features 

(MFCC’s). The raw values that are derived from the feature extraction hold a short-time 

temporal structure, for example, a pitch value is derived every 100th of a second. The functions 

or HSFs that are calculated have a long-time or supra-segmental time structure because they 

hold values for the entire utterance (Anagnostopoulos et al., 2015). Predictive value rather lies 

within utterance or frame wise variations than in static short-term LLDs (Anagnostopoulos et 

al., 2015; Mirsamadi, Barsoum, & Zhang, 2017). Therefore, the final data set consists of many 

HSFs, that describe the temporal variations and contours of the LLD’s at the thin slices level.  

3.4.3.1 Pitch HSFs  

The extraction of the raw pitch values itself is done every 100th of a second for the full 

5-second-length of the thin slice, resulting in 500 pitch values. Global and local statistics are 

calculated from the raw pitch values because the most explanatory features from pitch values 

are found to be the continuous variations (Busso, Lee, & Narayanan, 2009). Global calculated 

values are: mean, minimum, maximum, range, delta, standard deviation, skewness, and kurtosis 

(Anagnostopoulos et al., 2015; Busso, Lee, & Narayanan, 2009). Local statistics are calculated 

per frame; each frame holds 10 raw pitch values. The mean per frame is taken and the 

differences between each two-consecutive means calculated. A list of all these differences is 

taken and from those values, the mean, minimum, maximum, range and standard deviation are 

calculated (as used by Anagnostopoulos, & Iliou, 2010). Besides, the mean interquartile range 

is calculated by detracting the 25th percentile from the 75th percentile of all the frame means. In 

a similar procedure, the interquartile ranges from the minima and maxima are calculated from 

lists of all local minima and local maxima.  
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3.4.3.2 Intensity HSFs  

Intensity is retrieved from the raw signal with an output value for every 1000th of a 

second. The HSFs that are taken from these values for every thin slice are: minimum, maximum, 

delta, range, standard deviation, and the signal to noise ratio (Mirsamadi, Barsoum, & Zhang, 

2017; Anagnostopoulos et al., 2015). This measure is the proportion of true signal in the thin 

slice compared to noise. Sound with an intensity lower than 35 dB is handled as noise and 

everything above 35 dB is taken as part of the true signal in this calculation. Each of the 

statistical functions is calculated over the global signal, giving a total of six HSFs that are 

calculated from the intensity of the thin slice.  

3.4.3.3 MFCC HSFs  

From the recordings, 12 MFCCs are retrieved and HSFs are calculated per coefficient. 

As done for the pitch and intensity measures, the MFCCs’ HSFs are calculated from the raw 

values of the coefficients, also known as the energy measures. Each thin slice had a 500 by 13 

output matrix consisting of 500 vectors with the 0th till the 12th coefficient for every frame of 

the MFCC extraction. As described before, the 0th coefficient (or power) is excluded in this 

research and therefore a 500 by 12 output matrix remains for every thin slice. The HSFs are 

calculated per coefficient and over the 500 frames for every file. In total, seven HSFs are 

calculated: mean, minimum, maximum, median, delta, range, and standard deviation. This 

results in a total of 84 features that are added to the total data set by the MFCC calculations.  

Comparing the deltas between the vectors of MFCCs is an often-used approach, but 

probably most suitable for detailed prediction tasks like voice recognition. For a rather robust 

task like categorizing audio fragments, summarizing the sequence of MFCC vectors and 

calculating HSFs over them can be more applicable. A related approach is used to label real-

life call center audio as negative or positive in emotions in previous research, indicating the 

usability of this method (Vaudable & Devillers, 2012).  

3.5 Algorithms    

Different classifying algorithms are trained to distinct patterns in the data. This 

subsection describes the chosen models and their proven value in applications from other 

researches with similar data sources. Multiple factors are considered for the choice of the 

classifiers. First, the tolerance of high dimensionality affects the performance of classifiers. 

This problem is often worked around by applying feature selection, but it also relates to 

classification performances. Some algorithms proved to work well on real-life speech data, but 

did still suffer from an increasing number of features, like the k-nearest neighbor algorithm for 

example. Support vector machines are supposed as the answer to this problem (Schuller et al., 
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2010). Thereafter, an algorithm’s capability of being applied to a smaller data set should also 

be considered. Naïve Bayes is often chosen when researchers deal with small data sets. At last, 

the skewness of classes in the data can also affect the classification performance of an 

algorithm. Support vector machines might benefit from this for example (Eyben et al., 2016).  

When all the characteristics of the data are evaluated, different types of classifiers can 

be chosen. Linear classifiers base their decision on the linear product from the feature vectors, 

while non-linear classifiers use a weighted combination of the values from the feature vectors. 

These non-linear classifiers come with a risk of overfitting, due to many dimensions of freedom 

(Koolagudi & Rao, 2012). The chosen model should fully depend on the nature of the data. In 

real-world settings, like the speech data from this thesis, the nature of the data is not known and 

therefore a broad approach where multiple algorithms are tested is used. This method supports 

the preliminary character of this thesis in the existing body of literature.  

  

 

 

 

 

  

 

Figure 4. Types of classifiers  

3.5.1 Naïve Bayes  

The naïve Bayes algorithm is a popular algorithm in data mining, especially when it 

comes to text classification. This classifier assumes that all the independent variables are 

independent of each other, an assumption that is often not true in real-life situations. However, 

the naïve Bayes model has proven high performance in complex real-world situations (Rish, 

2001). On top of that, it performs well with a small number of training instances and 

implementation is rather simple. The logic within the algorithm makes use of the conditional 

probability and assigns the most likely class to an unseen instance based on its feature vector. 

This classifier is often used as a baseline to benchmark the performances of other algorithms 

against.  

3.5.2 K-nearest neighbor 

The k-nearest neighbor algorithm (k-NN) places all instances in a multi-dimensional 

space and assigns unclassified points to the same classification as the nearest sample point that 

is already classified. It is assumed that classified observations that are close together belong to 
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the same class since the distribution of all points is independent and based on the feature values. 

Therefore, it is reasonable to expect that data points that are close in the multidimensional space 

have similar feature values increasing the probability to belong to the same class (Cover & Hart, 

1967). The distance between the data points is often measured in Euclidian distance, but other 

measures are also possible. Tuning of the k-NN algorithm is done by adjusting the value for k, 

meaning that a different number of neighbors is considered when an unclassified data point is 

predicted a class label. Nowadays, like naïve Bayes, the k-NN classifier is often used as a 

benchmark or baseline model to compare the performance of other models against.  

3.5.3 Linear discriminant analysis  

Linear Discriminant Analysis (LDA) is a widely-used algorithm for both classification 

and dimensionality reduction. The model creates new axes that explain the variance of the data 

points, maximizing the variation between classes and minimizing variation within classes. It 

operates like principal component analysis (PCA), but, in contrast to PCA, LDA maximizes the 

distance between two classes of data points whereas PCA finds new axes that explain most of 

the variance. With LDA, categories in the data are separated by plotting it on a two-dimensional 

scale. In speech recognition research, LDA has been used for classification (Balakrishnama & 

Ganapathiraju, 1998). 

3.5.4 Support vector machines  

The most widely chosen classifier in acoustic speech research are support vector 

machines (SVM) (Eyben et al., 2016). These can be both a linear and a non-linear classifier, 

depending on the kernel that is used to separate the different classes. It is assumed that there is 

a hyperplane between the different classes that separates the data points. The data points that 

are on the edge of the hyperplane are called the support vectors, these help to determine the 

shape of the hyperplane. The algorithm looks to optimize the perpendicular distance from the 

support vectors to the center of the hyperplane. As a linear classifier, the support vector 

algorithm looks for the largest possible distance between the two classes (Burges, 1998). Non-

linear applications of support vector machines make use of roughly the same principle, only 

they map the data into an infinite dimensional space and look for more complex hyperplane 

structures. This thesis only applies linear SVM models.  

SVMs can be tuned by using different values for the complexity measure cost or C. This 

value can be varied to optimize the performance of the classifier. The value for C determines 

the penalty that is assigned to errors, being data points that are not separated correctly by the 

position and size of the hyperplanes (Burges, 1998). Furthermore, it is important when applying 

an SVM to a data set to normalize the data (Eyben et al., 2016).  
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3.6 Explorative data analysis  

In total, 114 features are used for the prediction task in this thesis. Table 5 displays an 

overview of all features that are used in this research. Appendix II holds a more extensive table 

that shows the name and type of all features. Mean values and standard deviations of all the 

continuous variables are disclosed as well. Besides, Appendix III holds distribution plots of all 

the features that were obtained from the meta data.  

For the 108 acoustic features and their high-level statistical functions, a similar table is 

displayed in Appendix II, showing the minimum, median, mean, and maximum values per 

feature. The most important variation between switching and non-switching customers is 

discussed. 

The first non-acoustic feature to be discussed is the duration of the call, which is 

measured in seconds. Most of the calls have a duration between one and three minutes, but the 

average is shifted to more than 6 minutes (380.6 seconds) due to high outliers increasing to a 

maximum of almost one hour (3592 seconds). An important finding that can be derived from 

Table 5   

Features in the data set 

Category  Number of features Features 

Acoustic  108 18 Pitch features, 6 Intensity features, and 84 

Mel-Frequency Cepstral Coefficient features 

Non-acoustic 5 Duration, Hour of the day, Gender, Age, Days 

till deadline 

Target  1 Switched 

Total 114  

Table 6     

Difference between switching and non-switching customers, for the 

non-acoustic continuous features 

  

Feature name Min Median Mean Max 

durationInSeconds_switched 30 309.5 507.60 3592 

durationInSeconds_not_switched 30 175.0 294.50 3592 

age_switched 19 36.0 39.64 91 

age_not_switched 19 36.0 39.26 96 

daysTillDeadline_switched 0 3.0 10.24 42 

daysTillDeadline_not_switched 0 11.0 14.57 42 
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table 6 is that customers that switched from health insurance have on average longer calls with 

the company than customers that do not switch. Figure 9 shows that calls over 8 minutes (480 

seconds) are more likely to come from switching customers, the outliers are also from that same 

group of customers which skews their average call duration.  

Figure 9, call duration in seconds for both classes of the target feature.  

The second non-acoustic feature is the age of the customer, which shows no big diversity 

between both groups of customers. There are some specific ages where a higher number of     

Figure 10, the age of the customer for both classes of the target feature.  
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customers switched insurer than not (like age 53), but these can be considered as random 

coincidences. The general trend shows a big peak between 26 and 28, with a gradually 

decreasing graph to a maximum age of 96. Table 7 shows similar results, with a slightly higher 

mean age for switching customers with an even lower maximum. However, this is still a small 

difference.  

The number of days till the deadline of the health insurance season is the third feature 

in this explorative data analysis that is considered. The statistical differences between the two 

groups of customers (switching and non-switching) reveal that, on average, calls from 

customers that switched take place closer to the deadline of December 31. Figure 11 exhibits 

the line graphs for both classes of customers and the combined total line, revealing that most of 

the calls take place in the last five days before the deadline. From December 29, onward, more 

calls from switching customers are recorded than vice versa.  

Figure 11, number of days till the health insurance season’s deadline per group of customers 

and total.   
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Another pattern seems to emerge from the “Total” line in figure 11 as well, it looks like 

a seven-day week rhythm is recognized. The dates of each call are converted to get insight into 

the number of calls per day of the week. Figure 12 reveals that, although most calls are made                

Figure 12, the day of the week and the number of calls for both classes of the target feature 

on working days, a bigger share from all the weekend calls comes from customers that switched 

health insurer. Besides weekend days and the last days before the deadline, also specific hours 

of the day are more likely to hold calls from customers that switched. Figure 13 shows that 

between the hours 11:00 and 17:00 relatively many calls are recorded from customers who 

switched, compared to the hours in the morning and evening (08:00 – 11:00 and 17:00 – 21:00). 

In the last five days before the deadline on December the 31st, the company extends the call 

center’s opening hours. In these late-night calls, even more customers switched health insurance 

than not.  

 Figure 13, the number of calls per hour of the day for both classes of the target feature. 
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Another feature about the customer that is considered is the gender. The different 

switching behavior per gender is visible in figure 14, revealing that although most of the callers 

are men, a bigger share of all the women switched.   

Figure 14, the gender of the customer, split by the number of switched and non-switched callers.  

Finally, the target feature shows a split between 40.4% of the customers switching from 

health insurer and 59.6% that do not switch. The distribution of the target variable is relatively 

balanced, which is important for the performance of some of the algorithms that are known to 

suffer from class imbalance (for example: support vector machines).  

Figure 15, split between the number of switched and not switched customers 
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The explorative data analysis also provides a better understanding of the acoustic 

features. The descriptive statistics from the acoustic features are disclosed in Appendix II. They 

indicate a high average diversity of acoustic values within each thin slice. Examples from that 

are the relatively high standard deviation for the mean pitch values (30.3) and the high standard 

deviation on the delta of the intensity (60.8). The high mean range of intensity (18.98) suggests 

a variation of intensity within the thin slice. The statistics from MFCC values also indicate 

diversity within the thin slices, because the mean range is rather high for each coefficient (from 

3.6 to 12.44). As well, the standard deviation of the deltas for each coefficient is also high, 

which might point out that calls differ a lot from each other. About the MFCC values can be 

noted that the mean ranges and the standard deviations of the ranges decrease when the 

coefficients increase. This suggests that the biggest differences within and between the calls are 

expressed in the lower MFCC coefficients. As indicated in subsection 3.4.3.3, for robust 

classification tasks, lower MFCCs might have more predictive value than higher MFCCs.  

After assessing the statistics from the acoustic features, the data set is split into two sets. 

One contains all customers that did switch health insurance and the other data set contains all 

the customers that did not switch. As the general statistics from the acoustic features already 

highlighted, there seems to be strong variety within and between the thin slices from the calls. 

The split of the data into the two classes of the output feature can reveal if the variance in the 

data is explained by separating switching and non-switching customers or that the diversity of 

the feature values is more widespread through the data set. Appendix IV holds double boxplots 

for all the 108 acoustic features, one boxplot for switching customers and one boxplot for non-

switching customers. This allows for a direct comparison between the two classes. On top of 

that, appendix V displays the difference in statistical values for both classes of the target feature. 

These boxplots and statistical numbers together help to better understand the distinctive 

capacity of the data to discriminate between acoustic speech characteristics from both types of 

customers. The findings are discussed per group of acoustic features: pitch features, intensity 

features and MFCC features.  

When looking at the pitch features’ boxplots, the first learning is that the mean values 

for switching and non-switching customers are very close together. The size of the whiskers is 

rather small and appears to be equal for both plots per feature, indicating low variability. 

However, there is more difference between the lowest and the highest value for F0 in the calls, 

which is visible in the longer whiskers form the delta_F0 feature. The boxplots show almost 

identical plots per pitch feature, the only alteration is in the outliers. These findings are 

confirmed by table AV.1 in Appendix V.  
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The boxplots for the intensity features present similar patterns as the pitch features do. 

The means appear to be identical for both groups of customers, more variability is found in the 

minima, deltas and ranges of the intensity. Besides, the maximum values for the intensity show 

very strong outliers to their lowest values. It can be stated there is no clear distinctiveness in 

the intensity features, based on this data exploration.  

Lastly, the boxplots and statistical numbers for the MFCC features are assessed. As for 

the pitch and intensity features, the mean values are almost identical between the two plots per 

feature. The numerical values in the table from appendix V reveals that there is some difference, 

though very small. The MFCC features display rather small variability in their boxplots, except 

for outliers in their deltas.  
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4. Experimental procedure  

The classification task, which is at the core of this thesis, is performed in five distinct 

experiments. This section describes how data is split into train and test sets, the experimental 

procedures within each experiment, and the evaluation criteria that are used to measure the 

effectiveness of each model.  

4.1 Data splitting  

The full data set of 3,887 instances is split into an 80% train set (3,110 instances) and a 

20% test set (777 instances). While splitting the data randomly in two sets, the target variable’s 

class distribution is kept constant for both data sets (59.6% not switching). Validation scores 

from the applied models are derived by using 5-Fold cross-validation. In this process, train and 

validation data is separated five times in an 80% - 20% separation, so that all data points are 

used for validation exactly once. The error estimation is averaged over all the 5 folds to get the 

effectiveness score of the model. That output is used to tune applied algorithms and choose the 

best performing one before applying it to test data.  

4.2 Experiments  

This thesis consists of five experiments, each experiment using a different feature set. 

The size of a data set is important because the combination of different features holds predictive 

value and chances of including the right features increases (Eyben, Batliner, & Schuller, 2010). 

On the contrary, selecting the right features can be important in speech research. This would 

best be determined by findings in literature from previous studies within similar contexts. 

However, since this research is applied in a new setting, using real-life data, there is no best 

feature set that can be derived from previous research. Even though standard sets of parameters 

are proposed (e.g. Eyben et al., 2016), they are not inevitably applicable to all other related 

research settings and the perfect set has not been found yet (Anagnostopoulos, Iliou, & 

Giannoukos, 2015). For those reasons, no definite feature selection is performed in this 

research.  

Five feature sets are built up in sequential steps, increasing the share of acoustic features 

in every step. In the first experiment, only features from meta data are used to train a predictive 

model. As subsection 2.4 highlighted, customer characteristics might already hold predictive 

power and therefore features from meta data are taken as a first feature set. Pitch and intensity 

features are added to the feature set in the second experiment. Thereafter the MFCC features 

are added in the third experiment and algorithms are trained on the full data set. In experiment 

four and five, the features from meta data are excluded to research the predictive power of 

models trained on acoustic features only, in line with the approach of more traditional studies 
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on emotion recognition from acted speech databases (e.g. El Ayadi, Kamel, & Karray, 2011). 

Experiment four consists of prosodic features only as pitch and intensity are, compared to 

MFCCs, relatively easy to extract and analyze and are therefore added before MFCC features. 

Besides this rather practical argument, prosodic features have a strong proven scientific record 

of classifying speech utterances (Scherer, 2003; Goudbeek & Scherer, 2010). The fifth and final 

experiment consists of a feature set from all acoustic features and therefore MFCC features are 

added to test the discriminative potential of acoustic features only. An overview of the features 

used is provided in table 7. 

Within each experiment, the same methodological setup is executed. Data pre-

processing is an important first step in this experimental setup. The large differences in feature 

ranges can be unfavorable for the performance of predictive models because it results in an 

unbalanced vector space. Normalizing the features’ range is the solution that is used (Guyon & 

Elisseeff, 2003). Two often used methods are applied in each experiment: z-scores and min-

max normalization. Z-scores are a widely recognized method in statistics whereas min-max 

normalization linearly transforms data by using the minimum and maximum values from a 

feature to range all values to new values between zero and one (Al Shalabi, Shaaban, & 

Kasasbeh, 2006).  

While normalization provides solutions to the unbalanced vector space, the relatively 

big number of features might also lead to poor performance. To reduce the dimensional 

complexity, dimensionality reduction is performed by applying principal component analysis 

(PCA). This technique looks to summarize the variance of all features in newly created 

components. Application of PCA is done before cross-validation and after normalization to 

prevent for overfitting.  

Table 7     

Five experiments and the feature sets used   

Experiment Features used 

Experiment 1 5 non-acoustic features 

Experiment 2 5 non-acoustic features, 16 pitch features, and 6 intensity features 

Experiment 3 5 non-acoustic features, 16 pitch features, 6 intensity features, and 84 

MFCC features 

Experiment 4 16 pitch features and 6 intensity features 

Experiment 5 16 pitch features, 6 intensity features, and 84 MFCC features 
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The validation scores in each experiment are collected in five distinct steps to find the 

optimal pre-processing and normalization. The steps are:  

1. Raw features without pre-processing  

2. Features are normalized using z-scores  

3. Features are normalized using min-max normalization  

4. Features are normalized using z-scores and PCA is applied 

5. Features are normalized using min-max normalization and PCA is applied 

Within each experiment, four algorithms are applied to the data set and validation scores 

reported. The four models used are the naïve Bayes, k-NN, LDA, and linear SVM (as described 

in section 3.5). All experiments are executed using the caret package in R, the packages that 

are used for the algorithms are (k-NN is included in the caret package):   

- MASS (for LDA)  

- naivebayes (for Naïve Bayes) 

- kernlab (for SVM)  

Algorithms are trained using the standard tuneLength functionality in caret which is kept 

constant at a value of ten. For k-NN, that only has “k” as tuning parameter, this means that the 

following values for k are used: 5, 7, 9, 11, 13, 15, 17, 19, 21, 23. The naïve Bayes algorithm 

has three tuning parameters: “useKernel” which allows for a kernel density estimate instead of 

Gaussian density estimate for continuous features and is set to true or false, “adjust” which 

allows to adjust the width of the kernel density that can be set to 0 or 1, and “fl” which allows 

the use of the Laplance smoother by retrieving 0 or 1. LDA has only “dimen” as a tuning 

parameter when the MASS package is used which is held at one, meaning that only one linear 

combination of predictors or discriminant function is created. The SVM classifier is tuned by 

changing the values for “C” or the cost. The values that are used for the cost are: 0.25, 0.5, 1, 

2, 4, 8, 16, 32, 64, 128. These tuning options are kept constant over all experiments and methods 

of pre-processing.  

4.3 Evaluation criteria  

Choosing the right evaluation criteria is determined by the structure of the data set, the 

field of research, and the prediction task at hand. To effectively assess the algorithms’ scores, 

a confusion matrix is considered. All predicted labels, both correct and incorrect, are displayed 

in the confusion matrix in table 8. True positive labels refer to instances that were correctly 

classified as positive examples and true negative labels are correctly classified as negative 

examples. False positive instances are labelled by the classifier as positive but are negative 

examples. The same logic applies vice versa to the false negative examples.  
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Table 8 

Confusion matrix 

  

 Predicted Yes Predicted No 

Actual Yes True positive (TP) False negative (FN) 

Actual No False positive (FP) True negative (TN)  

 The performance of a classifier can be represented by various evaluation criteria, each 

optimizing for different capabilities of the algorithm. For example, the ability to correctly 

identify classes, reduce failure or the overall ability to discriminate between classes. Currently, 

classifiers are mainly optimized by making use of accuracy scores. This method makes no 

difference between correct classification into one of the classes, any correct score is improving 

the accuracy (Sokolova, Japkowicz & Szpakowicz, 2006). It provides an easily interpretable 

performance indicator that shows the ability to correctly classify unseen instances. Purpose of 

the evaluation is to compare algorithms and to research the relevance to a specific field of 

research (Sokolova et al., 2006). However, the ability to distinguish between classes can be 

relevant, especially when there is a big class imbalance, costs of misclassification are not 

known, or when collecting data is difficult and labor intensive. Criteria that distinct between 

correctly classifying in one of the classes are sensitivity and specificity. The relationship 

between the correctly labelled positive and correctly labelled negative instances is visualized 

by the Receiver Operating Characteristic (ROC). The curve consists of many points, each 

representing a classifier’s performance with a specific class distribution. The total area under 

the curve is taken as the general measurement for an algorithm’s performance. Its value holds 

the predicted probability that any randomly selected positive instance has a higher chance of 

being labelled as positive than negative.  The ROC curve was found to hold more discriminative 

power than accuracy on real-world data (Huang & Ling, 2005). 

 An important goal of real-world machine learning applications is increasing profits and 

decreasing costs. The classification that is optimized using accuracy assumes equal costs for 

false classified instances, but in real world situations, this is often not the case. On top of that, 

class distributions are often different between real-world situations and existing benchmark 

data sets. Comparing accuracy scores from test environments might, therefore, say little about 

performance on real-world tasks (Provost, Fawcett, & Kohavi, 1998). ROC curves, on the 

contrary, describe the best performing model independent of misclassification costs and class 

distributions, making it very suitable for building models for real-world applications.  
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 An example scenario is considered by Huang and Ling (2005), where real-world models 

are applied to a direct marketing campaign. When models are optimized for accuracy, the profit 

is determined by the percentage of correctly classified buyers and all predicted buyers should 

be targeted. However, in many real-world examples, only a top percentage of the predicted 

buyers is approached. Mean profit is found to be higher for models optimized by ROC than for 

accuracy in those examples. For that reason, optimizing models using the ROC curve could be 

more valuable in real-world examples than using accuracy.  

Within this thesis, models’ performances will be evaluated both on accuracy as on ROC 

scores. Because the most important purpose of model evaluations is to compare algorithms and 

to research the relevance to a specific field of research, accuracy is the first score that is looked 

at (Sokolova et al., 2006). However, ROC can be a strong indicator of performance in practical 

applications, as shown by the case of Huang and Ling (2005), and is therefore also considered.  
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5. Results  

In this section, training results from cross-validation are displayed and discussed per 

experiment and thereafter results on the holdout test set are discussed. Before any experiment 

results, the baseline scores are reported and expressed both as for accuracy and ROC. The 

baseline is retrieved by using the Zero Rule (ZeroR) classifier, this algorithm simply predicts 

all instances to be of the majority class. As there are 1852 negative instances in the training set 

and 1258 positive, the accuracy can be calculated by:  

1852
1852 + 1258

= 0.595 

The ROC for the ZeroR classifier is of course 0.5 because the sensitivity equals 0 and the 

specificity equals 1. Hence, the area under the curve (and therefore the ROC with this 

distribution) is 0.5. The scores from this classifier are used as a baseline to benchmark other 

algorithms’ performances against. A complete table of all training scores from cross-validation 

is included in Appendix VI. For completeness and transparency, all training scores from cross-

validation are discussed per experiment and the results on the holdout test set are discussed 

thereafter.  

5.1 Experiment 1 cross-validation results 

 In the first experiment, validation scores are collected using the 5 non-acoustic features 

and in the five experiment steps as explained in section 4.2. Table 9 displays the training results 

of the first experiment reported in both accuracy and ROC scores.  

Table 9 

Experiment 1, training results on cross-validation 

Pre-

processing 

Naïve Bayes k-NN LDA SVM 

accuracy ROC accuracy ROC accuracy  ROC accuracy ROC 

none 0.621 0.683 0.645 0.651 0.649 0.673 0.651 0.667 

z-scores 0.624 0.683 0.647 0.648 0.657 0.672 0.651 0.672 

min-max 0.610 0.685 0.627 0.625 0.651 0.675 0.653 0.671 

z-scores + 

PCA 

0.588 0.681 0.649 0.646 0.655 0.674 0.651 0.668 

min-max + 

PCA  

0.599 0.659 0.626 0.623 0.657 0.673 0.651 0.671 

When training the classifiers, all models outperform the ZeroR baseline on accuracy and 

ROC. There is a difference though, between reported classifier’s performance in accuracy and 
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in ROC. Performance of the models expressed in accuracy scores has a lower relative 

performance compared to ROC, especially for naïve Bayes, LDA and SVM. This indicates that 

these algorithms are better capable of ranking positive instances higher than negative instances, 

but have more difficulty selecting a threshold to classify instances to a specific class. Naïve 

Bayes applied on z-scores and PCA seems to be most affected by this, with accuracy 

performance at 0.588 and ROC at 0.681. The best overall ROC score (ROC = 0.685) is achieved 

by naïve Bayes with min-max normalization, kernel density estimate was used. The highest 

accuracy score (accuracy = 0.657) is achieved by the LDA classifier on both min-max 

normalization with PCA and z-scores, scoring 6.2 percentage points above the baseline. 

Therefore, LDA trained on z-scores data from this experiment will be the model applied to test 

data. Little variance between the scores for the different pre-processing methods is found per 

classifier. PCA was not expected to improve the performance of this small feature set since the 

number of components is not reduced.  

5.2 Experiment 2 cross-validation results 

In the second experiment, validation scores are collected using 5 non-acoustic features, 

18 pitch features, and 6 intensity features. The same five experimental steps are applied as in 

the first experiment. Table 10 displays the training results of cross-validation in the second 

experiment, reported in both accuracy and ROC scores. 

Table 10 

Experiment 2, training results on cross-validation 

Pre-

processing 

Naïve Bayes k-NN LDA SVM 

accuracy ROC accuracy ROC accuracy  ROC accuracy ROC 

none 0.614 0.632 0.632 0.617 0.658 0.671 0.650 0.662 

z-scores 0.608 0.647 0.625 0.602 0.652 0.667 0.650 0.669 

min-max 0.610 0.640 0.615 0.602 0.649 0.671 0.648 0.665 

z-scores + 

PCA 

0.606 0.639 0.627 0.600 0.654 0.671 0.652 0.668 

min-max + 

PCA  

0.609 0.636 0.610 0.603 0.653 0.671 0.649 0.664 

All cross-validation results from the classifiers outperform the ZeroR baseline on 

accuracy and ROC. As in the first experiment the algorithms’ scores expressed in ROC display 

a higher relative performance than accuracy scores. This indicates that the models are better in 

making the split between the classes than assigning the right class to an unseen instance. 
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Dimensionality reduction with PCA resulted in a reduction from 27 continuous features to 18 

components, only improving the performance of LDA and SVM. Best training performances 

on accuracy are reported when applying LDA and SVM, with the highest peak by LDA using 

none pre-processed data (accuracy = 0.658). A similar for ROC scores, where LDA and SVM 

outperform the rest. LDA is even just a bit higher on all data sets (ROC = 0.671), except for the 

one with z-scores. In this experiment, there is no general best choice in pre-processing. The 

overall best performing model is LDA applied on the none pre-processed data, which might 

indicate that the algorithms do not suffer from the unbalanced vector space. However, this 

model might overfit by using the differences in vector spaces improperly to its advantage. 

Nevertheless, based on the highest cross-validation scores in ROC and accuracy the LDA model 

trained on none pre-processed data will be applied to the holdout test set.  

5.3 Experiment 3 cross-validation results 

In experiment number three, cross-validation scores are collected using the full feature 

set of 113 acoustic and non-acoustic features. The same five experimental steps are applied as 

in the previous experiments. Table 11 displays the training results of the third experiment, 

reported in both accuracy and ROC scores. 

Table 11 

Experiment 3, training results on cross-validation 

Pre-

processing 

Naïve Bayes k-NN LDA SVM 

accuracy ROC accuracy ROC accuracy  ROC accuracy ROC 

none 0.602 0.632 0.629 0.608 0.642 0.648 0.641 0.655 

z-scores 0.616 0.631 0.597 0.571 0.634 0.656 0.647 0.650 

min-max 0.611 0.640 0.608 0.607 0.634 0.655 0.641 0.658 

z-scores + 

PCA 

0.612 0.635 0.601 0.568 0.650 0.655 0.655 0.665 

min-max + 

PCA  

0.615 0.631 0.619 0.619 0.654 0.658 0.649 0.660 

Cross-validation scores from all the classifiers outperform the ZeroR baseline on 

accuracy and ROC and as in the first two experiments, the algorithm’s scores expressed in ROC 

display a higher relative performance than accuracy scores. LDA and SVM models clearly 

outperform the other two classifiers in this experiment both on accuracy and ROC. Small 

improvement of the scores from LDA and SVM models can be seen when PCA is applied. PCA 

reduces the dimensionality from 111 continuous features to 60 components. Normalization of 
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the data is beneficial for LDA and SVM scores, but the difference between min-max and z-

scores is very small. Naïve Bayes and k-NN might suffer from the high dimensionality, 

although this is only known from k-NN. On the contrary, cross-validation performances do not 

increase after applying PCA. Naïve Bayes is not expected to suffer from the high dimensionality 

due to the assumed independence between the features. The best validation scores from the 

third experiment are achieved with SVM on the data set with set z-scores and PCA applied 

(accuracy = 0.655 and ROC = 0.665), the cost was tuned to 0.5 in the best performing model. 

This model will, therefore, be applied to the test set.  

5.4 Experiment 4 cross-validation results 

In the fourth experiment, cross-validation scores are collected using 18 pitch features 

and 6 intensity features. The same five experimental steps are applied as in the previous 

experiments. Table 12 displays the training results from cross-validation of the fourth 

experiment, reported in both accuracy and ROC scores. 

Table 12 

Experiment 4, training results on cross-validation 

Pre-

processing 

Naïve Bayes k-NN LDA SVM 

accuracy ROC accuracy ROC accuracy  ROC accuracy ROC 

none 0.569 0.512 0.559 0.499 0.595 0.479 0.595 0.515 

z-scores 0.559 0.512 0.555 0.510 0.594 0.485 0.595 0.523 

min-max 0.557 0.510 0.557 0.514 0.595 0.502 0.595 0.514 

z-scores + 

PCA 

0.588 0.498 0.563 0.509 0.595 0.493 0.595 0.514 

min-max + 

PCA  

0.583 0.497 0.550 0.501 0.596 0.489 0.595 0.516 

In contrast to the first three experiments, the cross-validation scores from models 

applied in the fourth experiment do not outperform the ZeroR baseline when it comes to 

accuracy and only exceeds the 0.5 baseline for ROC by a small margin in few instances. LDA 

and SVM models match baseline performances on accuracy and only SVM scores above the 

0.5 baseline with ROC. LDA and SVM probably have their decision boundary on the edge of 

the feature space and therefore assigning same classes to all instances, which matches the ZeroR 

performance. It is not expected that any model from the fourth experiment will outperform the 

baseline when applied to the test data. Therefore, no trained models from the fourth experiment 

will be applied to the test data set. 
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5.5 Experiment 5 cross-validation results 

In the fifth experiment, cross-validation scores are collected using 18 pitch features, 6 

intensity features, and 84 MFCC features. The same five experimental steps are applied as in 

the previous experiments. Table 13 displays the training results from cross-validation of the 

fifth experiment, reported in both accuracy and ROC scores. 

Table 13 

Experiment 5, training results on cross-validation 

Pre-

processing 

Naïve Bayes k-NN LDA SVM 

accuracy ROC accuracy ROC accuracy  ROC accuracy ROC 

none 0.547 0.552 0.558 0.491 0.568 0.518 0.595 0.526 

z-scores 0.547 0.544 0.575 0.516 0.570 0.535 0.595 0.519 

min-max 0.543 0.547 0.564 0.531 0.564 0.524 0.595 0.532 

z-scores + 

PCA 

0.565 0.540 0.562 0.533 0.581 0.532 0.595 0.540 

min-max + 

PCA  

0.562 0.518 0.571 0.536 0.570 0.534 0.595 0.535 

The cross-validation performance of the models trained in the fifth experiment does not 

outperform the ZeroR baseline in accuracy scores. Only the SVM classifier match the accuracy 

scores of the baseline, probably because all instances are assigned to the same class and no real 

separating hyperplane is found. ROC validation scores in the fifth experiment turn out to be 

just over the 0.5 baseline in some cases, but that can be due to some lucky shots. It is not 

expected that any model from the fifth experiment will outperform the baseline when applied 

to the test data. Therefore, no trained models from the fifth experiment will be applied to the 

test data set.  

When all experiments are compared, LDA applied on the data set from the second 

experiment without pre-processing has displayed the highest performance on accuracy (0.658). 

The best ROC score is the achieved by Naïve Bayes (0.685), applied on min-max normalized 

data of the first experiment. LDA has a generally strong performance throughout the 

experiments, whereas k-NN and Naïve Bayes perform best on a small data set. SVM relatively 

has the best cross-validation performance with a high dimensional data set, as in experiment 3. 

SVM benefits from dimensionality reduction with PCA though, as does LDA. The effect of 

PCA is less eminent in experiment 2. The cross-validation scores do not reveal important 

performance differences between normalization with z-scores or min-max. Two of the best 
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performing models make use of z-score normalization, but the difference with min-max scores 

are very small. From the first three experiments, the best model per experiment is applied to the 

holdout test data. 

5.6 Test set results   

The best scoring model from each experiment is applied to the hold out test set if the 

performance is at least above the ZeroR baseline (59.5% accuracy and 0.5 ROC). This means 

that from each of the first three experiments, one model is applied on the test set with the 

relevant features. From experiment 1, the LDA classifier is taken and it is applied to the 

normalized test set with z-scores. The LDA classifier is also used from the second experiment, 

but then applied to the test without pre-processing. From experiment 3, the SVM classifier is 

applied to the normalized test set. The same dimensionality reduction using PCA is applied on 

this test set as in experiment 3. Test set results in both accuracy and ROC are displayed in table 

14.  

Table 14 

Test set results 

Experiment Pre-processing model accuracy ROC 

1 z-scores LDA 0.646 0.683 

2 none LDA 0.662 0.679 

3 z-scores + PCA SVM 0.634 0.652 

The highest accuracy score is achieved by the Linear Discriminant Analysis applied to 

the test set that contains the features from the second experiment, without any form of pre-

processing (accuracy = 0.662). The performance of this model outperforms the ZeroR baseline 

by 6.6 percentage points, which is 1.6 percentage points better than the next best performing 

model on accuracy scores (LDA on meta features in z-scores). Performance of the SVM 

classifier on the full feature set after PCA and z-score normalization is also above the ZeroR 

baseline, but only by 3.8 percentage points. The models’ scores expressed in ROC display a 

slightly different picture, namely the highest score is achieved by the smallest feature set 

(experiment 1) and the lowest score is achieved by the full feature set from experiment 3. All 

ROC scores outperform the baseline of 0.5, with the highest score achieved by LDA from 

experiment 1 (ROC = 0.683).  
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6. Discussion and conclusion 

In this section, an answer to the problem statement is given. Thereafter, the research 

objectives are addressed in relation to the experimental results, limitations of models and data 

are explained, the contribution of this thesis to the existing body of literature is discussed, and 

recommendations for future research are given.   

6.1 Answer to the problem statement 

The aim of this thesis was to predict consumers’ switching behavior regarding health 

insurance by analyzing the acoustics of the consumer’s voice. The formulated problem 

statement of this thesis is: To what extent can acoustic features from call center speech 

successfully predict switching behavior of health insurer? 

Voice recordings from call center conversations have been used in this thesis to execute 

five experiments, each looking to predict consumers’ switching behavior on health insurer with 

different feature sets. It is demonstrated that models with a mix of acoustic and non-acoustic 

features could outperform a random guessing baseline. Pitch and intensity features improved 

the performance of a basic model consisting of only five non-acoustic features, resulting in the 

best performing model (6.6% better than a random guess). This highlights the potential of 

acoustic features as predictors for future behavior. However, the addition of MFCC features 

and the performance of models with only acoustic features indicate that the findings of this 

thesis are too prelaminar to state that acoustic features from call center speech can successfully 

predict switching behavior of health insurer.  

The ability to predict future behavior by vocal cues from call center speech has proven 

to be a challenging task. Promising results from human judges in predicting future behavior 

from acoustics in speech (Rogers et al., 2016) are partially reproduced with machine learning 

technique in this thesis. Results of the five experiments have demonstrated that models trained 

on acoustic features only are not able to predict future switching behavior. However, the 

predictive ability of voice acoustics is underlined by the fact that it managed to improve the 

performance of a model trained on non-acoustic features. With that, the approach from previous 

research in automated emotion recognition on acted speech databases (e.g. El Ayadi et al., 

2011) is linked to new research applications, opening interesting opportunities for future 

research.    
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6.2 Discussion of research objectives   

Research objective 1: To identify the extent to which non-acoustic features from call 

center speech can successfully predict switching behavior of health insurer.  

Experiment 1 is executed to address this research objective and based on the 

experiment’s results it is stated that non-acoustic features from call center speech can 

successfully predict switching behavior of health insurer, but only by a few percents. LDA with 

z-score normalization is most successful on this specific feature set. LDA trained on the call’s 

duration, the hour of the day, the customer’s gender, the customer’s age, and the number of 

days till the health season’s deadline managed to outperform a random guessing baseline by 

5%. Z-score normalization was used on this small data set, which deals with the unbalanced 

vector space. The performance of the model expressed in ROC is relatively higher to the 

accuracy, which indicates that the model does a better job in ranking all instances than choosing 

the right cutoff point for class separation. Because the random guessing baseline is only 

outperformed by a few percents, this result is interpreted as a preliminary outcome.  

Even though the implementation of LDA is not too complex, from a practical standpoint 

it is advised to see this result as a begin of more experiments with non-acoustic feature sets for 

future behavior predictions of customers. The results from experiment 1 can be explained in 

relation to previous research as it found support in the predictive value of personal information 

as a feature in studying switching behavior on health insurers. The age of an individual is an 

important indicator for one’s tendency to switch as found by Boonen, Laske-Aldershof, & 

Schut, 2016 and De Jong, Van den Brink-Muinen, & Groenewegen, 2008. Besides, gender is 

an important predictor of switching behavior as well, as men and women are found to be 

different in their likelihood to switch from health insurer (Lako, Rosenau, & Daw, 2011; 

Hendriks et al., 2010). Some studies even found gender to be the most predictive factor for 

switching behavior on health insurance (Rademakers et al., 2014). Notwithstanding the 

demonstrated performance, the construction of this small data set and its application to 

predicting future switching behavior is a preliminary finding.  

Research objective 2: To establish the effect of adding pitch and intensity from call 

center speech to models using non-acoustic features on the performance of predicting switching 

behavior.  

Experiment 2 is executed to address this research objective and based on the 

experiment’s results it is stated that the addition of pitch and intensity features from call center 

speech results in an improvement of predicting switching behavior with non-acoustic features. 

Adding pitch and intensity results in a lower ability to split both customer groups (indicated by 
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lower ROC), but improves the ability to assign the right label to a new customer (indicated by 

higher accuracy). Linear discriminant analysis is most powerful, applied on a data set without 

normalization or dimensionality reduction. As this model performs only 6.6% above the 

random guessing baseline, the findings should be interpreted as preliminary. The potential of 

acoustic features in predicting future behavior is proven but might need more research to 

endorse and expand.  

The results from experiment 2 can be explained in relation to previous research. 

Converting the intention to switch from health insurer into actual switching behavior is affected 

by the perceived behavioral control of a customer (Ajzen, 2002). Stressful customers would not 

be expected to experience complete control if the stress is not caused by any external factor. 

Pitch and intensity are proven indicators for stress in a customer’s voice (Ververidis & 

Kotropoulos, 2006; Eyben et al., 2016). Although these direct relations might need affirmation 

in future research.  

Research objective 3: To establish the effect of adding MFCCs from call center speech 

to models using non-acoustic features, pitch and intensity on the performance of predicting 

switching behavior. 

Experiment 3 is executed to address this research objective and based on the 

experiment’s results it is stated that the addition of MFCC features from call center speech, as 

extracted in this thesis, results in decreased performance of predicting switching behavior with 

non-acoustic features, pitch features and intensity features. Adding MFCC features to the 

second experiment’s mixed model decreased the predictive performance. This data set of 113 

independent features still outperforms a random guess by 3.8%, but the lower performance than 

the first two experiments indicates that MFCC features, as used in this research, deteriorate the 

ability to predict a customer’s switching behavior of health insurers. The support vector 

machine performs best on this high dimensional data set and benefits from z-score 

normalization and dimensionality reduction with PCA.  

The results from experiment 3 can be related to previous research. The chosen method 

of calculating HSFs from MFCCs is in line with the work of Vaudable and Devillers (2012) as 

they also applied it on real-life call center data. However, they make use of an intermediate step 

of predicting negative, positive and neutral labels per part of the conversation and classify 

afterwards based on these labelled subparts. With their approach, they do not manage to 

automatically detect positive instances which again is found difficult with these features in this 

thesis. Furthermore, MFCCs are described as textual depend before (Schuller et al., 2011), 

which might have had an impact on the performance of MFCCs in this thesis as well. Since 
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textual analysis is not part of the experiments, it is not possible to judge the potential 

interference. More general, the addition of MFCC features adds a lot of dimensionality to the 

total data set which might not be beneficial in real-life situations (Eyben et al., 2016).  

Research objective 4: To identify the extent to which pitch and intensity from call center 

speech can successfully predict switching behavior of health insurer.  

Experiment 4 is executed to address this research objective and based on the 

experiment’s results it is stated that pitch and intensity, as extracted in this thesis, do not predict 

switching behavior of health insurer better than a random guessing experiment. Cross-

validation scores from models trained on high statistical functions from the pitch and intensity 

of call center speech never exceeded the baseline and therefore no models from the fourth 

experiment are applied to the test set.  

Research objective 5: To establish the effect of adding MFCCs from call center speech 

to models using pitch and intensity on the performance of predicting switching behavior.  

Experiment 5 is executed to address this research objective and based on the 

experiment’s results it is stated that MFCCs, as extracted in this thesis, do not add to the 

predictive power of models trained on pitch and intensity features to predict switching behavior 

of health insurer. Cross-validation scores from models trained on high statistical functions from 

MFCCs of call center speech do not outperform a random guessing baseline and therefore no 

models from the fifth experiment are applied to the test set.  

6.3 Research limitations  

This thesis has presented promising findings, but they should be interpreted in relation 

to limitations that belong to this research. First, the data from the recordings are recorded on 

one track, which makes it not possible to split between the voice of the customer and the 

company’s agent. This could add noise to the data and affecting the performance of the 

extracted features. Although, interspeaker influence in call center conversations, described in 

subsection 2.3, explains that vocal signals are copied between persons and convergence of 

speech is likely to occur. This will limit the effect of noise that is caused by the way of recording 

because the two voices are expected to exhibit similar patterns. Other sources of noise in the 

signal might be caused by external factors from the surroundings of the customer.  

Furthermore, in this thesis, the assumption is made that the most predictive power lies 

within the conclusion of the conversation. On top of that, the conclusion is automatically 

extracted from every recording. Computational power restricts the amount of information that 

can be processed and because acoustic features are extracted per 10 or 1 millisecond(s), it does 

not allow analysis of the full conversation’s length. The extraction of thousands of data points 
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from every conversation would also add enormously to the dimensionality of the data set. Thin 

slices are therefore taken. Nevertheless, a very structured approach is chosen by taking random 

samples from the data set to manually test the assumptions. This restricts the potential loss of 

predictive value from the conversations.  

Limitations regarding the extraction of features is tried to keep minimal by making use 

of the COVAREP toolbox and Pandit’s widely used method for MFCC extraction (2015). That 

also adds to the comparability of the findings in the field of research. However, the computation 

of the high statistical functions is still very different between studies. Especially when it comes 

to MFCCs. The approach of using deltas and delta-delta features often taken in contrast to the 

approach of this thesis. Still, the support for Vaudable and Devillers’ alternative method (2012) 

is not completely contradicted as the delta-delta features are used to capture the uniqueness of 

the voice for example in speech recognition (e.g. Cutajar, et al., 2013).  

For the experimental setup in this thesis, a basic approach is chosen to support the 

progressive and explorative nature of this research. As all five experiments are separate studies, 

it is likely that more tailored pre-processing and model tuning will benefit the performance of 

the models. As argued for example by Ramakrishan (2012), MFCCs would benefit from 

cepstral mean normalization instead of z-scores or min/max normalization. Still, the 

experimental setup from this thesis already achieves promising results and suits the preliminary 

character.  

6.4 Recommendations and directions for future research 

This thesis serves as a step towards better understanding of customer behavior and is 

exploratory in the field of processing acoustics from real-life speech recordings. Directions for 

future research are multiple. The first direction of future research should aim at reducing noise 

in the data. The potential of acoustic features is shown in this thesis, but improved methods of 

speech recording and the ability to isolate the customer’s voice are expected to improve the 

performance of acoustic models. On top of that, noise reduction algorithms could be applied to 

the same data set to improve the models’ performance.  

The second direction of future research concerns the experimental setup, the application 

of pre-processing and the tuning of algorithms. More methods of pre-processing can be tested, 

for example, grid search techniques to achieve more fine-tuned algorithms. New algorithms can 

be tested on the data as well, like neural networks and hidden Markov models. As well as feature 

selection methods to achieve more understanding of the performance of the current feature set.  

From a practical standpoint, it is recommended to expand on the predictions with non-

acoustic feature sets as well. If 5 non-acoustic features already outperform a random guessing 
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baseline, there is even more potential in larger feature sets. The practical advantage of this 

approach lies within the relative ease of implementation and feature extraction and can, 

therefore, be the low hanging fruit for companies that are looking to improve their call center 

analytics.    
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Appendix I: Results of explorative call analysis.  

Table AI.1 

Proportion of speech in the conclusion 

 

Sample N Mean % agent Mean % customer Standard deviation 

Calls in sample 100 58.5 41.5 32.5 

Conclusion 82 62.1 37.2 31.0 

No conclusion 18 41.2 58.8 34.1 
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Appendix II: Feature descriptions 

Table AII.1  

Descriptive statistics from discrete features  

hourDay count % gender count % switched count % 

07-08 1 0.0 male 2199 56.6 yes 1572 40,4 

08-09 82 2.1 female 1688 43.4 no 2315 59,6 

09-10 194 5.0       

10-11 341 8.8       

11-12 360 9.3       

12-13 379 9.8       

13-14 392 10.1       

14-15 389 10.0       

15-16 361 9.3       

16-17 333 8.6       

17-18 256 6.6       

18-19 247 6.4       

19-20 235 6.0       

20-21 226 5.8       

21-22 57 1.5       

22-23 29 0.7       

23-24 5 0.1       
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Table AII.2 

Names and descriptive statistics from the numeric continuous features 

Feature name Mean Std. dev. Min Max 

durationInSeconds 380.64 418.27 30 3,592 

age 39.41 14.15 19 96 

daysTillDeadline 12.81 13.17 0 42 

framewise_mean 0.19 2.17 -6.91 7.41 

framewise_stdev 73.97 17.23 23.24 138.64 

framewise_min -179.28 48.6 -359.65 -44.55 

framewise_max 182.01 47.26 48.15 365.65 

framewise_range 361.3 82.91 103.65 698.95 

mean_slopes -0.01 1.47 -5.74 6.95 

global_IQR_mean 98.3 32.29 9.5 255.75 

global_IQR_min 70.34 29.04 8 255.5 

global_IQR_max 175.02 54.25 13.5 352.5 

delta_F0 8.62 138.5 -405.5 390.5 

maximum_F0 496.19 6.95 422.5 500 

minimum_F0 84.19 19.37 50 176.5 

mean_F0 250.77 30.03 148.18 378.34 

stdev_F0 94.94 17.05 39.41 152.17 

range_F0 412 20.77 289.5 450 

median_F0 230.83 43.76 105.75 440 

skewness_F0 0.7 0.47 -1.13 4.44 

kurtosis_F0 0.08 1.2 -1.56 22.14 

SNR 0.97 0.11 0 1 

delta_db 49.49 18.98 -18.15 98.27 

maximum_db 77.27 6.26 28.72 91.45 

minimum_db 16.47 17.44 -12.33 59.18 

stdev_db 8.03 3.12 1 25.41 

range_db 60.8 17.12 22.35 102.39 

mean_coefficient1 -0.51 1.09 -7.4 4.07 

min_coefficient1 -7.18 1.5 -11.87 -1.2 

max_coefficient1 5.27 1.28 -3.56 10.45 
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median_coefficient1 -0.58 1.25 -7.5 4.71 

delta_coefficient1 -0.19 3.7 -12.78 11.59 

stdev_coefficient1 2.42 0.48 0.4 6.17 

range_coefficient1 12.44 1.9 2.41 19.49 

mean_coefficient2 -1.29 0.67 -3.81 2.05 

min_coefficient2 -6.16 0.94 -9.54 -0.69 

max_coefficient2 3.75 1.1 -0.35 8.2 

median_coefficient2 -1.16 0.77 -3.91 2.33 

delta_coefficient2 -0.1 2.83 -10 9.48 

stdev_coefficient2 1.93 0.32 0.36 2.97 

range_coefficient2 9.92 1.45 2.4 15.28 

mean_coefficient3 -1.19 0.47 -3.42 1.19 

min_coefficient3 -5.16 0.93 -8.87 -1.06 

max_coefficient3 2.09 0.77 -1.14 5.33 

median_coefficient3 -1.07 0.5 -3.43 0.94 

delta_coefficient3 0.09 1.88 -7.46 6.65 

stdev_coefficient3 1.28 0.22 0.35 2.22 

range_coefficient3 7.25 1.15 2.16 11.88 

mean_coefficient4 -1.43 0.47 -3.29 0.5 

min_coefficient4 -5.12 0.72 -7.7 -0.94 

max_coefficient4 1.89 0.71 -0.22 5.63 

median_coefficient4 -1.3 0.54 -3.41 0.33 

delta_coefficient4 0.02 2.01 -6.66 8.77 

stdev_coefficient4 1.35 0.2 0.36 2.2 

range_coefficient4 7.01 0.98 2.1 10.85 

mean_coefficient5 -0.71 0.35 -2.13 1 

min_coefficient5 -3.36 0.58 -5.89 -0.58 

max_coefficient5 1.73 0.52 0.19 4.28 

median_coefficient5 -0.67 0.38 -2.17 0.93 

delta_coefficient5 0.03 1.35 -4.6 5.21 

stdev_coefficient5 0.92 0.13 0.34 1.58 

range_coefficient5 5.09 0.7 2 8.05 

mean_coefficient6 -0.47 0.3 -1.4 0.75 
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min_coefficient6 -3.1 0.55 -5.51 -0.55 

max_coefficient6 1.92 0.48 0.55 4.35 

median_coefficient6 -0.41 0.33 -1.45 0.94 

delta_coefficient6 0.03 1.36 -5.42 4.82 

stdev_coefficient6 0.9 0.12 0.34 1.53 

range_coefficient6 5.02 0.69 1.85 8.26 

mean_coefficient7 -0.19 0.26 -1.15 0.91 

min_coefficient7 -2.37 0.45 -4.84 -0.58 

max_coefficient7 1.91 0.44 0.66 4.2 

median_coefficient7 -0.17 0.27 -1.2 0.82 

delta_coefficient7 -0.04 1.09 -4.5 4.6 

stdev_coefficient7 0.75 0.1 0.34 1.22 

range_coefficient7 4.28 0.59 2.03 7.48 

mean_coefficient8 -0.5 0.29 -2.08 1.14 

min_coefficient8 -2.55 0.43 -4.68 -0.64 

max_coefficient8 1.53 0.41 0.46 3.37 

median_coefficient8 -0.48 0.31 -2.4 0.84 

delta_coefficient8 0.03 1.13 -4.29 3.97 

stdev_coefficient8 0.75 0.11 0.3 1.32 

range_coefficient8 4.08 0.56 1.9 6.49 

mean_coefficient9 -0.19 0.25 -1.11 0.89 

min_coefficient9 -2.08 0.39 -4.13 -0.52 

max_coefficient9 1.84 0.56 0.55 4.39 

median_coefficient9 -0.18 0.25 -1.28 0.76 

delta_coefficient9 0.05 0.99 -4.03 3.63 

stdev_coefficient9 0.68 0.1 0.32 1.16 

range_coefficient9 3.93 0.62 1.64 6.77 

mean_coefficient10 -0.23 0.21 -1.08 0.58 

min_coefficient10 -1.95 0.34 -3.74 -0.54 

max_coefficient10 1.66 0.52 0.32 3.73 

median_coefficient10 -0.23 0.21 -1.13 0.53 

delta_coefficient10 0.01 0.9 -3.48 3.31 

stdev_coefficient10 0.61 0.09 0.28 1.15 
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range_coefficient10 3.61 0.61 1.56 6 

mean_coefficient11 -0.11 0.23 -0.83 0.78 

min_coefficient11 -1.8 0.37 -4.14 -0.56 

max_coefficient11 1.79 0.57 0.46 3.85 

median_coefficient11 -0.12 0.23 -0.87 0.8 

delta_coefficient11 0.06 0.91 -4 4.27 

stdev_coefficient11 0.61 0.11 0.3 1.14 

range_coefficient11 3.6 0.69 1.67 7.67 

mean_coefficient12 -0.07 0.24 -1.09 1.05 

min_coefficient12 -1.75 0.44 -4.26 -0.54 

max_coefficient12 1.78 0.58 0.38 3.78 

median_coefficient12 -0.09 0.23 -1.1 1.14 

delta_coefficient12 0.05 0.89 -3.92 3.4 

stdev_coefficient12 0.59 0.12 0.29 1.22 

range_coefficient12 3.53 0.78 1.62 6.63 
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Appendix III: Distribution of features.  

Figure AIII.1, distribution of duration in seconds.  

Figure AIII.2, distribution of the time of the day.  
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Figure AIII.3, distribution of gender.  

 

Figure AIII.4, distribution of age.  
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Figure AIII.5, distribution of number of days till the deadline of the health insurance season.  

 

Figure A7, distribution of switched versus non-switched customers.  
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Appendix IV: Switching and non-switching customers, visualizations per acoustic 

feature. 

Figure AIV.1 box plots for all the pitch related features.  

Figure AIV.2 box plots for all the intensity related features, for both classes of the target 

variable. 
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Figure AIV.3 box plots for coefficients 1 and 2 from the MFCC features, for both classes of the 

target variable. 

Figure AIV.4 box plots for coefficients 3 and 4 from the MFCC features, for both classes of the 

target variable. 
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Figure AIV.5 box plots for coefficients 5 and 6 from the MFCC features, for both classes of the 

target variable. 

Figure AIV.6 box plots for coefficients 7 and 8 from the MFCC features, for both classes of the 

target variable. 
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Figure AIV.7 box plots for coefficients 9 and 10 from the MFCC features, for both classes of 

the target variable. 

Figure AIV.8 box plots for coefficients 11 and 12 from the MFCC features, for both classes of 

the target variable. 
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Appendix V: Switching and non-switching customers, descriptive statistics for every 

acoustic feature 

Table AV.1  

Descriptive statistics for acoustic features 

 Min. Median Mean Max. 

framewise_mean_switched -6.298 0.262 0.1494 6.312 

framewise_mean_not_switched -6.905 0.2667 0.2112 7.407 

framewise_stdev_switched 26.84 72.69 73.71 131.9 

framewise_stdev_not_switched 23.24 72.72 74.14 138.6 

framewise_min_switched -359.6 -172.6 -177.9 -44.55 

framewise_min_not_switched -353.2 -175.6 -180.2 -46.85 

framewise_max_switched 48.15 177.6 181 339.1 

framewise_max_not_switched 53.2 176.7 182.7 365.6 

framewise_range_switched 111.7 355 358.9 665.7 

framewise_range_not_switched 103.6 355 362.9 699 

mean_slopes_switched -4.745 -0.01506 -0.02945 6.947 

mean_slopes_not_switched -5.741 0.03519 0.00476 5.318 

global_IQR_mean_switched 16.65 95.12 98.65 255.8 

global_IQR_mean_not_switched 9.5 94.4 98.06 247.5 

global_IQR_min_switched 8 68.5 70.51 188.5 

global_IQR_min_not_switched 8 68.5 70.22 255.5 

global_IQR_max_switched 18.5 170.2 173.9 348.5 

global_IQR_max_not_switched 13.5 172 175.8 352.5 

delta_F0_switched -398.5 9.75 9.471 390.5 

delta_F0_not_switched -405.5 7.5 8.044 377 

maximum_F0_switched 443 499 496.1 500 

maximum_F0_not_switched 422.5 499 496.2 500 

minimum_F0_switched 50 84 85.08 176.5 

minimum_F0_not_switched 50 82 83.59 167.5 

mean_F0_switched 160.5 250.5 251.6 369.1 

mean_F0_not_switched 148.2 249.5 250.2 378.3 

stddev_F0_switched 39.41 94.92 94.98 148.8 

stddev_F0_not_switched 43.6 94.12 94.91 152.2 
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range_F0_switched 289.5 413.5 411.1 450 

range_F0_not_switched 298.5 414.5 412.6 450 

median_F0_switched 105.8 234 231.9 406.5 

median_F0_not_switched 107.5 231 230.1 440 

skewness_switched -1.125 0.6694 0.6883 2.621 

skewness_not_switched -0.8411 0.6796 0.7068 4.439 

kurtosis_switched -1.56 -0.2292 0.04829 12.7 

kurtosis_not_switched -1.533 -0.2006 0.1064 22.14 

SNR_switched 0 0.9996 0.9665 1 

SNR_not_switched 0 0.9997 0.9656 1 

delta_db_switched -4.431 49.37 49.92 97.13 

delta_db_not_switched -18.15 48.52 49.21 98.27 

maximum_db_switched 28.72 78.32 77.4 91.45 

maximum_db_not_switched 30.94 78.2 77.18 90.08 

minimum_db_switched -12.33 16.92 16.25 56.86 

minimum_db_not_switched -12.33 17.5 16.63 59.18 

stddev_db_switched 1.097 7.502 8.131 25.41 

stddev_db_not_switched 1 7.46 7.953 21.6 

range_db_switched 23.53 59.67 61.15 102.4 

range_db_not_switched 22.35 59.6 60.56 101.4 

mean_coefficient1_switched -3.537 -0.5421 -0.5024 3.983 

mean_coefficient1_not_switched -7.404 -0.5422 -0.5118 4.075 

min_coefficient1_switched -11.87 -7.136 -7.141 -1.677 

min_coefficient1_not_switched -11.37 -7.202 -7.202 -1.195 

max_coefficient1_switched -0.7259 5.392 5.236 10.45 

max_coefficient1_not_switched -3.561 5.448 5.288 10.45 

median_coefficient1_switched -3.825 -0.7844 -0.5831 4.714 

median_coefficient1_not_switched -7.497 -0.7842 -0.578 4.574 

delta_coefficient1_switched -12.78 -0.1597 -0.213 11.59 

delta_coefficient1_not_switched -11.37 -0.1159 -0.1689 11.56 

std_coefficient1_switched 0.3956 2.405 2.413 6.17 

std_coefficient1_not_switched 0.461 2.41 2.42 4.018 

range_coefficient1_switched 2.41 12.38 12.38 17.82 
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range_coefficient1_not_switched 3.35 12.52 12.49 19.49 

mean_coefficient2_switched -3.81 -1.338 -1.321 2.018 

mean_coefficient2_not_switched -3.581 -1.272 -1.271 2.053 

min_coefficient2_switched -9.535 -6.227 -6.175 -0.6931 

min_coefficient2_not_switched -8.902 -6.207 -6.154 -0.9537 

max_coefficient2_switched -0.3533 3.651 3.657 8.202 

max_coefficient2_not_switched 0.2359 3.814 3.819 7.357 

median_coefficient2_switched -3.908 -1.17 -1.183 2.125 

median_coefficient2_not_switched -3.778 -1.128 -1.147 2.335 

delta_coefficient2_switched -8.658 -0.07761 -0.1401 9.476 

delta_coefficient2_not_switched -9.999 -0.01691 -0.06677 8.748 

std_coefficient2_switched 0.3604 1.934 1.919 2.96 

std_coefficient2_not_switched 0.4013 1.955 1.939 2.975 

range_coefficient2_switched 2.598 9.828 9.833 14.8 

range_coefficient2_not_switched 2.405 9.997 9.973 15.28 

mean_coefficient3_switched -3.166 -1.181 -1.18 1.19 

mean_coefficient3_not_switched -3.423 -1.225 -1.194 0.6742 

min_coefficient3_switched -8.875 -5.129 -5.138 -1.182 

min_coefficient3_not_switched -8.378 -5.184 -5.183 -1.062 

max_coefficient3_switched -0.1717 1.946 2.063 5.223 

max_coefficient3_not_switched -1.14 2.013 2.105 5.335 

median_coefficient3_switched -3.313 -1.055 -1.064 0.8117 

median_coefficient3_not_switched -3.433 -1.096 -1.077 0.9415 

delta_coefficient3_switched -5.578 0.03675 0.1114 6.137 

delta_coefficient3_not_switched -7.458 0.04061 0.06739 6.654 

std_coefficient3_switched 0.3507 1.265 1.267 2.208 

std_coefficient3_not_switched 0.4057 1.286 1.286 2.218 

range_coefficient3_switched 2.162 7.148 7.2 11.31 

range_coefficient3_not_switched 2.527 7.263 7.288 11.88 

mean_coefficient4_switched -3.286 -1.458 -1.444 0.4995 

mean_coefficient4_not_switched -2.998 -1.43 -1.423 0.2593 

min_coefficient4_switched -7.22 -5.149 -5.135 -0.9357 

min_coefficient4_not_switched -7.7 -5.108 -5.102 -1.163 
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max_coefficient4_switched 0.244 1.799 1.862 5.629 

max_coefficient4_not_switched -0.2229 1.837 1.913 4.959 

median_coefficient4_switched -3.405 -1.328 -1.312 0.3258 

median_coefficient4_not_switched -3.057 -1.312 -1.293 0.3209 

delta_coefficient4_switched -6.657 0.0127 0.001924 6.555 

delta_coefficient4_not_switched -6.138 0.05091 0.031 8.766 

std_coefficient4_switched 0.357 1.359 1.352 2.202 

std_coefficient4_not_switched 0.369 1.358 1.351 2.166 

range_coefficient4_switched 2.101 6.961 6.997 10.85 

range_coefficient4_not_switched 2.232 6.963 7.015 10.69 

mean_coefficient5_switched -2.129 -0.7062 -0.7131 0.8166 

mean_coefficient5_not_switched -1.992 -0.7048 -0.7135 0.9971 

min_coefficient5_switched -5.243 -3.327 -3.367 -0.697 

min_coefficient5_not_switched -5.892 -3.323 -3.356 -0.5765 

max_coefficient5_switched 0.1855 1.659 1.729 4.049 

max_coefficient5_not_switched 0.4217 1.669 1.736 4.278 

median_coefficient5_switched -2.167 -0.6569 -0.6649 0.5423 

median_coefficient5_not_switched -2.049 -0.6577 -0.6678 0.9285 

delta_coefficient5_switched -4.602 0.01117 0.01072 5.213 

delta_coefficient5_not_switched -4.356 0.03329 0.04396 4.231 

std_coefficient5_switched 0.3416 0.9179 0.9234 1.576 

std_coefficient5_not_switched 0.3674 0.916 0.9199 1.457 

range_coefficient5_switched 2.003 5.045 5.096 8.049 

range_coefficient5_not_switched 2.336 5.039 5.092 7.933 

mean_coefficient6_switched -1.398 -0.4628 -0.4506 0.7545 

mean_coefficient6_not_switched -1.38 -0.4962 -0.4768 0.6434 

min_coefficient6_switched -5.506 -3.075 -3.087 -0.549 

min_coefficient6_not_switched -5.43 -3.088 -3.103 -0.7594 

max_coefficient6_switched 0.641 1.898 1.934 4.354 

max_coefficient6_not_switched 0.5546 1.886 1.915 4.18 

median_coefficient6_switched -1.424 -0.4016 -0.3962 0.9416 

median_coefficient6_not_switched -1.452 -0.4483 -0.426 0.6221 

delta_coefficient6_switched -5.418 0.01315 0.0439 4.822 
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delta_coefficient6_not_switched -4.728 0.02652 0.01265 4.441 

std_coefficient6_switched 0.3393 0.9015 0.8999 1.533 

std_coefficient6_not_switched 0.3803 0.9021 0.9004 1.452 

range_coefficient6_switched 1.854 4.977 5.021 8.191 

range_coefficient6_not_switched 2.167 4.992 5.018 8.257 

mean_coefficient7_switched -1.149 -0.1824 -0.1761 0.8774 

mean_coefficient7_not_switched -1.108 -0.2057 -0.2057 0.9147 

min_coefficient7_switched -4.838 -2.35 -2.364 -0.5845

min_coefficient7_not_switched -4.138 -2.344 -2.366 -0.5901

max_coefficient7_switched 0.6798 1.863 1.916 3.86

max_coefficient7_not_switched 0.6638 1.862 1.909 4.196

median_coefficient7_switched -1.202 -0.1485 -0.1488 0.8101

median_coefficient7_not_switched -1.113 -0.1828 -0.1852 0.8244

delta_coefficient7_switched -3.993 -0.05745 -0.03853 4.603

delta_coefficient7_not_switched -4.502 -0.05144 -0.04401 3.511

std_coefficient7_switched 0.3384 0.7406 0.7445 1.221

std_coefficient7_not_switched 0.3427 0.744 0.7484 1.211

range_coefficient7_switched 2.027 4.246 4.28 7.48

range_coefficient7_not_switched 2.215 4.226 4.275 7.074

mean_coefficient8_switched -1.343 -0.5055 -0.5007 1.137

mean_coefficient8_not_switched -2.079 -0.5081 -0.5047 0.9745

min_coefficient8_switched -4.68 -2.549 -2.548 -0.6715

min_coefficient8_not_switched -4.233 -2.546 -2.549 -0.6388

max_coefficient8_switched 0.4622 1.458 1.518 2.992

max_coefficient8_not_switched 0.4577 1.473 1.536 3.374

median_coefficient8_switched -1.45 -0.4749 -0.4766 0.8446

median_coefficient8_not_switched -2.401 -0.4825 -0.4827 0.6623

delta_coefficient8_switched -3.513 0.03243 0.0006819 3.973 

delta_coefficient8_not_switched -4.287 0.05219 0.0575 3.728 

std_coefficient8_switched 0.3009 0.7413 0.745 1.18 

std_coefficient8_not_switched 0.3436 0.7414 0.7466 1.318 

range_coefficient8_switched 1.896 4.025 4.066 6.369 

range_coefficient8_not_switched 2.101 4.032 4.086 6.489 
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mean_coefficient9_switched -0.889 -0.18 -0.177 0.8895 

mean_coefficient9_not_switched -1.111 -0.2036 -0.1993 0.7648 

min_coefficient9_switched -3.443 -2.07 -2.073 -0.5161

min_coefficient9_not_switched -4.125 -2.094 -2.092 -0.5674

max_coefficient9_switched 0.5525 1.748 1.842 3.981

max_coefficient9_not_switched 0.6884 1.724 1.845 4.386

median_coefficient9_switched -0.9802 -0.1543 -0.163 0.7629

median_coefficient9_not_switched -1.277 -0.187 -0.1894 0.6755

delta_coefficient9_switched -2.923 0.001306 0.03542 3.629

delta_coefficient9_not_switched -4.029 0.07564 0.05258 3.55

std_coefficient9_switched 0.3157 0.6712 0.6766 1.025

std_coefficient9_not_switched 0.3333 0.6753 0.6796 1.16

range_coefficient9_switched 1.635 3.86 3.915 6.43

range_coefficient9_not_switched 1.847 3.838 3.937 6.774

mean_coefficient10_switched -1.077 -0.224 -0.2228 0.5085

mean_coefficient10_not_switched -0.9767 -0.2421 -0.2338 0.5774

min_coefficient10_switched -3.364 -1.929 -1.939 -0.5389

min_coefficient10_not_switched -3.741 -1.935 -1.955 -0.621

max_coefficient10_switched 0.3214 1.55 1.668 3.729

max_coefficient10_not_switched 0.6288 1.55 1.657 3.724

median_coefficient10_switched -1.131 -0.2188 -0.2221 0.4914

median_coefficient10_not_switched -1.021 -0.2328 -0.2337 0.5315

delta_coefficient10_switched -3.451 0.01035 0.004228 3.312

delta_coefficient10_not_switched -3.479 0.01692 0.01748 3.27

std_coefficient10_switched 0.2838 0.6034 0.6131 1.15

std_coefficient10_not_switched 0.3052 0.6033 0.614 1.005

range_coefficient10_switched 1.561 3.53 3.607 5.914

range_coefficient10_not_switched 1.702 3.51 3.613 6.002

mean_coefficient11_switched -0.7985 -0.1154 -0.1059 0.7553

mean_coefficient11_not_switched -0.8261 -0.1328 -0.1206 0.7846

min_coefficient11_switched -3.497 -1.767 -1.796 -0.6851

min_coefficient11_not_switched -4.143 -1.776 -1.808 -0.5593

max_coefficient11_switched 0.4626 1.71 1.797 3.854
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max_coefficient11_not_switched 0.561 1.683 1.79 3.82 

median_coefficient11_switched -0.8172 -0.112 -0.1122 0.6544 

median_coefficient11_not_switched -0.8696 -0.1359 -0.1302 0.7964 

delta_coefficient11_switched -3.997 0.03382 0.04445 4.272 

delta_coefficient11_not_switched -3.588 0.0857 0.06315 3.051 

std_coefficient11_switched 0.3036 0.5987 0.611 1.136 

std_coefficient11_not_switched 0.3147 0.5975 0.6126 1.121 

range_coefficient11_switched 1.764 3.478 3.593 6.24 

range_coefficient11_not_switched 1.665 3.481 3.597 7.673 

mean_coefficient12_switched -1.094 -0.07772 -0.0657 0.6927 

mean_coefficient12_not_switched -0.8076 -0.08748 -0.08107 1.051 

min_coefficient12_switched -4.138 -1.663 -1.727 -0.5659

min_coefficient12_not_switched -4.259 -1.687 -1.762 -0.5433

max_coefficient12_switched 0.4353 1.75 1.785 3.343

max_coefficient12_not_switched 0.376 1.726 1.777 3.779

median_coefficient12_switched -1.099 -0.08121 -0.08105 0.6901

median_coefficient12_not_switched -0.7901 -0.0978 -0.09861 1.139

delta_coefficient12_switched -3.923 0.04893 0.05121 3.404

delta_coefficient12_not_switched -3.85 0.04724 0.04893 3.23

std_coefficient12_switched 0.296 0.5623 0.5835 1.029

std_coefficient12_not_switched 0.2909 0.5644 0.5888 1.221

range_coefficient12_switched 1.817 3.417 3.511 6.485

range_coefficient12_not_switched 1.622 3.42 3.54 6.635
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Appendix VI: Cross validation results. 

Table AVI.1, Cross validation results expressed in accuracy and ROC. 

Feature 
set 

Pre-
processing 

Naïve Bayes k-NN LDA SVM 
accuracy ROC accuracy ROC accuracy ROC accuracy ROC 

meta none 0.621 0.683 0.645 0.651 0.649 0.673 0.651 0.667 
meta z-score 0.624 0.683 0.647 0.648 0.657 0.672 0.651 0.672 
meta min-max 0.610 0.685 0.627 0.625 0.651 0.675 0.653 0.671 
meta z-scores +

PCA
0.588 0.681 0.649 0.646 0.655 0.674 0.651 0.668 

meta min-max 
+ PCA

0.599 0.659 0.626 0.623 0.657 0.673 0.651 0.671 

meta + 
pitch + 
intensity 

none 0.614 0.632 0.632 0.617 0.658 0.671 0.650 0.662 

meta + 
pitch + 
intensity 

z-score 0.608 0.647 0.625 0.602 0.652 0.667 0.650 0.669 

meta + 
pitch + 
intensity 

min-max 0.610 0.640 0.615 0.602 0.649 0.671 0.648 0.665 

meta + 
pitch + 
intensity 

z-scores +
PCA

0.606 0.639 0.627 0.600 0.654 0.671 0.652 0.668 

meta + 
pitch + 
intensity 

min-max 
+ PCA

0.609 0.636 0.610 0.603 0.653 0.671 0.649 0.664 

all 
features 

none 0.602 0.632 0.629 0.608 0.642 0.648 0.641 0.655 

all 
features 

z-score 0.616 0.631 0.597 0.571 0.634 0.656 0.647 0.650 

all 
features 

min-max 0.611 0.640 0.608 0.607 0.634 0.655 0.641 0.658 

all 
features 

z-scores +
PCA

0.612 0.635 0.601 0.568 0.650 0.655 0.655 0.665 

all 
features 

min-max 
+ PCA

0.615 0.631 0.619 0.619 0.654 0.658 0.649 0.660 

pitch+ 
intensity 

none 0.569 0.512 0.559 0.499 0.595 0.479 0.595 0.515 

pitch+ 
intensity 

z-score 0.559 0.512 0.555 0.510 0.594 0.485 0.595 0.523 

pitch+ 
intensity 

min-max 0.557 0.510 0.557 0.514 0.595 0.502 0.595 0.514 

pitch+ 
intensity 

z-scores +
PCA

0.588 0.498 0.563 0.509 0.595 0.493 0.595 0.514 

pitch+ 
intensity 

min-max 
+ PCA

0.583 0.497 0.550 0.501 0.596 0.489 0.595 0.516 

full 
acoustic 

none 0.547 0.552 0.558 0.491 0.568 0.518 0.595 0.526 

full 
acoustic 

z-score 0.547 0.544 0.575 0.516 0.570 0.535 0.595 0.519 

full 
acoustic 

min-max 0.543 0.547 0.564 0.531 0.564 0.524 0.595 0.532 

full 
acoustic 

z-scores +
PCA

0.565 0.540 0.562 0.533 0.581 0.532 0.595 0.540 

full 
acoustic 

min-max 
+ PCA

0.562 0.518 0.571 0.536 0.570 0.534 0.595 0.535 




