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Abstract 

The rise of neural network models in various domains has increased the interest in methods of 

analysing and interpreting the representations learned by these models. Specifically, in 

computational linguistics, sentence encoders are being evaluated on a detailed level, such as 

evaluating the hidden activation patterns of Recurrent Neural Networks (RNNs) or assessing 

performance on specific tasks. This study offers a global approach to quantify how well a neural 

representation space corresponds to a structured symbolic representations space. This approach 

was used to find to what extent neural representations capture the syntax of sentences as opposed 

to their semantics. By applying Representational Similarity Analysis to various representations of 

sentences from the novel The Little Prince by Antoine de Saint-Exupéry, it was found that neural 

representations capture the semantics to a larger extent than the syntax. Moreover, this novel 

approach provided a new perspective on the representations learned by RNNs. By combining 

differently encoded vectors, which seem to be biased to capturing either the semantics or the syntax 

of a sentence, fuller representations can be made which are less biased and capture both the 

semantics and syntax. In conclusion, this novel approach provides a more global evaluation of 

neural representations, as well as offering a new perspective from which these representations can 

be studied. 
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1. Introduction 

As neural network models are being used for an increasingly wide variety of domains, interest in 

methods of analysing and interpreting the representations they learn have been growing. 

Specifically in computational linguistics, a number of approaches have been proposed for the 

purpose of correlating neural representations with symbolic structures from linguistic theory such 

as phonemes, phoneme sequences, syntactic tree and semantic representations. In this study we 

propose a simple approach to quantify how well a neural representation space corresponds to a 

structured symbolic representation space.  

Recurrent neural networks (RNNs) were introduced by Elman (1990). They have the ability 

to model sequential data and can learn representations of linguistic units directly from input data. 

RNNs have been used increasingly for various NLP tasks, e.g. parsing (Vinyals et al., 2015; Dyer 

et al., 2016) and machine translation (Bahdanau, Cho, & Bengio, 2014). They transform linguistic 

expressions of variable lengths to a representation in the form of a fixed-size low-dimensional 

vector (Kádár, Chrupała, & Alishahi, 2017). This representation is a complex, non-linear function 

of the input which raises problems for interpretability, accountability and controllability of NLP 

systems. Therefore, interest has grown into making these representations explainable by 

investigating how they acquire abstract linguistic knowledge and to what extent they learn this.  

Two approaches can be taken to study the neural representations which RNNs learn. The 

first approach focuses on examining the hidden activation patterns of RNNs (Karpathy, Johnson, 

& Fei-Fei, 2015). The second approach tries to understand these learned representations similar to 

how we study human language processing (Linzen, Dupoux, & Goldberg, 2016). This is done by 

assessing behaviour on targeted sentences to study the learned representation. The two approaches 

will be further explained in Section 2.  

However, these two approaches are focussed on evaluating specific activations or 

performance on specific tasks. This study proposes a more general approach to quantify how well 

a neural representation corresponds to a structured symbolic representation. It provides a 

framework to evaluate and compare neural representations on a more global level, enabling easier 

analysis of the learned syntax and semantics. Therefore, it offers a new perspective on the neural 

representations learned by RNNs. 

This study contributes to the scientific search for insights into representations learned by 

neural networks by providing a framework in which models can be easily evaluated on learned 
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syntax and semantics. This enables more general evaluations and comparisons between neural 

networks instead of evaluation on smaller, specific tasks. As neural networks are increasingly being 

used for practical means as well, a better understanding of the representations they learn can lead 

to advancements for societal applications as well. 

The main research question in this thesis is as follows: “To what extent does a neural 

network representation capture the syntax of sentences as opposed to the semantics?” In this study, 

the neural network representation of focus is constructed using the skip-thoughts model provided 

by Kiros et al. (2015). Rationale as to why this model is chosen will be explained in Section 4. One 

advantage of using this model is that it produces a vector, which is combined of other vectors. This 

enables for comparison between the different representations. The syntax of sentences is 

represented by dependency trees, whereas the semantics are captured by Abstract Meaning 

Representations (AMRs). In addition to the main research question, this thesis aims to answer the 

following questions: 

1. Does the combination of vectors influence the learned representations? 

2. When combining vectors, is there a difference between the influence on learned syntax 

and learned semantics? 

3. Can this difference be explained by the underlying architecture of the models? 

Answering these questions does not only allow for quantifications of how well a neural 

representation space corresponds to a structured symbolic representation space, but also enables 

comparison between various neural representations. 

Through Representational Similarity Analysis (RSA) (Kriegeskorte, Mur, & Bandettini 

(2008), neural representation spaces were quantitatively compared to structured symbolic 

representation spaces. Moreover, the neural representations seem to capture semantics to a larger 

extent as opposed to syntax. Additionally, it is shown that encoders might be biased to capture 

either the syntax or semantics. Combining the vectors which capture different aspects lead to a 

fuller representation of both syntax and semantics in the combined vectors. These results show a 

new perspective on the learned representations, which can be used to easily quantify to what extent 

a neural representation corresponds to other representations. 

This thesis is structured as follows. First, a theoretical background will be given of the 

construction of sentence vectors and their evaluation. Subsequently, the models used in this work 

will be explained. Next, the experimental setup will be reported, including a description of the data 
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set and the specific applications of the models to it. Afterwards, the results will be reported, 

followed by a section which evaluates these results with regard to the research questions. Finally, 

a concluding summary will be given, along with suggestions for future research. 

The code for the analyses in this thesis is available at 

https://github.com/dennisdegroot/representational-similarity-nn. 

 

2. Background 

2.1 Linguistic Vectors 

Researchers began to study computational methods for compositionality when it became clear that 

words could be converted into vectors (Schütze, 1993). Vectors could be constructed by making a 

matrix of co-occurrences of all words in a corpus and apply dimensionality reduction on it, e.g. 

matrix factorization techniques (Schütze, 1998; Pennington, Socher, & Manning, 2014). This 

transformation to vectors enabled for inference through simple linear algebra. One famous example 

is the analogy “king - man + woman = X”, which, using linear algebra on word vectors, results in 

a vector which is similar to that of “queen” (Mikolov, Yih, & Zweig, 2013a).  

 Although linear algebra can be used to demonstrate compositionality of word vectors, it 

cannot be extended to sentences easily. For example, consider the following two sentences “the 

leaves fell from the tree” and “the tree fell from the leaves”. By simply summing the word vectors 

of the individual words or averaging over them, the two sentences would be represented by the 

same vector. However, the meaning of both sentences is quite different, and the latter sentence, 

though being grammatically correct, also makes little sense in English.  

 One early approach to overcome this issue of semantic compositionality in vector-based 

models was presented in the work of Mitchel and Lapata (2008), in which they show that models 

with a multiplicative component outperform additive models. Other approaches assign different 

representations to different parts of speech. Often nouns are represented by vectors whereas 

relational words, such as adjectives and verbs, are represented by matrices. Applying the latter to 

the former results in effective models for constructing vectors representing sentences (Baroni & 

Zamparelli, 2010; Coecke, Sadrzadeh, & Clark, 2010; Grefenstette & Sadrzadeh, 2011).  

Socher, Huval, Manning, and Ng (2012) take a similar approach by assigning both a vector 

and a matrix to every word in the parse tree of a sentence. The inherent meaning of the word is 

captured in the vector, whereas the matrix captures the influence of that word on neighbouring 
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words or phrases. This assignment of vector-matrix representations to all words instead of 

discriminating between different categories of part of speech ensures greater flexibility. In addition, 

they are among the first to construct a sentence-based model using a RNN. 

 

2.2 Neural Networks in NLP 

While some researches focused on extending word vectors to sentence vectors (e.g. Mitchel & 

Lapata, 2008), others were optimizing the construction of word vectors by using neural networks 

(e.g. Collobert & Weston, 2008; Mnih & Hinton, 2009; Turian, Ratinov, & Bengio, 2010; Mikolov, 

Chen, Corrado, & Dean, 2013b). Elman (1990) introduced RNNs in 1990 to model the temporal 

dimension. By changing the output-to-memory recurrent connections in the architecture of Jordan 

(1986) to hidden-to-memory recurrent connections, he enabled his network to represent dynamic 

systems. He later showed that a RNN can encode lexical categories, relevant grammatical relations 

and hierarchical constituent structure (Elman, 1991). 

The early models for constructing word vectors using neural networks, e.g. Collobert and 

Weston (2008), assigned an initial vector to each given word, which was modified depending on 

other words in a context, resulting in a vector which is used to predict other words in the context 

(Le & Mikolov, 2014). After single words could be encoded using such models, researchers tried 

to capture larger linguistic concepts. For example, Socher, Pennington, Huang, Ng, and Manning 

(2011) used recursive autoencoders to predict the sentiment of sentences. Based on this model, 

Socher et al. (2012) were able to construct their earlier discussed matrix-vector RNN which could 

learn compositional vector representations for phrases and sentences. 

A novel adaptation of a RNN architecture called Long Short-Term Memory (LSTM), 

provided by Hochreiter and Schmidhuber (1997), had proven to be able to process complex 

sequences with long-range structure (Graves, 2013). By modifying the units in a neural network 

with a memory cell and four gating units, the information flow inside the unit could be controlled. 

This allowed neural networks to shift attention and memory through different parts of their input, 

by focussing on predicting one data point at a time.  

Cho et al. (2014) proposed a RNN Encoder-Decoder, a neural network model focussed on 

statistical machine translation, with two novel ideas. First, the model consists of two RNNs: one 

which is able to encode a sentence into a fixed-length vector representation, and one which decodes 

such a vector representation into another sequence of symbols. In addition to this novel model 
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architecture, they also proposed a new type of hidden unit. Inspired by the LSTM unit, they 

proposed the Gated Recurrent Unit (GRU). The underlying idea is that an update gate selects 

whether the hidden state should be updated, and a reset gate decides whether the previous hidden 

state is ignored. This enables control of information transfer between hidden states, similar to 

LSTM networks. However, GRU is simpler to compute and implement (Cho et al., 2014). 

Inspired by encoder-decoder models used for neural machine translation, such as the model 

of Cho et al. (2014), a seminal approach called Skip-Thoughts was introduced by Kiros et al. 

(2015). Abstracting the skip-gram model of Mikolov et al. (2013b), which learns word vectors to 

predict its surrounding context, to a sentence level, the skip-thought model is able to encode a 

sentence to predict its neighbouring sentences. The encoder consists of a RNN with GRU, which 

processes the sentence. The decoder is trained to predict the preceding and following sentence, 

based on the final hidden state of the encoder. The skip-thought model will also be used in this 

thesis and it will be explained in more detail in Section 3.1. 

 

2.3 Evaluation of Linguistic Representations 

The rise of RNNs in various NLP domains, such as parsing (Vinyals et al., 2015) and machine 

translation (Bahdanau et al, 2015), built upon the fact that variable-length linguistic expressions 

could be represented by encoding them into a fixed-size low-dimensional vector (Kádár et al., 

2017). The nature of the encoding of RNNs is often complex and non-linear, making it difficult to 

interpret their mechanisms as well as being able to control and account for them. Uncovering the 

underlying structure of the learned representations, as well as investigating how abstract linguistic 

knowledge can be learned are therefore increasingly being studied. This can be done via two 

approaches. 

The first approach focuses on examining hidden activation patterns of RNNs. For example, 

Kádár et al. (2017) estimate the salience of a word by comparing the representation of a sentence 

omitting that word to the representation of the original sentence. By doing so, they also found that 

models can learn various kinds of linguistic features besides lexical cues, e.g. paying more attention 

to syntactic structures instead of the linear order of words in a sentence. Similarly, Li, Monroe and 

Jurafsky (2016) analysed the impact of individual input tokens, hidden units and word embedding 

dimensions by removing them from the representations and evaluated how the model was affected 

by it. They found that some models focus more on specific dimensions of word vectors, and that 
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some dimensions are important for multiple feature classifications tasks, such as detection of 

prefixes and suffixes. By comparing different representations learned by models and qualitatively 

comparing visualisations of hidden unit activations, the intrinsic workings of the network are 

examined (Belinkov, Durrani, Dalvi, Sajjad, & Glass, 2017). 

Instead of comparing different model representations, the hidden states of neural networks 

can also be used to assess learned linguistic features. For example, Broere (2018) evaluates the 

syntactic properties of the skip-thought model, which is also used in this thesis. A logistic 

regression trained on the hidden states of the model proved capable of classifying different 

grammatical categories. Not only does this shed light on the learned syntax by the skip-thoughts 

model, but it also shows that the hidden states of neural networks can be used to examine the 

learned syntax in different ways.  

 On the other hand, the second approach inspects the learned representations similar to 

studying human language processing by analysing the behaviour on targeted sentences to evaluate 

specific aspects of the learned representations (Linzen et al., 2016). This can be done for example 

by an agreement prediction task (Bock & Miller, 1991), as used by Linzen et al. (2016).  An 

example of such a task is to finish the sentence “The key to the cabinets…”, which should 

grammatically be followed by “was” instead of “were”. By reviewing performance on comparable 

tasks, representations are extrinsically evaluated on learned syntactic or semantic knowledge. 

 Both approaches have been proven useful for relating neural representations to symbolic 

structures from linguistic theory, such as syntax and syntactic trees, as well as lexical categories 

and affixes. Often representations are trained and evaluated on specific structures using a variety 

of different downstream tasks. Although this leads to a deeper understanding of the learned 

knowledge of that particular structure or performance on that task, comparing them on a more 

general level can be difficult.  

To overcome this problem, multiple toolkits have been introduced for a more centralized 

way for evaluating representations, such as SentEval (Conneau & Kiela, 2018) and GLUE (Wang 

et al., 2018). These toolkits, as well as similar approaches (Conneau, Kruszewski, Lample, Brault, 

& Baroni, 2018; McCann, Keskar, Xiong, & Socher, 2018), use a combination of probing tasks to 

assess the extrinsic performance of neural representations. If models are evaluated along the same 

lines by assessing them using identical tasks, comparisons between them can easier be made. 
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 Although these frameworks enabled evaluations of representations in a more systematic 

way, they still compare performance on specific downstream tasks to assess which particular 

syntactic rules are learned by the models. Models need to be trained on established training data 

prior to evaluation on multiple assignments. Not only can this be a laborious process, it still leaves 

questions about the learned representations unanswered. For example, a model can perform well 

on several agreement prediction tasks, but to what extent does it capture the overall syntax of a 

language? Although being able to correctly predict other words or sentences, how well can a model 

learn the overall semantics? And how are these symbolic representation spaces, such as semantics 

and syntax, related? In other words: to what extent does a model capture semantics as opposed to 

syntax? This thesis aims to answer these questions by proposing a simple and more global approach 

to quantify how well a neural representation space corresponds to a structured symbolic 

representation space.  

 The approach proposed in this study applies RSA to a number of neural and structured 

symbolic representations of sentences. RSA, as introduced by Kriegeskorte et al. (2008) will be 

explained in the Section 3. Methods of constructing the various representations will also be 

explained in that section. A description of the used data set and the experimental procedure will be 

given in Section 4. 

 

3. Methods 

In this section, the approaches to constructing the various representations will be explained, as well 

as the analysis used to compare these representations. First, a description will be given of the neural 

representation of sentences. Subsequently, the structured symbolic representations will be 

described. Finally, the technique used for comparing these representations, RSA, will be explained.  

 

3.1 Neural Representations 

In this thesis, neural representations of sentences are constructed by encoding sentences into 

vectors using the skip-thoughts model provided by Kiros et al. (2015). This model was built and 

trained to, given a sentence, predict the preceding and following sentence. The model consists of 

an encoder, which maps a sentence into a vector, and a decoder, which translates this vector back 

to a sentence. An illustration of the model can be found in Figure 1. Since the focus of the current 

work is on comparing neural representations, only the encoder is considered.  
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Figure 1. The skip-thoughts model. Given a tuple (𝑠𝑖−1, 𝑠𝑖, 𝑠𝑖+1) of consecutive sentences, with 

𝑠𝑖the 𝑖-th sentence of a dataset, which is encoded and used to reconstruct the preceding sentence 

𝑠𝑖−1 and next sentence 𝑠𝑖+1. In this example, the input is the sentence triplet “The girl cries.”, “The 

boy hugs the girl.”, “He tries to comfort her.” The unattached arrows are connected to the encoder 

output and the colours indicate which components share parameters. <eos> is the end of sentence 

token. 

 

The encoder, which is a RNN with GRU activations, works as follows, following Kiros et 

al. (2015). Let 𝑤𝑖
1, … , 𝑤𝑖

𝑁 be the words in sentence 𝑠𝑖 where 𝑁 is the number of words in the 

sentence and let 𝐱𝑖
𝑡 be the word embedding of 𝑤𝑖

𝑡. A hidden state 𝐡𝑖
𝑡 is produced by the encoder at 

each time step, which can be interpreted as the representation of the sequence 𝑤𝑖
1, … , 𝑤𝑖

𝑡. Therefore,  

𝐡𝑖
𝑁 represents the full sentence 𝑠𝑖. Sentences are encoded by iterating over the following sequence 

of equations. The subscript 𝑖 is dropped for readability. 

 𝐫𝑡 =  𝜎(𝐖𝑟𝐱𝑡 +  𝐔𝑟𝐡𝑡−1) (1)  

 𝐳𝑡 =  𝜎(𝐖𝑧𝐱𝑡 +  𝐔𝑧𝐡𝑡−1) (2)  

 𝐡
𝑡

= tanh(𝐖𝐱𝑡 + 𝐔(𝐫𝑡 ⨀ 𝐡𝑡−1)) (3)  

 𝐡𝑡 = (1 − 𝐳𝑡)⨀ 𝐡𝑡−1 + 𝐳𝑡 ⨀ 𝐡
𝑡
 (4)  

where 𝐡
𝑡
is the proposed state update at time 𝑡, 𝐳𝑡 is the update gate, 𝐫𝑡 is the reset gate, and 𝐖 and 

𝐔 are weight matrices which are learned. ⨀ denotes a component-wise product. Both update gates 

take values between zero and one. 

 The skip-thoughts model consists of two separately trained encoding models. The first one, 

uni-skip, is a unidirectional encoder with 2400 dimensions. The other is a bidirectional model, bi-
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skip, which is made up by a forward and a backward encoder of 1200 dimensions each. The forward 

encoding component of this model, bi-skip forward, is given the sentence in correct order, whereas 

the backward encoder, bi-skip backward, handles the sentence in reverse order. The two encoded 

vectors of the uni-skip and bi-skip models can be combined to form a concatenated vector of 4800 

dimensions, which will be referred to as combi-skip. 

 

3.2 Structured Symbolic Representations 

In this study, two structured symbolic representations are constructed. One focussing on the syntax 

of a sentence, whereas the other represents the semantics. 

 

3.2.1 Syntax 

The syntax of sentences is represented by a dependency tree, a syntactic representation that denotes 

the grammatical relations between words (Moschitti, 2006). Figure 2 shows the dependency tree 

of the sentence “The boy hugs the girl”. Parsing a sentence to construct such a dependency tree is 

called dependency parsing. 

 

 

Figure 2. Dependency tree of the sentence “The boy hugs the girl”. The words in bold are the words 

from the original sentence and below them are the corresponding part of speech tags. The edges 

are tagged with the syntactic dependency relation. 

 

The parser used in this study to construct dependency trees is the spaCy parser (Honnibal 

& Montani, 2018). This parser is an updated version of the parser of Honnibal and Johnson (2015). 
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Since the current architecture has not been published yet, we refer to the website of spaCy for a 

description of the parser and its code1. 

 

3.2.2 Semantics 

To represent the semantics of a sentence, Abstract Meaning Representation (AMR) is used. This 

semantic representation language, as presented by Banarescu et al. (2013), is constructed to abstract 

away from syntactic idiosyncrasies and attempts to assign the same AMR to sentences with the 

same basic meaning. The same AMR is assigned to the sentences “he described her as a genius” 

and “she was a genius, according to his description”. Therefore, AMR is used to represent sentences 

in such a way that the underlying meaning of a sentence, its semantics, is captured well.  

 AMRs are written as rooted, directed, edge-labeled, leaf-labeled graphs. This traditional 

format is similar to simple forms of feature structures (Shieber et al., 1986), conjunctions of logical 

triples, directed graphs and PENMAN inputs (Matthiessen & Bateman, 1991). Figure 3 illustrates 

some of these views for the sentence “The boy hugs the girl”.  

 

                                                             
1 https://spacy.io/ 
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Figure 3. Equivalent formats for representing the meaning of “The boy hugs the girl”. 

 

3.3 Representational Similarity Analysis 

The technique used in this study to compare the different representations is called Representational 

Similarity Analysis (RSA). In this analysis, introduced by Kriegeskorte et al. (2008), a 

Representational Dissimilarity Matrix (RDM) is constructed for each model. The RDM contains 

cells for all pairs of representations of the entries of a data set, where the value of the cell reflects 

the dissimilarity between those two representations. Consequently, a RDM is symmetrical about a 

diagonal of zeros. An example of a RDM is given in Figure 4.  
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Figure 4. Example of a RDM for a data set of four sentences: 1: “What a nice man”, 2: “What a 

beautiful woman”, 3: "The dog barks", 4:"The cat eats". Each sentence is represented by a vector 

using the skip-thoughts model. Each cell reflects the dissimilarity between the two sentence 

representations, which is computed using the cosine distance.  

 

Having constructed RDMs for the various models, these representations can be 

quantitatively compared by computing the correlation between the RDMs. Since the RDMs are 

symmetrical about a diagonal of zeros, the correlation will be computed over the upper triangular 

of the matrices. How these RDMs are constructed in this study specifically, will be explained in 

the next section. 

 

 

 

4. Experimental Setup 

In this section, the experimental procedure will be explained. First, a description of the data set will 

be given. Subsequently, the construction of the different representations and their RDMs will be 

explained. All coding was done in Python. 

 

4.1 Data Set 
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The data used in this work consists of The Little Prince Corpus2. This data set contains all sentences 

of the novel The Little Prince by Antoine de Saint-Exupéry, which was published in 1943. This 

data set was chosen because it provides AMR annotations3 for all sentences. The corpus consists 

of 1562 sentences, which are already split into a training set of 1274 sentences, a development set 

of 145 sentences, and 143 test sentences. Since no models are trained in this thesis, a development 

or test set is not needed. Therefore, only the training set was used. 

 The data set consists of sentences in English, their Chinese translations, their AMR and 

some metadata, including the annotators id and save date. The data was pre-processed so that only 

the English sentences and the AMRs remained. Chapter headings, such as “Chapter 7”, were 

excluded, since they are not full sentences that contribute to the story of the novel, after which the 

total amount of sentences was reduced to 1253.  

 

4.2 Representations 

4.2.1 Neural representations 

As described before, the neural representations used in this study are skip-thought vectors (Kiros 

et al., 2015). The code for the encoder used in the paper as well as the encoder vocabulary are 

freely available4. After having installed the skip-thoughts model, sentences can easily be encoded 

into a vector with 4800 dimensions. Although other models have been introduced more recently 

(e.g. the quick thoughts model of Logeswaran and Lee, 2018), skip-thoughts was chosen because 

of time limitations, since it is easy to use and produces a combination of vectors. This enables 

comparison between vectors after having only one model installed. 

 Since the produced vector is a combination of other vectors, the subvectors can be easily 

extracted, allowing for comparisons between these vectors. The complete vector of 4800 will be 

referred to as combi-skip vector. This vector is made up of two vectors, each of 2400 dimensions. 

The first, a unidirectional encoded vector, will be referred to as the uni-skip vector. The second, a 

bidirectional encoded vector, will be referred to as the bi-skip vector. By selecting the first or last 

2400 dimensions of the combi-skip vector, these vectors can be extracted. The bi-skip vector is 

                                                             
2 https://amr.isi.edu/download.html 
3 The annotations, provided by the AMR Bank, are manually constructed by human annotators at the Linguistic Data 

Consortium, SDL, the University of Colorado’s Center for Computational Language and Education Research, and 

the University of Southern California’s Information Science Institute and Computational Linguistics at USC. 
 
4 https://github.com/ryankiros/skip-thoughts 
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also a combination of two vectors of 1200 dimensions each. The first one is constructed by an 

encoder which is given the sentence in correct order, whereas the other is given the sentence in 

reverse. The produces vectors will be referred to as the bi-skip forward vector and bi-skip backward 

vector respectively. In summary, 5 vectors with the following number of dimensions will be 

extracted: the combi-skip vector (4800), the uni-skip vector (2400), the bi-skip vector (2400), the 

bi-skip forward vector (1200), and the bi-skip backward vector (1200). 

 

4.2.2 Syntactic representations 

Dependency trees are the syntactic representations used in this study. The dependency parser used 

is spaCy, which code is freely available5. This parser is pre-trained and can easily be used. After 

having installed the model and loading the English language model, each sentence was encoded 

individually and the results were stored in a list.  

 To evaluate the dependency trees, a tree kernel was used, which will be explained in Section 

4.3. This kernel required the input to be in CoNLL-U format6. Therefore, some features were 

extracted from the encoded dependency parse. For each word in the sentence, its index, text, 

lemma, coarse-grained Part-Of-Speech (POS) tag, fine-grained POS tag, dependency, head, and 

the index of the head were extracted. The extracted features were rewritten in CoNLL-U format, 

after which these rewritten representations were stored in a list. Although they were rewritten to 

another format, they still captured the dependency parse and implicitly the dependency tree of the 

sentence.  

 

 

 

4.2.3 Semantic representations 

The semantic representations used are AMRs. Since they were provided in the data set, these did 

not need to be constructed. 

 

4.3 RSA 

                                                             
5 https://spacy.io/ 
6 http://universaldependencies.org/format.html 
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In order to apply RSA to the representations, first the RDMs for the various representations had to 

be constructed. These RDMs were constructed of pairwise dissimilarity measurements between the 

all sentences of the corpus. The resulting matrix has a shape of (1253, 1253) and is symmetrical 

about a diagonal of zeroes. The dissimilarity measurements differ for the various representations 

and will now be explained. 

 The neural representations are made up of vectors. Therefore, their dissimilarity was 

measured in cosine distance, i.e. 1 −
𝑢 ∙𝑣

‖𝑢‖2‖𝑣‖2
. 

 The syntactic representations were constructed in the form of dependency trees. These were 

evaluated using tree kernels as described in Moschitti (2006). The script for this tree kernel can be 

found on GitHub7. This kernel was adapted for dependency trees. The kernel evaluates trees in 

terms of their substructures. The substructures can be characterized in two ways: the subtrees (STs) 

and the subset trees (SSTs). A ST is any node of a tree and all its descendants, whereas a SST is a 

more general structure in which leaves can be associated with non-terminal symbols. An illustration 

of a tree with some of its STs and SSTs can be found in Figure 5 and Figure 6 respectively. 

 

 

Figure 5. A tree with some of its subtrees (STs). 

 

                                                             
7 https://github.com/fkunneman/DiscoSumo/tree/master/naacl/models 
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Figure 6. A tree with some of its subtrees (SSTs). 

 

The kernel constructs a feature space and detects if a tree subpart, common to both trees, 

belongs in that space. Tree kernels compute the number of common substructures between two 

trees. Although SST kernels provide a much higher accuracy than ST kernels on classification of 

predicate argument structures (Moschitti, 2006), both kernels are explored. 

The tree kernel, which is a convolutional kernel, works as follows, following Moschitti 

(2006). Let 𝐹 = {𝑓1 , 𝑓2, … , 𝑓|𝐹|} be a set of tree fragments of any substructure and let indicator 

function 𝐼𝑖(𝑛) be 1 if the target 𝑓1 is rooted at node 𝑛 and 0 otherwise. The kernel can be defined 

as: 

 𝐾(𝑇1, 𝑇2) =  ∑ ∑ ∆(𝑛1, 𝑛2)

𝑛2∈𝑁𝑇2𝑛1∈𝑁𝑇1

 (5)  

where 𝑁𝑇1
 and 𝑁𝑇2

are the sets of nodes in 𝑇1 and 𝑇2 respectively, and ∆(𝑛1, 𝑛2) =

 ∑ 𝐼𝑖(𝑛1)𝐼𝑖(𝑛2)
|𝐹|
𝑖=1 , which is the number of common fragments rooted at nodes 𝑛1 and 𝑛2. It can be 

computed as follows: 

1. if the productions at node 𝑛1 and 𝑛2 are different then ∆(𝑛1, 𝑛2) = 0; 

2. if the productions at node 𝑛1 and 𝑛2 are identical, and both have only leaf children, i.e. they are 

pre-terminal symbols, then ∆(𝑛1, 𝑛2) = 1; 

3. if the productions at node 𝑛1 and 𝑛2 are identical, and they are not pre-terminals, then 

 

∆(𝑛1, 𝑛2) = ∏ (𝜎 +  ∆(𝑐𝑛1

𝑗
, 𝑐𝑛2

𝑗 ))

𝑛𝑐(𝑛1)

𝑗=1

 

(6)  

where 𝜎 ∈ {0,1}, 𝑛𝑐(𝑛1) is the number of children of 𝑛1 and 𝑐𝑛
𝑗
 is the 𝑗-th child of node 𝑛. Since 

the productions are identical, 𝑛𝑐(𝑛1) =  𝑛𝑐(𝑛2). 

 If 𝜎 = 0, then ∆(𝑛1, 𝑛2) is equal to 1 only if all the productions associated with the children 

are identical, i.e. ∀𝑗 ∆(𝑐𝑛1

𝑗
, 𝑐𝑛2

𝑗 ) = 1. Recursive application of this property shows that 𝑛1 and 𝑛2 

have identical subtrees. Therefore, the first equation evaluates the ST kernel. The SST kernel can 

be computed when 𝜎 = 1, so that the number of SSTs common to both 𝑛1 and 𝑛2 are evaluated 

(Collins and Duffy, 2002).  
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 A similarity score between 0 and 1 can be computed by applying normalization in the kernel 

space, i.e. 𝐾′(𝑇1, 𝑇2) =  
𝐾(𝑇1,𝑇2)

√𝐾(𝑇1,𝑇1) ×𝐾(𝑇2,𝑇2)
. The dissimilarity score was computed by 1 − 𝐾′(𝑇1, 𝑇2). 

The semantic representations in the form of AMRs were evaluated using smatch, a metric 

which calculates the degree of overlap between two semantic feature structures (Cai & Knight, 

2013). Consider two sentences, “the boy hugs the girl” and “the boy wants the football”, which 

AMR graphs are illustrated as conjunctions of triples in Figure 7. The metric measures the amount 

of propositional overlap between the two sentences. Since variable names are not necessarily 

shared between two AMRs, overlap can be computed on different variable mappings. Therefore, 

the smatch score is defined as the maximum F-score obtainable via a one-to-one matching of 

variables between two AMRs. An example is given in Table 1.  

 

 

Figure 7. The AMRs illustrated as conjunctions of triples for the sentences “the boy hugs the girl” 

(left) and “the boy wants the football” (right). 

 

  



FINDING STRUCTURE IN NEURAL NETWORK ACTIVATION PATTERNS 21 

 

Table 1 

Computation of Smatch Score for Two Sentences 

Combination M P R F 

x = a, y = b, z = c 3 3/5 3/5 0.6 

x = a, y = c, z = b 0 0/5 0/5 0.0 

x = b, y = a, z = c 0 0/5 0/5 0.0 

x = b, y = c, z = a 0 0/5 0/5 0.0 

x = c, y = a, z = b 0 0/5 0/5 0.0 

x = c, y = b, z = a 1 1/5 1/5 0.2 

smatch score    0.6 

Note. The precision, recall and F-score for different mappings of the two sentences “the boy hugs 

the girl” and “the boy wants the football”, where 𝑀 is the number of propositional triples that agree 

given a variable mapping, 𝑃 is the precision of the second AMR against the first, 𝑅 is the recall, 

and 𝐹 is the F-score. The smatch score is the maximum of the F-scores. 

 

The smatch evaluation script is freely available8. The script can evaluate the semantic match 

between all triples or specific triples. By adding hyperparameters, the script can focus on specific 

triples, such as instances, relations, or attributes, instead of calculating the score over all triples in 

the AMR. An example of instance triples can be seen in Figure 7, where the upper 3 triples in both 

AMRs are instance triples. The bottom two illustrate relation triples. An example of an attribute is 

negation. For example, the sentence “the boy does not hug the girl” would have an additional 

attribute for the triple ARG0(a, b) compared to the first sentence in Figure 7. Although all 

hyperparameters were explored, specific focus was on the evaluation over all triples, since this 

captures the complete underlying meaning of the sentences. 

 Besides the computed F-score, the smatch script can also return the corresponding precision 

and recall. However, since these scores depend on the order of the presented AMR, so that the 

precision of AMRi against AMRj is equal to the recall of AMRj against AMRi, only F-score was 

selected. The dissimilarity between a pair of AMRs was therefore computed by 1 –  smatch score. 

                                                             
8 https://github.com/snowblink14/smatch 
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Having constructed the RDMs for the different representations, the Pearson correlation 

coefficient was computed between two RDMs on the upper triangulars of the matrices, excluding 

the diagonal.  

 

5. Results 

The computed RDMs for the neural representations and structured symbolic representations can be 

found in Appendix A and Appendix B respectively. Table 2 shows the RSA scores between the 

neural representations and the structured symbolic representations. Comparing the RSA scores 

between the neural representations and the structured symbolic representations show that all neural 

representations are more correlated to all semantic representations than to the syntactic 

representations. Moreover, the difference between the correlations of the vectors with the different 

structured symbolic representations is quite large. The syntactic correlations do not exceed an 

absolute value of .021, with one exception of .040, while the semantic correlations do not drop 

below a correlation coefficient of .055. Note that the syntactic evaluations using the ST kernel show 

positive correlations with bi-skip and bi-skip forward, as well as negative correlations with the 

other representations.  

Focussing on the syntactic representations, comparison between the RSA scores of the 

neural representations and the syntactic representation evaluated using the SST kernel shows that 

the combi-skip (r = .017, 95% CI [.014, .019]) and the uni-skip representations (r = .017, 95% CI 

[.015, .019]) are more correlated to the syntactic representation than the bi-skip representation (r = 

.015, 95% CI [.013, .017]), which on its turn has a higher correlation than its sub-models (bi-skip 

forward: r = .006, 95% CI [.003, .008]; bi-skip backward: r = .010, 95% CI [.008, .013]). Regarding 

the RSA scores of the neural representations and the syntactic representation evaluated using the 

SST kernel, the uni-skip representation has the largest absolute correlation coefficient (r = -.040, 

95% CI [-.042, -.038]), followed by bi-skip backward (r = -.021, 95% CI [-.023, -.019]) and bi-

skip forward (r = .021, 95% CI [.018, .023]). The combi-skip follows closely (r = -.018, 95% CI  

[-.020, -.016]), though the bi-skip representation has a substantially lower absolute correlation (r = 

.007, 95% CI [.004, .009]). 
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Table 2 

Pearson Correlation Coefficients between RDMs of Neural Representations and Structured 

Symbolic Representations  

Structured Symbolic 

Representations 

 
Neural Representations 

 

 
Combi-skip Uni-skip Bi-skip Bi-skip f Bi-skip b 

Dep SST .017 .017 .015 .006 .010 

Dep ST -.018 -.040 .007 .021 -.021 

AMR all .134 .087 .175 .143 .153 

AMR instance .093 .064 .117 .072 .113 

AMR relation .093 .055 .126 .115 .104 

AMR attribute .077 .055 .096 .076 .087 

 Note. Bi-skip f and Bi-skip b refer to the bi-skip forward vector and bi-skip backward vector 

respectively. Dep SST and Dep ST refer to syntactic representations evaluated using the subset tree 

kernel and subtree kernel respectively. The different AMRs are the semantic representations in the 

form of AMRs focussing on all triples, instance triples, relation triples, and attribute triples 

respectively.  

 

Comparison between the RSA scores of the neural representations and the semantic 

representation evaluated using AMRs focussing on all triples shows that all bi-skip representations 

have a higher correlation with this semantic representation (bi-skip: r = .175, 95% CI [.173, .177]; 

bi-skip forward: r = .143, 95% CI [.141, .145]; bi-skip backward: r = .153, 95% CI [.151, .155]) 

than the combi-skip (r = .134, 95% CI [.132, .137]) and uni-skip representations (r = .087, 95% CI 

[.085, .089]). The combined bi-skip model has a higher correlation than both of its submodels, bi-

skip forward and bi-skip backward. Uni-skip scores considerably lower than all other 

representations. Comparing the RSA scores of the neural representations and the other semantic 

representations, a similar pattern can be observed, although the correlations are smaller. 
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5.1 Dissimilarity Score Distributions 

Further investigation of the distribution of the dissimilarity scores, which can be found in Figure 

8, show that both structured symbolic representations are highly skewed towards higher 

dissimilarity scores as opposed to the neural representations. Moreover, all neural representations 

seem to reach a global maximum, followed by a substantial decline, after which it reaches a new 

local maximum. Almost all neural representations follow this pattern, except bi-skip forward, 

which second maximum is slightly higher than the first. The differences in dissimilarity 

distributions between the structured symbolic representations and the neural representations can 

also be seen in Table 3, which illustrates the mean and standard deviation of the dissimilarities for 

the representations. The mean scores for the structured symbolic representations are much higher 

with a lower standard deviation (MAMR = 0.857, SDAMR = 0.096; MDEP = 0.966, SDDEP = 0.052), as 

opposed to the neural representations, which have lower mean scores and higher standard 

deviations (MCombi-skip = 0.458, SDCombi-skip = 0.162; MUni-skip = 0.399, SDUni-skip = 0.171; MBi-skip = 

0.517, SDBi-skip = 0.164; MBi-skip f = 0.496, SDBi-skip f = 0.277; MBi-skip b = 0.512, SDBi-skip b = 0.160). 

 

  

Figure 8. Distribution of dissimilarity scores over the upper triangular of the RDM for different 

representations. The numbers on the x-axis indicate the lower bound of the bin range, whereas the 

y-axis indicates the number of dissimilarity scores in that bin. The dissimilarity scores are binned 

into 10 bins with a width of 0.1, so that the frequency for a given value on the x-axis reflects the 

number of dissimilarity scores from that value up to the next value for that representation. AMR 
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all and DEP SST refer to the semantic representation using AMRs focussing on all triples and the 

syntactic representation evaluated using the subset tree kernel respectively. The other lines 

represent the different neural representations of the sentences. 

 

Table 3 

Mean and Standard Deviation of the Dissimilarity Scores for Representations 

Representation Mean Std. Dev. 

AMR 0.857 0.096 

DEP 0.966 0.052 

Combi-skip 0.458 0.162 

Uni-skip 0.399 0.171 

Bi-skip 0.517 0.164 

Bi-skip f 0.496 0.277 

Bi-skip b 0.512 0.160 

Note. AMR and DEP refer to the semantic representation using AMRs focussing on all triples and 

the syntactic representation evaluated using the subset tree kernel respectively. The bottom five 

rows represent the different neural representations of the sentences. 

 

Table 4 and Table 5 show several sentences of the data set and the dissimilarity scores of 

some combinations. It shows that the combination of sentences (7, 23) has the same syntactic 

structure and has a semantic dissimilarity of 0.400. The dissimilarities of the neural representations 

are also low. Another combination which yields low dissimilarities for the neural representations 

is (361, 362), which also has a rather low semantic dissimilarity of 0.429, yet has a higher 

syntactical dissimilarity of 0.792. This is still lower than the syntactic dissimilarity of the other 

combinations. 
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Furthermore, both combinations (7, 8) and (361, 362) are consecutive sentences, of which 

the first combination is much more dissimilar than the second. This holds for all representations. 

Surprisingly, when both sentences of this first combination are compared to one of the second 

combination, i.e. (7, 361) and (8, 361), their dissimilarity scores across all representations are very 

similar. 

 

Table 4  

Sentences of the Little Prince Corpus with their Sentence ID 

ID Sentence 

7 I did not know . 

8 At that moment I was very busy trying to unscrew a bolt that had got stuck in my 

engine . 

23 I did not answer . 

361 FIfteen and seven make twenty - two . 

362 Twenty - two and six make twenty - eight . 

Note. The sentence ID is the ID after the removal of chapter headings, as discussed in Section 4.1. 

The sentences are the original sentences from the dataset, including the space around interpunction 

and the two capital letters at the beginning of sentence 361.  

 

Table 5 

Dissimilarity Scores between Combinations of Sentences 

s1 s2 AMR DEP Combi-

skip 

Uni-

skip 

Bi-skip Bi-skip 

f 

Bi-skip 

b 

7 8 0.852 0.989 0.298 0.260 0.336 0.192 0.352 

7 23 0.400 0.000 0.153 0.159 0.148 0.010 0.161 

7 361 1.000 0.945 0.355 0.310 0.400 0.169 0.425 

8 361 0.931 0.997 0.362 0.310 0.414 0.323 0.426 

361 362 0.429 0.792 0.113 0.100 0.127 0.040 0.139 

Note. s1 and s2 represent the IDs of the first and second sentence of the combination. AMR and 

DEP refer to the dissimilarity scores of the semantic representation using AMRs focussing on all 

triples and the syntactic representation evaluated using the subset tree kernel respectively. The last 

five columns represent the dissimilarity between the different neural representations of the 

sentences. 

 

6. Discussion 
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In this study, a simple approach was explored to quantify how well a neural representation 

corresponds to a structured symbolic representation. Through RSA neural representations were 

compared to representations capturing syntax and semantics of sentences, in the form of 

dependency trees and AMRs respectively. The used neural representations were skip-thought 

vectors and its subvectors (Kiros et al., 2015). This analysis was conducted to answer the following 

research question: “To what extent captures a neural network representation the syntax of sentences 

as opposed to the semantics?” 

 Regarding the RSA scores between the neural representations and the syntactic 

representations, the correlations with the ST kernel show a surprising result. They show both 

positive and negative correlations. In addition, SST kernels provide a better accuracy on 

classification of predicate argument structures (Moschitti, 2006). Therefore, the rest of this thesis 

will focus on the correlations between the neural representations and the SST kernel evaluations 

for the syntactic representations. For simplicity, in the rest of this thesis the syntactic 

representations will refer to the representations constructed by the SST kernel.   

 On the other hand, the correlations for the various neural representations show a similar 

pattern between all semantic representations. The only exceptions are the combi-skip vector and 

bi-skip forward vector, which outperform each other on different semantic representations. 

Moreover, the evaluation focussing on all triples captures the meaning of the complete sentence, 

as opposed to focussing on specific types of represented meanings. In addition, this evaluation 

yields the highest correlation with all neural representations, indicating that the vectors seem to 

capture the complete meaning of sentences to a larger extent as opposed to the semantics captured 

by specific triples. Therefore, despite the fact that there is small variation in the correlation patterns 

between the neural representations and the semantic representations, the rest of this thesis will 

focus on the correlations between the neural representations and the evaluation focussing on all 

triples. For simplicity, in the rest of this thesis the semantic representations will refer to the 

representations constructed by evaluation on all triples. 

         As discussed in the previous section, the combi-skip and the uni-skip models have a higher 

correlation with the syntactic representation than the bi-skip models. In addition, the combined bi-

skip model has a higher correlation than its two submodels, bi-skip forward and bi-skip backward. 

This might indicate that combined models capture the syntax as good as or better than their 



FINDING STRUCTURE IN NEURAL NETWORK ACTIVATION PATTERNS 28 

 

submodels. One possible explanation might be that the submodels capture different aspects of the 

syntax and therefore their combination captures a fuller representation of the syntax. 

Further inspection of the correlations of the neural representations with the semantic 

representation shows something different. The bi-skip model, as well as its forward and backward 

encoders, have a higher correlation with the semantic representation than the uni-skip and combi-

skip model. The uni-skip vector correlates considerably less with the semantic representation than 

all other representations. Since half of the combi-skip vector consists of this vector, it might be 

negatively impacted by its low correlation with the semantic representation. The combination of 

the forward and backward vector in the bi-skip vector suggest combining vectors lead to a better 

representation of the semantics, though this does not hold for the combi-skip vector. Although its 

lower correlation can be explained by the low correlation of the uni-skip vector, further research is 

needed to verify if combining vectors increase the captured semantics.  

When comparing the correlations between the syntactic and semantic representations, it can 

be seen that the neural representations are more correlated to semantics as opposed to syntax, 

thereby answering the main research question. This implies that the meaning of the sentence is 

captured to a larger extent than the underlying grammar. This might be a reflection of modern 

English, as well as other languages, in which the specific words contribute more towards a sentence 

representation of a concept than its syntax. For example, the two sentences “she was a genius, 

according to his description” and “he described her as a genius” can be used both to represent the 

same concept, though be it in from a different perspective. Considering a third sentence “he was a 

dictator, according to his actions”, which is similar to the first sentence in terms of syntax but is 

different in terms of semantics, represents a very different concept than the first two sentences. 

This illustrates that the meaning of the words in a sentence contribute to a larger extent to the 

representation of a concept than the used grammar. This result also holds for neural representations, 

which capture the semantics to a larger extent as opposed to the syntax, thereby answering our 

research question. 

However, it must be noted that the correlations with the syntactic representation are quite 

low. Moreover, the RDMs of the neural representation and the syntactic representation have a low, 

negative correlation, r = -.100. In addition to the explanation from the preceding paragraph, the 

lower scores for the syntactic representation might also be caused by two limitations of this study. 

First, it might be affected by the different ways of computing the dissimilarity between the AMRs 
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and the dependency trees. Computing the F-score over the syntactic dependency triples might allow 

for a better comparison. In addition, a third tree kernel focussing on another substructure, partial 

trees, provides a slightly higher accuracy on dependency trees and might improve the 

representation (Moschitti, 2006, September). This kernel was not explored because the code for 

this kernel was not available and could not be constructed due to time limitations. Second, the 

AMRs provided were constructed and checked by human annotators, whereas the dependency trees 

were constructed automatically. Although the encoder was chosen because it offered an easy way 

of constructing syntactic representations given the limited time for this study and because its high 

accuracy (Honnibal & Johnson, 2015), it still might have a negative influence on the results. Future 

studies might also consider humanly constructed dependency trees, thereby reducing the chance of 

incorrect syntactic representations. These alternative explanations might indicate that the results 

are inconclusive, thereby impacting the reliability and generalizability of this conclusion and other 

conclusions in this thesis based on this result. 

Additionally, the distributions of the structured symbolic representations are very skewed 

as opposed to those of the neural representations. The structured symbolic representations have a 

higher mean and lower standard deviation in comparison with the neural representations, yet the 

dissimilarity scores for all representations are in the same range between 0 and 1. Therefore, the 

lower dissimilarities for structured symbolic representations seem to be outliers, which might have 

an influence on the computed RSA score.  

         Another thing to note is that the uni-skip encoder and both the forward and backward 

encoder of the bi-skip vector, all of which focus on encoding a sentence and which can later be 

concatenated to construct the bi-skip and comb-skip vectors, seem to be biased to focus on learning 

either the syntax or semantics. The uni-skip representation has the highest correlation of all 

representations with the syntactic representations but scored the lowest on semantics. On the other 

hand, the two encoders of the bi-skip vector have the lowest correlation with the syntactic 

representation but have a relatively high correlation with the semantic representation. The combi-

skip representation and the bi-skip representation, which in itself is a combination of the forward 

and backward encoded vectors, seem to perform well on capturing both syntax and semantics. This 

might indicate that encoders are vulnerable to being biased to learn either the underlying syntax or 

semantics and that the concatenation of those vectors leads to a fuller and less biased representation. 

In other words, by concatenating different learned representations, each of which encoded a 
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sentence from their own perspective as it were, a fuller representation can be built, which results 

into a better representation of the syntax and semantics of the original sentence. This explanation 

provides an answer for the other research questions.  

    

7. Conclusion 

This study evaluated the learned representations by RNNs on a more global level as opposed to 

other evaluations (e.g. Kádár et al., 2017; Linzen et al., 2016; Conneau & Kiela, 2018). More 

specifically, this thesis was focussed on investigating to what extent neural networks learn the 

semantics of sentences as opposed to the syntax. In order to answer this question, RSA was applied 

to pairs of neural representations and structured symbolic representations. 

 The results showed that neural representations capture the semantics of sentences to a larger 

extent than their syntax, a result which reflects the linguistic representations of concepts in 

languages thereby answering our main research question. In addition, the analysis proved useful 

for global evaluation of different representations. Moreover, the new approach introduced a new 

perspective on the representations learned by neural networks. More specifically, it suggests that 

combining vectors enables models to construct fuller representations which seem to be less biased 

to capturing either syntax or semantics, thereby answering the other research questions. 

Although the novel approach of evaluating neural representations introduces a new 

perspective on these representations, further research is needed. Due to time and computational 

limitations, certain choices for the experimental set up were made which might influence the 

results. First of all, future research might compare the results using this approach to the 

performance on state-of-the-art benchmarks, such as SentEval (Conneau & Kiela, 2018) or GLUE 

(Wang et al., 2018). Moreover, the current study focuses on evaluating vectors made by only one 

model. The architecture of the model might influence the learned representations and results might 

differ for other models. In addition, the choices of the structured symbolic representations as well 

as their construction might also influence the results. Besides considering constituency trees as 

opposed to dependency trees to represent the captured syntax, future research might also use 

humanly constructed or verified trees. Finally, the corpus on which the representations were made 

consists of only one book. Qualitative analysis showed the corpus still contained at least one 

typographical error, specifically in sentence 361, which might influence the encoders. Due to time 

limitations, the corpus could not be further checked or corrected after the analysis. Future research 
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might consider larger and more diverse corpora and correct for possible errors. Despite these 

possible limitations of this study, the new approach still has proven useful for comparing neural 

representations and explaining their successful applications.  

Another direction of future research might be to continue this work by examining the ratio 

of learned syntax and semantics. Can an optimal ratio be found, on which future models should be 

focussed to construct better representations? In addition, neural representations might be evaluated 

by comparing them to other representations as opposed to syntactic and semantic representations. 

This might lead to new insights about the neural representations from other perspectives as well. 

Finally, a comparison between various current and future state-of-the-art models might be made 

using this approach, which might inspire the construction of better models. 
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Appendix A 

RDMs for the neural representations of sentences as represented by A) Combi-skip, B) Uni-skip, 

C) Bi-skip, D) Bi-skip forward, and E) Bi-skip backward. 

       

        A)         B) 

  

       C)         D) 
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Appendix B 

RDMs for the structured symbolic representations of sentences as represented by dependency 

trees evaluated using A) a ST kernel, B) a SST kernel, and AMRs evaluating C) all triples, D) 

instance triples, E) relation triples, and F) attribute triples. 

   

       A)       B) 

  

        C)       D) 
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