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Abstract 
Traditionally, the analysis of an artwork is performed by art experts. However, analytical methods have 
advanced over the past years. With the rise of computers and digital reproductions of works of art, it 
becomes possible to automatically attribute artworks. Because technologies have changed, digital 
computer storage and computational power is wider available, and there are more scientists with an 
analytical background, computational techniques to automate artist attribution are more widely applied 

than before.  
 
Since the early 1990s, several convolutional neural network architectures have been proposed for image 
recognition tasks. Within the topic of artist attribution, the neural network learns to identify marks that 
are seen as characteristics of a specific artist. In this thesis a new approach is presented that makes use 
of a different convolutional neural network than ever used before.  
 

The aim of this study is to examine whether the results of an experiment in artist attribution differ, when 
using a recent and well-developed convolutional neural network. To this end, the research question is 
as follows: 
 

To what extent can the results of an experiment in automatic artist attribution be improved by 
using a current network architecture?  

 

To compare results, the dataset that is used for the experiments in this thesis is the same as the dataset 
used by Van Noord, Hendriks and Postma (2015): the Rijksmuseum Challenge dataset. 
 
The research question is answered through several experiments which are executed by using the 
Inception V3 Network in Python. The results of these experiments indicate that the results of an 
experiment in artist attribution improve when using a current network architecture.  
 
Further research could be undertaken to identify whether using a heterogeneous dataset, or a dataset 

where no visual marks, like different perspectives in the images, are present, influences the results of an 
experiment in artist attribution.  
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Chapter 1. Introduction 
The first part of this chapter contains a general introduction into the landscape of automated artist 
attribution. Section 1.2 consists of the formulation of the research problem. Section 1.3 consists of the 
scientific and practical relevance of this thesis. Finally, section 1.4 describes the structure of this thesis.  
 

1.1 Automated artist attribution  
Over the past years, the technologies in image data acquisition have developed. Therefore, museums 
started to collect digital libraries of images of their collections. Due to more collaborations between 
image analysis researchers and art historians, technology developers are able to focus on image analysis 
tasks (Johnson et al., 2008). For various artworks, either the author is unknown or there is a continuing 
discussion about the authenticity of the attributions (Van Noord, 2018). Traditionally, the analysis of an 
artwork is performed by human art experts (Berezhnoy, Postma, & Van den Herik, 2006). To establish 

the cultural, historical, and economic value of an artwork, identifying the author of an artwork is 
important. In order to establish the value of an artwork, art experts need to have a certain amount of 
knowledge. Art experts acquire this knowledge by analysing artworks and their descriptions of the 
relevant aspects (Van Noord, Hendriks, & Postma, 2015). According to Johnson et al. (2008), “the 
problem of artist identification seems ripe for the use of image processing tools”. When experts identify 
the artist of an artwork, they use not only their current understanding of the routines of the artist. Experts 
combine this knowledge by examining the presence of the “handwriting” of the artist, and with 

comparisons of a variety of technical data (Johnson et al., 2008). A handwriting could be, for example 
in the case of Van Gogh, the brushwork. The analysis of a digital representation of an artwork could 
help the art expert in the process of attribution (Johnson et al., 2008). The application of computational 
techniques to analyse artworks already existed years ago. However, only recently, analytical methods 
have produced a relevant impact on the ability to contribute to the analysis of an artwork. This is due to 
a historical division between science and humanities. Only since several years, interaction between these 
two domains occurs more often (Barni, Pelagotti, & Piva, 2005).  

 
With the development of computer techniques and the rise of high-resolution digital reproductions of 
artworks attempts were made to automate the attribution of artworks (Johnson et al., 2008; Van Noord 
et al., 2015; Li, Yao, Hendriks, & Wang, 2015; Elgammal, Kang, & Den Leeuw, 2017). To identify the 
artist of an artwork, machine learning algorithms may be helpful because they can do this automatically. 
Collaboration between art experts and conservators already established the feature engineering for 
recognizing Van Gogh and other artists of his time as the original maker of their works of art. According 
to Van Noord et al. (2015), “this highlights the value of automatic approaches as a tool for art experts”.  
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The issue of automated artist attribution has been addressed extensively, see Chapter 3. As stated by 
Van Noord et al. (2015), “convolutional neural networks have not yet been applied for automated artist 
attribution”. They were the first to use convolutional neural networks to automatically attribute works 

of art. In their work they applied “PigeoNET”, a variant of AlexNET, the network responsible for the 
breakthrough ImageNet performance (Krishevsky, Sutskever, & Hinton, 2012). Since the publication of 
Van Noord et al.’s study, neural network architectures have been considerably improved in terms of 
efficiency and performance. Chapter 2 provides an overview of AlexNET and these improved network 
architectures. In this thesis, one of the improved network architectures will be applied to the task of 
author attribution to determine if and to what extent it outperforms AlexNET. The conditions for the 
experiments in this thesis are the same as in the study by Van Noord et al. (2015), however slight 

differences in the experiment have been made for an optimal result, see Chapter 4.  
 

1.2 Problem formulation 
To detect the characteristics that determine the touch of an artist, Van Noord et al. (2015) presented a 
specific approach. This approach trains a convolutional neural network on a substantial set of digitalized 
imitations of various artworks. Hereby, he network is encouraged to discover visual features that are 

distinguishing for a particular artist (Van Noord et al., 2015). Ultimately, the task of automatic artist 
attribution is performed. By studying artworks that are representative of the artist, the distinguishing 
characteristics of that artist can be recognized. However, according to Van Noord et al. (2015), the 
absence of certain methods, in particular the automatization and determination of which criteria make 
an artwork representative and obtaining a dataset of decent size containing different images, is difficult. 
Therefore, Van Noord et al. (2015) suggest that to avoid the need for a decent sample, a big sample has 
to be taken. In this case this means that a substantial dataset is required, which includes many images 
per artist. Therefore, the dataset used for the experiment in the paper by Van Noord et al. (2015), and 

the dataset used for the experiments in this thesis, is the Rijksmuseum Challenge dataset. This dataset 
contains 122.039 digital photos of works of art made by 6.629 artisans, all represented in the 
Rijksmuseum in Amsterdam, the Netherlands (Van Noord et al., 2015).  
 
Given that during the past years several improved network architectures have been proposed, the 
question arises whether the results of automatically recognizing artists by their artworks can be improved 
by using a different network than AlexNET. Therefore, the problem statement of this thesis is formulated 

as follows:  
 

To what extent can the results of an experiment in automatic artist attribution be improved by 
using a current network architecture?  
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1.3 Scientific and practical relevance 
This research aims to make a contribution to the line of work reported by Johnson et al. (2008), Hughes, 
Graham, and Rockmore (2010), Van Noord et al. (2015), Li et al. (2015), Elgammal et al. (2017), who 
present an approach that tried to automatically attribute artworks to an artist.   

 
The practical relevance of this research can be found in the fact that there are many paintings of which 
the author is still unidentified. For example, May 2018, when a new Rembrandt painting was discovered, 
after it already had been sold by auction house Christie’s as a painting made by a painter “close to 
Rembrandt”. The painting never was officially attributed to Rembrandt by Christie’s (Pinedo & Ribbens, 
2018), however a Dutch art dealer drew 15 curators and art historians into this situation, who assure the 
painting's authenticity as a Rembrandt (Rea, 2018). The research in this thesis can help to automatically 

attribute an artist to a painting, which will be helpful for auction houses, museums, but also the 
individual collector. Moreover, the identification of author-specific characteristics supports art historical 
investigations and may inform restauration efforts.  
 

1.4 Thesis outline  
This thesis comprises seven chapters, each divided in several subchapters. Chapter 1 contains the 

introduction of this research, the problem formulation, the scientific and practical relevance of this 
thesis, and the structure. Chapter 2 gives an overview of several convolutional neural networks and 
explains why the Inception Network is used in the experiments as a suitable representative of an 
improved network architecture. Chapter 3 discusses the related work in the field to place the thesis in a 
broader context. Chapter 4 describes the method used for this research. Chapter 5 contains the results of 
the experiments. Chapter 6 contains the discussion, which consists of the limitations of this research and 
recommendations for future work. Finally, Chapter 7 contains the conclusion.  
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Chapter 2. Convolutional Neural Networks 
This chapter is introduced by a description of what convolutional neural networks actually are, followed 
by an analysis of several convolutional neural network architectures. Except from LeNet-5 and the 
Inception Network, which is a renewed version of GoogLeNet, the convolutional neural networks that 
are mentioned in this thesis are all architectures made for the ImageNet Large Scale Visual Recognition 
Competition (ILSVRC) and are all top competitors. The six network architectures described in this 

thesis, can be compared to each other because they all entered the same competition, the ILSVRC. 
Except from LeNet-5, which is mentioned because it was the first convolutional neural network, a 
breakthrough in the history of network architectures, all the networks named in this thesis have been 
built with the same goal: winning the ImageNet Large Scale Visual Recognition Competition. 
Furthermore, in this chapter the choice for the convolutional neural network used for the experiments in 
this thesis is explained, which is made based on two criteria: performance and complexity, in terms of 
number of parameters.  

 

2.1 Structure of a Convolutional Neural Network 
In the course of time, the convolutional neural network (CNN) accomplished several successes in 
computer vision tasks. A convolutional neural network, which is inspired by neuroscience, shares many 
characteristics with the visual system of the human brain (Liang & Hu, 2015).  
 

A convolutional neural network contains several layers which consist of small computational units. 
Within these units, visual information is processed in a hierarchical and feed-forward manner. Each 
layer of units extracts a particular feature from the input image and is an assemblage of image filters. 
The output of a layer contains feature maps. Feature maps are versions, each filtered in a different way, 
of the input image. Gatys, Ecker, and Betghe (2015) argue that “higher layers in the network capture the 
high-level content in terms of objects and their arrangement in the input image, but do not constrain the 
exact pixel values of the reconstruction”. On the contrary, restorations of the bottom layers duplicate the 

precise pixel rates of the authentic picture. By adapting the filters of a CNN, the network might identify 
distinguishing features of an artist. These filters can be adjusted until an appropriate configuration is 
found. Besides information on the input images and the labels, this process does not need any prior 
knowledge. In the case of the experiments in this thesis, the label is the artist who created the artwork 
(Van Noord et al., 2015). 
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Figure 1. Inside a convolutional neural network. Reprinted from “Deep Learning”, by Y. LeCun, Y. Bengio, and  G. Hinton, 2015. 
Nature, 521, p. 438. Copyright 2015 by Macmillan Publishers Limited. 

 
 
 

 
 
 
 
 
 
 

 
 
 
 
As to be seen in Figure 1 (LeCun, Bengio, & Hinton, 2015), the outputs of each horizontal layer are 
adapted to the picture of a Samoyed dog. “Each rectangular image is a feature map which corresponds 
to the output for one of the learned features of the image positions” (LeCun et al., 2015).  

 
The architecture of a convolutional neural network consists of several stages. LeCun et al. (2015) 
describe a convolutional neural network as follows: 

The first few stages are composed of two types of layers: convolutional layers and pooling 
layers. Units in a convolutional layer are organized in feature maps, within which each unit is 
connected to local patches in the feature maps of the previous layer through a set of weights 
called a filter bank. The result of this local weighted sum is passed through a non-linearity such 
as ReLU. All units in a feature map share the same filter bank. Different feature maps in a layer 

use different filter banks. The role of the pooling layer is to merge semantically similar features 
into one, the role of the convolutional layer is to detect local conjunctions of features from the 
previous layer.   

 
With artist attribution, the network learns to identify the characteristics of an artist. As mentioned before, 
a convolutional neural network contains various layers. “The first layer is directly applied to images, 
subsequent layers to the responses generated by previous layers” (Van Noord et al., 2015). The layers 

of filters are called “convolutional layers”. This is due to convolution being practiced to spread the filters 
to a picture, or to the outcome of a preceding layer. Within a convolutional layer the weights are shared, 
which is an advantage compared to a traditional neural network layer. “This allows the adaptive filters 
to respond to characteristic features irrespective of their position or location in the input” (Van Noord 
et al., 2015). The convolutional layers are succeeded by several so-called “fully-connected layers”. 
These layers convert the intensity and the existence of the outcomes of the filters to a single confidence 
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Figure 2. Architecture of LeNet-5. Reprinted from “The History 
Began from AlexNet: A Comprehensive Survey on Deep Learning 
Approaches” by Alom et al., 2018, retrieved from 
https://arxiv.org/ftp/arxiv/papers/1803/1803.01164.pdf Copyright 
2018 by Alom et al. 

rate per artist. “This score is high whenever the responses for filters corresponding to that artist are 
strong, the score is low when the responses are weak or non-existent. Thus, an unseen artwork can be 
attributed to an artist for whom the score is the highest” (Van Noord et al., 2015).  

 

2.2 Historical overview of Convolutional Neural Networks  
After the first application of a CNN in the early 1990s, computational hardware started to improve in 
capability and convolutional neural networks became more popular as an efficient learning approach 
(Alom et al., 2018). Therefore, new convolutional neural networks came to existence. After a description 
of the very first convolutional neural network, LeNet-5, in subchapter 2.2.1, the subsequent networks 

are explained in the subchapters thereafter.  
 

2.2.1 LeNet-5 
Since the early 1990s, several times convolutional networks have been applied. First of all, in the 1990s, 
LeNet was proposed. However, the algorithm was hard to implement until around 2010, due to restricted 

memory capacity and computation competence (Alom et al., 2018). Therefore, in 1998, LeCun, Bottou, 
Bengio and Haffner proposed a new architecture, known as LeNet-5. According to LeCun et al. (1998), 
“the ability of multi-layer neural networks trained with gradient descent to learn complex, high-
dimensional, non-linear mappings from large collection of examples, makes them candidates for image 
recognition tasks”. In order to make sure there is a degree of shift, scale, and distortion invariance, 
convolutional neural networks combine three architectural concepts. These three concepts are “local 
receptive fields, shared weights, and spatial or temporal sub-sampling” (LeCun et al., 1998).  
 

 

 
 
 
 
 
 
 

 
 
 
As shown in Figure 2 (Alom et al., 2018), “the basic configuration of LeNet-5 consists of two 
convolutional layers, two sub-sampling layers, two fully connected layers, and an output layer with 
Gaussian connection. The input is a 32 x 32 pixel image” (LeCun et al., 1998).  
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LeCun et al. (1998) built LeNet-5 to recognize characters, see Figure 3 (LeCun et al., 1998). The input 
of the network is an image of characters that is size-normalized and centered. According to LeCun et al. 
(1998), “receives each unit in a layer inputs from a set of units located in a small neighbourhood in the 

previous layer”. The units in a layer are organised in so-called “planes”. Every unit in each plane has an 
identical assemblage of weights. The outputs of the units in a plane are addressed as a “feature map”. 
Every unit in a feature map performs the same activity on divergent components of the picture. A 
thorough convolutional layer contains various feature maps. Every feature map has a distinctive weight 
vector, which means that different features can be derived at every position. An example of a complete 
convolutional layer is shown in the first layer of LeNet-5 in Figure 3: 

Units in the first hidden layer of LeNet-5 are organised in six planes, each of which is a feature 

map. A unit in a feature map has 25 inputs connected to a 5 by 5 area in the input, called the 
receptive field of the unit. Each unit has 25 inputs, and therefore 25 trainable coefficients plus 
a trainable bias (LeCun et al., 1998).  

 

2.2.2 AlexNET 
In 2012, Krizhevsky et al., proposed AlexNET, which is a more advanced model in comparison to 

LeNet-5. With AlexNET they won the 2012 ImageNet challenge for visual object recognition. 
“AlexNET accomplished state-of-the-art recognition accuracy compared to the traditional machine 
learning and computer vision approaches” (Alom et al., 2018). This was a big development within the 
field of machine learning and computer vision for recognition and classification tasks and demarcated 
the march of convolutional neural networks in computer vision (Alom et al., 2018).  

Figure 3. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, 
i.e. a set of units whose weights are constrained to be identical. Reprinted from “Gradient-based Learning Applied to Document 
Recognition” by Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, 1998, Proceedings of the IEEE, 86, p. 2285. Copyright 1998 
by LeCun et al. 
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Figure 4. Architecture of AlexNET. Reprinted from “The History Began from 
AlexNet: A Comprehensive Survey on Deep Learning Approaches” by Alom et 
al., 2018, retrieved from https://arxiv.org/ftp/arxiv/papers/1803/1803.01164.pdf 
Copyright 2018 by Alom et al. 

Figure 5. An illustration of the architecture of AlexNET. Reprinted from “ImageNet Classification with Deep Convolutional 
Neural Networks” by A. Krishevsky, I. Sutskever, and G. E. Hinton, 2012, Proceedings of the 25th International Conference 
on Neural Information Processing Systems, 1, p. 1102. Copyright 2012 by Curran Associates Inc. 

 
 
 

 
As shown in Figure 4 (Alom et al., 2018), AlexNET is a convolutional neural network which consists 
of eight layers. According to Krizhevsky et al. (2012), AlexNET consists of “five convolutional and 
three fully connected layers”. After every convolutional and fully connected layer a ReLU is applied to 
add non-linearity. This intensifies the speed. Before the first and the second fully connected layer 
dropout is applied to deal with overfitting. The network has approximately 60 million parameters 
(Krizhevsky et al., 2012). 
 

 
 
 
The result of the final fully connected layer produces a distribution over the 1000 class labels, as shown 

in Figure 5 (Krizhevsky et al., 2012), which is fed to a 1000-way softmax. Krizhevsky et al. (2012) 
describe the construction of AlexNET as follows: 

The kernels of the second, fourth, and fifth convolutional layer are linked to all kernel maps in 
the second layer. The neurons in the fully connected layers are linked to all neurons in the 
preceding layer. Response-normalization layers follow the first and second convolutional 
layers. Max-pooling layers follow the response-normalization layers and the fifth convolutional 
layer. The first convolutional layer filters the 224 x 224 x 3 input image with 96 kernels of size 
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Figure 6. Architecture of ZFNet. Reprinted from “Visualizing and Understanding Convolutional Networks” by M. D. Zeiler 
and R. Fergus, 2013, retrieved from https://arxiv.org/pdf/1311.2901.pdf Copyright by Zeiler and Fergus. 

11 x 11 x 3 with a stride of 4 pixels. The input of the second convolutional layer is the output 
of the first convolutional layer and filters it with 256 kernels of size 5 x 5 x 48. The third, fourth, 
and fifth convolutional layers are connected to each another without any intervening pooling or 

normalization layers. The third convolutional layer has 384 kernels of size 3 x 3 x 256 and is 
connected to the outputs of the second convolutional layer. The fourth convolutional layer has 
384 kernels of size 3 x 3 x 192, and the fifth convolutional layer has 256 kernels of size 3 x 3 x 
192. The fully connected layers have each 4096 neurons.  

 

2.2.3 ZFNet 
The winner of the ImageNet Large Scale Visual Recognition Competition in 2013 was ZFNet, designed 
by Zeiler and Fergus. This network achieved a top-5 error rate of 14.8%. This was achieved by adjusting 
the hyper parameters of AlexNET, while maintaining the same structure with additional deep learning 
elements (Das, 2017). The difference between the approach used by Krizhevsky et al. (2012) and the 
approach by Zeiler and Fergus (2013) is that the sparse connections applied in the layers are replaced 
with dense connections (Zeiler & Fergus, 2013). The ZFNet model by Zeiler and Fergus (2013) was 
trained on the same dataset as AlexNET, the ImageNet 2012 training set.  

 
 
 
 

 

 

 

 

 
As shown in Figure 6, the input of the ZFNet model is a 224 by 224 crop of an image. According to 
Zeiler and Fergus (2013): 

This is convolved with 96 different first layer filters (red), each of size 7 by 7, using a stride of 

2 in both x and y. The resulting feature maps are then: (i) passed through a rectified linear 
function, this is not shown in the figure, (ii) pooled (max within 3 x 3 regions, using stride 2), 
and (iii) contrast normalised across feature maps to give 96 different 55 by 55 element feature 
maps. Similar operations are repeated in layers 2, 3, 4, 5. The last two layers are fully connected, 
taking features from the top convolutional layer as input in vector form. The final layer is a C-
way sofmax function, C being the number of classes. All filters and feature maps are square in 
shape. 
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Figure 7. Architecture of GoogLeNet. Reprinted from Medium website, by S. Das, 2017, retrieved from 
https://medium.com/@siddharthdas_32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-
666091488df5 Copyright 2017 by Medium.  

  

2.2.4 GoogLeNet  
The winner of the ImageNet Large Scale Visual Recognition Competition (ILSVRC) in 2014 was 
GoogLeNet. GoogLeNet is also known as Inception V1, from Google. GoogLeNet is a network 

introduced by Christian Szegedy of Google. The model aims to reduce computation complexity 
compared to the traditional convolutional neural network (Alom et al., 2018). GoogLeNet uses a 
convolutional neural network inspired by LeNet, but implements a new element; the inception module. 
This inception element is based on several small convolutions to reduce the quantity of required 
parameters (Das, 2017). The proposed method of Szegedy (2015) was to incorporate so-called inception 
layers. These layers have fluctuating receptive fields, which are constructed by divergent kernel sizes 
(Alom et al., 2018). GoogLeNet was designed to be computational efficient and practical. This means 
that “inference can be run on individual devices, including those with limited computational resources” 

(Szegedy et al., 2015). 
 

 
 
 
As shown in Figure 7, GoogLeNet consists of 22 layers, adding up just the layers which include 
parameters, which makes it the biggest network to date. However, “the number of parameters used by 
GoogLeNet is lower than the prior network AlexNET” (Alom et al., 2018), from 60 million (AlexNET) 
to 4 million (Das, 2017).  

 

2.2.5 VGGNet 
The runner-up at the ILSVRC in 2014 is VGGNet, a network developed by Simonyan and Zisserman. 
As shown in Figure 10 (Das, 2017), this network contains 16 convolutional layers and is attractive 
because it has a uniform structure. VGGNet has only 3 x 3 convolutions, which is comparable to 

AlexNET, however VGGNet has a large number of filters. VGGNet consists of 138 million parameters 
(Das, 2017). 
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The input to VGGNet is an image of size 224 x 224 RGB. This image is processed throughout a bundle 
of convolutional layers, in which filters are practiced with little receptive fields: 3 x 3. “A stack of 
convolutional layers is followed by three fully connected layers. The first two fully connected layers 
have 4096 channels each, the third layer contains 10000 channels. The final layer is the soft-max layer” 

(Simonyan & Zisserman, 2015).  

 

2.2.6 Inception Network 
GoogLeNet was the initial version of this architecture, see subchapter 2.2.4, but “subsequent 
manifestations have been called Inception vN, where N refers to the version number put out by Google” 
(Rosebrock, 2017). The Inception V3 architecture origins from a later publication by Szegedy, 
Vanhoucke, Ioffe and Shlens (2015). This publication introduces several modernisations to the inception 

module (Rosebrock, 2017).  
 
The Inception architecture was first introduced by Szegedy et al. (2015). According to Rosebrock 
(2017), the goal of the inception module is as follows: 

The inception module aims to act as a multi-level feature extractor by computing 1 x 1, 3 x 3 
and 5 x 5 convolutions within the same module of the network. The outputs of these filters are 
stacked along the channel dimension and before being fed into the next layer in the network. 

 
Szegedy et al. (2015) state that “the inception architecture allows for increasing the number of units at 
each stage without an uncontrolled blow-up in computational complexity at later stages”. This can be 
achieved “by using dimensionality reduction prior to expensive convolutions with larger patch sizes. 
Furthermore, the design follows the intuition that visual information should be processed at various 
scales and then aggregated so that the next stage can abstract features from the different scales 
simultaneously” (Szegedy et al., 2015). 

Figure 8. Architecture of VGGNet. Reprinted from Medium website, by S. Das, 2017, retrieved from 
https://medium.com/@siddharthdas_32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5 
Copyright 2017 by Medium. 
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Figure 10. Inception module with dimensionality reduction. 
Reprinted from “Going Deeper with Convolutions” by Szegedy 
et al., 2015, 2015 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), p. 4. Copyright 2015 by Szegedy 
et al. 

 

 
 
The main idea of the Inception architecture, as shown in Figure 8 (Szegedy et al., 2015), is to “consider 
how an optimal local sparse structure of a convolution vision network can be approximated and covered 

by readily available dense components” (Szegedy et al., 2015). According to Szegedy et al. (2015), there 
is one problem with the Inception module as mentioned, the naïve form: “5x5 convolutions can be 
expensive on top of a convolutional layer with a large number of filters. This becomes more visible once 
pooling units are added: the number of output filters equals to the number of filters in the previous 
stage”. This may lead to a growth in the number of outputs, which makes it an inefficient architecture 
that eventually leads to a computational blow up within a few phases. This potential threat of 
computational blow up leads to another idea of the Inception architecture: the module with 
dimensionality reduction, as shown in Figure 9 (Szegedy et al., 2015). According to Szegedy et al. 

(2015): 
This module is based on embeddings: even low dimensional embeddings might contain a lot of 
information about a relatively large image patch. However, embeddings represent information 
in a dense, compressed form, which makes it harder to process. The representation should be 
kept sparse at most places and only compress the signals whenever they have to be aggregated. 
That means, 1 x 1 convolutions are used to compute reduction before the expensive 3 x 3 and 5 
x 5 convolutions. 

 

2.3 Determining the best deep learning architecture 
Over the years, the quality of network architectures significantly improved by utilizing deeper and wider 
networks. Architectural improvements in deep convolutional architecture can be used for improving 
performance for other computer vision tasks that rely on high quality, learned visual features. 

Furthermore, improvements in the quality of the network resulted in new application domains for 
convolutional networks in cases where, for example, AlexNET features could not compete with hand 

Figure 9. Inception module, naïve version. Reprinted from “Going 
Deeper with Convolutions” by Szegedy et al., 2015, 2015 IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR), 
p. 4. Copyright 2015 by Szegedy et al. 
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engineered, crafted solutions (Szegedy et al., 2015). An overview of the various convolutional neural 
network architectures that have been proposed over the years, is demonstrated in Table 1 (Das, 2017).  
 
Table 1 
Summary table  

Year Convolutional 

Neural Network 

Developed by Place 

ILSVRC 

Top-5 error 

rate 

Number of 

parameters 

1998 LeNet LeCun et al.   60 thousand 

2012 AlexNET Krizhevsky et al. 1st 15.3% 60 million 

2013 ZFNet Zeiler & Fergus 1st 14.8%  

2014 GoogLeNet Google 1st 6.67% 4 million 

2014 VGGNet Simonyan & Zisserman 2nd 7.3% 138 million 

2015 Inception Network Szegedy et al.   5.6% 4 million 
Note. Adapted from Medium website, by S. Das, 2017, retrieved from https://medium.com/@siddharthdas_32104/cnns-
architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5 Copyright 2017 by Medium. 

 
The networks mentioned in Table 1 (Das, 2017) all have their advantages and disadvantages. For 
example, although VGGNet has the advantage of having a simplistic architecture, this comes at a high 
cost. The fact is that evaluating this particular network requires a lot of computation. Therefore, 

GoogLeNet was designed in 2014 to perform well even under strict constraints on memory and 
computational budget. As to be seen in Table 1, GoogLeNet and the Inception Network employ around 
4 million parameters, which is much less than its predecessor AlexNET, which uses around 60 million 
parameters, but also less than VGGNet, which uses around 138 million parameters. The computational 
cost of the Inception Network is also lower than its predecessors. This makes it feasible to use Inception 
Networks in big data scenarios, where a lot of data needs to be processed at reasonable cost or scenarios 
where memory or computational capacity is limited (Szegedy et al., 2015).  
 

The network used for the experiments in our thesis, has been selected on two criteria. Namely, the 
quantity of parameters which reside within the network, and the error rate. Therefore, the network that 
has been chosen for this experiment, is the Inception Network: the network with the smallest number of 
parameters (4 million), and the network with the lowest error rate (5.6%) compared to the other 
convolutional neural networks. The experiment in our thesis goes further than the experiment by Van 
Noord et al. (2015), who use a relatively old network, i.e. AlexNET, and uses a new and better, with 
less parameters, convolutional neural network: The Inception Network.  
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Chapter 3. Related work on automated artist attribution 
This chapter describes related work in the field in order to place this thesis in a broader context and to 
state how this research relates to other studies completed in the field. This chapter is divided in two 
sections. Section 3.1 introduces the subject on a more general level and mentions how the field of using 
automated methods to analyse art and cultural traditions has developed in the course of time. Section 
3.2 discusses related work on automated artist attribution in a chronological structure.  

 

3.1 Computational techniques over the years 
In order to authenticate and data artworks, art historians make use of a variety of methods. Examples of 
these methods are documentary research or categorizing painting styles and techniques. However, over 
the years, art analysts became more and more engrossed in automated analysis strategies. According to 
Li et al. (2011), “some of them believe that computers can extract certain patterns from images more 

thoroughly than is possible when through manual attempts., can process a larger number of paintings 
and are less subjective”. In recent years, several researches on studying art and cultural heritages by 
means of computational techniques have emerged (Li et al., 2011). An example of these computational 
techniques is the discovery of x-rays, shortly after the 19th century. Researcher started to use these rays 
to reveal underdrawings and pentimenti, an alteration in a painting. Later, other techniques, such as 
infra-red photography and reflectography were used to achieve comparable results. With these methods, 
the output image is interpreted by an art expert. However, some of the image interpretation relies 

nowadays on algorithms developed from computer vision. Computers are able to analyse certain aspects 
of perspective, lighting, colour, or brushstrokes better than a trained art expert or artist (Stork, 2009).  
 

3.2 Overview of automated artist attribution  
Sablatnig, Kammerer, and Zolda (1998) are one of the first researchers to investigate the personal style 
of an artist. They argue that it is challenging to attribute artworks to an artist: “methods like X-ray and 

infra-red diagnosis, or digital radiography do not relate characteristics of an artwork to a specific artist 
and his personal style” (Sablatnig et al., 1998). To be able to examine this individual way of expression, 
the authors examined the “structural signature” relying on brushstrokes in portrait miniatures. Therefore, 
they developed a system that recognizes portrait miniatures by means of a computer-aided classification. 
This system facilitates a semi-automatic classification based on brushstrokes. The classification is 
separated into three aspects: “colour, shape of region, and structure of brushstrokes” (Sablatnig et al., 
1998). In 1999, Taylor, Micolich, and Jonas analysed the drip paintings of Jackson Pollock using fractal 
techniques. Pollock dripped paint from a can onto a vast canvas rolled out across the floor of his barn. 

Taylor et al. (1999) found, through the use of computer techniques, that Pollock’s seemingly random 
splatters of paint actually have characteristic fractal dimension values. These fractal dimension values 
increase slightly over the course of Pollock’s career (Taylor et al., 1999). Lyu, Rockmore, and Farid 
(2004) describe a computational tool to authenticate artworks. They focus on paintings and drawings, 
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which are represented by digital scans of high quality of original works. “The technique looks for 
consistencies or inconsistencies in the first- and higher-order wavelet statistics collected from artworks” 
(Lyu et al., 2004). They apply their analysis to an assemblage of 13 drawings which have once been 

attributed to Pieter Bruegel the Elder. Furthermore, they demonstrate a “many-hands” inquiry of a 
portrait by Perugino, a painter from the Renaissance. Thereafter, a summary is given of the techniques 
used for the inquiry. This summary also contains a description of the underlying statistical model (Lyu 
et al., 2004). According to Johnson et al. (2008), “image processing tools are aimed at helping art 
historians currently in the earliest stages of development”. Partly, this results from data not being widely 
accessible. To stimulate the evolution of methods like these, the Van Gogh Museum and Kröller-Müller 
Museum in the Netherlands published a dataset of 101 gray-scale scans of paintings in their collections, 

which is accessible to researchers in the field of image processing from various universities (Johnson et 
al., 2008). This dataset is used by Johnson et al. (2008) to analyse the brushstrokes of the paintings of 
Vincent Van Gogh. The analysis of brushstrokes consists of different steps. Firstly, when evaluating the 
brushwork of a painting, it is important to decide which part of the painting should be reduced, since 
they may not be painted by the author itself. The next step is to describe the characteristics of the original 
brushwork, which are observed across the remainder of the painting. An important characteristic to pay 
attention to when examining a painting is the frequent use of specific brushstroke styles. For example, 

the “elbow-strokes” or the “brickwork” patterns of Van Gogh (Johnson et al., 2008). This analysis has 
been done on a small scale of just 101 images with full resolution reproductions as input (Strezoski & 
Worring, 2017). Therefore, Johnson et al. (2008) conclude that brushstroke analysis is helpful in artist 
attribution, but perfect results have not been obtained yet. Using a wider range of analysis tools, better 
results can be achieved. This can be obtained by using richer representations of the paintings, and more 
nuanced mathematical models. Hughes et al. (2010) describe a technique for the quantification of styles 
of art which uses a model that includes sparse coding. According to Hughes et al. (2010), “sparse coding 
models can be trained to represent any image space by maximizing the kurtosis of a representation of a 

randomly selected image from that space”. The authors use this technique to distinguish an assemblage 
of drawings by Pieter Bruegel the Elder from an assemblage of imitations of Bruegel’s paintings 
(Hughes et al., 2010). A few years later, in 2014, Mensink and Van Gemert introduced the Rijksmuseum 
Challenge: Museum-Centered Visual Recognition. This research contains a contest for classification 
and content-based retrieval of artworks. The dataset used for this research is a dataset of art objects, all 
of which are displayed in the Rijksmuseum in Amsterdam, the Netherlands. The artworks in this dataset 
origin from aged periods to the nineteenth century. Mensink and Van Gemert (2014) propose four 

challenges: “(i) predict the artist, (ii) predict the art-type, (iii) predict the used material, and (iv) predict 
the creation year”. One of the challenges is to predict the artist of an artwork given a particular image. 
According to Mensink and Van Gemert (2014), “this is a multi-class problem where each object has a 
single creator. Performance is measured as the weighted mean class accuracy. This ensures that the 
classification performance of an artist with only a few works accounts as much as an artist with more 
artworks”. 
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3.3 The Van Noord et al. (2015) study 
The Rijksmuseum Challenge dataset is not only used by Mensink and Van Gemert (2014), but also by 
Van Noord et al. (2015), who perform artist attribution using their own subsets with a convolutional 
neural network named PigeoNET. Van Noord et al. (2015) argue that “to ensure that the visual 
characteristics on which the task is solved by PigeoNET make sense, human experts are needed to assess 
the relevance of the acquired mapping from images of artworks to artists”. Van Noord et al. (2015) also 
mention that “although the Rijksmuseum Challenge dataset is the largest available dataset containing 
digital reproductions of artworks, it does suffer from two limitations”. Firstly, they mention that is not 

clear in what way the “controlled conditions” were determined for various works of art. Each 
differentiation in the way the photo is made, for example the perspective or type of camera, may be 
picked up by PigeoNET. The second limitation involves the labelling of works of art. The Rijksmuseum 
Challenge dataset just mentions one artist, where the Rijksmuseum catalogue mentions numerous 
contributions. This might cause doubt about whether the attribution of works of art in the Rijksmuseum 
challenge dataset has been executed correctly (Van Noord et al., 2015). Furthermore, Van Noord et al. 
(2015) state that “the number of artists and the number of examples per artist have a very strong 

influence on the performance”. Therefore, they suggest that in order to improve the performance, the 
dataset has to be expanded.  
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Chapter 4. Method 
This chapter describes the method used for this research. This chapter is divided in four sections. Section 
4.1 describes the dataset in detail, section 4.2 consists of a description of wat has been done on pre-
processing of the data, section 4.3 consists of a description of the actual implementation, and section 4.4 
consists of a description of the experimental procedure and evaluation criteria.  
 

4.1 Dataset description  
The dataset that is used for the task of automatically recognizing artists by their artworks, is the 
Rijksmuseum Challenge dataset (Mensink & Van Gemert, 2014). This dataset contains 112.039 digital 
photos of works of art by 6.629 artisans which are all shown in the Rijksmuseum in Amsterdam, the 
Netherlands. According to Van Noord et al. (2015), “all artworks were digitised under controlled 
settings”. This dataset contains 1.824 contrasting categories of works of art and 406 annotated materials, 

like paper, canvas, porcelain, iron and wood (Van Noord et al., 2015). “The artworks in this dataset date 
from ancient times, medieval ages and the late 19th century” (Mensink & Van Gemert, 2014).  
 
Van Noord et al. (2015) defined two types of subsets for the purpose of their experiment:  

Type A (for “All”) and type P (for “Prints”). For the heterogeneous subset of at least 256 
artworks of type A, Table 2 provides a more detailed listing which specifies the three most 
outstanding types: Prints, Drawings, and Other. The Other category includes a variety of 

different artwork types, including 35 paintings. 
As follows from table 2 (Van Noord et al., 2015), the most common artwork in the Rijksmuseum 
Challenge dataset is prints. This approach by Van Noord et al. (2015) has been used for this thesis.  
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Table 2 
List of the 34 artists with at least 256 artworks and the distribution of artworks over main types (prints, drawings, and other).  

# Name Prints Drawings Other 

1 Heinrich Aldegrever 347 27  

2 Ernst Willem Jan Bagelaar 400 27  

3 Boëtius Adamsz. Bolswert 592   

4 Schelte Adamsz. Bolswert 398   

5 Anthonie Van Den Bos 531 3  

6 Nicolaes De Bruyn 515 2  

7 Jacques Callot 1,008 4 1 

8 Adriaen Collaert 648 1  

9 Albrecht Dürer 480 9 2 

10 Simon Fokke 1,177 90  

11 Jacob Folkema 437 4 3 

12 Simon Frisius 396   

13 Cornelis Galle I 421   

14 Philips Galle 838   

15 Jacob De Gheyn II 808 75 10 

16 Hendrick Goltzius 763 43 4 

17 Frans Hogenberg 636  4 

18 Romeyn De Hooghe 1,109 5 5 

19 Jacob Hourbraken 1,105 42 1 

20 Pieter De Jode II 409 1  

21 Jean Lepautre 559  1 

22 Caspar Luyken 359 18  

23 Jan Luyken 1,895 33  

24 Jacob Ernst Marcus 372 23 2 

25 Jacob Matham 546 4  

26 Meissener Porzellan Manufakter   1,003 

27 Pieter Nolpe 344 2  

28 Crispijn Van De Passe I 841 15  

29 Jan Caspar Philips 401 17  

30 Bernard Picart 1,369 132 3 

31 Marcantonio Raimondi  448 2  

32 Rembrandt Harmensz. Van Rijn 1,236 119 29 

33 Johann Sadeler I 578 1  

34 Reinier Vinkeles 573 50  
Note. Reprinted from “Towards Discovery of the Artist’s Style: Learning to Recognise Artists by their Artworks” by N. Van 
Noord, E. Hendriks, and E. Postma, 2015, IEEE Signal Processing Magazine, p. 50. Copyright 2015 by IEEE. 
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4.2 Pre-processing of the data  
The subset as shown in Table 2 is used for our experiments. Conform the procedure by Mensink and 
Van Gemert (2014) and Van Noord et al. (2015), the dataset is arbitrarily separated in three different 
sections: the train set, validation set, and test set. These three sections have been constructed with three 

different goals in mind: to train classification models, to tune hyper parameters of the models, and to 
compute the functioning of the models. The train set contains 17.026 images, the validation set contains 
2.436 images, and the test set contains 4.850 images. 
 
This study uses the ImageNet pre-trained model Inception V3 from Keras. Keras is a software 
environment, written in Python, for performing deep learning experiments. Keras is designed as 
component of the research effort of project ONEIROS (Open-ended Neuro-Electronic Intelligent Robot 

Operating System). Keras focuses on empowering fast experimentation. The primary author of Keras is 
François Chollet, a Google engineer (Keras Documentation, n.d.).  
 
The pre-processing procedure of the data is conform the procedure by Krizhevsky et al. (2012), which 
is also used by Van Noord et al. (2015). The images are down-sampled to a rigid resolution of 256 x 
256. When the input is rectangular of shape, the picture is resized such that the shorter side is of length 
256. Thereafter, the central 256 x 256 patch is cropped out from the resulting image (Krizhevsky et al., 
2012).  

 
To prevent the data from overfitting, a data augmentation procedure is applied, conform the procedure 
used by Van Noord et al. (2015). This procedure resides of random crops and horizontal reflections. To 
create a bigger sample size, horizontal reflections were applied. This procedure doubles the quantity of 
training data. We experimented with various settings to the basic architecture. We examined the 
inclusion of dropout layers, varied the number of densely (fully) connected layers on top of the pre-
trained Inception V3 architecture, retrained different parts of the Inception V3 architecture, and used a 

two-phase or single-phase training, as shown in Table 3. 

 

4.3 Description of the actual implementation 
The experiments are executed using the programming language Python. To complete the task of 
automated artist attribution, Keras is used together with TensorFlow in Python. Within Keras, the 
convolutional neural network Inception V3 is used, from which the fully connected layer at the output 
is removed.  
 

4.4 Description of the experimental procedure and evaluation criteria 
As Van Noord et al. (2015) mention, “the objective of the artist attribution task is to identify the correct 
artist for each unseen artwork in the test set”. Therefore, the functioning of the model is assessed by 
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means of the accuracy rate. Where Van Noord et al. (2015) evaluate their network by taking five patches, 
one in the centre of the 256 x 256 crop, and four in the corner, the experiments in our thesis use single 
random crops for evaluation. The motivation for doing so, is that it better reflects the way the network 

is trained.  
 
To perform the task of artist attribution, six experiments have been executed, see Table 3, to ultimately 
achieve the highest test performance. The models used for the experiments consists of several layers. 
On top of the pre-trained base model, a global average pooling layer is added, after which a fully 
connected layer is added (dense relu). These two layers are equivalent for all six experiments. In 
experiment 1 and 2, a dropout layer is added to reduce overfitting.  

 
The first four experiments are trained in two phases, accordingly to the Keras documentation on the 
Inception V3 architecture1. The first phase consists of 100 epochs, of which only the top is trained. In 
this phase all the convolutional Inception V3 layers are frozen. After this phase, the top layers are well 
trained, which means the convolutional layers from the Inception V3 architecture can be fine-tuned. The 
bottom layers are frozen, and the remaining top layers are trained. The second phase consists of also of 
100 epochs, of which the first 249 layers are fixed (200 layers in the fourth experiment), and the rest is 

trainable.  
 
The fifth and sixth experiment are executed in a different manner compared to the first four experiments, 
and thus differ from the Keras documentation. These last two experiments are trained in one phase 
(single-phase training). In the fifth experiment, the first 100 layers are fixed, the rest is trainable. In the 
sixth experiment, the first 50 layers are fixed, the rest is trainable. As follows from Table 3, the less 
layers that are fixed, the higher the test performance. However, due to computer capacity it was not 
feasible to train with more fixed layers.  

 
 
 
 
 
 
 

  

                                                             
1 See https://keras.io/applications/#usage-examples-for-image-classification-models ("Fine-tune InceptionV3 on 
a new set of classes") 
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Chapter 5. Results 
Within this chapter, the results that follow from the experiments that were executed in order to answer 
the research question of this thesis are examined. 
 
Table 3 shows the results of the task of artist attribution. Six experiments, each with different settings, 
described in section 4.4, are executed in our thesis to ultimately achieve the highest test performance. 

The first four experiments are based on two phases of training, the last two train (almost) the entire 
Inception network in one 100-epoch phase. The results of the experiment by Van Noord et al. (2015) 
are also mentioned in Table 3, however the layers and what kind of training they performed is unknown.  
 
Table 3 
Overview of the six experiments executed in our thesis. 

Experiment Layers Initialisation/training Test Performance 

1 1. Inception V3 base 
2. Global Average Pooling 
3. Dense relu (1024) 
4. Dropout (0.5) 
5. Softmax 

Two-phase training 
1: 100 epochs, only top 
2: 100 epochs, first 249 layers fixed, rest 
trainable. 
SGD (lr=0.01, momentum=0.9) 

0,802 

2 1. Inception V3 base 
2. Global Average Pooling 
3. Dense relu (1024) 
4. Dropout (0.5) 
5. Dense relu (1024) 
6. Dropout (0.5) 
7. Softmax 

Two-phase training 
1: 100 epochs, only top 
2: 100 epochs, first 249 layers fixed, rest 
trainable. 
SGD (lr=0.01, momentum=0.9) 

0,787 

3 1. Inception V3 base 
2. Global Average Pooling 
3. Dense relu (1024) 
4. Softmax 

Two-phase training 
1: 100 epochs, only top 
2: 100 epochs, first 249 layers fixed, rest 
trainable. 
SGD (lr=0.01, momentum=0.9) 

0.792 

4 1. Inception V3 base 
2. Global Average Pooling 
3. Dense relu (1024) 
4. Softmax 

Two-phase training 
1: 100 epochs, only top 
2: 100 epochs, first 200 layers fixed, rest 
trainable. 
SGD (lr=0.01, momentum=0.9) 

0,830 

5 1. Inception V3 base 
2. Global Average Pooling 
3. Dense relu (1024) 
4. Softmax 

Single-phase training 
First 100 layers fixed, rest trainable 

0,857 

6 1. Inception V3 base 
2. Global Average Pooling 
3. Dense relu (1024) 
4. Softmax 

Single-phase training 
First 50 layers fixed, rest trainable 

0,868 

Van Noord et 
al. (2015) 

  0,783 
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As follows from Table 3, the test performances of the experiments increase when going further with the 
experiments. The final experiment, experiment 6, performs therefore better than the first experiment. 
Moreover, it can be said that training in one phase results in a better test performance, than training in 

two phases.  
 
All configurations result in an accuracy score of 78.7% or more. The accuracy score for the artist 
attribution task, executed by Van Noord et al. (2015), with PigeoNET, a variant of AlexNET, is 78.3%. 
Moreover, the sixth experiment shows an accuracy rate of 86.8%, which is a big improvement compared 
to the accuracy rate of Van Noord et al. (2015). This means that executing the task of artist attribution 
with a current convolutional neural network improves the accuracy of an experiment in author attribution 

considerably. There is only one caveat, which is the slightly different way of evaluating the performance. 
As mentioned in section 4.4, we use randomly selected patches, rather than taking the average 
performance of the central patch and the four corner patches, to evaluate the performance. This may 
have affected the performance slightly.  

 

 

 

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
Figure 11 displays a visual representation of the confusion matrix for that part of the dataset that contains 
at least 256 examples of all types of works of art, see Table 2 for this subset. This confusion matrix 
represents experiment 6, which is the experiment with the highest test performance. The rows and 
columns correlate to the artisans mentioned in Table 2. The rows symbolize the actual artists, the 

columns the artist estimates by the Inception V3 network. From top to bottom, the matrix has 34 rows, 

Figure 11. Confusion matrix for all artists with at least 256 training examples 
of all artwork types. The rows represent the actual artists and the columns the 
artist estimates. This confusion matrix represents experiment 6. 
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which is in accordance with the subset used for the experiments, see Table 2. The diagonal line 
represents correct attributions. The confusion matrixes for the other five experiments are included in the 
appendix. In order to make the confusion matrixes readable, which was not the case in the Python files, 

they are converted to csv-files. As a consequence, the coloured diagonal line, which is normally visible 
in the Python files, disappears.  
 
As shown in Figure 11, the highest number of correct attributions for the subset mentioned in Table 2, 
is 320. This number corresponds with the 16th artist in the subset mentioned in Table 2, which is 
Hendrick Goltzius. The lowest number of correct attributions is 47, which corresponds to Pieter De Jode 
II, the 20th artist in the subset mentioned in Table 2. These results differ from the results by Van Noord 
et al. (2015). Meissener Porzellan Manufakter was noticed to have the best artist-specific accuracy, the 
worst artist-specific classification accuracy was assigned to Schelte Bolswert (Van Noord et al., 2015).  
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Chapter 6. Discussion 
In this chapter, the results of the experiments are evaluated with regard to the problem statement listed 
in the introduction. Section 6.2 consists of the limitation of this research, and section 6.3 introduces 
ideas for future work on the topic of automated artist attribution.  

 

6.1 Goal of the experiment  
The goal of the experiments in our thesis was to investigate to what extent using a current convolutional 
neural network improves the results of an experiment in artist attribution. In order to compare results 
with the research executed by Van Noord et al. (2015), the same dataset is used: the Rijksmuseum 
Challenge dataset. 

 
Based on logical reasoning, the expectations of the experiments executed in our thesis were that the 
results would be improved when using a current network architecture. This is not only because network 
architectures have advanced over the past years, but also because several new network architectures 
have been proposed. As mentioned in section 2.3, the network used for the experiments, has been 
selected based on two criteria: the quantity of parameters in the network, and the error rate. Therefore, 
the network used for these experiments, is the Inception Network. In particular, the Inception V3 

network.  
 
The results of the experiments show that the accuracy score for the artist attribution task has improved 
by using a current network architecture, the Inception V3 network (2015). The highest accuracy score 
achieved out of the six experiments executed for our thesis, is 86.8%, instead of 78.3% when using 
PigeoNET, a network based on the older AlexNET (2012), as Van Noord et al. (2015) did. This result 
has been achieved by using almost the same approach by Van Noord et al. (2015), however we used a 
current convolutional neural network. Moreover, as mentioned in section 4.4, another difference 

between the approach by Van Noord et al. (2015) and our approach, is the way of evaluation. Where 
Van Noord et al. (2015) evaluate their network by taking five patches, one in the centre of the 256 x 256 
crop, and four in the corner, the experiments in our thesis use single random crops for evaluation. The 
motivation for doing so, is that it better reflects the way the network is trained. Thus, however there is 
a slight difference in approach, there is also an improvement in results, compared to the results of Van 
Noord et al. (2015).  
 

6.2 Limitations of the research 
Firstly, the dataset that has been used for the experiments in our thesis is a heterogeneous dataset. The 
Rijksmuseum Challenge dataset contains images of various artworks, like paintings, but also porcelain, 
and wood. It is possible to identify the characteristics of an artist by examining works of art which are 
created by that artist. However, according to Van Noord et al. (2015), “obtaining such a large sample of 
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images is problematic, given the lack of (automatic) methods and criteria to determine whether an 
artwork is representative”. A common method to avoid the requirement to have a decent sample is to 
use a big sample. This means, a collection of many images, and many images per artist. A dataset that 

matches with this description, is the Rijksmuseum Challenge dataset. Although the dataset is large, it 
does contain a great variety of artworks. This might influence the results of the experiment. Therefore, 
it might be better to use a homogeneous dataset for a similar experiment.  
Secondly, as Van Noord et al. (2015) also mention, given the wide variety of types of artwork in the 
Rijksmuseum Challenge dataset, it is not clear in what way the “controlled conditions” are defined for 
various works of art. Every deviation in how the picture is made, like perspective or camera type, may 
be picked up by the network and influence the results. The ideal dataset for an experiment in automated 

artist attribution would therefore be a dataset without any visual marks. However, it is hard to create 
such a dataset on a scale like the Rijksmuseum Challenge dataset.  
Thirdly, it is a fact that a computer maps pragmatically on authorship. They are trained to execute this 
task. Therefore, when changing for example pixels in an image, the computer will see this as a different 
image and subsequently not attribute the image to the right artist, as before the changing of pixels. Thus, 
the computer classifies differently than a human being. A human being would be able to see whether it 
is the same image, even when the pixels have been changed. Therefore, fully relying on a computer 

system with a task like author attribution, can be dangerous. Involvement of a human art expert is still 
required. 

 

6.3 Future work 
When taking the limitations of this research into consideration, there are a few recommendations to 

make for potentially future work. First of all, as mentioned in section 6.2, it might be useful to execute 
this experiment of automated artist attribution with a homogeneous dataset, instead of a heterogeneous 
dataset, as used for the experiments in our thesis. An example of a heterogeneous dataset is the dataset 
Painter by Numbers2, which only exists of paintings, instead of other forms of artworks.  
A second recommendation for future work can be made also within the topic of the dataset that has been 
chosen for the experiment of automated artist attribution. As mentioned in section 4.1, the dataset that 
is used for the experiments in our thesis, the Rijksmuseum Challenge dataset, is a dataset with images 

that show visual marks, like different perspectives. These differences in the images might be picked up 
by the network, and therefore may influence the results of the experiments. Therefore, it might be better 
to use a dataset with images where no visual marks are present.  
 

                                                             
2 Available on Kaggle.com 
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Chapter 7. Conclusion 
In this thesis a learning system is evaluated to assess to what extent the results of an experiment in 
automated artist attribution can be improved by using a current network architecture. The results of the 
experiments in this thesis are compared to the results by Van Noord et al. (2015), who used a less modern 
network architecture, PigeoNET, based on AlexNET. Six experiments have been executed to ultimately 
achieve the highest test performance. The approach for these experiments is the same as the approach 

used by Van Noord et al. (2015), however the way of evaluating is different. In this thesis, randomly 
selected patches are used, rather than taking the average performance of the central patch and the four 
corner patches, to evaluate performance.  
 
Although this difference in approach may have affected the results of the experiments slightly, it can be 
said that the outcomes of the task of automatically recognizing the artist of an artwork show that a 
current convolutional neural network performs better than a less modern network architecture (86.8% 

accuracy when using the Inception V3 Network from 2015, 78.3% accuracy when using PigeoNET, a 
network based on AlexNET from 2012). Concluding, using a current convolutional neural network 
produces better results than an older network, which means that using a current network architecture 
produces a profitable way for future automated evaluation of works of art.  
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Appendix 
 
Appendix 1. Confusion matrix experiment 1 
For experiment 1 there is no confusion table. 
 

Appendix 2. Confusion matrix experiment 2 
 

 

 

 

 

  

Figure 12. Confusion matrix for all artists with at least 256 training examples 
of all artwork types. The rows represent the actual artists and the columns 
the artist estimates. This confusion matrix represents experiment 2. 
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Appendix 3. Confusion matrix experiment 3 
 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 13. Confusion matrix for all artists with at least 256 training examples 
of all artwork types. The rows represent the actual artists and the columns the 
artist estimates. This confusion matrix represents experiment 3. 



Page | 37  
 

Appendix 4. Confusion matrix experiment 4 
 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 14. Confusion matrix for all artists with at least 256 training examples 
of all artwork types. The rows represent the actual artists and the columns the 
artist estimates. This confusion matrix represents experiment 4. 
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Appendix 5. Confusion matrix experiment 5 
 

 

 

 

Figure 15. Confusion matrix for all artists with at least 256 training examples 
of all artwork types. The rows represent the actual artists and the columns the 
artist estimates. This confusion matrix represents experiment 5. 


