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Abstract 

Utilization of bicycles has grown rapidly over the past few decades, causing the demand of bicycle 

facilities to grow as well. Hence, it becomes increasingly important to study the patterns of the usage 

of the existing facilities in order to manage them more efficiently. The current study focuses on the 

prediction of bicycle facility usage for two storages around Utrecht central station and aims to enhance 

efficient management. Previous studies focused on the prediction of bicycle sharing systems and 

included several algorithms for forecasting their usage. Moreover, results of existing literature stressed 

the importance of weather features for predicting bicycle usage. The work presented in this thesis did 

not only focus on bicycle sharing systems, but also on the usage of common bicycle storages. Datasets 

obtained by the NS were used to train algorithms together with weather data of KNMI. A Multilayer 

Perceptron, Support Vector Machine and Random Forest were employed for this task. Results showed 

that a Random Forest model yielded best performance. Surprisingly, weather features did not yield 

high predictive power, whereas inventory features prove to be most important predictors. 

Understanding the different user types of the storages generated more insight in facility usage and led 

to suggestions for future research.   
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1. Introduction 

 

1.1 Context 

 
The Netherlands is famous for its bicycle culture. Bicycles are broadly used as a common 

means of transportation when commuting to work or visit relatives. The utilization of bicycles has 

grown rapidly over the past few decades, which has caused the demand for bicycle facilities to grow as 

well. The high demand for these facilities does not always correspond to the available space in the 

Netherlands, especially around railway stations. The size of bicycle facilities around railway stations is 

increasing, but due to limited space, expansion is reaching its boundaries while the demand is still 

growing. In addition, a latent demand exists. This means that a reasonable amount of people does not 

store their bicycles in a storage near a railway station, simply because they have experienced that it is 

difficult to routinely store them. (Jonkeren et al., 2018). Utrecht, one of the fastest growing urban 

areas in the Netherlands is currently building the largest bicycle storage in the world, called the 

Stationsplein storage. This storage is scheduled to be finished by 2019 and will have a capacity of 

12.500 places. Nonetheless, upon completion it is expected that it still lacks enough space to 

accommodate the growing demand. For this reason, it seems crucial to investigate alternative ways to 

optimize the usage of bicycle facilities in such way that further increase in capacity is needed to a 

lesser extent.           

 The storages investigated in this study are multifunctional structures that offer storage places 

for thousands of bicycles. These storages offer a variety of services such as a bike sharing system 

(BSS) and a service point for the maintenance and repair of bicycles. The realization of these bicycle 

storages is a complex task, especially in crowded areas. Therefore, storage capacity expansion is 

expensive and takes several years to realize. Using the existing storages in a more efficient way can 

offer a solution for this issue and may solve the over-demand of these facilities. Over-demand could 

ultimately obstruct people in using bicycles and cause them to use other forms of transportation 

(Singla et al., 2015). A decrease in the usage of bicycles could not only affect this means of climate 

friendly transport, but also the general health of the population. According to the study of Fishman, 

Schepers, and Kamphuis (2015) the use of bicycles in the Netherlands prevents 6500 deaths annually.

 A considerable amount of research has been done on predicting the demand in BSS and can be 

found in section 2. Previous studies found that weather conditions and hour of the day have shown to 

be the most influential factors to bicycle facility usage. Taking these influential factors into account, 

this current study uses regression models to predict the usage of bicycle storages for optimization 

purposes. The prediction of bicycle facility usage is executed by combining data from various sources 

(Weather data, Check-in and Check-out data, OV-fiets data).     

 Utrecht central station is the largest railway station in the Netherlands and processes more than 

180,000 daily travelers (NS, n.d.). This number is growing every year and indicates the need for 
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optimizing the usage of facilities. Multiple parties are involved in this project and share the interest of 

finding a solution for this ever-growing demand of bike storage space. Over the past few years, newly 

built facilities are completed near Utrecht central station and are built and maintained by the Dutch 

railway company (NS), ProRail and the municipality of Utrecht. The bicycle storages in Utrecht keep 

track of their users in various ways by gathering data about the people who check in and out and make 

use of the BSS. The generated data gives insight in the usage of different bicycle storages and is useful 

for data analysis.  

1.2 Scientific and practical relevance 

 

With increasing traffic density and the need for more sustainable means of transport, the usage 

of bicycles as form of transportation has become more popular in recent years. Consequently, a better 

understanding of bicycle facility demand and the possibility to predict its usage, results in a more 

efficient management of these facilities. Service providers are able to make an estimation about 

available shared bikes and parking spots in order to improve the management and coordination of the 

facilities. Given the large investments made in the construction of bicycle facilities, it is important that 

they are optimally utilized. For a large portion of travelers, bicycle storages are an important connector 

to other forms of transportation. Over-demand of these facilities affects user-experience and has 

negative side effects as they need to look for another bicycle storage. As mentioned above, it can 

ultimately push people to use other (less sustainable) means of transportation. Providing better 

regulated bicycle facilities enables a more efficient multi-modal transportation network and 

encourages people to use bicycles when commuting to work, having the aforementioned substantial 

health benefits for the Dutch population. Fishman, Schepers, and Kamphuis (2015) also proved that 

these health benefits could lead to economic advantages. Hence, providing good bicycle facilitites also 

has economical advantages in the long-term.       

 This work differs from previous approaches in that it seeks to predict bicycle facility usage for 

large combined facilities consisting of BSS and common bicycle storages. Different methods have 

been used to develop models for predicting BSS demand, but not in a combination as seen in Utrecht. 

Several studies have proven that a Random Forest model is useful for the prediction of bicycle usage 

and demand for BSS (Lozano, De Paz, Villarrubia González, Iglesia, and Bajo, 2018; Yang et al., 

2016; Yin, Lee, and Wong, 2012), whereas Giot and Cherrier (2014) found that a Ridge regression 

performed best together with an Adaboost regression. Additionally, previous researches used different 

features for predicting BSS demand. Hence, it is interesting to investigate which models yield the best 

result for facilities as seen in Utrecht and examine multiple input features to clarify study results. 
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1.3 Research questions 

 

This research aims to find tools that help optimize the usage of bicycle facilities. In order to 

optimize bicycle facilities, it must be investigated how well the usage of bicycle storages can be 

predicted. Therefore, the following main research question is composed: 

Main research question:  

• To what degree can future bicycle facility usage be predicted for the secured bicycle 

storages of Utrecht central station? 

Sub research questions:  

The bicycle storages of Utrecht central station that are used in this research consist of a common 

storage part and a bicycle sharing system (BSS) part. In order to answer the main question, insight is 

needed in the number of bicycles that enter the storages per day of the week and per different parts of 

the day. Patterns present in the data can be used for expectations of bicycle facility usage, and 

therefore provide a baseline model. Consequently, the first question is formulated as follows: 

• What is the average incoming and outgoing number of bicycles and shared bicycles for 

certain periods of time such as day of the week and part of the day?  

Moreover, exploring the effects of various features (e.g. temperature, precipitation) during peak hours 

and outside peak hours allows for a better understanding of important determinants. Hence, the second 

question is formulated as follows:  

• Which features yield the highest influence for the prediction of bicycle facility usage 

during peak hours and outside peak hours?   

It is expected that a distinction can be made between user types of the bicycle storages at Utrecht 

central station. These groups (e.g. commuters and recreationists) make use of the facilities at different 

periods (Faghih-Imani and Eluru, 2015), and are interesting factors to investigate since their impact on 

the occupancy at specific moments can be great. In order to investigate their impact, the following 

question is formulated:   

• To what extent does user type influence the usage of bicycle facilities around Utrecht 

central station?  

Different methods have been used to predict BSS demand. However, until now, these methods were 

not applied to a combination of a BSS and a common bicycle storage. Hence, in order to add scientific 

relevance, it is interesting to look at the best performing model for the situation as seen in Utrecht:  

• Which model yields the best results for the prediction of bicycle facility usage?   
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1.4 Findings 

  

 The task for this study was to make predictions up to 8 hours in the future for the usage of the 

bicycle facilities. In order to define a baseline, a linear regression model was trained. For the current 

number of incoming bicycles in the Stationsplein storage, the baseline achieved a R2 of 0.92, a MAE 

of 27.17, a RMSE of 47.48 and a RMSLE of 1.25. Moreover, the linear regression showed that, with a 

95% confidence, bicycle facility usage depends on whether it is a weekday or not, and whether it is a 

peak hour or not. Three models were employed: a Multilayer Perceptron (MLP), a Support Vector 

Regressor (SVR) and a Random Forest Regressor (RFR), which all outperformed the baseline model. 

Among these algorithms, the RFR yielded the best performance with a RMSLE of 0.35 for the 

prediction of current incoming bicycles for both bicycle facilities studied in this work. The MAE 

yielded by the RFR for the prediction of the usage of the common bicycle storages did not exceed 15 

for the Jaarbeursplein storage and 21 for the Stationsplein storage on the entire time horizon of 8 

hours. For the prediction of BSS usage on the entire horizon, the MAE did not exceed 6 for the 

Jaarbeursplein storage and 5 for the Stationsplein storage. Inventory features used to integrate 

increasing and decreasing trends into the time series forecast, showed high predictive power. 

Surprisingly, weather features did not yield high predictive power for subsets made of peak hours and 

non-peak hours. A correlation matrix was constructed in order to understand user type influence. 

Activity side users in a BSS yielded the highest correlation with the total number of rented shared 

bicycles. For the common bicycle storage part, home side users make up the largest part among the 

user types.  
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2. Related work 

 

Large railway stations are often located in urban areas, consisting of commercial and 

residential buildings, tourist attractions and shopping areas, attracting a large variety of users of Dutch 

Rail. Moreover, many commuters are travelling by train on a daily basis and thus routinely make use 

of the facilities being part of railway stations. According to the Dutch railway company, 43% of all 

rail passengers are using bicycles to get to a railway station. Today, the total number of available 

parking places for bicycles in the Netherlands is around 460,000 (NS, 2018). This number was 

183,000 in 1985 and 279,000 in 1999 (Martens, 2007), demonstrating the enormous growth over the 

past few decades. In July 2018 the Netherlands Institute for Transport Policy (KiM) did research in 

order to gain insight in the bicycle parking problem and found a relation between population growth 

and the occupancy rates of bicycle storages around railway stations (Jonkeren et al., 2018). The 

growing population of urban areas in the Netherlands explains the persistence of the bicycle parking 

problem and stresses the importance of finding ways to optimize usage of these storages even more. In 

addition, Jonkeren et al. (2018) pointed that people preferably make use of large railway stations 

offering better facilities and connections to other trains instead of small railway stations closer to their 

point of departure. This behavioral pattern is putting even more pressure on large railway stations and 

their facilities.  

2.1 Prior studies 

2.1.1 Bicycle facilities 

 

The bicycle facilities investigated in this study can be divided into two parts: a common 

bicycle storage part and a BSS part. The common bicycle storing concept is relatively new and 

requires the user to check-in when entering and check-out when leaving the facility. Analyzing this 

check-in data could generate insight in the usage of the facilities, which is lacking at the moment. The 

BSS part of the bicycle facilities consists of public transportation bicycles (OV-fiets), which are 

introduced in the Netherlands in 2003. Usage has more than doubled from 1.5 million users in 2014 to 

3.1 million in 2017 (NS, 2015; NS, 2018), clearly indicating its growing popularity.  

 The usage of the bicycle facilities around railway stations is expected to vary throughout the 

day, showing a similar pattern during weekdays and a similar pattern during the weekends. 

Commuters dominate bicycle facilities during weekdays, demonstrating a large peak in usage in the 

morning and evening peak hours. Vogel et al. (2011) observed this pattern and found a peak in BSS 

usage between eight and ten in the morning, and a peak in the late afternoon hours. During weekends 

they found a distinct peak in the night, whereas the morning peak was absent. The study of O’Brien et 

al. (2014), Faghih-Imani et al. (2014) and Yin, Lee, and Wong (2012) showed similar patterns, 

indicating that BSS is commonly used by commuters during weekdays. The common bicycle storages 

in Utrecht may show differences in usage patterns compared to the BSS. The share of people making 
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use of bicycles at the home side of their trip is much higher than the share of bicycles at the non-home 

side of their trip, also called the activity-end (Keijer and Rietveld, 2000; Martens, 2004). This can be 

addressed to the fact that most people store their bicycle at home and use them for access trips to 

railway stations. However, users in a BSS have a higher share at the activity-end (Jonkeren et al., 

2018), suggesting that usage peaks in BSS will occur later during morning rush-hours and earlier 

during evening rush-hours than in common bicycle storages. The first sub research question: “What is 

the average incoming and outgoing number of bicycles and shared bicycles for certain periods of time 

such as day of the week and part of the day?” aims to look at the average incoming and outgoing 

number of bicycles and shared bicycles in the facilities near Utrecht central station, and will be used to 

investigate if this difference in peak-usage is present. Moreover, gaining insight in daily and weekly 

cycles of system activity could be useful for facility operators. Studying these cycles could help 

operators to alter their redistribution strategy in a more efficient way to optimize usage and minimize 

operational costs (O’Brien et al., 2014; Raviv, Tzur and Forma, 2013).   

2.1.2 Prediction of bicycle facility usage   

 

Prediction of bicycle facility usage is useful for multiple reasons and could help facility 

operators and users to optimize trip experience. Most research on predicting bicycle facility usage 

focusses on BSS. Giot and Cherrier (2014) aimed to predict BSS usage up to one day ahead. They 

used a dataset containing information about a BSS in Washington acquired over two years, whereas 

most other studies validated their results on datasets collected during a few weeks. A modified dataset 

was used with weather features, number of bikes available and time features such as day of the week 

and season. The researchers built additional delay features for the number of available bikes up to 

twenty-four hours before the time they made the prediction for. They proved that it is possible to 

predict BSS usage up to twenty-four hours in advance with the use of various regression systems. 

However, they did show an important issue of overfitting for many state-of-the-art regressors. 

Moreover, since cycling is an outdoor activity, it is prone to different weather conditions. The feature 

‘temperature’ showed a big impact on the prediction in the study of Giot and Cherrier (2014), El-Assi, 

Mahmoud and Habib (2017) and Saneinejad, Roorda and Kennedy (2012), making this feature 

interesting for verification. Sub research question two aims to investigate: “Which features influence 

the prediction of occupation of the bicycle storages most during peak hours and outside peak hours?” 

Yang et al. (2016) proved that weather features have a great influence on the usage of BSS, indicating 

that people tend to make more use of bicycles when temperatures are higher. However, they did see 

differences in influence during peak hours, suggesting that users are less influenced by weather 

conditions when commuting to work. Gebhart and Noland (2014) also showed that unfavorable 

weather conditions reduces the usage of a BSS. Surprisingly, they found that a trip increase still can be 

seen when temperatures rise above 32.2 °C, as one would expect these temperatures to be 
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uncomfortable for cycling. Moreover, they state that their results are expected to be applicable to 

general cycling, making it interesting for verification in this study.    

 Yang et al. (2016) proposed a bicycle mobility model and devised a prediction for BSS traffic. 

They used a dataset from a large BSS network consisting of over 103 million trip records. Predicting 

check-out behavior is done using a Random Forest Model based on historical shifts of bicycles, 

corresponding time and weather data. In their approach, they evaluated overall performance of check 

in estimation for the following 30 minutes. For the training-set, the researchers used the first 20 days 

of each month, the latter was used for the test-set. They showed that less people made use of public 

bicycles in rainy days and that workdays yielded better prediction results than weekends.  

 Yin, Lee, and Wong (2012) used historical and meteorological data in order to predict usage of 

the Washington BSS network for a given hour grounded on the conditions of the hour. They found that 

the RF method performed best in terms of prediction accuracy and training time. Besides, they found 

that the predicition problem in a BSS network is higly non-linear. Lozano, De Paz, Villarrubia 

González, Iglesia, and Bajo (2018) made suggestions for a system that visualizes BSS usage and 

presented predictive tools. For their study, they also developed a RF model that was used to predict 

demand for BSS. This regression model outperformed other algorithms such as an Extra Tree 

Regressor and a Gradient Boosting Regressor. Dias, Bellalta and Oechsner (2015) made predictions of 

different stations in the Barcelona BSS network. They concluded that a RF model is good for making 

forecasts up to 48 hours ahead. In their study, they were able to predict the BSS stations’ statuses 

correctly nearly half of the times, up to two days before they occurred. In their recommendations, they 

state that the use of more observations could potentially help building more powerful models.  

 In the analysis of Sarkar, Lathia and Mascolo (2015) they used 996 stations included in a 

dataset for a period of 4.5 months. Analysis was done using different state-of-the art algorithms on a 

large dataset. For their study, they computed forecasts at different fixed points in the future. The study 

concluded that predictions for smaller BSS systems yielded better results than bigger systems and that 

occupancy levels in small BSS systems for 6 minutes in the future can be predicted just as good as 

occupancy levels 48 minutes ahead. They recommend using additional datasets such as weather data, 

in order to possibly reveal the impact of favourable/adverse conditions on BSS usage.   

 In the light of the third sub research question: “To what extent does user type influence the 

occupation of bicycle storages around Utrecht central station?”, it is interesting to look at users of 

bicycle facilties. Yet, little is known about user types and their motivations for usage. Bachand-

Marleau, Lee and El-Geneidy (2012) showed that location is crucial for the encouragement of BSS 

users. They indicate that a higher number of stations near residential areas result in more users, 

suggesting that home-side users are an important group. According to Faghih-Imani and Eluru (2015), 

a clear distinction can be made in the type of user of a BSS by observing the period or time of day of 

usage.   
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2.1.3 Algorithms employed in prior studies 

 

Multiple state-of-the-art algorithms are used for the prediction of bicycle usage in bicycle 

facilities, both regression and classification tasks have been applied. The last sub research question: 

“Which model yields the best results for the prediction of bicycle storage occupation?” aims in 

looking at the best performing model for the prediction task of this study. Since most previous studies 

focused solely on the prediction of BSS usage and demand, exploring ways to predict common bicycle 

storage usage could offer interesting insights. The three models considered in this study are a Random 

Forest Regressor (RFR), a Support Vector Regressor (SVR) and a Multilayer Perceptron (MLP). 

These models all have been applied in previous research and shown their effectiveness for the 

prediction of BSS usage. The problem can be specified as a regression task which takes various input 

features and constructs a continuous outcome for the number of incoming and outgoing bikes.  

 The RFR is widely applied in previous research (Dias, Bellalta and Oechsner, 2015; Lozano, 

De Paz, Villarrubia González, Iglesia, and Bajo, 2018; Yang et al., 2016; Yin, Lee, and Wong, 2012) 

and proved to perform best amongst all models used in these researches. The SVR is a model that has 

been applied by Giot & Cherrier (2014) and Yin, Lee, and Wong (2012) for the prediction of BSS 

usage. Giot and Cherrier (2014) found that the SVR performed well on the training dataset but showed 

bad results on the validation set due to over-fitting. Moreover, in the study of Yin, Lee, and Wong 

(2012) an SVR yielded the best results after an RFR with a RMSLE of 0.33, whereas the RFR had a 

RMSLE of 0.31. The researchers did state that its performance could be improved by optimizing the 

model parameters. The last model considered in this study is the MLP and is used in previous research 

for the prediction of BSS usage (Sarkar, Lathia, and Mascolo, 2015; Zhou, Wang, Zhong and Tan, 

2018). In the study of Sarkar, Lathia, and Mascolo, (2015), state-of-the-art algorithms did not perform 

as expected, whereas the MLP did yield acceptable error scores. Taking into account all of the 

previous studies, the RFR seems to be the best performing model for the prediction of bicycle usage. 

However, other studies found that an SVR and an MLP are capable of predicting bicycle facility usage 

as well, making them interesting for employing in this study.  

2.2 Current work  

 

Previous research focused solely on the prediction of bicycle usage in BSS. Hence, this study 

seeks to predict the usage of not only BSS facilities, but will additionally focus on the prediction of 

common bicycle storage usage. Since data gathering for the storage of common bicycle storages is 

relatively new, this study will seek to obtain interesting insights from the data provided, in order to 

compare results with BSS usage prediction. This study will therefore examine if previous used 

approaches can be applied to common bicycle storages as well. Moreover, by the use of 

meteorological features, the current work will look at the applicability of these features for the 

prediction of bicycle usage. Gebhart and Noland (2014) demonstrated that weather features yield a 
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high impact on the usage of bicycles in a BSS and expressed the expectation that these results would 

be applicable to general usage of bicycles as well. Hence, by using hourly weather data collected by 

the Royal Netherlands Meteorological Institute (KNMI), verification of this statement will be 

examined. In addition, Sarkar, Lathia, and Mascolo (2015) employed an MLP for their study but relied 

only on historical data but did not add weather data. This current study will also employ an MLP and 

will additionally add meteorological features in order to examine their influence on the prediction of 

bicycle facility usage. Combining data of BSS and common bicycle storages will additionally allow 

for interesting insights in usage patterns, since it is expected that patterns vary between usage in BSS 

and in common bicycle storages. It is assumed that peaks in BSS usage occur at different moments 

since it is more dominantly used by activity-end users (Jonkeren et al., 2018). The practical relevance 

obtained from this, is that it allows for redistribution strategies and a better alignment of free bicycle 

storage space.            

 The datasets used in this study cover two large bicycle facilities in Utrecht: the Jaarbeursplein 

storage and the Stationsplein storage. These facilities offer storage for thousands of bicycles and 

contain 922 and 826 shared bicycles respectively (NS, n.d.). The data concerning the common bicycle 

storages are gathered by a check-in system. Also, the data concerning the public transportation 

bicycles (OV-fietsen) are collected by a check-in system. Furthermore, hourly weather data collected 

by the KNMI of station de Bilt is used. A full description of the datasets used can be found in section 

4.1. With the use of these datasets, answers will be given to the research questions.  
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3. Methods 

 

This chapter describes the models used for answering the research questions. As described in the 

previous chapter, a Random Forest Regressor, a Support Vector Regressor and a Multilayer 

Perceptron will be employed and tested for their applicability in this current task.  

3.1 Random Forest Regressor 

   

The first model considered is the Random Forest (RF) and can be used for both classification as 

regression tasks. An RF is a flexible machine learning algorithm that produces great results most of 

the time. Since this study is dealing with a Regression task, RF becomes RFR, referring to a Random 

Forest Regressor. An RFR is one of the most effective machine learning models for predictive tasks. 

The model is formed by building a number of random trees on different bootstraps of the training set, 

which increases diversity in the forest and leads to more robust predictions. The mean of the numerical 

outputs of all trees is the regression value (Breiman, 2001). One of the advantages of the Random 

Forest model is that it can handle many input variables without the need of variable deletion. 

Moreover, an RFR provides straightforward methods for feature selection, which can be useful for 

answering the second sub research question. One of the drawbacks of an RFR is its interpretability and 

its model size, which could make it slow to evaluate.  

3.2 Support Vector Regressor 

    

The Support Vector Machine (SVM) is an algorithm used for supervised learning problems which 

can be employed for classification and regression challenges. An SVM is used to find a hyperplane in 

an n-dimensional space (where n is the number of features) that classifies the data points distinctly. An 

SVM used for regression is called a Support Vector Regressor. The SVR attempts to search a subset of 

samples within the training set in order to compute the regression with them. Furthermore, in order to 

evenly penalize misestimates, SVR uses a symmetrical loss function for training (Awad and Khanna, 

2015). An advantage of the SVR is that it is defined by a convex optimization problem, so no local 

minima exists. Another advantage is that it scales relatively well to high-dimensional data. However, a 

serious problem with an SVR is the limitation in speed and size for training and testing.   
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3.3 Multilayer Perceptron 

    

The last model considered in this study is a Multilayer Perceptron (MLP). An MLP is a deep, 

artificial neural network that is composed of an input layer, an output layer and an arbitrary number of 

hidden layers in between which function as the computational engine of the MLP. MLPs are often 

used for supervised learning problems and are able to model highly non-linear functions. Scaling the 

variables of your data should always be done since it optimizes the performance results of the MLP, 

this is also called normalization. One major drawback is that an MLP is only capable of predicting 

stationary time-series (Koskela, Lehtokangas, Saarinen and Kaski, 1996). while the data of the bicycle 

facilities in Utrecht may show seasonal differences. In contrast to the SVR, an MLP algorithm can 

encounter difficulties when having to deal with local minima.  
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4. Experimental setup 

 

In this section, the experimental setup of this study is described. The first part of this chapter will 

give a description about the used datasets provided by external parties and the open data used. In 

subsection 4.2, a description of the exploratory data analysis is given. The next subsection covers the 

steps taken to pre-process the data. Section 4.4 contains the experimental procedure which explains the 

algorithms that are used and which parameters are chosen. Subsection 4.5 and 4.6 will cover the 

implementation of the algorithms and the evaluation criteria used for testing model performance 

respectively. Codes needed to reproduce this work can be found in a specific GitHub repository1. 

4.1 Datasets 

4.1.1 NS - common bicycle storages 

 

The data used for training the algorithms is provided by multiple parties. Four datasets 

provided by the Dutch railway company (NS) are used. Two of these datasets contain data of users 

checking in and checking out in two major bicycle storages near the Utrecht central railway station. 

The first storage is called the Jaarbeursplein storage and covers data of a period from January 2017 to 

October 2018. The second storage is called the Stationsplein storage and covers data from its opening 

on August 7, 2017 to August 10, 2018. When a user checks in, no personal information is registered, 

making this dataset anonymous. Table 1 presents an overview of the two datasets of the common 

bicycle storages provided by the NS with the period it covers and its features.  

 

Table 1 

Datasets concerning the common bicycle storages provided by the NS 

Location Period Features 

Jaarbeursplein 01/01/2017 –  

30/09/2018 

Name of storage, starting year, starting month, start date, 

starting hour, starting time, number of parked bikes, 

storage time, end year, ending month, end date, end hour 

and end time. 

Stationsplein 07/08/2017 –  

10/08/2018 

Name of storage, starting year, starting month, start date, 

starting hour, starting time, number of parked bikes, 

storage time, end year, ending month, end date, end hour 

and end time. 

 

   1https://github.com/u358550/Thesis 
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The features in the datasets mainly comprise the time of arrival and leaving of the users. The feature 

‘starting year’ means the year of arrival of a user and ‘starting month’ means the month of arrival and 

so on. The feature ‘ending year’ means the year of leaving of a user. The same holds for the features 

‘ending month’, ‘ending date’ and so on. Moreover, the exact storage time in seconds is included as 

well as the number of bicycles that entered the facility in the same minute.  

4.1.2 NS – shared bicycles 

 

In addition, two datasets were used consisting of shared bicycle (OV-fiets) rentals in the 

Jaarbeursplein and Stationsplein storage in Utrecht. The Jaarbeursplein storage covered a period from 

January 2017 to October 2018, while the Stationsplein storage covered a period from its opening in 

august 2017 to October 2018. The datasets included information about the rental location and return 

location as well as the exact time of rental and return on minute-level. Furthermore, a feature is present 

in these datasets concerning the number of rentals in the same minute. Table 2 presents an overview of 

the two datasets about shared bicycles provided by the NS with the period it covers and its features. 

The features in the datasets mainly comprise the time of rental and return of a shared bicycle. The 

feature ‘starting date’ means the date a shared bicycle was rented. The feature ‘end date’ means the 

date a shared bicycle was returned. Furthermore, the number of shared bicycles that were rented in the 

same minute is included. The location of rental and return are also included in this dataset as they may 

differ. However, in this dataset, the location of rental always corresponds to the location of return. 

 

Table 2 

Datasets concerning the shared bicycles provided by the NS 

Location Date Features 

Jaarbeursplein 01/01/2017 –  

30/09/2018 

Location of rental, starting date, starting hour, starting 

time, number of rentals, return location, end date and end 

time. 

Stationsplein 07/08/2017 –  

30/09/2018 

Location of rental, starting date, starting hour, starting 

time, number of rentals, return location, end date and end 

time. 
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4.1.3 KNMI 

 

Lastly, hourly weather data collected by the Royal Netherlands Meteorological Institute 

(KNMI) was used for the extraction of interesting features. These features are used to improve the 

prediction of BSS usage and common bicycle storage usage. The KNMI collects data at multiple 

weather stations across the Netherlands and makes it publicly available (KNMI, n.d.). For this work, 

hourly weather data of station De Bilt from January 2011 to October 2018 was used. Table 3 provides 

an overview of the dataset. The dataset consists of 24 features that are all collected on an hourly basis. 

It is important to note that some features, such as average wind speed, represents the average 

windspeed in that specific timeframe, while other features, such as temperature, represent the 

temperature at that time. 

 

Table 3 

Dataset KNMI station De Bilt 

Period Features 

01/01/2011 –  

01/10/2018 

Station number, date, hour, wind direction, average wind speed, highest wind 

gust, temperature, min. temperature, dew point temperature, sunshine 

duration, global radiation, precipitation duration, precipitation amount, 

atmospheric pressure, horizontal visibility, cloud cover, Relative atmospheric 

humidity, weather code, weather code observation, fog, rain, snow, thunder, 

ice formation. 
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4.2 Exploratory Data Analysis 

 

 This section provides insight into the datasets used and summarizes its main characteristics. 

After a combination of datasets, data about the shared bicycles of the NS contained 20111 rows with 

90 features for the Stationsplein storage and 30585 rows with 90 features for the Jaarbeursplein 

storage. The common bicycle storage dataset contains 17649 rows with 90 features for the 

Stationsplein storage and 30585 rows with 90 features for the Jaarbeursplein storage. No values were 

missing in both datasets.          

 In Figure 1, a clear trend can be seen in the usage of the Jaarbeursplein storage. During 

weekdays, a large peak of incoming bicycles is present during the morning rush hours, while a large 

peak of outgoing bicycles is present during the evening rush hours. This pattern indicates the storage’s 

usage for commuting purposes during weekdays. During weekend days, a different pattern is present. 

The number of incoming bicycles is increasing until 12 o ‘clock in the afternoon and then slowly 

decreases as it is reaching its minimum just after midnight. The number of outgoing bicycles during 

weekends increases until midnight and reaches its minimum in the morning hours. This pattern 

indicates the storage’s usage for recreationists, such as tourist, concertgoers and people who go on a 

daytrip. An almost identical pattern can be found for the Stationsplein storage.   

 

 

Figure 1. Total number of incoming and outgoing bicycles in the Jaarbeursplein storage during the 

week and weekend on hourly level    
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The usage of shared bicycles shows a similar pattern. As can be seen in Figure 2, a large peak 

in rentals is present during morning rush hours on weekdays, while a large peak in returns is present 

during evening rush hours. However, when a shared bicycle is rented, it is leaving the bicycle storage, 

while incoming bicycles are filling the storage. This means that patterns between the common bicycle 

storages and the BSS are inversely proportional. Hence, the pattern found in the data of shared 

bicycles indicates that activity-side users contribute largely to BSS usage in these storages while 

home-side users are a large proportion in the common storage part. Visualizing the patterns 

demonstrates that usage peaks in BSS occur later during morning rush hours and earlier during 

evening rush-hours than common bicycle storages, confirming the results of Jonkeren et al. (2018). 

However, an incoming bicycle cannot be linked to an outgoing bicycle based on visualizations of the 

data, so further insight is needed and discussed in section 5.4.   

 

 

Figure 2. Total number of rentals and returns for shared bicycles in the Jaarbeursplein storage during 

the week and weekend on hourly level 
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Figure 3. Total number of bicycles and shared bicycles per storage 

 

 Figure 3 shows that there is an imbalance between the datasets, meaning that the number of 

records is not equally represented. Due to a difference in time-coverage of the datasets, this imbalance 

might cause that predictions results will vary.  

 4.3 Pre-processing 

 

 After data collection from KNMI and NS, all data had to be cleaned and pre-processed, which 

is done in R. This section describes the steps that were taken and how the final features were created 

and selected for training the models.  

4.3.1 NS  

 

 The data provided by NS concerned a total of 4 datasets of two storages: the Jaarbeursplein 

storage and the Stationsplein storage. Two datasets contained data about the check-ins and check-outs 

of the common storage part, while the other two datasets contained data about the BSS part of the 

storages. In order to make predictions for the usage of the storages, the datasets had to be converted 

into half-hourly data. Before converting the data, interesting features were retrieved from the raw data. 

Each record in the raw data for the common storage part contained an exact time of storage, which is 

useful for answering sub research question 3. Six user types were formed by using the time of check-
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in, time of check-out and storage time. Table 4 provides an overview of these user types. The user 

types are defined in conjunction with Movares and the criteria are based on observations of the bicycle 

facilities that demonstrated clear patterns of people entering and leaving at certain moments. A home-

side user is using a bicycle to access the railway station at the home-end whereas an activity-side user 

uses a bicycle at the non-home-end of the trip (Keijer and Rietveld, 2000; Martens, 2004). For the data 

of the BSS part of the storages, time of rental could be retrieved by calculating the difference between 

the start time of rental and time of return. After dummy coding these user types per record, the datasets 

were converted into half-hourly data. These time-series datasets hold information about the incoming 

and outgoing number of bicycles, as well as the rentals and returns of shared bicycles per 30 minutes. 

Furthermore, incoming and rented bicycles were added per user type for the time-series data.  

 No missing values were present in the original datasets of NS. After conversion to the time-

series data, missing values occurred as no check-ins or rentals were registered for certain time units, 

these were set to 0. Moreover, date features were added such as weekday, weekend day and peak hour. 

These features were transformed into dummies in order to make them dichotomous, where 1 equals an 

occurrence of a category and 0 otherwise. Furthermore, the history of the incoming and outgoing 

bicycles and the rentals and returns of the shared bicycles were constructed into features, called 

inventory features. A total of 16 inventory features were constructed resulting in an inventory of 

bicycle usage for 8 hours in the past. In this way, the employed models allow for integrating 

increasing or decreasing trends in usage into the forecasts. In addition, the forecast horizon for this 

study is 8 hours, so features were included in the datasets for the usage of the storages up to 8 hours 

ahead, functioning as targets for the prediction.   

 

Table 4 

Definitions of user types 

 

User type Common bicycle storage Bicycle sharing system 

Short-use ST*:  

ET*: 

Storage time: ≤ 5 hours 

ST:  

ET: 

Rental time: ≤ 5 hours 

Home-side ST: between 5:00 and 10:00 

ET: between 13:00 and 23:00 

Storage time: between 5 and 15 hours  

ST: between 13:00 and 23:00 

ET: between 7:00 and 10:00 

Rental time: between 5 and 15 hours 

Activity-side ST: between 13:00 and 23:00 

ET: between 7:00 and 10:00 

Storage time: between 5 and 15 hours 

ST: between 5:00 and 10:00 

ET: between 13:00 and 23:00 

Rental time: between 5 and 15 hours  

Long-term ST:  

ET: 

Storage time:  ≥ 15 hours 

ST:  

ET: 

Rental time:  ≥ 15 hours 
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* ST = Starting time    * ET = Ending time 

4.3.1 KNMI 

 

 The data retrieved from the KNMI concerned a dataset of hourly measurements at weather 

station De Bilt in the province of Utrecht. All rows that did not correspond to dates present in the data 

of NS were omitted in the KNMI dataset. Furthermore, 8 interesting features were retrieved from the 

dataset: average windspeed, temperature, sunshine duration, duration of precipitation, amount of 

precipitation, cloud cover, humidity and whether it rained. No missing values were present in the data 

of the KNMI. Furthermore, temperatures in the KNMI dataset had to be divided by 10 before 

representing degrees Celsius. Hulot, Aloise and Jena (2018) concluded that using previous hour 

features for the weather had no real impact on the prediction, therefore, these were not included.  

 After merging data of the NS and KNMI, the final datasets used for the prediction of bicycle 

storage usage contained a total of 90 features.  

4.4 Experimental procedure  

 

 After preprocessing and merging of the datasets, the data was split into a training and test set. 

Since the aim of this study is predicting most recent bicycle facility usage, data was split by date, 

where the most recent months functioned as test set. Since the datasets covered different time periods, 

the last 30% of the datasets were used for testing, the remaining 70% of the datasets were used for 

training the models. This means that for the BSS dataset of the Jaarbeursplein storage, training set 

approximately covered the months January 2017 up to and including February 2018, whereas the test 

set approximately covered the months March 2018 up to and including September 2018. In order to 

transform this problem into a supervised learning problem, inventory features together with weather 

features and time features are used as input to predict the observations for the different fixed points in 

the future time horizon. This approach is used for both training and testing the applied algorithms. 

 Consequently, a baseline was defined, for which a Multiple linear regression was trained using 

all features present in the datasets, where the future variables functioned as targets. After employing 

the baseline model, algorithms for predicting the usage of the bicycle facilities were trained. The 

regression algorithms that were used in this study are a Random Forest Regressor, a Support Vector 

Regressor and a Multilayer Perceptron. In order to increase the performance of the regression 

algorithms, grid search was applied to find the most optimal hyperparameters. 3-fold cross validation 

was used for optimization purposes. One of these models is an MLP, which is a neural network. Since 

User type Common bicycle storage Bicycle sharing system 

Evening-users ST: between 14:00 and 18:00 

ET: between 21:00 and 01:00 

Storage time: ≥ 5 hours 

ST: between 14:00 and 18:00 

ET: between 21:00 and 01:00 

Rental time: ≥ 5 hours 

Other ST: Else 

ET: Else 

Storage time: Else  

ST: Else 

ET: Else 

Rental time: Else  
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neural networks perform better with normalized input variables, MinMaxScaler from the scikit-learn 

library in Python was used. After training the algorithms with the best performing hyper-parameter 

settings, evaluating was done on the test set. Model performance was evaluated using different error 

metrics which are discussed in section 4.6. Section 4.4.1 will discuss the optimal hyperparameter 

settings found by grid search.  

4.4.1 Hyperparameter optimization 

 

Grid search was used to find the most optimal hyperparameters for the SVR, MLP and RFR. 

Table 5 shows the most optimal hyperparameter settings for the selected algorithms.  

 

Table 5 

Optimal hyperparameters found by grid search 

 

The following hyperparameters are considered for the RFR: n_estimators (100, 500, 1000), 

max_depth (80, 100), max_features (20, 30, 35), min_samples_leaf (3, 4, 5) and min_samples_split (8, 

10, 12). For the SVR, the following hyperparameters are considered: kernel (linear, poly, rbf, 

sigmoid), C (0.001, 0.01, 0.1, 1, 10) and gamma (0.001, 0.01, 0.1, 1). Finally, the considered 

hyperparameters for the MLP are: hidden_layer_sizes (50, 150, 250), activation (identity, relu), solver 

(lbfgs, sgd) and learning_rate (constant, adaptive).  

4.4.2 Feature importance  

  

One of the goals of this study is to find features with the biggest influence on bicycle storage 

usage during peak hours and outside peak hours. In order to test feature importance for these different 

periods, subsets of the data are made for 30-minute periods within peak hours and 30-minute periods 

outside peak hours. Selected algorithms for this study provide straightforward methods for looking at 

feature importance. The RFR model has an attribute “feature_importance” derived from the scikit-

learn library in python that allows for feature importance testing. With applying this attribute, a list 

Algorithm Optimal hyperparameter-settings 

Random Forest Regressor n_estimators=1000, max_depth = 100, max_features = 20, 

min_samples_leaf= 3, min_samples_split = 8 

Support Vector Regressor kernel = ‘poly’ , C = 10, gamma = 1 

MLP for regression hidden_layer_sizes= 250, activation = ‘relu', solver = 'lbfgs', 

learning_rate = “constant” 
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will be returned where high values reflect the most important features, which can be used to answer 

sub research question 2.  

4.5 Implementation  

 

Exploratory data analysis and pre-processing was performed using the programming language 

R, version 3.5.1 with RStudio (Version 1.1.456). Modelling was done using programming language 

Python, version 3.7.0. Table 6 provides an overview of the used libraries and packages for R and 

Python. 

Table 6 

Used libraries and packages in R and Python 

Language Library/package 

R DataExplorer, data.table, dplyr, forcats, ggplot2, 

Graphics, lubridate, plotly, plyr, reshape2, 

scales, tidyr, timeDate, timeSeries, 

 

Python math, matplotlib, numpy, pandas, scipy, 

seaborn, sklearn 

 

4.6 Evaluation Method 

 

To evaluate performance of the models, different metrics are applied. The R-squared (R2), Mean 

Absolute Error (MAE), Root Mean Squared Error (RMSE) and Root Mean Squared Logarithmic Error 

(RMSLE) are used to evaluate performance for each of the chosen models. MAE is the average of all 

absolute errors, RMSE is the root of the means of the errors squared and RMSLE is the root mean 

square of the logarithm of the ratio between the predicted values and the actual values. The metrics 

that are applied all show the error of the prediction. MAE gives a number that can be used to 

determine the number of incorrectly predicted bicycle storage visits on average. RMSE penalizes 

predictions more that are far from the true value and RMSLE gives more penalties to under-prediction 

than it does to over-prediction, which can be useful in the sense that it is better to over-prepare for 

usage peaks in the bicycle storages.  
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5. Results 

 

In this section, the performance of the employed models is presented. The aim of this study is to 

provide clarity in the degree to which bicycle storage usage can be predicted. With the use of three 

regression models, predictions are measured on a time-horizon of 8 hours. This prediction task was 

executed for two bicycle storages in Utrecht for the common bicycle storage part and the BSS part of 

the storages. Furthermore, grid search is applied to find the most optimal hyper-parameter settings for 

the algorithms and feature contribution is tested. 

5.1 Baseline   

  

 In order to define a baseline for this study, a linear regression model is used. All features are 

trained in this baseline model except for the features that reflect the future time-horizon and the 

incoming user type features. Table 7 shows the performance of the baseline model for the prediction of 

the incoming and outgoing number of bicycles as well as the rentals and returns of the shared bicycles 

in the Stationsplein storage. 

Table 7 

Performance of baseline model for the Stationsplein storage 

Type of usage Forecast 

horizon 

R2 MAE RMSE RMSLE 

Rental t = 0  0.74 4.90 9.20 0.76 

 t + 240 0.24 8.34 15.83 1.05 

 t + 480 0.53 6.95 12.39 1.00 

Return t = 0  0.82 4.11 6.19 0.68 

 t + 240 0.74 5.40 7.41 0.89 

 t + 480 0.73 5.42 7.50 0.88 

Incoming t = 0  0.92 27.17 47.48 1.25 

 t + 240 0.35 79.54 138.31 1.91 

 t + 480 0.69 44.49 95.09 1.50 

Outgoing t = 0  0.88 25.67 48.77 0.93 

 t + 240 0.94 22.75 32.88 1.00 

 t + 480 0.94 23.30 33.24 0.93 

 

The results of the baseline show that there is a difference in prediction accuracy among the 

features that were tested for prediction. For the current number of incoming bicycles in the 
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Stationsplein storage, the baseline achieved a R2 of 0.92, a MAE of 27.17, a RMSE of 47.48 and a 

RMSLE of 1.25. Moreover, as can be seen in the results of the baseline model, t + 480 generally has 

lower error scores than t + 240 and deviates from expectations.     

   The linear regression that is constructed as baseline can be used to answer the first sub 

research question. As seen in the exploratory data analysis, usage peaks occur during the morning and 

the evening rush hours in the bicycle facilities around Utrecht central station for both the common 

storage part and the BSS part. To test significance per feature for the incoming and outgoing number 

of bicycles and the rentals and returns of shared bicycles, results of the regression model are evaluated. 

The results are shown in appendix A. The table shows that, with a 95% confidence, the number of 

incoming bicycles in the Stationsplein storage depends on whether it is a weekday or not and whether 

it is a peak hour or not. This is also applicable for the number of outgoing bicycles and the rentals and 

returns of shared bicycles in the same storage. Again, similar results were achieved for the 

Jaarbeursplein storage, indicating that usage of both storages is related to rush hours and whether it is 

a weekday or not.  

5.2 Performance of the models 

 

 The Random Forest Regressor is widely applied for the prediction of BSS usage in previous 

research and proved to perform best amongst all models employed in these researches. This study 

seeks clarity in the application of the RFR for BSS usage and if it is effectively applicable to common 

bicycle storage usage as well. Moreover, a Multilayer Perceptron and a Support Vector Regressor are 

trained and evaluated. Figure 4 shows the performance of the different models on the set forecast 

horizon of 8 hours when evaluated on the test set. The RMSLE of the baseline deteriorates 

immediately but improves when the forecast horizon increases. The RFR clearly shows the best results 

for all graphs, demonstrating its applicability for the prediction of both BSS usage as well as common 

bicycle storage usage. When predicting the current number of incoming bicycles in the Stationsplein 

storage, the RFR has a RMSLE of 0.35, while an MLP and an SVR yield 0.64 and 0.67 respectively. 

The RMSLE of the RFR slightly increases over the time horizon and reaches 0.46 for the incoming 

number of bicycles at t + 480, whereas the MLP and the SVR yield a RMSLE of 0.78 and 0.84. A 

similar trend is present for the rentals and returns of shared bicycles in the Jaarbeursplein storage. The 

RFR again yields the lowest RMSLE of 0.48 for the current number of rentals, whereas the MLP and 

SVR produce a RMSLE of 0.65 and 0.69 respectively. When looking to the other metrics, the overall 

performance of the RFR is yielding the best results, proving its applicability for the prediction of 

bicycle facility usage. Moreover, the course of the error over the time horizon shows a stable pattern 

for the RFR, demonstrating its robustness, contrary to the baseline model that showed deviating 

results. An overview of all error metrics for the incoming and outgoing number of bicycles as well as 

the rentals and returns of shared bicycles for both storages can be found in appendix B.  
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Figure 4. Performance of models on set time horizon  
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5.3 Feature importance 

 

 The Random Forest model provides a straightforward way to examine feature importance for 

the prediction of bicycle facility usage. Using the attribute ‘feature_importance’ derived from the 

scikit-learn library in python, a list will be returned with importances denoted on a 0 to 1 scale, where 

higher feature importances are closer to 1. Table 8.1 and table 8.2 provide the top 10 features with the 

highest importances for the prediction of the incoming number of bicycles and number of rented 

shared bicycles during peak hours and outside peak hours for the Jaarbeursplein storage. Feature 

importances for the Stationsplein storage yielded similar results. As was to be expected, inventory 

features are important in predicting bicycle facility usage in both peak hours and outside peak hours. 

An interesting observation is that weather features are almost not present, indicating that usage of the 

Jaarbeursplein storage and Stationsplein storage is scarcely dependent to the weather. This applies to 

both peak hours and outside peak hours. The RFR also shows that time features such as ‘HH’ and 

‘Halfuurnum’ (Hour and Half-hour) are important factors for the prediction of bicycle facility usage.  

 

Table 8.1 

Feature importance for the prediction of incoming bicycles in and outside peak hours for the 

Jaarbeursplein storage derived from the RFR 

 

 

  

 

 

 

 

 

 

 

 

 

Peak 
 

Outside peak 
 

feature importance feature importance 

t_min30_Incoming 0.27 t_min30_Incoming 0.43 

Halfuurnum 0.23 t_min60_Incoming 0.18 

HH 0.19 t_min330_Outgoing 0.08 

t_min60_Incoming 0.06 t_min300_Outgoing 0.05 

t_min240_Incoming 0.06 t_min360_Outgoing 0.03 

t_min210_Incoming 0.04 Halfuurnum 0.03 

t_min90_Incoming 0.03 t_min90_Incoming 0.03 

t_min150_Incoming 0.03 HH 0.02 

t_min120_Incoming 0.02 t_min210_Outgoing 0.02 

t_min150_Outgoing 0.01 t_min270_Outgoing 0.01 
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Table 8.2 

Feature importance for the prediction of rented shared bicycles in and outside peak hours for the 

Jaarbeursplein storage derived from the RFR 

 

 

 

 

 

 

 

 

 

 

5.4 User type correlation 

 

 Sub research question three aims in gaining insight in the influence of different user types on 

the bicycle facilities around Utrecht central station. Different user types are defined by their time of 

arrival and departure in the bicycle storages or time of rental and return in the BSS, obtained from the 

raw dataset. Definitions are presented in section 4.3. Consequently, a correlation matrix is constructed 

in order to see correlations between the incoming number of bicycles and the incoming number per 

user type. The results are presented in table 9.  

Table 9 

Correlation matrix of user types 

Stationsplein Jaarbeursplein 

Rentals  Incoming Rentals Incoming 

Short use 0.65 Short stay 0.45 Short use 0.64 Short stay 0.37 

Activity side 0.86 Home side 0.97 Activity side 0.91 Home side 0.96 

Home side 0.12 Activity side -0.05 Home side 0.07 Activity side -0.01 

Long term 0.45 Long term 0.92 Long term 0.42 Long term 0.83 

Evening users 0.25 Evening users 0.02 Evening users 0.18 Evening users 0.05 

Other 0.12 Other 0.04 Other 0.05 Other 0.05 

Peak 
 

Outside peak 
 

feature importance feature importance 

t_min30_Rentals 0.41 t_min30_Rentals 0.38 

t_min420_Returns 0.10 t_min60_Rentals 0.17 

t_min60_Rentals 0.10 t_min90_Rentals 0.07 

Halfuurnum 0.07 Halfuurnum 0.05 

HH 0.07 t_min120_Rentals 0.04 

t_min450_Returns 0.04 HH 0.03 

t_min90_Rentals 0.03 day_of_week_nr 0.02 

t_min390_Returns 0.03 t_min150_Rentals 0.02 

t_min150_Rentals 0.02 t_min30_Returns 0.01 

t_min30_Returns 0.01 temperature 0.01 
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 For the BSS part of the storages, rentals of activity-side users yield the highest correlation with 

the total number of rentals. For the Stationsplein storage this number is 0.86 and for the Jaarbeursplein 

storage 0.91. These numbers reflect the high share of activity side users making use of the BSS parts  

of the bicycle facilities near Utrecht central station. Moreover, a high correlation is found for short use, 

indicating that shared bicycles are often rented for short trips that do not last longer than 5 hours. For 

the common bicycle storage part, home side users represent the largest part among the user types. For 

the Stationsplein storage this number is 0.97 and for the Jaarbeursplein storage 0.96. Furthermore, 

long term users of the common bicycle storage part of both facilities yield a high correlation with 

incoming bicycles, indicating that a reasonable number of users is storing their bicycles for a longer 

period than 15 hours. Gaining insight in these user types per storage helps understanding the peaks in 

usage and can be useful for making better predictions. 
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6. Discussion 

 

This section will evaluate the results regarding the research questions.  

6.1 Research questions 

 

• What is the average incoming and outgoing number of bicycles and shared bicycles for 

certain periods of time such as day of the week and part of the day?  

To answer the first sub research question, insight in bicycle usage patterns is acquired. 

Exploratory data analysis resulted in visualizations of these patterns in figure 1 and 2. Moreover, a 

linear regression model that functioned as baseline was created to understand relationships between 

bicycle facility usage and different time features, such as peak hour and weekday. The results of this 

linear model are discussed in section 5.1 and indicated that a relationship is present between incoming 

and outgoing bicycles and weekday. Moreover, a relationship was found between incoming and 

outgoing bicycles and peak hour. This also applies to the rentals and returns of the BSS part of the 

storages. These results demonstrate that peak hours can be considered important for the influence of 

bicycle facility usage. During weekdays, the majority of users is storing their bike in morning peak 

hours and is collecting their bike in evening peak hours. This is in compliance with the study of Vogel 

et al. (2011), who observed this pattern for BSS usage and indicates that the BSS part and the common 

bicycle storage part are predominantly used by commuters. However, usage peaks slightly differ 

between the BSS part and common bicycle part since dominance of user types vary. This will be 

addressed in the answer on sub research question 3.  

• Which features yield the highest influence for the prediction of bicycle facility usage 

during peak hours and outside peak hours?   

In order to give answer to the second research question, subsets of the timeseries data are 

made for peak hours and non-peak hours. Consequently, feature importances were generated by the 

Random Forest model and showed that inventory features prove to be important when predicting 

bicycle facility usage. Moreover, time features such as hour of the day yielded high predictive power.  

Surprisingly, when looking at external features employed in this study, weather features do not prove 

high importance for the prediction of bicycle facility usage inside and outside peak hours. This applies 

to both the common bicycle storage part and the BSS part of the facilities and is not in agreement with 

existing literature (Giot and Cherrier, 2014; El-Assi, Mahmoud and Habib, 2017; Saneinejad, Roorda 

and Kennedy, 2012). One of the reasons for this, is that the facilities studied in this work are found 

near a railway station that is mainly used by commuters, who tend not to be affected by the weather. 

However, this would then only apply for the subsets made for periods inside peak hours. Another 

reason could be that a large share of the people in the Netherlands use bicycles as primary form of 
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transportation. Dutch cycling culture is unique, people make use of them for everyday purposes and do 

not let adverse weather conditions influence themselves.  

• To what extent does user type influence the usage of bicycle facilities around Utrecht 

central station?  

The third research question is answered in section 5.4, where correlations between incoming 

bicycles and incoming bicycles per user type are presented. Results show that for the common bicycle 

storages, home-side users are highly important considering usage of these facilities. In addition, rentals 

of activity-side users yield the highest correlation with the total number of rentals for the BSS part of 

the storages. These results confirm existing literature (Keijer and Rietveld, 2000; Martens, 2004; 

Jonkeren et al., 2018) and demonstrate the high influence of activity-side users for the BSS part and 

the high influence of home-side users for the common bicycle storage part. Home-side users tend to 

utilize the bicycle facilities at the beginning of their trip during morning peak hours, whereas they 

collect their bicycle at the end of their trip during evening peak hours. Since the BSS part is dominated 

by activity side users, its pattern is opposite. These differences result in slightly shifted peaks which 

can be useful for management of the facilities (e.g. redirection of storage space when shared bicycles 

are almost not present during daytime). Moreover, understanding behavior of these user types allows 

for making better predictions in future studies. Departing trains could be an interesting factor for 

predicting bicycle facility usage where home-side users dominate, whereas arriving trains possibly are 

interesting for the prediction of BSS usage.  

• Which model yields the best results for the prediction of bicycle facility usage?   

In order to answer this question, three models were trained and evaluated on a test set. A 

Random Forest Regressor, Multilayer Perceptron and Support Vector Regressor were employed for 

the prediction of bicycle facility usage. Results of the model performance can be found in Appendix B. 

For all fixed points in the future for the set time horizon, the Random Forest Regressor yielded best 

performance results. This applies to both facilities for the common bicycle storage part as well as the 

BSS part. Additionally, the SVR and the MLP outperformed the baseline model as well, but could not 

compete with the RFR. Hence, results of the current study validate existing literature that found 

similar results with regard to the best performing algorithm (Dias, Bellalta and Oechsner, 2015; 

Lozano, De Paz, Villarrubia González, Iglesia, and Bajo, 2018; Yang et al., 2016; Yin, Lee, and 

Wong, 2012). Predictions for both storages yielded similar results for all of the employed models. A 

moderate difference in prediction results however is present between the common bicycle storage part 

and the BSS part when considering the R2. This difference can be explained due to differences in the 

size of the raw datasets and a more stable pattern for the common bicycle storage part.  
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• To what degree can future bicycle storage usage be predicted for the secured bicycle 

storages of Utrecht central station? 

Finally, the main question of this study aims to give clarity on how well bicycle facility usage 

can be predicted. Looking to the best performing model, the current number of bicycles for the 

Stationsplein and the Jaarbeursplein storage can be predicted with a RMSLE of 0.35. The prediction of 

the current number of outgoing bicycles yields a RMSLE of 0.41 and 0.39 for the Stationsplein and 

Jaarbeursplein storage respectively. The MAE yielded by the RFR for the prediction of incoming and 

outgoing bicycles did not exceed 15 for the Jaarbeursplein storage and 21 for the Stationsplein storage 

on the entire time horizon. For the prediction of BSS usage on the entire horizon, the MAE did not 

exceed 6 for the Jaarbeursplein storage and 5 for the Stationsplein storage. Whether these prediction 

results are precise enough, depends on the implementation by different instances such as the NS, 

ProRail and the municipality of Utrecht. Suggestions on improvement of these results are given in the 

conclusion.  

6.2 Limitations 

 

Several limitations were present in this study. The data used for the current study only 

contained information about users arriving and departing from two facilities around Utrecht central 

station. Therefore, these numbers cannot be used to give an estimation about when a storage capacity 

has reached its maximum. Different systems are integrated in the bicycle facilities that aim to count 

the number of stored bicycles in a facility. However, data collection of these systems do not (yet) 

allow for data analysis and may be inaccurate.       

 Secondly, a separate membership area exists in the facilities investigated in this study. Since 

members are not required to check-in or check-out, no data is present of these users. In order to give 

better advices to the management of these facilities, it would be desirable to acquire data of their usage 

as well.            

 Lastly, datasets used in this work did not contain information about the origin of the users. 

When using the bicycle facilities studied in this paper, a public transportation card is needed (OV-

chipkaart). These cards are also required for the usage of trains and, thus, contain a lot of information 

about the origin and destination of an individual, that would be valuable for predicting bicycle facility 

usage.             
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7.  Conclusion  

  

 This thesis explored ways to improve the management of bicycle facilities using data of its 

usage. The main goal was to investigate the degree to which bicycle facility usage can be predicted. 

Predictions of the incoming and outgoing number of bicycles and shared bicycles for the storages 

around Utrecht central station provide valuable information for the management of these facilities.

 In order to predict bicycle facility usage, multiple state-of-the-art algorithms were trained and 

evaluated on data from two bicycle storages. Results showed that a Random Forest Regressor 

performed best and confirmed its applicability for predicting bicycle facility usage. Moreover, 

inventory features proved their importance for time-series forecasting whereas weather features did 

not yield high predictive power for this specific task, contradictory to existing literature. A user type 

study gave insight into the different groups that make use of the facilities and showed a clear pattern. 

Activity-side users dominate the bicycle sharing systems whereas home-side users dominate usage of 

common bicycle storages. In future work, it would be interesting to include departing and arriving 

trains, as they could possibly be interesting factors for predicting bicycle facility usage. Also, 

including occupation-level data of facilities could improve predictions as it enhances understanding 

the patterns of incoming and outgoing bicycles. Lastly, it would be interesting to add more trip 

information to the facility user check-ins in order to improve performance of the predictions.  
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Appendix A 

Table A1 

Regression results for Incoming bicycles Stationsplein storage 
 

coef std err t P>|t| [0.025 0.975] 

Const 27.447 2.307 11.898 0.000 22.925 31.969 

Half hour -0.0034 0.001 -2.703 0.007 -0.006 -0.001 

Day_of_week_number 0.4682 0.190 2.459 0.014 0.095 0.841 

Week 13.113 1.270 10.324 0.000 10.623 15.603 

Weekend 14.334 1.286 11.148 0.000 11.814 16.855 

Peak 58.905 1.548 38.045 0.000 55.870 61.939 

Non peak -31.457 1.338 -23.514 0.000 -34.079 -28.835 

Hour 0.1577 0.121 1.298 0.194 -0.080 0.396 

Wind speed avg -0.0061 0.024 -0.256 0.798 -0.053 0.041 

Temp  -0.2736 0.070 -3.922 0.000 -0.410 -0.137 

Sunshine 0.5379 0.168 3.194 0.001 0.208 0.868 

Rain duration -0.7368 0.246 -2.996 0.003 -1.219 -0.255 

Rain sum -0.0943 0.108 -0.872 0.383 -0.306 0.118 

Cloud cover 0.1652 0.148 1.118 0.264 -0.125 0.455 

Humidity 0.0809 0.043 1.889 0.059 -0.003 0.165 

Rain -0.0124 1.099 -0.011 0.991 -2.167 2.142 

Warm day -5.474 2.388 -2.292 0.022 -10.154 -0.793 

 

Table A2 

Regression results for Outgoing bicycles Stationsplein storage 
 

coef std err t P>|t| [0.025 0.975] 

Const 17.398 2.290 7.596 0.000 12.909 21.887 

Half hour 0.0077 0.001 6.052 0.000 0.005 0.010 

Day_of_week_number -0.2603 0.189 -1.377 0.168 -0.631 0.110 

Week 7.428 1.261 5.890 0.000 4.956 9.900 

Weekend 9.970 1.277 7.810 0.000 7.468 12.473 

Peak 35.446 1.537 23.060 0.000 32.433 38.459 

Non peak -18.048 1.328 -13.589 0.000 -20.651 -15.444 

Hour 0.5984 0.121 4.964 0.000 0.362 0.835 

Wind speed avg -0.0555 0.024 -2.337 0.019 -0.102 -0.009 

Temp  -0.0485 0.069 -0.701 0.483 -0.184 0.087 

Sunshine -0.0804 0.167 -0.481 0.631 -0.408 0.247 

Rain duration -0.0310 0.244 -0.127 0.899 -0.510 0.448 

Rain sum 0.0140 0.107 0.131 0.896 -0.197 0.225 

Cloud cover -0.1146 0.147 -0.781 0.435 -0.402 0.173 

Humidity -0.1685 0.043 -3.962 0.000 -0.252 -0.085 

Rain -0.2301 1.091 -0.211 0.833 -2.369 1.909 

Warm day -4.109 2.371 -1.733 0.083 -8.756 0.538 
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Table A3 

Regression results for rentals in BSS Stationsplein storage 
 

coef std err t P>|t| [0.025 0.975] 

Const 2.9762 0.336 8.845 0.000 2.317 3.636 

Half hour -0.0005 0.000 -3.008 0.003 -0.001 -0.000 

Day_of_week_number 0.2066 0.029 7.186 0.000 0.150 0.263 

Week 0.9930 0.181 5.484 0.000 0.638 1.348 

Weekend 1.9832 0.183 10.811 0.000 1.624 2.343 

Peak 5.5783 0.213 26.159 0.000 5.160 5.996 

Non peak -2.6020 0.189 -13.756 0.000 -2.973 -2.231 

Hour -0.0098 0.016 -0.616 0.538 -0.041 0.021 

Wind speed avg -0.0046 0.004 -1.271 0.204 -0.012 0.003 

Temp  -0.0041 0.011 -0.389 0.698 -0.025 0.017 

Sunshine 0.1519 0.025 6.194 0.000 0.104 0.200 

Rain duration -0.0662 0.038 -1.758 0.079 -0.140 0.008 

Rain sum 0.0068 0.016 0.424 0.671 -0.025 0.038 

Cloud cover 0.0321 0.021 1.493 0.136 -0.010 0.074 

Humidity -0.0044 0.006 -0.710 0.478 -0.017 0.008 

Rain -0.1496 0.170 -0.881 0.378 -0.482 0.183 

Warm day 0.5588 0.306 1.828 0.067 -0.040 1.158 

 

Table A4 

Regression results for returns in BSS Stationsplein storage 
 

coef std err t P>|t| [0.025 0.975] 

Const 1.2085 0.250 4.832 0.000 0.718 1.699 

Half hour 0.0014 0.000 11.326 0.000 0.001 0.002 

Day_of_week_number -0.0556 0.021 -2.604 0.009 -0.098 -0.014 

Week 0.5594 0.135 4.156 0.000 0.296 0.823 

Weekend 0.6492 0.136 4.761 0.000 0.382 0.916 

Peak 2.0590 0.159 12.989 0.000 1.748 2.370 

Non peak -0.8505 0.141 -6.048 0.000 -1.126 -0.575 

Hour 0.1193 0.012 10.128 0.000 0.096 0.142 

Wind speed avg -0.0068 0.003 -2.522 0.012 -0.012 -0.002 

Temp  0.0058 0.008 0.743 0.458 -0.010 0.021 

Sunshine 0.1138 0.018 6.242 0.000 0.078 0.150 

Rain duration 0.0059 0.028 0.212 0.832 -0.049 0.061 

Rain sum -0.0189 0.012 -1.588 0.112 -0.042 0.004 

Cloud cover 0.0346 0.016 2.167 0.030 0.003 0.066 

Humidity -0.0279 0.005 -5.992 0.000 -0.037 -0.019 

Rain 0.0028 0.126 0.023 0.982 -0.245 0.250 

Warm day -0.0003 0.227 -0.001 0.999 -0.446 0.445 
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Appendix B 

Table B1 

Baseline results for Stationsplein storage 

 

Table B2  

Baseline results for Jaarbeursplein storage 

 

Type of usage Forecast 

horizon 

R2 MAE RMSE RMSLE 

Rental t = 0  0.74 4.90 9.20 0.76 

 t + 240 0.24 8.34 15.83 1.05 

 t + 480 0.53 6.95 12.39 1.00 

Return t = 0  0.82 4.11 6.19 0.68 

 t + 240 0.74 5.40 7.41 0.89 

 t + 480 0.73 5.42 7.50 0.88 

Incoming t = 0  0.92 27.17 47.48 1.25 

 t + 240 0.35 79.54 138.31 1.91 

 t + 480 0.69 44.49 95.09 1.50 

Outgoing t = 0  0.88 25.67 48.77 0.93 

 t + 240 0.94 22.75 32.88 1.00 

 t + 480 0.94 23.30 33.24 0.93 

Type of usage Forecast 

horizon 

R2 MAE RMSE RMSLE 

Rental t = 0  0.70 6.98 13.92 0.86 

 t + 240 0.21 12.13 22.54 1.31 

 t + 480 0.51 9.82 17.69 1.13 

Return t = 0  0.83 5.03 7.78 0.67 

 t + 240 0.74 6.72 9.64 0.85 

 t + 480 0.73 6.78 9.79 0.90 

Incoming t = 0  0.90 20.75 31.44 1.09 

 t + 240 0.39 53.57 78.21 1.63 

 t + 480 0.64 35.48 59.73 1.47 

Outgoing t = 0  0.86 18.39 29.67 0.90 

 t + 240 0.86 21.06 29.78 1.03 

 t + 480 0.87 20.53 29.09 1.02 
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Table B3 

Random Forest results for Stationsplein storage 

 

Table B4  

Random Forest results for Jaarbeursplein storage 

 

Type of usage Forecast 

horizon 

R2 MAE RMSE RMSLE 

Rental t = 0  0.87 3.53 6.57 0.45 

 t + 240 0.74 4.37 9.18 0.49 

 t + 480 0.77 4.22 8.68 0.49 

Return t = 0  0.87 3.28 5.20 0.43 

 t + 240 0.88 3.36 5.07 0.46 

 t + 480 0.88 3.33 5.06 0.44 

Incoming t = 0  0.98 11.36 24.46 0.35 

 t + 240 0.91 20.10 50.14 0.49 

 t + 480 0.93 17.88 45.04 0.46 

Outgoing t = 0  0.97 12.67 24.06 0.41 

 t + 240 0.97 12.90 22.26 0.47 

 t + 480 0.97 13.32 22.67 0.49 

Type of usage Forecast 

horizon 

R2 MAE RMSE RMSLE 

Rental t = 0  0.87 4.51 9.23 0.48 

 t + 240 0.75 5.86 12.58 0.55 

 t + 480 0.75 5.88 12.57 0.55 

Return t = 0  0.88 4.00 6.46 0.44 

 t + 240 0.86 4.33 7.01 0.50 

 t + 480 0.86 4.36 7.09 0.47 

Incoming t = 0  0.96 9.29 18.77 0.35 

 t + 240 0.86 14.31 36.96 0.40 

 t + 480 0.92 12.57 28.77 0.41 

Outgoing t = 0  0.94 10.70 20.03 0.39 

 t + 240 0.93 11.55 20.74 0.47 

 t + 480 0.93 11.91 20.79 0.47 
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Table B5 

Multilayer Perceptron results for Stationsplein storage 

 

Table B6  

Multilayer Perceptron results for Jaarbeursplein storage 

 

Type of usage Forecast 

horizon 

R2 MAE RMSE RMSLE 

Rental t = 0  0.85 3.90 7.04 0.56 

 t + 240 0.67 5.25 10.42 0.71 

 t + 480 0.74 4.78 9.24 0.69 

Return t = 0  0.86 3.48 5.39 0.51 

 t + 240 0.87 3.61 5.22 0.61 

 t + 480 0.85 3.83 5.62 0.63 

Incoming t = 0  0.97 14.42 29.41 0.64 

 t + 240 0.78 37.41 80.11 1.10 

 t + 480 0.92 22.00 49.73 0.78 

Outgoing t = 0  0.94 16.14 34.83 0.64 

 t + 240 0.97 15.63 24.31 0.65 

 t + 480 0.97 15.63 23.62 0.73 

Type of usage Forecast 

horizon 

R2 MAE RMSE RMSLE 

Rental t = 0  0.85 4.90 9.73 0.65 

 t + 240 0.62 7.31 15.55 0.73 

 t + 480 0.73 6.66 13.18 0.82 

Return t = 0  0.86 4.27 7.04 0.54 

 t + 240 0.86 4.60 7.16 0.63 

 t + 480 0.84 4.78 7.54 0.66 

Incoming t = 0  0.97 10.55 18.28 0.61 

 t + 240 0.75 21.89 49.61 0.73 

 t + 480 0.86 16.44 37.49 0.69 

Outgoing t = 0  0.90 13.31 25.61 0.53 

 t + 240 0.92 14.07 22.78 0.71 

 t + 480 0.92 14.56 23.06 0.73 
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Table B7 

Support Vector Regressor results for Stationsplein storage 

 

Table B8  

Support Vector Regressor results for Jaarbeursplein storage 

Type of usage Forecast 

horizon 

R2 MAE RMSE RMSLE 

Rental t = 0  0.77 4.85 8.62 0.72 

 t + 240 0.50 6.26 12.82 0.85 

 t + 480 0.70 5.38 9.88 0.79 

Return t = 0  0.79 4.19 6.61 0.61 

 t + 240 0.84 4.05 5.84 0.66 

 t + 480 0.83 4.24 6.08 0.69 

Incoming t = 0  0.95 17.72 39.57 0.67 

 t + 240 0.62 40.19 105.97 1.06 

 t + 480 0.83 24.53 70.75 0.84 

Outgoing t = 0  0.93 18.40 36.63 0.60 

 t + 240 0.96 16.42 26.94 0.69 

 t + 480 0.96 17.05 27.43 0.75 

Type of usage Forecast 

horizon 

R2 MAE RMSE RMSLE 

Rental t = 0  0.81 5.40 11.13 0.69 

 t + 240 0.49 8.06 18.08 0.91 

 t + 480 0.72 6.65 13.37 0.79 

Return t = 0  0.84 4.65 7.54 0.54 

 t + 240 0.84 4.83 7.56 0.64 

 t + 480 0.83 5.04 7.71 0.69 

Incoming t = 0  0.95 11.70 22.89 0.58 

 t + 240 0.73 22.66 51.63 0.81 

 t + 480 0.85 16.24 39.10 0.72 

Outgoing t = 0  0.89 12.91 25.80 0.48 

 t + 240 0.91 13.53 23.29 0.62 

 t + 480 0.92 13.41 23.07 0.64 


