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Abstract  

Aircraft noise is a problem to people’s health and wellbeing. It is also an issue for airports, 

because noise complaints limit them in their wishes to expand. Previous studies have often 

focused on minimizing aircraft noise or on relating aircraft noise with complaints. This study 

takes a different approach to aircraft noise complaints and asks the question: to what extent can 

the number of complaints be predicted per day and per runway used for arrival or departure at 

Schiphol Airport? Another question that is explored is: which features have the most predictive 

power in predicting the number of complaints per runway, per day? The data that is used in this 

study are from independent organizations BAS (Residents Intermediator Schiphol) and KNMI 

(Royal Netherlands Meteorological Institute) and from Schiphol Airport. Multivariate linear 

regression is applied to the data. Model 2, which includes all the independent features except 

for the number of flights, shows the best evaluation scores (r-squared = 0.8920, RMSE = 

25.2798, MAE = 12.3657). It is recommended that more research is done and more complex 

models are used in order to obtain better predictions of the number of complaints.  
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1. Introduction  

Over the past few decades, commercial airplane flights have expanded immensely. Recent 

forecasts estimate that the demand of commercial flights will continue to increase with five 

percent per year for at least twenty years (He, Wollersheim, Locke & Waitz, 2014). Despite 

potential economic benefits, a rise in air traffic also poses challenges. These problems can 

primarily be found in both environmental and public health domains. One of the most pressing 

problems are health concerns as a result of all the extra aircraft noise (Berry & Sanchez, 2014). 

Research in this field has shown that air traffic noise has a significant negative impact on the 

health of residents who live close to an airport (Morrel, Taylor & Lyle, 1997). For instance, 

persons living in residential neighborhoods around airports experience more stress, are less 

productive and are more prone to depression (Goines & Hagler, 2007; Hjortebjerg et al., 2015; 

Correira, Peters, Levy, Melly & Dominici, 2013).     

 People have often complained against increased noise levels. In fact, it is one of the 

most protested topics by the public (Berglund & Lindvall, 1995). Based on these protests and 

because of the adverse health effects of noise pollution, governments and other regulatory 

organizations such as the International Civil Aviation Organization (ICAO) have made an effort 

to reduce aircraft noise (Filippone, 2014).  The ICAO has installed a noise abatement program 

in 2001 that advocates a ‘balanced’ approach in reducing aircraft noise. They aim to do this by 

encouraging airline companies to produce aircrafts that generate less noise and by introducing 

laws about proper management of the airplane runways (Zaporozhets, Tokarev & 

Attenborough, 2011). Models of noise prediction have been adapted to these new international 

aviation standards. The focus of these models has been on predicting levels of aircraft noise, 

which will be elaborated upon in section 2 (Netsajov, 2011).   

 Instead of predicting noise levels, researchers have also started to investigate 

complaints that are related to aircraft noise. Individuals who are exposed to aircraft noise often 

feel annoyed or stressed (Lim, Kim, Hong & Lee, 2008). They express their discontent by 

reporting complaints to the airport or to an independent organization. Although several studies 

have indicated that this is an important issue, not much attention has been paid to exploring 

complaints and people’s complaint behavior (Hume et al., 2003; Maziul, Job & Vogt, 2005). 

Previous research on this topic has demonstrated that there are many different findings on the 

reasons why people complain. Ultimately, it is not always clear why or when people complain 

about noise levels or what makes a person complain about noise, but it can have much influence 

on an airport’s noise abatement strategies (Wiechen, Franssen, de Jong & Lebret, 2002).  
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1.1 Research questions 

Since the focus of the literature in the field of aircraft noise has been on finding associations 

between aircraft noise (prediction), annoyance and complaints, this paper takes an alternative 

approach. It uses multivariate linear regression to predict the number of complaints that are 

reported per runway, per day and per arrival or departure usage at Schiphol Airport. There are 

six airplane runways at Schiphol Airport. Each of these runways consists of two routes that 

airplanes can use to arrive on or to departure from. The complaints will be predicted per each 

of these arrival or departure routes, instead of using the entire runway. This will give a more 

accurate view of the complaints and whether arrival or departure that per airplane runway 

affects the number of complaints.      

 Instead of doing analyses from a statistical perspective, this study takes a data science 

approach. This means that multivariate linear regression is used to do predictions instead of 

making statistical inferences. Furthermore, data from several sources is retrieved to be able to 

extract information from them, which is a fundamental element of data science (Provost & 

Fawcett, 2013).  This could yield more insight in when individuals are more likely to complain 

and how the usage of runway affect the number of complaints. Airport Schiphol is used as an 

example in this study, because they have a coherent system in place that registers the complaints 

of citizens in the Netherlands and connects them to the runway. Compared to similar airports, 

they also have one of the highest levels of complaint behavior (Wiechen et al., 2002; Hulshof 

& Noyon, 1997). Hence, there is reliable data available about the number of complaints per 

runway and per day. This study also uses data that is obtained from Schiphol and from open 

source websites such as the Royal Netherlands Meteorological Institute (KNMI).   

  Airport expansion has been difficult in the past because of the complaint behavior of 

Dutch citizens (Wiechen et al., 2002). The annoyance that people experience around the airports 

and in the rest of the Netherlands as a consequence of the increase in the number of flights has 

therefore also been topic of public debate. The problem of focusing too much on the noise 

levels themselves, is that it does not necessarily affect the complaints. People may for instance 

complain because they are stressed or because of other reasons that do not relate to aircraft 

noise itself. Yet, it is ultimately the complaints and public protests that could really make a 

difference in an airport’s policy, apart from the (inter)national aircraft noise regulations 

(Netjasov, 2011). Therefore this study aims to focus on predicting the complaints and aims to 

answer the following questions:  

1. To what extent can the number of complaints be predicted per runway and per day at 

Schiphol Airport? 

2. Which features have the most predictive power in predicting the number of complaints 

per runway, per day?          
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In order to obtain the best possible accuracy score, this paper makes a few assumptions, which 

are further elaborated upon in section 3.  

 

1.2 Practical relevance 

Receiving too many complaints could be detrimental to an airport (Bergland & Lindvall, 1995). 

After all, receiving (too) many protests may lead to constraints for airports in terms of the 

number of flights that they can employ or it could limit potential plans of expansion. Hence, 

having a better understanding of when people complain and about which airplane, could be 

very insightful. It enables data driven decision making, of which the main benefits in this case 

are twofold.          

 First of all, being able to predict the number of complaints per runway can yield more 

information about when it would be most convenient to do tasks such as maintenance of the 

airplane runways. Every airplane runway needs to be repaired at set times each year, which 

makes them unavailable for usage. Consequently, other runways have to use more of their 

capacity in order to still be able to account for all the flights. If it is found that the number of 

flights on a particular runway highly affects the amount of complaints, then maintenance tasks 

can be planned differently. Having a better understanding of how many complaints the airport 

receives can cause the maintenance schedule be done in such a way that it helps reduce 

complaints.         

 Secondly, when Schiphol airport knows when noise complaints are going to occur 

because at a certain day there may for example be more flights, then this can be taken into 

account when the flights are planned. Of course, there are many different factors that need to 

be taken into account when flights are scheduled. The importance of the complaints should 

therefore be weighed against other tasks, such as making sure that all the flights can be 

managed. Nevertheless, it can still be important to take into account. Ultimately, when 

complaints are reduced, airports could generate more commercial flights and possibly 

expansion that will result in increased profits.   

   

1.3 Academic relevance 

Much research has been done on predicting aircraft generated noise levels and on how aircraft 

noise affects people’s health. Yet, very few publications can be found in the literature that 

focuses on the number of complaints that airlines receive about the noise. Even the few studies 

that have been conducted on complaints are from over a decade ago (Hume et al., 2003; Maziul 

et al., 2005).Yet it is still relevant to investigate aircraft noise complaints. Complaints could 

yield more information about the complainant behavior of people and what factors could 

influence the number of complaints. It should be noted that in this study, complaints are defined 
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as concrete results of the annoyance that people experience which could therefore be used as a 

measure to assess people’s feelings of annoyance (Hume, Terranova & Thomas, 2002). Since 

not much research has been done on complaints yet, this study could already potentially add to 

the body of literature.        

 What makes this study unique within the body of research in this field is that it uses 

multivariate linear regression to predict the number of complaints. This has not been done in 

this area of study before as the focus has always been on finding associations between levels of 

noise, annoyance and the effect of personal characteristics on complaints. The models that have 

been used before have not always been properly described in the literature, so not much is 

known about the methods that have been employed in understanding complaints and noise 

levels (Wiechen, et al., 2002).        

  Moreover, this study uses data from various sources to predict the number of 

complaints per runway, per day and per arrival or departure. This also makes it unique, because 

it takes into account features that have not been linked with complaints before (i.e. weather data 

and whether any maintenance was done on a runway). By using data from various sources and 

creating a dataset, predicting complaints with multivariate linear regression, this study has a 

unique contribution to make to the body of literature in this field.    

 

1.4 Outline  

This study aims to answer the research question by first describing the current literature and 

models that have been used more in depth. This theoretical framework also investigates the 

scope of this paper in more detail in section 2. After this section, the methods are described in 

section 3. This includes an overview of the dataset (section 3.2) and the analyses that are going 

to be used (section 3.5). Following the methods section, the results are reported and evaluated 

in section 4. These results are going to be discussed in section 5. Finally, the conclusion (section 

6) gives an overview of the main findings and gives an answer to the problem statements.   

 

2. Theoretical framework  

Aircraft noise became a much-discussed topic in scientific literature once airports started to 

expand in the 1960s and 1970s. Aircraft noise is usually not considered as inherently harmful. 

Yet, a well-known study that was conducted by Meecham and Shaw (1979) demonstrated that 

higher mortality rates in neighborhoods around Los Angeles Airport were found due to noise 

pollution. Since then, subsequent studies have been critical about this conclusion, arguing that 

mortality rates increased because of other factors unrelated to noise (Frerichs, Beeman & 
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Coulson, 1980). Nevertheless, this study prompted research about the consequences of noise 

pollution. Despite disagreements and discussions in many studies about what exactly these 

health effects are and how severe their impact is, there is a consensus among researchers that 

aircraft noise has serious negative effects on people’s health (Morrell, Taylor & Lyle, 1997; 

Kaltenbach, Maschke & Klinke, 2008). For instance, Franssen, Staatsen and Lebret (2002) 

conclude in their research about aircraft noise at Schiphol Airport and public health that being 

exposed to aircraft noise can affect the health of individuals who are exposed to it in a negative 

manner. Noise pollution is important and its effects should not be underestimated. It is not 

exactly clear which health effects are most problematic, although annoyance comes up most 

often as there is a low barrier to experiencing it (Lim, Kim, Hong & Lee, 2008). This study 

adopts the definition of annoyance that was stated in a study by Babisch et al., (2009): 

‘annoyance is a term used in general for all negative feelings such as disturbance, 

dissatisfaction, displeasure, irritation and nuisance’.     

 To reduce noise levels so airports can expand, research about aircraft noise has usually 

focused on the levels of noise and annoyance and the prediction thereof (Filippone, 2014; 

Steele, 2001). One of the first and most-cited studies about predicting noise disturbance was 

done by Hazard (1971).  This research has become one of the prominent studies in literature on 

aircraft noise and annoyance, because Hazard recognized that both noise levels and personal 

characteristics could play a role in how much annoyance is experienced. His goal was to predict 

the level of annoyance based on the two aforementioned characteristics. He conducted 

interviews with individuals who lived nearby various larger airports in the USA and used an 

‘annoyance measure’ index that was first developed by the National Opinion Research center 

in 1952 (Hazard, 1971). Noise levels were recorded by tape and were measured in perceived 

noise decibel (PNdB) before any of the interviews took place. Several social-psychological 

features were also selected, based on how well they predict annoyance. In addition, Hazard 

used multiple classification analysis to examine correlations between each predictor variable 

and other predictors (Hazard, 1971). He found that noise measures do not necessarily improve 

the prediction of annoyance. More specifically, he concluded that noise itself is a poor indicator 

of how much annoyance individuals experience. He concluded that other factors such as 

personality and demographics are much more important indicators of how people experience 

and respond to noise pollution (Hazard, 1971).      

 Despite these insights, however, there are also two main drawbacks to Hazard’s (1971) 

study. First of all, the noise that was recorded spanned over a period of three months and 

occurred before any of the interviews were held. This discrepancy may affect the outcomes of 

the results in either a positive or negative manner. For example, there may have been much 

higher noise levels in the months that the noise was recorded or vice versa. The outcome of the 

study may not be completely representative of how people experienced aircraft noise. Secondly, 
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the aircraft industry changes rapidly. Many new technologies are developed each year to create 

airplanes that generate less noise. Simultaneously, noise metrics that measure noise pollution 

have become more advanced. Nowadays, technology has become more precise at recording 

noise levels and reducing noise at different stages of the production of an aircraft. Since 

Hazard’s study is relatively old and the necessary technologies were not developed yet, he was 

unable to sample aircraft noise continuously (Hazard, 1971). Measuring aircraft noise is in itself 

a difficult task, which some researchers consider impossible (Steele, 2001). There are many 

different methods to analyze this and there is no general agreement about what the best practice 

is for aircraft noise (Steele, 2001). Therefore, results of studies that were done with measuring 

noise should be carefully evaluated (Steele, 2001).     

 One of the limitations of this study and similar ones that have been conducted since 

Hazard (1971) is that exploring levels of noise, annoyance and personal characteristics excludes 

another important feature: complaints. Airports usually have a system in place that enables 

individuals to file complaints about the levels of noise that they experience (Netjasov, 2011; 

Fidell & Howe, 1998). Researchers have proposed to put more emphasis on investigating these 

aircraft noise complaints (Fidell & Howe, 1998). The reasons for doing this is because it could 

give a better understanding of why complaints are reported and what could affect the number 

of complaints. Specifically, it could have a number of practical reasons such as using complaint 

data to assess the usefulness of noise mitigation measures (Fidell & Howe, 1998). However, 

research on this topic has not nearly been as extensive as studies on the relationship between 

noise and annoyance (Berglund & Lindvall, 1995; Maziul et al., 2005). For example, Uphard, 

Maughan, Raper and Thomas (2003) propound the view that not much attention has been paid 

to the scientific investigation of complaint data. This premise also been supported by other 

researchers, who also found that qualitative analyses in regards to complaint data has not been 

extensive enough (Maziul et al., 2005).   

  A study that does involve complaint data in relation to aircraft noise was carried out by 

researchers at Manchester Metropolitan University (Hume, Martin, Thomas & Terranova, 

2003). This research distinguished itself from other studies by combining noise levels and 

complaints. The reason for doing so was to investigate whether there was a link between aircraft 

noise levels and complaints that were reported by citizens. The complaint data was collected 

from Manchester Airport Community Relations Department to which people could express 

their discontent in form of complaints. Once people made a complaint, their address, gender, 

time-of-day and nature of complaint were all reported as well. The researchers retrieved 

complaints from July-December 1998 and July-December 1999. Manchester Airport has a 

monitoring system in place that measures the levels of noise at nine locations around the airport 

(Hume, Martin, Thomas & Terranova, 2003). Five of these monitors were placed at places 

within 6.5 kilometers from the airport. This takes all the fluctuating noise levels into account 
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and creates an average. The researchers also included four other monitors that were positioned 

in densely populated neighborhoods close to Manchester Airport (Hume et al., 2003). Only half 

of the noise complaints that were received were matched with the corresponding noise 

recordings, because many complaints were not specifically associated with a particular aircraft. 

Another obstacle that arose in this study is that there were problems with the recordings. Hence, 

not all noise events were registered.       

 The researchers associated the noise levels and complaints with each other via the 

monitoring system, though they do not exactly describe how they carried out their analyses 

(Hume et al., 2003). By doing so they found that found that the number of complaints increased 

as the noise levels increased as well. Moreover, they concluded that the main reason for 

complaints directed at Manchester Airport are because of aircraft noise.  They also discovered 

that there are large individual differences between how people experience annoyance and when 

people decide to complain (Hume et al., 2003). Whether people decide to complain depends 

for a large part on factors such as assertiveness and whether individuals feel that their 

complaints matter. Some individuals would complain very often (i.e. several times per day) and 

were classified as ‘serial complainers’. The reasons for why they complain much was not 

known, but it did not influence the main findings of the study (Hume et al., 2003). Despite the 

personal characteristics that play a key role in the complaints that Manchester Airport received, 

this study emphasizes that ultimately there is a stronger relationship between aircraft noise and 

complaints.          

 One of the studies that is not in accordance with aforementioned conclusion was carried 

out by Maziul, Job and Vogt (2005). Their study consists of a literature review, which discusses 

the studies that have been carried out on this topic. Their main premise is that the complaints 

that people report do not accurately reflect noise levels. One of the arguments they put forth to 

support this claim is that people experience more noise annoyance when they do not expect to 

be exposed to higher noise levels (Maziul, Job & Vogt, 2005; Hatfield, Job, Carter, Peploe, 

Taylor and Morrell, 2001). For example, a new air route was introduced at Sydney and 

Vancouver airports that would require airplanes to fly over areas that were previously relatively 

noise free. When the airplanes started to fly in these areas, the airports received many 

complaints. There was not an objective difference between the noise that was experienced in 

the neighborhoods around the new air route and the regular aircraft noise. However, people had 

not expected the new aircraft generated noise levels so there was a high increase in the number 

of complaints. It could be suggested that once individuals are used to noise, they are less likely 

to complain. Furthermore, the researchers point to other features that have much more effect 

on why individuals complain instead of the noise levels themselves (Maziul, Job & Vogt, 2005). 

For instance, people who consider themselves more sensitive to noise are much more likely to 

complain. Moreover, other factors such as having noise insulated windows and even one’s 
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political preferences could play a role in whether someone is more likely to complain (Maziul, 

Job & Vogt, 2005; Wirth, Brink & Schirz, 2003). These are examples of features that could be 

important in determining the number of complaints that an airport will receive. Since this study 

only consists of a literature review, the methods and analyses were only briefly touched upon. 

Even by examining the studies that were referenced more in depth, the methods of analyses 

were still not properly elaborated upon and in some cases even lacking (Maziul, Job & Vogt, 

2005; Wirth, Brink & Schirz, 2003).       

 A study that does incorporate analyses of noise levels and complaints was conducted 

by Wiechen, Franssen, de Jong and Lebret (2002). They are researchers at the National Institute 

for Public Health in the Netherlands. The goal of their study was to explore the relationship 

between aircraft noise exposure of citizens living around Schiphol airport and the prevalence 

of complaints. In the Netherlands there had been much political discussion about airport 

expansion (Wiechen et al., 2002). As a result, the researchers were ordered by the Dutch 

Ministry of Housing, Spatial Planning and the Environment to investigate whether expansion 

would be feasible. For their analyses, they used complaint data that was registered by the 

Environment Advisory Committee Schiphol (EACS). This is an independent committee where 

Dutch citizens could file their complaints via telephone or in writing, 24 hours a day. Their 

name and address is also recorded and people who complain anonymously were not taken into 

account in this research. Additionally, the researchers mailed their questionnaire to 30000 

randomly selected individuals of which 11812 were returned. This survey consisted of 

questions about how individuals experience annoyance, their personal characteristics, self-

perceived health and what type of actions they have previously taken against aircraft noise 

(Wiechen et al., 2002). Furthermore, data of noise levels were also included in the research. 

The noise levels were calculated by the National Aerospace Laboratory, which was done in a 

way that was according to the Dutch Aviation Act (Wiechen et al., 2002). In order to associate 

complaint data to the aircraft noise levels, the postal codes of the individuals who complained 

were combined with the noise levels that were calculated by the National Aerospace 

Laboratory. Afterwards, they were combined with Geographic Information System (GIS) data, 

so it was possible to recognize where the complaints were coming from and what the noise 

levels were in that neighborhood.       

 A constraint of this study is that no reference is given to model that was used, how 

exactly the survey data was analyzed and that no information is given about the calculations 

that were done by the National Aerospace Laboratory. Another limitation is that the people who 

responded to the questionnaire could not be properly linked with the persons who filed a 

complaint because of privacy reasons. The researchers were able to circumvent this limitation 

somewhat by combining the complaint data with the levels of aircraft noise through the GIS 

system. In their analyses, they found that there is an ‘exposure-response relation’ as the number 
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of complaints increase when noise levels become higher as well (Wiechen et al., 2002). 

However at higher levels of noise, feelings of annoyance started to decline. The authors 

attributed this to sound insulation that people will have added to their houses if the noise would 

have become too loud. Yet they stressed that the relations between noise annoyance and 

complaints may not paint a complete picture because the complaints do not give an accurate 

depiction of the actual response of individuals to noise pollutions (Wiechen et al., 2002). Even 

though many people may be annoyed by aircraft noise, less than a fifth of the people who were 

severely annoyed said that they had complained about the aircraft noise. Hence, only few people 

took the trouble of complaining even when aircraft noise really bothers them. In addition, the 

authors of this study found that there are other factors that influence complaint behavior. They 

mention determinants such as fear for an aircraft crash or concern about health and environment 

as other reasons for people to complain. Hence, this research concludes that even though noise 

levels affect complaints to a certain extent, most people do not report complaints. When 

individuals do file a complaint, it is not just because they are annoyed with the aircraft nose, 

but also because they could be afraid of an airplane crash or because they are worried about 

their health.   

 

2.1 Research gaps  

As can be inferred from aforementioned studies, it is not exactly clear what causes people to 

complain and how important aircraft noise level is. Either it is argued that noise levels affect 

the complaints that people make or, as is demonstrated in other research, other features could 

play a role in people’s complaint behavior. What the studies have in common is that the 

researchers have tried to associate noise levels with complaints and have sometimes combined 

them with personal characteristics. This approach has shown to be useful to a certain extent 

though it has also introduced some difficulties. For example, it is not always possible to relate 

complaints to survey data or associate the complaints to the noise levels. The research has also 

shown that there is still much ambiguity about what motivates people to complain when they 

experience aircraft noise. It is still useful to obtain more insight in why people complain, as 

airports will continue to expand. Therefore, this study takes a different approach to complaint 

data.           

 Instead of focusing on associations between complaint data and noise annoyance, this 

study predicts the number of complaints per day, per airplane runway and per arrival or 

departure at Schiphol Airport. By predicting the number of complaints it is possible to 

circumvent the problems around associating the complaints with the noise levels. Moreover, 

prediction of complaints enables airports understand complaint behavior better and to create 

measures that could reduce the complaints. This study makes use of multivariate linear 
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regression to make these predictions. This in particular is a unique aspect because no predictive 

models have yet been applied in any of the previous studies about complaints. Yet it can yield 

interesting insights, especially as organizations and airports are starting to accumulate more 

data because of technological advanced methods. By mining that data, information could be 

obtained that could improve decision making, as data-driven decisions usually give more 

reliable outcomes (Shmueli, Patel & Bruce, 2010).    

 Furthermore, questionnaire data and noise data measurements could be somewhat 

problematic, as previous studies have indicated. Especially noise measurement is tricky, 

because there are many possibilities different possibilities in measuring it. For instance, one 

could choose to measure noise when an airplane is departing, or measure noise in nearby 

neighborhoods, choose various measuring noise systems, etc. Therefore, this study is going to 

emphasize other features that could be relevant in making predictions about the number of 

complaints. The data set that is used for this research consists of a combination of open source 

data and data that was obtained via Schiphol Airport and BAS (Residents Intermediator 

Schiphol). In brief, the dataset consists of, but is not limited to, the following features: wind, 

average temperature, maximum takeoff weight, number of flights, etc. More information about 

the dataset can be found in section 3.2 and Appendix A. This is also a unique aspect of this 

study, because the features in the dataset have not yet been related to complaints in previous 

studies. By focusing on other factors besides noise and personal characteristics, this study hopes 

to find features that could also play a role in the number of complaints that are reported.    

 

3. Methods  

         

3.1 Outline  

This section gives an overview of the steps that were taken to investigate the research questions. 

This study predicts the number of complaints per runway, per day, by using multivariate linear 

regression. Section 3.2.1, 3.2.2 and 3.2.3 give a description of the various data sources and 

explains which assumptions were made in the process of obtaining this data. Section 3.2.4 and 

3.2.5 discuss merging the data and the dataset itself. Section 3.3 shows more information about 

exploratory data analysis that was applied to the dataset. Section 3.4 elaborates on the pre-

processing techniques that were applied to the dataset. The subsequent section, section 3.5, 

describes the chosen method of analysis in more detail and the evaluation metrics that are 

chosen to assess performance of the models. 
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3.2 Dataset description 

 

3.2.1 Residents Intermediator Schiphol (BAS)  

There are no datasets publicly available for the purpose of predicting complaints. A new dataset 

is therefore developed for this study. The data is obtained from various sources. Complaint data 

was retrieved from Residents Intermediator Schiphol (BAS) which is an independent 

organization where individuals can file their complaints via their website: www.bezoekbas.nl. 

The number of complaints per day, per runway and whether the plane arrived or departed from 

a particular runway were selected for analysis. This data was available on the website, but not 

directly downloadable. Permission from the organization was given to put the data into an Excel 

file. The date of the complaint data ranges from January 1st, 2008 until March 1st, 2016. The 

choice for this date is further elaborated upon in section 3.2.4. This resulted in 25697 rows and 

four features: date, runway, arrival or departure and number of complaints, an example of which 

is given in table 1 and a description of the data is given in Appendix B. Other data that was 

available on the BAS website consisted of maintenance schedules of airplane runways since 

2010. When an airplane runway could not be used because of maintenance, other runways need 

to process more flights. This could result in an increase in complaints addressed to that 

particular runway. The maintenance dates were put into an Excel file, with a binary outcome 

for maintenance: zero for when there was no maintenance on a specific runway and one if there 

was. The file contains two features: date and maintenance. It consists of 475 rows, an example 

of which is shown in table 2. A description of the features is available in Appendix C. The dates 

should be viewed as an estimator for when maintenance took place, because actual maintenance 

often deviates from this schedule (BAS, 2016).  

 

Table 1. Example of the complaint data that was retrieved from BAS 

 Date Runway Arrival / 

Departure 

Complaints 

1 01-01-08 18L D 83 

2 01-01-08 09 D 274 

3 01-01-08 06 A 40 

4 01-01-08 24 D 55 

5 01-01-08 18R A 556 

  

 

http://www.bezoekbas.nl/
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Table 2. Example of the maintenance data that 

 was retrieved from BAS 

 Date Maintenance 

1 24-05-10 1 

2 25-05-10 1 

3 31-05-10 1 

4 01-06-10 1 

5 02-06-10 0 

 

 

 

3.2.2 KNMI Data  

Data from the Royal Netherlands Meteorological Institute (KNMI) was retrieved because 

weather conditions could play a role in the usage of runways. For example, a lot of rain or snow 

may cause a specific runway to temporarily shut down, which could reduce the complaints for 

that particular runway (BAS, 2016). The KNMI is the Dutch national weather institute that 

records and stores data of all the weather stations in the Netherlands. This includes a weather 

station that is stationed at Schiphol airport. The data is publicly available on their website 

(www.knmi.nl) in .txt format. The file contains 41 features, such as average temperature, wind 

vector speed, average amount of precipitation. It contains 23803 rows starting from January 1st, 

1953. For an example of the data see table 3 and for a full list of the features and a description, 

see Appendix D.   

 

Table 3. Example of KNMI data (only four of the 41 features are shown here, for a full list, see 

Appendix D.  

 Date Wind 

direction 

average  

Wind speed 

average 

Average 

temperature  

Sunshine 

duration 

1 01-01-2008 104 35 2.4 0.7 

2 02-01-2008 82 57 -0.5 6.5 

3 03-01-2008 93 64 0.4 1.9 

4 04-01-2008 132 62 3.4 0 

5 05-01-2008 194 68 6.6 0.6 
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3.2.3 Schiphol Airport data    

Based on the assumption that the number of flights and the maximum takeoff weight of an 

airplane affect the amount of noise, these features could also be useful in predicting the number 

of complaints. This data is not publicly available, so it was provided by Schiphol Airport. The 

time span ranges from January 1st, 2008 - March 1st, 2016 and there are 622029 rows in total. 

The features that are included are: Date, Arrival or departure, ICAO type, Description, Runway 

code, maximum takeoff weight (MTOW) and number of flights.  ICAO type is the code of the 

airplane and description is the name of the type of the airplane. The feature maximum takeoff 

weight is the amount of weight in tons that a specific aircraft is allowed to have at departure or 

arrival.          

 Hence, the feature MTOW in the Schiphol Airport depends solely on the type of 

airplane and not on the number of flights. This means that if the ICAO type of an airplane is 

A319, as is the case in row one and row two in table 4, the MTOW will also be the same for 

these two rows. Even though the second row shows that there were nine flights that day from 

that runway, the MTOW does not change. The feature MTOW is therefore somewhat 

meaningless because it only indicates the MTOW of the type of the airplane, instead of how 

much MTOW there actually was on a runway. The feature MTOW could play an important 

role in the amount of noise, because higher weights could mean that more noise is produced on 

a specific runway. Another feature was therefore created that shows the sum of the MTOW. 

This was done by multiplying the number of flights with the MTOW. This gives a better 

accurate view of the maximum takeoff weight that a runway experienced on a day. This can be 

seen in table 5, where the new feature MTOW sum is created and the ‘old’ feature MTOW is 

removed from the dataset.   

Table 4. Example of the Schiphol data. 

 Date Arrival / 

Departure 

Run-

way 

Code  

ICAO 

type  

Description MTOW Nr. of 

flights 

1 01-01-08 D 09 A319 Airbus 

A319-1 

77 1 

2 01-01-08 D 24 A319 Airbus 

A319-1 

77 9 

3 01-01-08 D 18L B738 B737-800 

WING 

80 3 

4 01-01-08 A 06 B738 B737-800 

WING 

80 5 

5 01-01-08 A 18R B742 B747-400F 380 1 



18 
 

 

Table 5. Example of the Schiphol data with the MTOW sum and without the MTOW. 

 Date Arrival/ 

Departure 

Run- 

way 

Code  

ICAO  

type 

Description MTOW 

sum 

Nr. of 

flights 

1 01-01-08 D 09 A319 Airbus A319-1 77 1 

2 01-01-08 D 24 A319 Airbus A319-1 693 9 

3 01-01-08 D 18L B738 B737-800 

WING 

240 3 

4 01-01-08 A 06 B738 B737-800 

WING 

400 5 

5 01-01-08 A 18R B742 B747-400F 380 1 

 

 

3.2.4 Merging the data  

The chosen time span for the new dataset was January 1st, 2008 until March 1st, 2016. This 

range was chosen because it corresponds with all of the data that was available, except for the 

maintenance data from BAS. This resulted in some missing values for the maintenance data, 

which is further discussed in section 3.4.1.       

 Before the Schiphol data was merged with any of the other datasets, the format of the 

Schiphol Airport data needed to be changed. In the Schiphol Airport data there could be one to 

500 rows for each day in the dataset. This is because there are many different combinations of 

runway and arrival or departure. For example, on January 1st there could be 20 rows which all 

have the same runway and arrival or departure but they have different airplanes arriving on 

each runway. An example of this is provided in table 6 where the first three rows have the same 

date, same runway code and they are all departures. However, all the other features are 

different. The problem of having so many rows with the same values for runway, date and 

arrival or departure is that it does not give a good overview of the total amount of complaints. 

Since this study is predicting the number of complaints per day, per runway and per arrival or 

departure, the format of the data will therefore need to be changed. For each day, only one row 

per day, runway and arrival or departure combination was made. Since there are 12 different 

runways and it can be either arrival or departure, this means that there are 24 rows per day in 

total (see appendix E). When changing the format, the number of flight for a certain date, 

runway and arrival or departure combination were added so that the number stayed accurate, 

which is shown in table 7. Table 6 shows that the first three rows that have the same date, arrival 

or departure and runway combination. However, these three rows will need to be reduced to 
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one row that shows that exact date, arrival or departure and runway combination. The MTOW 

sum and number of flights of table 6 are all added together for the same date, runway and arrival 

or departure combination so that only one row in table 7 remains with the correct amount of 

MTOW sum and number of flights.  

Table 6. Example of the Schiphol Airport data to show the format.  

 Date Arrival/ 

Departure 

Run- 

way 

Code  

ICAO  

type 

Description MTOW 

sum 

Nr. of 

flights 

1 01-01-08 D 09 A319 Airbus A319-1 77 1 

2 01-01-08 D 09 A319 Airbus A319-1 693 9 

3 01-01-08 D 09 B738 B737-800 

WING 

240 3 

4 01-01-08 A 06 B738 B737-800 

WING 

400 5 

5 01-01-08 A 06 B742 B747-400F 380 1 

 

 

Table 7. Example of how the dataset looks like after the format was changed.  

 Date Arrival/ 

Departure 

Runway 

code 

MTOW sum Nr. of flights  

1 01-01-08 D 09 1010 13 

2 01-01-08 A 06 780 6 

 

 

By changing the format, the ICAO type and the description of the airplanes had to be removed, 

since it was not possible to accurately sum up all the ICAO types and descriptions per day, 

runway and arrival or departure. However, because the MTOW takeoff weight and number of 

flights have been summed up, this should make up for the loss of these features. Especially 

because the MTOW sum already shows which aircrafts were used (because the weights are 

different for each airplane). More importantly, by changing the format it is possible to do 

analyses of the day and the usage of the runway per arrival and departure. Once the format was 

changed, the KNMI data was merged with the Schiphol data. After that, the complaints and 

maintenance data from BAS were also added. An example of how the actual dataset looks like 

could be viewed in Appendix E.   
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3.2.5 Extra features and dataset description     

New features that were added to the dataset are ‘Weekday’ and ‘Season’. There could be more 

complaints in summer as it is one of the busiest times of the year at Schiphol Airport (BAS, 

2015). Furthermore, individuals may be more inclined to complain during the weekends, 

because they will be home more often and have more time to report a complaint. Thus, the 

feature weekday is also included in the dataset. Consequently, the entire dataset contains 38 

features, including the target feature and 54122 rows. Of these features, five are categorical and 

33 are continuous (see appendix A). To gain a visual understanding of the runways at Schiphol 

Airport and which code belongs to which runway, this can be seen in Appendix F.  

 

 

3.3 Exploratory data analysis 

In order to obtain a better understanding of the data and its underlying patterns, the dataset is 

further explored by using R, which is a programming environment to do statistical computing 

with (Rproject, 2016). A histogram of the dependent feature, complaints, can be found in figure 

1, which shows that this feature is very much skewed to the right. The blue lines show that there 

are data points on the far right of the x-axis but that they are very small compared to smaller 

number of complaints that occurred more than 60000 times. This is expected, as there will only 

be few complaints each day. Yet, highly skewed features could potentially be more difficult in 

terms of analysis, so it will be logarithmically transformed. This is further discussed in section 

3.4.1.           

 Descriptive statistics of the dependent feature confirm that it is skewed, as 50 percent 

of the data show that the number of complaints were between zero and ten. Yet the maximum 

value is 3343 and the mean value is 26.74. This demonstrates that there are many outliers. The 

standard deviation is also rather high: 82.75, which means that there is much variation in the 

frequency of complaints. The median is zero, which is probably because there are many days 

that no complaints were reported. Other features that showed much skewness are MTOW sum 

and number of flights, which are shown in Appendix G. The other features showed varying 

distributions, though none of them were normally distributed.  
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Before any of the other continuous features were examined, a correlation matrix of all the 

continuous features was made to find out what kind of relationships exist among the 

independent features and in relations with the dependent variable. The independent features 

that showed the highest correlation with the dependent feature were the maximum takeoff 

weight sum, which has Pearson correlation of 0.637 and the number of flights, which yielded a 

Pearson correlation of 0.6422. Since the correlation is difficult to examine in a regular 

scatterplot, figure 2 shows the features on a log-log scale which demonstrates the moderate 

relationship between the two features. Some of the independent features show strong 

relationships with each other, because they have a Pearson correlation that is higher than 0.70. 

For a full list of these features, see Appendix H. Multicollinearity does not necessarily have to 

be a problem in a dataset but it could affect the interpretability of the model’s coefficients.  

 

 

Figure 1. Histogram of feature: complaints. This shows 

that the feature is skewed to the right.  
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Figure 2. Scatterplot of the correlation between number of flights 

and complaints on a log-log scale 

 

Figure 3. Boxplot of the relation between the separate 

runways and  complaints 
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Since the complaints are predicted per runway used for arrival or departure, it could be 

interesting to examine how arrival and departure affect the number of complaints. As can be 

inferred from figure 3, both runway number 36C and 09 demonstrate that there are many 

outliers. Runway 24 probably receives most of the complaints as the mean is also much higher 

than the other runways except for runway 22. Figure 4 shows that there are many more outliers 

for departing airplanes than for arriving ones. Apart from that, arrival and departure show 

similar boxplots.  

 

 

3.4 Pre-processing 

 

3.4.1 Missing values  

The complaint data only consists of reported complaints. This may seem obvious, but it means 

that there were many dates that were not included in this dataset because there were no reported 

complaints on that day. Instead of showing this as a missing value in the dataset, the choice was 

made to report these dates in the dataset as zero complaints. This is done because no instances 

on a specific date means that there were no complaints.      

 The feature number of flights contains data points of all the flights. This means that for 

this dataset there were also no instances reported for when there were no flights. Sometimes a 

certain runway is not used because of maintenance, or an airplane does not depart from a certain 

runway because of weather conditions. Thus, this data is not missing from the dataset but it is 

also not reported because it only shows data from when there were flights. For the dates that no 

flights were reported, the values were set at zero.      

 The feature MTOW sum only contains values when there was a flight on a certain day. 

When there were no flights, there was also not a maximum takeoff weight. No data points in 

this case also means that the runway remained unused and that there was no MTOW sum. 

Therefore, these values are zero as well.        

 A dataset that does contain missing values is the maintenance data. This dataset only 

contains instances from 2010 onwards. This means that for the years 2008 and 2009 there was 

no data available. Thus, these years are reported as missing values (NA’s). 

 

3.4.1 Logarithmic transformation        

As was mentioned before, some of the features are highly skewed. A problem of skewed 

features is that it can make it more difficult to find patterns in the dataset (Feng et al., 2014). 

Logarithmic transformation is a popular method to reduce skewness. Logarithmic 
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transformations were therefore applied to the features in the dataset that are highly skewed, 

because this could help improve the feature’s distributions. These features are: complaints, 

MTOW sum and number of flights. Thus, these features will henceforth be referred to as 

complaints transformed, MTOW sum transformed and number of flights transformed so no 

confusion could arise about whether the feature was transformed or not. The other features in 

the dataset did not show as much skewness and were therefore not transformed. Since there are 

many zeros in the dataset, an extra constant needs to be added to the features before they are 

transformed (Carroll & Ruppert, 1988). The equation for logarithmic transformation with base 

2 and the constant, 𝑐, is as follows:  

𝑓(𝑥𝑖) =  log 2( 𝑥𝑖 + 𝑐) 

Where 𝑥𝑖 is the feature that is going to be transformed and 𝑓 is the transformation function. 

Often, 𝑐 becomes a one or another constant value. The 𝑐 in this dataset was set at one, because 

it is standard score. The descriptive statistics of the logarithmic transformed features can be 

found in table 8, which shows that because of the logarithmic transformation, the larger data 

points become much smaller whereas the smaller data points become slightly larger. The 

feature MTOW sum and MTOW transformed especially shows this very well. Even though the 

standard deviation of this feature is 9086.64 and much higher than the standard deviations of 

the other features, the logarithmic transformation transforms it and causes it to be much closer 

to the other features. This makes the distribution of the features more normal. Therefore, the 

logarithmically transformed features were kept in the dataset and the other non-transformed 

versions were removed. 

 

Table 8. Descriptive statistics of features with and without logarithmic transformation. 

 Mean Standard 

deviation 

Median Min Max 

Complaints. 

transformed 

1.213 1.819 0 0 6.681 

Nr.flights. 

transformed 

1.496 2.161 0 0 6.339 

MTOWsum. 

transformed 

3.119 4.133 0 0 10.810 

 

Complaints 26.74 82.753 0 0 3343 

Nr. Flights 49.40 108.001 0 0 565 

MTOWsum  4092 9086.64 0 0 49300 
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3.5 Description of experimental procedure  

 

3.5.1 Multivariate linear regression  

The dataset is divided in three different parts, a train set (60%), validation set (20%) and test 

set (20%) which is according to traditional machine learning standards which has the purpose 

of preventing the models from overfitting (Shmueli, Patel & Bruce, 2010). The train set is used 

to fit the model. This should give objective evaluation scores (which are further discussed in 

the subsequent section, 3.5.2), because the test set has not been used for any model training or 

parameter tuning. Thus, the predictive performance of the classifier on this dataset is assessed 

by using the test set.          

 Predicting the number of complaints per runway used for arrival or departure is a 

regression task. One of the most basic algorithms to solve this regression task is multivariate 

linear regression. Multivariate regression goes a step further than linear regression by 

introducing two or more independent variables, which gives the equation:   

    

𝑌𝑖 =  β0 +  ∑ β𝑖X𝑖

𝑛

𝑖=1

 +  𝑒𝑖
 

 
 

Where 𝑌𝑖 is the dependent variable, which is complaints transformed in this case. β0  Is the 

intercept and  βi is the regression coefficient and X
𝑖
 is the independent variables. When finding 

out which line would best fit the data, the fitted values of the multiple linear regression line 

should be as close as possible to actual observed data points. In this case, 𝑒𝑖 is the difference 

between the actual dependent variable and the predicted dependent variable, and is also known 

as the residual error (Field, 2005).        

 The first model that is build is the intercept model, model 0. The intercept model 

predicts the mean of the dependent feature while all the independent features are zero. A 

baseline is necessary to compare the performance of each model against. The second model, 

model 1, consists of all the independent features. As was discussed before in section 3.3, there 

is some multicollinearity present in the dataset. Since this makes it more difficult to correctly 

interpret the coefficients of the features in the model, each feature is tested separately. For 

instance, one of the models could include all the independent features, with the exception of 

the feature maintenance. In total, 37 models are tested because there are 37 independent 

features. Only the model without the feature number of flights transformed showed interesting 

results. The results of this model are discussed in section four and five. The evaluation scores 
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of the other models are presented in Appendix I.       

       

Table 9. The models that will be tested and evaluated. 

Models  Selected features 

Model 0 Intercept model, features are set at zero. 

Model 1 All independent features  

Model 2 All independent features without the 

feature nr.flights.transformed 

 

3.5.2 Evaluation criteria  

To assess whether a model is able to predict new data points, several performance evaluation 

metrics are employed. One of the evaluation metrics that is used is r-squared. R-squared is a 

statistical measure that shows how well a model can account for the variance in the dependent 

feature y. The r-squared scores range from zero to one, with one being the highest. The equation 

for r-squared is:   

𝑟2 = 1 − 
∑ (�̂�𝑛

𝑖=1 𝑖 − �̅�𝑖)²

∑ (𝑦𝑛
𝑖=1 𝑖 − �̅�𝑖)²

 

Where �̂�𝑖  are the predicted values and �̅�𝑖   is the mean. �̂�  - �̅�  takes the distance from the 

predicted values to the mean. 𝑦𝑖  stands for the actual value of the dependent features. The 

mean is subtracted from the actual features. Then  (�̂�𝑖 − �̅�𝑖) and (𝑦𝑖 − �̅�𝑖) are squared and the 

values are summed by ∑ .𝑛
𝑖=1         

 The mean absolute error (MAE) is also used as a performance evaluation metric, as 

this performance metric could explain more about the accuracy of the model. The equation of 

MAE is:   

𝑀𝐴𝐸 =  
1

𝑛
 ∑ 𝑎𝑏𝑠(𝑦𝑖 − �̂�𝑖)

𝑛

𝑖=1

 

Where the sum of the absolute differences between the predicted complaints and the actual 

complaints are divided by all of the data points. 𝑦𝑖 stands for the actual values, whereas �̂�𝑖 

represents the predicted values. The absolute difference of these values are summed by ∑ .𝑛
𝑖=1 . 

This number is divided by all the data observations with  
1

𝑛
 .  

  Another measure that is used to assess the accuracy of the model is the root mean 

squared error (RMSE). The RMSE is more sensitive to larger errors and variance in the error 

compared to the MAE, because the MAE focuses on the mean error (Chai & Draxler, 2014). If 
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there is much variability in the errors and the size of the errors is large, the RMSE score 

increases as well. It is therefore better to use RMSE with errors that show a normal distribution, 

compared to the MAE. Ultimately, the RMSE score should preferably as low as possible. The 

equation of RMSE is:  

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑(𝑦

𝑛

𝑖=1

𝑖 − �̂�𝑖)2 

 

Where the square root is taken from the average squared difference between the predicted 

complaints and the actual complaints. In this equation, the difference between the predicted 

value, �̂�𝑖   and the actual values, 𝑦𝑖  are squared. The sum,  ∑ 0𝑛
𝑖=1 is taken of these values and 

divided by the number of data points,  
1

𝑛
 , to obtain the average squared difference. Then, the 

square root is taken from this difference. Since some of the features were logarithmically 

transformed in order to reduce skewness, the logarithmic transformation will be undone after 

the predictions are made. This makes it easier to interpret the RMSE and MAE scores.  

 

4. Results 

 

4.1 Outline 

This section reports the results that were obtained from the models. First, the evaluation results 

of the analyses are presented and briefly explained. After that, the coefficients of the model are 

examined and shown in tables 9 and 10 and figure 4.   

 

4.2 Evaluation of results 

The purpose of this study is to predict the number of complaints per day and per runway used 

for arrival or departure and to find out the predictive power of each of the independent features. 

The focus of previous research has been on associating noise levels and demographics, so this 

study takes an alternative approach by predicting the number of complaints based on a variety 

of features instead. The evaluation scores of all the models are shown in table 9. The evaluation 

results of all models that were applied to the dataset are shown in Appendix I.  

 Both RMSE and MAE employ the same unit scale as the dependent feature complaints. 

Consequently, both RMSE and MAE can be compared with other. The RMSE score on the test 



28 
 

set of model 0 is 3.1564. The MAE score of the model’s test set is 1.751 which is somewhat 

better than the RMSE score. Since RMSE penalizes larger values, and because there were many 

outliers in the dataset, this is to be expected (Chai & Draxler, 2014). Both the RMSE and MAE 

scores are relatively low, so there is probably not much variation in the size of the errors. 

 Model 1, which includes all the independent features, yields an r-squared score that is 

relatively high (𝑟2 = 0.9200). The score is slightly higher than on the model’s train set and 

validation set. This could indicate that the model is not complex enough and that it is under 

fitting. The RMSE score of model 1’s test set is 36.1949. This is much higher than the RMSE 

score of the baseline model, model 0, with a difference of 32.9459 (36.0864 - 3.1405). It is 

likely therefore that model 1, despite its high r-squared score, actually does not predict very 

well. The high score for r-squared could perhaps be a result of the many independent features 

that are included in the model. Each independent feature could potentially artificially increase 

the score of r-squared, which will therefore yield a higher r-squared although it does not 

improve predictions of the values. The MAE score of model 1 is 15.6534. This MAE score 

means that there is an average difference of around 16 complaints between the actual 

complaints and the predicted number of complaints.  The difference between the MAE of the 

test set and the train set is 0.3452. Such smaller differences between the train, validation and 

test set could indicate that the model will obtain consistent scores on new data. It does not 

necessarily mean that it will obtain good prediction scores, just that the MAE scores will be 

relatively constant. Compared to the baseline model, the MAE score of this model is also much 

worse, with a difference of 13.9019 (15.9986 - 15.6534). Since the MAE takes the average of 

the error size between the actual and the predicted values, this score could indicate that there 

were many large errors.         

 Model 2 consists of all the independent features, but without the number of flights. This 

model showed the biggest differences with model 1. Just like model 1, the evaluation scores 

are better on the test set than on the train and validation set. The score of r-squared is 0.8920, 

compared to 0.9200 of model 1. This is a little bit lower, but still very close to the 0.9200 of 

model 1. The differences are better noticeable when observing the RMSE and MAE score. Both 

the scores have decreased, which is positive. Especially the RMSE score has lowered much, 

since it went from 36.0864 in model 1 to 25.2798 in this model. This indicates that the feature 

number of flights is responsible for much of the variation in the size of the errors, especially 

because RMSE penalizes outliers. This is further exemplified with the MAE score. The MAE 

for model 2 is also lower than it is for model 1, but the difference between the two is only 

3.2877 (15.653 - 12.3657). By excluding the number of flights transformed, the average 

difference between the actual values and the values that are predicted by this model decreases 

with roughly three complaints. Even though model 1 has a better r-squared score, this model 

would be preferred because it has better accuracy than model 1.     
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 This was the only model that showed some differences in terms of evaluation scores 

with model 1. All the other independent features demonstrate much smaller effects on the 

number of complaints. It is therefore likely that from all the independent features, the number 

of flights transformed has the best predictive power. To answer the second research question 

more in depth, table 10 provides insight in the five strongest regression coefficients of model 

1. A graphical representation of all the coefficients of model 1 can be found in Appendix J. 

Table 10 shows that the runway feature has the second strongest coefficients scores after the 

feature number of flights transformed. Runway is a discrete feature that consists of various 

levels. The coefficients therefore need to be interpreted differently than the continuous features.  

In this case, Runway 4 is used as the default level and the other coefficients show how much 

they change in comparison with Runway 4. It is understandable that the feature runway has 

better scores as the complaints are described in the dataset per usage of a particular runway and 

per arrival and departure. Furthermore, some runways such as 18L are used very often and have 

to process many flights on a day, especially when maintenance is planned. Since the number of 

flights is indicative of the number of complaints, it is also more likely that runways that are 

used more often will receive more complaints. As can be inferred from Appendix J, MTOW 

sum does not have a very strong coefficient. This is not as expected because MTOW sum has 

a moderate relationship with the dependent feature and a strong relationship with the number 

of flights.  

 

 

Table 9. Results of multivariate linear regression models 

  𝒓𝟐 RMSE MAE 

Model 0 train 0 3.1564 1.7515 

Model 0 

validation 

0 3.1596 1.7555 

Model 0 test 0 3.1405 1.7372 

    

Model 1 train 0.9170 36.9731 15.9986 

Model 1 

validation 

0.9185 37.2690 16.1167 

Model 1 test 

 

0.9200 36.0864 15.6534 
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Model 2 

train 

0.8865 25.4326 12.4541 

Model 2  

validation 

0.8864 25.3871 12.4563 

Model 2 test 0.8920 25.2798 12.3657 

 

 

 

Table 10. Coefficient score of the strongest coefficient  

scores of model 1. 

 

 

 

 

 

 

 

 

5. Discussion 

 

5.1 Outline 

This section explores the results and limitations of this study. The goal of this research was to 

predict the number of complaints per day and per runway used for arrival or departure. 

Moreover, this study aimed to find out which features are the best predictors of the number of 

complaints. Since previous research has mostly focused on associating noise and personal 

characteristics data, this study focused on making predictions using multivariate linear 

regression instead.  

 

Feature Coefficient 

score  

nr.flights.transformed  0.8082 

RunwayCode18L 0.3628 

RunwayCode27 0.3099 

RunwayCode09 0.2323 

RunwayCode09 0.2325 
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5.2 Discussion of results 

Model 1, which includes all the independent features of the dataset, showed the highest r-

squared score, which is 0.9200. The RMSE and MAE scores, however, were relatively high 

with a RMSE of 36.0864 and a MAE of 15.6534 respectively. Despite its high r-squared score, 

this model therefore does not predict very well. Especially compared with the baseline, the 

scores of the RMSE and MAE are much worse. One of the explanations for such high RMSE 

and MAE scores is that there is much variation in the difference between the observed values 

and the predicted values.       

 Model 2 does not include the feature number of flights transformed and shows that the 

performance of the r-squared is a bit worse. However, RMSE and MAE perform somewhat 

better with a score of 25.2798 for RMSE and MAE has a score of 12.3657. Without the feature 

number of flights transformed, the predictions for MAE are better with an average of three 

complaints. The number of flights transformed probably has much variation in the size of its 

values, because removing it has a positive impact on the RMSE and MAE. Since removing 

number of flights transformed increases yields better accuracy this model is therefore better 

than model 1.  The improved accuracy outweighs the smaller r-squared score and shows that it 

is better at predicting new data than model 1. It should be noted, however, that the scores are 

still much higher than the baseline. Unfortunately, the model is still not very good at predicting 

the number of complaints.       

 Since the correlation matrix showed that there existed multicollinearity between some 

of the independent features (see Appendix H), various models were tested with each excluding 

one of the features. Almost all of the features showed results that were similar to model 1. 

Except for model 2, which did not include the number of flights transformed. It was expected 

that excluding MTOW sum transformed would have more of an effect on the evaluation scores. 

Especially because this feature showed a strong relationship with the number of flights and 

because it has a moderately positive relationship with the dependent feature. A possible 

explanation could be that this feature will only have more effect on the evaluation scores when 

it is used in combination with for instance the feature number of flights transformed or the 

runway. On its own, however, it is not as influential as expected. In general, the independent 

features have not shown much predictive power and has actually made the accuracy of the 

model worse than the baseline.  

 

5.3 Limitations 

One of the limitations of this study is that it makes use of complaints that have been reported 

by people. Often, people experience annoyance or stress because of noise, but they decide not 

to do anything about it (Wirth, Brink & Schirz, 2003). This could be due to a number of reasons, 
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but previous research has suggested that people do not file complaints because they feel that 

doing so is useless. There are also individuals who complain very often and who are known as 

“serial complainers” (Hume et al., 2003). This is an issue that researchers have experienced 

before when investigating complaints (Hume et al., 2003). Of the complaint data, 71 percent of 

the people who reported a complaint in 2015 was a serial complainant (BAS, 2016). The 

percentages of complainants in previous years were much less and around 30 - 40 percent (BAS, 

2016). With the data that was available, however, it was not possible to distinguish the 

complainants. This could potentially have introduced some bias in the dataset and it gives a less 

accurate picture of how individuals in general experience noise.    

 Another limitation in terms of data is that the number of features is restricted. This 

study could probably have benefited from other features such as the asphalt of the runways, 

airplane movements and other things that could affect aircraft noise and other reasons why 

people complain. In particular, the date feature is also limited because it only contains all the 

complaints per day. Since people will probably complain more in the evenings than during the 

day, or late at night when they are unable to sleep because of the aircraft noise, it could be 

useful to predict the number of complaints per hour. It has not been possible to use this type of 

data, so this could be investigated upon in future research.  

 Furthermore, this study is limited in the models that it uses. The models that have been 

applied to the dataset are relatively simple ones.  Multivariate linear regression is among the 

more basic models and no parameters were tuned. The lack of complexity showed in the 

evaluation scores, because the models were under fitting and the RMSE and MAE scores were 

much lower than the baseline. Better results could be achieved by tuning parameters or by using 

a different model altogether  

 

5.4 Implications 

Previous research in this field does not include any predictions on the number of complaints. 

This study took a novel approach by predicting the number of complaints using multivariate 

linear regression, instead of associating complaints and noise with each other (Wirth, Brink, 

Schierz, 2003). The outcome of this study shows that predicting the number of complaints has 

not resulted in very good evaluation scores. Even though the r-squared is scoring relatively well 

on model 1 with a score of 0.9203, the RMSE and MAE are much higher than the baseline 

scores. Therefore, this study was not able to obtain good accuracy scores.   

 Furthermore, this study has made a start with creating a new dataset from various data 

sources to predict the number of complaints. One of the novel features of this study is that 

instead of relying on levels of noise and personal characteristics, other features were included 

in the dataset as well. This has brought some limitations, as mentioned in the section 5.3, but it 
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also brings new insights. Some of the features do not have as much of an effect as was hoped 

for, such as the weather features, but it still shows that the number of flights and the runways 

have some predictive power. This research has also shown that people complain mostly because 

of noise levels. After all, the number of flights and runway are all related to the amount of noise 

that people experience. In this sense it relates back to the research that was carried out by Hume 

et al. (2003), who argued that noise was the main factor of people’s reasons to complain. Other 

researchers focused on other features, by stating that personal characteristics or being sensitive 

to noise are more important when investigating aircraft noise complaints (Wirth, Brink & 

Schirz, 2003). Considering these differences in research by researchers about the importance 

of features relating to the number of complaints this study could thus contribute to the existing 

body of literature by showing that noise features, but also maintenance or date could play a role 

in predicting the number of complaints.        

 For further research it is therefore recommended that instead of focusing on personal 

characteristics and complaints, the scope of the features could be extended even further/ to 

extent the scope of the type of features even further. It is possible that there are many other 

features that could also be important and affect the predictive power in a positive manner. It 

would therefore be interesting to include these and other features in further research. 

 This study has made a start with creating a new dataset from various data sources to 

predict the number of complaints. Despite the lower evaluation scores, it could still be valuable 

to continue with predicting the number of complaints for further research. Using complex 

models or tuning the parameters of the model on the validation set could yield other interesting 

insights about the features and the data. Once the data is improved upon, predicting the number 

of complaints could still be useful for a number of stakeholders, such as airline companies or 

governments.  

 

6. Conclusion 

This section presents a conclusion to the research questions. Moreover, the results are placed 

within the context of the existing research and future recommendations are given. The research 

questions that this study aimed to answer were:  

1. To what extent can the number of complaints be predicted per runway, per day and per 

arrival or departure at Schiphol Airport? 

2. Which features have the most predictive power in predicting the number of complaints 

per runway, per day?          

The first research question was answered by creating a dataset that contains features that could 

affect the number of complaints. Data was received from Intermediator Residents Schiphol 



34 
 

(BAS), Royal Netherlands Meteorological Institute (KNMI) and from Schiphol Airport. They 

were all put together in one dataset. In order to obtain the best possible predictive scores and to 

reduce the effects of multicollinearity in the dataset, several models were made. The best results 

were obtained with model 2, which includes all the independent features except the feature 

number of flights transformed. Even though this model’s r-squared score is slightly lower than 

model 1’s r-squared score, the RMSE and MAE are much better. Therefore, this model has the 

best accuracy in predicting new data. The other models that were tested did not show much 

differences with model 1 However, the predictions of model 2 are still worse than the 

predictions that are made by the baseline model.      

 For future research it is therefore recommended that a model could be used that is more 

complex, especially because the models were under fitting. Multivariate linear regression is a 

relatively simply model and there is probably much predictive power to be gained by using 

other models or by tuning parameters on the validation set. Since this is the first study to predict 

the number of complaints, it would be very interesting to see how other models could improve 

the predictions that have been made in this study. In addition, predicting the number of 

complaints has also much practical value as predicting the number of complaints could for 

instance help airports rearrange their maintenance or flight schedules.   

 The second research question has been answered by testing the different models and 

by examining the regression coefficients of model 1 in a more detailed way. The number of 

flights and the runway are the best predictors of the number of complaints. Previous research 

has focused on noise and on personal demographics in order to associate noise with complaints. 

This study has shown that other features relating to noise have an effect on the number of 

complaints. It is recommended for further research that a wide variety of features are tested out 

and that other more advanced models are used to predict the number of complaints. Ultimately, 

this could yield a better picture of why people complain about aircraft noise.  
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8. Appendices 

 

8.1 Appendix A  
 

List of the descriptions of all the feature in the dataset 

 

 Features Feature type  Description 

1 Date Categorical Ranges from 01-01-2008 to 01-03-

2016. 

2 RunwayCode Categorical Consists of 24 codes for parts of the 

main airplane runways. These codes 

are: 04, 06, 09, 18C, 18L, 18R, 22, 

24, 27, 36C, 36L and 36R.  

3 AD  Categorical Arrival or departure of an airplane 

4 Complaints Continuous The number of complaints that were 

received  

5 WindDirectionAv Continuous  The average wind direction in 

degrees. 

6 VectorWindSpeed

Av 

Continuous  Vector mean wind speed in 0.1 m/s. 

7 WindspeedAv Continuous The vector mean wind speed in 0.1 

m/s. This is the average of the wind 

speed calculated by using vectors, 

i.e. average wind speed of 10 m/s 

from the northwest. 

8 HighWindspeedAv Continuous The highest average wind speed in 

0.1 m/s. 

9 LowWindspeedAv Continuous The lowest wind speed average in 

0.1 m/s. 

10 MaxWindGust Continuous The highest recorded wind gust in 

0.1 m/s. 

11 TempAv Continuous The average temperature in 0.1 

degrees Celsius per day.   

12 MinTemp Continuous The minimum temperature in 0.1. 

degrees Celsius per day. 
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13 MaxTemp Continuous The maximum temperature in 0.1 

degrees Celsius per day. 

14 MinTemp10cm Continuous The recorded minimum temperature 

at 10 cm above the ground in 0.1 

degrees Celsius. 

15 SunshineDur Continuous Duration of sunshine, measured in 

0.1 hour. When the amount of 

sunshine was less than 0.05, the 

duration of sunshine was recorded 

as -1.   

16 MaxPotSunshine Continuous The maximum potential amount of 

sunshine which is calculated in 

percentages. 

17 GlobalRad Continuous The amount of global radiation that 

occurred on a day in J/cm2. 

18 PrecipDur Continuous The amount of time that there was 

precipitation on a day in 0.1 hour. 

19 PrecipAmount Continuous The amount of precipitation that 

occurred on a day in 0.1 mm. When 

there was less than 0.05 mm 

precipitation, the amount of 

precipitation was recorded as -1.   

20 HighestPrecip Continuous The highest amount of precipitation 

that fell in an hour in 0.1 mm. When 

there was less than 0.05 mm, 

precipitation was recorded as -1.  

21 PressureAv Continuous The daily average air-pressure 

which is which is expressed in sea 

level pressure in 0.1 hPa.*   

22 MaxPressure Continuous The highest recorded level of air-

pressure which is expressed in sea 

level pressure in 0.1 hPa*. 

23 MinPressure Continuous The lowest recorded level of air-

pressure which is expressed in sea 

level pressure in 0.1 hPa*. 

24 MinVisibility Continuous The minimum amount of visibility.  

It is recorded in categories: 0: < 

100m, 1 : < 100 -200m, 2: < 200-
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300 …, 81: 35-40 km, the highest 

category is 89: > 70 km. 

25 MaxVisibility Continuous The maximum amount of visibility. 

It is recorded in categories: 0: < 

100m, 1 : < 100 -200m, 2: < 200-

300 …, 81: 35-40 km, the highest 

category is 89: > 70 km. 

26 CloudAv Continuous The amount of cloud cover per day 

which is recorded on a scale of one 

to nine, with one the lowest and 

nine the highest. Nine means that 

the sky is completely covered in 

clouds and therefore invisible. 

27 HumidityAv Continuous The maximum amount of humidity 

per day which is recorded in 

percentages 

28 MaxHumidity Continuous The maximum amount of humidity 

in the atmosphere in percentages. 

29 MinHumidity Continuous The minimum amount of humidity 

in the atmosphere in percentages. 

30 Evap Continuous Potential amount of 

evapotranspiration (which is both 

transpiration from trees and 

evaporation from ocean’s added 

together) in 0.1 mm. 

31 MTOWsum Continuous Maximum takeoff weight sum 

consists of the maximum takeoff 

weight multiplied by the number of 

flights 

32 Nr.flights Continuous The number of flights per runway 

code and per arrival or departure. 

33 Weekday Categorical The day of the week.  

34 Season Categorical  Whether it was spring, summer, fall 

or winter 

35 Degrees Continuous The wind direction (vectors) of the 

runways.  

36 Length Continuous The length of the runways in meter 



41 
 

37 Weekend Continuous Whether it was weekend or not, 

outcomes are 0 and 1  

38 Maintenance Continuous Whether there was planned 

maintenance on that date 

 

* hPa stands for hectopascal.   

 

Once the features: complaints, MTOW sum and number of flights were logarithmically 

transformed, the names of the features were changed as well and non-transformed features 

were removed from the dataset:   

 

Feature  Feature type  Description  

Complaints.transformed Continuous Logarithmically transformed 

complaints.  

MTOWsum.transformed Continuous Logarithmically transformed 

MTOWsum 

Nr.flights.transformed  Continuous Logarithmically transformed  

Nr.flights  
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8.2 Appendix B 

 

List of the features of the complaint data. 

Feature Description 

Date The date of this dataset ranges from 01-01-

2008 to 01-03-2016 

Runway Runway consists of codes: 04, 06, 09, 18C, 

18L, 18R, 22, 24, 27, 36C, 36L, 36R. 

AD Whether the airplane arrived or departed 

from a runway.   

Complaints The number of complaints per day, runway 

and arrival or departure.  
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8.3 Appendix C 

 

List of the features of the maintenance data  

Feature  Description 

Date The date of this dataset ranges from 24-05-

2010 to 11-10-2015. 

Maintenance This feature shows whether there was 

maintenance on a certain day, with 1 for 

maintenance and 0 if there was not 

maintenance. Since the dataset only consists 

of the dates when there was scheduled 

maintenance, this feature consists 

completely of 1’s. 
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8.4 Appendix D 
 

List of all the features and a description of the KNMI data.  

Features Description 

WindDirectionAv  Average of the wind direction in degrees. 

Consists of: 360= north, 90 = east, 180 = 

south, 270 = west.  

WindspeedAv The vector mean wind speed in 0.1 m/s. 

This is the average of the wind speed 

calculated by using vectors, i.e. Average 

wind speed of 10 m/s from the North West.   

HighWindspeedAv The highest average wind speed in 0.1 m/s.  

LowWindspeedAv  The lowest wind speed average in 0.1 m/s.  

MaxWindGust  The highest recorded wind gust in 0.1 m/s. 

TempAv  The average temperature in 0.1 degrees 

Celsius per day.   

MinTemp  The minimum temperature in 0.1 degrees 

Celsius per day.  

MaxTemp  The maximum temperature in 0.1 degrees 

Celsius per day.  

MinTemp10cm  The recorded minimum temperature at 10 

cm above the ground in 0.1 degrees Celsius.  

SunshineDur  Duration of sunshine, measured in 0.1 hour. 

When the amount of sunshine was less than 

0.05, the duration of sunshine was recorded 

as -1.   

MaxPotSunshine  The maximum potential amount of sunshine 

which is calculated in percentages. 

GlobalRad  The amount of global radiation that 

occurred on a day in J/cm2.  

PrecipDur  The amount of time that there was 

precipitation on a day in 0.1 hour.  

PrecipAmount   The amount of precipitation that occurred 

on a day in 0.1 mm. When there was less 
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than 0.05 mm precipitation, the amount of 

precipitation was recorded as -1.   

HighestPrecip  The highest amount of precipitation that fell 

in an hour in 0.1 mm. When there was less 

than 0.05 mm, precipitation was recorded 

as -1.  

PressureAv   The daily average air-pressure which is 

which is expressed in sea level pressure in 

0.1 hPa*.  

MaxPressure  The highest recorded level of air-pressure 

which is expressed in sea level pressure in 

0.1 hPa*.  

MinPressure  The lowest recorded level of air-pressure 

which is expressed in sea level pressure in 

0.1 hPa*.  

MinVisibility   The minimum amount of visibility.  It is 

recorded in categories: 0: < 100m, 1 : < 100 

-200m, 2: < 200-300 …, 81: 35-40 km, the 

highest category is 89: > 70 km.  

MaxVisibility  The maximum amount of visibility. It is 

recorded in categories: 0: < 100m, 1 : < 100 

-200m, 2: < 200-300 …, 81: 35-40 km, the 

highest category is 89: > 70 km. 

CloudAv   The amount of cloud cover per day which is 

recorded on a scale of one to nine, with one 

the lowest and nine the highest. Nine means 

that the sky is completely covered in clouds 

and therefore invisible.  

HumidityAv  The maximum amount of humidity per day 

which is recorded in percentages.  

MaxHumidity  The maximum amount of humidity in the 

atmosphere in percentages.  

MinHumidity  The minimum amount of humidity in the 

atmosphere in percentages.  

Evap   Potential amount of evapotranspiration 

(which is both transpiration from trees and 
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evaporation from ocean’s added together) 

in 0.1. mm. 

VectorWindSpeedav Vector mean wind speed in 0.1 m/s. 

 

* hPa stands for hectopascal.  
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8.5 Appendix E 
 

Example of the dataset with the new format.  

 Date Runway AD Nr. of 

Flights 

MTOW 

sum  

Complaints 

1 01-01-08 04 A 0 0 0 

2 01-01-08 04 D 0 0 0 

3 01-01-08 06 A 119 10752 40 

4 01-01-08 06 D 0 0 0 

5 01-01-08 09 A 0 0 0 

6 01-01-08 09 D 84 7243 274 

7 01-01-08 18C A 15 1110 0 

8 01-01-08 18C D 0 0 0 

9 01-01-08 18L A 0 0 0 

10 01-01-08 18L D 33 2444 83 

11 01-01-08 18R A 225 16890 556 

12 01-01-08 18R D 0 0 0 

13 01-01-08 22 A 7 472 0 

14 01-01-08 22 D 5 353 0 

15 01-01-08 24 A 0 0 0 

16 01-01-08 24 D 218 17108 55 

17 01-01-08 27 A 2 148 0 

18 01-01-08 27 D 0 0 0 

19 01-01-08 36C A 0 0 0 

20 01-01-08 36C D 0 0 0 

21 01-01-08 36L A 0 0 0 

22 01-01-08 36L D 68 5853 72 

23 01-01-08 36R A 0 0 0 

24 01-01-08 36R D 0 0 0 

25 02-01-08 04 A 356 7 0 
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8.6 Appendix F 
 

Runway Code consists of the runway codes of each runway at Schiphol. This image gives a 

graphical representation of the runway codes of the runways at Schiphol Airport (BAS, 

2016).  
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8.7 Appendix G 
 

Histograms of features: maximum takeoff weight sum, maximum takeoff weight average and 

number of flights 

Figure 1. Histogram of the total maximum takeoff weight    

(MTOW sum). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 3. Histogram of the number of flights. 
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8.8 Appendix H 

 

Tables of the features that showed multicollinearity (Pearson correlation > 0.70). The features 

that did not show a strong relationship among each other were left blank. 

 

 WindspeedAv LowWindSpeed -

Av 

VectorWindspeed-

Av 

0.9654 0.8494 

HighWindspeedAv 0.9215  

LowWindspeedAv 0.8582  

MaxWindGust 0.8873  

MinTemp10cm   

WindspeedAv  0.8582 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 MinTemp-

10cm 

Precip-

Amount 

Pressure

Av 

Cloud

Av 

TempAv 0.8916    

MinTemp 0.9746    

MaxTemp 0.8063    

PrecipDur  0.7551   

HighestPrecip  0.8517   

SunshineDuration    0.8538 

MaxPotSunshine    0.8757 

MaxPressure   0.9744  

MinPressure   0.9763  
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 Complaints. 

transformed 

Nr.flights. 

transformed 

MTOWsum. 

transformed 

Complaints. 

transformed 

   

Nr.flights. 

transformed 

0.9548   

MTOWsum. 

transformed 

0.9305 0.9780  
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8.9 Appendix I 
 

Results of all the models that were tried. First there is a list of a description of which feature 

was excluded from which model. After that, all the results are shown. The model that 

excludes the number of flights is not included in this list, because it has already been 

discussed in section 4 and 5 of this research.   

 

Model Without feature: 

1 MTOW.sum.transformed 

2 Weekend 

3 Length 

4 Degrees 

5 Season 

6 Weekday 

7 Evap 

8 MinHumidity 

9 MaxHumidity 

10 HumidityAv 

11 CloudAv 

12 MaxVisibility 

13 MinVisibility 

14 MinPressure 

15 MaxPressure 

16 PressureAv 

17 HighestPrecip 

18 PrecipAmount 

19 PrecipDur 

20 GlobalEad 

21 MaxPotSunshine 

22 SunshineDur 
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23 MinTemp10cm 

24 MaxTemp 

25 MinTemp 

26 TempAv 

27 MaxWindGust 

28 LowWindspeedAv 

29 HighWindspeedAv 

30 WindspeedAv 

31 VectprWindspeedAv 

32 WindDirectionAv 

33 AD 

34 RunwayCode 

35 Maintenance 

36 Date  

 

The evaluation scores of the models:  

 

 𝒓𝟐 RMSE MAE 

Model 1 

train 

0.9179 36.9329 15.9875 

Model 1 

validation 

0.9185 36.9392 16.0257 

Model 1 test 0.9200 36.1949 15.6829 

    

Model 2 

train 

0.9170 36.9731 15.9986 

Model 2 

validation 

0.9185 37.2690 16.1167 

Model 2 test 

 

0.9200 36.0864 15.6534 
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Model 3 

train 

0.9178 36.8483 15.9622 

Model 3  

validation 

0.9175 37.7467 16.3061 

Model 2 test 0.9186 35.9918 15.5770 

    

Model 4 

trainset 

0.9170 36.9709 15.9984 

Model 4 

validation 

0.9185 37.2559 16.1143 

Model 4 

test 

0.9199 36.0926 15.6539 

    

Model 5 

train 

0.9169 36.9513 15.9940 

Model 5 

validation 

0.9185 37.2265 16.1087 

Model 5 test 0.9198 36.0332 15.6428 

    

Model 6 

trainset 

0.9169 36.9687 15.9974 

Model 6 

validation 

0.9185 37.2594 16.1143 

Model 6 

test 

0.9200 36.0872 15.6535 

    

Model 7 

train 

0.9169 36.9687 15.9974 
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Model 7 

validation 

0.9185 37.2594 16.1143 

Model 7 test 0.9200 36.0835 15.6535 

    

Model 8 

train 

0.9170 36.9732 15.9986 

Model 8 

validation 

0.9185 37.27016 16.1166 

Model 8 test 

 

0.9200 36.0835 15.6520 

    

Model 9 

Train 

0.9171 36.9724 15.9985 

Model 9  

validation 

0.9195 37.2637 16.1156 

Model 9 test 0.9200 36.0942 15.6547 

    

Model 10 

trainset 

0.9170 36.9740 15.9987 

Model 10 

validation 

0.9185 37.2693 16.1167 

Model 10 

test 

0.9200 36.0920 15.6533 

    

Model 11 

train 

0.9170 36.9729 15.9985 

Model 11 

validation 

0.9185 37.2510 16.1170 

Model 11 

test 

0.9200 36.0836 15.6527 
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Model 12 

trainset 

0.9170 36.9687 15.9974 

Model 12 

validation 

0.9185 37.2594 16.1143 

Model 12 

test 

0.9200 36.0872 15.6535 

    

 𝒓𝟐 RMSE MAE 

Model 13 

train 

0.9170 36.9720 15.9984 

Model 13 

validation 

0.9185 37.2450 16.1122 

Model 13 

test 

0.9200 36.0538 15.6460 

    

Model 14 

train 

0.9170 36.9713 15.9980 

Model 14 

validation 

0.9185 37.2690 16.1167 

Model 14 

test 

 

0.9200 36.0853 15.6532 

    

Model 15 

train 

0.9170 36.9691 15.9970 

Model 15  

validation 

0.9185 37.2731 16.1175 

Model 15 

test 

0.9200 36.0875 15.6534 
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Model 16 

trainset 

0.9170 36.9715 15.9981 

Model 16 

validation 

0.9185 37.2729 16.1173 

Model 16 

test 

0.9200 36.0864 15.6534 

    

Model 17 

Train 

0.9170 36.9725 15.9983 

Model 17 

validation 

0.9185 37.2763 16.1177 

Model 17 

test 

0.91200 36.0864 15.6534 

    

Model 18 

trainset 

0.9169 36.9737 15.9986 

Model 18 

validation 

0.9185 37.2725 16.1169 

Model 18 

test 

0.9200 36.0865 15.6534 

    

Model 19 

train 

0.9169 36.9732 15.9986 

Model 19 

validation 

0.9185 37.2702 16.1169 

Model 19 

test 

0.9200 36.0858 15.6533 
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Model 20 

train 

0.9170 36.9708 15.9973 

Model 20 

validation 

0.9185 37.2616 16.1143 

Model 20 

test 

 

0.9200 36.0891 15.6534 

    

Model 21 

Train 

0.9170 36.9715 15.9984 

Model 21 

validation 

0.9175 37.2701 16.1170 

Model 21 

test 

0.9200 36.0855 15.6532 

    

Model 22 

trainset 

0.9170 36.9732 15.9986 

Model 22 

validation 

0.9185 37.2690 16.1167 

Model 22 

test 

0.9200 36.0864 15.6534 

    

Model 23 

train 

0.9170 36.9729 15.9985 

Model 23 

validation 

0.9185 37.2633 16.1157 

Model 23 

test 

0.9200 36.0846 15.6532 

    

Model 24 0.9170 36.9662 15.9971 
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trainset 

Model 24 

validation 

0.9185 37.2581 16.1139 

Model 24 

test 

0.9200 36.0818 15.6527 

 𝒓𝟐 RMSE MAE 

Model 25 

train 

0.9170 36.9720 15.9984 

Model 25 

validation 

0.9185 37.2664 16.1163 

Model 25 

test 

0.9200 36.0837 15.6529 

    

Model 26 

train 

0.9170 36.9734 15.9987 

Model 26 

validation 

0.9185 37.2664 16.1159 

Model 26 

test 

 

0.9200 36.0856 15.6532 

    

Model 27 

train 

0.9170 36.9744 15.9988 

Model 27 

validation 

0.9185 37.2754 16.1180 

Model 27 

test 

0.9200 36.0862 15.6533 

    

Model 28 

trainset 

0.9170 36.9773 15.9993 

Model 28 0.9185 37.2759 16.1181 
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validation 

Model 28 

test 

0.9200 36.0865 15.6534 

    

Model 29 

Train 

0.9170 36.9731 15.9986 

Model 29 

validation 

0.9185 37.2759 16.1181 

Model 29 

test 

0.91200 36.0865 15.6534 

    

Model 30 

trainset 

0.9169 36.9551 15.9949 

Model 30 

validation 

0.9185 37.2243 16.1075 

Model 30 

test 

0.9200 36.0743 15.6509 

    

Model 31 

train 

0.9200 36.9497 15.9940 

Model 31 

validation 

0.9185 37.2215 16.1075 

Model 31 

test 

0.9200 36.0731 15.6509 

    

Model 32 

train 

0.9170 36.9610 15.9958 

Model 32 

validation 

0.9185 37.2644 16.1151 

Model 32 

test 

0.9200 36.0779 15.6520 
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Model 33 

Train 

0.9170 36.9793 15.9996 

Model 33 

validation 

0.9175 37.2940 16.1199 

Model 33 

test 

0.9200 36.1000 15.6558 

    

Model 34 

trainset 

0.9146 37.7603 16.0985 

Model 34 

validation 

0.9160 37.8917 16.1816 

Model 34 

test 

0.9171 36.6713 15.7035 

    

Model 35 

train 

0.9170 36.9708 15.9982 

Model 35 

validation 

0.9185 37.2680 16.1165 

Model 35 

test 

0.9200 36.0774 15.6520 

    

Model 36 

trainset 

0.9167 36.9717 15.9948 

Model 36 

validation 

0.9183 37.2801 16.1150 

Model 36 

test 

0.9198 36.0894 15.6512MTOW 
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8.10 Appendix J 
 

A graphical representation of the coefficients of model 1. 

 

 

 


