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Summary 

To the best of my knowledge, no research has compared and evaluated multiple data-driven attribution 

models on diverse aspects. This thesis fills the gap by evaluating the heuristic-based attribution 

models, the Shapley Value solution, the logistic regression, and the Markov chain on interpretability, 

predictive accuracy, and robustness. These data-driven attribution models are selected since they are 

relatively easy to interpret and implement, yet are a substantial improvement in the attempt to capture 

the true conversion attribution in comparison with heuristic-based models. Furthermore, they are often 

used in practice. The travel agency dataset is provided by GfK and is collected within their 

Crossmedia Link panel. The dataset contains various touchpoints and whether or not the customer 

eventually converts. The results show that none of the attribution models outperforms the others on all 

three aspects. The Shapley Value solution has the highest predictive accuracy and has a good 

interpretability but is not robust. The logistic regression has a good predictive ability and robustness 

when the bagging and regularization procedure are applied, yet does not score high on interpretability 

as the model does not aim to reflect the contribution of a touchpoint. The Markov chain is robust and 

moderately interpretable, but the model does not score well on predicting conversion. In addition, the 

data-driven models produce different intermediate results from which different types of information 

can be obtained. The different types of information are interesting as such, yet combining these results 

provides additional insights into understanding and influencing the customer journey. However, the 

generalizability is limited since the analyses are conducted on one single travel agency dataset. The 

properties, size, and domain of the data may affect the findings. Notwithstanding its limitations, going 

from heuristic-based models to data-driven models is a considerable improvement in the attempt to 

capture the genuine attribution. The primary contribution of this thesis is that enterprises can decide 

which attribution model fits their needs the best. All the evaluation criteria are important, but none of 

the attribution models is superior. Hence, a direct implication is that enterprises should make a trade-

off. Creating transparency by evaluating the models encourage enterprises to abandon heuristic-based 

models and adopt data-driven models. On the basis of the evaluation of the existing data-driven 

attribution models, future research could enhance an attribution model on one specific evaluation 

criterion or develop a multifaceted novel attribution model that is easy to interpret, has a high 

predictive accuracy, and is robust. 
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1. Introduction 
The first part of this section provides general information about the attribution modeling landscape. 

Section 1.2 describes in more depth what this study attempts to address and provides the research 

question of this thesis. Eventually, section 1.3 concludes with the scientific and practical relevance and 

an outline for the remainder of this thesis.  

 

1.1 General 

Online advertising has grown exponentially in the last decade. The marketing mix of enterprises has 

shifted from offline to online (Goldfarb, 2014). In contemporary society, enterprises use a wide variety 

of online media to influence potential customers at different stages of their journey to purchase, 

including displays, retargeting displays, pre-roll ads, affiliates, and e-mails. Moreover, customers can 

easily gather information about the product of interest on the web (Yardeni, 1996). For example, 

through information websites, comparison websites or websites of direct competitors. Any contact that 

influences the perception of the product is a touchpoint, regardless of whether it was initiated by a 

company or by the customer (Meyer & Schwager, 2007). All touchpoints belonging to the path 

followed by the customer before making a purchase decision is referred to as the customer journey.  

Enterprises wish to know the contribution of each touchpoint to optimally allocate their 

advertising budget. This is not a new problem. The problem already existed in offline advertising such 

as print and television. Traditionally, marketers and scholars tackled the problem by making use of 

aggregated methods such as marketing mix models. Marketing mix models estimate the effect of 

various marketing strategies on sales or market share (Constantinides, 2002). However, new 

opportunities have emerged due to the internet. In addition to the opportunity to reach more customers 

and to tailor ads to individuals, the internet allows enterprises to track online behavior (Ur, Leon, 

Cranor, Shay, & Wang, 2012). Technologies such as cookies and tags enable enterprises to gather 

more granular data. These technologies register the touchpoints within the customer journey. A 

conversion occurs when the customer journey ultimately ends in a purchase. Models that make use of 

rich individual-level data to assign the credit of a conversion to the right touchpoints are known as 

attribution models.  

Despite the individual-level data of multiple touchpoints, over-simplistic attribution models 

based on heuristics are generally employed in practice (Berman, 2017). To illustrate, Google 

Analytics, a leading platform, uses attribution models based on predefined rules (Clifton, 2012). An 

often-used heuristic is last touch attribution. The model assigns all credit to the last touchpoint. 

Nevertheless, there are several data-driven attribution models with varying complexity. However, to 

the best of my knowledge, no research has compared and evaluated multiple data-driven attribution 

models on diverse aspects. This thesis evaluates popular attribution models on three aspects – 

interpretability, predictive accuracy, and robustness. 
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The first data-driven alternative for the heuristic-based attribution models is proposed by Shao and Li 

(2011), which they call a simple probabilistic model. This intuitive model estimates the attribution by 

computing the first and second order conditional probabilities. Dalessandro et al. (2012) extend the 

model and show that it is equivalent to the Shapley Value solution in cooperative game theory 

(Shapley, 1988). The simple probabilistic model and its extension are invented to solve the attribution 

problem and hence the output of the model is directly the credit assigned to each touchpoint.  

Furthermore, an often-used binary classifier is logistic regression (Hosmer, Lemeshow, & 

Sturdivant, 2013). The predicted coefficients are not directly interpretable as contributions and need to 

be transformed into conversion attribution. One way is to derive the marginal effects. Both the 

Shapley Value solution and logistic regression do not incorporate temporal dynamics. However, the 

input of the logistic model can be adjusted by making binary features of the t latest touchpoints of the 

customer journey to capture the dynamics. 

A model that inherently includes temporal dynamics is the Markov chain (Anderl, Becker, 

Von Wangenheim, & Schumann, 2016). The Markov chain captures the sequential nature by 

calculating the probability of going from one touchpoint to the next. Once the probabilities are 

calculated, a feature referred to as the removal effect is computed to estimate the contribution of the 

touchpoints. The removal effect is the decrease in conversion when the touchpoint is removed from 

the customer journey network. In addition, the Markov assumption is relaxed and higher-order 

Markov chains are generated. 

Another more complex method is a Hidden Markov model.1 Abhishek, Fader, and Hosanagar, 

(2015) employed a hidden Markov model anchored by the notion of a conversion funnel. The latent 

stages of the Markov model reflect the engagement of the customer through the conversion funnel (i.e. 

disengaged, active, engaged, conversion). Through the use of the conversion funnel, touchpoints can 

be assessed within the engagement stage. Some advertisements may be more effective in earlier stages 

and some in later stages. 

Alternative complex attribution models exist. Xu, Duan, and Whinston, (2014) propose a 

mutually exciting point process that includes individual heterogeneity in a hierarchical Bayesian 

fashion. Zhang, Wei, and Ren (2014) employ an attribution model based on the survival theory, where 

“death” denotes a customer journey that ends in a non-purchase. Li and Kannan (2014) apply a 

Bayesian model to compute the carryover and spillover effects at various purchase stages. More 

complex models are however not better by definition, especially in the attribution modeling context. In 

the next section, a motivation is given which attribution models are chosen and why. 

 

 

                                                 
1The initial idea was to construct a Hidden Markov model. An explanation about how to build a hidden Markov model based 

on the notion of a conversion funnel and why this idea is unfeasible can be found in the Initial Idea section in the Appendix. 
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1.2 Towards the research question 

The Shapley Value solution, the logistic regression, and the Markov chain and their above-mentioned 

extensions are estimated in this thesis. These models are chosen because of three reasons. Firstly, 

leading attribution platforms generally use models based on predefined rules. These heuristic 

techniques for assigning contribution to touchpoints have ingrained biases that make them inherently 

flawed (Clifton, 2012). A rationale for the use of these heuristics is their ease of implementation and 

interpretation. Going from heuristic-based models to data-driven models is a substantial improvement 

in the attempt to capture the true conversion attribution. Hence, the Shapley Value solution, the 

logistic regression, and the Markov chain are selected because they are relatively easy to implement 

and interpret. 

 Secondly, this thesis follows the Occam’s Razor principle (Gamberger & Lavrač, 1997). This 

means that when there exist multiple models to measure an event, the simpler models are preferred 

over the complex models because more complex models make generally more assumptions. 

Evaluating the data-driven models that are relatively easy to implement and interpret will help 

enterprises to build more trust in these models.   

Thirdly, the Shapley Value solution, the logistic regression, and the Markov chain are 

attribution models that are often used in practice. To give an indication, the marketing attribution 

software of Abakus and Google Attribution 360 use a version of the Shapley Value solution (Hülsdau 

& Teuteberg, 2018). The logistic regression is one of the most popular binary classifiers and in an 

attribution context used by enterprises such as Neustar, Convertro, and Nielsen (Sequent Partners, 

2018). Windsor.AI, a marketing analytics platform, assigns contribution to touchpoints based on the 

Markov chain (Windsor.AI, n.d.). Hence, the estimated data-driven attribution models are actually 

implemented by large enterprises and platforms. 

 

To the best of my knowledge, no one examined and compared different attribution models like this 

study does. When novel models are proposed, they are often compared against another simple model 

on the predictive accuracy. For example, Shao and Li (2011) compared the attribution assigned by the 

Shapley Value solution to the last touch attribution model. Nevertheless, no study evaluated multiple 

attribution models on diverse aspects. Furthermore, little information can be found on how models 

perform and on how to evaluate attribution models. This thesis fills this gap by evaluating the Shapley 

Value solution, the logistic regression, and the Markov chain and its extensions on interpretability, 

predictive accuracy, and robustness.   

According to Dalessandro et al. (2012), an attribution model has a good interpretability when 

it is “generally accepted by all parties with material interest in the system, on the basis of its statistical 

merit, as well as on the basis of intuitive understanding of the components of the system” (p. 32). This 

definition is adopted in this thesis. Yet, the center of attention goes to the intuitive understanding of 

the components as this is key for creating transparency in the data-driven attribution models. 
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Although there is a difference between prediction and attribution, assessing the predictive 

performance of attribution models helps to evaluate the model. In addition, it assists to persuade 

marketers of the model’s trustworthiness (Lodish, 2001). The predictive accuracy is assessed with two 

measures. Firstly, the predictive accuracy is measured by the area under the receiver operating 

characteristic (ROC) curve in the training and validation set. The ROC curve is insensitive to whether 

the class label (i.e. conversion) is unequally distributed. As a second measure for the predictive 

performance, the top-decile lift is computed. The top-decile lift shows how much more likely the 

predicted top ten percent is going to convert in comparison with the average customer (Neslin, Gupta, 

Kamakura, & Mason, 2006).  

Attribution models are robust when they are not prone to deviations in the data, as it conveys 

the ability to render reproducible and stable outcomes (Box, 1979). The robustness of the attribution 

models is also assessed with two measures. Firstly, the predictive performance described in the 

previous paragraph should be consistent when resampling from the underlying data-generating 

process. Secondly and more important for our present purpose, the contribution assigned to each 

touchpoint should be stable across resamples. This is pivotal because the marketing budgets of 

enterprises are based on these results. Fragile results indicate a weak attribution measure that is 

questionable (Wooff & Anderson, 2013). 

 

This leads to the following research question:  

To what extent are the heuristic-based attribution model, Shapley Value solution, the logistic 

regression, and the Markov chain easy to interpret, robust, and accurate? 

 

The analyses are conducted on a travel agency dataset. Online advertisement plays an increasingly 

pivotal role in the travel market (Park & Oh, 2012). In addition, consumers spend generally lots of 

time researching vacations online, sometimes spread over a long time span, and are consequently 

exposed to various touchpoints (Pabel & Prideaux, 2016). As a disclaimer, the research question is 

solely addressed on one dataset which limits the generalizability. 

 

1.3 Motivation 

As a marketing pioneer, John Wanamaker stated - “I know half the money I spend on advertising is 

wasted; but I can never find out which half” (as quoted in Mayer, 1991, p. 138). By implementing 

data-driven models, more accurate and additional information will be gained and, therefore, the 

marketing expenses can be optimized. More importantly, assessing the models assists enterprises to 

choose the most suitable model to address their problem. One may be concerned with predictive 

accuracy and another may be more risk averse and want stable results. Creating transparency by 

evaluating the models will encourage enterprises to abandon heuristic-based models and adopt data-

driven models. 
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Studying attribution modeling is crucial from a practical perspective as enterprises spend a 

tremendous amount of money on online advertising. Applying more precise models helps enterprises 

allocate their advertising budget more efficiently. This has not only a positive effect on the enterprise 

but also improves the efficiency in the marketplace since, eventually, the consumer pays for the ad. 

Hence, more efficient advertising leads to fewer costs and a higher consumer welfare (Mitra & Lynch, 

1996).  

Emphasizing the significance, attribution modeling is highlighted as most important research 

priority (2016-2018) by the Marketing Science Institute (MSI Research Priorities, n.d.). Before 

creating novel models, existing models need to be evaluated. Based on the results of the evaluations, 

aspects and directions for novel models or extensions of models can be proposed. 

In addition, most papers that model attribution are based on cookie-level data, such that they 

identify individuals, in the best scenario, on an individual device level (e.g. Abhishek et al., 2015; 

Anderl et al., 2016). This study contains a more comprehensive dataset on a fine-grained level as it 

uses panel data where individuals are traced between devices. 

 

The outline of the remainder of this thesis is as follows. In section two of this study, the Shapley Value 

solution, the logistic regression, and the Markov chain are described in-depth and the evaluation 

criteria are defined and operationalized. Section three provides the experimental set-up regarding the 

models and evaluation metrics used in this thesis. In section four, the heuristic-based models, the 

Shapley Value solution, the logistic regression, and the Markov chain are estimated. The contribution 

assigned to the touchpoints of these models are compared. Furthermore, these models are evaluated on 

the ease of interpretation, predictive accuracy, and robustness. In section five, the findings of section 

four are discussed. Moreover, the limitations of this study are acknowledged, the contribution and 

implications are provided, and suggestions for future research are given. 
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2. Background 
This section begins with specifying the area of research and provides context for the research focus. In 

section 2.2 the Shapley Value solution, the logistic regression, and the Markov chain are exhaustively 

discussed. In the last section, the evaluation criteria are defined and operationalized.  

 

2.1 Digital landscape 

The internet has radically changed the advertising landscape as of three reasons. Firstly, the potential 

reach of the internet is enormous. The number of internet users increased from 2017 to 2018 with 

seven percent to more than four billion around the globe (We are social, 2018). Secondly, the World 

Wide Web provides the opportunity to distinguish potential customers at a more granular level, 

enabling enterprises to tailor ads to individuals which enlarges its effectiveness. Tailoring ads have 

been studied extensively in the literature (e.g. Bleier, De Keyser, & Verleye, 2018). Thirdly, the 

internet enables enterprises to monitor and record online behavior (Ur et al., 2012). An enterprise can 

decide to shift the advertising spending based on historical data. This can be accomplished by making 

use of various statistical models.  

Traditionally enterprises have implemented marketing mix models to measure the 

effectiveness of advertisements on an aggregated level (Aras, Syam, Jasruddin, Akib, & Haris, 2017). 

Marketing mix models generally use sales, pricing, and advertising and promotion information of a 

particular time period as input to measure for example the effectiveness of an advertising campaign. 

However, these models disregard the variation created by individuals. More recently, a new class of 

models has become popular and are referred to as attribution model in the popular press (Nisar & 

Yeung, 2017). These models make use of rich online individual-level data to assign the credit of a 

conversion to the right touchpoint. More specifically, the data used for attribution models exist of the 

browsing history of potential customers. Attribution models allow enterprises to understand the 

touchpoints a customer encounters during their journey to purchase. Gaining knowledge about the 

touchpoints can be leveraged to make managerial decisions. 

The registered browsing history of potential customers consists of multiple touchpoints. In this 

thesis, all touchpoints belonging to the path followed by the customer are referred to as the customer 

journey. A customer journey ends with a conversion or non-conversion. However, in reality, the 

proceedings that occur between touchpoints are part of the customer journey as well. In addition, not 

every contact is recorded. For example, word of mouth communication is not recorded yet might have 

a positive or negative effect on the propensity to convert (Hudson, Roth, Madden, & Hudson, 2015). 

The registered set of touchpoints is nonetheless a comprehensive representation of the truth in 

comparison with marketing mix models. 

A precondition to construct an attribution model is the capability to detect individual 

customers on the web. Once these individuals can be identified, touchpoints can be devoted to a 

specific customer and customer journeys can be derived based on a set of rules. The identification 
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process is commonly accomplished by using cookies (Anderl et al, 2016). A cookie is a unique 

identifier that a web server place on an individual’s browser when visiting a webpage. The web server 

retrieves this unique identifier again when the web page is loaded at a later moment in time 

(Englehardt et al., 2015). The cookies are stored locally on a device. A drawback of this approach is 

that customers can use multiple browsers or devices in their path to purchase, which will be classified 

as separate customer journeys. Furthermore, tracking cookies can be turned off by individuals, 

especially with the entrance of the general data protection regulation (Young, 2017). Another less 

commonly used approach is tagging, which is a JavaScript snippet of code loaded when a webpage is 

retrieved (Silverbauer, 2017). The information is stored as a log file in a database and must be linked 

with an individual user. This thesis makes use of a panel where every individual is known and hence 

can be linked to the appropriate log file. A large benefit from this approach is that customers are 

tracked across devices, leading to comprehensive customer journeys. 

These customer journeys are thoroughly described in the literature (Herhausen, Kleinlercher, 

Emrich, Verhoef, & Rudolph, 2017). Within the customer journey, distinctive stages of the purchase 

decision process can be identified. The process of walking through the customer journey and 

eventually purchasing is the conversion funnel (Kotler & Armstrong, 2010). Several models exist to 

describe the stages that occur. However, the most well-known model is AIDA (i.e. attention, interest, 

desire, and action; Strong, 1925). The customer starts at an unaware stage and goes on to the attention 

stage when a touchpoint is encountered. Interest in the product may be generated and the customer 

becomes more engaged and as a consequence goes on to the subsequent stage. The interest may 

become irrevocable and in the final stage, the customer can decide to convert. 

This thesis exclusively focuses on the online interactions of the customer journey. The 

customer journey is established by means of tagging and a GfK custom-designed plugin for passive 

measurement. Individual panel members are known and tracked across devices. The customer 

journeys serve as input for the attribution models. Several attribution models are described in the next 

section. 

 

2.2 Attribution models 

This section provides a thorough review of the Shapley Value solution, the logistic regression, and the 

Markov chain. A motivation why these data-driven attribution models are selected is discussed in the 

introduction. In addition, before diving into data-driven attribution models, two heuristic-based 

attribution models are outlined to provide a baseline. 

 

2.2.1 Heuristic-based models 

Despite rich online behavioral data, over-simplistic attribution models based on heuristics are 

generally employed in practice (Berman, 2017). To illustrate, Google Analytics, a leading platform, 

uses attribution models based on predefined rules (Clifton, 2012). Heuristic-based models are not 
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determined by the data, they rather have a pre-specified distribution of parameters. Several heuristic-

based attribution models exist. A predominantly used heuristic is last touch attribution. This model 

assigns all credit to the last touchpoint. Another heuristic-based attribution model is first touch 

attribution and devotes the full contribution to the first touchpoints. The popularity of these models is 

probably due to the relative ease of implementation and interpretation. Nevertheless, heuristic methods 

for devoting credit to touchpoints have ingrained biases that make them inherently flawed (Clifton, 

2012). Going from heuristic-based models to data-driven models is a substantial improvement in the 

attempt to capture the true conversion attribution. In addition, heuristic-based models only consider 

customer journeys that eventually end in conversion, disregarding a lot of information of customer 

journeys that do not convert. On the contrary, data-driven attribution models use both customer 

journeys leading up to conversion and non-conversion. The data-driven models are discussed below. 

 

2.2.2 Shapley Value solution 

The first data-driven alternative for the heuristic-based attribution models is proposed by Shao and Li 

(2011), which they call a simple probabilistic model. The model takes the individual touchpoints and 

the interaction between touchpoints into account. The computation of the model consists of two steps. 

The first step is to calculate the conditional probability of conversion given the individual touchpoints 

and the conditional probability of conversion given the interaction between two touchpoints. The two 

formulas are provided below: 

𝑃(𝑦|𝑥𝑖) =
𝑁𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑥𝑖)

𝑁𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑥𝑖) +  𝑁𝑛𝑜𝑛 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑥𝑖)
 

where y is a binary label denoting whether the user converts or not. xi, i, …, k, denote k the different 

touchpoints in the customer journey. P(y|xi) is the probability that a label occurs given touchpoint i is 

encountered. Nconversion(xi ) and Nnon conversion(xi) denote the number of converted and non-converted 

customer journeys exposed to touchpoint i, respectively.  

𝑃(𝑦|𝑥𝑖, 𝑥𝑗) =
𝑁𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑥𝑖, 𝑥𝑗)

𝑁𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑥𝑖, 𝑥𝑗) +  𝑁𝑛𝑜𝑛 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑥𝑖, 𝑥𝑗)
 

where i ≠ j. The same notation of the first formula is applied, however, now pair-wise conditional 

probabilities are computed and therefore the notation is generalized. Hence, (xi, xj) denotes the 

interaction between two touchpoints. In other words, the customer has to be exposed to these two 

touchpoints.  

 In step two of the simple probabilistic model, the attribution for each touchpoint is computed 

at an individual level. The credit assigned to touchpoint i is calculated for each customer journey 

leading up to a conversion. The formula is provided below: 
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𝐴(𝑥𝑖) = 𝑃(𝑦|𝑥𝑖) +
1

2(𝑘 − 1)
 ∑[ 𝑃(𝑦|𝑥𝑖 , 𝑥𝑗)  −  𝑃(𝑦|𝑥𝑖) −  𝑃(𝑦|𝑥𝑗) ]

𝑗≠𝑖

 

where A(xi) is the attribution for touchpoint i and k is the number of touchpoints encountered during a 

particular customer journey. Hence, for a particular customer journey leading up to conversion, the 

attribution for touchpoint i is the contribution of the individual touchpoint as well as the synergy 

effects of combinations between touchpoint i and the other touchpoints. The synergy effect is the 

impact of both touchpoints without their individual influence. Thus, attribution is the contribution of 

the individual touchpoint and the synergy effects. After estimating the attribution for each customer 

journey leading up to a conversion, the total attribution for touchpoint i can be determined by 

summing up the attributions assigned to touchpoint i. As the last step, the attribution of all touchpoints 

is normalized to facilitate interpretation and comparison. 

  

This estimation is, in essence, a second order probability model. It is critical to include the second 

order term because some touchpoints might not have a strong effect on its own, however, they may 

have a substantial effect by including them in combination with another touchpoint. Shao and Li 

(2011) argue that one could, in theory, go beyond the pair-wise conditional probabilities and include 

triple-wise conditional probabilities. Nonetheless, the number of customer journeys with identical 

third-order interactions decline sharply. Sparse conditional probabilities of particular combinations of 

touchpoints yield volatile results which are undesirable. In addition, Shao and Li (2011) comment that 

they choose the most basic feature construction schema for the model (i.e. they encode the presence of 

the features with binary descriptors irrespective of the number of times a touchpoint occur within a 

customer journey). Despite that it is theoretically possible to include the frequency that a touchpoint 

occurs, this is not preferred for the same reasons as mentioned above (i.e. sparse conditional 

probabilities).  

Dalessandro et al. (2012) extend the model and show that it is equivalent to the Shapley Value 

solution in cooperative game theory. The Shapley Value solution is the concept of fairly distributing 

gains among the players working in coalition. Conceptually, the Shapley Value solution assigns the 

average marginal contribution to each player after considering all possible combinations (Shapley, 

1988). Dalessandro et al. (2012) incorporate, despite the advice of Shao and Li (2011) to keep only 

first and second order probabilities, (k-1) interactions (i.e. the number of unique touchpoints present in 

the journey minus one). The model becomes quickly unwieldy when having more than ten touchpoints 

since the number of Shapley Value solutions to compute increases exponentially. More specifically, 

the number of Shapley Value solutions to compute is two to the power of unique touchpoints (i.e. 

2touchpoints). Nevertheless, the work of Dalessandro et al. (2012) is paramount because it establishes trust 

in the model since the Shapley Value solution has multiple fair properties. For example, if touchpoints 

are completely equivalent they should get an identical attribution and if touchpoints do not contribute 

anything their attribution should be zero. To highlight the fairness of distributing attribution based on 
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the Shapley Value solution, the economist Lloyd Stowell Shapley won the Nobel Prize in 2012 for 

inventing the Shapley Value solution. Nowadays several large enterprises such as Abakus and Google 

Attribution 360 have developed an attribution model founded on a version of the Shapley Value 

solution (Hülsdau & Teuteberg, 2018). 

 

2.2.3 Logistic regression 

Another prevailing model to classify binary labels is logistic regression. A logistic regression 

estimates the log-odds of the probability of an event from a linear combination of features. The logit 

transformation of the probability imposes an s-shape and ensures that the predicted outcome is 

between zero and one. The parameters of the logistic regression do not have a closed form solution as 

in a linear regression but are generally estimated with the maximum likelihood method. The maximum 

likelihood method is an iterative procedure, converging when the parameters have found the minima. 

The equation of the logistic regression is provided below: 

ln (
𝑃

1 − 𝑃
) = β0 + ∑ β𝑖 𝑥𝑖

𝑘

𝑖=1

 

where P is the probability to convert. xi, i, …, k, is the number of times a touchpoint occurs within a 

customer journey. β0 is the bias and βi, i, …, k, is the corresponding parameter for the touchpoint. A 

difference between the input data for the Shapley Value solution and the logistic regression is that the 

logistic regression takes frequency into account, where the Shapley Value solution only checks 

whether or not a touchpoint occurs. By taking the frequency into account, more information is 

exploited which generally leads to more accurate estimates. However, neither the Shapley Value 

solution nor the logistic regression takes the temporal ordering into account. 

The logistic regression is a predictive model used for various kinds of problems. Chatterjee, 

Hoffman, and Novak (2003) were the first to predict online customer behavior on a webpage with a 

logistic regression. The labels used in the study by Chatterjee et al. (2003) are whether the user clicked 

on a banner and features are the number of pages visited, banners seen so far, the time between 

browsing events and so forth. In this thesis, the logistic regression predicts whether or not a customer 

will convert based on the frequency of encountering touchpoints. Hence, the output of the model is the 

probability that a customer journey converts. 

A major difference between the logistic regression and the Shapley Value solution is the 

objective of the model. The Shapley Value solution naturally provides an attribution value for each 

touchpoint, yet the logistic regression predicts whether a customer eventually converts as accurate as 

possible. The parameters of the logistic regression need to be translated to attribution. From a 

theoretical perspective, the most obvious approach is to estimate the marginal effects. More 

specifically, one can compute the average marginal effect implying the average expected increase in 

the probability of conversion when the corresponding touchpoint increases by one (Greene, 2012). A 

drawback of the average marginal effect is that when the estimated coefficient of a predictor is 
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negative, the average marginal effect will be negative which in turn leads to a negative attribution. An 

alternative method to estimate attribution is proposed by Rentola (2014), the formula to compute 

attribution for touchpoint i is given below: 

𝐴(𝑥𝑖) = (
1

1 + 𝑒−(β0+ β𝑖)
) 

The same notation as for the equation above is applied. The formula to compute attribution for 

touchpoint i is both the bias (β0) as well as the corresponding coefficient (βi) for touchpoint i inserted 

into the logit function. In other words, the attribution of a particular touchpoint is the effect of the bias 

and touchpoint in a non-linear function. As a final step, the attribution of touchpoints is normalized. 

The approach by Rentola (2014) is a rather practical perspective. A major advantage of this approach 

is that it does not suffer from the problem of negative coefficients. Large negative coefficients will be 

driven down to zero. 

 

An extension that can be applied to logistic regression is bagging. Shao and Li (2011) adopt this 

approach and estimate a bagged logistic regression to classify conversion. Bagging, also known as 

bootstrap aggregation, is a meta-algorithm which takes M subsamples with replacement from the 

dataset (Błaszczyński & Stefanowski, 2015). The model is trained on subsamples of the dataset and 

generally an average of the predictions is taken. It is usually applied as of two main reasons. Firstly, it 

reduces variance since it takes random samples from the underlying data generating process. 

Secondly, it avoids overfitting because the random fitted noise will be averaged. Overfitting might 

cause a problem when there are a lot of features and relatively few observations. Bagging does in 

general not affect the bias significantly (Błaszczyński & Stefanowski, 2015).  

 Another method to prevent overfitting is regularization. Different types of regularization exist. 

To prevent generalized linear regressions from overfitting, either Lasso or Ridge regularization are 

usually applied (MartíNez-MartíNez, 2011). In both Lasso and Ridge regularization, the loss function 

is penalized by adding an additional term to the regression. The additional term consists of a constant 

factor, generally denoted as lambda, and a norm vector of the coefficients. The additional term is 

depicted below. The larger the value of the coefficients the higher the cost function. This prevents the 

equation from getting large coefficients and hence overfitting. In addition, lambda is a hyperparameter 

that can be set, the higher the lambda the more the coefficients are suppressed. 

+ ∑ λ β𝑖   

𝑘

𝑖=1

 

 Lasso regularization uses the L1-norm also known as the least absolute deviations. Ridge 

regularization apply the L2-norm of squared errors. The main difference between the two methods is 

that Lasso tends to pick one of the features and discards the others (MartíNez-MartíNez, 2011). Hence, 
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Lasso regularization is often used for feature selection. Ridge regularization does also prevent the 

regression from overfitting by shrinking the coefficients to zero.  

 

Both the Shapley Value solution and logistic regression do not incorporate temporal dynamics. 

However, the input of the logistic model can be adjusted by making binary features of the t latest 

touchpoints of the customer journey to capture the dynamics (Anderl et al., 2016). Instead of encoding 

a feature for every touchpoint one can encode a feature for every possible touchpoint at that time 

instance. It is unfeasible to include features for all time instances as the number of features will 

become unwieldy large. One could also incorporate the first time instances. However, Wooff and 

Anderson (2013) demonstrate that the last touchpoints have more explanatory power than first 

touchpoints. The logistic regression with the one hot encoded t latest touchpoints is given below: 

ln (
𝑃

1 − 𝑃
) = β0 + ∑ ∑  β𝑖𝑡 𝑥𝑖𝑡

𝑘

𝑖=1

𝑧

𝑡=1

 

where the same notation is applied as in the previous logistic regression equation, but now an 

additional summation sign is incorporated which represents the number of t latest time instances to 

include. In addition, one of the touchpoints for each time instance need to be removed to prevent the 

multicollinearity issue. In order to calculate attribution from the parameters, both the average marginal 

effect and the approach proposed by Rentola (2014) can be employed. But the only difference is that 

all coefficients corresponding to the touchpoints need to be taken into consideration. 

 

2.2.4 Markov chain 

A model that inherently includes temporal dynamics is the Markov chain (Anderl et al., 2016; Norris, 

1998). The Markov chain is a mathematical system that computes the probability of hopping from one 

state to the next (Keilson, 2012). A state in the context of attribution modeling can be a touchpoint or 

an end state of the customer journey. The customer journey either ends in a conversion or no behavior 

for a specified period of time. The end state is the absorbing state meaning that it is impossible to 

leave when reached. A collection of the possible states is the state set: 

𝑆 = {𝑠1, … , 𝑠𝑛 } 

The first-order Markov assumption states that the information captured at time t is fully explained by 

the feature at time t-1 implying that observations before t-1 do not matter (Keilson, 2012). Based on 

this assumption, the Markov chain estimates the probability of transitioning from one state to another. 

The transition probabilities are calculated with the following formula: 

𝑤𝑖𝑗 = P(𝑋𝑡 = 𝑠𝑗|𝑋𝑡−1 = 𝑠𝑖) , 0 ≤ 𝑤𝑖𝑗 ≤ 1, ∑ 𝑤𝑖𝑗

𝑁

𝑗=1

= 1∀𝑖 

where wij is the transition probability of hopping from state i to state j. This is computed as the 

empirical probability of going to state j given state i. In addition, the computation of the transition 



 

 

18 

probabilities has two properties. Firstly, the transition probability must be between zero and one. 

Secondly, the summation of the probabilities to all possible states given a particular state must be one. 

A simplified example of four customer journeys is depicted in Figure 1 below. 

 

Customer journey 1  Touchpoint 1 -> Touchpoint 3 -> Conversion 

Customer journey 2  Touchpoint 2 -> Touchpoint 3 -> Non-conversion 

Customer journey 3  Touchpoint 2 -> Touchpoint 1 -> Touchpoint 3 -> Conversion 

Customer journey 4  Touchpoint 1 -> Non-conversion 

 

 

 
 

 

  

 

 

 

 

 

 

 

Figure 1. A list of four customer journeys and their graphical representation is provided. The nodes represent the states, the 

arrows indicate the direction, and the probability of hopping from one state to the next is given. 

 

The transition probabilities are commonly presented in a transition matrix, representing a map of 

followed paths by customers. These transition probabilities express the sequential nature of the 

customer journey rather than an aggregated collection of touchpoints. The transition matrix is useful 

for discovering rarely or frequently walked paths that drive to conversions. The transition matrix 

allows for identifying structural correlations between touchpoints to construct an attribution model. 

More specifically, attribution is estimated as the change in probability to reach the conversion state 

from t = 0 when removing si from the matrix. Anderl et al. (2016) refer to this as the removal effect. 

The formula of the removal effect is given below: 

𝐴(𝑥𝑖) = 1 − (
𝐶𝑜𝑛𝑣𝑒𝑟𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡𝑜𝑢𝑐ℎ𝑝𝑜𝑖𝑛𝑡 𝑖

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒  
) 

In other words, the removal effect provides the change in conversion if state si is completely removed, 

enabling to perform a counterfactual analysis for computing attribution. After estimating the removal 

effect, the contribution assigned to the touchpoints will be normalized to assist interpretation and 

comparison. 
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First-order Markov chains imply that the current state solely depends on the previous 

touchpoint and not on earlier touchpoints. An extension of the Markov chain is to relax the first-order 

assumption to higher-order assumptions. Anderl et al. (2016) adopt this approach and take the t latest 

touchpoints of the customer journey into consideration. They estimate the first-, second-, third-, and 

fourth-order Markov chains. By relaxing this assumption, the state becomes a sequence of 

touchpoints. A generalization of the provided formulas for the Markov chain is applied. Higher-order 

Markov chains are generated to incorporate longer temporal dynamics which may lead to better 

performance. 

 

2.3 Evaluation criteria 

The first evaluation criterion is that attribution models should be interpretable. Interpretability is a hot 

topic in machine learning, however, not all articles define exactly what it encompasses (e.g. Doshi-

Velez & Kim, 2017; Vellido, Martín-Guerrero, & Lisboa, 2012). Lipton (2016) suggests that 

interpretability consists of more than one concept, reflecting multiple distinct notions. One view is to 

think of interpretability as intelligibility or understandability (Caruana et al., 2015). This view is about 

grasping how models work. Comprehensible models are referred to as transparent and opaque models 

as black-boxes. Thus, this perspective regards attribution models as easy to interpret if they are 

intrinsically interpretable. On the other hand, some argue that the model itself does not have to be 

highly interpretable, but the predictions need to be elucidated (Molnar, 2018). Explaining how the 

model predicts without explaining the components of the model might suffice for some areas of 

expertise. This view is often referred to as post-hoc interpretability since the model is made 

interpretable after the model is computed.  

Yet, this thesis adopts the former perspective that attribution models should be intrinsically 

interpretable as of three reasons. Firstly, attribution models do not have a label with the true attribution 

and prediction is only one evaluation criterion. Interpreting the predictions with post-hoc explanations 

only partially solves the problem. Secondly, the goal of attribution models is to assign credit to 

touchpoints and therefore attribution needs to be evaluated on interpretability. Hence, assessing all 

steps of computing attribution provides a comprehensive picture of the interpretability of the 

attribution model. Thirdly, post-hoc interpretability is generally used if models have a deeply nested 

structure as neural networks and intrinsic interpretability is unfeasible (Lipton, 2016). In addition, 

creating transparency in the data-driven attribution models is key for building trust. Marketers and 

managers may feel more confident with an intrinsically interpretable model. Hence, they may rely on 

the results of the attribution model more easily. Therefore, in this thesis, a model that is easy to 

interpret should have a clear and intuitive understanding of the components of the attribution model, 

while the statistical procedure should be valid. 

The second evaluation criterion is that the model should predict conversion accurately. 

Although attribution is distinct from prediction, it is highly likely that a model that can classify 
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individuals that convert from individuals that do not convert is also able to assign the appropriate 

contribution to the touchpoints. It is hard to argue that models that do not predict well are good in 

attributing. In addition, it assists to persuade managers of the model’s trustworthiness (Lodish, 2001).  

 The binary classification task to predict conversion is usually skewed as there are more 

individuals who do not convert. Hence due to the imbalanced labels, standard evaluation metrics as the 

classification accuracy or log-likelihood are inappropriate (Kuncheva, Arnaiz-González, Díez-Pastor, 

& Gunn, 2018). The predictive accuracy measured by the area under the receiver operating 

characteristic (ROC) is insensitive to the skewness of the data. The ROC can be decomposed in the 

true positive rate and the false positive rate, which are represented on the vertical and horizontal axis, 

respectively. All correct predicted conversions divided by all true conversion is the true positive rate. 

All incorrectly predicted conversions divided by all true non-conversions is the false positive rate. The 

true positive rate and the false positive rate are irrespective of the actual conversion in the dataset. The 

area under the curve represents the predictive accuracy and ranges from 0.5 to 1. A larger area under 

curve is better. An additional benefit is that no hard threshold of the classifier has to be specified.  

As a second measure for predictive accuracy, the top-decile lift is calculated. The top-decile 

lift is computed in three steps. First, the top ten percent of the customers with the highest predicted 

probability is taken. From this ten percent, the average probability to convert is calculated. As the last 

step, the average probability to convert of the top percent is divided by the average probability to 

convert of the entire dataset. Hence, the top-decile lift shows how much more likely the predicted top 

ten percent converts in comparison with the average customer (Neslin et al., 2006). A high top-decile 

lift indicates a good ability to predict, it demonstrates the power of an attribution model to beat a 

random model. The top-decile lift is comparable between models. The top-decile lift is a prevailing 

metric in the customer churn and targeting industry (Zhu, Baesens, Backiel, & van den Broucke, 

2018).  

The last evaluation criterion is whether the model is robust. This thesis embraces the definition 

by Shao and Li (2011) that attribution models should generate stable and consistent results. The 

robustness of the attribution models is assessed with two measures. Firstly, the predictive performance 

described in the previous paragraph should be consistent when resampling from the underlying data-

generating process. This is measured by the standard deviation of both the area under the ROC curve 

and the top-decile lift.  

Secondly and more important for our present purpose, the contribution assigned to each 

touchpoint should be stable across resamples. This is crucial because the marketing spending of 

enterprises depends on the results of the model. Fragile results suggest a weak attribution measure that 

is questionable (Wooff & Anderson, 2013). The robustness of attribution is measured with the 

coefficient of variation (McAuliffe, 2015). The coefficient of variation of a model is determined in 

three steps. Firstly, the mean and standard deviation of attribution of each touchpoint are estimated. 

Secondly, the coefficient of variation of each touchpoint is calculated by dividing the standard 
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deviation of a touchpoint by its mean. Lastly, the average coefficient of variation of all touchpoints is 

computed to make the coefficient of variation readily comparable between models. Hence, the 

coefficient of variation is, unlike the standard deviation, not proportional to the mean of the credit 

assigned to a particular touchpoint nor to the attribution model. 
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3. Method 
The first part of this section gives a description of the dataset in detail. Section two starts with cleaning 

the dataset and provides the descriptive statistics. The last section presents the experimental procedure 

by explaining how the models are implemented and evaluated. 

 

3.1 Dataset 

The travel agency dataset is provided by GfK and is collected within their Crossmedia Link panel. 

Hence, there are repeated observations for different individuals i = 1, ..., N observed over t = 1, ..., T 

periods. The temporal aspect of the dataset can be leveraged since the individuals and timestamps are 

known. The dataset ranges from January 2015 to October 2016. Each observation in the dataset 

consists of one single touchpoint. More specifically, the dataset contains various touchpoints, which 

can be broadly classified in enterprise-initiated contacts and customer-initiated contacts. Enterprise-

initiated contacts are divided into banners, retargeting, pre-roll ads, affiliates, and e-mails. The 

enterprise-initiated contacts are impressions meaning that the customer did not necessarily clicked on 

it. All enterprise-initiated touchpoints are measured passively by tagging and the GfK custom-

designed plugin. Relevant customer-initiated contacts are websites, apps, and search engine terms, and 

can, in turn, be divided into information/comparison, accommodation, airline, competitive travel 

agencies and the focal travel agency. Which websites, apps, and search engine terms are relevant and 

to what class they belong to is determined in collaboration with the focal company. The enterprise-

initiated touchpoints are measured passively by the GfK custom-designed plugin. Additionally, 

bookings at the focal travel agency are registered through the confirmation page of the websites, 

tagging, and surveys.   

 After obtaining the data, the definition of a customer journey is based on a set of rules 

determined by both the focal company and GfK. A customer journey ends when a customer makes a 

purchase or does not have any contact initiated by the customer for four weeks. Moreover, the 

customer journey can be extended when an enterprise-initiated touchpoint is encountered within two 

weeks before the start of the customer journey to incorporate potentially triggers of enterprise-initiated 

touchpoints. However, if no active behavior occurs within the two weeks after the enterprise-initiated 

touchpoint, the enterprise-initiated touchpoint is not part of the customer journey and therefore 

removed from the data. All touchpoints up to 6 months before the end of the customer journey are 

considered part of the customer journey. 

After figuring out how the data is obtained and how the customer journeys are defined, a 

description of the touchpoints as well as whether the touchpoints are initiated by the enterprise or 

customer is provided as list 1 below. 
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Touchpoint Description Type 

Affiliate Visiting a website of an affiliate. Affiliate marketing is 

a commission-based method that rewards the sender for 

referring the customer to the focal website. 

Enterprise-

initiated 

Banner Encountering a banner. Banners are graphical web-

advertisements with the purpose to increase traffic or 

sell more. 

Enterprise-

initiated 

Email Opening an email. E-mails in the travel industry are 

generally discount offers. 

Enterprise-

initiated 

Pre-roll Viewing a short promotional video before watching the 

intended video. 

Enterprise-

initiated 

Retargeting Encountering a banner after the first interaction has 

occurred. 

Enterprise-

initiated 

Accommodation website Visiting a relevant website where one can book a place 

to stay. 

Customer-

initiated 

Accommodation app Visiting a relevant application on either a mobile or 

tablet where one can book a place to stay. 

Customer-

initiated 

Accommodation search Searching for one of the relevant accommodation 

websites on a search engine. 

Customer-

initiated 

Information/comparison 

website 

Visiting a relevant website where one can find 

information about a journey or where one can compare 

offers. 

Customer-

initiated 

Information/comparison 

app 

Visiting a relevant application on either a mobile or 

tablet where one can find information about a journey 

or where one can compare offers. 

Customer-

initiated 

Information/comparison 

search 

Searching for one of the relevant information or 

comparison websites on a search engine. 

Customer-

initiated 

Travel agent website Visiting a relevant website where one can book a trip or 

vacation. 

Customer-

initiated 

Travel agent app Visiting an application on either a mobile or tablet 

where one can book a trip or vacation. 

Customer-

initiated 

Travel agent search Searching for one of the relevant travel agent websites 

on a search engine. 

Customer-

initiated 

Focal website Visiting the focal website where one can book a trip or 

vacation. 

Customer-

initiated 

Focal search Searching for the focal website of the travel agent on a 

search engine. 

Customer-

initiated 

Airline company website Visiting a relevant website where one can book a flight. Customer-

initiated 

Airline company app Visiting a relevant application on either a mobile or 

tablet where one can book a flight. 

Customer-

initiated 

Airline company search Searching for one of the relevant airline company 

websites on a search engine. 

Customer-

initiated 

Generic search Searching for a relevant term related to a trip or 

vacation on a search engine. 

Enterprise-

initiated 
List 1. A description of the touchpoints as well as whether the touchpoints are initiated by the enterprise or customer. Note 1: 

all enterprise-initiated touchpoints are impressions, meaning that the customer did not necessarily clicked on it. Note 2: 

relevant means that it is classified as important by the focal company. Note 3: accommodation enterprises, 

information/comparison websites, travel agents, and airline companies are pre-defined by both the focal company and GfK.  

 

3.2 Data cleaning and descriptive statistics 

Before presenting the descriptive statistics, two notable observations need to be highlighted. Firstly, 

the data shows that a lot of consecutive touchpoints are the same and occur within a short time span. 
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For example, a particular customer has visited an accommodation app approximately 100 times in 

three minutes. This is not an extraordinary customer journey. Since the frequency of registration of 

touchpoints differs between touchpoints and it is highly unlikely that customer visits the same 

touchpoint over and over in a remarkably short time period, it is chosen to exclude consecutive 

touchpoints that are the same. This is performed in consultation with GfK. With the objectives in 

mind, to measure and evaluate attribution, it seems to be a plausible assumption. For clarity, this does 

not mean that the same touchpoint cannot occur multiple times within a customer journey. After 

excluding the same consecutive touchpoints, the average number of touchpoints within a customer 

journey drops from 84.67 to 11.58.  

 

To stress the second notable observation, graph 1 is provided below. The horizontal axis represents the 

maximum number of touchpoints in a customer journey and the vertical axis the corresponding 

number of purchases. Furthermore, the color indicates the conversion in percentage as shown in the 

legend. The graph demonstrates that the conversion rate increases as the number of touchpoints within 

a customer journey increases. Customer journeys with solely one touchpoint have on average a 

conversion rate of approximately 0.25%. Customer journeys with 10 touchpoints have on average a 

0.1 percentage point higher chance to convert and customer journeys with 25 touchpoints are already 

twice as likely to convert as customers with one customer interaction. When the customer journeys 

consist of 100 touchpoints the conversion rate is 0.6%, after which the conversion rate increases 

slowly to a maximum of 0.66% at 192 touchpoints. Hence, the graph shows a diminishing increase in 

conversion rate as the number of touchpoints increases. A possible rationale for the large increase is 

that short customer journeys are not genuine journeys. For example, it could be that a panel member 

searches for "Amsterdam" because a friend works there. This may be an erroneously classified generic 

search term. Nevertheless, another explanation is that customers who interact more frequently are 

more engaged and therefore their propensity to purchase is higher (Pansari & Kumar, 2017). Since 

there are several possible explanations, no customer journeys are excluded from the analysis.   

 

Graph 1. Showing that the conversion rate increases as the number of touchpoints within a customer journey increases. 
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The descriptive statistics are presented after excluding the same consecutive touchpoints. These 

statistics are summarized in Table 1 and will be discussed now. This research is conducted in the 

travel agency industry where online advertising plays an increasingly important role (Park & Oh, 

2012). Customers generally invest lots of time in figuring out vacations and are thereby exposed to 

various customer-firm interactions (Pabel & Prideaux, 2016). Nevertheless, the results of this research 

should be interpreted with care, since the analyses are only conducted on a single travel agency dataset 

to address the research question. 

 There are twenty unique touchpoints in this research. A distinction can be made between 

customer-initiated and enterprise-initiated touchpoints as explained in the previous section. 

Furthermore, the total number of journeys in this dataset is 29,011. To give an indication about the 

distribution of the number of touchpoints within a customer journey, the number of customer journeys 

with > 2 touchpoints is 22,974 and > 5 touchpoints is 19,154, implying that there are a lot of short 

journeys with one or two touchpoints and that the number of customer journeys with more touchpoints 

diminishes. Moreover, the total number of touchpoints in the dataset is 336,001. The average number 

of touchpoints within a customer journey is 11.58 and has a standard deviation of 32.65. The standard 

deviation is relatively large and indicates that there are still a lot of deviations from the mean even 

after removing the same consecutive touchpoints. More specifically, the deviations are negatively 

skewed since customer journeys must consist of at least one touchpoint. A customer journey 

ultimately ends in a purchase or after a blackout period of four weeks. The total number of customer 

journeys ending in a conversion is 192 in this dataset. Viewing this from a customer journey 

perspective, the conversion rate in percentage is 0.66%.  

 

Description  

Industry Travel agency 

Number of different touchpoints 20 

     Customer-initiated touchpoints 15 

     Enterprise-initiated touchpoints 5 

Total number of journeys 29,011 

    Thereof with length > 2 22,974 

    Thereof with length > 5 19,154 

Total number of touchpoints 336,001 

Number of touchpoints within a customer journey 11.58 (SD = 32.65) 

Number of conversions 192 

Conversion rate in percentage per customer journey 0.66% 
Table 1. Presenting some descriptive statistics. 
 

To assess the distribution of the number of touchpoints, Table 2 is provided below. The table presents 

information about the rate of occurrence of touchpoints in this dataset. The first four columns are self-

explanatory and the last column is calculated by dividing the number of times a touchpoint occurs by 

the total number of customer journeys. Hence, the values in the last column indicate the number of 

times an average customer journey encounters a specific touchpoint. There are several noteworthy 
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observations in the table. Firstly, 2.39% of the dataset are enterprise-initiated touchpoints and the 

remaining 97.61% are customer-initiated, suggesting the distribution is highly skewed. Expressing this 

in the average number of enterprise-initiated touchpoints encounter per customer journey is 0.28, 

meaning that on average a quarter of the customer journeys is affected by enterprise-initiated 

touchpoints. Secondly, 78.48% of the touchpoints are coming from visiting a website. The major 

stakeholders of this are accommodations websites and travel agent websites. These contribute 28.77% 

and 28.25% respectively. Thirdly, the average number of visits on the focal website per customer 

journey is 0.39, thereby receiving rank 6. Combining the frequency of visits of the focal website and 

the total number of conversion (displayed in the previous table), the percentage of customer journeys 

leading up to a conversion is 1.71% (=192/11,217) given they have visited the focal website. In other 

words, about 1 in 60 customer journeys convert when landing on the focal website. 

 

Touchpoint Frequency Share of 

touchpoints 

Rank Frequency 

Total customer journeys 

Affiliate 529 0.16%    19 0.02 

Banner 595 0.18%    18 0.02 

Email 1,643 0.49%    13 0.06 

Pre-roll 811 0.24%    17 0.03 

Retargeting 4,449 1.32%    8 0.15 

Accommodation website 96,658 28.77%    1 3.33 

Accommodation app 2,949 0.88%    10 0.10 

Accommodation search 5,319 1.58%    7 0.18 

Information/comparison website 38,264 11.39%    3 1.32 

Information/comparison app 2,631 0.78%    11 0.09 

Information/comparison search 1,462 0.44%    15 0.05 

Travel agent website 94,921 28.25%    2 3.27 

Travel agent app 913 0.27%     16 0.03 

Travel agent search 2,573 0.77%    12 0.09 

Focal website 11,217 3.34%    6 0.39 

Focal search 451 0.13%    20 0.02 

Airline company website 33,853 10.08%    4 1.17 

Airline company app 1,549 0.46%    14 0.05 

Airline company search 4,335 1.29%    9 0.15 

Generic search 30,879 9.19%    5 1.06 
Table 2. Presenting information about the rate of occurrence of touchpoints. 
 

3.3 Experimental procedure 

Conversion is a binary label hinting that it is a classification task. However, unlike many classification 

tasks, the main objective is not to predict. The task is to assign credit to the touchpoints and compare 

the models on the evaluation criteria. Hence, the goal is not to optimize the parameters on this dataset 

but rather to evaluate the attribution models as precisely as possible. The models are evaluated on the 

ease of interpretation, predictive accuracy, and robustness. Information about the models that are 

compared and the selected parameters are provided below. In addition, the analyses are conducted in 

the statistical program R version 3.4.4 (R Core Team, 2017). 
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3.3.1 Heuristic-based models 

First, two heuristic-based attribution models are implemented to provide a baseline to compare 

attribution and to compare the evaluation criteria. To be more specific, last touch attribution and first 

touch attribution are implemented. Last touch attribution assigns all credit to the last touchpoint. On 

the contrary, first touch attribution assigns all credit to the first touchpoint. These heuristic-based 

models provide as output an attribution score. To compare the models for predictive accuracy, they are 

transformed into a predictive model. The predicted probability to convert for the last touch attribution 

model is the normalized attribution to the last touchpoint. Following the same logic, the predicted 

probability to convert for the first touch attribution model is the normalized attribution to the first 

touchpoint. These two models are easy to program in R. 

 

3.3.2 Shapley Value solution 

The Shapley Value solution proposed by Shao and Li (2011) takes the individual touchpoints and the 

interaction between touchpoints into account. The two-step computation provided in section 2.2.2 is 

followed. First, the conditional probability of conversion given the individual touchpoints and the 

conditional probability of conversion given the interaction between two touchpoints are computed on 

the entire dataset. Secondly, the credit assigned to the touchpoints is calculated by taking the 

contribution of the individual touchpoints as well as the synergy effects into consideration. Lastly, the 

attribution is normalized. In addition, the model can be made predictive since the normalized 

attribution sums up to one and the features are one hot encoded. The predictive probability for a 

customer journey is the sum of the devoted attribution to the unique touchpoints present in the 

customer journey. Since the model does not include interactions higher than pair-wise, no Shapley 

Value solution package is used to implement the model. 

 Dalessandro et al. (2012) extend the model by incorporating more than two interactions and 

show that it is equivalent to the Shapley Value solution in cooperative game theory (Shapley, 1988). 

The model becomes quickly unwieldy when having more than ten touchpoints since the number of 

Shapley Value solutions to compute increases exponentially. The number of touchpoints in this study 

is twenty, meaning that 1,048,576 (220) Shapley Value solutions need to be estimated. The code to run 

the model is implemented however it is unfeasible due to computation time. A rough calculation 

shows that it would take extremely long.2 Consequently, only the model proposed by Shao and Li 

(2011) is estimated.  

 

3.3.3 Logistic regression 

Another popular model that is implemented to classify binary labels is logistic regression. Logistic 

regression predicts whether or not a customer will convert based on the frequency of encountering 

                                                 
2 One Shapley Value solution takes approximately 15 seconds on an iMac Late 2013 with a 2.7GHz quad-core Intel Core i5 

processor and an 8GB of 1600MHz DDR3 memory. This means that 1,048,576 Shapley Value solutions will take extremely 

long. 
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touchpoints. The estimated coefficients of the logistic regression can be interpreted as the increase or 

decrease in log-odds of the probability (Greene, 2012).  

The literature describes two approaches to translate the coefficients of the logistic regression 

to attribution. From a theoretical perspective, the most natural approach is to estimate the average 

marginal effect implying the average expected increase in the probability of conversion when the 

corresponding touchpoint increases by one (Greene, 2012). A disadvantage of this approach is when 

the coefficient is negative the attribution will be negative. An alternative approach to estimate 

attribution is to insert the bias and corresponding coefficient for a touchpoint in the logit formula 

(Rentola, 2014). For example, when the bias is -2 and the coefficient of the focal website is 1.5, the 

unnormalized attribution is 0.378. The approach is the solution to the issue of negative coefficient as it 

sets large negative coefficients virtually to zero. The logistic regression is implemented with the stats 

package in R, the average marginal effect with the margins package, and the approach from Rentola 

(2014) is coded without a package (R Core Team, 2017; Leeper, 2018). 

 An extension of the logistic regression to reduce variance and prevent the model from 

overfitting is bagging. Bagging takes M subsamples with replacement from the dataset. The estimated 

coefficients of the logistic regressions are averaged. After averaging, attribution is determined and the 

evaluation measures are calculated. To clarify, the predictive accuracy is measured with the average 

estimated coefficients. However, in some studies, predictions are made first and then the average 

predicted probability is taken. Yet in this thesis, the coefficients are first averaged since attribution is 

also determined on the average coefficients. To perform the bagging procedure, two hyperparameters 

need to be selected; the size of the subsample and the number of times the subsample is taken 

(Błaszczyński & Stefanowski, 2015). The two parameters are not optimized with a grid search or an 

alternative technique as the goal is not to optimize the parameters but rather to evaluate the attribution 

models. Optimizing the model will improve the fit of this dataset. Yet, the objective is to generalize 

the conclusions of the evaluation criteria to a broader perspective. As in the study by Louppe and 

Geurts (2012), the number of replications is set to 50. Moreover, the size of the subsample is two-

thirds of the entire dataset. One may argue that the size of the subsample is relatively high. However, a 

small subsample may lead to zero or little conversions per repetition since the dataset is skewed. 

Hence due to the imbalanced dataset, the subsample is chosen to be two-thirds of the entire dataset. No 

package in R is used to implement the bagging procedure.  

 Regularization is a machine learning technique applied to models that fit the training data to 

well. Generally, Lasso or Ridge regularization is used for generalized linear regressions. The main 

difference between the two methods is that Lasso tends to pick one of the touchpoints and discard the 

others, which is an undesirable property as the goal is to evaluate the attribution models as precise as 

possible (MartíNez-MartíNez, 2011). Consequently, when the logistic regression overfits, Ridge 

regression will be used. The package in R by Friedman, Hastie, and Tibshirani (2010) simplifies the 

implementation of Ridge regularization for generalized linear regressions. 
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A drawback of both the Shapley Value solution and the logistic regression is that they do not 

incorporate temporal dynamics. However, the input of the logistic model can be adjusted by making 

binary features of the t latest touchpoints of the customer journey to capture the dynamics (Anderl et 

al., 2016). Instead of encoding a feature for every touchpoint, a feature for every possible touchpoint at 

the last t time instances is encoded. As it is unfeasible to include features for all time instances, three 

models are computed. A model with only the last touchpoints, the two last touchpoints, and the three 

last touchpoints. The model with the three last touchpoints already consists of 60 parameters and 

therefore models with more time dynamics are not estimated. In addition, a reference level needs to be 

chosen to estimate the model. The reference level of the model with only the last time instance is the 

touchpoint “generic search” since the other enterprise-initiated touchpoints consist of websites, apps, 

and search engine terms and there is for generic solely search. Models that include earlier time 

instances have as reference level “none” as it compares the touchpoints to no touchpoint. Ideally, 

“none” is also selected for the last time instance, however, customer journeys must consist of at least 

one touchpoint and therefore the category “none” does not exist as a last touchpoint. 

 

3.3.4 Markov chain 

A model that inherently include temporal dynamics is the Markov chain (Anderl et al., 2016). The 

first-order Markov assumption states that the state at the current time only depends on the state at the 

previous time point and that the past is irrelevant (Keilson, 2012). Based on this assumption, the 

Markov chain estimates the probability of transitioning from one state to another. The transition 

probabilities are presented in a transition matrix, representing a map of followed paths by customers. 

Moreover, the transition matrix facilitates computing the removal effect to measure attribution (Anderl 

et al., 2016). The removal effect computes the decrease in conversion rate if a particular touchpoint is 

disregarded from the network. A simplified transition matrix is provided in Table 3 below to explain 

how the removal effect is computed.  

Table 3. Example of a transition matrix. The vertical axis represents the previous state and the horizontal axis the current 

state. 

 

The formula provided in section 2.2.4 is applied to compute the removal effect. The conversion rate 

without removing any touchpoint is 0.5 (=0.5*0.67*0.67 + 0.5*0.5*0.67 + 0.5*0.5*0.67*0.67). Hence, 

the unnormalized removal effect for touchpoint 1 is 0.67 (=1- ((.5*0.5*0.67) / 0.5)), touchpoint 2 is 

0.55 (=1- ((0.5*0.67*0.67) / 0.5)), and touchpoint 3 is 1 (=1- ((0) / 0.5)). Normalizing the removal 

 Conversions Non conversion Touchpoint 1 Touchpoint 2 Touchpoint 3 

Touchpoint 1 0 0.3333 0 0 0.6667 

Touchpoint 2 0 0 0.5 0 0.5 

Touchpoint 3 0.6667 0.3333 0 0 0 

Start 0 0 0.5 0.5 0 
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effect leads to an attribution of 0.30, 0.25, and 0.45 for touchpoint 1, touchpoint 2, and touchpoint 3, 

respectively. 

Altomare and Loris (2018) developed the ChannelAttribution package to compute attribution 

with the Markov chain and the removal effect. This package is customized to do these estimations. 

Nevertheless, the package does not provide any indication about the predictive accuracy or robustness 

of the model. The model is made predictive by using the probability to convert of the last touchpoint 

of the customer journey. Hence, the probability only depends on the last touchpoint in the sequence, 

yet this is in line with the definition of the Markov assumption.  

In addition, the first-order Markov chain is extended to higher-order Markov chains by 

relaxing the Markov assumption. More specifically, the second-, third-, and fourth-order Markov 

chains are estimated to incorporate more information in the model. By relaxing this assumption, the 

state becomes a sequence of touchpoints. The logic of making predictive models from higher-order 

Markov chains is the same, however, the probability depends on the last sequence of touchpoints. 

Higher-order Markov chains are generated to incorporate longer temporal dynamics which may lead to 

better performance. 

 

3.3.5 Evaluation criteria 

The heuristic-based model, the Shapley Value solution, the logistic regression, and the Markov chain 

are evaluated on the ease of interpretation, predictive accuracy, and robustness. The procedure to 

evaluate the models is universal. Generally, for classification tasks, the data is partitioned into three 

datasets: the training set, validation set, and test set. However, the purpose of this thesis is not to 

predict conversion, yet the task is to devote credit to touchpoints and evaluate the models. 

Consequently, the dataset is partitioned into a training set and validation set. The training set to learn 

the model and the validation set to measure attribution and evaluate the model. A test set where one 

can assess the best performing model with optimized parameters is not required. The training and 

validation set will be split by means of stratified 10-fold cross-validation. To train and validate the 

model, conversion is needed in both sets. Hence, stratified cross-validation is chosen to ensure that 

both sets contain some conversions (Refaeilzadeh, Tang, & Liu, 2016). As the task is binary, each fold 

contains roughly 19 conversions. When regular cross-validation was applied, some folds might not 

have any conversion or little conversions. 

 The first evaluation criterion, interpretability is a more subjective criterion and therefore no 

statistical test can be exploited. However, the definition is indispensable to achieve more transparency 

in the data-driven attribution models. Interpretability is in this thesis defined as having a clear and 

intuitive comprehension of how attribution is determined, while the statistical procedure should be 

valid. Most data-driven attribution models consist of several steps. The first steps to compute 

intermediate results and the last step to go from these results to attribution. All these steps are 

scrutinized to evaluate the models on interpretability. 
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The second evaluation criterion, predictive accuracy, is measured with the area under the 

receiver operating characteristic curve and the top-decile lift. Firstly, the area under the ROC curve is 

computed for each iteration on both the training and validation set and then averaged. The ROC can be 

decomposed in the true positive rate and the false positive rate, which are represented on the vertical 

and horizontal axis, respectively. The ROC graph is provided to visually assess whether models 

outperform one another at combinations between the true positive rate and the false positive rate. 

Intuitively, the larger the area under the curve the more accurate an attribution model can predict 

conversion and non-conversion. The ROCR package by Sing, Sander, Beerenwinkel, and Lengauer, 

(2005) is used to compute the area under the curve and construct the ROC graphs.  

As a second measure for predictive accuracy, the top-decile lift is calculated on each repetition 

on both the training and validation set and then averaged. Conceptually, a top-decile lift of three 

means that the customer journeys with the highest predicted top ten percent are three times as likely to 

convert than the average customer journey in the dataset. Hence, when a model has a higher top-decile 

lift than another model, it can better predict whether the top ten percent is going to convert. (Neslin et 

al., 2006). To compute the top-decile lift, the “lift” package is applied (Hoornaert, Ballings, & Poel, 

2015).  

The last evaluation criterion, robustness means that the attribution model should produce 

stable and consistent results when resampling from the underlying data-generating process. 

Robustness is assessed with two metrics. Firstly, the predictive accuracy measured with both the area 

under the curve and top-decile lift should be stable across cross-validations. Hence, the standard 

deviation of the area under the curve and top-decile lift is calculated across cross-validations on both 

the training and validation set. Intuitively, a relatively small standard deviation implies that the model 

produces stable results in distinguishing conversion from non-conversion. 

Secondly and even more important is to evaluate the robustness of the contribution assigned to 

the touchpoints. The robustness of attribution is measured with the coefficient of variation (McAuliffe, 

2015). First, the mean and standard deviation of attribution of each touchpoint across cross-validations 

is computed. To compute the coefficient of variation, the standard deviation is divided by the mean 

which makes the metric scale-free. After computing the coefficient of variation for every touchpoint, 

the average is taken to get a scaler. The coefficient of variation enables to compare attribution models 

on robustness.  
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4. Results 
In the first section, attribution models are estimated and noticeable intermediate results are provided. 

In the second section, the results of the evaluation criteria are compared between models. 

 

4.1 Model estimation 

The models are computed with stratified 10-fold cross-validation. However, intermediate results as 

conditional probabilities, coefficients or transition probabilities are estimated on the entire dataset to 

give a holistic overview of the data. To compare the data-driven models to a baseline on the evaluation 

criteria both first touch attribution and last touch attribution are implemented.  

 

4.1.1 Shapley Value solution 

The computation of the Shapley Value solution consists of two steps (Shao & Li, 2011). The 

attribution results are provided in the next section, however, there are interesting intermediate results 

in the computation of step one and two. 

Firstly, the conditional probabilities of conversion given the individual touchpoints are shown 

in Table 1 in the Appendix. The touchpoints: focal website, focal search, email, and retargeting have a 

conditional probability higher than 0.05. Secondly, the conditional probabilities of conversion given 

the interaction between two touchpoints are provided in Table 2 in the Appendix. Thirty of the 190 

possible combinations between touchpoints have a value of zero, meaning that they either do not occur 

in the data or have a genuine conditional probability of zero. The sparse conditional probabilities 

indicate that the chosen feature construction schema for the model is appropriate. Moreover, ten 

interactions between touchpoints have a conditional probability higher than 0.1. An interesting finding 

is that a lot of high conditional probabilities occur at an interaction between the focal website, focal 

search, or retargeting and another touchpoint. The highest conditional probability is between the focal 

website and retargeting with a value of 0.186. Thirdly, the synergy effects between possible 

combinations of touchpoints are calculated and are shown in Table 3 in the Appendix. A synergy 

effect is the effect of both touchpoints without their individual effect. The computations are as follow: 

𝑃(𝑦|𝑥𝑖 , 𝑥𝑗)  −  𝑃(𝑦|𝑥𝑖) −  𝑃(𝑦|𝑥𝑗) 

Sixteen of the 190 combinations between touchpoints have an absolute value higher than 0.05, 

meaning that they have a strong positive or negative synergy effect. More specifically, five have a 

positive synergy effect and eleven have a negative synergy effect (i.e. antagonism effect). Three of the 

five positive synergy effects occur in combination with the focal website. A lot of negative synergy 

effects occur at a combination between either a banner or pre-roll ad and another touchpoint.  

 

4.1.2 Logistic regression 

A vanilla logistic regression is fitted. Estimated coefficients are provided in Table 4 in the Appendix. 

Signs of the coefficients are directly interpretable (Greene, 2012). The airline company website, 

generic search, focal website, and focal search have a significant positive effect on the probability to 
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convert.3 The information app and travel agent search have a significant negative effect on the 

probability to convert. Moreover, the bias has a large significant negative effect due to the skewness in 

the data. However, the magnitude of the touchpoints is difficult to interpret as the logistic regression 

estimates the log-odds of the probability. The coefficients of the logistic regression need to be 

transformed into attribution.  

There are two approaches to transform the coefficients as discussed earlier. First, the average 

marginal effect is estimated since this is from a theoretical perspective the most natural approach 

(Leeper, 2018). Graph 2 below demonstrates the average marginal effect of each touchpoint as well as 

the accompanying standard error. A lot of the point estimates of the marginal effect are negative which 

in turn results in a negative attribution. In order to solve this problem, an alternative approach to 

estimate attribution is applied. The approach computes the attribution of a specific touchpoint by 

inserting the bias and the corresponding coefficient for that specific touchpoint into the logit function 

(Rentola, 2014).  In other words, the contribution assigned to a touchpoint is a non-linear function of 

the bias and that touchpoint. An advantage of this practical solution is that it does not suffer from the 

problem of negative coefficients as large negative coefficients will be driven down to zero since the 

exponential of a number cannot be negative.  

 

Graph 2. The average marginal effect of each touchpoint as well as the accompanying standard error. The values of the 

marginal effects used to create the graph are provided in Table 5 in the Appendix. 

 

 

4.1.3 Bagged logistic regression 

A bagged logistic regression is fitted to reduce the variance of attribution (Błaszczyński & 

Stefanowski, 2015). With the objectives in mind, the hyperparameters are fixed. The number of 

iterations per cross-validation is set to 50 and the size of the subsample is two-thirds of the entire 

dataset (Louppe & Geurts, 2012). However, at some iterations, the logistic regression separate the 

                                                 
3 Significant at α = 0.05. 
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labels perfectly due to the reduced sample size. Consequently, the estimated coefficients become 

extremely large or small. These coefficients will affect attribution drastically. 

To prevent the coefficients from getting extreme, regularization is applied. More specifically, 

Ridge regularization is implemented as it does, unlike Lasso regularization, not tends to pick one of 

the touchpoints and discard the others (MartíNez-MartíNez, 2011). As explained in the background 

section 2.2.3, the regularization term consists of a constant factor, denoted as lambda, and a norm 

vector of the coefficients. Lambda cannot be learned from the model and need to be chosen in advance 

(i.e. is a hyperparameter). As decided earlier, the dataset is only partitioned in a training and validation 

set and the parameters are not optimized. Hence, lambda is chosen arbitrarily, yet it is important that 

there still is variation in the coefficients of the logistic regression as they serve to compute attribution. 

Graph 3 below is created to assess whether the coefficients are not driven down to zero. More 

specifically, the graph illustrates the magnitude of the coefficients at different lambdas. The horizontal 

axis displays the lambda values on a logarithmic scale. The vertical axis exhibits the magnitude of the 

coefficients of the logistic regression. Above the graph, the numbers of coefficients are presented. The 

number of coefficient remains 20 as Ridge regularization does not select features. Lambda 1.0e-06 is 

selected as there is still a lot of variation between touchpoints. A small lambda prevents the 

coefficients from getting extreme, yet do not shrinks the coefficients to zero. The coefficients of the 

bagged regularized logistic regression are shown in Table 6 in the Appendix. 

 

 

Graph 3. Observing the magnitude of the coefficients at different lambdas. 
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4.1.4 Dynamic logistic regression  

The logistic regression can be adapted to incorporate temporal dynamics by making binary features of 

the latest touchpoints of the customer journey. Including features for all time instance would lead to a 

lot of parameters which is unfeasible to estimate. For example, estimating a dynamic logistic 

regression with the last ten time instances results in a model with 200 parameters. Problems with 

estimating parameters at early time instances arise since the number of long customer journeys is 

small. Therefore, three dynamic logistic regressions are estimated. A model with only the last 

touchpoints, the two last touchpoints, and the three last touchpoints. The dynamic logistic regressions 

are estimated without bagging and regularization. The coefficients of the three dynamic logistic 

regressions are provided in Table 7, 8, and 9 in the Appendix. Two interesting intermediate findings 

are obtained. Firstly, the coefficients of the touchpoints at the last time instance do not differ 

substantially in both sign and magnitude between the three dynamic models. This indicates that adding 

features at earlier time instances do not alter features at later time instances. Secondly, the coefficients 

for several same touchpoints at different time instances differ. For example, in the dynamic model 

with the three last touchpoints, email has a positive coefficient at t-2 and a negative coefficient at t-1. 

Hence, the dynamic logistic regression suggests that the effect of a touchpoint is contingent on when it 

occurs in the customer journey. 

 

4.1.5 Markov chain 

A Markov chain inherently includes temporal dynamics (Norris, 1998). The Markov chain estimates 

the probability of hopping from one state to another. The transition probabilities of the first-order 

Markov chain are presented in a transition matrix heatmap, see Graph 4 below. It is a map of followed 

paths by the customer. The vertical axis represents the previous state and the horizontal axis the 

current state. The colors correspond to the regions of different probability. A row in the matrix has to 

sum up to one. Three interesting findings are reported. Firstly, there are four transition probabilities > 

0.5. They represent the transition from a search term to a corresponding website in the categories: 

accommodation, information/comparison, travel agent, and the focal company. Secondly, there are 

several empty cells meaning that the transition did not occur in the data. Thirdly, the columns with the 

highest accumulated probability are accommodation websites and travel agent websites. These 

touchpoints occur with high frequency. 
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Graph 4. Transition matrix representing a followed paths by the customer. The probabilities are presented in percentage to 

take up less space. 

 

Based on these transition probabilities, the removal effect is applied to estimate attribution (Anderl et 

al., 2016). Furthermore, the principle for higher-order Markov chains is the same. However, the state 

becomes a sequence of touchpoints. 
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4.2 Model evaluation 

The heuristic-based models, the Shapley Value solution, the logistic regression, and the Markov chain 

are evaluated on the ease of interpretation, predictive accuracy, and robustness. In addition, the 

contribution assigned to each touchpoint by the estimated models is presented in Graph 5 below. 

 

Graph 5. The contribution assigned to each touchpoint by the estimated models. The data to produce the graph is provided in 

Table 10 and Table 11 in the Appendix. 
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4.2.1 Interpretability 

To evaluate the interpretability of the models, all steps to compute attribution are examined and the 

(intermediate) findings are assessed. Attribution presented in Graph 5 above is taken into 

consideration when evaluating interpretability. 

 

Estimating heuristic-based models only consists of one step and therefore no intermediate output is 

generated. A pre-defined rule determines attribution. Heuristic-based attribution models disregard 

customer journeys leading up to non-conversion. A drawback is that when the number of conversions 

is low, some touchpoints may get zero attribution. The question whether this is fair is debatable. 

Inspecting the normalized attribution of the last touch attribution model, one can see that eleven of the 

twenty touchpoints get an attribution score of zero. One of the touchpoints that gets zero attribution is 

the touchpoint focal search. Moreover, the touchpoints accommodation website and competitive travel 

agency receive an attribution of 0.1719 and 0.1667, respectively. These two touchpoints occur with a 

high frequency in the dataset. Hence, it seems to be that touchpoints occurring frequently get assigned 

a lot of contribution.  

 The Shapley Value solution consists of two reasonable steps. In the first step, the individual 

and pair-wise conditional probabilities are computed. The individual conditional probabilities do not 

show odd results. It assigns a high conditional probability to the focal website, focal search, email, and 

retargeting. Furthermore, no individual conditional probability is zero. Assessing the pair-wise 

conditional probabilities, approximately fifteen percent has a value of zero, meaning that they either 

do not occur in the data or have a true conditional probability of zero. Moreover, the highest 

conditional probabilities occur at interactions between the focal website and other touchpoints, which 

seems to be reasonable. In the second step, attribution is determined by adding the contribution of the 

individual touchpoint and the synergy effects. The touchpoint with the highest normalized attribution 

is the focal website with a value of 0.4479. The second, third, and fourth highest attribution are 

assigned to retargeting, email, and focal search, respectively. The other touchpoints receive a 

normalized attribution below 0.05. Hence, the assigned attribution seems to be plausible. 

The logistic regression estimates the log-odds of the probability of conversion from a 

combination of touchpoints. The optimization procedure used is maximum likelihood. Maximum 

likelihood attempts to find the coefficients that maximize the likelihood function given the 

touchpoints. The computation is somewhat more complex, but the intuition to find the best fit is easy. 

The signs of the coefficients are instantaneously interpretable, yet the magnitude is rather hard to 

interpret as they are expressed in log-odds of the probability. Interpreting the results of the vanilla 

logistic regression, one can see that the bias has a large negative value suggesting that the average 

probability to convert is low. Moreover, a lot of touchpoints have a negative effect, including 

retargeting with an effect of -0.0421 which is regarded as important by the Shapley Value solution. 

Hence, the interpretation is difficult due to two reasons. The effects of the touchpoints are expressed in 
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log-odds of the probability and are relative to the reference level. An approach to compute attribution 

is through the average marginal effect (Greene, 2012), however, a lot of touchpoints will have a 

negative attribution when this approach is applied. For example, when the marginal effect for the 

bagged regularized logistic regression is applied, fourteen of the twenty touchpoints have a negative 

attribution. Hence in this thesis, all logistic regressions use the logit function to determine attribution 

(Rentola, 2014). Assessing the normalized attribution of the vanilla logistic regression, the highest 

attribution assigned to a touchpoint is 0.0717 and the lowest is 0.0187. The distance between the 

highest and lowest becomes even smaller with the bagged regularized logistic regression. The highest 

normalized attribution is 0.0648 and the lowest is 0.0331. Hence, the attribution values are close 

together since the bias has a large negative value. Assessing the normalized attribution of the dynamic 

logistic regression, twelve touchpoints have an attribution value of approximately zero as they have a 

large negative coefficient. Moreover, when more temporal dynamics are included, large positive 

attribution values tend to become larger and small attribution values tend to become smaller. For 

example, the focal website has an attribution of 0.5731 when only the last time instance is included 

and 0.902 when the last three time instances are included. Thus, the dynamic logistic regression with 

the last three time instances assigns a major share to the focal website since all three coefficients of the 

focal website are large. Hence, the logistic regression has difficulties in interpretation.  

In order to compute attribution from the Markov chain, two steps can be distinguished. First, 

the probabilities of hopping from one state to another are calculated. The intuition to compute the 

transition probabilities is easy to understand as it is essentially calculating the probability of going to a 

particular state given a state. The output of the first step can be visually presented in a transition 

matrix. Assessing the transition matrix heatmap, one can quickly identify frequently and rarely walked 

paths by the customer. For example, the transition probability of going from a search term to a 

corresponding website is high. More interesting, the probability to convert given another state can be 

assessed. For example, the transition probability of going from an email state to a conversion state is 

the third highest with a probability of 0.0012. In the second step, the removal effect is computed to 

determine attribution. The removal effect basically computes the decrease in conversion rate if a 

particular touchpoint is disregarded from the network. This approach seems to be intuitive. Assessing 

the normalized attribution, attribution of first- and higher-order Markov chains are almost identical. 

Nevertheless, some normalized attribution results seem to be erroneous. For example, for the first-

order Markov chain, attribution of the focal website is 0.1219, attribution for the competitive travel 

agency website is 0.1721, and attribution for the accommodation website is 0.1671. The latter two 

attributions are relatively high in comparison with attribution for the focal website. Hence, as the 

competitive travel agency website and accommodation website have both a substantial share in 

occurrence, it seems to be that attribution is not only affected by the contribution of the touchpoints 

but also the frequency. 
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4.2.2 Predictive accuracy 

In order to assess the models on predictive accuracy, two metrics are calculated. Firstly, a ROC graph 

is produced and the areas under the curve are computed. Secondly, the top-decile lifts are computed. 

Table 4 shows the area under the curve and the top-decile lift for both the training and validation set. 

Models that have a higher predictive performance for the training set than the validation set, tend to 

overfit. In addition, Graph 6 illustrates the ROC curves of the models with the true positive rate on the 

vertical axis and the false positive rate on the horizontal axis. 

The best performing heuristic-based model on both the area under the curve and the top-decile 

lift is the last touch attribution model. It has an area under the curve for the training set of 0.7085 and 

for the validation set of 0.6858. Moreover, the top-decile lift of the last touch attribution model is 

approximately 4.8 for both the training and validation set. Hence, the model does not overfit and is 

considered as the baseline to compare other models.  

The Shapley Value solution has the highest area under the curve on both the training set and 

validation set with 0.8848 and 0.8839, respectively. This is a considerable improvement of the 

baseline. Assessing the ROC graph, the Shapley Value solution reaches a high true positive rate, 

implying that the model is good in predicting the customer journeys ending in conversion. 

Nevertheless, the false positive rate increases quickly in the beginning relative to the other attribution 

models, suggesting that the model is less accurate in distinguishing customer journeys ending in non-

conversion. Furthermore, the Shapley Value solution has the highest top-decile lift for the validation 

set.  

The vanilla logistic regression has an area under the curve for the training set of 0.8197 and 

for the validation set of 0.8004, which is a satisfactory improvement over the baseline. Yet, the 

bagging and regularization procedure improve the predictive ability considerably. The area under the 

curve for the validation set increases with approximately 0.05 to 0.8501 and the top-decile lift for the 

validation set increases from 7.0815 to 7.7581. Moreover, the bagged regularized logistic regression 

outperforms the Shapley Value solution at some combinations of the true positive rate and false 

positive rate. 

The best performing dynamic logistic regression both on the area under the curve and the top-

decile lift is the model with the last three time instances. At validation time, it has an area under the 

curve of 0.8277 and a top-decile lift of 7.0262. However, comparing the dynamic logistic regression 

between the training and validation set on both predictive metrics, one can see that the model tends to 

overfit. This becomes more severe when the model becomes more complex.  

The first-order Markov chain has a better predictive ability than higher-order Markov chains 

on the area under the curve for the validation set. However, the difference with the second-order 

Markov chain is small. On the contrary, the second-order Markov chain outperforms the first-order 

Markov chain on the top-decile lift for the validation set with the values 5.7203 and 5.3097, 

respectively. Furthermore, Higher-order Markov chains tend to overfit immensely. For example, the 
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fourth-order Markov chain has an area under the curve for the training set of 0.9357 and for the 

validation set of 0.5046, which is virtually the performance of the random model. Taking a closer look 

at the ROC curve, the random model outperforms the fourth-order and third-order Markov chain at 

some combinations of the true positive rate and false positive rate. 

 

 

Area under the 

curve on the 

training set 

Area under 

the curve on 

the 

validation set 

Top-decile 

lift on the 

training set 

Top-decile lift 

on the 

validation set 

First touch attribution 0.6719 0.6556 4.4038 4.4832 

Last touch attribution 0.7085 0.6858 4.8264 4.8359 

Shapley Value 0.8848 0.8839 7.5983 7.8659 

Vanilla logistic regression 0.8197 0.8004 7.2802 7.0815 

Bagged regularized logistic 

regression 0.8773 0.8501 8.1135 7.7581 

Dynamic logistic regression 

(only last touchpoint) 0.7894 0.7784 5.7465 5.6204 

Dynamic logistic regression 

(last two touchpoints) 0.871 0.8184 7.1989 6.7181 

Dynamic logistic regression 

(last three touchpoints) 0.8984 0.8277 7.8181 7.0262 

Markov chain first-order 0.7781 0.7304 5.6596 5.3097 

Markov chain second-order 0.8339 0.7241 6.7304 5.7203 

Markov chain third-order 0.8971 0.634 7.4649 4.6305 

Markov chain fourth-order 0.9357 0.5046 8.2696 2.7588 
Table 4. The models evaluated on the area under the curve and top-decile lift on both the training and validation set. 

 

 

 
Graph 6. The ROC curves of the models on the validation set. 

 



 

 

42 

4.2.3 Robustness 

To measure the robustness of the models, two metrics are employed. Firstly, the standard deviations of 

the metrics used to measure predictive performance are computed. The standard deviations are 

computed across folds of the cross-validation. Secondly and more important for our present purpose, 

the average coefficient of variation of attribution is estimated. Table 5 illustrates the standard 

deviation and the average coefficient of variation of the models. To give a more in-depth view into the 

coefficient of variation of attribution, Graph 7 is provided below. The graph shows the boxplots of the 

coefficients of variation of touchpoints per model. Hence, the coefficients of variation in the graph are 

not averaged over touchpoints to get a single value for each model. 

The last touch attribution model has a standard deviation of the area under the curve for the 

validation set of 0.0855 and a standard deviation of the top-decile lift for the validation set of 0.197. 

Moreover, it has an average coefficient of variation of attribution of 13.1514. Graph 7 illustrates that 

the first quartile and median are both zero which decreases the average coefficient of variation. In 

addition, the graph demonstrates that there are two outliers. The values of the last touch attribution 

model are taken as the baseline. 

The Shapley Value solution has a relatively small standard deviation on both the area under 

the curve and the top-decile lift for the validation set with values of 0.0506 and 0.5225, respectively. 

This suggests that the predictive performance is stable. Nevertheless, the average coefficient of 

variation of attribution is 31.2133, which is much higher than the baseline and other data-driven 

attribution models. Assessing the graph, one can see that the Shapley Value solution has the largest 

coefficient of variation of a single touchpoint. More specifically, banner has a coefficient of variation 

of 206.28. Altogether, the contribution assigned to touchpoints by the Shapley Value solution is 

sensitive to small departures in the underlying data-generating process. 

The vanilla logistic regression has a standard deviation below the baseline and has an average 

coefficient of variation of attribution of 9.6206. This is an improvement in robustness in comparison 

with the baseline. Yet the bagged regularized logistic regression has even a smaller standard deviation 

and has the second smallest average coefficient of variation of all estimated models with a value of 

4.8702. Moreover, the graph clearly shows that the dispersion of the coefficients of variation of 

touchpoints decreases. Hence, the bagging and regularization procedure has a positive effect on the 

robustness.  

The dynamic logistic regressions have diverse results with regards to the robustness. More 

specifically, the standard deviation of the top-decile lift for the validation set tends to decrease as more 

time instances are included in the dynamic logistic regression. On the contrary, the average coefficient 

of variation of attribution increases sharply as the dynamic logistic regression becomes more complex. 

For example, the average coefficient of variation of the dynamic logistic regression with the last three 

time instances has a value of 40.2148, which is the highest average coefficient of variation of all 
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models. The graph supports this finding. The dispersion of the coefficients of variation of touchpoints 

increases considerably as the box and the whiskers become larger. 

All Markov chains score well on the robustness aspect. The standard deviation of both the area 

under the curve and the top-decile lift for the validation set are somewhat lower than the baseline. 

Furthermore, the average coefficient of variation of attribution of all estimated Markov chains is small. 

The first-order Markov chain has a value of 4.588 which is the smallest average coefficient of 

variation of all attribution models. This result is supported by the boxplot. All boxes of the coefficient 

of variation of the Markov chains are small, yet the boxes increase a little when the Markov 

assumption is relaxed. 

 

 

 

Standard 

deviation of 

the area under 

the curve on 

the training 

set 

Standard 

deviation of 

the area under 

the curve on 

the validation 

set 

Standard 

deviation of 

the top-

decile lift on 

the training 

set 

Standard 

deviation of 

the top-

decile lift on 

the 

validation set 

Coefficient 

of 

variation 

of 

attribution 
First touch attribution 0.0071 0.0625 0.0985 0.8006 20.2376 
Last touch attribution 0.0128 0.0855 0.197 1.3042 13.1514 
Shapley Value 0.0055 0.0506 0.075 0.5225 31.2133 
Vanilla logistic 

regression 0.0186 0.0619 0.2155 1.0098 9.6206 
Bagged regularized 

logistic regression 0.0123 0.0403 0.1501 0.7165 4.8702 
Dynamic logistic 

regression (only last 

touchpoint) 0.0071 0.0665 0.1599 1.3992 8.2216 
Dynamic logistic 

regression (last two 

touchpoints) 0.0049 0.1008 0.0545 1.2483 25.4451 
Dynamic logistic 

regression (last three 

touchpoints) 0.0053 0.0902 0.0771 1.154 40.2148 
Markov chain first-

order 0.0107 0.0805 0.1828 1.2402 4.588 
Markov chain second-

order 0.0067 0.0796 0.165 1.081 5.1614 
Markov chain third-

order 0.006 0.084 0.0923 1.1891 5.3305 
Markov chain fourth-

order 0.0044 0.0602 0.1073 0.871 5.3717 
Table 5. The standard deviation on both the area under the curve and top-decile lift on both the training and validation set and 

the coefficient of variation of attribution. Note: the coefficient of variation is multiplied by hundred to express the value in 

percentages. 
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Graph 7.  Boxplot of the coefficients of variation of the touchpoints per attribution model. 
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5. Discussion 

In the results section, the heuristic-based models, the Shapley Value solution, the logistic regressions, 

and the Markov chains are estimated and intermediate results are presented. Moreover, the models are 

evaluated on the ease of interpretation, predictive accuracy, and robustness. The findings are discussed 

in section 5.1 and 5.2. Discussing the findings directly addresses the research question by comparing 

the models on the evaluation criteria. Furthermore, section 5.3 provides the limitations, emphasize the 

importance of this thesis and gives suggestions for future research. 

 

5.1 Discussing intermediate results  

The Shapley Value solution, the logistic regression, and the Markov chain produce different 

intermediate outputs from which different types of information can be obtained.  

  The Shapley Value solution generates three relevant intermediate outcomes (Shao & Li, 

2011). Firstly, the conditional probabilities of conversion given the individual touchpoints indicate 

which touchpoints are important to increase the likelihood that a customer journey ends in conversion. 

Secondly, the conditional probabilities of conversion given the interaction between two touchpoints 

demonstrate which combinations of touchpoints are effective to increase the probability to convert. 

Lastly, the synergy effects between possible combinations of touchpoints show the added value due to 

the interactions between touchpoints. For example, in this dataset, there is a high synergy effect when 

a customer searches for the focal website and receives an email. A possible rationale is that customers 

are triggered by receiving an email, go on the web and search for the focal company and eventually 

convert. Another explanation is that the customer is already moderately interested and has searched for 

the focal website, yet get enticed by the email and convert. As this example demonstrates, the 

temporal order in the proceedings cannot be acquired from the Shapley Value solution, nevertheless, 

prominent touchpoints or combinations between touchpoints can get obtained. Hence, marketers and 

managers can decide which combination of touchpoints should be part of the marketing media mix.

 The logistic regression produces coefficients instead of probabilities, meaning that it explores 

relations between touchpoints and the likelihood to convert (Greene, 2012). The signs of the 

coefficients are directly interpretable. For example, it can be seen that when a customer enters a 

generic search term, it has a significant positive effect on the probability to convert. However, the 

magnitude of the touchpoints is difficult to interpret as the values are expressed as the log-odds of the 

probability (Leeper, 2018). Manipulating the input data of the logistic regression by making binary 

features of the latest touchpoints of the customer journey results in a dynamic logistic regression. It is 

unfeasible to include features for all time instances. As the results indicate, the coefficients at the last 

time instance do not differ substantially in both sign and magnitude between the three estimated 

dynamic logistic regressions. This suggests that the effects of the coefficients are consistent, regardless 

of the number of time instances incorporated in the model. However, the coefficients for several same 

touchpoints at different time instances vary. In other words, the effect of a touchpoint on the 
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propensity to purchase depends on when it occurs in the customer journey, which is in line with 

findings by Lemon and Verhoef (2016). In addition, the results show that the bagging and 

regularization procedure enhances the performance of the model. More specifically, it improves the 

predictive ability and robustness on all measured facets and it prevents the model from overfitting. 

 In order to estimate attribution from the Markov chain, the probabilities of going from one 

touchpoint to the next are computed (Norris, 1998). Based on the probabilities, the removal effect is 

applied to calculate attribution (Anderl et al., 2016). The transition probabilities are also interesting as 

such. Generally, a transition matrix is generated to inspect the probability of hopping from one state to 

another. Based on the transition matrix, one can map often and rarely followed paths by the customer. 

By including domain and firm knowledge, the transition matrix can assist marketers and managers to 

make decisions. In addition, by combining the findings of the Shapley Value solution with the Markov 

chain, one can find which combinations of touchpoints are effective and in what sequence the 

customer most likely encounters touchpoints. This enables marketers and managers to affect customer 

behavior in real-time by showing the customer effective ads based on previously encountered 

touchpoints. Hence, combining attribution models can provide additional insights into understanding 

and influencing the customer journey. In other words, it is beneficial to compute multiple attribution 

models as they provide supplementary intermediate results. 

 

5.2 Discussing results 

The findings of the interpretability, predictive accuracy, and robustness section are discussed below. 

 

5.2.1 Interpretability 

The heuristic-based attribution models are based on pre-defined rules which makes them easy to 

understand. Yet after inspecting the results, the findings seem to be erroneous. Despite interpreting is 

rather subjective, an attribution of zero for searching the focal company on the web, a high attribution 

to the accommodation website, and a high attribution to the competitive travel agency are doubtful. 

The pre-defined rules have ingrained biases that make the model inherently flawed. For example, last- 

and first touch attribution models tend to give no attribution to touchpoints in the middle of a customer 

journey such as searching for the focal website on the web. Moreover, frequently encountered 

touchpoints seem to drive attribution rather than true contribution. The method to compute attribution 

is easy to grasp however the statistical procedure may not be valid. Hence, by following the definition 

of interpretability, the models do not score high on the interpretability aspect since the model is not 

grounded on the basis of its statistical merit. 

 The Shapley Value solution is simple to understand as the first step to compute conditional 

probabilities and the second step to compute attribution make intuitive sense. The results of both the 

individual conditional probabilities and pair-wise conditional probabilities do not show peculiar 

results. Comparing the Shapley Value solution with the last touch attribution model, attribution of the 
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Shapley Value solution seems to be more plausible. For example, focal search gets, unlike the 

heuristic based models, attribution assigned. Furthermore, the Shapley Value solution is not affected 

by touchpoints that do occur frequently. Thus, the model is easy to interpret as the components of the 

Shapley Value solution are easy to grasp and the statistical procedure is valid. 

  The logistic regression is relatively difficult to interpret as of five reasons. Firstly, the 

optimization procedure is more difficult to understand mathematically however the intuition is quite 

easy. Secondly, the effects of the touchpoints are expressed in log-odds of the probability. Hence, the 

sign is instantaneously interpretable, yet the magnitude not. Thirdly, the coefficients of the logistic 

regression are relative to reference level which make them more difficult to interpret. Fourthly, it is 

ambiguous how to determine attribution from the logistic regression as the model does not aim to 

reflect the contribution of a touchpoint. Lastly, when the logit function is used to determine 

attribution, the results seem to be erroneous. For example, with the vanilla logistic regression and 

bagged regularized logistic regression, attribution values are all close together. Including useless 

touchpoints seems to distort attribution. Another example with dynamic logistic regressions, when 

more time instances are incorporated, attribution values becomes more extreme. Extrapolating this 

finding, when including the last ten time instances, virtually all attribution is assigned to the focal 

website. Hence, it is not easy to interpret attribution from the logistic regression as the model does not 

have a clear and intuitive comprehension of how attribution is determined. 

  The first step of the Markov chain to determine the transition probabilities is clear and 

understandable as the computation is easy to grasp. The findings of the transition probabilities are 

plausible. Furthermore, the transition matrix heatmap provides a visual overview of the paths followed 

by the customers which makes it easier to interpret. In the second step, attribution is determined by the 

decrease in conversion rate if a particular touchpoint is disregarded from the network. This seems to 

be reasonable. However, after inspecting the results, it appears to be that attribution is not only driven 

by the touchpoints' contribution to convert, yet also by the frequency of occurrence of touchpoints. 

Yet, this is in line with the definition of the removal effect as the entire customer journey does not lead 

to conversion if one touchpoint is removed. For example, when almost every customer that convert is 

exposed to a particular touchpoint, the attribution of that touchpoint is high, even if the touchpoint 

does not truly contribute anything. Hence, the model scores moderate on the ease of interpretation as 

the steps are easy to comprehend, however, attribution seems to be affected by the frequency of 

occurrence of touchpoints. 

 

In summary, the Shapley Value solution scores highest on the interpretability aspect. The Markov 

chain second highest as it seems to be affected by the frequency of occurrence of touchpoints. The 

Heuristic-based models third highest as the rules are inherently flawed and attribution is driven by 

frequently encountered touchpoints. The logistic regression ends last as it has multiple difficulties in 

interpretation.  
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5.2.2 Predictive accuracy 

Consistent with past research, the heuristic-based model with the highest predictive performance is the 

last touch attribution model (Wooff & Anderson, 2013). The last touch attribution model has an area 

under the curve of 0.6858 and a top-decile lift of 4.8264 for the validation set. These performance 

scores amply suppress the random model. 

 Despite the Shapley Value solution uses the most basic feature construction scheme, it has the 

highest predictive ability on all metrics. It is a considerable improvement of the last touch attribution 

model with a value of 0.8839 on the area under the curve and a value of 7.8659 on the top-decile lift 

for the validation set. Hence, this implies that simpler constructed models with less information can 

outperform overly complex models that make use of all information.  

  The dynamic logistic regression has a better predictive performance than the regular logistic 

regression. From the dynamic logistic regressions, the best performing model is the most complex one 

with the three latest time instances. However, as obtained from the data, more complex models tend to 

overfit. In addition, both a bagging and regularization procedure is applied to the regular logistic 

regression, which substantially improved the predictive ability. More specifically, the bagged 

regularized logistic regression outperforms the Shapley Value solution at some regions of the ROC 

graph. Meaning that depending on the desired threshold cutoff between the true positive rate and false 

positive rate, the model may be superior. 

 The Markov chain is less well in predicting conversion in comparison with other data-driven 

models. However, the first-order and second-order Markov chain still improve the heuristic-based 

models. The first-order Markov chain performs better on the area under the curve for the validation set 

and the second-order Markov chain performs better on the top-decile lift for the validation set, which 

makes the model comparable with regard to predictive accuracy. Yet, higher-order Markov chains 

tend to overfit drastically. The fourth-order Markov chain has a predictive ability just above the 

random model. A rationale for overfitting is that the sequence of touchpoints (i.e. state) occurs rarely 

and is therefore not generalizable to new unseen examples. 

 

In summary, the order of models with the best predictive accuracy from high to low is as follows: the 

Shapley Value solution, the logistic regression, the Markov chain, and the heuristic-based models. 

 

5.2.3 Robustness 

The robustness of a model is measured on two aspects. The robustness of the predictive accuracy and 

the robustness of assigning contribution to the touchpoints. The latter is more important as the goal is 

to evaluate attribution models. Heuristic-based models have an average robustness in comparison with 

the data-driven models. To give an indication, the last touch attribution model has an average 

coefficient of variation of attribution of 13.1514. 
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 The Shapley Value solution has a relatively small robustness score on the predictive ability 

measures. Nonetheless, the average coefficient of variation of attribution is 31.2133, which is the 

second highest robustness score of all estimated models. Hence, the predictive performance is stable, 

however, the attribution is unstable to small deviations in the underlying data-generating process. An 

explanation for the high robustness score of attribution is that in the second step of the model only the 

customer journeys leading up to conversion are taken into consideration. Hence, when the data is 

highly skewed, it contains a few customer journeys leading up to conversion which, in turn, leads to 

volatile results. 

  The regular logistic regression has a better robustness score than the heuristic-based models 

both on the predictive ability and attribution. The dynamic logistic regression with the last two or last 

three time instances has a substantially worse robustness score of attribution. More specifically, the 

dynamic logistic regression with the last three time instances has the highest average coefficient of 

variation of attribution. Increasing the complexity of the dynamic logistic regression leads to unstable 

attribution. In addition, the bagging and regularization procedure has a positive effect on the 

robustness. The bagged regularized logistic regression has the second smallest average coefficient of 

variation of all estimated models. 

 The Markov chain is the best performing model on the robustness aspect. The robustness score 

of the predictive ability is lower than the heuristic-based models. More importantly, the average 

coefficient of variation of attribution of all estimated Markov chains is low and the differences 

between lower- and higher-order models are small. Yet, the Markov chain with the lowest average 

coefficient of variation of attribution is the first-order model. An explanation for the high robustness 

score of the Markov chain is that the model computes the transition probabilities on the entire dataset 

by exploiting the temporal sequence. 

 

In summary, the order of models regarding their robustness from high to low is as follows: the Markov 

chain, the logistic regression, the heuristic-based models, and the Shapley Value Solution.  

 

5.2.4 Overall results 

In conclusion, the results indicate that none of the attribution models are superior on all three aspects. 

The Shapley Value solution has the highest predictive accuracy and has a good interpretability but is 

not robust. The logistic regression has a good predictive ability and robustness when the bagging and 

regularization procedure are applied, yet does not score high on interpretability as the model does not 

aim to reflect the contribution of a touchpoint. The Markov chain is robust and moderately 

interpretable, but the model does not score well on predicting conversion. Nevertheless, all data-driven 

models are better than the heuristic-based models since they outperform heuristic-based models on at 

least two of the three aspects. See Figure 2 below for a graphical summary of the data-driven 

attribution models. In addition, the data-driven models produce different intermediate results from 
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which different types of information can be obtained. The different types of information are interesting 

as such, yet combining these results provides additional insights into understanding and influencing 

the customer journey. 

 

Figure 2. Venn diagram of the data-driven attribution models. 

 

5.3 Limitations, importance, and future research 

This thesis has several limitations. First of all, the results are solely based on one dataset. The 

properties, size, and domain of the data may affect the findings. A lot of customer journeys in this 

dataset are short as a high number of customer journeys only consists of one or two touchpoints. More 

sophisticated data-driven models are not required since in the case of short customer journeys, 

heuristic-based models deliver quite satisfactory performances. As the results demonstrate, the 

predictive accuracy of the last touch attribution model appears to be reasonable. Nevertheless, when 

longer and more complex customer journeys are present, more sophisticated data-driven models are 

indispensable. Moreover, the enterprise-initiated touchpoints in the dataset are impressions meaning 

that the customer did not necessarily clicked on it. Data of clicks may be more informative and lead to 

different outcomes. Furthermore, the analyses are conducted on a travel agency dataset. Despite online 

advertisement plays a pivotal role and customers spend generally lots of time researching vacations or 

trips (Pabel & Prideaux, 2016; Park & Oh, 2012), the results may not be generalizable to other 

industries. 

 Even so, the attribution models themselves have their limitations. To make more fine-grained 

decisions of the contribution of touchpoints, one could consider incorporating more information as the 
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revenues from the conversion or the cost of the touchpoints. Berman (2017) proposed a model that 

incorporates the revenue generated by the customer. Another issue of devoting credit to touchpoints is 

that attribution models are endogenic. Put differently, alternative explanations exist for the 

relationship between the touchpoints and conversion. For example, retargeting customers who already 

interacted with the enterprise have inherently a higher propensity to purchase as they have already 

shown interest. To establish a causal inference, elimination of extraneous variables is required. 

Dalessandro et al. (2012) proposed a causal attribution model, however, they also acknowledged the 

impracticality of estimating a fully causal model.  

 

Notwithstanding its limitations, this study fills a gap in the literature by comparing and evaluating the 

heuristic-based attribution models, the Shapley Value solution, the logistic regression, and the Markov 

chain. Changes should be made gradually and going from heuristic-based models to data-driven 

models is a considerable improvement in the attempt to capture the genuine attribution. It is often 

unattainable and impractical to make radical changes (Burke, 2017). The primary contribution of this 

thesis is that enterprises can decide which attribution model fits their needs the best. In other words, it 

assists enterprises to choose the adequate attribution model. All the evaluation criteria are important, 

but none of the attribution models is superior. Hence, a direct implication is that enterprises should 

make a trade-off. Some enterprises may be more concerned with the predictive ability and other may 

be more risk averse and want stable results. Yet, creating transparency by evaluating the models 

encourage enterprises to abandon heuristic-based models and adopt data-driven models. Another 

implication is that it is valuable to estimate multiple data-driven attribution models since the 

intermediate outcomes generate different types of information. These different types of information 

are interesting as such, however, combining the outcomes provides supplementary insights into 

understanding and influencing the customer journey. On the basis of the evaluation of the existing 

data-driven attribution models, future research could take several directions. More specifically, one 

could propose a new attribution model or a modification to an existing attribution model that 

outperforms the evaluated attribution models on one specific evaluation criterion. Alternatively, one 

could attempt to develop a multifaceted novel attribution model that is easy to interpret, has a high 

predictive accuracy, and is robust. 
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6. Conclusion 
The aim of this thesis is to evaluate attribution models that are often used in practice to capture the 

true conversion attribution. Better attribution models lead to fewer costs and higher profits which 

eventually results in a higher economic welfare. This leads to the following research question: to what 

extent are the heuristic-based attribution model, Shapley Value solution, the logistic regression, and 

the Markov chain easy to interpret, robust, and accurate? The results show that none of the attribution 

models outperforms the others on all three aspects. The Shapley Value solution has the highest 

predictive accuracy and has a good interpretability but is not robust. The logistic regression has a good 

predictive ability and robustness when the bagging and regularization procedure are applied, yet does 

not score high on interpretability as the model does not aim to reflect the contribution of a touchpoint. 

The Markov chain is robust and moderately interpretable, but the model does not score well on 

predicting conversion. In addition, the data-driven models produce different intermediate results from 

which different types of information can be obtained. The different types of information are interesting 

as such, yet combining these results provides additional insights into understanding and influencing 

the customer journey. However, the generalizability is limited since the analyses are conducted on one 

single travel agency dataset. The properties, size, and domain of the data may affect the findings. 

Notwithstanding its limitations, enterprises can decide which attribution model fits their needs the 

best. All the evaluation criteria are important, but none of the attribution models is superior. 

Enterprises should make a trade-off between which aspects they regard as most important. Yet, going 

from heuristic-based models to data-driven models is a considerable improvement in the attempt to 

capture the genuine attribution.  
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Appendix  
 

Touchpoints Probability in percentage 

Accommodation website 0.69 

Accommodation app 0.70 

Accommodation search 0.67 

Information/comparison website 1.13 

Information/comparison app 0.58 

Information/comparison search 1.36 

Travel agent website 0.86 

Travel agent app 1.2 

Travel agent search 1.6 

Focal website 5.28 

Focal search 7.45 

Airline company website 1.07 

Airline company app 1.45 

Airline company search 0.94 

Generic search 0.81 

Affiliates 2.41 

Banner 0.82 

Email 6.91 

Pre-rolls 0.35 

Retargeting 8.43 

Table 1. A table representing the conditional probability of conversion given an individual touchpoint. Note 1: the 

probabilities are expressed in percentage. Note 2: the highlighted values have a probability higher than 0.05. 
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0.67                   

 

0.98 0.72                  

 

5.26 2.74 2.49                 

 

2.75 1.52 2.07 12.5                

 

1.61 1.13 1.23 2.47 1.67               

 

1.48 1.1 1.22 1.61 2.02 1.03              

 

0 0 0.6 0 0 2.5 0             

 

0 0 6.7 7.69 0 0 6.21 0            

 

4 8.33 8.29 11.76 5.88 4.44 9.77 0 22.22           

 

3.88 3.17 4.82 6 5.13 3.78 5.18 2.25 13.48 7.92          

 

0.93 0.88 0.97 4.83 2.3 1.21 1.49 0.68 8.57 7.94 4.45         

 

1.09 0.68 0.9 6.25 2.4 1.38 0.76 0 0 4.35 2.74 0.89        

 

1.59 2.14 1.55 6.67 2.33 1.98 1.96 0 14.29 8.57 4.02 1.67 1.27       

 

1.08 1.08 1.28 2.39 2.96 1.41 1.52 0.87 8.72 9.55 5.37 1.33 1.07 1.41      

 

0 0 0.39 0 0 0 0.63 0 0 0 0.92 0 0 0 0.6     

 

7.69 5.93 7.57 6.58 13.33 5.51 8.33 5.56 18.52 13.95 8.98 7.4 8.57 8.97 8.8 2.63    

 

0 2.94 1.69 0 2 2.17 1.15 0 0 14.29 3.92 2.13 1.32 3.85 2.04 0 9.09   

 

1.15 1.38 1.73 2.99 1.75 2.15 2.25 0 15.79 7.56 4.38 1.62 1.06 3.11 2 0 7.69 2.17  

 

1.15 0.91 1 2.2 1.77 1.2 1.32 0.65 7.32 8.26 4.93 1.12 0.95 1.59 1.48 0.42 8.46 1.61 1.67 

 

Table 2. A matrix representing conditional probability of conversion given the interaction between two touchpoints. The 

matrix will become too large when the names are presented on the axis. The touchpoints are sorted in alphabetical order. The 

order is: accommodation app, accommodation search, accommodation website, affiliates, airline company app, airline 

company search, airline company website, banner, email, focal search, focal website, generic search, information/comparison 

app, information/comparison search, information/comparison website, pre-rolls, retargeting, travel agent app, travel agent 

search, and travel agent website. Note 1: the probabilities are expressed in percentage to take up less space. Note 2: only the 

left-hand side of the diagonal of the matrix is filled since the right-hand side of the diagonal is the mirror image. Note 3: the 

highlighted values have a probability higher than 10 in percentage. 
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-0.7                   

 

-0.41 -0.64                  

 

2.15 -0.34 -0.61                 

 

0.6 -0.6 -0.07 8.64                

 

-0.03 -0.48 -0.4 -0.88 -0.72               

 

-0.29 -0.64 -0.54 -1.87 -0.5 -0.98              

 

-1.52 -1.49 -0.91 -3.23 -2.27 0.74 -1.89             

 

-7.61 -7.58 -0.9 -1.63 -8.36 -7.85 -1.77 -7.73            

 

-4.15 0.21 0.15 1.9 -3.02 -3.95 1.25 -8.27 7.86           

 

-2.1 -2.78 -1.15 -1.69 -1.6 -2.44 -1.17 -3.85 1.29 -4.81          

 

-0.58 -0.6 -0.53 1.61 0.04 -0.54 -0.39 -0.95 0.85 -0.32 -1.64         

 

-0.19 -0.57 -0.37 3.26 0.37 -0.14 -0.89 -1.4 -7.49 -3.68 -3.12 -0.5        

 

-0.47 0.11 -0.5 2.9 -0.48 -0.32 -0.47 -2.18 6.02 -0.24 -2.62 -0.5 -0.67       

 

-0.75 -0.72 -0.54 -1.15 0.38 -0.66 -0.68 -1.08 0.68 0.97 -1.04 -0.61 -0.64 -1.08      

 

-1.05 -1.02 -0.65 -2.76 -1.8 -1.29 -0.79 -1.17 -7.26 -7.8 -4.71 -1.16 -0.93 -1.71 -0.88     

 

-1.44 -3.17 -1.55 -4.26 3.45 -3.86 -1.17 -3.69 3.18 -1.93 -4.73 -1.84 -0.44 -0.82 -0.76 -6.15    

 

-1.9 1.07 -0.2 -3.61 -0.65 0.03 -1.12 -2.02 -8.11 5.64 -2.56 0.12 -0.46 1.29 -0.29 -1.55 -0.54   

 

-1.15 -0.89 -0.56 -1.02 -1.3 -0.39 -0.42 -2.42 7.28 -1.49 -2.5 -0.79 -1.12 0.15 -0.73 -1.95 -2.34 -0.63  

 

-0.41 -0.62 -0.55 -1.07 -0.54 -0.6 -0.61 -1.03 -0.45 -0.05 -1.21 -0.55 -0.49 -0.63 -0.51 -0.79 -0.83 -0.45 -0.79 

 

Table 3. A matrix representing the synergy effects between touchpoints. The matrix will become too large when the names 

are presented on the axis. The touchpoints are sorted in alphabetical order. The order is: accommodation app, 

accommodation search, accommodation website, affiliates, airline company app, airline company search, airline company 

website, banner, email, focal search, focal website, generic search, information/comparison app, information/comparison 

search, information/comparison website, pre-rolls, retargeting, travel agent app, travel agent search, and travel agent website. 

Note 1: the values are multiplied by 100 percent to take up less space. Note 2: only the left-hand side of the diagonal of the 

matrix is filled since the right-hand side of the diagonal is the mirror image. Note 3: the highlighted values have an absolute 

synergy effect higher than 5. 
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 Estimate Std. Error z value Pr(>|z|) 

Bias -5.1263 0.0825 -62.1410 <0.0001*** 

Accommodation website -0.0115 0.0171 -0.6730 0.5010 

Accommodation app 0.0166 0.0815 0.2040 0.8384 

Accommodation search 0.0251 0.0917 0.2740 0.7842 

Information/comparison website -0.0215 0.0160 -1.3420 0.1797 

Information/comparison app -0.1217 0.0310 -3.9270 0.0001*** 

Information/comparison search -0.1638 0.2313 -0.7080 0.4789 

Travel agent website -0.0231 0.0154 -1.5040 0.1327 

Travel agent app 0.0333 0.1369 0.2430 0.8081 

Travel agent search -0.7340 0.2760 -2.6600 0.0078** 

Focal website 0.1759 0.0202 8.7150 <0.0001*** 

Focal search 0.3176 0.1505 2.1100 0.0349* 

Airline company website 0.0462 0.0222 2.0770 0.0378* 

Airline company app 0.0236 0.0668 0.3540 0.7236 

Airline company search -0.1595 0.1156 -1.3800 0.1677 

Generic search 0.0360 0.0173 2.0730 0.0382* 

Affiliates -0.1374 0.4556 -0.3020 0.7629 

Banner 0.0109 0.3478 0.0310 0.9750 

Email 0.0209 0.0317 0.6580 0.5108 

Pre-rolls -1.0498 0.8519 -1.2320 0.2178 

Retargeting -0.0421 0.0239 -1.7600 0.0784 

Table 4. Estimated coefficients of the vanilla logistic regression. Significance codes: *** = P<0.001, ** = P<0.01,  

* = P<0.05. 
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Average 

marginal effect Std. Error z value Pr(>|z|) 

Accommodation app 0.0001 0.0005 0.2040 0.8384 

Accommodation search 0.0001 0.0005 0.2738 0.7843 

Accommodation website -0.0001 0.0001 -0.6722 0.5014 

Affiliate -0.0008 0.0027 -0.3016 0.7630 

Airline company app 0.0001 0.0004 0.3536 0.7236 

Airline company search -0.0009 0.0007 -1.3747 0.1692 

Airline company website 0.0003 0.0001 2.0600 0.0394* 

Banner 0.0001 0.0021 0.0314 0.9750 

Email 0.0001 0.0002 0.6574 0.5109 

Focal search 0.0019 0.0009 2.0927 0.0364* 

Focal website 0.0010 0.0001 7.7563 <0.0001*** 

Generic search 0.0002 0.0001 2.0512 0.0402* 

Information/comparison app -0.0007 0.0002 -3.8240 0.0001*** 

Information/comparison search -0.0010 0.0014 -0.7074 0.4793 

Information/comparison website -0.0001 0.0001 -1.3360 0.1816 

Pre-roll -0.0062 0.0051 -1.2273 0.2197 

Retargeting -0.0003 0.0001 -1.7531 0.0796 

Travel agent app 0.0002 0.0008 0.2429 0.8081 

Travel agent search -0.0044 0.0017 -2.6145 0.0089 

Travel agent website -0.0001 0.0001 -1.4985 0.1340 

Table 5. Average marginal effects of the vanilla logistic regression. Significance codes: *** = P<0.001, ** = P<0.01, 

* = P<0.05. 

 

 
 Estimate 

Bias -5.1533 

Accommodation website -0.0061 

Accommodation app -0.0051 

Accommodation search -0.0384 

Information/comparison website -0.0128 

Information/comparison app -0.0293 

Information/comparison search -0.0475 

Travel agent website -0.0156 

Travel agent app -0.0302 
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Travel agent search -0.3501 

Focal website 0.1556 

Focal search 0.2475 

Airline company website 0.0146 

Airline company app 0.0238 

Airline company search -0.0768 

Generic search 0.0064 

Affiliates -0.2781 

Banner -0.1842 

Email 0.0181 

Pre-rolls -0.4382 

Retargeting -0.0083 

Table 6. Estimated coefficients of the bagged regularized logistic regression.  
 

 Estimate 

Bias -6.3386 

Accommodation website 0.5356 

Accommodation app -13.2275 

Accommodation search -13.2275 

Information/comparison website 0.9495 

Information/comparison app -13.2275 

Information/comparison search -13.2275 

Travel agent website 0.7676 

Travel agent app -13.2275 

Travel agent search 1.4788 

Focal website 4.8580 

Focal search -13.2275 

Airline company website 0.7988 

Airline company app -13.2275 

Airline company search -13.2275 

Affiliates -13.2275 

Banner -13.2275 

Email 3.2251 

Pre-rolls -13.2275 

Retargeting 3.7736 

Table 7. Estimated coefficients of the dynamic logistic regression with only the last touchpoint. The reference level is the 

touchpoint “Generic search”.  
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 Estimate 

Bias -7.1306 

Coefficients of features last time instance:  

Accommodation website 0.5084 

Accommodation app -13.8874 

Accommodation search -14.1950 

Information/comparison website 0.9285 

Information/comparison app -14.2880 

Information/comparison search -14.2793 

Travel agent website 0.5797 

Travel agent app -14.1352 

Travel agent search 1.5048 

Focal website 4.8258 

Focal search -16.4847 

Airline company website 0.7546 

Airline company app -14.3268 

Airline company search -14.1744 

Affiliates -14.5394 

Banner -14.3782 

Email 2.1885 

Pre-rolls -14.6787 

Retargeting 1.8213 

Coefficients of features one before last time instance:  

Accommodation website 0.6817 

Accommodation app 2.4079 

Accommodation search 0.3602 

Information/comparison website 1.0870 

Information/comparison app -14.8270 

Information/comparison search -14.7501 

Travel agent website 1.0727 

Travel agent app -13.6584 

Travel agent search 1.4193 

Focal website 3.5030 

Focal search 0.4279 

Airline company website 0.4904 
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Airline company app -14.2594 

Airline company search 0.9544 

Generic search 0.6796 

Affiliates 2.5838 

Banner 2.6030 

Email 1.2005 

Pre-rolls -13.8815 

Retargeting 2.1168 

Table 8. Estimated coefficients of the dynamic logistic regression with the two last touchpoints. The reference level at the last 

time instance is “Generic search” and one before last time instance is “None”. 

 

 

 Estimate 

Bias -6.8705 

Coefficients of features last time instance:  

Accommodation website 0.5345 

Accommodation app -13.6694 

Accommodation search -13.9636 

Information/comparison website 0.7585 

Information/comparison app -14.9646 

Information/comparison search -13.8453 

Travel agent website 0.3739 

Travel agent app -14.6754 

Travel agent search 1.6445 

Focal website 4.2904 

Focal search -16.4172 

Airline company website 0.3758 

Airline company app -15.8760 

Airline company search -14.3111 

Affiliates -14.5110 

Banner -13.6259 

Email 1.7401 

Pre-rolls -14.2220 

Retargeting 0.7237 

Coefficients of features one before last time instance:  

Accommodation website -0.5265 

Accommodation app 1.1791 
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Accommodation search -0.6847 

Information/comparison website -0.0677 

Information/comparison app -16.3165 

Information/comparison search -16.0607 

Travel agent website -0.2685 

Travel agent app -15.2946 

Travel agent search 0.1426 

Focal website 2.1807 

Focal search -1.0127 

Airline company website -0.5669 

Airline company app -15.2187 

Airline company search -0.5657 

Generic search -0.5715 

Affiliates 1.3386 

Banner 1.3366 

Email -0.3333 

Pre-rolls -15.1145 

Retargeting 0.2187 

Coefficients of features two before last time instance:  

Accommodation website 0.5870 

Accommodation app -12.9599 

Accommodation search -13.6082 

Information/comparison website 1.4991 

Information/comparison app 2.0338 

Information/comparison search -13.6993 

Travel agent website 1.1955 

Travel agent app -11.2772 

Travel agent search -14.4097 

Focal website 2.4429 

Focal search 1.3208 

Airline company website 1.9274 

Airline company app 3.8495 

Airline company search 1.6158 

Generic search 0.6277 

Affiliates 3.8859 
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Banner -14.5672 

Email 1.2212 

Pre-rolls -14.3466 

Retargeting 3.1397 

Table 9. Estimated coefficients of the dynamic logistic regression with the three last touchpoints. The reference level at the 

last time instance is “Generic search”, one before last time instance is “None”, and two before last time instance is also 

“None”. 

 

 

First 

Touch 

attribution 

Last 

Touch 

attribution 

Shapley 

Value 

Vanilla 

logistic 

regression 

Bagged 

regularized 

logistic 

regression 

Dynamic 

logistic 

regression 

(only last 

touchpoint) 

Accommodations 

website 0.1615 0.1719 0.0233 0.0522 0.0517 0.0093 

Accommodation 

app 0 0 0.001 0.0529 0.0517 0 

Accommodation 

search 0.0052 0 0.0016 0.0537 0.0505 0 

Information 

website 0.0573 0.0729 0.0495 0.0518 0.0511 0.0141 

Information app 0.0052 0 0.0005 0.0471 0.0496 0 

Information 

search 0 0 0.0053 0.0469 0.0488 0 

Travel agent 

website 0.1771 0.1667 0.0384 0.0514 0.0513 0.0117 

Travel agent app 0 0 0.0013 0.0539 0.0509 0 

Travel agent 

search 0.0104 0.0052 0.0122 0.0262 0.0386 0.0235 

Focal website 0.4063 0.4479 0.3777 0.0637 0.0615 0.5731 

Focal search 0 0 0.0707 0.0717 0.0648 0 

Airline company 

website 0.0417 0.0417 0.0288 0.0557 0.0529 0.0121 

Airline company 

app 0.0104 0 0.0047 0.0544 0.0533 0 

Airline company 

search 0.0052 0 0.004 0.0444 0.0483 0 

Generic search 0.0365 0.0208 0.0154 0.0548 0.0524 0.0055 

Affiliate 0.0052 0 0.0113 0.045 0.0411 0 

Banner 0.0052 0 0 0.0509 0.0437 0 

Email 0.0312 0.0104 0.0726 0.0539 0.0537 0.1308 

Pre-roll 0 0 0 0.0187 0.0331 0 

Retargeting 0.0417 0.0625 0.2815 0.0507 0.0509 0.2199 
Table 10. The contribution assigned to each touchpoint by the estimated models. Graph 5 in section 4.2 of the main report 

provides a graphical depiction of the attribution scores. Note: the table is split into two parts, table 11 is the accompanying 

table. 
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Dynamic 

logistic 

regression 

(last two 

touchpoints) 

Dynamic 

logistic 

regression 

(last three 

touchpoints) 

Markov 

chain 

first-

order 

Markov 

chain 

second-

order 

Markov 

chain 

third-

order 

Markov 

chain 

fourth-

order 

Accommodations 

website 0.003 0.0019 0.1671 0.1587 0.1527 0.1477 

Accommodation 

app 0 0 0.0159 0.0125 0.0108 0.0094 

Accommodation 

search 0 0 0.0292 0.0255 0.0241 0.0229 

Information 

website 0.007 0.0094 0.1224 0.1225 0.1247 0.1262 

Information app 0 0 0.0148 0.0116 0.0111 0.011 

Information 

search 0 0 0.0093 0.0094 0.0101 0.011 

Travel agent 

website 0.0048 0.0038 0.1721 0.1682 0.1643 0.1616 

Travel agent app 0 0 0.0054 0.0039 0.0034 0.0032 

Travel agent 

search 0.0164 0 0.0166 0.019 0.0199 0.0205 

 Focal website 0.8892 0.9026 0.1219 0.1496 0.1566 0.1593 

Focal search 0 0 0.0059 0.0082 0.0103 0.0137 

Airline company 

website 0.0032 0.006 0.1094 0.1007 0.0974 0.094 

Airline company 

app 0 0 0.0086 0.0064 0.0067 0.0073 

Airline company 

search 0 0 0.0239 0.0242 0.0262 0.0258 

Generic search 0.0018 0.0011 0.1056 0.0942 0.0877 0.088 

Affiliate 0 0 0.0036 0.0063 0.0098 0.01 

Banner 0 0 0.0039 0.0047 0.0046 0.0044 

Email 0.0276 0.014 0.0161 0.0182 0.0188 0.0201 

Pre-roll 0 0 0.0049 0.0052 0.0054 0.0048 

Retargeting 0.0469 0.0611 0.0435 0.0509 0.0555 0.0591 
Table 11. The contribution assigned to each touchpoint by the estimated models. Graph 5 in section 4.2 of the main report 

provides a graphical depiction of the attribution scores. Note: the table is split into two parts, table 10 is the accompanying 

table. 
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Initial idea - a Hidden Markov model 
 

The initial goal of this thesis was to assess to what extent there is a difference in the value of ads 

between stages of the purchase decision process. The idea was derived from the paper by Abhishek et 

al. (2012) who employed a hidden Markov model (hereafter abbreviated as HMM) anchored by the 

notion of a conversion funnel. Within the customer journey, distinctive stages of the purchase decision 

process can be identified. The process of walking through the customer journey and eventually 

purchasing is the conversion funnel (Kotler & Armstrong, 2010). The latent stages of the Markov 

model reflect the engagement of the customer through the conversion funnel (i.e. disengaged, active, 

engaged, conversion). Through the use of the conversion funnel, touchpoints can be assessed within 

the engagement stage. Some advertisements may be more effective in earlier stages and some in later 

stages. 

 

As earlier indicated in the dataset section in the main report, the dataset can be broadly classified in 

enterprise-initiated touchpoints and customer-initiated touchpoints. Enterprise-initiated touchpoints 

are divided into displays, retargeted displays, pre-roll ads, affiliates, and e-mails. Relevant customer-

initiated touchpoints are websites, apps, and search engine terms, and can, in turn, be divided into 

information/comparison, accommodation, airline, competitive travel agencies and the focal company. 

In collaboration with the focal company is determined which websites, apps, and search engine terms 

are relevant and belongs to which of above-mentioned categories. The distinction between enterprise-

initiated touchpoints and customer-initiated touchpoints is not implemented in the main report, but 

when a HMM was to be applied, it would be performed. 

 

The emission of the latent stages of the HMM is multivariate, as it would output both a customer-

initiated touchpoint and whether the consumer has converted at a particular point in time. This latent 

stage of the customer journey is not present in the data but can be inferred from the multivariate output 

(i.e. customer-initiated touchpoint and conversion). The transition between the latent stages is a 

function of enterprise-initiated touchpoints, which can be interpreted as ads (Netzer, Ebbes, & Bijmolt, 

2017). Based on the estimated parameters in the model, conversion attribution can be determined. The 

number of latent stages is not fixed, but could be determined by an information criterion (e.g. BIC), 

however, the last stage needs to be the conversion stage (Vrieze, 2012). An example of how the model 

would look like with four stages is depicted in Figure 3 (Abhishek et al., 2012, p. 9).  
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Figure 3. Diagram representing the latent stages and outcomes of a HMM. Reprinted from Media exposure through the 

funnel: A model of multistage attribution. (p. 9), by Abhishek, V., Fader, P., & Hosanagar, K. 

 

The objective was to assess to what extent there is a difference in the value of ads between stages of 

the purchase decision process. Since the idea was grounded on the conversion funnel, the propensity to 

purchase must increase as the customer moves down the funnel. Hence, it is vital to impose (at the 

least) the constraint that the propensity to purchase must increase as the customer walks through the 

funnel because otherwise the model fits something arbitrary and without this constraint, it is 

impossible to address the question whether there is a difference in the value of ads between stages of 

the purchase decision process (Abhishek et al., 2012). To the best of my knowledge, there is solely 

one package in R (and none in Python) that can impose constraints and has all other required 

properties (i.e. have discrete distributions, manage panel data, possibility to add covariates/factors to 

model the transition probabilities, and has a multivariate output). This package is the DepmixS4 

package in R (Speekenbrink & Visser, 2013). Unfortunately, the HMM employed with the DepmixS4 

package could not find a solution with the constraint that the propensity to purchase must increase as 

the customer moves down the funnel. When these constraints are imposed, the model does not fit and 

a warning message is provided. 

 

Conducting the model without constraints results in a HMM that seems to fit interests in different 

types of products rather than a conversion funnel, although the results are difficult to interpret. Before 

diving into the output of the DepmixS4 package, I will elaborate on the HMM. The model consists of 

three components: the initial stage probabilities, the transition probabilities, and the emission 

probabilities (Rabiner, 1989). The initial stage distribution is the probability distribution that a 

customer journey starts at a particular stage. A reasonable assumption is that the consumer starts in a 

disengaged stage and becomes more engaged when encountering touchpoints. Ideally, a constraint has 

to be imposed that the consumer begins in the first stage (Abhishek et al., 2012). For instance, when 
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there are four stages the initial stage distribution would be {1, 0, 0, 0}. The transition probabilities 

between the hidden stages is a function of time-varying ads. More specifically, the ads are assumed to 

follow a multinomial logistic regression, where each stage can loop to itself or another stage. In 

addition, a constraint that the customer can only move down the funnel would improve the concept of 

the conversion funnel as this is natural to the funnel (Abhishek et al., 2012). Lastly, the emission 

probabilities are twofold as the output of the stages are both customer-initiated touchpoints as well as 

whether or not the consumer convert. The probabilities of the customer-initiated touchpoints have to 

sum up to one and the probability of conversion and non-conversion has to sum up to one. The last 

stage in the conversion funnel is the conversion stage and hence the probability to convert has to be 1 

at this stage. Moreover, the propensity to purchase must increase as the customer moves down the 

funnel. The latter constraint is required for the identification of the stages since otherwise there exists 

no funnel (Abhishek et al., 2012). 

 

The output of the HMM without constraints can be found in the Appendix of the initial idea. More 

specifically, the output consists of three components: the initial stage probabilities, the transition 

coefficients of the multinomial logit model for each stage and the corresponding probabilities at zero 

values of the enterprise-initiated touchpoints, and the twofold emission probabilities of the customer-

initiated touchpoints as well as whether or not the consumer convert. It is considerably difficult to 

identify and interpret the hidden stages of the HMM as the model attempt to fit the data perfectly. 

Nonetheless what the model fits is unknown and is extremely hard to comprehend as the concept of 

the conversion funnel has vanished. One could argue that the HMM fit interests in different types of 

products. For example, the probability of visiting an accommodation website given it is in stage one is 

0.852, which indicate that customers in stage one are only interested in accommodations. Another 

argument to support this claim is that the probability to convert in stage one, stage two, and stage three 

is <0.001, which suggest that the customers are not interested in booking a trip at a travel agency. 

Another notable fact is that the probability to purchase is extremely low (0.004), which makes it even 

harder for the model to find a good fit. Nevertheless, the interpretation of the stages without a 

theoretical background is rather subjective and one might come up with a different interpretation of 

the stages.  

 

In conclusion, imposing constraints will resolve the identification and interpretation problem but there 

is no HMM package that could fit the data with these constraints. As indicated in the previous 

paragraph, the model does seem to fit interests in different types of products rather than a conversion 

funnel. Hence, the whole concept of the conversion funnel has vanished. It is impossible to measure to 

what extent there is a difference in the value of ads between stages of the purchase decision process, 

without imposing constraints on the HMM. Therefore, a new feasible research question is chosen 

which I address in the main sections of this thesis. 
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Appendix - Initial idea 
 
The Output of a HMM without constraints performed with the package DepmixS4. 

 

Initial stage probabilities    

P(𝑠1) P(𝑠2) P(𝑠3) P(𝑠4) 

0.392 0.181 0.343 0.084 
P(Si) is the probability of starting in stage i. 

 

Transition coefficients of the multinomial logit model for stage 1  

                       To: 𝑆1 𝑆2 𝑆3 𝑆4 

Bias 0 13.553 14.064 9.323 

Affiliate      0 5.455 5.754 -1.290 

Banner         0 -13.026 -12.729 -11.397 

Retargeting   0 -13.443 -13.168 -9.469 

Pre-roll      0 14.955 14.746 17.671 

Email        0 -13.392 -13.387 -9.677 
The values in column Si are the coefficient for the multinomial logit function of going from stage 1 to stage i. Moreover, the 

first column is parametrized to zero for the base category.  

 

Probabilities at zero values of the enterprise-initiated touchpoints for stage 1 

P(𝑠1) P(𝑠2) P(𝑠3) P(𝑠4) 

<0.001 0.373 0.622 0.005 
P(Si) is the probability of going from stage 1 to stage i at zero values of the enterprise-initiated touchpoints. 

 

Transition coefficients of the multinomial logit model for stage 2  

                       To: 𝑆1 𝑆2 𝑆3 𝑆4 

Bias 0 -9.005 -0.225 -5.202 

Affiliate      0 8.960 0.907 2.438 

Banner         0 7.664 -0.151 -3.920 

Retargeting   0 8.339 0.422 4.348 

Pre-roll      0 7.974 0.173 -4.434 

Email        0 -8.026 0.050 -1.096 
The values in column Si are the coefficient for the multinomial logit function of going from stage 2 to stage i. Moreover, the 

first column is parametrized to zero for the base category.  

 

Probabilities at zero values of the enterprise-initiated touchpoints for stage 2 

P(𝑠1) P(𝑠2) P(𝑠3) P(𝑠4) 

0.554 <0.001 0.443 0.003 
P(Si) is the probability of going from stage 2 to stage i at zero values of the enterprise-initiated touchpoints. 

 

Transition coefficients of the multinomial logit model for stage 3 

                       To: 𝑆1 𝑆2 𝑆3 𝑆4 

Bias 0 -0.673 -6.846 -4.378 

Affiliate      0 -0.047 1.487 2.632 

Banner         0 -0.535 2.923 3.539 

Retargeting   0 -0.025 5.364 3.308 

Pre-roll      0 -0.028 4.450 -4.102 

Email        0 -0.783 5.052 1.946 
The values in column Si are the coefficient for the multinomial logit function of going from stage 3 to stage i. Moreover, the 

first column is parametrized to zero for the base category.  
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Probabilities at zero values of the enterprise-initiated touchpoints for stage 3 

P(𝑠1) P(𝑠2) P(𝑠3) P(𝑠4) 

0.656 0.335 <0.001 0.008 
P(Si) is the probability of going from stage 3 to stage i at zero values of the enterprise-initiated touchpoints. 

 

Transition coefficients of the multinomial logit model for stage 4 

                       To: 𝑆1 𝑆2 𝑆3 𝑆4 

Bias 0 -0.058 0.558 4.783 

Affiliate      0 -0.217 -6.071 -4.119 

Banner         0 -0.108 -0.949 -4.208 

Retargeting   0 -0.647 -0.222 -0.819 

Pre-roll      0 -0.441 -2.818 -4.930 

Email        0 -1.047 -2.854 -1.301 
The values in column Si are the coefficient for the multinomial logit function of going from stage 4 to stage i. Moreover, the 

first column is parametrized to zero for the base category.  

 

Probabilities at zero values of the enterprise-initiated touchpoints for stage 4 

P(𝑠1) P(𝑠2) P(𝑠3) P(𝑠4) 

0.008 0.007 0.014 0.970 
P(Si) is the probability of going from stage 4 to stage i at zero values of the enterprise-initiated touchpoints. 
 

Emission probabilities of the customer-initiated touchpoints 

 P(𝑠1) P(𝑠2) P(𝑠3) P(𝑠4) 

Accommodations website 
0.852 0.005 <0.001 0.068 

Accommodation app 0.003 0.011 0.018 <0.001 

Accommodation search <0.001 0.029 0.031 0.001 

Information/comparison website 
0.044 0.208 0.083 0.220 

Information/comparison app 

0.009 0.011 0.006 0.004 

Information/comparison search 
0.003 <0.001 0.004 0.016 

Travel agent website <0.001 <0.001 0.787 0.343 

Travel agent app 0.006 0.004 <0.001 <0.001 

Travel agent search 0.009 0.010 <0.001 0.018 

Focal website 0.008 0.020 0.002 0.190 

Focal search <0.001 <0.001 <0.001 0.010 

Airline company website 0.004 0.451 0.001 0.014 

Airline company app 0.008 0.003 0.005 <0.001 

Airline company search 0.020 0.004 0.016 0.005 

Generic search 0.033 0.244 0.045 0.112 
 

 

 

   
P(Si) is the probability of encountering a specific customer-initiated touchpoint when being in stage i. 

 

Emission probabilities of the whether the potential customer convert 

 P(𝑠1) P(𝑠2) P(𝑠3) P(𝑠4) 

Non-conversion >0.999 >0.999 >0.999 0.996 

Conversion <0.001 <0.001 <0.001 0.004 
P(Si) is the probability of converting or non-converting when being in stage i. 

 

 

 

 


