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 Measuring the explained variance by a model is a well-established way of assessing the 

goodness-of-fit in multiple linear regression analysis. Researchers who analyze data with a nested 

structure often require a measure that can be used and interpreted in the same way when applied to 

mixed effects models. However, the R-squared measure is not directly applicable to the multilevel 

context (where mixed effects models are used). 

The challenge of defining and interpreting a proper measure of explained variance by a mixed 

model has been taken up by many researchers before. In the present paper, I analyze some of the most 

renowned solutions to this issue. Along with this review of the literature, a new measure, based on 

ANOVA decomposition of variance is proposed. All of these measures are compared based on their 

performance when applied to specific multilevel datasets created specifically to stress some of the 

strength and weakness of these measures. The focus is on establishing if the measures comply with 

two fundamental properties defined for measures of explained variances (Kvalseth, 1985): whether 

they fall in the interval 0-1 and whether their value increases as predictors are added to the models 

(Cameron & Windmeijer, 1996). 

In the following, the concept of R-squared will be first presented in the context of multiple 

linear regression and it will be subsequently extended to the multilevel context (section 1). In section 

2, the ANOVA decomposition-based measure will be introduced along with the review of the 

previously proposed measures. Subsequently, I will compare the measures performances on six 

fictitious example datasets (Section 3), and conclude with a discussion of the results in section 4. 

 

1. Explained Variance in Regression Analysis (𝑅2) 

In simple and multiple linear regression, the overall quality of the fit of a model is usually 

assessed through the 𝑅2  statistics. The measure can be conceived in many different ways (for a 

complete overview see Kvalseth, 1985). Here, I am focusing on 𝑅2 as a measure of explained (or 

modeled) variance, which is usually indirectly defined as unity minus the unexplained variance:  
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 𝑅2 = 1 −
𝑣𝑎𝑟(𝑌𝑖−�̂�𝑖)

𝑣𝑎𝑟(𝑌𝑖)
 (1) 

where 𝑣𝑎𝑟(𝑌𝑖 − �̂�𝑖) is the mean squared prediction error when the prediction of Y is done through a 

regression model, and 𝑣𝑎𝑟(𝑌𝑖) is the mean squared prediction error based exclusively on the mean of 

the dependent variable. 

To understand this statistic, it is useful to recall the concept of proportional reduction of 

prediction error. Intuitively, this is rooted in the idea that the error of prediction is reduced by using 

the prediction equation instead of the sample mean 𝑌  to predict the outcome variable, Y. More 

formally, the prediction error can be expressed as the difference between the observed values (Yi) and 

the predicted value of Y. When no explanatory variables are used to predict the response variable, the 

best estimate of Y is the sample mean 𝑌 and, in such a case, we can summarize the prediction error 

by the squared sum of all the deviations from the mean. This is the Total Sum of Squares or 𝑇𝑆𝑆 =

Σ(𝑌𝑖 − 𝑌)2. When explanatory variables are used in a prediction model, we talk about Residual Sum 

of Squares or 𝑅𝑆𝑆 = Σ(𝑌𝑖 − �̂�)2. 

TSS and RSS are the squared prediction errors for the null model and the model with 

predictors, respectively. The ratio of these two quantities is the proportional reduction in the error of 

prediction, a concept that is equivalent to the proportional reduction in the unexplained variance due 

to the inclusion of predictors in a null model. This is because TSS and RSS can be interpreted as 

measures of variability in the sense that they are larger the more the y-predictions are distant from the 

observed values. In this sense, TSS can be interpreted as the total variability in the outcome variable 

that can be explained, and RSS is the amount of this total variability that is left unexplained (not 

modeled) after using the explanatory variables as predictors. The ratio of these two quantities is the 

proportion of the total variance that is left unaccounted for by the model. If we subtract this from the 

total explainable variance (which is 
𝑇𝑆𝑆

𝑇𝑆𝑆
= 1) then we have the amount of explained variance by the 

model: 
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 𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
= 1 −

Σ(𝑌𝑖−�̂�)2

Σ(𝑌𝑖−𝑌)2 = 1 −
𝑣𝑎𝑟(𝑌𝑖−�̂�)

𝑣𝑎𝑟(𝑌𝑖)
 (2) 

Two properties of the defined 𝑅2 measures are especially important: (1) 𝑅2 will always fall 

between 0 and 1; (2) adding predictors to the model cannot decrease the value of 𝑅2. 

For proving the first property, the difference between the predicted value �̂�𝑖 and the observed 

𝑌𝑖 can be expressed as: 

𝑌𝑖 − 𝑌 = (𝑌𝑖 − �̂�𝑖) − (�̂�𝑖 − 𝑌) 

by taking the square of both sides and summing across all observations i, we obtain: 

Σ𝑖=1
𝑛 (𝑌𝑖 − 𝑌)2 = Σ𝑖=1

𝑛 [(𝑌𝑖 − �̂�𝑖) − (�̂�𝑖 − 𝑌)]
2
 

which can be rewritten by algebraic manipulation1 (e.g. Draper & Smith, 1981) as 

Σ𝑖=1
𝑛 (𝑌𝑖 − 𝑌)2 = Σ𝑖=1

𝑛 (𝑌𝑖 − �̂�𝑖)
2 + Σ𝑖=1

𝑛 (�̂�𝑖 − 𝑌)2 

which makes obvious that Σ(𝑌𝑖 − �̂�𝑖)
2 ≤ Σ(𝑌𝑖 − 𝑌)2, and therefore 𝑅2 ≥ 0. 

As for the second property, it is also clear from equation 1 that R-squared can decrease from 

a model to another only if the RSS increases from a first to a second model. However, adding 

predictors to a linear regression model will never increase the prediction error since it is not possible 

to explain less variation in Y by adding a predictor to a linear model (Agresti & Finlay, 2009). 

 

2. The challenges of R2 Measures for Mixed Models 

The first challenge in the application of the 𝑅2 statistic to hierarchical linear modeling is the 

presence of multiple variance components (e.g., within-group variance, between-group variance, 

                                                 

 

 
1 The cross-product of resulting from [(𝑌𝑖 − 𝑌) − (�̂�𝑖 − 𝑌)]

2
 is equal to 0: 𝐶𝑃𝑇 = 2Σ(𝑌𝑖 − �̂�𝑖)(�̂�𝑖 − 𝑌) = 0 

Since  𝑌𝑖 − �̂�𝑖 = 𝑌𝑖 − 𝑌 − 𝑏1(𝑋𝑖 − 𝑋)  

And �̂�𝑖 − 𝑌 = 𝑏1(𝑋𝑖 − 𝑋) 

Then 𝐶𝑃𝑇 = 2 ∑ 𝑏1(𝑋𝑖 − 𝑋)[𝑌𝑖 − 𝑌 − 𝑏1(𝑋𝑖 − 𝑋)] = 

 = 2 ∑ [𝑏1(𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌) − 𝑏1
2(𝑋𝑖 − 𝑋)

2
] = 

 = 2𝑏1(𝜎𝑋𝑌 − 𝑏1𝜎𝑋
2) = 0 

since 𝑏1 is the ratio of the covariance between X and Y (𝜎𝑋𝑌) and the variance in X (𝜎𝑋
2), 𝑏1 =

𝜎𝑋𝑌

𝜎𝑋
2 . 
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slope variance). A first decision must be made regarding what level is the explained variance measure 

referring to, 𝑣𝑎𝑟(𝑌𝑖𝑗) or 𝑣𝑎𝑟(�̅�𝑗). A second, related, problem is that the presence of random slopes 

in the model makes the definition of explained variance even more complex; when random slopes are 

included in the model, the explained and unexplained variances depend on the values of the 

explanatory variable (heteroscedasticity). 

To understand the challenges that R-squared measures face in multilevel analysis, it is helpful 

to consider, as examples, two different mixed models: one random intercept and one random slope 

model. Both models will have one dependent variable Y, one level-1 predictor Xij, and one level-2 

predictor Wj. 

We begin with the random intercept model by presenting the relationship between the 

outcome variable Y and its predictors within any group j (level-1 model). 

 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑋1𝑖𝑗 + 𝑒𝑖𝑗 (3) 

The intercept 𝛽0𝑗 is the expected Y score for all individuals in a group j, 𝛽1 is the slope, common to 

all groups, which indicates the average expected change in Y associated with a unit change in X, the 

level-1 predictor. Finally, 𝑒𝑖𝑗 is the unique effect of person i in group j, also known as error variance, 

which is assumed to be standard normally distributed, 𝑒𝑖𝑗 ~ 𝑁(0, 𝜎2). 

The subscript j, assigned to the intercept, indicates that its value is allowed to change between 

groups. Its specific value depends on a constant, common to all groups (which might be interpreted 

as the true grand mean), and a group specific effect 𝑢0𝑗 , which is also assumed to be standard 

normally distributed 𝑢0𝑗 ~ 𝑁(0, 𝜏0
2)2. In the model we are describing here, there is also a group-level 

variable Wj which is going to be part of the specific model of the intercept. All this is expressed in 

the following level-2 equations: 

                                                 

 

 
2 The 0 as subscript in the notation 𝜏0

2 serves to distinguish the variance of the random intercepts, from the variance of 

the random slopes 𝜏1
2 which will be introduced in the sequel. 



R-SQUARED MAESURES IN MULTILEVEL MODELLING 

 

 

7 

 𝛽0𝑗 = 𝛾00 + 𝛾01𝑊𝑗 + 𝑢0𝑗 

 𝛽1 = 𝛾10 (4) 

Equations 3 and the set of equations 4 are often referred to as level 1 and level 2 equations of 

the multilevel model, respectively. By plugging the latter into the former we obtain the actual random 

intercept mixed model (or random ANCOVA model) with a predictor at each level: 

 𝑌𝑖𝑗 = 𝛾00 + 𝛾10𝑋𝑖𝑗 + 𝛾01𝑊𝑗 + 𝑢0𝑗 + 𝑒𝑖𝑗 (5) 

This final model has five parameters in total, three for the fixed effects (𝛾00, 𝛾10, 𝛾01), and two for 

the random effects (𝜎2, 𝜏0
2). 

The second model that is useful to describe is the random slope mixed model. The individual 

level relationship remains mostly unchanged, except for the regression coefficient of the predictor 

which now gains a subscript j. As for the intercept in the previous case, this subscript indicates that 

the slope has now a group-specific value. 

 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑋1𝑖𝑗 + 𝑒𝑖𝑗 (6) 

The part of the set of level-2 equations that models the intercept variation remains unchanged, 

while in the equation corresponding to the regression coefficient, a new group specific effect comes 

into play, namely 𝑢1𝑗: 

𝛽0𝑗 = 𝛾00 + 𝛾01𝑊𝑗 + 𝑢0𝑗 

 𝛽1𝑗 = 𝛾10 + 𝑢1𝑗 (7) 

where 𝑢∗𝑗 belongs to a multivariate standard normal distribution, that is 𝑢∗𝑗~𝑁(0, ∑). Since random 

slopes and intercepts are usually correlated, three parameters must be defined as part of the variance-

covariance matrix ∑. These are the random intercept variance 𝜏0
2, the random slope variance 𝜏1

2, and 

the covariance between the two 𝜏01: 

Σ = [
𝜏0

2 𝜏01

𝜏01 𝜏1
2 ] 

The resulting mixed model will hence be the following: 
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 𝑌𝑖𝑗 = 𝛾00 + 𝛾10𝑋𝑖𝑗 + 𝑢1𝑗𝑋𝑖𝑗 + 𝛾01𝑊𝑗 + 𝑒𝑖𝑗 + 𝑢0𝑗 (8) 

which has a total of seven parameters: 𝛾00, 𝛾10, 𝛾01, 𝜎2, 𝜏0
2, 𝜏1

2, 𝜏01. It is important to note that as 

a consequence of the introduction of random slopes, the error variance in Y now depends on the value 

of X, what is known as heteroscedasticity (Snijders & Bosker, 1999, Chapter 8). In other words, in 

certain groups, the value of X might not matter at all for the prediction of the Y outcome, while in 

other groups it might be quite influential. 

 

2.1 Understanding variance: variance components in nested data 

Equation 5 and 8 are modeling the response variable Y. The observed variance in Y can be 

decomposed into the empty (or null) model level-1 and level-2 variances, 𝜎0
2 and 𝜏00

2  respectively3. 

The null model, which is needed for the definition and calculation of the explained variance, is a 

model stripped of all its predictors and in the multilevel context it often takes the following form: 

 𝑌𝑖𝑗 = 𝛾00 + 𝑢0𝑗 + 𝑒𝑖𝑗 (9) 

The total variance in the observed values of Yij is the sum of these two variances: 

 𝑣𝑎𝑟(𝑌𝑖𝑗) = 𝜎0
2 + 𝜏00

2  (10) 

The estimation of these two parameters in the null model allows to define the intraclass 

correlation coefficient (), which expresses the percentage of the total explainable variance in Yij that 

is accounted by the group membership: 

 𝜌 =
𝜏00

2

𝜏00
2 +𝜎0

2 (11) 

Once we add predictors to the null model, the meaning of ICC changes. If we were to estimate the 

variance components of the model in equation 5 for example, we would have to interpret 𝜌 (now =

                                                 

 

 
3 The second 0 in the notation of 𝜏00

2  allows to distinguish the group level variance in the null model from the 

unexplained level-2 variance of a full model 𝜏0
2. It has the same meaning of the 0 I use to distinguish the error 

variance in the null model, 𝜎0
2, from the error variance in the full model 𝜎2. 



R-SQUARED MAESURES IN MULTILEVEL MODELLING 

 

 

9 

𝜏0
2

𝜏0
2+𝜎2) as the proportion of variance in Y accounted for by the group membership, controlling for the 

predictors included in the model. In more intuitive terms, it would be the proportion of the variance 

in Yij, unexplained by the model, that is attributable to the clustering of first level units in second level 

units, keeping the covariates constant. 

When random slopes are added to the model, the concept of ICC has no longer any fixed 

meaning because adding the random slopes leads to heteroscedasticity and therefore the error variance 

depends on the values of individual level predictors. As mentioned above, in the random slopes 

model, the level-2 random effects dispersion is defined not only by their variances, but also by their 

covariances: 𝜏01. 

Thus far, only the variance in Yij has been discussed. However, predictions can be made also 

at the second (or higher) level when predicting the value of the group mean �̅�𝑗, for a randomly selected 

level-2 unit j. According to Snijders and Bosker (1994), in the null model, the (unexplained) variance 

at this level is then expressed by: 

 𝑣𝑎𝑟(�̅�𝑗) = 𝜏00
2 +

𝜎0
2

𝑛𝑗
 (12) 

Which is the sum of the true variance between the groups and the expected sampling error variance. 

This latter quantity is the quotient of the within-group variance and the harmonic mean of the group 

means sizes. When the group are small, the expected sampling error variance has a substantial effect 

in determining the expected observed variance between groups; on the contrary, when groups are 

large, the observed between groups variance, 𝑣𝑎𝑟(�̅�𝑗), is much closer to the true between group 

variance, 𝜏00
2 . 

When the random intercept model with predictors is considered, the level-2 unexplained variance is 

expressed as: 

 𝑣𝑎𝑟(�̅�𝑗|𝑋) = 𝜏0
2 +

𝜎2

𝑛𝑗
 (13) 
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Table 1 reports a summary of all the variances that have been described and their variance 

components when applicable. 

Table 1 – Variances and variance components 

 Description Variance components 

𝑣𝑎𝑟(𝑌𝑖𝑗) 
Variance in the observed values of the response 

variable in the empty or null model 
𝜎0

2 + 𝜏00
2  

𝑣𝑎𝑟(𝑌𝑖𝑗 − 𝑌′𝑖𝑗) 
Unexplained variance in the observed values of 

the response variable in the model with 

predictors 

𝜎2 + 𝜏0
2 

𝑣𝑎𝑟(�̅�𝑗) 
Variance in the average of the observed 

response variable in group j in the null model 

𝜏00
2 +

𝜎0
2

𝑛𝑗
 

𝑣𝑎𝑟(�̅�𝑗 − �̅�′𝑗) = 

𝑣𝑎𝑟(�̅�𝑗|𝑋) 

Unexplained variance in the average of the 

observed response variable in group j in the 

model with predictors 

𝜏0
2 +

𝜎2

𝑛𝑗
 

ICC Intraclass correlation 
𝜏00

2

𝜏00
2 + 𝜎0

2
 

𝑣𝑎𝑟(𝑒𝑖𝑗) 
Variance in the unique effect of individual i in 

group j 
𝜎2 

𝑣𝑎𝑟(𝑢0𝑗) 
Variance in the unique effect of group j on the 

mean response variable, holding all predictors 

constant 

𝜏0
2 

𝑣𝑎𝑟(𝑢1𝑗) 
Variance in the unique effect of group j on the 

slope of the level-1 predictor 
𝜏1

2 

𝑐𝑜𝑣(𝑢0𝑗 , 𝑢1𝑗) 
Covariance between level-1 intercepts and 

slopes 
𝜏01 

 

2.2 Level-specific measures of modelled variance 

In the following, first, two wildly used measures of level-specific R2 will be presented and 

then their characteristics will be discussed in detail. These first statistics allow to distinguish the 

explained variance at different levels. Subsequently, two measures that assess the overall explained 

variance will be discussed. Finally, a comprehensive alternative measure based on ANOVA 

decomposition of variance will be introduced. 
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2.2.1 Bryk and Raudenbush (1992) 

Bryk and Raudenbush (1992) have proposed one of the first measures of explained variance 

as a relative measure. Their measure expresses the reduction in unexplained variance when predictors 

are added to a null model. 

As explained above, in multilevel analysis, fitting the null model provides an estimate of the 

proportions of variance in Yij that are due to the group or the individual level. When predictors are 

added, and a random intercept mixed model is estimated, part of the total variance in the outcome 

variable is now modelled by those predictors, and part of it is still unaccounted for. An estimate of 

this unaccounted part is provided by the estimation of the variances of the random effects (𝜎2, and  

𝜏0
2). This provides an opportunity to define a proportion of reduction in (unaccounted) variance, at 

both levels, or in other words, a measure of modelled variance. The approach illustrated by Bryk and 

Raudenbush (1992) consists of comparing the residual error variances, within each level, of a random 

intercept model with predictors, with the total variance partitions estimates of the random intercept-

only model (null model). Therefore, the estimated amount of explained variance at the second level 

is: 

 𝑅2𝐵&𝑅
2 =

𝜏00
2 −𝜏0

2

𝜏00
2 = 1 −

𝜏0
2

𝜏00
2  (14) 

Likewise, at the first level: 

 𝑅1𝐵&𝑅
2 =

𝜎0
2−𝜎2

𝜎0
2 = 1 −

𝜎2

𝜎0
2 (15) 

where the footer 0 refers to the null model and the variances without it regard the mixed model with 

predictors. 

The sum of the proportions resulting from equation 14 and 15 can be interpreted as the total 

amount of variance explained by the model: 

 𝑅𝐵&𝑅
2 = 𝑅1𝐵&𝑅

2 + 𝑅2𝐵&𝑅
2  (16) 

The code for measures implementation in R of these and all the following approaches are presented 

in appendix 1 with detailed comments. 
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2.2.2 Snijders and Bosker (1994) 

A second widely appreciated approach has been proposed by Snijders and Bosker (1994). 

Their starting point is an attentive decomposition of the variance of the prediction errors at the 

individual, as well as at the group level. 

Starting from level-1, they point out that, in the model with prediction, the variance of the 

prediction error (MSE) of the individual values on the response variable Yij is the sum of the residual 

variances at both levels estimated in the full model: 

 𝑣𝑎𝑟(𝑌𝑖𝑗 − �̂�𝑖𝑗) = 𝜎2 + 𝜏0
2 (17) 

By considering the variance of the prediction error for both the null model and the model with 

predictors, and applying the standard definition of R2 given in equation 1, they straightforwardly 

derive the following level-1 explained variance measure: 

 𝑅1𝑆&𝐵
2 = 1 −

𝑣𝑎𝑟(𝑌𝑖𝑗−�̂�𝑖𝑗)

𝑣𝑎𝑟(𝑌𝑖𝑗)
= 1 −

(�̂�2+�̂�0
2)

(�̂�0
2+�̂�00

2 )
  (18) 

(notation as above). 

There is a double interpretation of  𝑅1𝑆&𝐵
2 : its value can be referred to as the contribution to of the 

predictors to the explained variance at the first level, or as the proportional reduction in the value of 

the total unexplained variance (𝜎2 + 𝜏0
2). The latter interpretation allows to consider this measure as 

a measure of total explained variance. 

For what concerns the second level, the reduction in the mean square prediction error of the 

group means is considered. In the null model, when no predictors are present, the best predictor of �̅�𝑗 

is its expectation, and the associated MSE is 𝑣𝑎𝑟(�̅�𝑗), expressed as in equation 12. In the random 

intercept model with predictors, the best predictor of �̅�𝑗  is the outcome of �̅�𝑗𝛽 and the associated 

prediction error variance is: 

 𝑣𝑎𝑟(�̅�𝑗 − �̅�𝑗𝛽) = 𝑣𝑎𝑟(�̅�𝑗 − �̅�′𝑗) = 𝑣𝑎𝑟(�̅�𝑗|X𝑗) =
𝜎2

𝑛𝑗
+ 𝜏0

2 (19, rep. 13) 
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Hence, by applying equation 1 and substituting the relevant estimates of the variance of the 

prediction error for the second level, Snijders and Bosker define the estimated level-2 explained 

variance as the proportional reduction in the means square prediction error of the group means: 

 𝑅2𝑆&𝐵
2 = 1 −

𝑣𝑎𝑟(�̅�𝑗−�̅�′𝑗)

𝑣𝑎𝑟(�̅�𝑗)
= 1 −

(
𝜎2

𝑛
+𝜏0

2)

(
𝜎0

2

𝑛
+𝜏00

2 )

 (20) 

It is important to consider the differences between the two approaches just reviewed. Bryk 

and Raudenbush’s (1992) measures are focused on the variances of the random effects at the two 

levels. Equations 14 and 15 take into account only the variance of the random effects of the group 

means, and the error variance (respectively) to estimate the level specific explained variances. 

The measures Snijders and Bosker (1994) proposed uses the variance components of the 

individual scores (which means both error variance and group level randomness, compare equation 

15 and 18) to compute the measure of first-level explained variance. Furthermore, the level-2 

modelled variance measure is based on a different conceptualization of the unexplained between-

group variability. While Bryk and Raudenbush consider 𝜏0
2, the variance of the random effects (i.e. 

intercept variance), to fully account for the unexplained between group-variability of Y, Snijders and 

Bosker define the group level unexplained variability as the variance in the group means of Y, 

conditionally on the predictors, 𝑣𝑎𝑟(�̅�𝑗|X𝑗). This allows the group-level unexplained variance used in 

their formula to be broken down into two components: the random effect variance (𝜏0
2) and the 

(weighted) error variance (
𝜎2

𝑛𝑗
), see equation 14 and 20. 

Snijders and Bosker (1994, 1999) discuss the extension of their measures to the random slope 

model. They present the detailed computational processes to obtain the variance estimates for models 

with both intercept and random slopes. However, by computing the R-squared measure for the 

intercept and random slope model in their proposed way, and the R-squared measures for the same 

model without the random slopes, with equation 18 and 20, they show that the results do not differ 

meaningfully. Hence, they conclude that the best way to compute the explained variance by a random 
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slope model is to estimate the same model without specifying the randomness of the slopes and 

computing R2 with equations 18 and 20. 

 

2.2.3 Variance components-based measures undesirable characteristics 

Despite their intuitive interpretation and widespread use, both these measures have two 

characteristics that we believe are undesirable. Recall that two of the properties of an explained 

variance measure are that its values should fall between 0 and 1 (Kvalseth, 1985), and that by adding 

a predictor to the model, it should always increase (Cameron & Windmeijer, 1996). 

The problem of negative R2 values might arise, for example, with the B&R measure when 

adding a level-1 predictor with no variation at the higher level. As Snijders and Bosker (1994) 

illustrated, in such a case, the 𝑅2𝐵&𝑅
2  may result in negative values. The reason lies in that it is not 

unusual to observe an increase in the level 2 unexplained variance when adding variables to a model. 

This can be understood in intuitive terms by looking at equation 19. If a within-group deviation 

variable4 is added to a model, this will decrease the error variance 𝜎2 . However, adding such a 

variable cannot affect the between-group unexplained variance. Therefore, the conditional variance 

of the group means of Y (𝑣𝑎𝑟(�̅�𝑗|X𝑗)) will remain unchanged, 𝜎2 will reduce, and 𝜏0
2 must increase 

to compensate. When applying the B&R level-2 explained variance measure, 𝜏2 is compared between 

the null to the full model (see equation 14) and if 𝜏2 increases by adding predictors, the result will be 

a negative R-squared measure (Sniders & Bosker, 1994, pp. 346-350). 

Snijders and Bosker’s (1994) measures do not suffer from the drawback of negative R-squared 

measure because of an increased 𝜏2 when adding a within-group deviation variable. The reason is 

that the parameter used for comparison, of the null and full model, when computing the R-squared 

measure, is not directly the intercept variance, 𝜏2, as in equation 14, but the second level variance in 

                                                 

 

 
4 A group mean centered variable, by definition, has zero between-group variance. 
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Y controlling for the predictors, 𝑣𝑎𝑟(�̅�𝑗|X𝑗), as in equation 20. As explained in section 2.2.2, this is 

a crucial difference between the measures proposed by B&S and S&B. Using in the computation of 

R-squared the parameter 𝑣𝑎𝑟(�̅�𝑗|X𝑗), as computed in equation 19, allows to keep into account the 

decrease in the estimated 𝜎2 and the increase in the estimated 𝜏2, that occurs when adding a group-

mean centered level-1 predictor, hence, avoiding the increase in level-2 residual variance from the 

null to the full model. However, the S&B measures are not exempt from the undesirable feature of 

negative level-2 R-squared values as our following fictitious example shows. 

The example consists of 60 cases divided into 10 balanced groups. Two variables are present 

in the dataset: Y and X, which respectively assume values between 0 and 4, and 1 and 30. The first 

group has a mean value of X equal to 2, for the second group it is equal to 5, and each for each group, 

the mean is incremented by 3 units (8, 11, 14, etc.) until 29, the mean of the 10th group. In each group 

the relationship between the predictor X and the outcome Y can be defined by the regression equation: 

𝑌 = 𝑏0 + 𝑏1𝑋 + 𝑒, The grand mean 𝑌.̅ and the group averages �̅�𝑗 are all equal to 2. In other words, 

there is no variation of the group means around the grand mean. See Figure 1 for a scatter plot of the 

data set of the example. 
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Figure 1 – Fictitious dataset illustrating a scenario in which both 

B&R and S&B measures of level-2 explained variance provide 

uninterpretable results. 

 

If we consider the random intercept only (null) model for the fictitious dataset the total variance in 

the observed Yij is due only to the individuals’ unique effects (𝑒𝑖𝑗) since 𝑢0𝑗 is equal to 0 in each 

group. By adding to the model the group means as a second level variable the prediction is not 

improved in any way and the variance of Y conditional on X stays 0. However, when the within-group 

deviation score variable is added to the model as well, the between group variance of Y conditional 

on X (unexplained level-2 variance) increases sharply. The reason is that, as it is visible from Figure 

1, controlling for predictor X, groups differ substantially in their “average” or predicted value of Y; 

adding a predictor to the random intercept only model (or null model) has “created” a large amount 

of unexplained variance in Yij, at the second level. This will result in negative values of R2 for both 

𝑅2𝐵&𝑅
2  and 𝑅2𝑆&𝐵

2 , which can be computed using the estimates of the variances of the random effects 

reported in Table 2. 
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Table 2 – Variance components estimated for null (first row) 

and full (second row) mixed model applied to the arbitrary data 

just described. 

Model �̂�2 �̂�00
2  

𝑌𝑖𝑗 = 𝛾00 + 𝜇0𝑗 + 𝑒𝑖𝑗 1.667 0 

𝑌𝑖𝑗 = 𝛾00 + 𝛾10𝑋1𝑖𝑗 + 𝜇0𝑗 + 𝑒𝑖𝑗 1.004 81.791 

 

Applying equations 15 and 14: 

𝑅1𝐵&𝑅
2 = 1 −

1.004

1.667
= .398 

𝑅2𝐵&𝑅
2 = 1 −

81.791

0
 

While the 𝑅1𝐵&𝑅
2  can be computed and is interpretable as the proportion of explained variance at the 

first level by the model with the predictor, compared to the null model, the 𝑅2𝐵&𝑅
2  measure has no 

mathematical meaning. However, if there had been any variance at the second level to begin with, 𝑅2
2 

would be a large negative number. For what concerns the S&B measure, results are even more 

undesirable: 𝑅1𝑆&𝐵
2 = −48.667 and 𝑅2𝑆&𝐵

2 = −2943.490. 

The example highlights how the undesirable characteristics of both 𝑅∗𝐵&𝑅
2  and 𝑅∗𝑆&𝐵

2  are more 

deeply rooted in the conception of the modelled variance as a measure of reduction in variance 

components. This feature makes the performance of both measures strongly dependent on the 

definition of the model, since, just by adding a level-1 predictor, the variance components at the 

higher-level change interpretation. The reason is that by including a level-1 predictor, the 

interpretation of 𝜏2 changes: it is the variance, controlled for all predictors. As the predictors change, 

so does the interpretation of 𝜏2. 

Snijders and Bosker (1994) would argue that the negative measures are evidences of a 

misspecified model. In particular, they would advise to use a group mean centered transformation of 

the predictor X, instead of the raw variable. However, as will be shown in the remaining of this article, 

their measures can result in negative values even when the model is correctly specified. 
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2.3 Overall explained variance 

Thus far, I have presented measures of modelled variance by the models within the different 

levels. However, the overall variance explained by a model can also be of interest. As I mentioned 

before, both the measures proposed by Bryk and Raudenbush (1992), and the ones proposed by 

Snijders and Bosker (1994) have a way of accounting for it. However, there are also other overall 

measures that can be considered. In the remaining of this section, two such measures are illustrated, 

and their performance will be assessed in the empirical section. 

 

2.3.1 Nakagawa and Schielzeth (2013) 

Nakagawa and Schielzeth (2013) defined a measure of overall explained variance that allowed 

for the distinction of the contribution to the explanation of the total variance in Y provided by the 

fixed and the random effects specified in a model. However, this measure is restricted to random 

intercept models. 

Nakagawa and Schielzeth (2013) claim that R2 measures can be grouped in two families: 

marginal R2, which consider the variance explained by fixed effects, and conditional R2, which 

describe variance explained by both fixed and random effects. The terms marginal and conditional 

come from the literature that extends linear mixed models to account non-linear relationships (e.g. 

Vonesh, Chinchilli, and Pu, 1996). The same terminology will be used in order to maintain continuity 

with the literature, but the focus here is put only on how the conditional measure is an interesting 

alternative to express the overall explained variance by a model. Nakagawa and Schielzeth (2013) 

refer to the marginal R-squared measure as the proportion of the total variance modelled by the fixed 

effects: 

 𝑅𝑚
2 =

𝜎𝑓
2

𝜎𝑓
2+∑ 𝜎𝑙

2𝑢
𝑙=1 +𝜎𝜀

2 (21) 

𝜎𝑓
2 = 𝑣𝑎𝑟 (∑ 𝛽𝑝𝑋𝑝𝑖𝑗

𝑃

𝑝=1

) 
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In the numerator, 𝜎𝑓
2 is the variance of the predictions based on the fixed effects (p is the pth predictor), 

the modelled variance. In the denominator, there is the total variance in the outcome variable given 

by the sum of the modelled variance, 𝜎𝑓
2, and the not-modelled variance, the sum of 𝜎𝜀

2, the error 

variance, and all the 𝜎𝑙
2 , the variances of the lth of u random effects5. To understand what 𝜎𝑙

2 

represents, consider a multilevel dataset where observations are nested in u higher-level units, where 

u is the number of nesting levels. If there are only two levels (e.g. students, and classes), there is only 

one higher level nesting unit (the classroom). Therefore, the term ∑ 𝜎𝑙
2𝑢

𝑙=1  would just be equal to 

𝜎𝐶𝐿𝐴𝑆𝑆
2 , the group level variance (previously referred to as 𝜏0

2). If the dataset included a third level, 

for example the school grouping, then there would be two higher level nesting units (classroom and 

school) and therefore ∑ 𝜎𝑙
2𝑢

𝑙=1  would be equal to 𝜎𝐶𝐿𝐴𝑆𝑆
2 + 𝜎𝑆𝐶𝐻𝑂𝑂𝐿

2 . Since in the present paper we are 

limiting the scope to two-level data structures, 𝑅𝑚
2  of equation 21 simplifies to: 

 𝑅𝑚
2 =

𝜎𝑓
2

𝜎𝑓
2+𝜎𝑙

2+𝜎𝜀
2 (22) 

(henceforth referred to as 𝑅𝑁&𝑆(𝑚)
2 ). 

This can simply be interpreted as the portion of the total variance, expressed as the sum of the 

variance in the predicted scores plus the residual variances at the first and second level, that is 

modelled by the variance of the predicted scores. 

The conditional R-squared measure is defined as the proportion of the total variance modelled 

by the fixed and the random effects together. It is expressed as: 

 𝑅𝑐
2 =

𝜎𝑓
2+∑ 𝜎𝑙

2𝑢
𝑙=1

𝜎𝑓
2+∑ 𝜎𝑙

2𝑢
𝑙=1 +𝜎𝜀

2 (23) 

which in the case of datasets with only two levels simplifies to: 

                                                 

 

 
5 It is important to note here that by saying lth random effect Nakagawa and Schielzeth (2013) are not distinguishing, 

for example, between a 𝜎1
2 variance of the random intercept, and a 𝜎2

2 variance of the random slopes, but they are 

distinguishing between a 𝜎1
2 variance of the random intercept due to the nesting of units in one group-level, and 𝜎2

2 

variance of the random intercept due to the nesting of the groups of units into higher level groups. 
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 𝑅𝑐
2 =

𝜎𝑓
2+𝜎𝑙

2

𝜎𝑓
2+𝜎𝑙

2+𝜎𝜀
2 (24) 

(henceforth referred to as 𝑅𝑁&𝑆(𝑐)
2 ). 

This measure is a generalization of the one proposed by Snijders and Bosker (1994) to the 

generalized linear mixed effects models (GLMMs) that also allows to estimate both the overall 

explained variance by a model and the variance at each specific level (see Nakagawa and Schielzeth, 

2013, for details on the level-specific extension). It can be interpreted as the variance explained by 

the entire model and it does not require the specification of a null model as reference. However, it is 

important to notice that this measure counts the random effects as explained variances. In practice, 

computing both 𝑅𝑁&𝑆(𝑚)
2  and 𝑅𝑁&𝑆(𝑐)

2  and subtracting the first from the second can give a measure of how 

much of the total variance is due to the random effects. 

One of the downsides of this measure is that it is not straightforwardly applicable to the 

context of random intercept models. An interested reader should consult Johnson (2014) who 

proposed an interesting approach in this direction. 

 

2.3.2 Xu (2003) 

Xu (2003) reviewed different approaches to the issue of multilevel modelled variance and 

proposed one based on the estimation of the posterior means by use of the Empirical Bayes estimator. 

The measure uses the residuals under an empty and a mixed model in analogy with ordinary linear 

regression as follows. The residuals are computed under both models as the differences between 

observed and predicted values of Y, where the predicted values are obtained after estimating the 

random effects by an empirical Bayes estimator (EB). In particular, the predicted values by the mixed 

model are expressed as: 

�̂�𝑖𝑗 = �̂�′𝑋𝑖𝑗 + �̂�0𝑗
𝐸𝐵𝑊𝑖𝑗 

with standard matrix algebra notation using the apostrophe to express the transpose of a vector. 𝑋𝑖𝑗 

is the vector of the predictors with fixed effects, and 𝑊𝑖𝑗 is the vector of the covariates with random 
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effects as estimated using empirical Bayes. In a model with only one random effect (random 

intercept), i.e. with 𝑊𝑖𝑗 equal to 1, the formula above simplifies to: 

�̂�𝑖𝑗 = �̂�′𝑋𝑖𝑗 + �̂�0𝑗
𝐸𝐵 

Similarly, the prediction done with the empty model takes the form: 

�̂�𝑖𝑗 = 𝛾00 + �̂�0𝑗
𝐸𝐵 

�̂�0𝑗
𝐸𝐵 is the vector of empirical Bayes estimated group random-effects, which can be computed 

for the null model as: 

�̂�0𝑗
𝐸𝐵 = 𝝀𝑗�̂�0𝑗 + (1 − 𝝀𝒋)𝛾00 

where �̂�0𝑗 = �̅�.𝑗 denotes the group mean, and 𝝀𝑗 is the vector the reliabilities of all groups j 

(𝜆𝑗 =
𝜏0

2

𝜏0
2 + 𝜎2/𝑛𝑗

). 

The R2 measure proposed by Xu (2003) is then computed as: 

 𝑅𝑋𝑢
2 = 1 −

∑ ∑ (𝑦𝑖𝑗−(�̂�′𝑋𝑖𝑗+�̂�0𝑗
𝐸𝐵))𝑛𝑖

𝑗=1
𝑛
𝑖=1

∑ ∑ (𝑦𝑖𝑗−(𝛾00+�̂�0𝑗
𝐸𝐵))𝑛𝑖

𝑗=1
𝑛
𝑖=1

= 1 −
𝑅𝑆𝑆

𝑅𝑆𝑆0
 (25) 

Which is the proportion of reduction in the variance of the prediction error that occurs when 

adding to the null model predictors for which fixed and random effects are specified. In other words, 

𝑅𝑋𝑢
2  measures the proportion of the variation in the outcome variable that is explained by the 

explanatory variables included in the model. 

This measure is a measure of overall explained variance in the sense that it does not 

distinguish between a level-1 and level-2 variances to be explained, but it concerns itself exclusively 

with explaining the variance of individual responses as sole indicator of the fit of a model. 

 

2.4. ANOVA variance decomposition measure 

Given the conceptual similarity between AN(C)OVA and hierarchical linear modelling, the 

issue of explained variance in the latter can be addressed by starting with the decomposition of 

variance of the former. According to the usual decomposition of the total variability around the 
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overall mean (TSS) as defined in traditional ANOVA, we can rewrite TSS as the sum of the between-

groups sum of squares (𝑆𝑆𝐵), and the within-groups sum of squares (𝑆𝑆𝑊): 

∑ ∑(𝑦𝑖𝑗 − �̅�)
2

𝐼

𝑖=1

𝐽

𝑗=1

= ∑ 𝑛𝑗(�̅�𝑗 − �̅�)
2

𝐽

𝑗=1

+ ∑ ∑(𝑦𝑖𝑗 − �̅�𝑗)
2

𝐼

𝑖=1

𝐽

𝑗=1

 

where 𝑦𝑖𝑗 are the observed y values, �̅� is the observed grand mean, �̅�𝑗 are the observed group means 

of y. 

By summing and subtracting to both the within- and between-group squared differences the 

predicted values at the corresponding level (𝑦′𝑖𝑗, the predicted response variable, and �̅�′𝑗, the average 

of the predicted values in each group), 𝑆𝑆𝐵  and 𝑆𝑆𝑊  can be rewritten in terms of predicted and 

unpredicted squared differences: 

𝑆𝑆𝐵 = ∑ 𝑛𝑗(�̅�𝑗 − �̅�)
2

𝐽

𝑗=1

= ∑ 𝑛𝑗

𝐽

𝑗=1

[(�̅�𝑗 − �̅�′𝑗)
2

+ 2(�̅�𝑗 − �̅�′𝑗)(�̅�′𝑗 − �̅�) + (�̅�′𝑗 − �̅�)
2

] 

𝑆𝑆𝑊 = ∑ ∑(𝑦𝑖𝑗 − �̅�𝑗)
2

𝐼

𝑖=1

𝐽

𝑗=1

= ∑ ∑ [(𝑦𝑖𝑗 − 𝑦′𝑖𝑗)
2

+ 2(𝑦𝑖𝑗 − 𝑦′𝑖𝑗)(𝑦′𝑖𝑗 − �̅�𝑗) + (𝑦′𝑖𝑗 − �̅�𝑗)
2

]

𝐼

𝑖=1

𝐽

𝑗=1

 

In these rewritten forms of 𝑆𝑆𝐵  and 𝑆𝑆𝑊 , the terms to the left (∑ 𝑛𝑗
𝐽
𝑗=1 (�̅�𝑗 − �̅�′𝑗)

2
 and 

∑ ∑ (𝑦𝑖𝑗 − 𝑦′𝑖𝑗)
2𝐼

𝑖=1
𝐽
𝑗=1 ) represent the unpredicted parts of the variance, whereas the terms to the right 

(∑ 𝑛𝑗
𝐽
𝑗=1 (�̅�′𝑗 − �̅�)

2
 and ∑ ∑ (𝑦′𝑖𝑗 − �̅�𝑗)

2𝐼
𝑖=1

𝐽
𝑗=1 ) represent the parts predicted by the model. These 

sums of squares can be used to evaluate the predicted variance in percentage over the total variance. 

𝑆𝑆𝐵  and 𝑆𝑆𝑊  can be considered as the total amount of variance at each level.  

Therefore, we can compute the level 1 and level 2 explained variance measures as: 

 𝑅1𝐴𝑁𝑉
2 =

∑ ∑ (𝑦′𝑖𝑗−�̅�𝑗)
2𝐼

𝑖=1
𝐽
𝑗=1

∑ ∑ (𝑦𝑖𝑗−�̅�𝑗)
2𝐼

𝑖=1
𝐽
𝑗=1

 (26) 

 𝑅2𝐴𝑁𝑉
2 =

∑ 𝑛𝑗(�̅�′𝑗−�̅�)
2𝐽

𝑗=1

∑ 𝑛𝑗(�̅�𝑗−�̅�)
2𝐽

𝑗=1

 (27) 



R-SQUARED MAESURES IN MULTILEVEL MODELLING 

 

 

23 

In the hierarchical linear model context, the predicted value of the outcome variable (𝑦′𝑖𝑗) at 

level 1 can be obtained using any estimation method. The level-2 predicted values, the group means 

�̅�′𝑗, are obtained by taking the average group values of the level-1 predicted values 𝑦′𝑖𝑗. 

Finally, we can also describe the total variance explained by the model as: 

 𝑅𝐴𝑁𝑉
2 =

∑ ∑ (𝑦𝑖𝑗
′ −�̅�)

2
𝐼
𝑖=1

𝐽
𝑗=1

∑ ∑ (𝑦𝑖𝑗−�̅�)
2𝐼

𝑖=1
𝐽
𝑗=1

 (28) 

When interpreting this measure, it is important to stress that it is expressing the amount of explained 

variance (within, between, or total) by the model compared to a null model without any predictor and 

without any random effects. This is a crucial difference compared to the other measures discussed, 

where the null model is usually defined to have no predictors but to have random effects (i.e. random-

intercept only model). This means that this measure expresses how much of the variance is model by 

the addition of the predictors and the specification of the random effects. 

A defining characteristic of the ANOVA decomposition measure, which is here deemed 

desirable, is that its interpretation is not model dependent in contrast to the measures proposed by 

B&R and S&B. That is, the measure directly employs the predictions on the dependent variable rather 

than predictions of Y keeping constant the values of the predictors, which changes when the model is 

adapted.  

 

3. Comparing measures of explained variance: results 

In the present section, the measures presented in this paper will be compared in terms of their 

performances in different scenarios generated explicitly to evaluate their compliance to the two 

properties defined above: values comprised between 0 and 1, and increased explained variance when 

adding predictors. A total of six approaches to the estimation of R-squared will be considered: 

• the level-specific measures proposed by Bryk and Raudenbush (1992), namely the level-2 

modelled variances (𝑅2𝐵&𝑅
2  of equation 14) and level-1 (𝑅1𝐵&𝑅

2  of equation 15), and their sum as 

measure of total explained variance; 
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• the level-specific measures proposed by Snijders and Bosker (1992), 𝑅1𝑆&𝐵
2  (equation 18) and 

𝑅2𝑆&𝐵
2  (equation 20), where the former is also interpreted as total explained variance measure; 

• the measures of marginal and conditional explained variances proposed by Nakagawa and 

Schielzeth (2013), 𝑅𝑁&𝑆(𝑚)
2  and 𝑅𝑁&𝑆(𝑐)

2 , respectively equation 22, and 23; 

• the measure of overall explained variance proposed by Xu (2003), 𝑅𝑋𝑢
2  from equation 25; 

• the ANOVA decomposition-based measure proposed in section 2.4, which consists of level 

specific measures, 𝑅1𝐴𝑁𝑉
2  and 𝑅2𝐴𝑁𝑉

2  (equations 26, and 27 respectively), and a measure of total 

explained variance, 𝑅𝐴𝑁𝑉
2  (eq. 28); 

To test the measures, I generated datasets according to a model-based strategy. The following 

general equation describes the basic variables involved and their relation: 

 𝑌𝑖𝑗 = 𝛾00 + 𝛽𝑤(𝑋𝑖𝑗 − �̅�𝑗) + 𝛽𝑏(�̅�𝑗) + 𝑢0𝑗 + 𝑒𝑖𝑗 (29) 

First, a vector of 10 group means, �̅�𝑗, is sampled from a defined normal distribution with case-specific 

parameters. Subsequently, 500 individual-level observations 𝑋𝑖𝑗 are sampled for each group from a 

standard normal distribution with group specific means �̅�𝑗. The group mean centered transformation 

of 𝑋𝑖𝑗 are used to compute the observed outcome values so that the values used for the regression 

coefficients can be controlled directly by specifying the values of 𝛽𝑤, the within-group regression 

coefficient, and 𝛽𝑏 , the between-group regression coefficient. The error variance term 𝑒𝑖𝑗 and the 

group random effects 𝑢0𝑗 are sampled from normal distributions with mean 0 and case-dependent 

variances 𝜎2 and 𝜏2, respectively, and then added to the computed individual level observations 𝑌𝑖𝑗. 

Six cases will be discussed in the following. Firstly, in the random intercept context, four cases with 

datasets generated with the model-based strategy will be discussed. Secondly, a further random 

intercept case where data was generated with a different approach will be considered. Ultimately, the 

context of random slopes will be approached with one final example. 
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3.1 Random Intercept Models 

3.1.1 Case 1 – Within- greater than between-group regression coefficient 

I set off by first presenting a scenario where we expect all measures to perform similarly and 

to yield non-negative values between 0 and 1. Data for this first scenario has been generated according 

to the following equation: 

 𝑌𝑖𝑗 = 0 + 1.3(𝑋𝑖𝑗 − �̅�𝑗) + .7(�̅�𝑗) + 𝑢0𝑗 + 𝑒𝑖𝑗 (30) 

The 10 group mean values for the variable X were chosen to be the 10 integer numbers in the sequence 

from 0 to 9. Individual observations were sampled from group-specific distribution all with the same 

variance (set to 1) but with mean corresponding to the group specific mean of X just defined. In other 

words, the observations of the individuals belonging to the same group were sampled from the same 

normal distribution, with the specific group mean of X as mean, and 1 as standard deviation. Once all 

the observations had been sampled, the mean of the groups were computed to obtain the actual group 

means. The two regression coefficients 𝛽𝑏 and  𝛽𝑤 were chosen to be both positive but different so 

that the averages �̅�𝑗 had a smaller effect than the individual level variable 𝑋𝑖𝑗 had. In particular, 𝛽𝑏 =

.7 and 𝛽𝑤 = 1.3. Finally, the unique effects were sampled from a normal distribution of mean 0 and 

variance 1, for both the level-1 residuals and level-2 random effects. 

The outcome variable was then generated by plugging into equation 30 all the values 

generated as just described. For a detailed description of the R code used to generate the data see 

appendix 2. 
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Figure 2 – Scatter plots for the first four datasets are displayed. Top left: case 1, within- greater 

than between-group regression coefficient. Top right: case 2, within- equal between-group 

regression coefficient. Bottom left: case 3, between-group regression coefficient close to zero. 

Bottom right: case 4, groups with similar means. 

 

The top left panel in Figure 2 shows a scatter plot of the data and the regression lines estimated 

by the models. The dashed regression line is the regression line of Y on the group averages, while the 

solid ones are the within group regressions of Y on X. 

Three multilevel models were fitted to the data generated using REML: 

A) 𝑌𝑖𝑗 = 𝛾00 + 𝜇0𝑗 + 𝑒𝑖𝑗 (the null model); 

B) 𝑌𝑖𝑗 = 𝛾00 + 𝛾01�̅�𝑗 + 𝜇0𝑗 + 𝑒𝑖𝑗 (a model with the group means as only predictor); 

C) 𝑌𝑖𝑗 = 𝛾00 + 𝛾10(𝑋1𝑖𝑗 − �̅�𝑗) + 𝛾01�̅�𝑗 + 𝜇0𝑗 + 𝑒𝑖𝑗 (a model with the within-group deviation 

score along with the group mean as predictors. Note that this model reflects the true model 

that was also used to generate all data. Table 3 summarizes the estimated residual variances 
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for the three models for all scenarios. For the current example, the column of interest is the 

within greater than between. 

Table 3 – Variance components estimates for the null model (A), the model with only group 

means as predictor (B), and the true model (C). 

 
within greater 

than between 

within equal 

between 

between approx. 

0 
similar group 

means 

Model 𝜎2 �̂�0
2 𝜎2 �̂�0

2 𝜎2 �̂�0
2 𝜎2 �̂�0

2 

A. Null model 2.660 3.166 9.749 74.459 104.96 1.787 13.813 17.776 

B. Level-2 pred. 2.660 .587 9.749 .573 104.96 1.966 13.813 19.990 

C. Level-2 & 1 

pred. 
1.009 .590 1.009 .590 5.171 2.165 5.038 20.017 

 

As expected, model B, which uses only the group average (�̅�𝑗) as predictor, is characterized 

by the same estimated level-1 unexplained variance as the null model (2.660), and a lower estimated 

level-2 unexplained variance (0.587). After including the group-mean centered level-1 predictor in 

the model (𝑋1𝑖𝑗 − �̅�𝑗 ) (model C), the estimated error variances in Y is halved. In particular, the 

estimated residual unexplained variance at the lower level (𝜎2) goes from 2.660, in the null model, 

to 1.009, in the full model; the estimated residual variance at the higher level (�̂�0
2) decreases from 

3.166 to 0.5. 

Table 4 shows the computed values for all the R2 measures considered for model B, the one 

with only the level-2 predictor. The B&R measure of level-1 explained variance is equal to 0, which 

means that by adding the group means as explanatory variable the mean squared prediction error is 

not reduced by any means. The B&R level-2 explained variance is .815 which means that 82% of the 

group-level variance is explained by the group means (the only predictor in the model). Hence, model 

B explains in total 82% of the variance in Y, according to the B&R measure. All the B&R statistics 

satisfy the requirements of being greater or equal to zero and smaller or equal to 1. 
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Moving to the S&B measures, it can be noted that the same holds. The level-2 explained 

variance is equal to the level-2 B&R measure and can be interpreted in the same way. The level-1 

S&B statistic, however, is equal to .443, which suggest that the 44.3% of the variance at the lower 

level is explained by the group means of X. By interpreting 𝑅1𝑆&𝐵
2  as a measure of overall explained 

variance, it can be said that the group means of X explain 44% of all the variance in Y. 

Turning to the ANOVA decomposition measure, it can be noticed that the level-1 explained 

variance is equal to 0 as was the B&R version, while the measure of level-2 explained variance is 

practically 1 (.997). However, the measure of total explained variance is more moderate (.557), 

suggesting that only about half of the overall variance in Y is explained by model B, compared to a 

reference model with no predictors nor random effects. This value is reasonably close to the S&B 

measure of total explained variance. 

The measure proposed by Nakagawa and Schielzeth (2013) suggest that 94% of the overall 

variance in Y is explained by the fixed effects, and that 96% of it is explained by fixed and random 

effects together. These values are contained in the 0-1 interval but seem to be overly optimistic about 

the fit of the model. 

Table 4 – R-squared Measures computed for model B estimated on each of the four data examples 

presented in Figure 2 

 
within greater 

than between 

within equal 

between 
between approx. 0 similar group means 

Measure 

Name 
𝑅1

2 𝑅2
2 𝑅𝑇𝑂𝑇

2  𝑅1
2 𝑅2

2 𝑅𝑇𝑂𝑇
2  𝑅1

2 𝑅2
2 𝑅𝑇𝑂𝑇

2  𝑅1
2 𝑅2

2 𝑅𝑇𝑂𝑇
2  

B&R 0 .815 .815 0 .992 .992 0 -.1 -.1 0 -.125 - 

S&B .443 .815 .443 .877 .992 .877 -.002 -.1 -.002 
-

.070 
-.125 -.070 

ANOVA 

decomp. 
0 .997 .517 0 1 .873 0 .822 .014 0 .997 .536 

N&S(m) - - .941 - - .866 - - 0 - - 0 

N&S(c) - - .963 - - .873 - - .019 - - .591 

Xu - - .423 - - 0 - - 0 - - 0 
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The measure proposed by Xu (.423) seems to indicate that approximately half of the total 

variance in Y is explained by the group means of X. This value is quite similar to the measures of 

overall explained variance proposed by S&B and the ANOVA decomposition measure of total 

explained variance. 

Table 5 (left side) shows the summary of the resulting measures of explained variance by 

model C, using as baseline model A. The level-2 explained variance measure proposed by B&R is 

equal to the one computed on model B (.814), which means that the inclusion of the within-group 

variance predictor did not improve the amount of explained variance at the second level. However, 

the model now explains 62% of the error variance estimated in the null model. These values are in 

accordance with the first property (0-1 range), while the value of the estimated second level explained 

variance is actually smaller, by the negligible amount of .001, compared to what was for model B. 

Furthermore, the measure of total explained variance suitable for the B&R framework well exceeds 

1 (1.435). 

 

The measures proposed by Snijders and Bosker (1994) follow a similar trend: the level-2 

explained variance is practically the same (.815 for model B, .814 for model C) even if it is actually 

Table 5 – R-squared Measures computed for model C estimated on each of the four data examples 

presented in Figure 2 

 
within greater 

than between 

within equal 

between 
between approx. 0 

similar group 

means 
Measure 

Name 
𝑅1

2 𝑅2
2 𝑅𝑇𝑂𝑇

2  𝑅1
2 𝑅2

2 𝑅𝑇𝑂𝑇
2  𝑅1

2 𝑅2
2 𝑅𝑇𝑂𝑇

2  𝑅1
2 𝑅2

2 𝑅𝑇𝑂𝑇
2  

B&R .621 .814 1.435 .896 .992 1.889 .951 
-

.212 
.739 .635 

-

.126 
.509 

S&B .726 .814 .726 .981 .992 .981 .931 
-

.211 
.931 .207 

-

.126 
.207 

ANOVA 

decomp. 
.621 .999 .817 .897 1 .987 .951 .991 .951 .635 .999 .831 

N&S(m) - - .716 - - .979 - - .931 - - .259 

N&S(c) - - .821 - - .987 - - .952 - - .851 

Xu - - .621 - - .879 - - .951 - - .635 
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lower by 1 unit at the third decimal place, which is not in line with the property of increasing explained 

variance; the level-1 explained variance is now .726, which means that by including the group-mean 

centered level-1 X, the prediction error at the lower level decreases by more than 70%. This can also 

be interpreted as a reduction of 70% in the value of �̂�0
2 + �̂�00

2 , the total variance estimated by the null 

model. 

Moving to the interpretation of the ANOVA decomposition measures, it can be said that 62% 

of the within-group variance is modelled by model C, using a reference to a model without any 

predictors and without random effects, and 99% of the variance between the groups (at the second 

level) seems to be modelled by model C. The model also explains 82% of the total variance in the 

outcome variable. 

According to the measures proposed by Nakagawa and Schielzeth (2013), 72% of the total 

variance is explained by the fixed effects, and 82% is explained by the fixed and random effects 

together. The difference between 𝑅𝑁&𝑆(𝑚)
2  and 𝑅𝑁&𝑆(𝑐)

2  reflects the percentage of the total variability 

that is due to random effects (here 10%). Finally, according to the Xu measure the residual variation 

in the response of a person i is reduced by 62%, relative to the null model. 

Notably, 𝑅1𝐵&𝑅
2  yields a measure that is identical to 𝑅1𝐴𝑁𝑉

2  (.621). The difference with the 

measure provided by 𝑅1𝑆&𝐵
2  is also noticeable. This is due to the different conceptualization of the 

residual variance provided by Snijders and Bosker; they base the level 1 residual variance on the sum 

of level 1 and level 2 variance (see equation 16). It is also interesting to notice how the measure of 

total explained variance proposed in the present article is similar to the measure of total explained 

variance by both fixed and random effects proposed by Nakagawa and Schielzeth (2013). Finally, the 

measure proposed by Xu (2003) is identical to 𝑅1𝐴𝑁𝑉
2 . 
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3.1.2 Case 2 – Within- equal between-group regression coefficient 

The second example dataset was created in such a way that the within and the between-group 

regression coefficient are the same. The procedure to generate the data followed the one described 

for the first example, with few changes. In particular, the model used to generate the outcome variable 

used the same value for both the within-group and the between group regression coefficients (𝛽𝑤 =

𝛽𝑏): 

 𝑌𝑖𝑗 = 0 + 3(𝑋𝑖𝑗 − �̅�𝑗) + 3(�̅�𝑗) + 𝑢0𝑗 + 𝑒𝑖𝑗 (31) 

Everything else was left unchanged (see appendix 2 for details). Figure 2 (top right panel) presents a 

scatter plot of the data generated for the present example. 

As in the first example, three models where fitted: null model (A), level-2 predictor only (B), 

and level-1 and 2 predictors model (C). Table 3 (center left columns, see column headings) presents 

the estimated unexplained variances by the three models. Results are in line with expectations with 

the error variance reducing only when the level-1 predictor is added to the model (from model A to 

model C), and the unexplained level-2 variance reducing just by adding the level-2 predictor (from 

74.459 in the null model, to .573 in model B). However, the level-2 residual variance estimated by 

model C is larger than in model B. 

Table 4 reports the estimated R-squared values for model B fitted to this example. The 

measure proposed by B&R suggests that the model does not explain any variance at the lower level, 

while it explains 99% of the variance at the higher level. The measure respects the boundaries 0-1 

imposed. The level-2 explained variance according to Sniders and Bosker (1994) is also .992. 

However, the measure of level-1 explained variance suggests that just by adding the group-means as 

predictors 88% of the variance in individual scores is already modelled, and that the total unexplained 

variance in Y is reduced by the same amount due to the inclusion of this second level predictor. 

The ANOVA decomposition measure indicates that model B is unable to explain any of the within-

group variance, all of the between-group variance, and 87% of the overall variance in the outcome 

variable Y. 
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The measures proposed by Nakagawa and Schielzeth (2013) indicate that the fixed effects in 

the model explain 86.6% of the variance in Y, and that considering the random effects along the fixed 

one allows to model 87% of the total variance in Y. 

The measure proposed by Xu (2003) finds that model B does not explain any variance in the responses 

of an individual i. 

It is interesting here to note how the measure of total explained variance proposed in this paper 

provides exactly the same estimate of explained variance as the one proposed by N&S to account for 

both the fixed and random effects explanatory power. 

Table 5 reports the same statistics just discussed, for the example dataset generated with equal 

within- and between-group regression coefficients, computed for the linear mixed model C. The 

inclusion of the within-group deviation predictor (level-1) in the model, along with the group-means 

of X, models 89.6% of the variance at the individual level, according to the B&R leve-1 explained 

variance measure. The level-2 explained variance measure is unchanged, .992. This means that while 

the level-specific measures are not in contrast with the 0-1 property, the measure of total explained 

variance by the model greatly exceeds 1 (1.889). 

According to the measures computed under the guidelines of S&B, 98% of the variance at the 

individual level, and of the overall variance in Y, is explained by the addition of the group-mean-

centered level-1 predictor X and the group means of X. The amount of variance in Y explained at the 

second level is the same that was already explained by model B. 

The ANOVA decomposition measure follows the same tendency: model C explains almost 

all the within-group variance (90%), it explains all the variance at the second level, and, compared to 

the model with only the group-means as predictors, it explains more of the overall variance in Y 

(99%). 

Following the N&S measures we can say that in model C, the random effects do not explain 

much of the total variance in the outcome variables, as the difference between the marginal (.979) 

and conditional (.987) measures is rather contained. To conclude, the estimation proposed by Xu 
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(2003) indicates that the inclusion of both the level-1 and 2 predictors explains 88% of the individual 

variance in Y. 

All measures of explained variance considered for model C are in line with the expected range 

for an R-squared statistics of 0-1, except for the measure of total explained variance proposed for the 

B&S computational framework. For all measures it is also true that adding a predictor leads to a 

greater (or equal) estimated modelled variance. 

As for model B, in the case of the data generated by a model with the same within- and 

between-group regression coefficient, the measures 𝑅𝐴𝑁𝑉
2  and 𝑅𝑁&𝑆(𝑐)

2  are identical. 

 

3.1.3 Case 3 – Between-group regression coefficient close to zero 

The data used in the next example is similar in structure to the example described in section 

2.2.3. As in that case, the between-group regression coefficient is close to 0. In particular, the model 

used to generate the dataset is characterized by a between-group regression coefficient equal to 0 

(𝛽𝑏 = 0): 

 𝑌𝑖𝑗 = 0 + 10(𝑋𝑖𝑗 − �̅�𝑗) + 𝑢0𝑗 + 𝑒𝑖𝑗 (32) 

The data generation procedure follows the same structure that was presented for cases 1 and 2 (the 

code can be reviewed in appendix 2). However, apart from the between-group regression coefficient, 

the within-group regression coefficient is larger, set to 10, as it is the error variance and variance of 

the random effects, now set to 5. Figure 2 (bottom left panel) presents the scatterplot of this data. 

By fitting the usual null model (A), it is expected that the second level variance estimate will be 

relatively low. By adding the group mean as a predictor to the model, it is expected that both the level 

1 and 2 residual variances will remain unchanged (model B). Finally, the addition of both the group 

means variable and the within-group deviation variable is expected to reduce significantly both 

variances (model C). 
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Table 3 (see column headers) reports the residual variances. While 𝜎2 remained unchanged 

when �̅�𝑗 was added (104.96) and decreased when 𝑋𝑖𝑗 was added (to 5.171), as one would expect, �̂�0
2 

increased as explanatory variables were added to the null model. Adding the level-2 predictor led �̂�0
2 

to increase from 1.787, to 1.966, and adding both the level-1 and level-2 predictors (model C) led to 

an even higher increase of the estimated unexplained second level variance (2.165). As a 

consequence, neither R&B nor S&B can provide a meaningful measure of modelled variance at the 

second level. In fact, for both measures to provide values that are comprised between 0 and 1, it is 

necessary that the estimated unexplained variance does not increase as predictors are added. 

Table 4 also shows the R-squared measures computed for model B fitted to the dataset 

generated with between-group regression coefficient approximately 0. The formulas proposed by 

B&R provide a measure of modelled variance that is practically 0 for both the level 1 and level 2 

variances. As expected, it the level 2 explained variance measure is actually negative. The measures 

computed according to S&B also provide estimated explained variances that are practically zero but 

numerically negative. 

The ANOVA decomposition measure is in line with the previous two when calculating the 

explained variance within the groups and in the overall variance of Y (0 and .014 respectively). 

However, the measures are not negative, and therefore more in line with the desired properties. 

Furthermore, the measure seems to indicate that the inclusion of the group-means of X as a predictor 

in the model, and the specification of the random effects, leads to a proportionate reduction in the 

prediction error at the second level of more than 80%. 

According to all the N&S, and Xu measures, the model does not explain any variance in Y. 

Table 5 shows the computed values of all of the R-squared measures for model C when applied 

to this third example. For what concerns the level-1 explained variance, 95% of the variance at the 

lower level is explained by the addition of the group means and the group-mean centered X to the 

null model, according to the B&R measure. The S&B level-1 measure provide a similar measure with 

an estimated 93% proportional reduction in the estimated mean squared prediction error, compared 



R-SQUARED MAESURES IN MULTILEVEL MODELLING 

 

 

35 

to the null model. However, both R&B and S&B level-2 explained variances are negative as 

anticipated. As a consequence, they are not interpretable. 

The ANOVA based measure provides interpretable results describing a high explanatory 

power of the model at both levels (𝑅1𝐴𝑁𝑉
2 = .753, 𝑅2𝐴𝑁𝑉

2 = 1), and overall (𝑅𝐴𝑁𝑉
2 = .959). However, 

the value of 1 for the second-level explained variance measure with the 𝑅2𝐴𝑁𝑉
2  was not anticipated 

and it demands further investigation. All the other total explained variance measures are quite similar, 

and Xu is again equal to the level-1 B&R and ANOVA level-1 measures. 

Finally, by comparing Table 4 with Table 5, the behavior of the measure when the within-

group deviation score predictor is added can be assessed. In particular, it is interesting that for the 

dataset generated with 𝛽𝑏 = 0 and 𝛽𝑤 = 10, 𝑅2𝑆&𝐵
2  and 𝑅2𝐵&𝑅

2  are not only negative for both model 

B and C, but they also decrease from model B to C (where the latter has more predictors than the 

former). On the other hand, the level-2 ANOVA measure of modelled variance sees an increase in its 

value when the level-1 predictor is added to the model, and in this sense it provides a measure of 

explained variance more in line with the desired features of an R-squared measure. 

 

3.1.4 Case 4 – Groups with similar means 

For this fourth scenario, I randomly sampled the group means from a normal distribution with 

mean 0 and standard deviation .01. In other words, all groups have rather similar Xij mean values but 

differ in their average Y value (see Figure 2 bottom right panel for the scatterplot). The variance used 

to sample the random effects was also changed to 10. This was done to create more variance among 

the group intercepts. Had this not been done, the groups would have been extremely similar. The 

detailed code used to generate the data is presented in appendix 2. 

The three models used in the previous example were fitted again to the data generated for this 

example: a null model (A), a model with only the group means as predictors (B), and a model with 

both the group means and the within-group deviation score as predictors (C). Table 3 reports the 

estimated residual variances for the three models in the block of columns to the right. The level-1 
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residual variance decreases only from model A to model C (due to the inclusion of the level-1 

predictor) while the level-2 variance increases both from model A to B and from model A to C. 

Table 4 reports in the last block of columns all the R-squared measures of interest computed 

on model B. According to the B&R measure of level-1 explained variance, the model with only the 

group-means as predictor does not explain any variance in the individual responses of Y. The second 

level explained variance is negative and therefore not interpretable. As a result, the model should 

explain a negative total amount of variance, which does not have any meaning. Similarly, all measures 

computed according to the S&B formulas are negative and uninterpretable. 

The explained variance computed according to the ANOVA decomposition measure is 0 for 

what concerns the first level, which means that the model with only level-2 predictors and random 

effects does not explain any variation within the groups. However, according to this computational 

framework, the model explains all the variation between the groups (99%) and a little more the half 

of the variance in the total variance of Y (54%). 

Looking at the N&S measures it seems that all the variance that the model explains is 

attributable to the random effects, since the marginal version of this measure is 0 and the conditional 

version is .591. The measure proposed by Xu indicates a complete lack of fit of the model. 

Interesting to notice is that once again the measure measures of total explained variance proposed in 

this paper is fairly close to the conditional R-squared proposed by N&C. 

Table 5 shows the computations for the same measures as applied to model C, with the null 

model as reference. Adding the group-mean centered version of the level-1 predictor and the group-

means as predictors, helps to explain 64% of the variance in the individual level responses, according 

to B&R measure. However, at the second level an uninterpretable value of explained variance is 

found once again for the measure of level-2 explained variance proposed by B&R. The same holds 

for the measure level-2 measure proposed by S&B. According to the S&B approach, adding the two 

predictors that characterize model C leads to a proportionate reduction in the total variance in Y of 

.207. 
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The ANOVA measure points toward a much greater explained variance by the mode both 

within the groups (.635) and overall (.831). According to this computational framework, the model 

explains all the between-group variance (99%). 

Moving to the measures proposed by Nakagawa and Schielzeth (2013), it seems that over 

60% of the explanatory power of the model is due to the random effects. 

Finally, 64% of the individual variance in the responses of each individual is explained by the 

model with both predictors according to the Xu measure. 

The similarities highlighted in previous examples are found again: 𝑅1𝐴𝑁𝑉
2  is equal to 𝑅1𝐵&𝑅

2  

(and 𝑅𝑋𝑢
2  and 𝑅𝑉&𝐶

2 , .635), and the measure of total modelled variance 𝑅𝐴𝑁𝑉
2  (.831) is approximately 

equal to the one proposed by Nakagawa and Schielzeth (2013), which is .851. 

 

3.1.5 Case 5 – Low explanatory power for the predictor group means 

A last example dataset for the random intercept setting is considered. A scenario where the 

group means of the response variable cannot be explained, neither by the within nor with the between 

group relations. The idea is to have groups with the same group Xij means, but different Y group 

means, so that the predictor group means have low explanatory capability. 

To generate this dataset, a different approach was used. In each of 10 groups of 500 

observations, the individual scores of X and Y were sampled from a normal multivariate distribution 

with variance-covariance matrix ∑ = [
10 7
7 10

]. Five values were selected for the means used for the 

sampling of the individual values of X: 0, 10, 20, 30, and 40. From the 10 groups, five couple were 

defined. In each couple of groups, the same group mean was used to sample the values of X. 

As for the values of Y, a similar approach was followed. The 10 groups were divided into two 

sets. One set of five groups was assigned a Y mean of 5 and the other set was assigned a Y mean of 

15. For a detailed description of the R code used to generate the data, see appendix 2. Figure 3 shows 

the data pattern. 
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Figure 3 – Scatterplot of the dataset generated based on a 

normal multivariate distribution. 

 

As in the previous cases, three models are of interest: the null model, a mixed model with only 

the group means as predictor (model B); and a mixed model with both group-means and individual 

values of X as predictors (model C). Table 6 presents the estimated residual variances by these three 

models. Adding the group-level variable leads to 0 the estimated unexplained level-2 variance and 

has a minor effect on the estimated error variance (10.634, instead of 10.651). The behavior of the 

estimated unexplained variance is in line with what one would expect when adding both the level-2 

and level-1 predictor are added. However, the estimated unexplained level-2 variance in model C is 

strikingly higher than in model A (125.739 compared to 27.693, respectively). 

Table 6 – Variance components estimates for the null model (A), the 

model with only group means as predictor (B), and the true model (C). 

Model 𝜎2 �̂�0
2 

A. 𝑌𝑖𝑗 = 𝛾00 + 𝜇0𝑗 + 𝑒𝑖𝑗 10.651 27.693 

B. 𝑌𝑖𝑗 = 𝛾00 + 𝛾01�̅�𝑗 + 𝜇0𝑗 + 𝑒𝑖𝑗 10.634 0 

C. 𝑌𝑖𝑗 = 𝛾00 + 𝛾10(𝑋1𝑖𝑗 − �̅�𝑗) + 𝛾01�̅�𝑗 + 𝜇0𝑗 + 𝑒𝑖𝑗 5.705 125.739 
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Table 7 (left side) reports the estimated R-squared measures for model B. According to the 

measures proposed by B&R the model does not explain any variance at the lower level and it explains 

all the variance at the higher level. However, the measure of overall explained variance exceeds 1, 

even if by a negligible amount (1.002). 

According to S&B level-1 explained variance, adding the group-means as predictor, leads to 

a substantial (72%) proportional reduction in the value of 𝜎2 + �̂�0
2, the total variance in Y, which can 

also be interpreted as the contribution of the predictor to the explained variance at level-1. The level-

2 explained variance is equal to unity, suggesting that the model explains all the variance between 

the groups. 

The ANOVA decomposition measure suggests that model B is unable to model any of the 

within-variance but all the between-group variance. The total amount of variance explained is 

estimated to be 70%. The same value is estimated with both the measures computed with the N&S 

strategy. 

Finally, the Xu measure indicates that the group-mean variable is unable to model any of the 

variation in the response of a person i. 

When it comes to model C, Table 7 (right side), the B&R measure of level-1 explained 

variance indicates that the addition of both the group-means and the within-group deviation score 

(Xij) models 46% of the variance at the individual level. The measure of level-2 explained variance is 

not interpretable, being it a negative value. The same problem is found with 𝑅2𝑆&𝐵
2  (-3.54). The 

measure proposed by S&B is uninterpretable also at the level-1 (-2.428). 

The ANOVA decomposition measure does, however, estimate that the model explains 46% 

of the within-group variance, and 84% of the total variance in Y. The estimate of the level-2 variance 

provided by this type of measure is again 1. Nevertheless, this measure is the first to provide values 

between 0 and 1 for all the considered variances. 
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Considering the measures proposed by N&S it seems that the fixed effects explain almost half 

of the variance in Y (𝑅𝑁&𝑆(𝑚)
2 = .489) and that the random effects explain almost all the residual 

variance left (𝑅𝑁&𝑆(𝑐)
2 = .978). 

Finally, the measure proposed by Xu (2003) indicates that model C explains 46% of the 

variation in the responses of an individual. 

All of the ANOVA measure, the Xu and the conditional R-squared measures increment the 

estimated value of explained variance when the level-1 predictor is added, while the other see a 

decrease. 

Table 7 - R-squared measures for model B and C fitted to the dataset 

generated for the fifth case (null model A as reference) 

 Model B Model C 

Measure Name 𝑅1
2 𝑅2

2 𝑅𝑇𝑂𝑇
2  𝑅1

2 𝑅2
2 𝑅𝑇𝑂𝑇

2  

B&R (1992) .002 1 1.002 .464 -3.54 -3.076 

S&B (1994) .723 1 .723 -2.428 -3.54 -2.428 

ANOVA 

decomposition 
0 1 .701 .463 1 .839 

N&S (m) - - .701 - - .498 

N&S (c) - - .701 - - .978 

Xu (2003) - - 0 - - .464 

 

3.2 Random Intercept and Random Slope Models 

 To test the measurement performances on models specified with random slopes, a dataset is 

generated with a model-based strategy as in cases 1 through 4. The main difference with the previous 

case is that random slopes are used along with random intercepts in model 29. In particular, 𝛽𝑤 is not 

fixed anymore, but the result of a fixed (shared) coefficient, 𝛾00 (here chosen to be 5), and a random 

part, 𝑢1𝑗. For this example, the random group effects 𝑢0𝑗 and 𝑢1𝑗 are sampled from a multivariate 

normal distribution with covariance matrix ∑ = [
5 4.5

4.5 5
], where both the variance of the random 
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intercept 𝜏0
2 and of the random slopes 𝜏1

2 is 5 (diagonal elements), and their covariance 𝜏01 is 4.5 (off-

diagonals). The fixed between-group effect used to create the dataset is 𝛽𝑏 = 2. 

As for the level-1 explanatory variable, its values are sampled from a normal distribution with 

variance 1 and mean corresponding to the group id the observations belong to (individual values of 

Xij belonging to different groups were sampled from different distributions with group specific 

means). Finally, Y is generated according to the model in equation 29. The full account of the 

generation procedure is accompanied by the R code in appendix 2. Figure 4 presents the scatterplot 

of the data just described. 

 

Figure 4 – Scatterplot of the dataset generated with random 

intercepts and slopes. 

 

Along with the null model (A), two more models were fitted to the dataset: one with both 

level-1 and 2 predictors but specifying only the intercepts as random (B); one with both predictors 

and both random intercepts and random slopes (C). 

The first model (B) was specified because the variances estimated by it are needed to compute 

the B&R and S&B measures, which, according to Snijders and Bosker (1994, 1999), should be 

computed on a random intercept model even when the researcher has sensible reasons to believe that 
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the slopes are not constant among groups. The reason is that, as they claim, the more complicated 

computations of their measures when adapted to a random slope case provide the same estimated 

explained variances that are computed on an equally specified model that ignores the random slopes. 

Table 8 presents the estimated residual variance by model B on the data generated for this specific 

case. As can be seen the addition to the model of both the within-group deviation score and the group-

means, reduced the estimated unexplained variances at both levels. 

  

 

 

 

 

Model C, on which the other explained variances measures were computed, is: 

𝑌𝑖𝑗 = 𝛾00 + (𝛾10 + 𝑢1𝑗)(𝑋𝑖𝑗 − �̅�𝑗) + 𝛾01(�̅�𝑗) + 𝑢0𝑗 + 𝑒𝑖𝑗 

Table 9 reports the estimated R-squared measures. The S&B measure of level-1 explained 

variance, computed on model B but interpreted for model C, affirms that the predictors added to the 

null model explain 70% of the variance at level-1, and therefore that the estimated residual total 

variance is 70% smaller when estimated by the mixed effect model. 76% of the variance at the second 

level is modelled by model C according to both the S&B and B&R measures of level-2 explained 

variance. At level 1, the B&R measure estimates that 64% of the variance in Y is explained by the 

model. However, the total amount of explained variance estimated according to the B&R framework 

well exceeds 1. 

Moving to the explained variance estimated with the ANOVA decomposition measure, it 

seems that adding both level-1 and level-2 predictors and the random effects models 90% of the 

within-in group variance, and 94% of the total variance in Y. As for the variance at the second level, 

it is estimated that the model explains all of it. 

Table 8 – Random Intercept Model for Residual Variances in 𝑅∗𝑆&𝐵
2  and 𝑅∗𝐵&𝑅

2  

Model 𝜎2 �̂�0
2 

A. 𝑌𝑖𝑗 = 𝛾00 + 𝜇0𝑗 + 𝑒𝑖𝑗 29.056 23.484 

B. 𝑌𝑖𝑗 = 𝛾00 + 𝛾10(𝑋1𝑖𝑗 − �̅�𝑗) + 𝛾01�̅�𝑗 + 𝜇0𝑗 + 𝑒𝑖𝑗 10.461 5.643 
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In this case, the measures of explained variance proposed by Nakagawa and Schielzeth (2013) 

were not computed as there is not a straight forward way to apply them to a random slope scenario. 

Finally, Xu’s measure indicates that 90% of the variance in individual reposes is explained by model 

C. 

Table 9 – Random Slope Model R-squared measures 

Measure Name 𝑅1
2 𝑅2

2 𝑅𝑇𝑂𝑇
2  

Bryk and Raudenbush (1992) .640 .760 1.400 

Snijders and Bosker (1994) .693 .760 .693 

ANOVA decomposition .896 1 .940 

Xu (2003) - - .896 

  

4. Discussion 

The present article addressed the concept of explained variance as a measure of goodness of 

fit in the context of linear mixed models. The topic was approached by reviewing measures 

established in the literature and comparing their performances in six fictitious scenarios. An ANOVA 

decomposition-based way to compute measures of both overall and level-specific explained variances 

has been proposed and tested along with the other measures reviewed. Overall, five measuring 

approaches were compared: the level-specific measures of modelled variance proposed by Bryk and 

Raudenbush (1992); the level-specific ones proposed by Snijders and Bosker (1994); the measures of 

total explained variance proposed by Nakagawa and Schielzeth (2013); the measure of overall 

modelled variance proposed by Xu (2003); and the ANOVA decomposition-based measure of within-

group, between-group, and total modelled variances. The main focus in evaluating the performances 

of the measures was to consider whether they abided by two properties recognized in the literature as 

desirable for an R-square measure (Kvalseth, 1985): the estimated value must be included in the range 

0-1, and it must increase as predictors are added.  
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The six cases presented in the paper contribute in building a body of evidence that shows how 

the most established measures in the literature (Bryk and Raudenbush (1992), and Snijders and 

Bosker (1994)) do not generally comply with the two desirable properties of an R-square measure. 

Contrarily, in all the cases examined, it was found that the proposed ANOVA decomposition measure 

never fell outside the interval of meaningful R-squared values and never decreased as predictors were 

added. In this regard, the approach proposed here is a compelling way to estimate the explained 

variance by linear mixed models. 

The issue of negative R-squared values that characterizes the computation strategy proposed 

by Bryk and Raudenbush (1992) is well known in the literature and Snijders and Bosker (1994, 1999) 

already addressed it diffusely. The level-2 explained variance measure can be negative because in the 

approach proposed by B&R the unexplained level-2 variance is estimated exclusively by estimating 

the variance of the random intercepts, 𝜏2. This feature leads to negative R-squared estimation in the 

not so infrequent case in which adding predictors to a mixed model will increase the estimated �̂�2. 

Furthermore, the measure of total explained variance defined as the sum of the B&R explained 

variances at level-1 and 2, easily yields values greater than one. Both these behaviors were found in 

the examples presented in this article (see case 1 and 2 for the overall negative values, and case 3 and 

4 for the level-2 negative values). 

The S&B measure resolves the issue of negative overall explained variance, and in fact it was 

not found to be negative for any of the cases considered. However, in case 3 and 4, when data were 

generated with no between group effect and with similar group means of X, respectively, the measure 

of explained variance at level-2 did yield negative values. Snijders and Bosker (1994) already 

discussed these possibly negative values and actually claimed it to be a desirable feature for their R-

squared measure at level-2. According to their account, their 𝑅2𝑆&𝐵
2  formula (equation 20) may 

estimate negative explained variances only when the within- and between-group effects are wrongly 

forced to be equal by a particular model specification. Hence, they claim that their measure has the 

positive feature of diagnosing model misspecifications. We dispute their claim, as in our third and 
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fourth case we did not force the within- and between-group regressions to be equal and still found 

negative level-2 explained variances measures. The same undesirable behavior was found in case 5, 

where once again the model did allow for different within- and between-group effects. Hence, clearly, 

disproving the misspefication of the model to be the only cause of estimation of negative explained 

variances at the second level, with the S&B formula. Another issue, with the claim for model-

diagnostic capabilities of the S&B level-2 measure, is that all models except the true model are 

misspecified. Hence, evidences of misspecification may not be as useful as Snijders and Bosker 

(1994) uphold. A final remark on the performance of the S&B level-2 explained variance measure is 

that, in cases 3 and 4, it was found to be not only negative, but also to yield a smaller value when 

adding the level-1 group-mean centered predictor (going from model B to C). This is not ideal since 

it violates the second property of non-decreasing explained variance. To conclude, a measure that 

behaves according to the properties defined may be more valuable than a measure that provides 

evidence of a phenomenon which is already known. 

 The ANOVA decomposition approach to the estimation of explained variance for multilevel 

models is a comprehensive method to estimate modelled variances both in level-specific and overall 

terms. It proved to yield values in the defined interval 0-1, and increased explained variance 

estimations when variables are added to models. Another positive feature of the ANOVA 

decomposition measure here proposed is that it applies directly as it is to random intercept models as 

to random slope models. In this regard it has a clear edge on the other measures which provide 

information on the model fit either indirectly (R&B and S&B) or after some adjustments (Jonson 

(2014) version of Nakagawa and Schielzeth (2013) measures). Its level-1 measure is interpretable as 

the percentage of within-group variance that is modelled by the predictors, and the overall measure 

is interpretable as the amount of the total variance in Y that is accounted for by the model 

specification. The measure proposed to estimate the level-2 explained variance yielded a value close 

to unity in all examples. The reason for this is that it includes the level-2 random effects, i.e., the 

random effects are counted as explained variances. The measures proposed by Bryk and Raudenbush 
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(1992) and by Snijders and Bosker (1994) do not. Since we believe that the random effects at level-2 

should be excluded from the computation, we conclude that the level-2 explained variance of the 

ANOVA approach is not meaningful. 

 Some similarities have been noticed among the measures in the values that they yield. In 

particular, it seems that the measure proposed by B&R to estimate the modelled variance at the first 

level is equal to the one computed according to the ANOVA framework in all the random-intercept 

cases considered (cases 1-5). In the same cases, level-1 ANOVA decomposition-based measure is 

also equal to the one proposed by Xu (2003). These similarities strengthen the use of the ANOVA 

decomposition measure as a measure of level-1 explained variance. 

The general agreement between the measure of total explained variance proposed in the 

ANOVA framework and the measure of conditional R-squared proposed by Nakagawa and 

Schielzeth (2013) is also interesting. Both measures consider the contribution of the random effects 

to the modelling of variance and in this might lie the reason of such similarities. However, further 

research might explore the link between the two. 

 The conclusions and discussion points just put forward were drawn from the comparison of 

measures performances tested on only six fictitious cases. These are not comprehensive of all the 

possible scenarios in which these measures are applicable, and the random slopes context has been 

oversighted in favor of the random intercept one. Therefore, general conclusions on the advantages 

offered by the ANOVA decomposition measure on the more stablished measures should be made 

with caution. Ideally, one may prove properties of all measures (for instance, under which conditions 

they satisfy the two desirable properties of an R-square measure), and provide results on their 

properties in more general conditions than examined in the present paper. Moreover, some problems 

of the measures might be theoretically interesting to investigate but might not be particularly relevant 

in practice. In particular, the conditions in which the S&B and B&R estimates of level-2 explained 

variance result into negative values seem to be somewhat related to the fact that the unexplained 
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variance at level-2 is high, compared to one at level-1, in most of the data generated. In practice, it is 

not clear how often these situations may occur. 

Future research might try to compare the measures on different datasets (including real ones) 

and to adjust the measure of level two explained variance in the ANOVA computational framework 

to make it more meaningful. The modification of the ANOVA measure could be pursued by changing 

the predicted value of the group means (�̅�′𝑗) in the numerator of equation 27. Since the problem lies 

in the fact that the measure incorporates the level-2 random variance in the explained variance, one 

could for example try to substitute it with predictions done only based on the fixed effects, but this 

and other options may be examined further. Another direction for improving the level-2 explained 

variance of the ANOVA framework would be to act on the implicitly defined null model in the 

denominator. For example, instead of the observed group means minus the observed grand mean, one 

could think of using the predicted group means by a random intercept only model in the denominator 

of equation 27. However, to be consistent with the other ANOVA measures, this would require 

changing this also in the measures of level-1 and total explained variance, which we do not 

recommend. 
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Appendix 1 – Commented R code for R2 measures computation 

Here I present all the measures implementations in R. 

Bryk and Raudenbush (1992) 

The first step to compute the B&R measure is to extract from the null and full models the estimated 

residual variances. 

Null.Model <- lmer(y ~ 1 + (1|grpid), data = any.data) 
Model.1 <- lmer(y ~ (Xij_gmc) + Xj + (1|grpid), data = any.data)# (e.g
. model C) 

sigma2 <- as.data.frame(summary(Model.1)$varcor)[2, "vcov"] #lvl-1 une
xplained vairance (full model) 
sigma2_n <- as.data.frame(summary(Null.Model)$varcor)[2, "vcov"] #lvl-
1 unexplained vairance (null model) 
 
tau2 <- as.data.frame(summary(Model.1)$varcor)[1, "vcov"] #lvl-2 unexp
lained vairance (full model) 
tau2_n <- as.data.frame(summary(Null.Model)$varcor)[1, "vcov"] #lvl-2 
unexplained vairance (null model) 

Subsequently, the computations described in equation 14 and 15 

R2_1_BR <- 1-(sigma2/sigma2_n)  # lvl-1 explained variance 
R2_2_BR <- 1-(tau2/tau2_n)      # lvl-2 explained variance 
R2_T_BR <- R2_1_BR + R2_2_BR    # total explained variance 

 

Snijders and Bosker (1994) 

The computation of Snijders and Bosker measures requires the same variance estimation computed 

just above, plus the computation of the harmonic mean of group sizes. 

# Harmonic Mean 
N.tot <- nrow(any.data) #total number of cases in the dataset 
den.hm <- rep(NA, length(group_v)) # denominator for the harmonic mean 
  for(d in 1:length(den.hm)){ 
    if(nrow(any.data[grpid == group_v[d], ]) > 0){ 
      den.hm[d] <- 1/nrow(any.data[grpid == group_v[1], ]) 
    } 
    else {den.hm[d] <- 0} 
  } 
hm <- N.tot/(sum(den.hm)) # computation of the harmonic mean 

I then computed the measures as follow: 
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R2_1_SB <- 1-((sigma2 + tau2)/(sigma2_n + tau2_n))        # lvl-1 expl
ained variance 
R2_2_SB <- 1-((sigma2/hm + tau2)/(sigma2_n/hm + tau2_n))  # lvl-2 expl
ained variance 
R2_T_SB <- R2_1_SB                                        # total expl
ained variance 

 

Nakagawa and Schielzeth (2013) 

# > Marginal #### 
  # Sf: variance attributable to fixed effects 
    X <- model.matrix(Model.1) 
    Beta <- fixef(Model.1) 
    Sf <- var(X %*% Beta) # the variance of the predicted values based
 exclusively on the fixed effects 
  # Sl: netsing unit effects variance 
    Sl <- tau2 
  # Se: error variance 
    Se <- sigma2 
  # R2 computation 
    R2_NSm <- Sf / (Sf+Sl+Se) 
# > Conditional #### 
    R2_NSc <- (Sf+Sl) / (Sf+Sl+Se) 

Where Model.1 is the full mixed model, and sigma2 and tau2 are extracted from it as in the 

computation of the B&R and S&B measures. 

 

Xu (2003) 

To compute the measure proposed by Xu (2003), the predicted values estimated by the null and full 

model are extracted and then used to compute the residual sum of squared errors. The important detail 

here is that the package mbset was used to estimate the model. The function mhglm_ml in this package 

predicts the random effects using the empirical Bayes instead of the conditional modes, as with the 

function lmer from packages such as lme4. 

# Model estiamtion with mbest pacakge 
Null.Model_EB <- mhglm_ml(y ~ (1|grpid), data = any.data) 
Model_EB <- mhglm_ml(y ~ (Xij_gmc) + Xj + (1|grpid), data = any.data) 

#Full model RSS 
  nij.p <- fitted(Model_EB) #predictions under the mixed model 
  RSS <- sum((y-nij.p)^2) 
#Null model RSS 
  nij0.p <- fitted(Null.Model_EB) #predictions under the null model 
  RSS0 <- sum((y - nij0.p)^2) 
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#R^2 
  R2_Xu <- 1 - RSS/RSS0 

 

ANOVA decomposition measure 

First, the level-1 explained variance: 

#Group means of y (need for both numerator and denominator) 
  yj <- NA 
  yj_unique <- aggregate(y, list(grpid), mean) 
  for(i in 1:nrow(any.data)){ 
    yj[i] <- yj_unique[yj_unique$Group.1 == grpid[i], 2] #vector of ob
served outcome group means (each case has its group mean as value) 
  } 
#SSw_P (Numerator) 
  SSw_P <- sum((yj-predicted)^2) 
#SSw (denominator) 
  SSw <- sum((y-yj)^2) 
#R1^2 
  R1_2 <- SSw_P/SSw 

Then, level-2 

# Preidcted group means 
  predicted_gm <- aggregate(predicted, list(grpid), mean)[, 2] 
  yj <- aggregate(y, list(grpid), mean)[, 2] 
#B (numerator) 
  SSb_P <- sum((predicted_gm - mean(y))^2) 
#SSb (denominator) 
  SSb <- sum((yj - mean(y))^2) 
#LVL2 R-squared measure 
  R2_2 <- SSb_P/SSb 

And finally, the measure of total explained variance 

#TSS with predicted 
  TSSp <- sum((predicted-mean(y))^2) 
#TSS 
  TSS <- sum((y-mean(y))^2) 
#TOT R-squared 
  Rtot <- TSSp/TSS  
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Appendix 2 – Commented R code for data generation 

Code and detailed description for the data generation process for each case follows. 

Case 1 – Within- greater than between-group regression coefficient 

First of all, all the parameters are defined: 

# GROUP DETAILS 
  Ng <-         10  #number of groups 
  Nj <-         500 #number of members 
# VARIANCEs 
  Xj_var <-     1 #muliplier term to make Xj variance big or small 
  Xij_var <-    1 #sampling sd for Xij generation 
  lvl1unexp <-  1 
  lvl2unexp <-  1 
# GAMMAs 
  gamma00 <-    0   #Expected Y-grand mean (intercept for the average 
group) 
  gamma10w <-   1.3 #Within group effect 
  gamma01b <-   .7  #Between group effect 

Subsequently, these parameters are used in the following code to actually generate the dataset. The 

first step is to create a vector of group-id values for each of the observations. This is done based on 

the number of groups and observations within groups defined above. 

grpid <- rep(seq(1, Ng), each = Nj) 

Next, the values of the predictor X are computed. First, a vector of group means is generated based 

on the group identification code. Xj_var is set to 1 in this example, so it can be ignored. 

#LVL-1 predictor: any continuos random variable (Xij) 
  #Note: Xij mean depends on group membership 
  Xj_gen <- seq(0, max(Xj_var*unique(grpid)), by = Xj_var) # vector of
 group means from which to pick the Xij 

Second, from each group mean, 500 observations are drawn based on the standard deviation Xij_var 

defined above. 

set.seed(180524) 
Xij <- vector("list", Ng) 
  for(g in 1:max(grpid)){ 
    Xij[[g]] <- rnorm(Nj, Xj_gen[g], Xij_var) 
    # changin Xij_var changes the total level 1 variance (null model e
stimate) 
    # but keeps the residual varaince estiamted in model 1 the same 
  } 
  Xij <- stack(as.data.frame(do.call("cbind", Xij)))[, 1] # puts all o
bservations together in one vector 
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At this point, a vector of actual group mean values of X is generated. A mean is computed among the 

members of each group and subsequently attributed to each observation. As a result, an Xj vector 

exists for which all individuals in the same group have the same value. The group mean centered 

version of Xij (called Xij_gmc) is created right after. 

#LVL-2 predictor: Xij group means (Xj) 
  Xj <- rep(aggregate(Xij, list(grpid), mean)[, 2], each = Nj) 
#Group mean centered Xij 
  Xij_gmc <- Xij-Xj 

Next, the unique and random effects are generated by sampling from a normal distribution with mean 

0 and standard deviation the square root of lvl1unexp and lvl2unexp, which were defined at the 

beginning and represent the target level-1 and level-2 unexplained variances (a value very close to 

these parameters will come up when estimating the residual variances with the random intercept 

model with predictors). 

#Random effects 
  eij <- rnorm(Ng*Nj, 0, sqrt(lvl1unexp)) #individual level variance a
round the group reg line 
  u0j <- rep(rnorm(Ng, 0, sqrt(lvl2unexp)), each = Nj) #random group m
ean variance around the grand mean 

Finally, the outcome variable is generated. To do so we first define the regression coefficients, then 

y is generated according to the defined generating model (equation 30), and ultimately all the 

variables of interest are put together in a data frame. 

#Level 2 equations 
  B0 <- gamma00 + u0j 
  Bw <- gamma10w 
  Bb <- gamma01b 
#Level 1 equation (Note: with values inserted it becames the combined 
model) 
  y = B0 + Bw*(Xij-Xj) + Bb*(Xj) + eij 
  yj <- rep(aggregate(y, list(grpid), mean)[, 2], each = Nj) # group m
eans of Y 
  any.data <- as.data.frame(cbind(grpid, y, Xij, Xj, Xij_gmc = (Xij-Xj
), eij, u0j)) 

 

Case 2 – Within- equal between-group regression coefficient 
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Here the code is presented as a whole. For the break-down comments see the code used in case 1. 

The only differences compared to the previous case are the values of the gamma10w and gamma10b 

(the within- and between-group regression coefficients) which are now both equal to 3. 

# GROUP DETAILS 
  Ng <-         10 #number of groups 
  Nj <-         500 #number of members (try with larger samples) 
# VARIANCEs 
  Xj_var <-     1 #muliplier term to make Xj variance big or small 
  Xij_var <-    1 #sampling variance for Xij generation 
  lvl1unexp <-  1  
  lvl2unexp <-  1 
# GAMMAs 
  gamma00 <-    0 #Expected Y-grand mean (intercept for the average gr
oup) 
  gamma10w <-   3 #Within group effect 
  gamma01b <-   3 #Between group effect 
 

# DATA GEN 
  grpid <- rep(seq(1, Ng), each = Nj) # group ids 
  #LVL-1 predictor: any continuos random variable (Xij) 
    #Note: Xij mean depends on group membership 
    Xj_gen <- seq(0, max(Xj_var*unique(grpid)), by = Xj_var) # vector 
of group means from which to pick the Xij 
    set.seed(180524) 
    Xij <- vector("list", Ng) 
      for(g in 1:max(grpid)){ 
        Xij[[g]] <- rnorm(Nj, Xj_gen[g], Xij_var) 
      } 
      Xij <- stack(as.data.frame(do.call("cbind", Xij)))[, 1] 
  #LVL-2 predictor: Xij group means (Xj) 
    Xj <- rep(aggregate(Xij, list(grpid), mean)[, 2], each = Nj) 
  #Group mean centered Xij 
    Xij_gmc <- Xij-Xj 

 
# RANDOM EFFECTS 
  eij <- rnorm(Ng*Nj, 0, sqrt(lvl1unexp)) #individual level variance a
round the group reg line 
  u0j <- rep(rnorm(Ng, 0, sqrt(lvl2unexp)), each = Nj) #random group m
ean variance around the grand mean 

 
# OUTCOME VAR 
  #Level 2 equations 
    B0 <- gamma00 + u0j 
    Bw <- gamma10w 
    Bb <- gamma01b 
  #Level 1 equation (Note: with values inserted it becames the combine
d model) 
    y = B0 + Bw*(Xij-Xj) + Bb*(Xj) + eij 
    yj <- rep(aggregate(y, list(grpid), mean)[, 2], each = Nj) # group
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 means of Y 
    any.data <- as.data.frame(cbind(grpid, y, Xij, Xj, Xij_gmc = (Xij-
Xj), eij, u0j)) 

 

Case 3 – Between-group regression coefficient close to zero 

# GROUP DETAILS 
  Ng <-         10 #number of groups 
  Nj <-         500 #number of members (try with larger samples) 
# VARIANCEs 
  Xj_var <-     1 #muliplier term to make Xj variance big or small 
  Xij_var <-    1 #sampling variance for Xij generation 
  lvl1unexp <-  5 
  lvl2unexp <-  5 
# GAMMAs 
  gamma00 <-    0 #Expected Y-grand mean (intercept for the average gr
oup) 
  gamma10w <-   10 #Within group effect 
  gamma01b <-   0 #Between group effect 
 

# DATA GEN 
  grpid <- rep(seq(1, Ng), each = Nj) # group ids 
  #LVL-1 predictor: any continuos random variable (Xij) 
    #Note: Xij mean depends on group membership 
    Xj_gen <- seq(0, max(Xj_var*unique(grpid)), by = Xj_var) # vector 
of group means from which to pick the Xij 
    set.seed(2018) 
    Xij <- vector("list", Ng) 
      for(g in 1:max(grpid)){ 
        Xij[[g]] <- rnorm(Nj, Xj_gen[g], Xij_var) 
      } 
      Xij <- stack(as.data.frame(do.call("cbind", Xij)))[, 1] 
  #LVL-2 predictor: Xij group means (Xj) 
    Xj <- rep(aggregate(Xij, list(grpid), mean)[, 2], each = Nj) 
  #Group mean centered Xij 
    Xij_gmc <- Xij-Xj 
 

# RANDOM EFFECTS 
  eij <- rnorm(Ng*Nj, 0, sqrt(lvl1unexp)) #individual level variance a
round the group reg line 
  u0j <- rep(rnorm(Ng, 0, sqrt(lvl2unexp)), each = Nj) #random group m
ean variance around the grand mean 
 

# OUTCOME VAR 
  #Level 2 equations 
    B0 <- gamma00 + u0j 
    Bw <- gamma10w 
    Bb <- gamma01b 
  #Level 1 equation (Note: with values inserted it becames the combine
d model) 
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    y = B0 + Bw*(Xij-Xj) + Bb*(Xj) + eij 
    yj <- rep(aggregate(y, list(grpid), mean)[, 2], each = Nj) # group
 means of Y 
    any.data <- as.data.frame(cbind(grpid, y, Xij, Xj, Xij_gmc = (Xij-
Xj), eij, u0j)) 

 

Case 4 – Groups with similar means 

First, the parameters definition. 

# GROUP DETAILS 
  Ng <-         10 #number of groups 
  Nj <-         500 #number of members (try with larger samples) 
# VARIANCEs 
  Xj_var <-     .01 #muliplier term to make Xj variance big or small 
  Xij_var <-    1 #sampling variance for Xij generation 
  lvl1unexp <-  5 
  lvl2unexp <-  10 
# GAMMAs 
  gamma00 <-    0 #Expected Y-grand mean (intercept for the average gr
oup) 
  gamma10w <-   3 #Within group effect 
  gamma01b <-   0 #Between group effect 

Subsequently, the data generation code with a different command to create the group means Xj_gen. 

In the previous examples the group means used to generate the group observations were the 10 

integers included in the interval 0-9. In the present case, these means are now sampled from a normal 

distribution with mean 0 and standard deviation (Xj_var) 1. 

# DATA GEN 
  grpid <- rep(seq(1, Ng), each = Nj) # group ids 
  #LVL-1 predictor: any continuos random variable (Xij) 
    #Note: Xij mean depends on group membership 
    set.seed(180524) 
    Xj_gen <- rnorm(Ng, 0, Xj_var) 
    Xij <- vector("list", Ng) 
      for(g in 1:max(grpid)){ 
        Xij[[g]] <- rnorm(Nj, Xj_gen[g], Xij_var) 
      } 
    Xij <- stack(as.data.frame(do.call("cbind", Xij)))[, 1] 
  #LVL-2 predictor: Xij group means (Xj) 
    Xj <- rep(aggregate(Xij, list(grpid), mean)[, 2], each = Nj) 
  #Group mean centered Xij 
    Xij_gmc <- Xij-Xj 
# RANDOM EFFECTS 
  eij <- rnorm(Ng*Nj, 0, sqrt(lvl1unexp)) #individual level variance a
round the group reg line 
  u0j <- rep(rnorm(Ng, 0, sqrt(lvl2unexp)), each = Nj) #random group m
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ean variance around the grand mean 
 

# OUTCOME VAR 
  #Level 2 equations 
    B0 <- gamma00 + u0j 
    Bw <- gamma10w 
    Bb <- gamma01b 
  #Level 1 equation (Note: with values inserted it becames the combine
d model) 
    y = B0 + Bw*(Xij-Xj) + Bb*(Xj) + eij 
    yj <- rep(aggregate(y, list(grpid), mean)[, 2], each = Nj) # group
 means of Y 
    any.data <- as.data.frame(cbind(grpid, y, Xij, Xj, Xij_gmc = (Xij-
Xj), eij, u0j)) 

 

Case 5 – Low explanatory power for the predictor group means 

As in the previous cases, the first step is to define the parameters used to generate the data. The main 

difference is that a variance covariance matrix is created to be later used in sampling the values of X 

and y from a multivariate normal distribution. 

# GROUP DETAILS 
Ng <-         10 #number of groups 
Nj <-         500 #number of members (try with larger samples) 
# VARIANCEs 
Xj_var <-     1 #variance for the noise added to the generating group 
means 
gamma10w <-   .7 #Within group effect (as correlation coefficient 0-1) 
 
# VAR-COVAR matrix for multivariate normal distirbution 
q = sqrt(10)  # intercepts standard deviation^2 (var(u0j)) 
s = sqrt(10)  # if 0, Y does not depend on X 
r = gamma10w  # how strongly Y depends on X correlation between slopes
 and intercept 
cov.matrix <- matrix(c(q^2, r*q*s, 
                       r*q*s, s^2), 
                     nrow = 2, 
                     byrow = TRUE) 

Then, the group means of Y and X are defined. The means will be used to sample the individual cases 

in each group. Two means of Y are selected: 5 and 15. Five out of the 10 total groups will have a Y-

mean of 5 and the other five a mean of 15. For what concerns the means of X, five values are selected 

(0, 10, 20, 30, and 40) and groups will be assigned each value in couples (i.e. two groups will have 

mean value of X corresponding to 0, two group will have 10, etc.) 
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Xj_gen <- rep(seq(0, 40, by = 40/4), each = 2) 
Yj_gen <- rep(c(5, 15), Ng/2) 

Subsequently, noise is added to the group means of X so as to create some variance in them. 

set.seed(180524) 
Xj_noise <- rnorm(Ng, 0, sqrt(Xj_var)) 
Xj_gen <- Xj_gen + Xj_noise 

Next, the individual values of Y and X are sampled from a multivariate normal distribution. 

datalist <- vector("list", Ng) 
for(i in 1:Ng){ 
  set.seed(4040) 
  data <- rmvnorm(Nj, mean = c(Xj_gen[i], Yj_gen[i]), sigma = cov.matr
ix) 
  data <- as.data.frame(data) 
  data$grpid <- c(rep(i, Nj)) 
  datalist[[i]] <- data 
} 
any.data <- do.call("rbind", datalist) # putting togheter the observat
ions into one data set 
any.data <- data.frame(grpid = any.data$grpid, 
                       y = any.data$V2, 
                       Xij = any.data$V1) 

Finally, the group mean level-2 variable and the group-mean centered version of Xij are added to the 

dataset. 

any.data <- data.frame(grpid = any.data$grpid, 
                       y = any.data$y, 
                       Xij = any.data$Xij, 
                       Xj = rep(aggregate(any.data$y, list(any.data$gr
pid), mean)[, 2], each = Nj), 
                       Xij_gmc = any.data$Xij - rep(aggregate(any.data
$y, list(any.data$grpid), mean)[, 2], each = Nj)) 

 

Case 6 – Random Intercept and Random Slope Models 

The generation process follows the model strategy used for the first four cases. However, some 

adjustments to the code are required to introduce random slopes. First, the parameters are defined: 

# GROUP DETAILS #### 
    Ng <- 10 #number of groups 
    Nj <- 500 #number of members 
    grpid <- rep(seq(1, Ng), each = Nj) 
  # UNEXPLAINED VARIANCE 
    lvl1unexp <- 3 
    lvl2unexp <- 5 
    tau01 <- 5 #random slopes variance 
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  #Gammas 
    gamma00 <- 0 #Expected Y-grand mean (intercept for the average gro
up) 
    gamma10w <- 5 #Within group effect 
    gamma01b <- 2 #Between group effect 

tau01 is a new parameter that was not defined in previous cases. It is the variance of the random 

slopes. Next, individual observations for the predictor are sampled. In each group, the observations 

are sampled from a normal distribution with standard deviation 1 and mean corresponding to the id 

of the group membership. The level-2 predictor is formed by computing the means of the sampled 

Xij in each group and assigning it to each individual. Finally, the group-mean centered version of X, 

Xij_gmc, is computed. 

# PREDICTORS #### 
#LVL-1 predictor: any continuos random variable (Xij) 
  #Note: Xij mean depends on group membership 
  Xij <- vector("list", Ng) 
  for(g in 1:max(grpid)){ 
    Xij[[g]] <- rnorm(Nj, unique(grpid)[g], 1) 
  } 
  Xij <- stack(as.data.frame(do.call("cbind", Xij)))[, 1] 
#LVL-2 predictor: Xij group means (Xj) 
  Xj <- rep(aggregate(Xij, list(grpid), mean)[, 2], each = Nj) 
#Group mean centered Xij 
  Xij_gmc <- Xij-Xj 

The following step is the sampling of the random effects. First, the individual deviation scores are 

sampled from a normal distribution with mean 0 and variance lvl1unexp, defined above. Next, the 

random intercepts and slopes are sampled from a multivariate normal distribution with variance-

covariance matrix (cov.matrix) and means 0. The variance used in the variance-covariance matrix 

are defined at the beginning of the code (lvl2unexp, and tau01). After creating a data frame of 

random effects (random.effects), they are extracted by selecting the proper column. 

#Random effects 
  eij <- rnorm(Ng*Nj, 0, sqrt(lvl1unexp)) #individual level variance a
round the group reg line 
  q = sqrt(lvl2unexp)  #intercepts standard deviation^2 (var(u0j)) 
  s = sqrt(tau01)     #slopes standard deviation^2 (var(u1j)) 
  r = .9           #correlation between slopes and intercept 
  cov.matrix <- matrix(c(q^2, r*q*s, r*q*s, s^2), 
                       nrow = 2, 
                       byrow = TRUE) 
  random.effects <- rmvnorm(Ng, mean = c(0, 0), sigma = cov.matrix) 
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  u0j <- rep(random.effects[, 1], each = Nj) 
  u1j <- rep(random.effects[, 2], each = Nj) 

Finally, the Y variable is computed, and the dataset is created by joining all variables in a data frame. 

#Level 2 equations 
  B0 <- gamma00 + u0j 
  Bw <- gamma10w + u1j 
  Bb <- gamma01b 
#Level 1 equation (Note: with values inserted it becames the combined 
model) 
  y = B0 + Bw*(Xij-Xj) + Bb*(Xj) + eij 
  yj <- rep(aggregate(y, list(grpid), mean)[, 2], each = Nj) # group m
eans of Y 
  any.data <- as.data.frame(cbind(grpid, y, Xij, Xj, Xij_gmc, eij, u0j
, u1j)) 
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Learning Process Reflection 

The process of studying and writing the First Year Paper has taught me a lot of things. First 

of all, I have delved deep into Multilevel Analysis learning much more about how this statistical tool 

can be complicated in its interpretation but extremely powerful. 

I have learned how to try to define a problem by comparing findings coming from different 

sources in the literature. Mixed effects models are used in many different disciplines, each of which 

often has specific takes on it, with its own notation, applications and costumes. Finding relevant 

articles, combining and understanding insights coming from a diverse range of disciplines has been 

a challenge at first, and a resource at last. 

I have learned how to propose an alternative statistic, by explaining the root of the idea, and 

its advantages and disadvantages over the more established measures in the literature. 

The hardest part has been generating datasets on which to test the performances of the 

measures. The challenge was twofold: on the one hand, it has been conceptually hard to come up with 

scenarios that stressed the measures in the desired ways, to expose their strengths and weaknesses; 

on the other hand, I had to learn how to use R to achieve what I wanted. Making fictitious datasets 

plausibly reflect real situations was also part of the challenge. 

Apart from the technical aspects, I also had to learn how to manage my time and efforts in an 

efficient way. This has actually been more difficult than I expected. I had to learn how to pace the 

work relying on my judgment instead of external constraints and the results have not always been 

optimal. However, I believe that this experience has improved my abilities in this regard. 
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