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Management Summary

This thesis considers a media budget allocation model over AdWords campaigns,
as is encountered in real-life by the company PauwR and probably by many oth-
ers. The underlying budget allocation model is kept relatively simple, and only
considers budget constraints and lower and upper bounds on investments per
(group of) campaigns. The hard part, and also the main topic of this thesis,
is to model the campaign-specific sales functions, whose sum is the objective
function of the model considered.

The campaign-specific sales function depicts the relation between invested
budget in a campaign and the expected resulting revenue from that campaign.
From literature we know that a sales function should be a monotonically non-
decreasing concave function. To perform a regression with this particular shape
we propose a Convex Hull Method based upon Aguilera et al. (2010), as well as
a more direct Second-Order Cone formulation of the problem. These algorithms
both result in deterministic estimations of the sales functions.

However, the main problem considered is to account for data uncertainty
when estimating these sales functions. This uncertainty follows from the lack
of information with multiple considered data sources. This uncertainty is ac-
counted for by introducing a robust variant of the Second-Order Cone formu-
lation, to deal with uncertainty in both cost and revenue. Moreover, due to
flawed data or unrelated occasional events, outliers occur in the data. Hence,
in addition to the previous algorithms, an outlier exclusion is performed using
a Simulated Annealing algorithm.

Finally, the algorithms are tested on artificially generated data sets, as well
as on real data from a client of PauwR. An R-squared score is used to test
the performance of the different proposed algorithms. From these scores we
conclude that the algorithms perform properly on the artificial data, in sharp
contrast to the poor performance on the real data sets. We also conclude that
the Convex Hull Method is inferior to the Second-Order Cone formulations.
The last substantial conclusion that is drawn, is that the necessity for a robust
model is questionable and whether it would be possible to obtain reasonable
estimates for the sales function with the current level of uncertainty.

In conclusion, the models could be implemented when the desired concave
shape is evident in the data and the level of uncertainty is within bounds. More
specifically, when the R-Squared value of the regressions is more than a desired
lower bound even with the uncertainty considered. In the current setting of the
client of PauwR this is not the case and the algorithm is too inconclusive to be
implemented directly. Hence, more research is needed.
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1 Introduction

According to the American Marketing Association, Marketing is the activity,
set of institutions, and processes for creating, communicating, delivering, and
exchanging offerings that have value for customers, clients, partners, and soci-
ety at large. Based upon this definition, the most renown form of marketing is
the exposure of a targeted audience to advertisements distributed via different
media sources. These media sources can be split-up into multiple categories,
with online marketing being the category of interest in this thesis.

In present-day, the range of marketing channels has rapidly developed through
the introduction and swift expansion of internet in the past 20 years. Digital
marketing already accounts for a considerable portion, often 30-70%, of the mar-
keting mix, and is expected to increase even further in the upcoming 5 years
according to CMO Council (15 Dec. 2015). Due to Google Inc. being the most
widely used search engine and the company behind the paid link-service Ad-
Words, a vast amount of the media used for internet marketing is controlled by
Google Inc. In addition, Google also keeps track of all allowed, and interesting,
statistics regarding marketing campaigns and their results. These statistics are
presented in Google Analytics and can be retrieved from there as well. Usu-
ally, the only involved parties who are authorized to view these statistics are
the company who offers the products and an external marketing agency. The
latter, at least partially, owing her existence to the complexity and seemingly
endless options present in current marketing structures. The complexity and
ample variety of options of this issue, combined with the available data, lead to
an interesting optimization problem in general.

Marketing is widely accepted as being of great importance, if not indis-
pensable, for a company to be profitable. This causes companies nowadays to
allocate substantial yearly budgets to online marketing. Since these companies
do not want the relatively big budgets to be spend in vain, the question arises
whether there exists an optimal distribution of these budgets among their avail-
able AdWords campaigns. Hence, the modeling of this budget allocation and
the possible derivation of a mathematically optimized distribution of a market-
ing budget could benefit companies greatly.

PauwR is an online marketing and media agency, located in Tilburg. PauwR
works with many clients across the Netherlands, and is therefore responsible
for the allocation of many company’s (online) marketing budget. PauwR is a
progressive organization, striving to stay ahead of the competition in online
marketing. It is also one of the few Dutch organizations who incorporates the
See-Think-Do model. This model states that nearly all of the marketing cam-
paigns can be roughly split-up into three phases. The See-Phase inhibits the
creation of brand-awareness, where the Think-Phase contains the consideration
and evaluation of the brand by the customer, followed by the actual conversion
phase; the Do-Phase. These phases each inherit their own type of AdWords
campaigns.
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In addition, with all of these phases PauwR works closely together with
Google Inc. and their services. This enables them to accurately measure all of
the relevant variables and to adjust their campaign parameters wherever they
see needed, and whenever they see needed. PauwR believes this collaboration is
going well, but thinks they are not yet able to make most out of all the services
offered by Google Inc. To stay ahead of the competition, they would like to
make some steps into the transition towards a more data-driven approach. This
introduces the main topic of this thesis; to develop a data-driven approach to
distribute the given budget over the possible AdWords campaigns, based upon
the available history data.

The remainder of this Master Thesis is structured as follows. In Chapter
2 a problem description is given from a practical point of view, with a list-
ing of relevant factors that are included in the problem at hand. Chapter 3
discusses compatible literature on the subject. Although the exact problem is
not yet solved in current literature, comparable problems and relevant solution
methods are of importance for the solution approach presented in this thesis.
Chapter 4 provides a theoretical background on the subject, as well as a mathe-
matical model that follows from the relevant factors presented in Chapter 2 and
the reviewed literature from Chapter 3. Chapter 5 is the main section of this
thesis and includes the solution approach to the model presented in Chapter 4,
with additional improvement steps and the robust counterparts for the regres-
sions needed. Chapter 6 provides the implementation of the methods derived
in Chapter 5 into a practical case with real data from a client of PauwR as
well as artificially generated data sets. Consecutively, in Chapter 7 the results
are presented and discussed. This thesis is concluded with a conclusion and
discussion in Chapter 8.
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2 Problem Description

The main goal of a marketer is to divide a given budget among different possible
media channels, in such a way that the given objective is maximized. In the ma-
jority of the cases, the given objective is to generate the largest possible revenue,
which is also assumed to be the intention in this thesis. There are other possible
objectives that could be considered, e.g. the number of views of a website, the
number of transactions following a marketing campaign or exposure in general.

2.1 Constraints and Complexity

The marketer’s division of the available budget is subject to multiple constraints.
The most prominent constraint treated in this thesis is the information uncer-
tainty. Most information regarding the marketing campaigns, their expenditure
and revenues can be retrieved from Google Analytics. However, for the expen-
diture parameters described in the next paragraphs, uncertainty is present due
to incomplete or averaged information. In addition to this uncertainty, there
also exist multiple fluctuations due to untraceable events. This, again, causes a
significant increase in the complexity of the problem.

However, even if the uncertainty would not be an issue, multiple constraints
would be imposed on the marketer’s problem leading to a non-trivial problem.
Multiple factors are complicating the situation at hand, of which the most im-
portant are:

Budget limitation
The first, most obvious constraint, is a finite budget. This finite bud-
get limits the marketeer, preventing him/her from using every marketing
channel to its full potential. This implies that concessions have to be made
regarding the usage of channels, and a desirability of an optimal alloca-
tion under the budget constraint. Evidently, the impact of the budget
limitation on the problem statement varies between companies and over
time. During times of recession, when marketing budgets are especially
vulnerable to cutbacks, these budget limitations have proven to be very
tight in many cases.

Expenditure parameters
In addition to varying budgets, there are also differing expenditure pa-
rameters among the given channels. Each channel provided gives different
results regarding different assigned budgets, and a varying rate of return
when assigned different budgets. More specifically, there is a diminishing
rate of return in each marketing channel. This is also the property that
excludes a single optimal channel in which one should invest the total
budget, regardless of the available budget.

Inter-Channel competition
The third factor to be taken into account are the dependencies of different
marketing channels. More specific, the overlap in the audiences reached
with these channels. For example, if one invests in television ads and in
radio commercials, there will generally be a certain part of the audience

6



that is reached with both of these instruments. This entails the inability
to simply add the expected results of the two channels in our problem
setting. The relations between different channels and the overlap between
the audiences needs to be taken into account. This could not only be
the case for completely distinct media channels, but also for the diverse
types of online marketing channels. Undoubtedly, the magnitude of these
overlaps among mutual pairs of channels differs.

Auctioneer’s and final bid-placer’s influence
The last major component adding complexity considered here, is the influ-
ence of the auctioneer and final bid-placer, Google Inc., in the evolution of
a daily budget into a certain revenue generation. Since Google Inc. deter-
mines the bids placed on different ads for different keywords on different
times of the day, for both the company at hand and most of his compe-
tition, Google has a big impact on the costs accompanying the generated
profits. Even in this perfect-information world, the influence of Google is
unmistakably a factor that needs to be considered. Combining this influ-
ence with the competition of a company’s own set of marketing campaigns
already leads to a major increase in complexity of the problem.

2.2 PauwR-Specific Problem

Although the problem addressed in this Master Thesis has been studied in the
literature, as will be seen in Section 3, this exact problem is yet to be solved.
The cause for this lies in the diversity of the known marketing problems, with
corresponding rapid innovations in the marketing business, but foremost in the
previously described complexity of the problem. Due to these properties, there
is no exact solution for this problem in general, leaving two options; to tackle a
specific case of the general problem, or to reduce the exactness of the solution.
In this thesis a combination of both methods shall be implemented to create a
solvable problem statement while staying as close to reality as possible.

The diversity mentioned previously already implies choices to be made re-
garding the problem to be solved. This gives rise to a more specific case to be
considered. Moreover, the rapid innovations indicate a continuously changing
set of options and possible constraints, leading to the necessity of the usage of
the most modern available tools, in order to solve a, currently, relevant prob-
lem. Since PauwR is a Internet Marketing company, the scope of this thesis is
already implicitly limited to online marketing. However, due to reasons stated,
the scope is narrowed even further.

The assigned marketing budget towards online marketing by clients of PauwR,
is split-up further into the following categories:

Social Media
This includes advertisements on social media websites and applications,
such as Facebook, Instagram, LinkedIn, etc. The main focus with PauwR
is on social media which is trending in the Netherlands. There are excep-
tions where smaller campaigns are run for, e.g. Yelp.
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Organic Searches (including Search Engine Optimization(SEO))
This includes potential customers en visitors generated by searches of in-
dividuals via search engines such as Google and Duck-Duck-Go. This cat-
egory also includes SEO, which optimizes the probability of a user finding
a clients website or direct link via a search engine.

Direct Traffic
This includes customers directly typing in the URL to a website, or a
specific page on a website.

Paid Searches (AdWords)
This includes visitors generated via sponsored links with popular search
engines.

With the AdWords service of Google Inc. marketers are enabled to set
up online marketing campaigns for these paid-search links. Marketers are
able to construct campaigns, mainly consisting of keywords and assigned
daily budgets. Apart from these main parameters there is an abundance
of optional specifications, e.g. time-preferences and maximum costs-per-
click, that can be specified. However, in general these are left at their
default values by PauwR and are assumed to have these values as well in
this thesis.

So, when the campaigns are setup with their keywords and the budgets
are allocated, which is the main topic of this thesis, Google basically dis-
tinguishes the following steps, according to Google Support (June, 2016).
Whenever an individual types in one or more from the specified keywords
presented in a campaign, a bidding occurs to determine which paid search
links will be shown to the potential customer. For these links, Google has
predetermined 3-7 reserved spaces for the top 3-7 links to be shown. The
top links are elected via a predetermined formula from Google Inc., which
depends on your bid and a predetermined quality score. Your bid is the
amount you promise to pay Google Inc., i.e. how much is subtracted from
your assigned budget, when the potential customer clicks your appeared
link. Let it be emphasized that you do not pay anything when your link is
not clicked. The quality score on the other hand, represents how well you
fit the customer needs according to Google Inc. This score follows from
user experience with your website along with the keywords typed in, your
URL and your specific ad, making up your relevance.

Please note that all factors in play could be controlled by the companies
themselves, but in general are regulated by Google Inc. This principle is
justified by the motive of Google Inc.’s need to match the customers to
the companies as well as possible. This prevents the system from collaps-
ing upon itself due to antagonistic motives of the monopolistic influence
contender.

From these four categories, Paid Searches and Social Media are the two
most interesting categories, due to the control that can be exercised over these
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categories and the easily measurable and collectible data. Apart from SEO, Or-
ganic searches and Direct traffic cannot be optimized in the same manner, due
to them being 100 percent directly dependent on user input.The issue with SEO
however, is the large number of factors that impact the results of the budget
spend on this aspect. Hence, SEO cannot be forecasted accurately, at least by
PauwR, and is left out of the scope of this thesis.

Hence, this thesis shall mainly focus on Paid searches, due to the ability to
measure results and the amount of controllable variables. Paid search also has
a significant correlation to the other three categories stated before. A signifi-
cant number of customers (about 30% for the PauwR client considered in this
thesis) do not purchase immediately upon finding the desired product via such
a paid search link. A significant part of the purchases follows from returning
customers, who have taken a few days to think about their possible investment.
These customers could be returning via the same campaign, an organic search
or direct traffic, even though their original click-bait was one of the paid search
links. Evidently, it is also possible for customers to return via a paid search
link corresponding to another AdWords campaign, yielding inter-dependencies
in the campaigns.

As stated before, Google Inc.’s policy is a huge factor regarding the distribu-
tion of the budgets presented for paid search links. When a budget is allocated
to a Paid Aearch campaign, Google Inc. distributes this budget over the day.
Since Google Inc. is also in control of the bidding process for most other compa-
nies, Google Inc.’s policy has a very large impact on the number of views, prices
et cetera. Since PauwR does not have any influence in this process, and does
not wish to have any influence on the bidding process, this is assumed to be
exogenous. This leads to the objective of the problem remaining to be just the
division of the budget among the different possible AdWords campaigns, also
known as campaigns. However, the budget distribution by Google Inc., and the
fact that you only have to pay when someone clicks on your link, do lead to a
significant level of uncertainty, and hence a harder optimization problem.

The further concessions made on the exactness of the solution due to problem
complexity arguments will be further discussed in the theoretical background
and solution approach sections.

2.3 Thesis Objective

The main objective of this master thesis project is:

To develop a mathematical methodology which optimally estimates the
generated revenue as a function of investment, subject to uncertain history

data, which is to be given as the objective function in a budget allocation model
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3 Literature Review

In this thesis a mathematical model is proposed for budget allocation of Ad-
Words budgets. To construct this model, we have considered literature regard-
ing marketing theory and existing models solving similar problems. From this
literature the need arose to review literature on convex regression models, out-
lier exclusion and robust optimization. The studies inspected for this thesis are
stated in the following sections.

3.1 Marketing Theory

As input for the model that is constructed in this thesis, we are given the daily
costs and revenues for the marketing channels. Intuitively the revenues can be
described as an increasing function in costs, with decreasing marginals. Bhat-
tacharya (2009) states that this relation is S-shaped as in Figure 1, and that it
can be described by a Gompertz function for example. This shape is also sup-
ported by Giagkoulas (2011). However, this S-shape follows from consequential
factored setup costs of marketing channels. With AdWords campaigns, these
setup costs are negligible, and the monotonically non-decreasing concave rela-
tion of the right hand side of the S-shape remains, Adwords Support (2016).

In Bhattacharya (2008) challenges faced when solving budget allocation
models are described. Some of the most important challenges are a lack of good
data, interaction effects of marketing channels, dynamic effects such as adver-
tising leads, multicollinearity and non-linear functional forms. The interaction
effects are also of great influence on the model that Giagkoulas (2011) presents
on his particular case of a budget allocation model. However, multicollinearity
need not considered when we limit the scope to AdWords campaigns, because
we only consider one possible medium of advertising. Further, with the available
data of Google Analytics, most of the lack of good data is no longer an issue.
In Chapters 5 and 6 the data that cannot be obtained from Google Analytics in
our situation is accounted for by introducing the concept of data uncertainty.
Moreover, the interaction effect and dynamic effect challenges can be estimated
via the data available in Google Analytics, as is further explained in Section 6.1.
This implies that these factors can be estimated and thus remove this issue, but
lead to a new challenge of data uncertainty. Lastly, the non-linear functional
form is still a challenge in this thesis, but is easier since we do not consider setup
costs.

3.2 Budget Allocation Model

Giagkoulas (2011) solves a similar budget allocation model as the one in this
thesis. He stated a mathematical model which maximizes the revenue function
subject to a budget constraint and a lower and upper bound on the budget
spend per channel. These constraints also hold true for the model in this thesis.

Bhattachary (2010) and Bhattacharya (2012) also proposed a solution method
for a budget allocation model. However, this Generalized Additive Model for
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Figure 1: The example function of the relation between sales and costs of a
marketing channel presented in Bhattacharya (2009)

Marketing Mix Modeling was simulation based, and is mainly useful for the de-
termination of time-lags in marketing. This can be, as stated before, retrieved
from the Google Analytics data for this thesis. Moreover, Bhattacharya (2010)
already states that the method is very simplistic and should mainly be used to
determine which time-lags are significant.

Lastly, in Naik et al. (2005) an extension to the already existing Lancaster
model is proposed. This paper is mainly focused on how different compet-
ing marketeers interact. A dual methodology is proposed in this paper, the
first model is calculating the optimal combination and the second model esti-
mates the resulting effect. The paper basically used the Lancaster model (J.
Lancaster, 1966) and extends it by introducing interaction effects and multiple
brands. This problem formulation is not necessarily applicable in this thesis
due to a different focus. However, the paper does provide a good insight in the
possible interaction effects that need to be taken into consideration.

3.3 Concave Regression

Following Giagkoulas (2011), Bhattacharya (2010) and Bhattacharya (2012),
the objective function of the mathematical model should consist of at least one
monotonically non-decreasing concave function. To determine this function, a
regression needs to be done. One method to perform this regression, explored
in literature, is the Convex Hull Method by Aguilera et al.(2010). This method
uses a LOESS regression method, presented in Cleveland (1979) to get a smooth
estimator. This LOESS regression of Cleveland (1979) is an extension to the
local fitting of polynomials as presented in Macauley (1931) and uses parame-
ters based on Lutenegger (1979). The algorithm of Aguilera et al. (2010) then
takes a convex hull of a subset of this smooth estimator to get a convex regres-
sion function. Jacoby (2000) provides a more recent discussion on the LOESS
regression method as well as the parameter choices.
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The second method discussed in this thesis is a direct Quadratic Formulation
of the regression problem. This Quadratic Formulation is based on the proper-
ties and implementations described in Lobo et al. (1998) and is supported by
the findings of Miyashiro and Takano (2013). It is then implemented as pro-
posed in Alizadeh and Goldfarb (2004) and Boyd and Vandenberghe (2004). As
a solver for this SOCP formulation, MOSEK is chosen, based on the character-
istics stated in Anderson (2013).

3.4 Outlier Exclusion

Many real-world data sets have to deal with outliers. Their possible negative
effects and power are discussed in J.w. Osborne & A. Overbay (2004). Since
this applies to the problem at hand as well, and the effects could undermine the
outcomes of the regressions performed, outlier exclusion is performed. This is
done via a Simulated Annealing algorithm, based upon the algorithm presented
in Corana et al.(1987) and Dell’Amico et al.(2009), using the Metropolis Crite-
rion first introduced in Metropolis (1953).

3.5 Robust Optimization

The data in this thesis contains uncertainty, which has to be accounted for.
There exists extensive literature on robust optimization, which deals with data
uncertainty. Important papers are the general papers about robust optimiza-
tion of Sim (2004) and B.L. Gorissen et al.(2015). A more in-depth explana-
tion regarding data-driven optimization is given in Bertsimas et al. (2013) ,
where Goh & Sim (2010) discuss tractable approximations of distributionally
robust optimization problems. Furthermore, in this thesis the method presented
in Bertsimas & Thiele (2006) is followed to formulate the robust counterpart.
This is then solved with the Adversarial Approach, first described in Bienstock
& Ozbay (2008).
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4 Theoretical Background

In this chapter, a detailed description of involved factors and terminology is
presented, to better understand the problem and the modeling hereof. From
this theoretical knowledge, logical steps follow, which lead up to the definitions
of the problem’s decision variables, parameters, sets and objective function.
Which will be brought together in the mathematical problem formulation, with
its constraints and objective function as well as all its sets, parameters and
variables.

4.1 Definitions

To fully understand the remainder of this thesis, we introduce the terms that
will be used extensively throughout, with their respective definitions. These are
presented below:

Marketing Channel
According to Black’s Law Dictionary (2016) “a Marketing channel is the
path from vendor to the consumer of a company’s goods and services,
flowing in one direction”. In this thesis it is used as a general term referring
to an available media to broadcast the client’s message.

AdWords Campaign
Google Adwords Support (2016) states that “an AdWords campaign, or
campaign for short, is a set of ad groups (ads, keywords, and bids) that
share a budget, location targeting, and other settings. Campaigns are
often used to organize categories of products or services that you offer”.

Marketing Budget
The Online Business Dictionary (2016) states that a “Marketing budget,
or budget, is an estimated projection of costs required to promote a busi-
ness’ products or services. A marketing budget will typically include all
promotional costs, including marketing communications such as website
development, advertising and public relations, as well as the costs of em-
ploying marketing staff and utilizing office space”. Here it will be referred
to as the amount of money that is allocated to marketing, a specific cam-
paign or a set of campaigns.

4.2 Problem Modeling

The optimal budget allocation over the possible campaigns implies that the
available amount of money should be invested in a subset of the campaigns and
diverted among this subset in such a way that the total revenue generated by the
total set of campaigns would be maximized. This thesis starts out by modeling
the general version of this problem, assuming independence of the campaigns
and their respective revenues. This independence, as can seen in Chapter 6, will
be a weak assumption when implementing some simple transformations on the
input data.
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The first computation of the mathematical model of our problem presented
is deterministic of nature, implying that uncertainty is neglected. This follows
directly from the deterministic way in which the objective function is computed.
Namely, for the deterministic model, for a given set of campaigns C, we define
the total sales (revenue) function generated by a given budget allocation as

S(b) =
∑
c

sc(bc) (1)

where b is the vector of budget allocated and sc the corresponding sales gener-
ated by the allocation of bc to channel c.

As stated in Chapter 3, the literature suggests non-negative, yet diminishing,
marginal returns on investment per channel. Hence, this implies a monotoni-
cally non-decreasing concave shape for sc(bc) for all channels. We may conclude
that S(b) is a monotonically non-decreasing concave function, as it is a sum
of the monotonically non-decreasing concave functions sc(bc). The theorem to
support this claim, as well as the definitions of convexity and concavity, are
given in Appendix B.

Please note that in the solution approach in Chapter 5, the deterministic
version of the problem will be solved initially, followed by several steps leading
towards the solution of the more realistic Robust Counterpart. This can be
readily done by replacing the deterministic regressions to estimate S(b) by their
robust equivalent, as is seen in Sections 5.2 and 5.3.

4.3 Mathematical Problem Formulation

The final step considered in this thesis is to solve a model which optimally al-
locates our budget, using the estimated revenue function as its objective value.
In doing so we want to maximize the revenue under a budget constraint. Also,
there are no short positions, i.e. all investments need to be positive. This im-
plies that the deterministic version of our problem needs to be solved by the
following model:

14



Budget Allocation Model

Input: A maximum budget (B) and a set of possible campaigns (C) with
their history data sets Hc, which are explained into more detail at the end of
this section and are used to construct the objective function

Model:

Functions:

• S : RC → R : (Total) Sales function, assumed to be equal to the sum of
individual sales functions per campaign, i.e. S(b) =

∑
c sc(bc)

Parameters:

• B ∈ R++ : Maximum Budget to be spend

• LBc ∈ R+ : Lower Bound for budget allocated to campaign c

• UBc ∈ R+ : Upper Bound for budget allocated to campaign c

Decision Variables:

• bc ∈ RC+ : Budget allocated to campaign c

Mathematical Problem:

(P) max
∑
c

sc(bc) (2)

s.t.
∑
c

bc ≤ B (3)

bc ≥ LBc ∀c ∈ C (4)

bc ≤ UBc ∀c ∈ C (5)

Constraint (3) denotes the budget limitation which was introduced in Chap-
ter 2.1, ensuring that the sum of the invested budget per channel does not exceed
the total available budget. In addition to this constraint, equation (4) imposes
a lower bound on the amount invested per channel. In this model, the lower
bound can be set for user preference. Otherwise it is assumed to be 0, such
that it prevents an, unrealistic, short position in any campaign. Equation (5)
imposes an upper bound for the expenditure on every single campaign. Similar
to the lower bound, this is subject to user input. The default setting of this
upper bound is equal to the maximum observed expenditure in the set of history
data to prevent undesired extrapolation.

In addition to the standard upper and lower bound constraints given by (4)
and (5), one may impose constraints of the following type:∑

c′∈C′
bc′ ≥ LBC′ where C ′ ⊆ C (6)∑

c′∈C′
bc′ ≤ UBC′ where a C ′ ⊆ C (7)
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Hence, imposing upper and lower bounds on investment on combinations of
campaigns. These are linear constraints, and therefore do not drastically in-
crease the complexity of the model. Constraints of this type are omitted in this
thesis, due to the grouping that will be seen in Section 6.1. This grouping en-
sures that the remaining campaigns can be regarded as mutually independent as
far as practical implications go. Thus, it would not be reasonable to constraint
the investment on certain combinations of campaigns.

In (P), the objective function in (2) is a maximization over the revenue func-
tion (1). Which is a monotonically non-decreasing concave objective function,
with linear constraints (3) - (5). Hence, this problem depicts a convex optimiza-
tion problem.

The only part from the problem formulation left to specify is sc(bc). The
difficulty however, lies in the derivation of a sensible definition of the channel
sales function. This derivation will happen upon the daily history data sets
Hc ∈ R2×h, with h = |K| and entries Hc

k = (xck, y
c
k) for each day k ∈ K, with

K = 1, 2, ..., h. The data sets Hc are subject to interaction effects between
different marketing channels, varying time-delays, uncertainty in the expen-
diture data x, uncertainty in the revenue data y and random events causing
outliers.The main challenge will be to account for these factors when obtaining
the sales function.

Please note that in the upcoming sections the superscript c will be leftout.
So, H will be used to denote Hc. This is due to the seperate evaluation of the
sets Hc, due to their assumed independence. The same holds for the data points
Hc
k = (xck, y

c
k) being denoted as Hk = (xk, yk).
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5 Sales Function Estimation

In this chapter the main part of the solution approach for the model presented
in Chapter 4.3 is discussed; the modeling of the sales function. Section 5.1 starts
with the modeling of the sales function in a deterministic approach. To derive
the monotonically non-decreasing concave sales functions per campaign (sc(bc)),
two methods are proposed. The first method is the Convex Hull Method and
the second method is a more direct Quadratic Formulation of the problem.

Consecutively, Chapters 5.2 and 5.3 then discuss the uncertainties impacting
the data sets, and how to cope with this uncertainty. This is done via robust
optimization. The possible factors of uncertainty are quantified, and the robust
counterparts for the nominal solution of 5.1 are formulated and solved.

In Figure 2, an overview is given of how these algorithms blend together to
solve the main problem at hand.

5.1 Nominal Sales Function

Since the sales function is the sum over the expected revenue curves per cam-
paign, the establishment of an sales function per campaign is necessary.

5.1.1 Non-Parametric Regression

To construct the campaign-specific sales function sc(bc), a regression on the
collected data points will be done. Since we do not expect the shape of the
function to be strictly linear, polynomial and/or logarithmic, we start with a
non-parametric regression model. We define the dependence of every entry yk
on xk as

yk = fc(xk) + εk ∀k ∈ K

with yk ∈ R+, xk ∈ R+ and εk ∈ R as an unknown error term. As stated in
Chapter 4.2, fc(·) is assumed to be a monotonically increasing concave func-
tion. These known characteristics give rise to multiple possible approaches to
derive a well fitted function fc(·). The first approach considered is a convex hull
method proposed by Aguilera et al. (2010). The second approach acknowledged
is a Second-Order Cone Problem (SOCP) formulation which directly states and
implements the non-decreasing concavity constraints and maximized fitting ob-
jective.

As we want to estimate the sales function fc for a fixed channel c, we drop
the subscript c and we will call the function f.
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Figure 2: FlowChart of the solution approach. Gray boxes represent the steps
that are only relevant to test the quality of the solution approach
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5.1.2 Convex Hull Method

In 2010, Aguilera et al (2010) proposed an alternative approach to regressions
performed on data known to have a convex shape. This method is simple and
fast to model, and can be applied in any dimension and to any convex function.
In general, the method consists of a data smoothing step and a convexification
step. Aguilera et al. (2010) obtained uniform error estimates and showed that
the convexification step adds no further errors to the estimation step.

Method

For the remainder of the thesis we assume, without loss of generality (w.l.o.g.),
that the data set H is ordered with respect to the first coordinates, i.e. H is
such that x1 ≤ x2 ≤ ... ≤ xh. The range of xk is set to the closed interval
Q = [x1, xh] ⊂ R, where x1 and xh denote the first and last element of the
ordered set x. Hence, x1 and xh are the minimum and the maximum value of x
in the data set respectively.

We assume f ∈ Φ, where Φ is the set of, finite real valued, non-decreasing
concave functions defined on Q. We then define fh as a naive, point-wise esti-
mator of f defined on Q. This fh will be derived via a smoothing procedure, i.e.
a Local Weighted Scatterplot Smoothing (LOESS) algorithm, on H. Based on

fh a concave estimator f̂h will be created via an analogue concave adaptation
of the convexification step as presented in Aguilera et al.(2010). This concave

function f̂h is our final estimator of the real function f. The derivations of both
fh and f̂h are explained into more detail in the following paragraphs.

To create the initial estimator fh, a Local Weighted Scatterplot Smoothing
(LOESS) algorithm is used, as suggested in Aguilera et al. The LOESS algo-
rithm was first proposed in Cleveland (1979), and is an extension to the local
fitting of polynomials as presented in Macauley (1931). The LOESS procedure is
often viewed as a vertical sliding window moving over an (x,y)-plot of the data.
At every predetermined stopping point the algorithm fits a polynomial through
the data points included in the window, according to the standard least-squares
measure. This new polynomial is then used to determine an estimated value
for the stopping point. Hence, the algorithm brings forth a set of estimated
regression values for a set of stopping points determined beforehand.

In order to initiate the algorithm m evaluation points, κj for j=1,...,m need
to be chosen. We take every x-coordinate from H as an evaluation point ensuring
a similar spread in estimations as in the original data set, implying m=h. It
then directly follows that the domain of κ equals the domain of Q, where κ
denotes the set of evaluation points. We define (xκj

, ŷκj
) as the set of points

included in the local weighted regression, with the number of points included
equal to λ1 ∗ |H| and weighted with predefined weight function Λ. The local
regression is a polynomial and so is shaped as

fκj
=

λ2∑
l=0

al · xlκj
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with constant a ∈ R and predetermined λ ∈ N as the maximum degree of the
polynomial. The estimated y-value for κj then is fκj

(κj). In conclusion, the
initial estimator fh = {fκj

}j=1,..,m, i.e. the set consisting of every point esti-
mate of the LOESS algorithm.

To implement this algorithm and derive fh the parameters λ1, and λ2 and
weight function Λ need to be properly defined and assigned a fitting value.
These are stated as:

λ1: Fraction Data Included
The constant λ1 ∈ (0, 1] determines the fraction of data points to be con-
sidered in each local regression of the LOESS algorithm. Thus, for a local
regression at evaluation point κj , the λ1 ∗ |H| closest data points w.r.t. κj
are incorporated in the regression. This implies that for λ1 → 0 only the
point closest to κj , i.e. in this thesis it would be κj itself, is considered.
Thus, every data point (xk, yk) would be estimated by only taking into
account that exact data point (xk, yk). Hence, the estimator fh would
equal the data set H.

Similar arguments yield that for λ1 = 1 all datapoints are included in
every local regression. This would yield a more smooth regression as op-
posed to λ1 → 0. This holds in general; for larger values of λ1, a more
smooth regression follows. Please note that for λ1 = 1 not all κj yield
the same estimator value. The difference in estimators is a consequence
of the predetermined weight function Λ, described into more detail in an
upcoming section. This weight function assigns a value to each data point
in the regression, representing the importance of the fit of the regression
at this point. In general, this weight function is inversely related to the
distance of the considered point to κj .

As prescribed in Cleveland (1979) the value of λ1 should in general be be-
tween .2 and .8. A value lower than .2 would generate a too inconsistent
estimator, and a value higher than .8 would in general produce results
which are not able to capture the shape of the data. In this thesis the
value is set at λ1 = .4. The reasoning behind this is two-fold, and the
consecutive fine-tuning is done via experimentation. Firstly, the value of
λ1 should be less than .5, because the details of the local shape are of
importance to capture within the model, Cleveland (1979). Since we are
trying to fit in a concave shape, this local behavior of the data matters.
Secondly, λ1 > 0.3 should hold because of the possible impact of a peak
in our estimator fh on the final f̂h as described in Cleveland (1979). A
relatively large peak in the estimator could alter the shape of the final
estimator to large extends. This follows from the convex hull taken of
fh to create f̂h. This procedure is described into detail in the following
sections, and will give more insight into and more body to this argument.
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λ2: Maximum Degree of Polynomial
For every κj a local polynomial is fitted according to the least-squares
measure. The parameter λ2 determines the maximum degree of this local
polynomial. In Cleveland (1979) it was issued that λ2 ≥ 2 was compu-
tationally heavy and that λ2 = 2 would suffice in the majority of cases.
Since computers have evolved drastically since 1979, computational com-
plexity is much less of a burden, and λ2 = 2 now provides a balanced
choice between computational complexity and the ability to capture a
good estimator for the data, as is stated in Jacoby(2000). The dominant
improvement of λ2 = 2 as opposed to λ2 = 1 is to capture curvature of
the data more accurately in fh.

Λ: Weight-Function
In every local regression, the points included are weighted according to
the weight-function Λ. This ensures that points closer to κj are more
important to fit the regression than those farther away. In Cleveland
(1979) it is issued that the tricube function, i.e.

Λ(uk) = (1− u3
k)3 for 0 ≤ u ≤ 1

where uk is the relative distance from xk to κj , is the best choice for Λ.
Please refer to Cleveland(1979) for more details about the requirements for
a weight function and the arguments for the choice of the tricube function.

After fh is determined, a set of points Mh is drawn from fh. Aguilera et
al (2010) state that, in general, the number of points in Mh need not equal h,
and the points in Mh might be completely unrelated to the first coordinates of
the data points (x,y). The best choice for Mh is dependent on size of the data
set, distances between pairs of data points and computational complexity. In
this thesis we select every other point and the first and last point in fh, such
that Mh also spans Q. From trial and error it follows that no significant loss
of precision from the estimator occurs, paired with a decrease in computational
complexity. This particular choice for Mh is further motivated by the automatic
emphasis placed upon the parts of the data where more information is present
in the data set. Due to nonuniform distributed data across the x-axis, some
parts provide more evidence regarding the shape of the data, while stronger as-
sumptions regarding linearity are made on the parts where data is more scarce.
Hence, this definition of Mh focuses more on the information-dense parts and
leads to a more evidence-based determination of the estimator f̂h.

The following definitions and derivations are parallel to Aguilera et al. (2010),
but used to derive a concave function as opposed to a convex function. Let Φ
again denote the set of all non-decreasing concave functions, and

Φh = {φ ∈ Φ : φ(z) ≥ fh(z) ∀z ∈Mh}

denote the set of all concave functions on Mh which lie above fh. Then we can
define

f̂h = inf{φ : φ ∈ Φh}
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as our concave estimator on the domain of Q. Since Mh spans Q it is readily
seen that f̂h is well defined on Q.

The procedure of this algorithm for one campaign is presented in Figure 3.
In plot b. the LOESS regression on the data points is shown. As stated before,
the fractional proportion of data used to estimate each data point is equal to
.4. Plot c. shows Mh, which is the union of every other point on the LOESS
regression as seen in plot b. and fh(x1) and fh(xh). Plot d shows the Convex
Hull taken over Mh, where in plot e. the desired infimum is shown, which is the
red line. Thus, this red line represents f̂h, which also appears in plot f. relative
to the original data points. The whole procedure can be seen in one plot in plot
g.

5.1.3 Quadratic Formulation

In Chapter 3 it was already stated that from Bhattacharya (2010) and Bhat-
tacharya (2012) we know that, per campaign, advertisement costs should have
a monotonically non-decreasing concave relation with generated revenues. We
could model this directly as a least squares regression model with the described
shape. The model is set up in the following way.

The Model
The input for this model is again the set of history data H. The objective is
to create a monotonically non-decreasing concave well-fitted regression line f̃h
through H. We start out by dividing the range of x into n-1 equally sized inter-
vals, leading to n gridlines. Let pi = (i−1) · xh−x1

n denote the x-value of the i’th
gridline, i.e. the i’th gridpoint. Let qi denote the y-value corresponding to pi for
i=1,...,n , being the decision variable of the model. We assume linear behavior
of the regression line f̃h between gridpoints. Thus, the set (p, q) denotes the
corner points of f̃h.

Since the regression is defined for the complete set Q, it follows that for every
(xk, yk) there exists an i such that pi ≤ xk ≤ pi+1 holds. Thus, every xk can be
written as a convex combination of pi and pi+1 for a certain i. We denote this
as

xk = uk · pi∗ + (1− uk) · pi∗+1

with uk ∈ [0, 1] and pi∗ = maxj pj ≤ xk. It follows that

uk =
pi∗+1 − xk
pi∗+1 − pi∗

and that
f̃h(xk) = uk · qi∗ + (1− uk) · qi∗+1

The objective is to minimize the total distance between f̃h and the data
points in H. Let dk denote the distance of point (xk, yk) to f̃h. Then it holds
that

dk = |yk − f̃h(xk)| = |yk − (uk · qi∗ + (1− u) · qi∗+1)| ∀k (8)
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Figure 3: Steps a. through f. of Convex Hull Method, with g. being a complete
overview. The separate plots show: a. Data points, b. LOESS smoothing
through the data points, c. LOESS regression points, d. LOESS regression
points with corresponding convex hull, e. LOESS regression points with concave
regression line, f. Concave regression through the data points, g. A complete
overview
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The constraints of this model concern the general shape of the resulting f̃h.
Let πi = qi+1−qi

pi+1−pi denote the slope from gridline i to gridline i+1. To ensure a

monotonically non-decreasing f̃h we need πi ≥ 0 to hold for all i. Concavity is
then ensured by imposing πi ≤ πj to hold for every j ≤ i, yielding decreasing
slope-values in i. In addition to these shape constraints, we also define q0 = 0
to ensure the assumption of a zero profit from zero investment.

The model has the following Second Order Cone formulation:

(SOCP) min ||d|| (9)

s.t. q0 = 0 (10)

qi ≤ qi+1 ∀i = 1, .., n (11)

(qi+1 − qi) ≤ (qj+1 − qj) ∀j ≤ i (12)

dk = yk − (uk · qi∗ + (1− uk) · qi∗+1) ∀k ∈ K (13)

In this Second Order Cone formulation equation (9) and (13) jointly follow
directly from (8). Constraint (10) depicts the zero-investment leads to zero-
profit assumption and constraints (11) and (12) represent the monotonic non-

decreasing concave nature desired of f̂n. The latter two constraints follow from

πi =
qi+1 − qi
pi+1 − pi

≥ 0⇔ qi ≤ qi+1

and

πi ≤ πj ⇔
qi+1 − qi
pi+1 − pi

≤ qj+1 − qj
pj+1 − pj

⇔ (qi+1 − qi) ≤ (qj+1 − qj)

since

pi+1 − pi = ((i+ 1)− 1) · xh − x1

n
− (i− 1) · xh − x1

n
=
xh − x1

n

is a constant for all i.

The model is presented graphically in Figure 4.
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Figure 4: Graphical representation of SOCP model for a concave regression

5.2 Data Uncertainty: Advertisement Costs

The concave regression methods used to establish the expected-sales curve are
performed in a deterministic setting. This implicitly assumes the data is correct
and insusceptible to uncertainty. This is not an accurate assumption in practice.

The end-user of the Adwords campaigns can assign a budget to be invested
in the different campaigns. However, the true expenditure is ultimately deter-
mined by Google Inc. as described in Google Support(June, 2016). To fit the
needs of his clients as well as possible, a large number of estimations and as-
sumptions are being made by Google Inc.. This leads to a margin of error, for
which they account by stating that, on a daily basis, Google Inc. is allowed to
spend up to 20% above budget.

The lower bound of the true expenditure by Google Inc. is in theory fixed to
0. Because, when none of the specified keywords are used in the search engine,
no bid will be placed and no advertisement will be bought. Since this is a very
extreme and exceptional case, a more realistic lower bound to be assumed here
is an under-expenditure up to 20% as well. This bound of 20% is a rough esti-
mation from the past experiences at PauwR. In short, if the end-user assigns an
amount bc to a campaign, the actual investment is expected to be in [.8·bc, 1.2·bc].

In accordance with these characteristics of the uncertainty regarding the
expenditure parameter, the advertisement costs of each data point k can be
reformulated, similarly as in Bertsimas and Thiele (2006), as

x̄k = ᾱk · xk + α̃k · xk · αk

with ᾱk = 1, α̃k = .2 and αk ∈ [−1, 1] an uncertain parameter for all k. This
results in x̄k = xk + 0.2 · xk · αk. With this definition of our data points we can
setup a robust counterpart for the SOCP formulation of the concave regression.
The robust counterpart solves the concave regression problem for the worst-case
scenario of the data points.
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Please note that, from this point onward, the Convex Hull Method will not
be considered as a solution method when considering robust solutions for the
data uncertainty. The reason for this being the computational time and storage
space of the CHM being much larger than the SOCP formulation. With the
SOCP formulation already using the available hardware to its full potential,
the CHM results in system failure. In addition, with time restraints regarding
this thesis, the extensive rewriting of the CHM to make it work would be too
time consuming. Moreover, since, as is seen in Chapter 7, the CHM is already
inferior to a great extend compared to the SOCP-formulation when applied to
the real-life data sets, the SOCP-formulation is chosen to continue with.

5.2.1 Reformulation Nominal Quadratic Formulation

To write the robust counterpart of the SOCP presented in the Section 5.1 in
an understandable way, we first rewrite the nominal SOCP. This is done in the
following way.

First note that every xk can be written as:

xk =
∑
i

uikpi (14)

Where 0 ≤ uik ≤ 1 ∀i, k (15)∑
i

uik = 1 ∀k (16)∑
i

|1ui,k>0 − 1ui−1,k>0| ≤ 2 ∀k (17)

Where u ∈ Rn×h and 1uik>0 denotes the number of times that a uik > 0.
Hence, equation (14) gives a more general description of xk, allowing it to be
met by any combination of the different pi. However, constraints (15) and (16)
ensure that this is a convex combination. Moreover, constraint (17) ensures that
for all k ∈ K at most 2 uik > 0, i.e. always 2, except when xk = pi for a k. More
specifically, constraint (17) ensures that the positive uik need to correspond to
adjacent pi. With these constraints the definition of uk is analogue with the
first representation of the SOCP.

We can now define the set U as:

U = {u : (14)− (17)}

Which denotes every possible u, denoting combinations of uk that satisfy
constraints (14)-(17). Note that, in the nominal case, these uik are unique, due
to the deterministic nature of xk. Thus, U only contains one element; a unique
matrix u.
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This implies that the nominal SOCP can be equivalently represented by

(SOCP) min ||d||
s.t. q0 = 0

qi ≤ qi+1 ∀i = 1, .., n

(qi+1 − qi) ≤ (qj+1 − qj) ∀j ≤ i
dk = yk − (uk · q) ∀k ∈ K,u ∈ U

5.2.2 Robust Quadratic Formulation

Recall the variable x̄k, presented in Section 5.2.1 as:

x̄k = xk(1 + 0.2 · αk)

With α ∈ A, and

A = {α : −1 ≤ αk ≤ 1 ∀k;
∑
k

|αk| ≤ Ω}

Note that this definition is directly implemented from Bertsimas and Thiele
(2006) and that it is a simple mathematical representation of the definition
stated in Section 5.2.1.

Since the new data points x̄k now depend on α, the new definition of U
becomes:

U = {u : ∃α ∈ A, x̄k(αk) =
∑
i

uik · pi ∀k; (15)− (17)}

With this new, uncertain variant of the set U, we can easily reformulate the
SOCP model to its robust counterpart in the following way:

(SOCPr) min
∑
k

d2
k (18)

s.t. q0 = 0 (19)

qi ≤ qi+1 ∀i = 1, .., n (20)

(qi+1 − qi) ≤ (qj+1 − qj) ∀j ≤ i (21)

dk ≥ |yk − (uk · q)| ∀k ∈ K,∀u ∈ U (22)

Where (22) is equivalent to

dk ≥ max{|yk − (uk · q)|} ∀k ∈ K,∀u ∈ U (23)

Note that in equation (22), the equality is replaced by an inequality with
absolute values and consequentially the norm in (18) is replaced with a squared
sum. This follows directly from the fact that (22) needs to be equivalent to
(23). Otherwise stated, we want (22) to ensure that dk equals the expression in
the worst-case scenario w.r.t. u. Hence, the equality needs to replaced with a
greater equal sign such that, in optimality, the dk is equal to the maximum value
of the expression. As a consequence, the absolute values need to be placed, such
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that we only consider the distance between the two expressions. In the original
SOCP this was automatically taken care of by the norm in the objective, how-
ever this trick cannot be carried over to the robust problem. This then causes
(18) to be reduced to a sum statement.

From (23) it is readily seen that we are dealing with a maximization sub-
problem within a minimization problem. In Bertsimas and Thiele (2006) they
tackled this problem by first extracting the maximization subproblem. They
then calculated the Lagrangian Dual for (23), and concluded that the Slater
Condition for strong duality was met and therefore that at optimality the so-
lutions of the dual and primal would be equal. This enabled them to replace
the maximization primal by the minimization dual in the robust problem, with-
out affecting the solution of the robust problem. Hence, they ended up with a
minimization subproblem inside a minimization problem, i.e. the minimization
statement in the subproblem ceased to exist and the general problem became
solvable. For a more in-depth explanation about this methodology please refer
to Bertsimas and Thiele (2006).

Even though a lot of parallels can be drawn from the problem tackled in
Bertsimas and Thiele (2006) and the SOCP at hand, there is one particularly
tricky difference. This difference is the combinatorial complexity of the set U.
This prohibits the use of the technique presented in Bertsimas and Thiele(2006).
This prohibition follows directly from the inability to calculate a closed form
Lagrangian Dual for the (23). Consequently, there is no known exact method
to solve the problem at hand, and thus the focus will be shifted towards the
usage of heuristics. The heuristic used in this thesis is known as the Adversarial
Approach, and will be explained into more detail in the upcoming sections.

Please note that, despite the inability to implement the method of Bertsi-
mas and Thiele (2006) in general, there are exceptions. More specifically, the
method of Bertsimas and Thiele (2006) can be implemented if one or both of
the following conditions are met:

1. When no x̄k intersects with a gridline. This ensures that the uik
values which are positive are the same as with the nominal case. This
implies that the only extra variance obtained is the varying values of the
two positive values of uik. Hence, the problem becomes much easier to
solve.

2. When no x̄k intersects with the regression line. When it is known
beforehand which points will be below the regression line, and which will
be above it, the problem can be rewritten into a much easier to solve
format. Because this condition states which direction the points will be
moved in the worst-case. This implies that all points above the line are
tending to the left, where the lines below the line have the tendency to
move right, w.r.t. the nominal solution. So the only important added
variable remains to determine which x̄k 6= xk in the worst-case. Thus,
again the problem becomes much easier to solve.
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5.2.3 Adversarial Approach

The adversarial approach is, as stated in Chapter 3, a heuristic used to solve
robust counterparts. This approach was introduced by Bienstock and Ozgul
(2008). The general idea is to only consider the elements of the uncertainty set
that are important to the problem, as opposed to considering the uncertainty
set as a whole. Hence, only elements ū ∈ U which are candidates to be the
worst-case scenario. As a matter of notation we denote Ū ⊂ U to be the rele-
vant subset of U when determining the robust solution.

In the adversarial approach Ū is build-up iteratively, starting with the nom-
inal case. Every iteration of the algorithm the robust model is solved for un-
certainty set Ū . Based upon the current solution, an adversary determines the
worst-case scenario to occur with respect to the data points. Hence, the ad-
versary determines an ū ∈ U that is the worst-case for the currently proposed
solution of the algorithm. This ū is then added to Ū , and the robust model
is solved again, for an extended set Ū . This repeats until a certain stopping
criterion is met. The algorithm is explained into more detail in the upcoming
sections.

Adversarial Algorithm
The algorithm can be divided into 5 sequential steps with the following contents:

Step 0
Define a stopping criterion s
Set the nominal value x0 and corresponding u0

Set iteration parameter ι = 0

Step 1
Define the complete uncertainty set U defined as in (5.2.2). Hence, U is the set
containing all possible vectors u given the budget constraint.
The algorithm starts with the uncertainty set Ū = u0, which is the set of pa-
rameters corresponding to x0.

Step 2
Solve the nominal problem:

(SOCPr) min
∑
k

dk

s.t. q0 = 0

qi ≤ qi+1 ∀i = 1, .., n

(qi+1 − qi) ≤ (qj+1 − qj) ∀j ≤ i
dk ≥ |yk − (ūk ∗ q)| ∀k ∈ K, ∀ū ∈ Ū

And obtain solution q̂, resulting in βι = ||d|| .

Step 3
For obtained q̂, solve the adversarial problem:
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max
∑
k

|yk − (uk ∗ q)|

s.t u ∈ U

And obtain solution ũ.

Step 4
IF βι-βι−1 > s

Then ι← ι+ 1
Ū = Ū ∪ ũ
Go back to step 2

ELSE: Stop

The adversarial problem to be solved in step 3 is depicted in figure 5. We
can divide the data points to be evaluated by the algorithm, roughly into three
different categories. The first category consists of the data points of whom
the uncertainty set lies completely above the regression curve determined in
Step 2. For these data points the interesting part of the uncertainty interval
is the left-hand side, because of the monotonically non-decreasing property of
the curve. The second category is the antagonist, i.e. the uncertainty sets lying
wholly underneath the regression line. For these points the interesting part is
the right-hand side. The last category is the the group of data points for which
the uncertainty interval intersects with the regression curve. For these points
both the right-hand and the left-hand side could prove to be optimal.

When no budget of uncertainty would be imposed, or when this budget is
sufficiently large, all data points would move to one of the ends of the uncertainty
interval, i.e. |αk| = 1 ∀k. This is again because of the monotonic non-decreasing
shape of the regression curve. When an interval lies completely above the line,
the objective value for the adversarial could never become worse when moving
to the left. A similar argument holds for intervals lying beneath the curve with
moving to the right. The last category also ends up in one of the extremes of
the interval, because in this reasoning you could split-up the interval in the in-
tersection point. Hence, you have two intervals, one from category one and one
from category two. These maximums are in the extremes, and hence the max-
imum of these two extremes is also the global maximum for the interval in total.

Implementation Adversarial Algorithm
In Step 0 the stopping criterion is defined as s = 0.01, and the nominal value
u0 is equal to the value of u derived in the nominal SOCP.

We start with the nominal set of data points and corresponding u in step 1.
Step 2 is by definition similar to the nominal case of solving. With the single
exception that every iteration of the algorithm a new set of constraints is added,
due to the extension of Ū .

In step 3, we have a budget of uncertainty, given in step 1. This budget is
to be spread in an efficient way, such that we get the worst possible data set
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Figure 5: Schematic overview of uncertainty in the x-values

Figure 6: Example of Points of Interest for uncertain (yk, xk)

with respect to the current regression curve. Determining this data set is done
via a cost-savings algorithm approach.

Firstly, for every x̄k the points of interest (PoI) are derived. These points are
depicted in Figure 6. The points include the extremes of the intervals of uncer-
tainty, as well as the nominal value xk and the intersections of the intervals of
uncertainty with the gridlines. The extremes are interesting because these are
the points that would be chosen when there was sufficient budget, because these
lead to the greatest value for the adversarial. The nominal value is interesting
because this is the starting point for each x̄k and the savings of the adversar-
ial are calculated with respect to the base level. Finally, the intersection with
the gridlines are interesting because of the piece-wise linearity of the regression
curve. Ultimately, the adversarial wants to consider every possible value of α
to know which will give him the biggest savings. However, because of the linear
behavior of the regression curves in between gridlines, the ratio between costs
and savings is constant over this part of the interval.

Then, for every PoI for all x̄k, the following values are tabulated

α sign |α| increment ratio( incr|α| ) k

∈ [−1, 1] ∈ {−1, 1} ∈ [0, 1] ∈ R ∈ R ∈ [0, h]
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A certain budget is set, representing the amount of uncertainty the user
wants to hedge against. This is set as being a certain percentage of the max-
imum (equal to the number of data points). In the algorithm, this budget is
spend on the different xk using an iterative approach. Let Ω denote the total
budget of uncertainty and let ω denote the remaining budget of uncertainty.

At each iteration the algorithm chooses the entry in the previously specified
PoI-matrix, with the maximum ratio of increment compared to the cost |αk.
Say it picks entry ρ with values α̃, ˜sign, ˜incr, ˜ratio and k̃. Then, the following
variables are altered as:

• x̄k̃ ← x̄k̃ + ˜incr

• ω ← ω − |α̃|

• For all PoI where k = k̃:
if |α| ≤ |α̃|:
entry is removed, because it is less beneficial than the currently selected
improvement and will therefore never be selected later on in the algorithm

else:
|α| ← |α| − |α̃|
α← |α| ∗ sign
incr ← incr − ˜incr
ratio recalculated with new values of incr and α

Please note that the determination of whether an adjustment needs to take
place depends on the absolute value of α. Since (when the possible value line
of xk crosses the regression line,) the algorithm may move to the right first and
later to the left to make maximum improvements from the adversarial point of
view.

When ω becomes significantly low, i.e. smaller than 1, it may be the case
that some points of interest may not be reachable anymore. When this happens
the algorithm corrects as is depicted in the Figure 7. This means that points
which are not reachable anymore are removed, and replaced by points where α
equals the remainder of ω. Corresponding values for the increments are calcu-
lated, along with the ratios. These new rows are added to the table, and the
algorithm continues until ω reaches zero.
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Figure 7: Example of points of interest for uncertain (yk, xk) for small level of
ω

5.3 Data Uncertainty: Revenue

In addition to the data uncertainty caused by spending policies of Google Inc.,
there is also uncertainty created by measurement inaccuracies. These inaccu-
racies have two main origins; time-lags and inter-channel relations. These two
phenomena are accounted for with the practical implementations on the PauwR
data sets, but only based upon estimations and general trends.

Time-lags follows from customers’ thinking time regarding a purchase of a
product. This includes the time between the first click on an advertisement by
a customer and the moment when the actual purchase occurs. The available
information in practice about time-lags are only averages per client of PauwR.
This implies that the implemented time-lags are the same for each campaign of
a client. They are implemented as fixed percentages of revenue per data point.
This is in contrast with reality, where every purchase has an individual lead
time. Hence the generation of uncertainty following this effect.

The second phenomenon, the inter-channel relations, encompass carry-over
effects from one channel to another. Hence, this captures the acquisitions done
via a channel that differs from the original advertisement that lured the cus-
tomer to the website. This implies that this more often occurs when there is also
a significant time-lag. The data available is per investment, so every data point
can be individually corrected. Hence, every revenue value can be increased or
decreased depending on the data. The uncertainty follows from possible mea-
surement errors or measurement impossibilities resulting in deviated outcomes.

5.3.1 Box uncertainty

Due to the two phenomena described, the uncertainty approach can be extended
to two-dimensional uncertainty. Otherwise stated, the interval uncertainty over
the x-axis has a similar equivalent on the y-axis caused by the two factors
described. We assume that these uncertainties are independent, since the x-
uncertainty follows from expenditure decisions made by Google Inc., where the
y-uncertainty follows from data flaws and faulty data.
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Figure 8: Schematic overview uncertain data points

We do assume the two uncertainties to share a single budget of uncertainty.
Hence, we now have the budget constraints∑

k

γ · αk + (1− γ) · βk ≤ Ω (24)

γ ∈ [0, 1] (25)

αk ∈ [0, 1] ∀k (26)

βk ∈ [0, 1] ∀k (27)

(28)

Where α and Ω are the same as with the data uncertainty case, and β is
defined for the y-uncertainty, similarly as α for the x-uncertainty. However, a
user-specified value of γ is introduced, which determines the relative costs of α
and β.

The shape of the uncertainty is henceforth assumed to be a box. This seems
to be the most intuitive shape, due to the presumed independence and thus the
realistic possibility for a point to end up in the extreme case for both parame-
ters. The current situation is illustrated in Figure 8.

5.3.2 Adversarial Approach

The main idea behind the Adversarial Approach for this extended case remains
the same as before. The major change now lies in the evaluation of 3 times as
many points as before. The evaluation points of the previous, more simple case
remain but are accompanied with 2 sets of points on the extremes of the y-axis
as well. This is represented in Figure 9.

Even though the evaluation from an algorithmic point of view is simply an
extended version from before, the intuition behind the Y-Uncertainty is much
simpler. For the boxes entirely above or below the curve, the direction of the
y-uncertainty from the adversary would be upwards or downwards respectively.
For the boxes that intersect with the regression curve, the side would be chosen
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Figure 9: Example points of interest for uncertain (yk, xk)

which in which the curve does not intersect with the box. In Figure 9 this would
be the upper half if the point selected for the x-uncertainty would be to the left,
and the upper-half for the right.

The selection for which box to move to the y-direction is intuitively much
easier as well. This is entirely determined by the size of the boxes in terms of
y. Due to the definition of the y-uncertainty, the boxes are given differing mea-
sures. And since, for given x-uncertainty, the added savings for the adversarial
are linear in β, the most y-uncertainty is given to the larger boxes.

The situation described would be a trivial one to solve. However, the exten-
sion is made harder to solve for the adversary because he has to evaluate the x
and y-uncertainty simultaneously due to their common budget of uncertainty.
This leads to the extension by the algorithm as stated before and shown in Fig-
ure 9. Particularly, the algorithm remains the same, but with more entries in
the presented table, as well as added columns, leading to the following table:

α ∈ sgn α ∈ |α| ∈ β ∈ sgn β ∈ |β| ∈ cost ∈ incr ( incrcosts ) k ∈
[−1, 1] {−1, 1} [0, 1] [−1, 1] {−1, 1} [0, 1] [0, 1] ∈ R ∈ R [0, h]

Where costs is defined according to the previous definition; costs = γ · |α|+
(1− γ) ∗ |β|.

When ω < 1, the solution approach alters in an analogue variant to before.
So, the now excluded points are removed from the table, where the boundary
values, i.e. where γ · |α| + (1 − γ) · |β| = ω, are added. This is illustrated in
Figure 10.
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Figure 10: Example points of interest for uncertain (yk, xk) for small value of ω

6 Implementation

The solution approach described in the previous chapter is tested on multiple
data sets. First, in Chapter 6.1, it is implemented on a real data set, imported
from the Google Analytics data base of an anonymous client of PauwR. To
further improve the results, Chapter 6.2 discusses how possible outliers are de-
tected and removed in this data set. This is done via a Simulated Annealing
algorithm. Lastly, the solution approach is applied to several artificially gener-
ated data sets to test the performance of the algorithm and perform sensitivity
analyses in Chapter 6.3.

6.1 PauwR Data Set

6.1.1 Data Retrieval

Via the Google Analytics API the data for PauwR’s anonymous client X for
the period 14-01-2014 until 22-10-2015 are read-in. The data consists of the
revenues and costs per campaign for this client. In addition, the revenues from
other sources are read-in, as well as the data of 30 days preceding and succeeding
the specified time interval. This is done to account for the carry-over effects and
time-lags described in Chapter 5 and further illustrated in the next section.

6.1.2 Data Modifications

The data read in from the Google Analytics API is raw data. The data is one-
to-one matched costs and revenues. As stated in Chapter 5, we need to account
for certain time-lags following customer’s consideration times as well as carry-
over effects from other marketing channels. The marketing channels considered
to have carry-over effects are the direct purchases, i.e. by typing in the URL of
the clients website, and organic search links, i.e. the links that are found by the
used search engine when customers search for the product they desire. The last
category of carry-over effects to be considered are the mutual carry-over effects
of the AdWords campaigns. In addition to these effects, a grouping of AdWords
campaigns was done for client X. This was done for implementation purposes.

These performed operations in practice are explained into more detail in the
following subsections.
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Time-lags
Google Analytics solely provides cumulative data on the average consideration
time of a customer regarding a purchase from your webshop. Hence, only a
general estimation can be made of the time-lags. In this case about 70% of the
customers buys the same day as they first clicked on a sponsored link. The
remaining 30% purchases within the next 30 days with a negligible loss of data.
These daily fractions are applied directly and uniformly to the retrieved data.

Carry-Over
There are customer tracks available in Google Analytics, showing which path
customers have followed to purchase the desired product. And how many cus-
tomers followed this specific path. With this information, for every campaign
is filtered out how many started with that campaign and how many purchases
ended with what campaign or other marketing channel. This results in ratios
of carry-over per campaign, because there is no available data on which exact
customers followed the specific paths. The obtained ratios are then applied to
the data to backwardly correct for these customers.

Grouping
Since PauwR has used multiple campaigns in the same categories and with sim-
ilar goals for client X, a grouping is made to create more extensive and complete
data sets. Hence, instead of directly using the campaigns as input for the model,
a certain grouping has taken place. This grouping would not have been neces-
sary if the campaigns were set up more structured.

The grouping of campaigns can occur due to two different criteria. The first
reason to group campaigns is if there were two similar consecutive campaigns.
Hence, if there were 2 campaigns in the data set with (almost) identical key-
words, and the second campaign began after the first ended. This was in most
cases due to the client temporarily stopping with AdWords advertisement in
this particular category. The second reason to group was if keywords with simi-
lar keywords were run simultaneously. More specifically, this consists of directly
competing campaigns and complementary campaigns. This was often due to
specific sales done by the client, such that he could get a better overview of the
results of these specific sales afterwards.

In conclusion, if multiple campaigns were grouped, these could have, and
maybe should have, been in one campaign initially. They were only separated
to satisfy secondary needs by the client while not having a need to have differ-
ently structured data from PauwR’s point of view.
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Figure 11: Illustration of outliers (red) to be excluded from dataset (black)

6.1.3 Data Uncertainty

The uncertainty regarding the advertisement costs was stated to be equal to 20%
of the investment. This level of uncertainty is the level that Google Inc. states
to permit itself. As stated by Google Support (June,2016), these bounds are,
in practice, nearly never attained. A more practical uncertainty level, which
also leads to less extreme, and hence more interesting, cases is to state that
xk ∈ [.9 · xk, 1.1 · xk]. Thus, to assume an uncertainty level of 10% instead of
the aforementioned 20%.

The uncertainty regarding the revenues remains unaltered in the practical
case. This implies that the fixed proportion of the y-uncertainty is equal to 11%,
and the fixed uncertainty added per individual data point lies in the interval
[0, .05 · yk].

6.2 Outlier Exclusion

When dealing with data sets from the real world, encounters with outliers are
almost inevitable. The formal definition of an outlier given by Moore and Mc-
Cabe(1999) is: ”An outlier is an observation that lies outside the overall pattern
of a distribution”. Hawkins described an outlier as an observation that “deviates
so much from other observations as to arouse suspicions that it was generated by
a different mechanism” (Hawkins, 1980). In practice the more extreme outliers
are frequently immediately clear from the data. There is however, a large gray
area of ambiguity about whether some data points should be in- or excluded
from the set, J.W. Osborne and A. Overbay (2004).

Due to the control one has over the advertisement investments (x), the only
potential outliers that are of interest in this thesis, are outliers in terms of the
dependent variable; revenue (y). See Figure 11 as means of an illustration.
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6.2.1 Motivation

According to J.W. Osborne and A. Overbay (2004) outliers can possess a signif-
icant power to distort results produced from given data sets. As stated earlier,
these outliers seem to follow from a different mechanism than the one investi-
gated. It is important to know the system to conclude about outliers, as stated
in J.W. Osborne and A. Overbay (2004).

The practical cases with PauwR is the system of interest in this thesis. In
general, these practical cases show many small purchases the majority of the
time. However, once every while a big order is placed which orders over 10
times the normal value of an order. This phenomenon is also seen with the
most obvious outlier in Fig 11 at a revenue level of 450. For now it seems this
investor comes by at random, so we do not account for this in the sales function
estimation. This is just seen as a lucky shot.

Since the datasets are relatively small, and the (theoretical) shapes of the
data are important, the outliers could influence the results to an excessive ex-
tend. This would lead to unwanted results, resulting in a bad model. Hence,
outlier exclusion is of importance, and will be used to obtain better results for
the stated mathematical model in Chapter 4.

6.2.2 Simulated Annealing: Boundary Creation

Since we limit ourselves to potential outliers in the y-direction, due to the level of
controlability over the x-axis, an upper and lower bound are composed through
a 100 · (1−α)% confidence region, formed by a Simulated Annealing algorithm.

Simulated Annealing Setup
Simulated Annealing (SA) is a heuristic, based upon the paper published by
Metropolis et al (1953). The algorithm simulates the cooling of material in a
heat bath, also known as annealing. While the material is still hot, one can
make large adjustments to its shape without being able to do detailed opera-
tions. While the material is cooling down, larger parts of the material become
solid, leaving room for more precise, minor adjustments. This implies that rough
shapes are being formed at the start of the process, slowly converging towards
smaller adjustments as the material cools down.

This is translated fairly directly to a mathematical optimization problem
of finding a global optimum. At the start of the algorithm, the temperature
parameter is high, resulting in a global, more randomized search. In this state,
the algorithm allows many uphill moves in terms of the search direction. As
the value of the temperature variable is decreasing, the search becomes more
locally orientated. When temperature tends to zero, the algorithm only allows
for descending movements as a search direction. This ultimately leads to the
convergence to a local optimum, which should be the global optimum if the
algorithm is setup correctly and the parameter values are chosen well.
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Objective and Solution Definition
The SA algorithm in this thesis will determine a set Hout ⊂ H, consisting of
the data points (x, y)out considered to be outliers. This will be done via a Local
Search setup, as is standard for SA. First an initial solution is determined, with
corresponding costs and sets Hout and Hin = H \Hout. With every iteration a
new solution is determined with corresponding costs and sets of points included
and excluded. The costs are then determined and whether the new solution is
accepted depends on the level of costs and the Metropolis criterion as stated in
Metropolis et al. (1953), which will be explained in more detail in the following
sections.

Search Space: Neighborhood Definition
SA is classified as a local search algorithm. Local search algorithms move from
solution to solution until the optimal solution is found or a specified time bound
is reached. In general, local search algorithms are meta heuristics used to solve
computationally hard problems, Choi and Lee (1998).

For a local search algorithm to move from one solution to the next, a neigh-
borhood of the solution has to be determined. A neighborhood defines a sub-
space of the solution space, in which the algorithm searches for the next solu-
tion. Let υ denote the current solution of the SA algorithm. Then, according to
Dell’Amico et al.(2009), the neighborhood N (υ) is a function ”which associates
with any solution υ a portion N (υ) of the solution space containing all solutions
that can be obtained from υ with a ’simple’ transformation”.

There are many variations of neighborhood functions that can be found in
literature. For example, one might base a neighborhood function N upon a
(Euclidean) distance stating that Nδ(υ) = υ′ : |υ′ − υ| ≤ δ, where δ is a given
constant, as is done in Qian et al. (2004). Another possible categorization of
possible neighborhood functions N , more applicable to this case, is the pre-
sented in Dell’Amico et al.(2009). This categorization is the following: N1

(contour filling), N2 (pairwise-exchange) and NL (L-exchange). In this thesis a
combination of contour filling and pairwise-exchange is used, and accordingly,
the neighborhood of a solution υ is denoted by N12(υ).

Say, again, the current solution is υ, with corresponding Hout(υ) and Hin(υ).
Let ηin and ηout be arbitrary elements in Hin(υ) and Hout(υ) respectively. Then
υ′ ∈ N12(υ) if and only if Hout(υ′) and Hin(υ′) relate in one of the following
three ways:

• Hout(υ′) = Hout(υ) ∪ ηin and hence Hin(υ′) = Hin(υ) \ ηin

• Hin(υ′) = Hin(υ) ∪ ηout and hence Hout(υ′) = Hout(υ) \ ηout

• Hin(υ′) = Hin(υ) ∪ ηout \ ηin and hence Hout(υ′) = Hout(υ) ∪ ηin \ ηout

Otherwise stated, a potential candidate solution υ′ ∈ υ12 if Hin(υ′) equals
Hin(υ) with a possible addition and/or subtraction of single points of the set
Hin(υ), implying |Hin(υ)| − 1 ≤ |Hin(υ′)| ≤ |Hin(υ)|+ 1.

Please note that this definition applies to all subsets of the sets of data
points, with exception of duplicate points, i.e. points with the same x and y
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coordinate. These are treated as if they are one point for the sake of the neigh-
borhood definition. They are treated as multiple points for all other purposes,
e.g. when considering the confidence levels of the confidence regions and possi-
ble penalty costs.

The SA Algorithm
The Simulated Annealing algorithm used to solve the problem at hand is rep-
resented in Algorithm 1, and will be extensively discussed in the sequential
sections.

Algorithm 1 Simulated Annealing

Initialize (read-in) datapoints H
Set parameters: T (> t),t(> 0),δ(∈ (0, 1)),ρ(> 0),n(> 0),θ(> 0),α(∈ (0, 1))
Initialize gridlines pi with i=1,...,n, leading to n-1 intervals
Set P[i] = 0 and A[i] = b(1− α) ·H[i]c for i = 1, ..., n
Initial solution: υ = [υub, υlb]
Initial costs: C(υ) =

∑
(υub − υlb)

while T > t do
τ ← 0
τ̄ ← 20 · T + 100
while τ ≤ τ̄ do

choose random υ′ ∈ N12(υ)
P(υ′)← {(Hout(υ′)−A[i])}+
C(υ′) =

∑
(υub − υ′lb) + ρ ·

∑
i P[i]

∆C = C(υ′)− C(υ)
draw random r ∼ U(0, 1)
if (∆C < 0 or e−θ·∆C/T > r ) then

υ ← υ′

P(υ)← P(υ′)
end if
τ ← τ + 1

end while
T ← δ ∗ T

end while

Step 0: Initialization
Choose parameter values for

T (> t): Starting temperature

t(> 0): Temperature threshold

δ(∈ (0, 1)): Temperature reduction fraction

ρ(> 0): Penalty costs parameter

n(> 0): Number of gridlines, leading to n-1 intervals

θ(> 0): Constant for costs scaling

α(∈ (0, 1)): Level of confidence
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The intervals are setup in a similar fashion as with the SOCP model, i.e.
with n gridlines uniformly distributed over the interval [0, xh]. The data points
are automatically assigned to the interval corresponding to the two enclosing
gridlines. We denote the data points in interval i by H[i], with reciprocal grid-
lines pi−1 and pi. In general these intervals do not contain the same number of
data points.

To determine the sets Hin and Hout, a solution of the SA algorithm states
a lower bound and upper bound on Hin, i.e. υ = [υlb, υub], with υ ∈ Rn×2

and so υlb, υub ∈ Rn. The entries of υ represent y-values corresponding to pi
for i=1,...,n, analogue to the definition of q with the SOCP model. Moreover,
the assumed linearity between consecutive entries applies again. Thus, the sets
(p, υlb) and (p, υub) form the corner points of the piece-wise linear lowerbound
and upperbound functions, glb(υ) and gub(υ), respectively. Then Hin is defined
as

Hin = {(xk, yk) ∈ H : glb(υ) ≤ yk ≤ gub(υ)}
Note: since Hout = H \Hin, only Hin will be extensively treated, with Hout

implicitly determined.

The initial solution υ0 is determined such that Hin = H. This is done by
starting at the back-end of the x-axis, pn, and determining υlb[n] = min{yk :
(xk, yk) ∈ H,xk = pn} and υub[n] = max{yk : (xk, yk) ∈ H,xk = pn}.Then, gub
is determined using the following iterative procedure for j=0,...,n-1:

1. The current point to evaluate is (pn−j , υub(n− j))

2. Find σ̂ such that σ̂ = {minσ|υub(n − j) − σ · (pn−j − xη) ≥ yη ∀η ∈
H[n − j − 1]}. Note that this minimization is due to the fact that the
algorithm evaluates from n to 1 backwards.

3. Set new υub(n− j − 1) = υub(n− j)− σ̂ · (pn−j − pn−j−1)

The process to determine the initial lower bound is analogue, with an alter-
ation of the definition of σ̂ to σ̂ = {maxσ|υub(n− j)−σ · (pn−j −xη) ≤ yη ∀η ∈
H[n− j − 1]}

After the initial solutions for υub and υlb are calculated, the initial costs are
defined by C(υ) =

∑
(υub− υlb). The Simulated Annealing Algorithm will start

from this solution, and tries to improve the solution over iterations, leading to
the best possible approximation of the optimal solution with respect to C(υ).

Step 1: Search Space (Neighborhoods)
Every iteration of the algorithm, a new solution υ′ is proposed, with υ′ ∈ N12(υ).
This new solution is obtained by randomly choosing an interval, a gridline pi
and whether to add an element, subtract or do both. It is also randomly selected
whether to do which of the randomly selected operations on the upper or lower
bound. In figure 12 the possible options are illustrated for a random interval at
a random moment in time.

We denote the set of tight points of interval i by Ti, defined by

Ti = {η ∈ Hi : σ((pi−1, υi−1), (pi, υi)) = σ(η, (pi, υi))}

42



Figure 12: Possible operations for an iteration of the Simulated Annealing al-
gorithm for an interval i

Where σ(a, b) denotes the slope of point a to point b. Otherwise stated,
Ti = (T lbi , T ubi ) is the set of points in interval i, which intersect with one of
the bounds. Please note that Ti can only be empty when an interval contains
no data points. In all other cases, taking a bound which intersects with no data
point would never suffice the min/max-condition for σ̂.

When one point needs to be added or removed from Hin and say the upper
bound and υi are selected with pi being the right end of the selected inter-
val . Then, υi is increased or decreased until the first occasion that a point
η̂ = θ · υi + (1− θ) · υi−1. Then T ubi = η̂ and either this point is added to Hin

or the previous tight point is removed from this set, depending on whether the
objective was to add or to remove a point.

Otherwise stated, in the described scenario, if υi is selected, the directional
coefficients σ of υi−1 to all points in H[i] are calculated. Define σ̃ as the ordered
list σ and state that T ubi is the point t, with corresponding directional coeffi-
cient σ̃t. Hence, the tight point was equal to the t’th element of this ordered list.
Then, the new tight point is defined by T ubi = σ̃t+1 or T ubi = σ̃t−1, depending
on whether an element needed to be added or subtracted from the set. Then
also, υ′i = υi+ σ̃t+1 · (pi−pi−1) or υ′i = υi+ σ̃t−1 · (pi−pi−1). This is illustrated
in figure 12.

When υ′i is determined, all other values of υ preceding or succeeding i need
to be adjusted to secure a piece-wise linear continuous function as a bound. This
is done by starting at the new υ′i and moving in the direction of the point which
ensures the same size of Hin until the intersection of the next gridline. Every
preceding or succeeding value of υj is replaced by υ′j , following this iterative
procedure. This is illustrated for a random υ′ in figure 13.
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Figure 13: Altering of υub after a point is removed from Hin

Step 2: Solution Quality

Note that in the initialization step a level α is chosen, which implies the
number of points allowed to leave out by the algorithm. Otherwise stated,
|Hin| ≥ (1 − α) · |H|. In practice, this is translated to a similar constraint on
interval-level, i.e. |Hin

i | ≥ (1−α) · |Hi| ∀i. However, the algorithm may propose
solutions with |Hin

i | < (1−α) · |Hi|. This is to give the algorithm more freedom
in the global search stages, and to decrease the probability of ending up in a lo-
cal optimum due to insufficient search options with higher temperatures. These
solutions do result in certain penalty costs equaling ρ · ((1 − α) · |H| − |Hin|).
This implies that higher temperatures will allow for more of these bad solutions,
where with lower temperatures the algorithm wants to increase the size of |Hin|
until |Hin| ≥ (1−α) · |H|, given that the penalty costs are chosen large enough.
Hence, the parameter ρ needs to be chosen such that the algorithm has the
desired freedom in the first stages, whereas it detests these solution when the
temperature decreases. Ideally, the parameter should also take into account the
possibility that an extreme outlier should be left out, even if this means that
|Hin| ≥ (1− α) · |H|.

Step 3: Solution Costs
The calculation of the costs for the new solution υ′ is defined as

C(υ′) =
∑

(υub − υ′lb) + ρ ·
∑
i

P[i]

where P[i] = (1−α) · |Hi|−|Hin
i | denote the penalty points of interval i. Hence,

the costs are calculated similar to the initial costs with the addition of the
penalty costs.

44



Step 4: Acceptance New Solution (Metropolis criterion)
The algorithm now needs to determine whether the newly proposed solution
υ′ is accepted as the current solution. This happens directly if the costs of
C(υ′) < C(υ), because we then have found a better solution than the predeces-
sor according to our definition of the costs. When this is not the case, there
new solution is accepted with a certain probability, as is the norm with SA.

This probability of acceptance is known as the Metropolis Criterion, and is
defined as

e−θ·∆C/T > r

With r ∼ U(0, 1), θ user-specified constant, ∆C the difference in costs between
υ and υ′ and T the current value of the temperature parameter.

Thus, if this holds true the new solution is accepted, otherwise it is de-
flected. Observe that the probability that it holds true increases in T. This
is what defines the main idea behind SA; the probability of accepting a worse
random solution decreases as T decreases, resulting in a global search phase
slowly evolving into a local search. Also note that the constant chosen which
has a large impact on the performance of the algorithm, i.e. it co-determines
the probabilities of accepting worse solutions for high and low values of T.

Step 5: Termination Iterative (Inner) Loop
Increase τ by one.
If τ < τ̄ : return to step 1
Else: go to step 6

Step 6: Termination Temperature (Outer) Loop
Decrease T by the specified fraction, i.e. T ← δ · T .
If T > t: reset τ to 0 and recalculate τ̄ = 100 + 20 · T . Return to step 1.
Else: algorithm terminates

Parameter Values
The values determined to be suited for adequate performance, without causing
excessive running times of the algorithm, are presented in the next table. These
parameters are determined by an extensive trial and error procedure.

Parameter Definition Value
T Starting Temperature 10
t Threshold .01
δ Cooldown rate .9
ρ Penalty Cost 10·xh
n Number of Gridlines 40
θ Constant 10

xh

α Fraction of Points to Leave Out .05
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Figure 14: Conservative Solution for Outlier Exclusion

6.2.3 Conservative Solution

From the Simulated Annealing algorithm described, two piece-wise linear func-
tions result, reflecting an upper and lower bound that determine which data
points should be included in a 100 · (1− α)% confidence interval and which do
not. Due to the setup of the algorithm some of the data points are close to
the interval bounds, giving them a bigger chance of being excluded of the set,
since σ(υi, (yk, xk)) heavily depends on the distance |pi − xk|. To correct for
this inconvenience, we include a larger set than specifically depicted by the Sim-
ulated Annealing algorithm. This is done by locating the tight points T of υub

and υlb, i.e. the data points that intersect the line segments of these bounds,
and take the convex hull of these points. This results in a set consisting of the
data set resulting from the Simulated Annealing algorithm, with the addition of
points sufficiently close to the nearest gridline, resulting in a disproportionate
direction coefficient. Figure 14 represents this final solution and the data points
ultimately left out.

6.3 Synthetic Data

In addition to the real world case from PauwR, artificial synthetic data was
generated to test the validity of the model and to perform sensitivity analyses.
This data consists of 4 distinct functions, which are known to have the desired
monotonically non-decreasing concave shape. Moreover, they are based upon
the recommendations of Bhattacharya (2010) and Bhattacharya (2012) when
designing appropriate functions. The four created functions are:

1. y = 5 ·
√
x+ ε

2. y = 10 · 3
√
x+ ε

3. y = .5 · x+ ε

4. y = 10 · log x+ ε
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With εi ∼ N(0, 2) as the artificial error term. The final data points are
created by first generating random x-values, with xi ∼ U(0, 100). The y-values
per distribution follow directly from the definitions stated above. The generated
data sets can be seen in the results section in figure 23-26.

The uncertainty sets are also generated artificially. The X-uncertainty, and
the proportional part of the Y-uncertainty are set equal to (the average of) those
previously defined for the PauwR case, i.e. 10% en 11% respectively. The fixed
value uncertainty part of the Y-uncertainty is generated as β̄k ∼ UNIF (0, 5),
where UNIF (·) denotes the continuous uniform distribution and β̄k.

6.4 Random Generated Uncertainty

In order to test their average performances, the algorithms are tested on 50 ran-
domly drawn samples of data points. These data sets are created by selecting
random data points from their previously specified uncertainty intervals and
boxes, respectively. This means that random values are drawn for the values
of αk and βk for each data point k ∈ K. These values are individually drawn
from an uniform distribution on the interval [-1,1], i.e. αk ∼ UNIF (−1, 1)
and βk ∼ UNIF (−1, 1) . These drawings are performed without considering
the budget of uncertainty Ω and the relative cost parameter γ, with the X-
uncertainty magnitude ᾱ = 0.1 and the number of gridpoints set to 40.
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7 Results

In this chapter, the performance and outcomes of the multiple regressions are
presented. Firstly, the different regressions are performed on the artificially gen-
erated data. This is done for varying levels of the different parameters; the ᾱ,
Ω, number of gridlines and γ. The different methods with varying parameter
values are then compared based upon their respective R-squared values for the
nominal data sets as well as those of their individual worst-case scenarios.

Secondly, the regression methods are implemented on the real-life data sets
of PauwR. This is done with varying levels for Ω and γ, but for a fixed level
of ᾱ = 0.1 and with the number of gridlines set to 40. The results for the
varying parameter levels are mutually compared as well as with the results of
the methods on the artificial data. Thirdly, the results of the regressions are
given as input to the End-Model presented in Chapter 4.3 to solve the actual
Budget Allocation Model and analyze the results. Finally, the actual need for
and impact of the robust models is discussed in Chapter 7.3.

Please note that the figures illustrating the conclusions drawn in this chapter
are presented in the chapter itself. However, the more extensive tables, which
form the basis of these figures can be found in Appendix A. Also note that, in
the figures where it states ’Average R-squared’, the average is taken over the
remaining parameters not equal to the dependent variable of the figure. The
values of these parameters used to determine these averages are also given in
the tables in Appendix A.

7.1 Artificial Data Results

7.1.1 Sensitivity Analysis X-Uncertainty

In Figure 15 the R-squared values of the nominal and robust solutions for differ-
ing values of the magnitude of uncertainty ᾱ are depicted. A negative relation is
seen between the ᾱ and the worst-case values of the solutions. This is in line with
expectations, because an increase in the magnitude of uncertainty is expected
to worsen the worst-case scenario. However, the robust solution decreases more
in the nominal case than it compensates in the worst-case with respect to the
nominal solution. This indicates that, , when ᾱ increases, it becomes hard to fit
regressions that hedge against the worst-case scenario while maintaining a good
performance in the nominal case. The shape of the curves also gives reason to
believe that the solution value of the worst-case will decrease significantly if ᾱ
rises even further.

In Figure 16 the relation between the budget of uncertainty Ω and the aver-
age R-squared value of the nominal and robust solutions is presented. It shows
that, if Ω rises, the solution value in the worst-case decreases. This is, again,
in line with expectations due to trivial rationale. What does stand out here is
that the marginal increments are not strictly decreasing. The point where this
presumed relation fails is for Ω = 0.7. The difference seems to be insignificant,
so it could occur here due to measurement or rounding errors.
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Figure 15: Comparison of Nominal and Robust Solutions with X-Uncertainty
for different levels of ᾱ

In Figure 17 the effect of the number of gridpoints on the average R-squared
values for the nominal and robust solutions is shown. We observe an expected
monotonically non-decreasing shape with this effect. Moreover, when the num-
ber of gridpoints increases, the robust solution seems to be improving at a
steeper rate than the nominal solution. This could be due to more flexibility to
adjust for the datasets presented by the adversary when there are more gridlines.
This is in contrast with the situation with few gridlines, where both solutions
seem to be performing relatively poorly.

7.1.2 Sensitivity Analysis X- and Y-Uncertainty

In Figure 18 the nominal and robust solutions for different levels of γ are pre-
sented. A non-monotonical shape is observed here. Also, the robust solution
seems to perform better for higher values of γ, i.e. when it is less costly to
deviate with X-Uncertainty. Moreover, we observe a similar pattern for the
quality of the robust solution as the pattern for the nominal solution. For both
regressions the solution quality on average performs worse for low values of γ
as opposed to high values of γ. This could be due to larger possible gains to be
made with X-Uncertainty than with Y-Uncertainty for the Adversarial problem.
This would follow from the way the uncertainty is setup in the artificial data.
The X-Uncertainty is equal to 10%, whereas the Y-Uncertainty is on average

49



Figure 16: Comparison of Nominal and Robust Solutions with X-Uncertainty
for different levels of Ω

Figure 17: Comparison of Nominal and Robust Solutions with X-Uncertainty
for differing numbers of gridlines
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Figure 18: Comparison of Nominal and Robust Solutions with X- and Y-
Uncertainty for different levels of γ

equal to approximately 15%. However, since the X-values range from 0 to 100
and the Y-values range from 0 to approximately 50, the absolute uncertainty of
X is assumed to be higher. This could cause the adversary to be able to gain
more from the X-Uncertainty.

In Figure 19 a similar graph is presented for differing levels of Ω with X- and
Y-Uncertainty. The pattern shown is similar as with only the X-Uncertainty.
The main difference is the steepness of the curve due to more possibilities with
uncertainty, as well as a bigger budget of uncertainty in general due to the way
it is setup in the Solution Approach. Recall that the budget of uncertainty is
specified as a fraction of the total possible deviations of the data points. This
implies that, in this setup, the set of total possible deviations has increased. As
an example, for every point k ∈ K to deviate maximally, one needed an Ω = 1
with the X-Uncertainty case, where one only needs an Ω = γ, with γ ∈ (0, 1).

We also observe that the interval of the robust solution expands rapidly with
increasing Ω, as well as with the nominal solution. However, the robust solution
tends more towards the nominal solution when Ω increases. This could be due
to the way the Y-uncertainty is setup. With X-Uncertainty, the data points are
allowed to move horizontally, which gives a differing impact on the behavior of
the robust solution for different nominal locations of the data points. As stated
earlier, data points that lie below the regression line will tend to go to the right
whereas data points above the line will tend to move to the left. In general, the
tendencies for the Y-uncertainty are similar; points above the line will tend to
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go up where points underneath the line will tend to go down. However, there is
a difference.

The difference follows from the difference in level of impact of data points
that are close to the regression line and those that have a bigger distance from
the line. Because Y-Uncertainty moves much more perpendicular to the re-
gression line for higher values, in most of the cases the regression line needs to
adjust more to account for these changes. Moreover, the data points for which
the X-Uncertainty moves relatively perpendicular to the regression line, are for
data points with lower y-values, and thus in general lower x-values. This means
that, due to the level of uncertainty being relative to the value of x, the possible
uncertainty added is smaller in general.

In conclusion, the Adversarial Approach needs to change its regression lines
more over iterations in general when Y-uncertainty is applied. This causes
more data points to switch side, underneath versus above, with respect to the
regression line. The points that make this switch, in general have a greater
impact with their Y-uncertainty than with their X-uncertainty. Thus, since
these switching points have a greater influence, the regression is more focused
towards these points and is willing to minimize their effect to a greater extend
when more budget is allowed. This causes the algorithm to stay closer to the
nominal values of these points, to minimize their effect, as does the nominal
solution. Concluding that the best fit would tend more towards the nominal
solution again.

In Figure 20 the number of gridpoints is the dependent variable. We recog-
nize the same start of the shape in general as with the case of only X-Uncertainty.
There are two main characteristics worth mentioning here. The first character-
istic is that there is already a significant difference between the performance of
the robust and the nominal solution for low numbers of gridpoints. The second
characteristic of this figure that stands out, is the solution for 50 gridpoints
performing slightly worse than with 40 gridpoints. In general this is counter-
intuitive. However this might be due to the placing of the gridpoints on the
x-axis. Obviously, when gridlines are multiplied by an integer factor, a number
of gridpoints is added, but the original set remains unchanged. When going from
40 to 50 gridpoints this is not the case. The gridpoints are evenly spread over
the x-axis, resulting in every gridpoint being on a different position when going
from 40 to 50 gridpoints. This could lead to less fortunate positions regarding
the solution obtained. This raises the suspicion that there might be little to
gain by adding more gridpoints from a certain threshold onward and that the
improvements made in particular cases could be due to a fortunate gridpoint
positioning.

7.1.3 Individual Channel Results

From Figure 21 we see that the averages of the robust solutions and the nominal
SOCP solutions per channel are fairly equal in the case of X-Uncertainty. The
solutions of the CHM appear to result in less accurate results on average, mostly
due to a worse performance in the worst case. This could result from a relative
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Figure 19: Comparison of Nominal and Robust Solutions with X- and Y-
Uncertainty for different levels of Ω

Figure 20: Comparison of Nominal and Robust Solutions with X- and Y-
Uncertainty for differing numbers of gridlines
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Figure 21: Performance Comparison of Nominal, Robust and CHM solutions
for X-Uncertainty on the multiple artificially generated marketing channels

overfitting on the nominal data set, which still does not significantly outperform
the nominal SOCP. It is also clear that the robust solutions give in on solution
quality in the nominal case, but make up for it by having higher solution values
in the worst-case, as is expected.

This figure also emphasizes the need for the data to take on the expected
shape. For channel 3 we see a wider range of possible solutions, which is also the
channel with the shape that deviates the most from the expectation, as can be
seen in Figures 23-26. Even though the nominal solution is the best among the
channels, the difference between the nominal and worst case is also the largest
from the artificial data sets.

In Figure 22 we see a similar figure as the previous figure, now for the case
with X- and Y-Uncertainty. With the added Y-Uncertainty, the robust solutions
become more profitable. Moreover, the average of the robust solution is higher
for all 4 channels, mainly due to a large profit in the worst-case compared to
the nominal solutions. In addition, the intervals of margin are in general much
larger as with X-Uncertainty only, as is expected.

Note that CHM is omitted from this figure due to its poor performance in
the worst case with X-Uncertainty already. This makes it already clear that the
solution would not be worth considering with even more uncertainty.
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Figure 22: Performance Comparison of Nominal and Robust solutions for X-
and Y-Uncertainty on the multiple artificially generated marketing channels

55



Figure 23: Fitted Regressions for artificially generated data channel 1

In Figures 23-26 we see the regression lines plotted for all four artificial data
sets. We observe that the robust solutions flatten at the end, due to the larger
allowed deviations of the data points near the right end of the x-axis, because
of the proportional uncertainty. This causes the robust lines to flatten early to
hedge against the huge costs of single points above the line moving left or points
underneath the line moving right. In general this leads to the robust solutions
having a greater arc. Otherwise stated, at the start the robust solutions increase
quicker, but flatten out sooner as well. Also, in general, the CHM gives a bigger
arc than the nominal solution as well. This is presumably due to the convex
hull step of the algorithm. Roughly, the shapes seem to fit the data fairly well.

7.2 Real Data Results

From the figures and tables presented in the upcoming sections, it is immediately
clear that the general results for the real data are not nearly as good as with
the artificial data. On average, the R-squared is about 0.1. This suggests that
there is plenty of room for improvement. However, there are also some analyses
to be done on the mutual regressions performed and the current results.
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Figure 24: Fitted Regressions for artificially generated data channel 2

Figure 25: Fitted Regressions for artificially generated data channel 3
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Figure 26: Fitted Regressions for artificially generated data channel 4

7.2.1 Outlier Exclusion

As was already stated in Section 5.5, the real data sets are almost certain to
have some outliers. Hence, in order to nullify the impact of such outliers in the
final results, the Simulated Annealing algorithm was used to exclude these out-
liers. The parameters for the algorithm were equal to the values given already
in Section 5.5, giving the following results:

Campaign Initial Size Post-SA Size Initial R2 Post-SA R2

1 647 641 0.10 0.12
2 647 636 0.13 0.17
3 647 644 0.08 0.10
4 647 643 0.12 0.12
5 647 633 0.09 0.14
6 647 638 0.08 0.10
7 647 634 0.33 0.40
8 647 640 0,18 0.21
9 647 634 0.20 0.22
10 647 638 0.09 0.10

Where the sizes denote the sizes of the data sets before the SA algorithm
was performed and afterwards, and the R2 denotes the R-Squared values corre-
sponding to the nominal regressions on the nominal data sets before and after
the SA algorithm was performed on the data sets.
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The first remark that can be made regarding the table is that, even though
the algorithm was allowed to leave out approximately 5% of the data points,
it never left out more than 3.7%, and on average only leaves out 1.4%. This
indicates that the conservative final step does lead to significantly more conser-
vative exclusions.

The second remark is that this table seems to indicate that these outliers do
have a significant impact on the regression performance. Even by only leaving
out 1.4% of the data points on average, the R-squared value increases by 0.026
on average, which is equal to an average change of 15.5%. This seems to indicate
that the outliers are of a severe level, and that their values differ extremely from
the rest of the data set. This gives reason to believe that outlier exclusion is
the right decision for these data sets.

7.2.2 Regression Method Comparison

In Figure 27 it is immediately obvious that overall performance of the algorithms
is much worse than with the artificial data. This is due to the wider scattering
of the data points and a less obvious shape fitting the predetermined general
shape of the regressions. What also stands out is the terrible performance of
the CHM for campaigns 1, 3, 4 and 10. This is presumably due to the large
distortions of the CHM following non-obvious concave or convex shapes of the
data points. The LOESS regressions performed in the algorithm lead to such a
fluctuating estimation that the algorithm fails to perform accurately. For the
other campaigns the CHM performs consistently poorer than the SOCP formu-
lations.

With the real data the averages of the robust solutions seem to be slightly
better than the averages of the nominal solutions for the X-Uncertainty. More-
over, the robust intervals are significantly smaller, as is expected.

With X- and Y-Uncertainty in Figure 22 we see similar patterns of the per-
formances as with only X-Uncertainty. However, the magnitude of the intervals
is significantly increased, implying less certainty. This is in line with expec-
tations for trivial reasons. Again, on average, the performance of the robust
solutions are approximately equal to the performance of the nominal solutions.
However, the robust solutions provide smaller intervals of variance regarding
the solution quality, making it the preferred method with risk-averse clients.

7.2.3 End-Model Results

In Figure 29 the results are presented when the different solutions are given
as input to the final budget allocation model as presented in Chapter 4.3. A
few findings are done for these results. Firstly, the CHM is a more optimistic
estimate compared to the robust estimations, i.e. the expected payoff of an
investment is higher according to the CHM as opposed to the robust solutions.
The CHM estimates start very steep, but flattens out quicker than the nominal
solution. Secondly, for the cases where the relative costs parameter γ = 0.5,
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Figure 27: Performance Comparison of Nominal, Robust and CHM solutions
for X-Uncertainty on the multiple real-life marketing campaigns

Figure 28: Performance Comparison of Nominal and Robust solutions for X-
and Y-Uncertainty on the multiple real-life marketing campaigns
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the revenue curve starts relatively low, but ends high compared to the curves
with other values of γ. Thirdly, the nominal case gives the lowest revenues
for lower budgets, but gives the highest revenues when the budget increases.
This could be a result of the flattening that happens for higher cost values with
the robust regression methods, as discussed earlier. The CHM presumably flat-
tens more for the higher cost values due to the convex hull step in this algorithm.

Figure 29: Results of End Model for different Regression Methods with varying
budgets available

7.3 Need for Robust Solutions

The results in this chapter mainly show the comparisons between the nominal
and the robust solutions. When comparing the nominal-case with the worst-
case solutions for the artificial data, as is seen in Figure 21 and 22, the robust
solutions do generate smaller intervals. In the case where there is only uncer-
tainty in the costs, the averages of the performance between the nominal and
robust solution is approximately equal. The need for a robust solution seems
questionable. The nominal solution performs slightly better in the nominal case,
where it performs slightly worse in the worst-case. Overall, the results are not
conclusive whether the robust solution actually outperforms the nominal solu-
tion when looking at extreme cases.

With uncertainty in both the costs and revenues, the robust solution does
seem to outperform the nominal solution with the artificial data on the extreme
cases. The average of the robust solution is better for each channel, as is seen
in Figure 22. Moreover, the robust solution exceeds the nominal solution in
the worst-case tremendously. Hence, with all uncertainty included, the artificial
data favors the robust solution.
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With the real-life data similar plots are given in Figures 27 and 28. With
only X-uncertainty, the solutions behave similarly to the artificial data, rela-
tively equal to each other. So, the robust solution produces slightly smaller in-
tervals, but the averages do not differ significantly. With X- and Y-uncertainty,
the differences between the robust and nominal solutions are less significant as
with the artificial data. The robust solutions do however prevent some disas-
trous outcomes with certain campaigns. This does favor the robust solutions,
especially for risk-averse clients.

To get more insight in the performances of both the nominal as the robust
solutions, the random data is generated in accordance with the description in
Chapter 6.3. This resulted in Figures 30-33. Thus, we get the R-squared values
of the robust and nominal solutions in 50 randomly generated possible scenarios
from the uncertainty sets previously specified. These scenarios are generated
by selecting points at random from every uncertainty interval and box for the
case with X-Uncertainty and with X- and Y-Uncertainty respectively. So, these
cases could be viewed as, with the limited information available about the dis-
tribution of the uncertainty, average case scenarios of the dataset. Hence, these
R-Squared values give an indication of how the algorithms perform when con-
sidering more conservative situations as opposed to the possible extreme cases
of the data.

From Figures 30 and 31 it is readily seen that the nominal solutions outper-
form the robust solutions for all 4 campaigns. This can be concluded because
the averages of the nominal solutions are higher than those of the robust so-
lutions. Moreover, because both the highest and lowest values of the nominal
solutions are better than the highest and lowest values of the robust solutions
respectively. Particularly for channels 2 and 4, the robust solution is far inferior
to the nominal solution. In the case with both uncertainties as opposed to only
X-Uncertainty, the robust solutions win some ground, but the nominal solutions
stay superior. It is also immediately clear that with averaged uncertain data,
when randomly generated as stated earlier, no data set has even approached
the worst-case scenario. This is also the part where the nominal solutions gain
terrain on the robust solutions.

From Figures 32 and 33 we may conclude that the same patterns are seen
with the real-life data sets. Now for campaigns 1 and 5, we do see that the ro-
bust solution actually performs better than the nominal solution. This follows
from the same reasoning as with the artificial data. More specifically, by looking
at the distribution of the obtained R-squared values of the nominal and robust
solutions, with the main focus on the maxima, minima and averages. However,
these differences do not seem to be very large, especially when compared to the
differences in solution quality on the remaining channels, clearly favoring the
nominal solutions.

In conclusion, the need for robust solutions is debatable. When considering
the extreme cases, the robust solutions seem to be outperforming the nominal
solutions on average, particularly with the artificially generated data. However,
when considering the random generated uncertainties the nominal solutions are
significantly superior. With the real-life data, the same patterns are observed.
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Figure 30: Average Performance Comparison of Nominal and Robust solutions
for X-Uncertainty on the artificially generated marketing channels. Please note
that the larger dots are the averages.

Furthermore, the overall low R-squared values for the real-life data make it even
more doubtful. It is questionable whether one would cut on the nominal per-
formance in order to hedge against the worst-case when the nominal R-squared
values are this low already.

Hence, the results presented only significantly favor the robust solutions with
the artificial data and uncertainty in both the costs and revenues. Furthermore
they do not significantly outperform the nominal solutions and are even inferior
to the nominal solutions in most cases considered. In conclusion, more research
is needed to determine what realistic expectations of the uncertainties are, to
definitively state whether robust solutions are actually desired.
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Figure 31: Average Performance Comparison of Nominal and Robust solu-
tions for X- and Y-Uncertainty on the artificially generated marketing channels.
Please note that the larger dots are the averages.

Figure 32: Average Performance Comparison of Nominal and Robust solutions
for X-Uncertainty on the real-life marketing campaigns. Please note that the
larger dots are the averages.
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Figure 33: Average Performance Comparison of Nominal and Robust solutions
for X- and Y-Uncertainty on the real-life marketing campaigns. Please note
that the larger dots are the averages.

8 Conclusions & Discussions

In this thesis a mathematical model is proposed to solve the budget alloca-
tion problem among multiple marketing channels. The setting used is AdWords
campaigns, the paid-link advertisement platform of Google Inc. It is a relatively
simple model, solely based on history data, with the challenge being the mod-
eling of the monotonically non-decreasing concave objective function.

The objective function is determined in a deterministic setting via the so-
called Convex Hull Method, and a Second-Order Cone Problem formulation. In
addition, robust models are proposed based upon the SOCP formulation, with
uncertainty in the advertisement costs and revenues of the history data. The
performance of the Convex Hull Method was far inferior to the SOCP for both
the nominal cases as well as the worst-case scenarios. In addition, the results
ultimately remained inconclusive regarding the desirability for the robust solu-
tions in general.

The performance of the regression models is tested on multiple artificially
generated data sets with varying parameters. With an average R-squared of
approximately 0.8-0.9 for the specified values of the parameters. This leads to
satisfying results from a practical point of view. In contrast, the performance
on real-life data from a client of PauwR is relatively poor. The R-squared val-
ues for this data ranges from -.08 in the extreme case with a very large level of
uncertainty to .42 in the best case, with an average of .1. These values indicate
that large improvements of the proposed model can be made, based upon better
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estimations of the sales function. Presumably, better results can be obtained
by identifying factors that influence the revenue generation per marketing cam-
paign other than solely the budget invested.

A second direct improvement of the model could follow from better available
data regarding inter-channel relations, carry-over effects of the marketing cam-
paigns or the actual expenditure of Google Inc. in the history data. Extra data
on these subjects can directly lower the level of uncertainty, and hence produce
better estimates.

Another possible improvement of the model is to establish a greater under-
standing of the nature of the factors of uncertainty, and/or to model parts of the
uncertainty directly in the end-model. This takes away some of the assumptions
made in the current model and could lead to more accurate results.

The last desired improvement stated in this thesis is to find a accurate de-
scription for the uncertainties. Then the problem can be solved to optimality
and take away the need for a heuristic, which resulted in approximations. Nev-
ertheless, the solutions in this thesis are found via the Adversarial Approach,
which is known to produce good approximations, leading to high quality solu-
tions.

More research is necessary to draw definitive conclusions and implement the
model in real-life.
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A Tables

Please note that in this appendix the abbreviation gr denotes gridlines and the
abbreviation B is used for Budget. Also note that Ω, ᾱ and γ have the same
definitions as throughout this thesis, i.e. the budget of uncertainty, level of
X-Uncertainty and the relative costs of α and β respectively.

A.1 Artificial Data

A.1.1 X-Uncertainty Nominal R-Squared Values

Ω gr\ᾱ 0.05 0.1 0.15 0.2

10 (0.94,0.77) (0.93,0.76) (0.93,0.73) (0.93,0.69)
20 (0.95,0.90) (0.95,0.88) (0.95,0.85) (0.95,0.81)

0.1 30 (0.95,0.92) (0.95,0.91) (0.95,0.88) (0.95,0.85)
40 (0.95,0.93) (0.95,0.91) (0.95,0.89) (0.95,0.86)
50 (0.95,0.93) (0.95,0.92) (0.95,0.89) (0.95,0.86)

10 (0.94,0.77) (0.93,0.75) (0.93,0.73) (0.93,0.67)
20 (0.95,0.90) (0.95,0.87) (0.95,0.83) (0.95,0.80)

0.3 30 (0.95,0.92) (0.95,0.90) (0.95,0.87) (0.95,0.83)
40 (0.95,0.93) (0.95,0.91) (0.95,0.88) (0.95,0.84)
50 (0.95,0.93) (0.95,0.91) (0.95,0.88) (0.95,0.84)

10 (0.94,0.76) (0.93,0.74) (0.93,0.71) (0.93,0.63)
20 (0.95,0.89) (0.95,0.86) (0.95,0.81) (0.95,0.76)

0.5 30 (0.95,0.92) (0.95,0.89) (0.95,0.84) (0.95,0.79)
40 (0.95,0.92) (0.95,0.89) (0.95,0.85) (0.95,0.80)
50 (0.95,0.93) (0.95,0.90) (0.95,0.85) (0.95,0.80)

10 (0.94,0.76) (0.93,0.73) (0.93,0.70) (0.93,0.63)
20 (0.95,0.89) (0.95,0.85) (0.95,0.80) (0.95,0.74)

0.7 30 (0.95,0.91) (0.95,0.88) (0.95,0.83) (0.95,0.78)
40 (0.95,0.92) (0.95,0.89) (0.95,0.84) (0.95,0.79)
50 (0.95,0.92) (0.95,0.89) (0.95,0.85) (0.95,0.79)

10 (0.94,0.76) (0.93,0.73) (0.93,0.69) (0.93,0.61)
20 (0.95,0.89) (0.95,0.85) (0.95,0.80) (0.95,0.74)

0.9 30 (0.95,0.91) (0.95,0.88) (0.95,0.82) (0.95,0.77)
40 (0.95,0.92) (0.95,0.88) (0.95,0.84) (0.95,0.78)
50 (0.95,0.92) (0.95,0.89) (0.95,0.84) (0.95,0.79)
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A.1.2 X-Uncertainty Robust R-Squared Values

Ω gr\ᾱ 0.05 0.1 0.15 0.2

10 (0.93,0.77) (0.93,0.76) (0.92,0.73) (0.90,0.71)
20 (0.95,0.90) (0.94,0.88) (0.94,0.85) (0.93,0.82)

0.1 30 (0.95,0.93) (0.94,0.91) (0.94,0.88) (0.93,0.86)
40 (0.95,0.93) (0.95,0.92) (0.94,0.89) (0.93,0.87)
50 (0.95,0.94) (0.95,0.92) (0.94,0.90) (0.93,0.88)

10 (0.93,0.77) (0.93,0.75) (0.92,0.72) (0.89,0.68)
20 (0.95,0.90) (0.94,0.87) (0.94,0.84) (0.93,0.81)

0.3 30 (0.95,0.92) (0.94,0.90) (0.94,0.87) (0.93,0.85)
40 (0.95,0.93) (0.94,0.91) (0.94,0.88) (0.93,0.86)
50 (0.95,0.93) (0.95,0.91) (0.94,0.89) (0.93,0.86)

10 (0.93,0.76) (0.92,0.74) (0.92,0.70) (0.89,0.65)
20 (0.95,0.89) (0.94,0.86) (0.94,0.82) (0.92,0.78)

0.5 30 (0.95,0.92) (0.94,0.89) (0.94,0.85) (0.93,0.82)
40 (0.95,0.93) (0.94,0.90) (0.94,0.86) (0.93,0.83)
50 (0.95,0.93) (0.95,0.90) (0.94,0.87) (0.93,0.83)

10 (0.93,0.77) (0.93,0.74) (0.92,0.70) (0.89,0.65)
20 (0.95,0.89) (0.94,0.86) (0.94,0.82) (0.92,0.77)

0.7 30 (0.95,0.92) (0.94,0.89) (0.94,0.85) (0.92,0.81)
40 (0.95,0.92) (0.94,0.90) (0.94,0.86) (0.93,0.82)
50 (0.95,0.93) (0.95,0.90) (0.94,0.86) (0.93,0.82)

10 (0.93,0.76) (0.93,0.73) (0.92,0.69) (0.89,0.64)
20 (0.95,0.89) (0.94,0.86) (0.93,0.82) (0.92,0.77)

0.9 30 (0.95,0.92) (0.94,0.89) (0.94,0.85) (0.92,0.81)
40 (0.95,0.92) (0.94,0.89) (0.94,0.86) (0.93,0.82)
50 (0.95,0.93) (0.95,0.90) (0.94,0.86) (0.93,0.82)

A.1.3 X-Uncertainty Convex Hull Method

Ω 0.1
channel\ᾱ 0.05 0.1 0.15 0.2

1 (0.97,0.96) (0.97,0.94) (0.97,0.92) (0.97,0.89)
2 (0.95,0.94) (0.95,0.92) (0.95,0.91) (0.95,0.88)
3 (0.98,0.96) (0.98,0.93) (0.98,0.90) (0.98,0.85)
4 (0.91,0.91) (0.91,0.90) (0.91,0.88) (0.91,0.87)

Ω 0.3
channel\ᾱ 0.05 0.1 0.15 0.2

1 (0.97,0.95) (0.97,0.93) (0.97,0.91) (0.97,0.87)
2 (0.95,0.94) (0.95,0.92) (0.95,0.89) (0.95,0.87)
3 (0.98,0.96) (0.98,0.92) (0.98,0.88) (0.98,0.82)
4 (0.91,0.90) (0.91,0.89) (0.91,0.88) (0.91,0.86)
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Ω 0.5

channel\ᾱ 0.05 0.1 0.15 0.2
1 (0.97,0.95) (0.97,0.92) (0.97,0.88) (0.97,0.83)
2 (0.95,0.93) (0.95,0.90) (0.95,0.87) (0.95,0.82)
3 (0.98,0.95) (0.98,0.91) (0.98,0.85) (0.98,0.77)
4 (0.91,0.90) (0.91,0.88) (0.91,0.85) (0.91,0.82)

Ω 0.7

channel\ᾱ 0.05 0.1 0.15 0.2
1 (0.97,0.95) (0.97,0.91) (0.97,0.87) (0.97,0.82)
2 (0.95,0.93) (0.95,0.90) (0.95,0.86) (0.95,0.81)
3 (0.98,0.95) (0.98,0.90) (0.98,0.84) (0.98,0.77)
4 (0.91,0.90) (0.91,0.87) (0.91,0.84) (0.91,0.81)

Ω 0.9

channel\ᾱ 0.05 0.1 0.15 0.2
1 (0.97,0.94) (0.97,0.91) (0.97,0.87) (0.97,0.82)
2 (0.95,0.92) (0.95,0.89) (0.95,0.85) (0.95,0.81)
3 (0.98,0.95) (0.98,0.90) (0.98,0.84) (0.98,0.77)
4 (0.91,0.89) (0.91,0.87) (0.91,0.84) (0.91,0.80)
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A.1.4 X- and Y-Uncertainty Nominal R-Squared Values

Ω gr\γ 0.1 0.3 0.5 0.7 0.9

10 (0.93,0.56) (0.93,0.56) (0.93,0.56) (0.93,0.56) (0.93,0.56)
20 (0.95,0.58) (0.95,0.62) (0.95,0.60) (0.95,0.59) (0.95,0.57)

0.1 30 (0.95,0.61) (0.95,0.66) (0.95,0.65) (0.95,0.63) (0.95,0.61)
40 (0.95,0.63) (0.95,0.70) (0.95,0.69) (0.95,0.67) (0.95,0.64)
50 (0.95,0.79) (0.95,0.83) (0.95,0.82) (0.95,0.80) (0.95,0.75)

10 (0.93,0.56) (0.93,0.56) (0.93,0.56) (0.93,0.56) (0.93,0.56)
20 (0.95,0.58) (0.95,0.62) (0.95,0.62) (0.95,0.60) (0.95,0.59)

0.3 30 (0.95,0.60) (0.95,0.66) (0.95,0.66) (0.95,0.64) (0.95,0.62)
40 (0.95,0.63) (0.95,0.70) (0.95,0.71) (0.95,0.68) (0.95,0.66)
50 (0.95,0.79) (0.95,0.83) (0.95,0.83) (0.95,0.81) (0.95,0.76)

10 (0.93,0.54) (0.93,0.54) (0.93,0.54) (0.93,0.54) (0.93,0.54)
20 (0.95,0.57) (0.95,0.62) (0.95,0.63) (0.95,0.61) (0.95,0.59)

0.5 30 (0.95,0.59) (0.95,0.66) (0.95,0.68) (0.95,0.66) (0.95,0.63)
40 (0.95,0.61) (0.95,0.70) (0.95,0.72) (0.95,0.70) (0.95,0.67)
50 (0.95,0.77) (0.95,0.83) (0.95,0.83) (0.95,0.82) (0.95,0.79)

10 (0.93,0.53) (0.93,0.53) (0.93,0.52) (0.93,0.52) (0.93,0.52)
20 (0.95,0.55) (0.95,0.62) (0.95,0.66) (0.95,0.65) (0.95,0.62)

0.7 30 (0.95,0.57) (0.95,0.66) (0.95,0.69) (0.95,0.69) (0.95,0.67)
40 (0.95,0.60) (0.95,0.70) (0.95,0.73) (0.95,0.73) (0.95,0.72)
50 (0.95,0.75) (0.95,0.82) (0.95,0.82) (0.95,0.82) (0.95,0.81)

10 (0.93,0.44) (0.93,0.44) (0.93,0.44) (0.93,0.43) (0.93,0.44)
20 (0.95,0.46) (0.95,0.56) (0.95,0.61) (0.95,0.63) (0.95,0.62)

0.9 30 (0.95,0.48) (0.95,0.59) (0.95,0.64) (0.95,0.66) (0.95,0.66)
40 (0.95,0.50) (0.95,0.62) (0.95,0.67) (0.95,0.69) (0.95,0.70)
50 (0.95,0.64) (0.95,0.72) (0.95,0.74) (0.95,0.76) (0.95,0.77)
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A.1.5 X- and Y-Uncertainty Robust R-Squared Values

Ω gr\γ 0.1 0.3 0.5 0.7 0.9

10 (0.91,0.63) (0.90,0.63) (0.89,0.63) (0.89,0.63) (0.88,0.63)
20 (0.91,0.68) (0.90,0.71) (0.89,0.70) (0.89,0.68) (0.88,0.67)

0.1 30 (0.91,0.70) (0.90,0.77) (0.89,0.78) (0.89,0.73) (0.89,0.70)
40 (0.91,0.72) (0.91,0.83) (0.90,0.86) (0.90,0.77) (0.90,0.73)
50 (0.91,0.84) (0.91,0.90) (0.91,0.91) (0.91,0.91) (0.91,0.91)

10 (0.92,0.63) (0.90,0.63) (0.88,0.63) (0.87,0.63) (0.86,0.63)
20 (0.93,0.69) (0.90,0.72) (0.88,0.71) (0.87,0.70) (0.88,0.68)

0.3 30 (0.93,0.70) (0.91,0.78) (0.90,0.79) (0.90,0.75) (0.91,0.72)
40 (0.93,0.72) (0.92,0.84) (0.92,0.87) (0.93,0.81) (0.93,0.75)
50 (0.93,0.83) (0.93,0.89) (0.93,0.92) (0.93,0.91) (0.93,0.91)

10 (0.92,0.62) (0.90,0.62) (0.87,0.62) (0.86,0.62) (0.85,0.62)
20 (0.92,0.68) (0.88,0.72) (0.87,0.73) (0.87,0.71) (0.92,0.68)

0.5 30 (0.92,0.69) (0.90,0.78) (0.90,0.80) (0.90,0.78) (0.92,0.72)
40 (0.92,0.71) (0.92,0.84) (0.92,0.87) (0.93,0.85) (0.93,0.76)
50 (0.93,0.82) (0.93,0.89) (0.93,0.92) (0.93,0.91) (0.93,0.91)

10 (0.92,0.59) (0.90,0.59) (0.87,0.59) (0.85,0.59) (0.84,0.59)
20 (0.93,0.65) (0.88,0.71) (0.86,0.73) (0.91,0.70) (0.92,0.69)

0.7 30 (0.93,0.67) (0.90,0.76) (0.90,0.79) (0.92,0.78) (0.93,0.75)
40 (0.93,0.69) (0.93,0.80) (0.93,0.85) (0.93,0.85) (0.93,0.82)
50 (0.93,0.80) (0.93,0.87) (0.93,0.90) (0.93,0.91) (0.93,0.91)

10 (0.92,0.50) (0.89,0.50) (0.86,0.50) (0.85,0.50) (0.84,0.50)
20 (0.93,0.55) (0.88,0.62) (0.87,0.65) (0.92,0.66) (0.93,0.65)

0.9 30 (0.93,0.56) (0.90,0.65) (0.90,0.69) (0.92,0.70) (0.93,0.70)
40 (0.93,0.58) (0.93,0.67) (0.93,0.72) (0.93,0.75) (0.93,0.75)
50 (0.93,0.68) (0.93,0.74) (0.93,0.79) (0.93,0.81) (0.93,0.82)
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A.2 Real-Life Data

A.2.1 X-Uncertainty Nominal R-Squared Values

channel\Ω 0.1 0.3 0.5 0.7 0.9

1 (0.12,0.04) (0.12,0.01) (0.12,0.02) (0.12,0.02) (0.12,0.02)
2 (0.17,0.14) (0.17,0.10) (0.17,0.10) (0.17,0.10) (0.17,0.09)
3 (0.10,0.07) (0.10,0.05) (0.10,0.05) (0.10,0.05) (0.10,0.05)
4 (0.12,0.08) (0.12,0.06) (0.12,0.06) (0.12,0.06) (0.12,0.06)
5 (0.14,0.05) (0.14,0.05) (0.14,0.04) (0.14,0.03) 0.14,0.03)
6 (0.10,0.07) (0.10,0.05) (0.10,0.05) (0.10,0.05) (0.10,0.05)
7 (0.40,0.33) (0.40,0.24) (0.40,0.23) (0.40,0.22) (0.40,0.21)
8 (0.21,0.16) (0.21,0.10) (0.21,0.09) (0.21,0.08) (0.21,0.08)
9 (0.22,0.16) (0.22,0.13) (0.22,0.13) (0.22,0.12) (0.22,0.12)
10 (0.10,0.05) (0.10,0.04) (0.10,0.04) (0.10,0.04) (0.10,0.04)

A.2.2 X-Uncertainty Robust R-Squared Values

channel\Ω 0.1 0.3 0.5 0.7 0.9
1 (0.10,0.06) (0.10,0.04) (0.10,0.04) (0.10,0.04) (0.10,0.04)
2 (0.16,0.14) (0.16,0.12) (0.16,0.11) (0.16,0.11) (0.16,0.11)
3 (0.09,0.07) (0.09,0.06) (0.09,0.06) (0.09,0.06) (0.09,0.06)
4 (0.11,0.09) (0.11,0.08) (0.10,0.08) (0.10,0.08) (0.10,0.08)
5 (0.12,0.09) (0.12,0.09) (0.12,0.09) (0.12,0.09) (0.12,0.09)
6 (0.08,0.07) (0.08,0.06) (0.08,0.06) (0.09,0.06) (0.09,0.06)
7 (0.36,0.31) (0.35,0.26) (0.36,0.26) (0.36,0.25) (0.36,0.25)
8 (0.17,0.15) (0.16,0.13) (0.16,0.13) (0.16,0.13) (0.17,0.13)
9 (0.21,0.16) (0.20,0.14) (0.20,0.14) (0.20,0.14) (0.20,0.14)
10 (0.08,0.07) (0.08,0.06) (0.08,0.06) (0.08,0.06) (0.08,0.06)

A.2.3 X-Uncertainty Convex Hull Method

channel\Ω 0.1 0.3 0.5 0.7 0.9
1 (-0.03,-0.04) (-0.03,-0.04) (-0.03,-0.05) (-0.03,-0.05) (-0.03,-0.05)
2 (0.14,0.10) (0.14,0.09) (0.14,0.08) (0.14,0.07) (0.14,0.07)
3 (-0.08,-0.08) (-0.08,-0.09) (-0.08,-0.09) (-0.08,-0.09) (-0.08,-0.09)
4 (0.00,0.00) (0.00,-0.01) (0.00,-0.01) (0.00,-0.01) (0.00,-0.01)
5 (0.11,0.10) (0.11,0.10) (0.11,0.10) (0.11,0.09) (0.11,0.09)
6 (0.08,0.06) (0.08,0.05) (0.08,0.04) (0.08,0.04) (0.08,0.04)
7 (0.39,0.29) (0.39,0.27) (0.39,0.22) (0.39,0.20) (0.39,0.18)
8 (0.20,0.15) (0.20,0.13) (0.20,0.10) (0.20,0.09) (0.20,0.08)
9 (0.13,0.09) (0.13,0.08) (0.13,0.07) (0.13,0.07) (0.13,0.07)
10 (-0.08,-0.08) (-0.08,-0.08) (-0.08,-0.09) (-0.08,-0.09) (-0.08,-0.09)
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A.2.4 X- and Y-Uncertainty Nominal R-Squared Values

Ω 0.1

channel\γ 0.1 0.3 0.5 0.7 0.9

1 (0.12,0.01) (0.12,0.06) (0.12,0.07) (0.12,0.07) (0.12,0.07)
2 (0.17,0.10) (0.17,0.16) (0.17,0.16) (0.17,0.16) (0.17,0.15)
3 (0.10,0.05) (0.10,0.10) (0.10,0.10) (0.10,0.10) (0.10,0.10)
4 (0.12,0.06) (0.12,0.08) (0.12,0.09) (0.12,0.11) (0.12,0.11)
5 (0.14,-0.01) (0.14,0.00) (0.14,0.00) (0.14,-0.01) (0.14,-0.01)
6 (0.10,0.07) (0.10,0.08) (0.10,0.08) (0.10,0.08) (0.10,0.07)
7 (0.40,0.14) (0.40,0.28) (0.40,0.27) (0.40,0.22) (0.40,0.17)
8 (0.21,0.08) (0.21,0.14) (0.21,0.14) (0.21,0.08) (0.21,0.02)
9 (0.22,0.13) (0.22,0.21) (0.22,0.21) (0.22,0.21) (0.22,0.21)
10 (0.10,0.05) (0.10,0.10) (0.10,0.10) (0.10,0.10) (0.10,0.10)

Ω 0.3

channel\γ 0.1 0.3 0.5 0.7 0.9

1 (0.12,0.00) (0.12,0.03) (0.12,0.03) (0.12,0.05) (0.12,0.05)
2 (0.17,0.08) (0.17,0.11) (0.17,0.11) (0.17,0.11) (0.17,0.10)
3 (0.10,0.06) (0.10,0.08) (0.10,0.09) (0.10,0.09) (0.10,0.09)
4 (0.12,0.06) (0.12,0.06) (0.12,0.06) (0.12,0.07) (0.12,0.07)
5 (0.14,0.00) (0.14,0.00) (0.14,0.00) (0.14,-0.01) (0.14,0.00)
6 (0.10,0.03) (0.10,0.05) (0.10,0.05) (0.10,0.03) (0.10,0.04)
7 (0.40,0.05) (0.40,0.09) (0.40,0.06) (0.40,0.00) (0.40,-0.02)
8 (0.21,0.03) (0.21,0.00) (0.21,-0.02) (0.21,0.00) (0.21,0.00)
9 (0.22,0.08) (0.22,0.19) (0.22,0.20) (0.22,0.20) (0.22,0.20)
10 (0.10,0.05) (0.10,0.07) (0.10,0.09) (0.10,0.10) (0.10,0.10)

Ω 0.5

channel\γ 0.1 0.3 0.5 0.7 0.9

1 (0.12,0.00) (0.12,0.01) (0.12,0.01) (0.12,0.03) (0.12,0.03)
2 (0.17,0.06) (0.17,0.10) (0.17,0.10) (0.17,0.10) (0.17,0.10)
3 (0.10,0.06) (0.10,0.07) (0.10,0.08) (0.10,0.08) (0.10,0.08)
4 (0.12,0.06) (0.12,0.06) (0.12,0.06) (0.12,0.06) (0.12,0.06)
5 (0.14,0.00) (0.14,-0.01) (0.14,-0.01) (0.14,-0.01) (0.14,-0.01)
6 (0.10,0.03) (0.10,0.04) (0.10,0.04) (0.10,0.03) (0.10,0.03)
7 (0.40,0.03) (0.40,0.02) (0.40,0.00) (0.40,-0.03) (0.40,-0.03)
8 (0.21,0.00) (0.21,-0.03) (0.21,-0.03) (0.21,-0.03) (0.21,0.00)
9 (0.22,0.07) (0.22,0.16) (0.22,0.17) (0.22,0.17) (0.22,0.17)
10 (0.10,0.06) (0.10,0.07) (0.10,0.07) (0.10,0.08) (0.10,0.08)
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Ω 0.7

channel\γ 0.1 0.3 0.5 0.7 0.9

1 (0.12,0.00) (0.12,0.00) (0.12,0.01) (0.12,0.01) (0.12,0.01)
2 (0.17,0.05) (0.17,0.09) (0.17,0.10) (0.17,0.10) (0.17,0.10)
3 (0.10,0.06) (0.10,0.06) (0.10,0.07) (0.10,0.07) (0.10,0.06)
4 (0.12,0.06) (0.12,0.06) (0.12,0.06) (0.12,0.06) (0.12,0.06)
5 (0.14,-0.01) (0.14,-0.01) (0.14,-0.01) (0.14,-0.02) (0.14,-0.02)
6 (0.10,0.03) (0.10,0.03) (0.10,0.03) (0.10,0.03) (0.10,0.03)
7 (0.40,0.02) (0.40,-0.04) (0.40,-0.05) (0.40,-0.05) (0.40,-0.04)
8 (0.21,0.02) (0.21,-0.05) (0.21,-0.03) (0.21,-0.02) (0.21,0.00)
9 (0.22,0.06) (0.22,0.14) (0.22,0.15) (0.22,0.14) (0.22,0.13)
10 (0.10,0.05) (0.10,0.06) (0.10,0.06) (0.10,0.07) (0.10,0.06)

Ω 0.9
channel\γ 0.1 0.3 0.5 0.7 0.9

1 (0.12,0.00) (0.12,0.00) (0.12,0.00) (0.12,0.00) (0.12,0.00)
2 (0.17,0.05) (0.17,0.05) (0.17,0.05) (0.17,0.05) (0.17,0.05)
3 (0.10,0.04) (0.10,0.04) (0.10,0.04) (0.10,0.04) (0.10,0.04)
4 (0.12,0.05) (0.12,0.05) (0.12,0.05) (0.12,0.05) (0.12,0.05)
5 (0.14,-0.08) (0.14,-0.08) (0.14,-0.08) (0.14,-0.08) (0.14,-0.08)
6 (0.10,0.01) (0.10,0.01) (0.10,0.01) (0.10,0.01) (0.10,0.01)
7 (0.40,0.03) (0.40,0.03) (0.40,0.03) (0.40,-0.05) (0.40,-0.05)
8 (0.21,0.00) (0.21,0.00) (0.21,0.00) (0.21,-0.03) (0.21,-0.03)
9 (0.22,0.06) (0.22,0.06) (0.22,0.06) (0.22,0.06) (0.22,0.06)
10 (0.10,0.02) (0.10,0.02) (0.10,0.02) (0.10,0.02) (0.10,0.02)

A.2.5 X- and Y-Uncertainty Robust R-Squared Values

Ω 0.1

channel\γ 0.1 0.3 0.5 0.7 0.9
1 (0.11,0.01) (0.11,0.07) (0.10,0.09) (0.10,0.10) (0.10,0.09)
2 (0.16,0.10) (0.16,0.15) (0.18,0.16) (0.19,0.16) (0.18,0.15)
3 (0.09,0.09) (0.11,0.09) (0.12,0.08) (0.12,0.09) (0.12,0.09)
4 (0.11,0.07) (0.10,0.09) (0.11,0.10) (0.12,0.11) (0.12,0.11)
5 (0.12,0.12) (0.12,0.12) (0.13,0.12) (0.13,0.11) (0.14,0.11)
6 (0.08,0.07) (0.11,0.07) (0.12,0.07) (0.13,0.06) (0.13,0.07)
7 (0.34,0.28) (0.39,0.27) (0.42,0.24) (0.42,0.20) (0.41,0.18)
8 (0.16,0.15) (0.23,0.12) (0.24,0.10) (0.25,0.07) (0.24,0.06)
9 (0.20,0.15) (0.23,0.19) (0.25,0.18) (0.25,0.19) (0.25,0.18)
10 (0.09,0.06) (0.11,0.08) (0.12,0.08) (0.12,0.08) (0.12,0.09)
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Ω 0.3

channel\γ 0.1 0.3 0.5 0.7 0.9
1 (0.10,0.01) (0.10,0.04) (0.11,0.04) (0.11,0.06) (0.11,0.06)
2 (0.15,0.10) (0.15,0.11) (0.15,0.12) (0.15,0.13) (0.15,0.12)
3 (0.09,0.08) (0.10,0.09) (0.10,0.09) (0.10,0.09) (0.10,0.09)
4 (0.11,0.07) (0.11,0.07) (0.11,0.09) (0.11,0.09) (0.11,0.09)
5 (0.12,0.12) (0.13,0.12) (0.14,0.11) (0.14,0.11) (0.15,0.11)
6 (0.08,0.07) (0.11,0.06) (0.10,0.06) (0.10,0.06) (0.08,0.07)
7 (0.31,0.17) (0.39,0.17) (0.35,0.16) (0.33,0.15) (0.35,0.15)
8 (0.15,0.09) (0.23,0.05) (0.19,0.06) (0.14,0.01) (0.15,0.04)
9 (0.20,0.11) (0.22,0.19) (0.22,0.18) (0.21,0.18) (0.22,0.18)
10 (0.09,0.05) (0.10,0.09) (0.10,0.09) (0.10,0.09) (0.11,0.09)

Ω 0.5

channel\γ 0.1 0.3 0.5 0.7 0.9
1 (0.10,0.01) (0.10,0.03) (0.10,0.03) (0.11,0.04) (0.10,0.04)
2 (0.15,0.10) (0.15,0.11) (0.15,0.11) (0.15,0.12) (0.15,0.11)
3 (0.09,0.08) (0.10,0.09) (0.10,0.09) (0.10,0.08) (0.10,0.09)
4 (0.11,0.07) (0.11,0.07) (0.11,0.08) (0.11,0.08) (0.11,0.08)
5 (0.12,0.12) (0.13,0.12) (0.13,0.12) (0.13,0.12) (0.13,0.12)
6 (0.08,0.05) (0.09,0.07) (0.09,0.05) (0.09,0.05) (0.08,0.05)
7 (0.31,0.15) (0.36,0.15) (0.34,0.14) (0.33,0.14) (0.34,0.11)
8 (0.14,0.06) (0.18,0.03) (0.17,0.06) (0.14,0.04) (0.15,0.05)
9 (0.20,0.09) (0.21,0.17) (0.21,0.17) (0.21,0.15) (0.21,0.15)
10 (0.09,0.05) (0.09,0.07) (0.10,0.08) (0.10,0.08) (0.10,0.08)

Ω 0.7

channel\γ 0.1 0.3 0.5 0.7 0.9
1 (0.10,0.01) (0.10,0.01) (0.10,0.02) (0.10,0.02) (0.10,0.02)
2 (0.15,0.10) (0.15,0.10) (0.15,0.11) (0.15,0.11) (0.15,0.10)
3 (0.09,0.08) (0.09,0.08) (0.09,0.08) (0.09,0.08) (0.09,0.08)
4 (0.11,0.07) (0.11,0.07) (0.11,0.07) (0.11,0.07) (0.11,0.07)
5 (0.12,0.12) (0.12,0.12) (0.13,0.12) (0.13,0.12) (0.13,0.12)
6 (0.08,0.04) (0.08,0.07) (0.08,0.04) (0.08,0.04) (0.08,0.04)
7 (0.31,0.12) (0.32,0.13) (0.33,0.12) (0.33,0.12) (0.33,0.10)
8 (0.14,0.03) (0.13,0.01) (0.14,0.06) (0.15,0.07) (0.14,0.06)
9 (0.20,0.08) (0.20,0.15) (0.20,0.16) (0.21,0.13) (0.21,0.12)
10 (0.09,0.05) (0.09,0.06) (0.09,0.07) (0.09,0.07) (0.09,0.06)
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Ω 0.9

channel\γ 0.1 0.3 0.5 0.7 0.9
1 (0.10,0.01) (0.10,0.01) (0.10,0.01) (0.10,0.01) (0.10,0.01)
2 (0.15,0.10) (0.15,0.07) (0.15,0.07) (0.15,0.07) (0.15,0.07)
3 (0.09,0.08) (0.09,0.05) (0.09,0.05) (0.09,0.05) (0.09,0.05)
4 (0.11,0.07) (0.11,0.07) (0.11,0.07) (0.11,0.07) (0.11,0.07)
5 (0.12,0.12) (0.12,0.08) (0.12,0.08) (0.12,0.08) (0.12,0.08)
6 (0.08,0.03) (0.08,0.03) (0.08,0.03) (0.08,0.03) (0.08,0.03)
7 (0.31,0.12) (0.33,0.09) (0.33,0.09) (0.33,0.09) (0.33,0.09)
8 (0.14,0.03) (0.14,0.06) (0.14,0.06) (0.14,0.06) (0.14,0.06)
9 (0.20,0.08) (0.20,0.05) (0.20,0.05) (0.20,0.05) (0.20,0.05)
10 (0.09,0.05) (0.09,0.02) (0.09,0.02) (0.09,0.02) (0.09,0.02)

A.3 End-Model Results

Reg.\B Ω γ 50 100 150 200 250 300 350 400
Nominal 496.56 717.8 868.02 992.29 1116.56 1240.82 1340.05 1347.26
Rob.X 0.3 559.74 751.39 837.19 898.59 951.79 1004.67 1039.11 1040.38

0.9 555.14 753.62 840.66 900.97 950.94 1000.91 1035.38 1035.38
0.1 609.34 813.06 892.48 936.07 975.62 1015.17 1049.52 1050.88

0.3 0.5 541.59 840.62 1027.63 1180.00 1285.80 1300.67 1300.67 1300.67
Rob.XY 0.9 587.37 802.97 892.07 957.31 1008.38 1058.63 1094.83 1094.86

0.1 591.49 786.15 870.97 911.43 950.63 988.38 1005.02 1005.02
0.9 0.5 567.49 777.15 880.97 942.43 987.63 1042.09 1089.12 1113.37

0.9 602.79 739.15 849.34 902.43 938.26 964.49 1003.67 1003.69
CHM 643.70 864.10 962.77 1033.37 1094.56 1155.37 1194.97 1196.44
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B Convexity and Concavity

A real-valued function f on an interval I is said to be concave if

f((1− t)x+ ty) ≥ (1− t)f(x) + tf(y) ∀x, y ∈ I, t ∈ [0, 1]

holds true. The definition of a convex function is similar, but with the inequality
reversed, i.e.

f((1− t)x+ (t)y) ≤ (1− t)f(x) + (t)f(y) ∀x, y ∈ I, t ∈ [0, 1]

it follows directly that a function f is convex on I if and only if the function -f
is concave on I. One can deduce the theorem that a sum over convex functions
is again convex as follows:

Assume f and g are two convex functions on I, x, y ∈ I and t ∈ [0, 1]

(f + g)(tx+ (1− t)y) = f(tx+ (1− t)y) + g(tx+ (1− t)y)

≤ tf(x) + (1− t)f(y) + tg(x) + (1− t)g(y) = t(f + g)(x) + (1− t)(f + g)(y)
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