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Abstract

In the past years, risk budgeting has gained increased interest from academics and

practitioners in the asset management industry. The question arose how to create

diversified portfolios could be protected from adverse economic regimes. Risk Par-

ity is a strategy that equalizes risk contribution among assets, thereby diversifying

risk rather than capital. This thesis presents: 1) an overview of the Risk Parity strat-

egy, 2) four multi-regional backtests comparing the performance of Risk Parity with

60/40, 1/N and GMV strategies in a consistent manner, and 3) the effect of asset

inclusion/substitution on portfolio performance. The performance is measured us-

ing total returns, risk-adjusted returns maximum drawdowns and Gini coefficients.

Using a 1997-2017 sample, we find that unlevered RP cannot produce higher to-

tal return than the 60/40 and 1/N strategies. In terms of risk adjusted returns, it

outperformed all peers in 3 out of the 4 backtests. The robustness show that the

choice of assets and asset classes had an affect on the outcome of the backtests.

Furthermore, The origin of strategy’s performance is examined in every backtest.
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Chapter 1

Introduction

1.1 Motivation

Over time, individuals and institutions have accumulated excess wealth. When

put on a savings account, it returns at most the interest rate and is likely to re-

duce purchasing power if the Consumer Price Index (CPI) exceeds the interest rate.

The individuals and institutions with excess wealth therefore had incentives to seek

methods to maintain or increase the value of the excess wealth, all in order to max-

imize and smoothen consumption over their life cycles. Hence, investors emerged

with the goal to maximize the value of the capital while minimizing the downside

risk. Investing is the exchange of liquidity for an asset which is believed to return

superior relative to a benchmark. Investments are made to: (1) maximize quantity

of capital or (2) ensure that present cash maintains equivalent real future value. The

question that investors need to answer is: What mix of assets has the best chance of

delivering good returns over time through all economic environments?

The art of investing is not a exact science. The study of finance tries to price as-

sets on their risk-level and expected rate of return. Hence, theories were developed

to explain current prices, but also to estimate the expected returns of assets. These

theories are used by investors to create portfolios that fulfill a previously set goal.

One of the building blocks of modern portfolio theory is the modern portfolio the-

ory (MPT) by Markowitz (1952). MPT considers how an investor should choose a

portfolio with a good trade-off between risk and return. It shows how an investor

can create a combination of available assets with the maximum amount of return per

unit of risk: the tangency portfolio. The theory had a tremendous impact in the fi-

nance world and is still frequently used these days. Recent literature about the MPT

suggests that the theory has downsides: (1) the tangency portfolio tends to concen-

trate on specific asset weights and these are extremely sensitives to changes in input,

and (2) this portfolio construction approach requires the estimation of expected re-

turns of assets, which is extremely challenging in practice. (Merton, 1980)

Sharpe (1964) developed the Capital Asset Pricing Model (CAPM) as an addition to

the MPT. It presumes that all investors invest as MPT investors, so that the tangency

portfolio must be the market portfolio. The outcome provided by CAPM is that
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all investors should hold the market portfolio, levered according to each investor’s

risk preference. Historically, the market portfolio has brought about significantly

lower Sharpe ratios than the tangency portfolio. There are three reasons for this:

(1) the market weights of stocks relative to bonds have varied over time in such a

way that the risk-return characteristics of the market are inside the hyperbola of a

mean-variance diagram1, (2) the market portfolio allocates a much larger fraction of

its capital to stock than what has been optimal historically, and (3) the risk-adjusted

returns are not balanced across assets.

The two theories discussed above illustrate several issues: concentrated assets in

the portfolio, the correctness of estimated expected returns are of huge importance

to portfolio quality, and theoretical portfolios perform poorly in the real world. An-

other problem that academics and practitioners have tried to tackle is diversification.

Typical 60/40 and 1/N portfolios diversify their funds over different asset classes,

thereby reducing risk. Although the funds are diversified, risk is still concentrated

in certain asset classes, most predominantly high-beta assets. For example, a 60/40

portfolio has 60% of its funds invested in equity, but more than 90% of the risk is allo-

cated to equity (Kazemi, 2012). The financial crisis of 2007-2009 showed that adverse

equity shocks destroyed much of the value of portfolios. Although correlations tend

to rise in times of crisis (Koestrich, 2015), investors suffered severe losses due to their

high risk allocation in single asset classes. So did capital diversification truly reduce

risk? The financial crisis kick-started the search for theories and models that would

prevent such extreme losses, shedding new light on the practice of risk-budgeting.

Risk Parity (RP) is an approach to portfolio construction which focuses on the diver-

sification of risk among factors and asset classes rather than the allocation of capital.

The concept was first discussed by Booth and Fama (1992) and continues to attract

more attention from both academics and practitioners. Investment funds such as

Bridgewater Associates2, the Wisconsin State Investment Board3 and The Pennsyl-

vania Public Schools Employees’ Retirement System4 have already created portfo-

lios using this approach. The portfolio construction method requires no estimation

of expected returns, and some academics suggest the method is empirically superior

to other general portfolio theories, making it respectively robust and attractive.

RP offers a simple solution to the aforementioned problems: diversify the portfo-

lio, not through capital allocation, but through risk allocation. This means an equal

amount of risk contribution of each asset class, thus the strategy invests more capital

1Also known as Markowitz’ bullet. It shows the combination of assets which have the highest
return for a given amount of risk.

2The Bridgewater adopted a RP framework with their All Weather Fund. Since inception, it real-
ized a 9.3% total annualized return.

3This fund allocated 600 million to a RP strategy.
4This pension fund uses a RP strategy as an asset class in their 53.5 billion dollar AUM.
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in low-beta assets (i.e. bonds) rather than high-beta assets (i.e. equity). Due to sub-

stantial allocation to ’safe’ assets, RP strategies are less aggressive than traditional

allocation strategies (such as the 60/40 strategy), but can produce a higher Sharpe

Ratio. RP investors can overcome this problem by using leverage. This allows them

to lever up the risk-balanced portfolio to desired levels of expected return and risk.

The result is risk-balanced portfolio which allows so-claimed ’true’ diversification

and preference-customization 5.

Besides the theoretical justification, empirical studies suggest that a RP portfolio is

superior to other traditional portfolios. The historical outperformance of RP is quite

robust. Several academics (Asness, Frazzini, and Pedersen (2012), Kaya and Lee

(2012) and Chaves et al. (2011)) suggest that RP strategies were historically supe-

rior. The popularity of RP is the result of (1) the intuitive reasoning of balancing

risk rather than invested capital, (2) the historical evidence for this approach over

traditional approaches and, (3) the boost of interest in the subject after the financial

crisis of 2007-2009.

Although the empirical literature concerning RP provides promising results, the ar-

guments above miss justification. First of all, the intuition that a RP portfolio is

superior to equity-dominated portfolio relies on the implicit expectation of asset re-

turns. An investor happily invests in an equity dominated portfolio if the equity risk

premium versus the bond risk premium is high enough. Hence, the intuition that

’a high-beta strategy entails too much risk’ is only correct if the return of high-beta

assets relative to low-beta assets is not high enough to compensate for the additional

risk. The RP intuition that risk should be equalized across assets is only entirely cor-

rect if the risk-adjusted returns are unequal across assets.

One cannot merely assume that equal risk contribution across asset classes is supe-

rior because it is better diversified. An investor, however, should believe that the

returns of equity are not sufficiently high to compensate for the additional risk. This

means that RP is not only a method about equally spreading risk in the portfolio,

but also an implicit belief on risk-adjusted returns of assets. As Asness, Frazzini,

and Pedersen (2012) note: "A RP investor should not say: equal risk is always the best
regardless of expected returns. Instead, they should say: we do not believe expected returns
are high enough on equities to make them a disproportionate part of our risk budget.” Hence,

RP investors need to explain why high-beta assets offer lower risk-adjusted returns

compared to low-beta assets in order to justify a higher allocations to bonds. This

thesis delves deeper into the RP theory and aims to answer the following question:

(Why) does a RP portfolio perform better than traditional portfolios?

5Although leverage introduces risks and other practical concerns



4 Chapter 1. Introduction

1.2 Problem Description

The goal of this thesis is to create an overview of the RP theory and complement

theoretical properties with an empirical study. It extends the literature by combin-

ing (1) studies about RP to present an overview of its properties, and (2) empirical

tests of RP. It will examine RP on both a regional scale and global scale. Financial

literature predominantly focuses on the USA as a region for back-testing portfolio

theories. Therefore, there has been little to no research done on the European mar-

kets regarding RP. This does not imply that outcomes differ between regions, yet it

provides an opportunity to fill a gap in the literature. For this reason, the regional

sample will consist of European indices. The following subjects will be covered re-

garding RP:

i) How has Risk Parity performed compared to traditional heuristic portfolios

and where does Risk Parity return come from?

ii) How does asset selection and inclusion affect Risk Parity portfolios?

iii) What does leverage mean for the performance of Risk Parity portfolios?

iv) Why would an investor choose a Risk Parity strategy?

The remainder of this thesis is structured as follows. Chapter 2 discusses the litera-

ture of RP and general portfolio management knowledge . In Chapter 3, the analysis

framework and methodology is explained. Chapter 4 discusses the data used. Chap-

ter 5 presents the results and discusses the robustness. The discussion of the results

and the applied methodology is held in the Chapter 6. Finally, Chapter 7 draws

conclusions.
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Chapter 2

Literature and Design

This chapter discusses the relevant literature and the empirical design for this

thesis. The chapter starts with the basics of portfolio construction in section 2.1. It

serves as a backbone for the empirical section of this thesis by providing the tools

and knowledge for the analysis. The subsequent section 2.2 provides literature about

traditional allocation strategies and discusses their characteristics. The chapter ends

with section 2.3 which discusses the literature about RP, how the strategy works and

how a RP portfolio can be constructed.

2.1 Definitions Portfolios

This section discusses the theory of asset allocation strategies that will be used in

the empirical part of the thesis. The chosen strategies were subject to one constraint:

estimated returns should not be an input variable to construct the portfolio weights.

This allows for the most robust estimation, comparable strategies and less reliance

on external factors. Therefore, the chosen strategies can be constructed ex ante. In

order to elaborate on RP, we first discuss the fundamentals of portfolio construction.

In portfolio construction, the goal is to search for feasible weights wi to minimize the

risk σp to reach a target return E(Rp) for portfolio p. Commonly in the literature, the

risk-free rate is referred as rf . This figure is used to calculate the excess returns of

asset or portfolios. Usually, the risk-free rate is represented by a short-term bond rate

that does not face liquidity nor default risk. The number of assets used in portfolio

construction are denominated by N . The vector of all weights wi for all assets i is

N × 1-dimensional and contains all assets in the portfolio. Each asset has a risk σi,

and a correlation with other assets ρi,j . From the combination of assets, the N × N
variance-covariance matrix Σ can be constructed. This matrix has the individual

assets’ variances σ2i on the diagonal axis and the covariance between assets σi,j =

ρi,jσiσj on the off-diagonal elements. A universal optimization technique is defined
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as follows

minw′Σw

w.r.t. µ′w ≥ E(Rp)

s.t. 0 ≤ wi ≤ 1,

N∑
i=1

wi = 1

(2.1)

where µ′ stands for the transpose of the expected return vector. In this simple tech-

nique, the variance of a portfolio is minimized for a target return. The weights of

individual assets are restricted to positive values only and have to sum up to 100%,

which also implies that going short is not allowed.

2.1.1 Risk

Risk is a subject that is frequently investigated by academics. The most used

risk measure in finance is the standard deviation (SD). It is a measure that indicates

how observations are dispersed around the mean value of the sample. The SD is cal-

culated as the square root of the variance. The variance is calculated as the average

from the squared deviations of the observations from their mean

SD =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2 (2.2)

The SD assumes a normal distribution and stationary data. In finance, data series

are rarely stationary, therefore the data must be modified to use the SD properly.

This is usually done by using returns rather than prices since returns usually re-

main stationary around 0. The normal distributions assumption is also unlikely to

be valid. Finance data usually has a form of skewness, kurtosis or long tails. For

example, when ’bad’ news enters the markets, stock prices tend to drop dramati-

cally, this causes stock price data to contain many extreme values. As a reaction to

the shortcoming of the SD, academics developed new risk measures to compute risk

more correctly. This thesis recognizes the downsides of using the SD as risk mea-

sure, but it is outside of the scope of this thesis to investigate the impact of other

risk measures. It is, however, interesting to investigate the implications of other risk

measures in a RP framework. For now, the SD is considered as the measure for risk.

The SD, also known as the volatility, of the portfolio can be calculated as follows

σp =
√
w′Σw (2.3)

Individual assets in a portfolio contribute their part of volatility to the total portfolio

volatility. This comprises of the total contribution of risk (TRC) and the marginal

contribution of risk (MCR) of asset i. The MCR is the derivative of portfolio risk

with respect to the individual asset’s weight. For interpretation purposes, it is the
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total volatility that would be added to the portfolio if its weight would increase from

0% to 100% ceteris paribus.

MCRi ≡
∂σp
∂wi

=
Σw

σp

=
wiσi +

∑
j 6=iwjσi,j√

w′Σw

(2.4)

The TRC of an asset in a portfolio is its MCR times the asset’s weight. It represents

the percentage point volatility that is added to the portfolio volatility by asset i.

TRCi ≡ wi ×
∂σp
∂wi

= wi ×
wΣ

σp

=
w2
i σi +

∑
j 6=iwjwiσi,j√
w′Σw

(2.5)

Now we know the asset’s individual contribution to risk, we can define the portfo-

lio’s risk σp as parts of the assets it contains.

σp ≡
√
w′Σw =

N∑
i=1

TRCi (2.6)

2.1.2 Return

The return of an asset is the difference in value of an asset between different

points in time, thereby assuming that no dividend is paid and all earnings are re-

tained. In this thesis, the following definition of returns is used:

Ri,t =
Pi,t − Pi,t−1

Pi,t−1
(2.7)

where Ri,t stands for the return of asset i, and Pi,t represents the price of asset i at

time t. Asset prices tend to by more volatile when the time window becomes smaller.

As the time windows become larger, the prices and returns are more smoothed out.

Also, the more frequent the data are, the more robust estimations become. To calcu-

late the return of a portfolio, the following definition is used:

E(Rp) =

N∑
i=1

wi(
Pi,t − Pi,t−1

Pi,t−1
)

=
N∑
i=1

wiRi = w′R

(2.8)

where E(Rp) stands for the return of a portfolio, w stands for the vector of weights,

and R stands for the vector of returns. There are two methods for calculating aver-

age returns. The first one is the arithmetic average. This method returns the average

of individual events by simply dividing the sum of observations by the number of

observations. This resembles an investor who adds and withdraws capital from a
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strategy. In this thesis, the used return series are not independent. For example,

a negative return in a previous month has an effect on wealth levels in the current

month. Also, the capital allocated to a strategy will not be withdrawn nor supple-

mented in this thesis. Therefore the geometric average, which accounts for reinvest-

ment of capital, is more appropriate. This method is defined as follows:

R̄i,t = [(1 +Ri,t) + (1 +Ri,t−1) + . . .+ (1 +Ri,t−T )]1/T − 1 (2.9)

where R̄i,t is the average return of asset i at time t, Ri,t the return of asset i at time

t, and time T denotes the amount of periods in the past. By approximation, the

formula for the geometric average can also be written as

R̄i,t = R∗i,t − 0.5× σ2i,t (2.10)

whereR∗i,t stands for the arithmetic return of a series and σi,t stands for the volatility

of asset i at time t.

2.1.3 Risk-Adjusted Return

In the literature, performances of assets and/or portfolio’s are commonly com-

pared to each other. There is, however, no uniform measure that the entire industry

uses. To overcome this problem, risk-adjusted returns are used. It represents the

risk-return trade-off of an asset or portfolio. The most famous risk-adjusted return

measure is the Sharpe Ratio (SR) by Sharpe (1964). It represents the average return

excess of the risk-free rate, divided by its corresponding volatility. The definition is

as follows:

SR =
Rp −Rf

σp
(2.11)

The measure presents several drawbacks. First, it assumes a normal distribution of

returns, when in reality that is not always the case. Second, there are difficulties with

the interpretation of the measure. For example, when the SR is negative, the inter-

pretation is not intuitive: a higher volatility would result in a lower return. Other

measures have been developed to compensate for these drawbacks. The Modigliani-

Modigliani Measure (Modigliani and Modigliani, 1997), better known asM2, is such

a measure. It measures an asset’s/portfolio’s return as if it has the same volatility as

a chosen benchmark by using the SR. The definitions is as follows:

M2 = (
σb
σp

)(Rp − rf ) + rf

=
Rp − rf
σp

∗ σb + rf = SRp ∗ σb + rf

(2.12)

where σb stands for the volatility of the chosen benchmark. The interpretation is

more intuitive and the outcome is presented in percentage points. For example, if
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we compare a portfolio with a M2 = 5% and the benchmark with a return of 4%, we

can conclude that the difference of 1 percent point is the risk adjusted return with

adjusted volatility. Although this measure does not meet the normality assumption,

the interpretation allows for easier comparison between portfolios.

2.2 Traditional Allocation Strategies

This section presents the traditional allocation strategies that are commonly

used in the literature. We define the selected strategies and discuss why they are

used.

2.2.1 Equally Weighted Portfolio

The Equal Weight Strategy (1/N) is a portfolio construction method where the

capital allocation among the asset classes is equalized. It is the most robust method

of asset allocations since it does not require any inputs like volatility or expected re-

turn. Chaves et al. (2011) discussed the strategy and called it the most naive portfolio

heuristic. The portfolio weights are constructed as wi = 1/N where wi corresponds

to the weight of asset i, and N corresponds to the number of assets in the portfolio.

By definition, the weights of the assets cannot be negative, nor can the sum of the

weight be higher or lower than 100%. Consequently, the portfolio’s weights can be

defined as follows:

wi = wj 6=i =
1

N
(2.13)

Besides the ease of construction, the inclusion of this strategy in this thesis is other-

wise motivated. DeMiguel, Garlappi, and Uppal (2007) explain that 1/N strategies

1) are easy to compute, and 2) besides the advances made in estimating parameters

of sophisticated models, investors still use simple rules for wealth allocation. They

advocate that the strategy is not a good asset-allocation strategy, but a good bench-

mark to compare other portfolio methods. The portfolio strategy can be considered

to be anti-cyclical since all assets have positive weight regardless of their correla-

tion or past returns. Therefore an exposure to assets in different economic regimes

is likely. This is, however, strongly dependent on the tactical asset selection. As

explained before, the portfolio SD σ1/N is calculated as:

σ1/N =
√
w′Σw (2.14)

w and w′ represents the weight vector and transpose weight vector respectively for

each chosen asset. The variance-covariance matrix is represented by Σ.
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2.2.2 Global Minimum Variance Portfolio

In 1952, Markowitz (1952) invented and formalized the mean-variance frame-

work of asset allocation. This method aims to minimize the variance of an asset

allocation for a target return. The method is also used to find combinations of assets

that minimizes the variance of a portfolio. In a mean-variance graph, as shown in

figure 2.2, the portfolio’s position is the most left on the so-called Markowitz’ bullet,

which represents portfolios that minimize the volatility for a given amount of re-

turn. In 1962, Sharpe (1964) complemented the theory by formalizing the tangency

portfolio and the capital allocation line. The tangency portfolio is the portfolio that

maximizes the risk-return award, namely the SR. It represents the average return in

excess of the risk-free rate per unit of risk, in this case the SD. The capital allocation

line represents the combination between a risk-free asset and the tangency portfolio.

By finding the portfolio with the maximum SR, one can theoretically lever it along

the capital allocation line. Thus, the maximum return for the risk tolerance of an

investor is realized.

However, as regularly pointed out by academics (Merton (1980)), future returns are

hard to estimate, and often significantly deviate from realized returns. Using this

strategy as a benchmark comes with disadvantages, leading to a widely used global

minimum variance portfolio (GMV). The GMV does not require estimated returns

but does require estimates of the covariance matrix. The paper by Merton points

out that covariances can be estimated with higher accuracy than the returns, result-

ing in more robust weight estimates. To reach a portfolio allocation with minimum

variance, the weights are defined as

wGMV = argmin
w
w′Σw

s.t.
N∑
i=1

wi = 1

0 ≤ wi ≤ 1

(2.15)

Maillard, Roncalli, and Teïletche (2010) and Chaves et al. (2012) point out that the

GMV equalizes risk contribution (RC), similar to the RP portfolio. The difference,

however, is that the GMV equalizes on a marginal basis, whereas the RP portfolio

equalizes the TRC. The portfolio volatility can be calculated as
√
w′Σw. The portfolio

variance is minimized, so by definition the volatility of a GMV is smaller than other

portfolio heuristics, as shown by Maillard, Roncalli, and Teïletche (2010)

σGMV < σ1/N (2.16)
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2.2.3 60/40 portfolio

The 60/40 portfolio is a portfolio that allocates 60% of the funds to high-beta

assets (e.g. equity), and the remaining 40% to low-beta assets (e.g. bonds). One rea-

son for using such a portfolio is to profit from high-yielding assets while protecting

the funds from negative shocks by investing in safer assets with a low correlation

with the risky assets. The strategy gained much attention in the previous century,

but lately has lost its attractiveness (Maillard, Roncalli, and Teïletche, 2010) due to

the recognition that the portfolio strategy is a bad diversifier, and the low return of

bonds has deterred investment managers. Formally, the weight of the risky assets

can be written as

wrisky = 0.6 (2.17)

Consequently, the weights of the safe assets in the portfolio can be written as

wsafe = 1− wrisky = 0.4 (2.18)

Like the 1/N strategy and GMV strategy, the variance of the portfolio equals wΣw.

The portfolio variance is largely dependent on the choice of assets, but typically, one

can state that that

σGMV < σ1/N < σ60/40 (2.19)

2.3 Risk Parity

This section explains the theory of RP. The idea of RP is not new, Booth and

Fama (1992) were some of the first to document the RC of an asset in the context of a

multi-class allocation. Qian (2005) formalized the theory and called it RP. Since the

economic crisis of 2007-2009, more focus has been placed on controlling risk in port-

folio. Practitioners eventually developed the RP strategy, which has become increas-

ingly popular ever since. RP has some attractive properties. It requires no expected

return input, it is less reliant on growth in the economic cycle due to higher invest-

ment in low-beta assets, it less volatile compared to peers in theory, it can be levered

up to realize target returns and there is no intended focus on certain asset classes.

There also are, a few downsides for this strategy. The use of leverage is costly and

therefore erodes profits; different risk measures result in different weights making

the result highly dependent on the used measure; the variance-covariance matrix is

assumed to be constant which is not always the case; and there is a timing problem

regarding acquiring assets and/or leverage on the right time.

Besides informing the reader about RP, this section identifies gaps in the literature. It
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starts by delving deeper into the findings of the literature by presenting the advan-

tages and pitfalls of the heuristic method. Subsequently, it presents the definition of

RP and the mathematical construction. Finally, an example of how RP exactly works

with real data is presented.

2.3.1 Overview

Performance Portfolios

The following section presents a summary of academics’ review of RP portfolios

and the most meaningful bodies of work regarding performance are discussed. The

first study (Maillard, Roncalli, and Teïletche, 2010), compares three strategies (1/N,

GMV, and the RP) in both a theoretical and real-life setup. In their theoretical setup,

they find that the 1/N has the most balanced weights, but highest variance and con-

centrated risk in individual assets. The GMV portfolio has the lowest variance per

definition, but the most extreme weights and RCs. The RP portfolio has more bal-

anced weights and RCs. In their empirical sample, the authors use three datasets,

each consisting of four assets: US Equity, Agricultural Commodities, and the Global

Diversified Portfolio. The authors backtest from 1995 to 2008 using monthly rebal-

ancing. In the equity portfolio, the 1/N and RP portfolio perform similarly due to

high asset correlations, the difference lies in the contribution or risk, which is higher

for the 1/N portfolio, while the RC weights are more equal for the RP portfolio. The

GMV produces the highest SR but is most imbalanced in asset weights and RC. As

the authors demonstrate in their theoretical background, with low correlations, the

RP portfolio tends to result in weights that are proportional to their inverse volatil-

ity. The 1/N is dominated by the RP portfolio on all measures. The GMV dominates

the RP portfolio in terms of volatility and returns, but has much larger drawdowns

and concentrations of risk and weights. RP presents the advantage of having lower

concentration in assets, and therefore less exposure to idiosyncratic risk. The last

backtest is performed using a global portfolio consisting of major indices covering

all demographic regions. The correlation of assets are much more spread than the

previous backtests. The RP portfolio dominates when comparing drawdowns, re-

turn, volatility and SRs. Only the 1/N has better weight concentrations. The authors

findings suggest that RP seems to perform better as correlation coefficients are more

dispersed in the portfolio. This seems intuitive as heterogeneity in volatilities and

correlations are linked to concentration measures of a RP portfolio.

Asness, Frazzini, and Pedersen (2012) find that RP outperforms the value-weighted

and 60/40 portfolio in the very long run. The authors do not use the exact RP ap-

proach, rather, they use the inverse-volatility weighted method as a proxy for RP.

Although the method results in a different portfolios compared to RP, the inverse-

volatility strategy and the RP strategy tend to have similar results. They find that

over a period of 1923 - 2010 a levered RP portfolio consisting only of a stock and
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bond index outperforms a 60/40 portfolio. They expanded the portfolio by includ-

ing (global) asset classes and found similar results. Asness, Frazzini, and Pedersen

provide a reason for the outperformance of RP: the security market line is too flat. As

they explain: investors have an appetite for high return but are constrained by the

amount of leverage they can take on. For this reason, they invest in higher yielding,

though more volatile, assets. The authors suggest that most investors do so, result-

ing in lower return potential for high-beta assets. It implies that low-beta assets

have higher risk-return characteristics. Therefore, the authors state that a strategy

focusing on low-beta assets is prone to outperform high-beta strategies in terms of

risk-adjusted returns. The authors do not explain why RP outperformed in certain

periods of their 87-years sample. Ruban and Melas (2011) investigate the return dif-

ferences between RP and a 60/40 strategy while focusing on specific periods. Their

RP weights were a function of the inverse volatilities of included assets. In the two

asset class backtests, which lasted from 1976 to 2009, they found that in economic

growth regimes the 60/40 strategy outperformed the RP strategy. Although their

setup is simple, the outcome suggests that RP can underperform under specific mar-

ket conditions.

Chaves et al. (2011) find that RP does not consistently produce a higher SR than

a 1/N and 60/40 strategy, but it does outperform minimum variance and mean-

variance efficient strategies. Their sample, which ranged from 1980 to 2010, included

nine asset classes. RP had the most balanced risk allocations and least volatile per-

formance statistics. The authors perform a sensitivity analysis where the number of

assets varies for each portfolio. Their results are ambiguous. For two of the included

asset classes, the result is most optimal for all portfolios. The returns deteriorate

when more asset classes are included, up until six asset classes. From that point

onward, the performance improves again. The authors emphasize that the result is

highly dependent on the investment universe, underlining that asset (class) selec-

tion is critical. They state that more research is necessary to draw good conclusions

on the effect of asset class inclusion on RP performance. Finally, Peters (2011) in-

vestigates the source of RP’s empirical outperformance. The author compares a RP

portfolio with a static 50% equity, 25% bonds and 25% alternatives and a liability

hedging portfolio using the Citi Liability Index in the period 1995 - 2010. He finds

that RP outperforms its peers by dynamically rebalancing more weight to high-beta

assets when volatilities are low, and vice versa. RP therefore adds value since low-

beta assets (e.g. bonds) tend to outperform high-beta assets (e.g. equity) in periods

of high volatility.

Overall, the literature indicates that RP tends to outperform traditional strategies. It

is, however, subject to the time period used in the framework. Peters (2011) finds

that RP outperforms while Chaves et al. (2011) don’t find RP superiority. The latter

use a time period before 2000 while the former is mostly after the 2000s. In addition,

Chaves et al.’s framework allocates lower weights to pro-cyclical high-beta assets



14 Chapter 2. Literature and Design

compared to Peters’s. The performance of these assets was different given that two

different time periods were used (Thiagarajan and Schachter, 2011). In all of these

studies, the choice of assets was different. For example, Chaves et al. use the Bar-

Cap Aggregate Bond index, which produced an astonishing 0.82 SR over the past 30

years, which Peters’ did not. Including specific assets can alter the results. Further-

more, the studies by Maillard, Roncalli, and Teïletche (2010) and Chaves et al. (2011)

mainly use USA based portfolios for their backtests, although world portfolios are

not as often constructed. The choice of assets and time periods can affect the out-

come of constructed portfolios. Thiagarajan and Schachter (2011) rightly state that

more work on the robustness of different sample universes and sample intervals is

needed.

The Investment Universe is Infinite

A RP portfolio is restricted to only positive weights in the chosen asset classes.

Most investors cannot have short positions, therefore this strategy is applicable to

many investors in the world. An investor also does not have to include assets in

which he wants to go short in, only those he wants to include in his portfolio. Impos-

ing limits on asset weights has a downside, namely that it reduces the diversification

benefits. A pitfall when using RP is the timing of acquiring assets. RP is a method

that doesn’t include analysis of returns nor views on market movements. By not an-

alyzing this, one can miss the opportunity to invest or withdraw funds at the right

moment1. Several studies2 underline that the choice of asset classes included in the

portfolio is of great importance to its performance. Chaves et al. (2011) show that

RP performance drastically changes when different assets of the same class are sub-

stituted. Every asset has different characteristics and is weighted differently due to

different co-dependency on other assets. Normally, the RP literature uses indices to

assess RP’s performance. Since every index is constructed differently, outcomes are

greatly dependent on how indices are constructed, regardless of seemingly ’equal’

characteristics or coverage. The choice of assets within classes is not the only issue,

as Inker (2011) points out. He questions whether asset classes such as government

bonds and commodities have a risk premium in the long run. Stocks and bonds

have positive risk premia due to claim on cash streams of business operations. He

states that commodity securities have a buyer and seller, so in the end it is a zero-

sum game. The same holds for government bonds where the timing of acquisition is

of great importance due to changing yields and opportunity costs. All in all, critical

thinking on assets to include is critical for portfolio performance.

RP is said to have less reliance on growth in the economic cycle to generate the re-

quired rate of return. Kunz (2011) argues that RP portfolios are designed to generate

equity-like returns while minimizing the variance. He explains that if inflation is

1A real-life investor might incorporate views in a RP portfolio by, for example, include a Black-
Litterman framework.

2See Inker (2011), Kunz (2011) and Chaves et al. (2011).
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high and a central bank is increasing interest rates, a RP strategy with less exposure

to growing markets (e.g. equity markets) reduces the maximum draw-down of the

portfolio. When considering two main drivers of financial markets, namely growth

and inflation, we can state the following: bonds tend to react favorably to disinfla-

tion and deflation which increases them in value; commodities are favorable asset

classes in times of rising inflation; stocks normally increase in value during times

of economic prosperity; and low growth is favorable for long-term fixed assets. A

good portfolio should contain assets that do well in every economic regime. The

RP strategy gives a positive weight to every asset class included, so only when the

right asset classes are included, the portfolio tends to smooth earnings over time.

Maillard, Roncalli, and Teïletche (2010) find empirical evidence for the idea that RP

portfolios are more stable over time. In their multinational sample that ranges from

1995 to 2009, they find that an RP portfolio is superior to equity dominated portfo-

lios in terms of maximum drawdown of all possible intervals.

The previous section made clear that the performance of any portfolio is hugely de-

pendent on the asset (classes) included. For RP in particular, the literature is not

entirely clear on how robust RP performance is to changing assets. This will be

tested in this thesis. Moreover, RP performance is more smooth over time relative

to peers. An article by ReSolve Asset Management3 indicates that RP performs well

in the different economic regimes, yet it does not provide a solid conclusion on how

growth and inflation affect the performance. This will be discussed in this thesis.

The Riskiness of Risk

Risk-Parity (RP) is an approach to investment portfolio management which fo-

cuses on the diversification of risk among factors and asset classes rather than the

allocation of capital. This is achieved by making the contribution of risk equal by

asset class. This is at odds with other heuristic portfolio theories, for example the

60/40 portfolio where 60% of the funds are invested in risky assets (equity), and the

remainder in fixed income (bonds). Since bonds are less risky than equity, the asset

class equity contributes to more than 90% of the total risk of the portfolio, accord-

ing to Kazemi (2012) and the example in section 2.1. These findings suggest that

simple allocation strategies are susceptible to shocks in the equity market since the

risk is not diversified well. RP overcomes this problem by equally weighting the RC

of each included asset (class). It allows investors to equalize RC across assets and

thereby diversify on riskiness of assets rather than through asset classes or location

wise. This means that less-volatile assets will be over-weighted compared to riskier

assets.

One of the main strengths of RP strategies is the independence of mean estimations

based on historical asset return. That is, RP is not affected by errors in estimation

3Management (2015)
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of expected returns, nor human behavioral biases such as the look-ahead bias. Fur-

thermore there is no intended focus on a specific asset class so that no asset can be

favored relative to others. Additionally, the strategy incorporates the low correla-

tions between classical and alternative asset classes (e.g. commodities) (Qian, 2005),

resulting in lower concentration of weights in certain assets. The RP strategy re-

quires a risk measure of assets as input, for which the literature commonly uses the

SD. Although estimation errors might occur with estimating risk measures, these

are more stable over time and therefore more reliable than estimating returns. The

problem, as with almost any portfolio construction strategy, is that existing risk mea-

sures fall short in certain situations. For example, when dealing with return series

of assets, the SD tends to be low during bull markets and high during bear markets

(Danielsson, Valenzuela, and Zer, 2016). This poses a problem for a RP portfolio.

In the bull market just before a crisis, the SD was low. Therefore, relatively more

capital is allocated to stocks rather than other asset classes. The SD implies low risk,

however, it does not include the risk of extremes. Therefore, this measure is flawed

when used to serve as a complete assessment of risk, thus clearly posing a threat to

performance

The RP strategy is said to perform stably across different economic states (Bilan,

2016). Allen (2010) finds that RP overperforms during bear markets and under-

performs during bull markets. These are attractive characteristics, but Kunz (2011)

points out that with time and different states of the economy, the correlations be-

tween assets change. The general form of RP assumes these correlations to be con-

sistent over time and the probability of crises happening to be equal across states.

This, however, is not always true, as the crisis of 2007-2009 pointed out (Rankin

and Idil, 2014). An estimation of the variance-covariance matrix is important to in-

corporate the state of the economy. The literature acknowledges the issue with the

SD, but provide no clear solution to this problem. The Value at Risk is a widely

adopted risk measure in the finance industry, yet this measure suffers is sensitive to

extreme events, invites excessive risk taking and suffers from interpretation issues

which have severe adverse effects (Einhorn and Brown, 2008). Alankar, DePalma,

and Scholes (2013) discuss a RP strategy where tail risk is incorporated in weight

construction. As they argue, standard risk measures inadequately incorporate ex-

treme events, resulting in extreme losses when a crisis hits. In their empirical anal-

ysis, the authors find that Tail RP reduces losses by 50%. Though appealing, their

measure requires estimating the probability of a crisis through implied volatility via

the option-market. The strategy is time consuming and dependent on the universe

of assets, as their conclusion is based on recent data and a two-asset class portfolio4.

4The authors use a bond index and equity index in the period 2003-2013. The bond index
Barclays Capital US Aggregate Index is used, which is known for its extraordinary performance
throughout the years. Therefore, the outcome might be biased because of the authors’ selectiveness.
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Leverage propels performance

A RP strategy can experience increased efficiency through the use of leverage

(Kunz, 2011). Similar to levering the tangency portfolio in the CAPM framework, an

investor can apply this to a RP portfolio. Instead of increasing expected return by

investing more in equities, levering the RP portfolio results in higher returns com-

pared to peers (Asness, Frazzini, and Pedersen (2012), Chaves et al. (2011), Qian

(2011) etc.). However, it needs to have a superior SR, otherwise levering would

result in an inferior portfolio. Asness, Frazzini, and Pedersen (2012) suggest lever-

age aversion as a reason why RP portfolios empirically outperformed. Frazzini and

Pedersen (2014) argue that the tangency portfolio overweights safer assets. Some

investors choose to invest in riskier portfolios since they are leverage constraint.

Overweighing risky assets drives the price up, similarly reducing the expected re-

turn. Therefore safer assets have higher risk-adjusted returns. So, investors who are

able to apply leverage can benefit from the mismatch of risk-adjusted returns across

assets, thereby being rewarded in higher returns. In line with their theory, Black

(1972) shows that if investors have a leverage constraint, the risk-adjusted returns

of low-beta assets are higher compared to high-beta assets. This is visualized by a

security market line which is too flat. Along similar lines, Jensen, Black, and Scholes

(1972) and Frazzini and Pedersen (2014) find evidence for leverage aversion in ev-

ery asset class. In addition, they find that low-beta assets have higher risk-adjusted

returns than high-beta assets. But why not invest in the tangency portfolio? The tan-

gency portfolio is a portfolio which is constructed ex post, the implications of which

have been explained in the previous paragraphs. RP portfolio construction relies on

ex ante information. Also, RP investing suggests allocating capital according lever-

age aversion theory, which is more in safer assets relative to riskier assets so that RC

are equalized. This method is, as mentioned previously, justified by Black (1972) and

Frazzini and Pedersen (2014) in the past.

The use of leverage is accompanied by several pitfalls. First, not every investor can

use leverage. Pension funds, for example, have a fiduciary duty. It is difficult for

those institutions to use leverage since it would impose extra credit risk, which pen-

sion claimants are not likely to approve. For other institutions it might be challeng-

ing to find credit for investment, as a typical leveraged portfolio requires a substan-

tial amount of funds (Kazemi, 2012)5. This raises practical concerns that fall outside

the scope of this thesis, but remain fruitful for later research. Second, leverage has

a cost. The empirical outperformance of RP is subjective to borrowing rates. Last,

the timing of leverage issuance is important. As borrowing costs become cheaper in

periods of low distress - since confidence is high and liquidity costs are low - it is eas-

ier for investors to borrow funds. However, when money is borrowed in favorable

times it may result in adverse effects when the economic environment worsens and

5In his study, he finds that for every dollar invested, 54 cents need to be borrowed to lever up the
portfolio to match the volatility of a 60/40 portfolio
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interest yields rise. Given the above-mentioned reasons, the use of leverage is not

without costs, and investors should act wisely by taking these into consideration.

2.3.2 Fundamentals

Risk-Parity (RP) equalizes the TRC among assets in the portfolio. This is achieved

by making the contribution of risk equal6 among asset(s classes). There is no exact

formula for the weight calculation of a RP portfolio. Asset weights are found by

running an optimization algorithm that equalizes the TRC and finds the individual

weights in a heuristic fashion. For equal RC to be achieved, the following optimiza-

tion problem needs to be solved:

min
∑
i

∑
i 6=j

(wiMRCi − wjMRCj)
2

= min
∑
i

∑
i 6=j

(TRCi − TRCj)
2

(2.20)

The optimization problem minimizes the differences between the TRC of all assets.

In other words, if the distance between all is effectively reduced to 0, all assets con-

tribute the same amount of risk to the portfolio. This results in:

TRCi = TRCj 6=i =
1

N
(2.21)

As shown in section 2.1, the sum of all TRC’s results in the portfolio’s volatility. In

the RP case, the portfolio volatility is also equal to N × TRCi ∈ TRC since every

asset contributes the same amount of volatility and we have N assets. When com-

paring the volatilities between different portfolio construction methods, Maillard,

Roncalli, and Teïletche (2010) find that the variance of a RP portfolio is (by defini-

tion) equal or higher than a minimum variance portfolio, but lower than a 1/N and

60/40 portfolio.

σGMV < σRP < σ1/N < σ60/40 (2.22)

The risk of a RP portfolio is usually lower than its peers, as the previous formula

suggests. Qian (2005) states that due to the higher low-beta exposure of RP, it will

not be able to outperform a 60/40 portfolio in the long run. He therefore stresses that

investors should use leverage to create equity-like return. In general, the amount of

leverage used in a RP strategy is the ratio between the SDs of a benchmark portfolio

and the RP portfolio, but any ratio or leverage level can be selected. The general

form for the volatility looks as follows.

k =
σb
σRP

(2.23)

6This implies TRCi = TRCi6=j
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where σb is the volatility of the benchmark portfolio, and k denominates the multi-

plier for the weights of a leveraged portfolio. Note that the multiplier k equalizes

the risk of a levered portfolio and the benchmark portfolio. The vector of weights of

RP portfolio is then calculated as follows

wlevered = k × wunlevered (2.24)

2.3.3 Theoretical Example

Let’s consider an example with real data and no-rebalancing. The investment

universe consists of two assets: assets A (e.g. equity) and B (e.g. bonds). Asset A is

represented by the MSCI World Equity index and has an annual volatility of 14.65%.

Asset B is represented by the Bank of America Merrill Lynch Global Bond index and

has an annual volatility of 5.37%. The time frame spans from January 1997 to July

2017. The correlation between the two assets is ρ = 0.047 and for this example, we

assume that both assets have a SR of 0.3. We construct a 60/40, 1/N, GMV and a RP

portfolio for comparison reasons since we do not have to estimate the returns. The

two portfolio strategies that allocate the most capital to high-beta assets (1/N and

60/40) have the highest SDs. The RC8 per asset to the portfolio as shown in table

2.1, we see that the 60/40 portfolio and the 1/N portfolio have a great amount of

their risk allocated to the risky asset, although the capital allocation is rather equally

spread. The GMV portfolio is the combination of assets that minimizes the portfo-

lio’s variance. We see that minimum variance is achieved when 93% of the capital

allocation is invested in the Asset B. This also means that 96% of the risk allocation

is allocated to asset B, resulting in the safest, though most concentrated, portfolio.

The RP strategy also overweighs Asset B, but the RC per asset class is equal, namely

50%. By equalizing the RC, the capital allocation is more balanced relative to the

GMV, and the portfolio’s SD is much lower than the 60/40 and 1/N portfolios.

7This number fluctuates over the years, however, the yearly mean and median observations sug-
gest this is a reasonable estimate.

8The calculations can be found in Appendix A.1
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TABLE 2.1: Hypothetical portfolio weights and RC

Portfolio Weights Risk Contr. Portfolio SD

60/40
Asset A 60% 93.48%

9.14%
Asset B 40% 6.52%

1/N
Asset A 50% 87.11%

7.91%
Asset B 50% 12.89%

GMV
Asset A 7% 4.37%

5.15%
Asset B 93% 95.93%

RP
Asset A 27% 50.00%

5.68%
Asset B 73% 50.00%

* Asset weights were restricted to positive weights only and had to
add up to 100%

Figure 2.1 further illustrates how risky assets can concentrate risk allocations within

a portfolio. We again use assets A and B and their characteristics for this example.

We see that the marginal RC of Asset A is substantial as more capital is allocated into

it. This stresses how important diversification across assets is.

FIGURE 2.1: RC of Asset A at various allocation levels
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What about returns? Let’s assume that there is a risk-free asset that returns 1%,

and as assumed previously, both Asset A and Asset B have a similar risk-adjusted

return, namely a SR = 0.3. This means that Asset A has a implied total return of

5.4%9 and Asset B has an implied total return of 2.61%10. Now we know the returns

of the assets, we can calculate the return of the portfolio. Table 2.2 shows the return

characteristics of each portfolio. In addition, the figure introduces a leveraged RP

portfolio.

90.3 * 15% + 1% = 5.4%
100.3 * 5% + 1% = 2.61%
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TABLE 2.2: Hypothetical portfolio weights and RC

Portfolio Weights SR SD Return

60/40
Asset A 60%

0.36 9.14% 4.28%
Asset B 40%

1/N
Asset A 50%

0.38 7.91% 4.00%
Asset B 50%

GMV
Asset A 7%

0.35 5.15% 2.79%
Asset B 93%

RP
Asset A 27%

0.42 5.68% 3.36%
Asset B 73%

Leveraged RP
Asset A 43%

0.42 9.14% 4.80%*
Asset B 118%

Asset weights were restricted to positive weights only and had to
sum up to 100%

* 43%× (5.40%− 1%) + 118%× (2.61%− 1%) + 1% = 4.80%

When we lever up the RP portfolio to the risk of the portfolio with the highest return,

we achieve a higher return for the same amount of risk. This implies that we have to

use leverage, which obviously has its own restrictions as pointed out in section 2.3.

But in this two-asset example, we see that a higher return can be achieved using a

RP strategy with leverage. Due to the imperfect correlation and and overweighting

safer assets with same risk-adjusted return characteristics, a RP portfolio was able

to achieve a higher SR than other strategies. So, by (de-)levering up the portfolio’s

weights proportional to the ratio of the the SDs, we can achieve an allocation that

suits individual risk preference while still being (sub-)optimal. Figure 2.2 presents a

mean-variance diagram with the portfolios plotted inside. It helps to visualize the

return/risk characteristics between the portfolios. Also, it helps in understanding

how levering a RP portfolio can result in a superior portfolio.

FIGURE 2.2: Mean-variance diagram
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The Risk Parity Line in figure 2.2 is the line that originates at the risk-free rate with
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a slope that is equal to the SR of the RP portfolio. It represents the combination of

the RP portfolio with the risk-free asset that has the same SR. The line below the

RP portfolio is a positive investment in the RP portfolio and the risk-free asset; the

dashed line above the RP portfolio is a positive investment above 100% in the RP

portfolio while shorting the risk-free asset; and the RP dot is is a 100% investment

in the RP portfolio. In this example, the RP portfolio had the highest SR, so one can

create superior portfolios and customize their portfolios to their own risk tolerance.

The portfolio shows a superior performance relative to its peers. We can decom-

pose the return in two ways. First, the return consists of the risk free rate plus the

weight times the excess return of individual assets11. In this way, we can observe the

source of excess return at asset class level (Qian, 2011). Second, the return consists

of the total return of assets minus the funding costs of leverage12 It implies that we

have borrowed 61 basis points at the short-term risk-free asset return to invest in the

leveraged RP portfolio at a cost of 1%.

In this example, we have seen that RP has the potential to outperform traditional

strategies. The portfolio diversifies at risk level, thereby being less risky than other

portfolios. The risk-adjusted return of the RP portfolio is the highest and the weights

are fairly balanced. Following the example of the CAPM, an investor can use lever-

age to customize the RP portfolio to their risk tolerance level. This makes RP more

attractive than the other used methods. In this example, the cost of leverage has

not been taken into account, since it merely serves the purpose of pointing out the

mechanism of how the RP portfolio can be superior to peers.

114.80% = 1%+ 43%× 4.40% + 118%× 4.61%
124.80% = 43%× 5.40% + 118%× 2.61%− 1%× (118% + 43%− 100%)
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Chapter 3

Methodology

This chapter introduces the methodology used to analyze the performance of

the RP strategy. The allocation strategies mentioned in chapter 2.2 will be used as

comparison to evaluate the performance of RP. All returns of the portfolios are excess

of the risk-free rate. Metrics used to investigate performances are returns, volatil-

ity, drawdowns, RCs, and diversification. The chapter starts with discussing the

data. Sequentially, it continues with explaining how portfolios are constructed and

maintained over time. Afterwards, the methodology for evaluation performances is

explained.

3.1 Data

The performance of RP is evaluated using a sample that ranges from 6 January

1995 until 30 June 2017. Six asset classes are included in the portfolios, namely: eq-

uity, bonds, commodities, real estate, inflation linked assets, and private equity1.

According to a survey of Towers Watson, the typical portfolio of large institutional

funds consisted of these classes2. Since this thesis is reviewing performance with

market representative portfolios, this allocation is considered to be the norm for this

thesis. The chosen asset classes will be represented by indices for several reasons.

First, creating own-made indices is susceptible to mistakes in calculations and very

time consuming. Second, it can be assumed that issuers of indices have better in-

formation resources due to their specialization and size. Therefore, one can assume

that their indices are of good quality and accurate. Third, the use of indices allows

for more robust estimation of the variance-covariance matrix due to a lower number

of assets. One should take into account that the variance-covariance matrix reflects

the movement of the index and the specified basket of investments it represents, not

the movements of individual assets. Fourth, financial firms that create indices issue

shares. Investors can buy these shares to have exposure to the specified basket of un-

derlying investments. These shares usually trade at large exchanges and appear to

be quite liquid due to their stock exchange availability (IA, 2017). This is an advan-

tage for this thesis since liquidity issues of asset classes such as real estate and private

1The chosen assets offer returns in the four economic scenarios mentioned in the literature review
2See https://www.towerswatson.com/en/Insights/Newsletters/Americas/insider/2015/10/2014-

asset-allocations-in-fortune-1000-pension-plans for more details.
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equity can be regarded as non-existent3. Last, these indices have long time-spans,

making them ideal for research purposes. There are, however, some disadvantages

to using indices. Choosing indices is subject to the selection bias (Heckman, 1977).

Also, an index might not reflect the true return characteristics of an asset class, al-

though this is a general concern with asset selection. Furthermore, while choosing

indices that have a long lifespan might be ideal for research purposes, the survivor-

ship bias (Brown et al., 1992) could play a role. Individual indices remain available as

long as investors are interested in them, meaning they offer better risk-return statis-

tics than competitors that are terminated due to inferiority. All in all, it is assumed

that the benefits of using indices outweigh the disadvantages.

The analysis will start with a chapter that discusses the descriptive statistics of the

data used. This includes the statistics of the chosen asset classes, and the way that

portfolios are built up. This thesis investigates the effect of asset selection in a RP

portfolio. For this reason, data of comparable indices were used to investigate if

substitution assets have an effect on performance. Furthermore, the distributions

are checked and altered if necessary. In addition, the correlations between assets

and portfolios are investigated, given that section 2.3 underlined that a RP portfolio

performs better when the correlation among assets is more dispersed. Furthermore,

Koestrich (2015) finds that the correlations of assets in times of crisis are closer to

1. Investigating the correlations over time allows to check whether correlations are

non-constant and how correlations affect performance.

3.2 Portfolio Construction

I consider four portfolio strategies for backtesting: 1/N, GMV, 60/40 and the

RP strategy. Table 3.1 presents the used portfolios and their strategies respectively.

TABLE 3.1: Portfolio summary

Strategy Definitions

1/N Equalizes wi wi = wj 6=i = 1
N

60/40 60% equity, 40% bonds wequity = 1− wbonds

GMV Minimizes σp argminw′Σw

RP Equalizes TRC TRCi = TRCj 6=i = 1
N

The benchmark strategies are chosen for the comparison of heuristic methods that

are common in the literature, but every portfolio also serves as a comparison for ad-

ditional reasons. First, the 1/N strategy equalizes the weights equally across asset

classes. RP equalizes the RC of asset classes. It is therefore interesting to explore the

3This does not mean that liquidity will be ignored, it means that liquidity constraints are not used
in the analysis.
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diversification differences between the two strategies. Second, the 60/40 strategy is

the high-beta strategy. Comparing it with a RP strategy helps in creating a contrast

between high-beta portfolios and risk-balanced portfolios. Lastly, the GMV strat-

egy always results in a portfolio with the lowest volatility. The comparison between

RP and GMV helps to see where RP lays on the mean-variance area. Low volatility

does not mean low risk; using the GMV strategy helps to uncover what reduces risk

in portfolios. All strategies can be constructed ex ante so that the look ahead bias

(Carhart et al., 2002) cannot play a role. The portfolios are constructed as they were

defined in section 2.2 and 2.3. The 60/40 and 1/N strategies have fixed weights, so

they do not require any steps for the calculation of asset weights. The construction

of the GMV and the RP strategy’s weights require several steps. These steps are as

follows.

GMV steps

Step 1 The sample variance-covariance matrices
are estimated using a 36-month period.

Step 2 The GMV algorithm finds the combination
of assets that minimizes the total volatility
of the portfolio. The algorithm has two con-
straints: 1) no negative weights, and 2) the
sum of all asset weights should equal 100%.

Step 3 After the weights are set, the algorithm
moves to t + 1 and starts over with step 1.
This continues until the algorithm has iter-
ated over every week of data.

RP steps

Step 1 In period t, the sample variance-covariance
matrices are estimated using a 36-month pe-
riod.

Step 2 The RP algorithm uses the variance-
covariance matrix to calculate the marginal
RC of each asset class, which it then
transforms into the percentage of RC of the
portfolio’s total volatility. The algorithm
then finds the asset weights so that the
percentage of RC equals 1/N%, where
N stands for the number of asset classes
The algorithm has two constraints: 1) no
negative weights, and 2) the sum of all asset
weights should equal 100%.

Step 3 After the weights are set, the algorithm
moves to t + 1 and starts over with step 1.
This continues until the algorithm has iter-
ated over every week of data.

Asset weights can only be calculated when enough data is available to estimate the

VCV matrix. So, asset classes will be omitted if the data are insufficient. After the

weights are determined, they are used to calculate annualized returns for all peri-

ods. These returns are excess of the risk-free rate. From those excess returns, the

volatility and other statistics can be calculated.

In the initial setup, the portfolios are rebalanced monthly. In the sensitivity analysis,

it will be repeated in a quarterly and yearly frequency. Returns tend to be volatile

when the time frame is small. Taking a larger time period makes the data less noisy.

Therefore the variance-covariance matrix will initially be estimated using a rolling
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average of 36 months of data.4 This allows for proper estimation of the variance-

covariance matrix, since the amount of time periods is greater that the number of

assets. Although the choice of estimation period is in line with other backtest stud-

ies, varying the period might affect the outcome. To ensure robustness, the analysis

will be repeated using a 12-month and 60-month VCV estimation period.

The literature commonly uses a shrinkage technique for the estimation of the variance-

covariance matrix. As has been shown, this leads to a reduction in the tracking error,

as Ledoit and Wolf (2004) and Lee (2011) demonstrate. Here, the shrinkage estimator

is not used since the number of securities (N = 8) per portfolio is low compared to

number of periods (t = 1022). That is, the shrinkage estimator only results in bet-

ter results when N > t5, which is not the case with this thesis’ data6. The returns

are calculated ex post. Because of ex post return calculation, there is no look-ahead

bias. Since capital will be ’rolled-on’ to the next period, the geometric average will

be used to calculate the annual returns, the formula can be found in section 2.1.

3.3 Performance Evaluation

3.3.1 Risk Parity Performance

The RP strategy allocates much capital to low-volatility assets. Therefore, it is

not likely that the return of a 0% leveraged RP portfolio will have a higher total re-

turn than a high-beta strategy such as the 60/40 strategy. Levering up the portfolio

is therefore preferable when investing RP style. In order for RP to be attractive, the

risk-return trade-off of the RP strategy should be superior to the benchmark portfo-

lio. For this reason, the main focus when assessing the performances of the strategies

will be placed on observing the produced volatility-return trade-offs.

Besides returns, the volatility and concentration characteristics are equally impor-

tant to investigate in this thesis. Volatility will, as explained previously, be expressed

in SDs. Additionally, maximum drawdowns (MD) will be included to draw con-

clusion on both riskiness and smoothness of returns over time. Volatilities do not

always reflect the true riskiness of a portfolio. The MD shows how risky a port-

folio is in terms of capital loss. It is important for an investor to know what the

continuity of the invested capital is. For example, a GMV portfolio has the lowest

possible volatility, but the strategy is likely to extremely overweight low-risk assets.

These assets, however, can experience severe shocks, and when the asset weights are

concentrated, the portfolio is susceptible to shocks, so large capital drops can occur.

Low volatility portfolios are not equal to safe portfolios, therefore the MD is a good

4Academics usually take a long period to estimate the VCV matrix: Bilan (2016) use a 50-day
window with daily return data, Chaves et al. (2012) use a 5-year window using monthly data, Kaya
and Lee (2012) use a 40-month period using monthly data, and Marra (2016) use a 12-month window
using weekly data.

5A general rule is that t
N

≥ 1 for a variance-covariance matrix to be singular and non-invertible.
6With N = 8, only 8 variance estimates and 8∗(8−1)

2
= 28 will be estimated.
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metric to assess a specific risk.

When evaluating asset class weight and risk concentration, we make use of the so

called Gini-coefficient. This measure is widely used by economist measure the in-

equality of a population. The Gini coefficient ranges between one (perfect equality)

and zero (perfect inequality). Maillard, Roncalli, and Teïletche (2010) and Chaves

et al. (2012) applied the Gini-coefficient as a measure of portfolio concentration by

computing RC inequality (or RC concentration). In the literature, we find that the

Herfindahl measure of portfolio concentration is generally used, but the Gini-coefficient

presents the advantage of having a value always situated between zero and one,

which allows for clearer interpretation and better comparison between portfolios.

Furthermore, we check the correlation of the constructed portfolios with the asset

classes. This helps to understand where return characteristics of portfolios are com-

ing from. The calculation of the Gini coefficient is given by the formula below. xi
denotes the weight/RC of asset class i and there are n asset classes.

G =
1

n

(
n+ 1− 2

( n∑
i=1

(n+ 1− i)yi
n∑

i=1
yi

))

=
2
∑n

i=1 iyi
n
∑n

i=1 yi
− n+ 1

n

(3.1)

As pointed out in the introduction and the literature review, Asness, Frazzini, and

Pedersen (2012) and Chaves et al. (2011) point out that when all assets have similar

risk-return characteristics, adding more alternatives to a portfolio makes it more

diversified. However, the former authors provide reasons and proof of why this

is not the case. In this thesis, it is therefore important to test how the asset classes

are positioned along the security market line over time. According to the theory

of Asness, Frazzini, and Pedersen, the security market line should be more flat and

low-beta assets should yield higher risk-return characteristics than high-beta assets.

To test this, we not only plot the SML line over the entire dataset, but also over sub-

periods to show how the SML has been historically. From the graph, we can derive

in which periods a RP should be able to outperform.

3.3.2 Sensitivity to Leverage

The previous section assumed that the RP strategy was not levered. In order to

understand what leverage does with performance, the RP portfolios will be levered

up 10%, 25%, 50% and 100% of their initial capital investment. The same perfor-

mance statistics will be assessed as was proposed in section 3.3.1. With the use of

leverage, costs will be imposed. So, actual leverage costs will be used, which are
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represented by the 5-year borrowing rate of European securities7. Although a 5-year

borrowing rate seems appropriate as leverage costs, the literature frequently uses

short term rates as a proxy for the costs. Short term rates have a few downsides.

For example, by constantly reissuing debt, transactions costs rise, the susceptibility

to short term yields rises and a insolvency risk arises when no new debt can be at-

tracted. This thesis makes use of a short term bond as a proxy for costs. Bond yield

curves show that short term bonds have lower rates since there is less insecurity

due to the shorter time frame. Including short term bonds as a proxy for leverage

costs allows to see how attractive a leveraged RP strategy is when the previously

mentioned downsides are non-existent. For both cases of leverage costs, we look

whether the marginal benefit of using leverage is higher than the marginal costs.

Similarly, the realized annualized returns will be compared to the peer strategies.

3.3.3 Asset Choice

The performance of portfolios is hugely dependent on the choice of assets. For

this reason, the strategy’s portfolios will be constructed using four different asset

mixes: two European oriented mixes and two global oriented mixes. As mentioned

before, financial literature rarely uses Europe as a geographic to conduct backtests.

Therefore this thesis includes it as a separate regional focus. The global oriented

mix is included because investors have fast and wide access to the whole world

due to improving (information) infrastructure. To conclude whether changing as-

sets changes outcomes, at least two portfolios of each regional focus need to be con-

structed. These will be used to create comparable portfolio and test them with each

other. The performances will be evaluated by using the performance method de-

scribed in section 3.3.1. In addition, by adding or dropping asset classes in a RP

portfolio, the result tends to be ambiguous (Chaves et al., 2012). Therefore, the effect

of adding different asset classes and assets will be examined in the robustness sec-

tion of the results chapter. This will be done by dropping random asset classes from

all portfolios and assess the performance statistics.

In order to analyze the performance, we will construct four portfolios. As discussed

before, this thesis has a focus on both Europe and the World. The first two portfolios

consist of world indices but differ in the indices included. This way we can draw

conclusions on the performance of a world portfolio all the while limiting the effect

of individual indices having an effect on the outcome. Note that the chance that

an individual index still affects the outcome is not eliminated, it’s merely reduced.

The same procedure holds for the European portfolios, but these portfolios consist

mostly of European indices. Hence, the analysis will be done with four portfolios

differing in geographical orientation and assets included.

7Nasdaq (2017) states that 20%/30% can be considered as a buy-and-hold strategy, meaning that
a portfolio can be completely turned-over after 5 years, therefore a 5-year interest rate is used.
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Chapter 4

Data

In this chapter, the data used in this thesis is presented, the reasons for including

certain asset (classes) is explained, and the limitations of the data are explored. The

chapter first discusses general information regarding the data, followed by the dis-

cussion of each asset class’ statistics. Finally, the division of assets among portfolios

is presented and discussed.

4.1 Asset classes

As mentioned in section 2.3, portfolio performance is strongly dependent on

choice of asset classes. This section discusses the assets and asset classes included

in the performance evaluation. For the remainder of this thesis, the risk-free rate is

represented by the European 90-day bond rate. The risk-free rate has been chosen

because it does not face liquidity risk in the short term, nor is the asset assumed to

face default risk. The choice for an European rate is based on the regional focus of

thesis. In the descriptions of the asset classes, we do not elaborate on the liquid-

ity. As explained previously, the use of indices allows for more liquidity than actual

direct investments. Of course, this remains a point of discussion, but this will be ad-

dressed in chapter 6. The starting date of each portfolio was the 5th December 1997.

Since most indices existed three years from that point on, volatility statistics could

be calculated. Furthermore, the correctness of data is important for the analysis.

Therefore the skewness, kurtosis and normality are reviewed when discussing the

asset classes. This thesis frequently uses the SD which assumes normality, therefore

this is consistently checked. We know that return data suffers from statistical mo-

ments and outliers since news and market conditions heavily affect security prices,

thereby violating the normality assumption. Therefore the normality tests are per-

formed on the aggregate of all data. However, one should not forget that the return

data suffers from these statistical moments. Moreover, the data is not checked on

autocorrelation since previous returns have little causality when explaining future

returns. The returns are stationary and news/market driven, finding positive auto-

correlation statistics would likely be caused by new political decisions, market news

or sentiment where the previous day price movement is the result rather than the

cause.
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4.1.1 Equities

Table 4.1 presents the summary statistics of chosen equity indices. Due to the

generally high volatility and movement with the market, equity is considered to be a

high-beta asset. Both Europe and the World are represented in order to differentiate

between a Global and an European portfolio. Each demographic class has two broad

comparable indices which are used to construct two similar portfolios for robustness

checks.

TABLE 4.1: Summary statistics equity indices

Ann. Return(%) SD(%) Skewness Kurtosis Start date

MSCI World 6.35 15.98 -0.603 3.851 06-01-1995
MSCI Emerging Market 5.62 21.69 -0.691 5.168 06-01-1995

FTSE All World 6.49 16.18 -0.637 4.024 06-01-1995
MSCI Europe 6.44 19.69 -0.481 2.905 06-01-1995

STOXX Europe 6.65 18.44 -0.335 3.064 06-01-1995

We see that the the world indices have lower volatilities than the European indices,

but the returns seem roughly equal. This is most likely due to diversification bene-

fits. The world indices are less susceptible to regional shocks, thereby claiming the

so-called "free lunch". This tells us only little about the attractiveness of an index. It

is hard to determine sources of idiosyncratic risk of any index since there are many

assets included, so this information washes away. Hence, the idiosyncratic risk of

the index can be considered to be the susceptibility to the market, therefore we can

call it the market risk of equity. Equity markets around the world are intertwined,

so when shocks happen, other regions and markets are affected. This may be a dis-

advantage regarding diversification. A portfolio containing both a European and a

global index can be beneficial if the correlation between the two is less than 1. Table

B.1 presents the correlation of all indices used in this thesis. For the equity indices,

we see that the correlations between assets are quite clustered, averaging around

0.9. The emerging market index is less correlated to the others, possibly because the

markets are different (advanced vs. developing) in the sense that the technology is

less advanced. Therefore, these markets could be less intertwined with advanced

countries, and shocks in either country would not influence the other as much. The

correlations are unequal to 1, so there exists a potential diversification benefit. Figure

B.3 shows the frequency distribution of returns of the equity indices on aggregate.

Table 4.1 adds to this with the statistics on kurtosis and skewness. We see that the

distributions are shifted more towards the right, implying higher right tail values.

The kurtosis statistics show that the frequency distribution can be considered nor-

mal1. Finally, the distributions of the individual indices and the aggregate is tested

1The outcomes cluster around the value 3, which is generally considered to be a normal distribu-
tion.
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on normality, table B.4 shows the results. For every index, we see that the assump-

tion of normality is met, so the data can be used for the analysis without further

adjustments.

4.1.2 Bonds

Table 4.2 presents the summary statistics of chosen bond indices. Both Europe

and the World are represented in order to differentiate between a globally diversi-

fied and a European diversified portfolio. In addition, each demographic class has

two broad comparable indices that are used to construct two seemingly similar port-

folios for robustness checks. The classes consist of an overall bond type that include

mainly corporates and some governments, and a government type that only consists

of government bonds. Bonds appear to have much lower volatilities and returns rel-

ative to equity. In general, they are considered to be low-beta assets

TABLE 4.2: Summary statistics bond indices

Ann. Return(%) SD(%) Skewness Kurtosis Start date

JPM Global All 0.81 3.18 -0.264 1.214 06-01-1995
BofA ML Global Broad 4.67 5.36 -0.015 1.116 06-01-1995

BofA ML Global Broad Gov. 4.53 6.58 0.048 1.192 06-01-1995
Barclays EU Agg* 0.20 3.37 -0.263 1.986 06-01-1995

IBOXX EU Overall* 0.34 3.46 -0.352 2.180 06-01-1995
BofA ML EU Gov.* 5.28 4.04 -0.449 2.605 06-01-1995

We see that in both demographic classes the government indices are superior. This,

however, says nothing about the overall attractiveness of bonds. The correlation of

bonds with the rest of the indices is low, as can be seen in table B.1. This makes it a

good asset class to include in a portfolio to make it more diversified. We observe a

big difference in annual return between the BofA indices and all others. An expla-

nation could be the superior managing of the indices by BofA, since demographic

spread and asset inclusion is comparable with other indices. Since multiple port-

folios with different included assets are constructed, this poses no problem for the

analysis. Overall, the indices seem to have less volatility and lower returns relative

to the equity indices. This makes sense since bond returns are fixed yields and/or

coupons. Equity returns dividend or the earnings of a company with theoretical

unlimited potential, therefore usually equity returns are higher. Furthermore, bond

holders have the first claim in case of bankruptcy, while equity holders have resid-

ual claim. Therefore, bonds are safer than equity. The distribution of bond returns

is tilted to the right, as can be seen in the skewness statistic. Regarding kurtosis, the

values are rather low. The possible reason for this is that the difference in return is

high among the bond indices, resulting in the distribution of returns to be wider than

those of the equity asset class, where the returns among indices are more clustered
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together. Table B.4 shows that the normality tests, they also reject the hypothesis that

the distributions are non-normally distribution.

4.1.3 Commodities

Two global commodity indices have been chosen in order to make compara-

ble portfolios. They are comparable in such a way that they are globally oriented,

include the same variety of commodities and weigh them roughly in the same man-

ner. On aggregate, the returns lie between those of bonds and equities. The volatility

tends to be higher than the bond asset class because of low liquidity, climate and nat-

ural disasters, politics and technology. The indices have a low correlation with all the

other indices, as can be seen in table B.1. Adding a commodity index in a portfolio

can create diversification benefits.

TABLE 4.3: Summary statistics commodity indices

Ann. Return(%) SD(%) Skewness Kurtosis Start date

Thompson Reuters Equal Weight 2.43 10.97 -0.237 4.683 06-01-1995
S&P GSCI Commodity 6.48 18.82 -0.462 3.311 06-01-1995

The skewness and kurtosis statistics of the commodity indices are comparable to

those of the equity indices, having a negative skewness and high kurtosis. In other

words, the return distribution is tilted towards right tail values and the returns are

clustered according to a normal distribution. The normality test in table B.4 show

that the return distributions of the commodity indices can be regarded as normally

distributed.

4.1.4 Real Estate

The two real estate indices each represent a different region. Given that MSCI

constructed and managed both indices, both are selected, resulting in fewer differ-

ences in the indices aside from the regional focus. The European index is more

volatile, but it has a significantly higher return, possibly because of the booming

housing prices in Europe as a result of the low interest rates. Also, Europe is more

developed than the rest of the world as a whole, making access to finance easier, so it

is easier to invest in real estate, thus boosting the return of the index. The world in-

dex is more regionally diversified, therefore regional booms and busts are canceled

out, possibly explaining the lower annual return of the index.
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TABLE 4.4: Summary statistics real estate indices

Ann. Return(%) SD(%) Skewness Kurtosis Start date

MSCI World Real Estate 3.12 19.66 -0.405 5.802 06-01-1995
MSCI EU Real Estate 6.40 20.29 -0.902 6.952 06-01-1995

We see that the correlations (table B.1) are high with equities. This makes sense given

that real estate has become an investment vehicle over the past decades. Given the

nature of susceptibility to crises and consumer demand, the indices are likely to

move closely to equities. The indices are also moderately correlated with commodi-

ties, which makes sense since it is a primary good that people need, similar to most

of the commodities. The other correlations are quite low. Regarding the the return

distributions of the real estate indices, we see that the skewness is low and the kur-

tosis quite high. In other words, the return frequencies are shifted to right tail values

and the returns are are more peaked when compared to a standard normal distri-

bution. The normality tests, shown in figure B.4, show that these indices can be

considered as normally distributed.

4.1.5 Private Equity

The private equity indices have high volatilities because the business of private

equity is more risky in nature than the other asset classes. The two indices were ar-

bitrarily selected. The TR Private Equity is an index which compensates generously

for the additional risk of private equity, but the S&P index does not. Private equity

funds have been criticized by academics and practitioners for performing poorly rel-

ative to peers. Two indices cannot provide a complete picture of the attractiveness

of private equity, but investors are not eager to invest in a risky index such as the

S&P index when it returns relatively little. The source of private equity returns are

similar to those of equity, but private equity faces more risk since the invested com-

panies are usually smaller and less liquid. The investor, however, is compensated

for this as a result of the high growth potential of these companies.

TABLE 4.5: Summary statistics private equity indices

Ann. Return(%) SD(%) Skewness Kurtosis Start date

S&P Listed Private Equity 2.75 25.70 -0.602 9.350 01-11-2003
TR Private Equity Buyout 15.22 28.28 0.262 20.729 06-01-1995

The correlations of private equity with the rest of the indices in table B.1 are around

0.5 with all classes except for bonds and inflation-linked assets. Private equity is

pro-cyclical which RE and equity also are. Also, private equity firms can have their

business model intertwined with other asset classes. Bonds and inflation-linked as-

sets are non-correlated since they are not a product which are produced by any firm,
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they are simply finance vehicles. Similarly to all the above-mentioned asset classes,

the private equity indices are considered to be normally distributed, as shown in

figure B.4. Notably, both indices have a high degree of peakedness. Also, the skew-

ness statistics have the opposite signs: the S&P index is more skewed to the right

while the TR index is skewed more to the left. This, however, poses no problem for

normality.

4.1.6 Inflation-linked Bonds

The final asset class is inflation-linked bonds. Similar to real estate, these are

selected based on their demographic region. The global index has performed better

in terms of return and volatility, probably because it is more diversified. We see

typical lower returns than equity-like indices, but the lower volatility compensates

for this.

TABLE 4.6: Summary statistics Inflation indices

Ann. Return(%) SD(%) Skewness Kurtosis Start date

BofA ML Global Infl.-Linked Gov 3.75 4.87 -0.128 3.534 01-01-1998
BofA ML Euro Infl.-Linked Gov 2.30 5.14 -0.212 3.278 01-11-1998

The inflation-linked assets have very low correlations with every asset classes, as

the correlation table B.1 indicates. This is because of their inflation-protected nature.

Therefore, the general economic regime plays no role and the value of the bond

rises equally with the CPI rate. The inflation-linked bonds have a low correlation

with ’simple’ bonds because bonds are long-term and have fixed rate, so that their

return is independent on state of the economy, only the solvency of the issuer is a

factor. For the inflation-linked bonds, the movements of the coupons are different

due to the level of CPI. The skewness and kurtosis are relatively normal, both indices

are skewed to right tail values and their peakedness is fairly similar to that of a

standard normal distribution. The normality tests in figure B.4 show that the return

distributions can all be considered as normally distributed.

4.2 Asset Mixes

As explained in the methodology, this thesis will assess the performance of sev-

eral portfolios to examine the robustness of RP. Table 4.7 presents the asset mixes

that are used to examine RP performance. An ’x’ indicates the inclusion of an index

in the portfolio. All portfolios cover the same period, namely: 5 December 1997 - 30

June 2017. Each portfolio consists of a fixed selection of assets that represent an asset

class. For example, portfolio 1 includes the MSCI World and MSCI EM as represen-

tatives for the equity asset class. The return of an asset class is the simple average

of included asset which represent that asset class. Each asset mix includes the MSCI

EM index since this is a common asset in portfolios and usually classifies as equity.
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Emerging market indices in Europe arose too late to be included in this analysis,

therefore the MSCI EM was included in all asset mixes. The world asset mixes each

consist of a different normal equity index accompanying the PE index. The same

holds for the European asset mixes. A similar division holds for bond assets: global

bond indices are varied within each regional asset mix, and each regional asset mix

has a fixed government bond. Not all assets are varied since it is outside of the scope

of this thesis. Finally, the four remaining asset classes each have two indices that are

included in one of the two asset mixes of each region.

TABLE 4.7: Asset Mixes

Asset mix 1 Asset mix 2 Asset mix 3 Asset mix 4

MSCI World x
FTSE All World x
MSCI Europe x
STOXX Europe x
MSCI Emerging Market x x x x

JPM Global All x
BofA ML Global Broad x
BofA ML Global Broad Government x x
Barclays EU Agg x
IBOXX EU Overall x
BofA ML EU Government x x

Thompson Reuters Equal Weight x x
S&P GSCI Commodity x x

MSCI World Real Estate x x
MSCI EU Real Estate x x

S&P Listed Private Equity x x
TR Private Equity Buyout x x

BofA ML Global Infl.-Linked Gov x x
BofA ML Euro Infl.-Linked Gov x x
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Chapter 5

Results

This chapter discusses the results of proposed methodology. The structure of

this chapter is as follows: in part I, the performance of all constructed portfolios will

be discussed. In part II, the robustness and sensitivity of the portfolios will be tested.

5.1 Part I - Performance

This part discusses the performance of the constructed portfolios. It focuses on

the return, volatility/risk, connectedness, return origin and the effect of leverage on

the portfolio. It sequentially discusses the portfolios in the following order: first, the

two global portfolios will be discussed, followed by the two European portfolios.

5.1.1 Global portfolios - Portfolio 1

Portfolio Statistics

First of all, the assets that are included in portfolio 1 can be found in table 4.7

and the asset weights can be found in both B.2 and the asset weights over time can

be found in figure B.5. The returns are excess of the risk free rate. Note that all

portfolios have the same start and end date, namely: 5 December 1997 - 30 June

2017. In order to analyze the portfolio, we start by observing the general portfolio

characteristics presented in table 5.1 at face value. We note that the equity dominated

60/40 strategy has the highest return, but also the highest volatility, followed by

the 1/N, the RP strategy and finally the GMV strategy. Each strategy’s return is

positively related with volatility, the average risk/return trade-off over the almost

20 year sample is presented by the SR. We see that the the RP strategy scores the

best with a SR of 32.66%, which is approximately 10 percentage points higher than

the benchmark strategies. Meaning, for every unit of volatility RP returns around

0.1% more return than its benchmarks. This is also reflected by the M2 measure

introduced in section 2.1. The M2 shows the return of a benchmark strategy as if

it would have the same volatility as the RP strategy but with its own SR. Now it is

easier to see what the higher SR of the RP strategy means and how they compare:

the benchmark strategies all have lower returns and the RP strategy seems superior

based on the previously discussed statistics.
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TABLE 5.1: Portfolio 1 Annualized Statistics

60/40 1/N GMV RP Lev. RP

Excess Return (%) 2.86 2.34 0.84 1.47 3.16
SD Full (%) 11.20 9.73 3.33 4.50 6.75

SR (%) 25.53 24.06 25.26 32.66 46.77
M2 1.15 1.08 1.14 1.47 2.10

MD Full (%) -61.21 -60.90 -72.05 -50.57 -64.73
MD 5 year (%) -55.28 -49.90 -59.95 -34.88 -47.23
MD 1 year (%) -32.27 -37.23 -34.09 -19.42 -27.56
GINI weights 0.300 1.000 0.217 0.547 0.547

GINI RC 0.008 0.500 0.2224 1.000 1.000

Not every investor is the same. Investors differ in preferences and goals. For in-

stance, for an investor that would set a higher benchmark than the risk-free rate, he

would care less for Share Ratios or other risk-adjusted returns, he wants a higher

total return. That investor, if he does not have the possibility to use leverage, would

not choose a GMV or RP strategy since the yield is too low. When he does have the

possibility, levering up the portfolio would make sense. He could lever-up his port-

folio to the level of the desired return and/or riskiness. For now, we assume that no

constraints or risk are imposed with the use of leverage, this will be discussed later

in this section. 5.1 shows us the return characteristics of a leveraged RP strategy

with a leverage ratio of 1.5. This ratio is chosen for illustration purposes. We see that

with ’only’ 50% extra capital invested, we can obtain a superior return with lower

volatility than the 60/40 and 1/N strategy. Figure 5.1 shows how 1000 euro invested

according to each strategy develops over time. It is interesting to see that the SR of

a leveraged RP increases as leverage increases. This has a simple reason: the full

benefits of return are absorbed while the volatility of the strategy’s portfolio did not

grow at the same rate. We see that the M2 measure is higher than the RP strategy

since it has a higher SR, meaning it outperforms unlevered RP as well. For now,

the costs of leverage have not been taken into account. Overall, in these portfolio of

assets the RP and levered RP have performed better than their peers.
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FIGURE 5.1: Wealth plot Portfolio 1

Table 5.1 shows the MDs and Gini coefficients of all strategies. The MD statistic

is the cumulative loss of a specified period. For each portfolio, three periods have

been defined to stress how risky a strategy is in terms of downsides and continu-

ity: whole sample, 5-year rolling period and 1-year rolling period. Over the whole

sample, we see that the GMV strategy has lost the most value (72.05%) in the whole

sample period and the 5-year rolling period. In the short run (1-year), the MD is

lower than the 1/N, but comparable. This is probably due to the concentration of

asset weights, as shown by its Gini coefficient of 0.217. The high concentrations

lead to higher idiosyncratic asset class risk because of the lower diversification. This

means that adverse shocks within or across asset classes can lead to high losses. A

well diversified portfolio in capital terms does not mean it does not face this risk.

The 1/N portfolio has a Gini coefficient of 1 since capital is divided equally over

all asset classes, but the MD over the whole period is still quite high: -60.90%. This

gives reason to believe that the asset classes are highly correlated in terms of crisis,

which the literature also suggests (Koestrich, 2015). In the period of the financial

crisis (2007-2009), we see a large decrease in portfolio value for all strategies. To

test whether the correlations in that time were indeed higher, we use a T-test. The

correlations of all assets in the period 2006-2010 are subtracted to the correlations

of the whole sample. Only left diagonal values are used since the right side val-

ues are similar, which implies that including them would dilute the outcome. We

test whether the result differs from 0, since we then know that the correlations were

higher in the period including the global financial crisis. These results are found in

B.2. The T-test indeed confirms that the correlations in the period 2006-2010 were

different than the correlations of the whole sample at at least a 1-percent level. This

also tells us that it is logical that all strategies decrease sharply in value in that pe-

riod, regardless of tactical asset weights, as is shown in figure 5.1. The 60/40 strategy

has similar drawdown statistics to the 1/N strategy, most likely because of the high
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capital investment in high-beta assets in combination with a high concentration of

assets (Gini coefficient of 0.300). The RP portfolio concentrates its assets seemingly

well with a Gini coefficient of 0.547. This is partly due to the strategy that RP always

invest something in the chosen asset classes. The MD statistics are the lowest of all

strategies, most likely because the strategy equalizes risk across asset classes, which

minimizes the potential downfall of value. The levered portfolio does equally well

in terms of the Gini coefficients, but has higher MD statistics since more capital is

invested, so there is more sensitivity to individual and overall asset class risk when

no other assets are included. The MD statistics are quite high for the entire sample,

but decrease rapidly when the time period is shortened. In this portfolio, the RP

portfolios perform promisingly in terms of asset concentration and drawdown of

capital in the short-term at least, dependent on the level of leverage.

The Gini coefficients of the RCs is the last metric discussed in this paragraph. Ob-

viously, the (levered) RP strategies have a RC Gini coefficient of 1 since the strategy

equalizes RCs. The 60/40 portfolio performs the worst of all strategies with a RC

Gini coefficient of 0.008, meaning that the source of risk is not diversified and most

of it comes from equity. Although the GMV minimizes risk, its RC Gini coefficient is

0.221 since it invests most capital in bonds, which is the source of the risk. The 1/N

portfolio has a RC Gini coefficient of 0.500 which is fairly diversified. This is likely

due to the equal allocation to each asset class, meaning that is has exposure to every

asset class. Not every asset class has the same risk characteristics; the 1/N portfolio

takes the average of every asset class’ RC leading to a fair value. This is, however,

not reflected in the return characteristics (lowest SR, M2 and MD 1-year).

Return Origin

The previous findings seem to suggest that the RP strategy has performed better

than the 60/40, 1/N and GMV strategy, but it does not explain the cause. Therefore,

the question remains: where do the returns come from and why do some outper-

form others? To answer this question, we will have to consider how the portfolio

is correlated with the asset classes’ return and how asset classes performed in the

sample period. Table 5.2 presents the correlations of the four strategies with their

asset class components. In general, a high correlation tells us where return comes

from and how sensitive a change in the return of an asset classes is to the return of a

strategy. Preferably, a portfolio’s return should not have extremely high correlations

with asset classes to protect itself from adverse shocks in asset class returns.

For the 60/40 portfolio, we clearly see that the return is highly, nearly perfectly

(99.19%), correlated with equity returns. This means that the returns are mostly

explained by equity returns. Bond returns have a much lower correlation, so the

60/40 strategy relies more equity than bonds for returns. This strategy included
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bonds to diversify in order to protect against shocks. We see that most of the risk is

incorporated by the equity, suggesting that this is poor diversification.

TABLE 5.2: Correlation Portfolio 1 with Asset Classes

Equity(%) Bonds(%) Comm.(%) RE(%) PE(%) Infl.(%)

60/40 99.19 12.27

1/N 74.73 1.78 56.76 86.62 72.48 0.14

GMV 22.15 91.32 26.23 20.44

RP 61.09 36.04 55.46 70.90 60.26 18.79

The 1/N strategy’s return has less extreme correlations with equity, but they remain

on the high side (around 74.73%). Bonds have a lower correlation (1.78% on average)

than the 60/40 portfolio. The lower correlation is explained by the relative lower

weights to the asset classes, 1/N allocates 16.67% while the 60/40 strategy allocates

40%. Furthermore, real estate and private equity both have high correlations (86.62

and 74.48% ) with the 1/N strategy. These are both high-beta asset classes. This is

followed by commodities with a correlation of 56.76% and finally inflation linked

bonds with a correlation close to zero (0.14%). By dividing capital equally across

asset classes, we see that the correlations are higher for the high-beta classes, and

lower for the low-beta classes. Dividing capital equally over classes might not be

the ideal strategy when an investor wants to protect himself from shocks, regardless

of the asset class.

The GMV strategy strongly overweights low-beta classes with respect to the high-

beta classes. We see that equity, commodities and real estate all have much lower

correlations with the returns of the GMV portfolio relative to previously discussed

strategies. The correlations of inflation linked bonds and private equity with GMV

returns are not discussed since the weights are zero or close to zero. The weights

of the asset classes can be found in table 3.1. Bonds have a high capital allocation,

which is why the bond asset class is highly correlated with the strategy’s return.

The strategy minimizes the variance, yet it concentrates risk and dependency in one

asset class, making it sensitive to idiosyncratic shocks.

Lastly, we consider the RP strategy. Asset weights are determined by the volatility of

an asset class and the main objective is to equalize RCs among them. This results in

seemingly equal correlations for all strategies. Of course, when equalizing RCs using

volatilities, this results in more equal correlations since correlations are a product

of volatilities, but these correlations show that there are no extreme dependencies

on certain asset classes. It is interesting to see that the high-beta asset classes still

have a higher correlation with returns than the low-beta asset classes. Most likely,

this is due to the higher volatility of these assets and positive correlations between
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asset classes. The main takeaway here is that the RP strategy has more balanced

correlations with asset classes and, therefore, the portfolio is more diversified than

its benchmarks in this portfolio.

We have identified how the asset classes were correlated with the strategies. This,

however, does not tell us why the strategy has the return it has. We use figure 5.2

which shows the position of asset classes in a mean-variance framework and table

5.3 which shows the statistics of the asset classes in portfolio 1. According to the

CAPM theory, markets are efficient and all asset classes should have the same risk-

return trade-off. The mean-variance diagram shows that this assumption does not

hold. Inflation-linked bonds, equity and private equity have performed better than

bonds, commodities and real estate.

TABLE 5.3: Asset Class Statistics Portfolio 1

Equity(%) Bonds(%) Comm.(%) RE(%) PE(%) Infl.(%)

Excess Annual Return 4.08 0.40 1.27 3.15 5.48 1.45

Volatility 17.76 3.37 12.84 19.66 22.42 4.54

SR 22.98 12.00 9.92 16.02 24.45 31.95

Equity and private equity, both high-beta assets, outperform. This suggests that

strategies that invest more capital in these classes are prone to outperforming those

who do not. For example, we see that the 60/40 strategy has performed better than

the 1/N portfolio, most likely because of the higher exposure to the higher yield-

ing equity class, while 1/N has the same capital exposure to every class. The GMV

strategy has performed similar to the 60/40 and 1/N strategy despite the large dol-

lar allocation to the lower yielding bond and commodity asset class. The correlations

between the commodities and bonds are negative (as can be seen in table B.1, which

likely caused diversification benefits, leading to a higher SR. The RP portfolio out-

performed in terms of SR when compared to its peers. Although it has a large capital

allocation to bonds and commodities, the higher SR is likely caused by a large allo-

cation to the high yielding inflation linked bonds and an exposure to equity and

private equity. Note that this analysis only holds for this portfolio, this is not a re-

flection of all asset classes in the world, since those have other (cor)relations with

each other.
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FIGURE 5.2: Mean-Variance Diagram Portfolio 1
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Leverage

The use of leverage is not free. Until now, we have assumed that the use of

leverage has no cost, and we saw that the levered RP portfolio performed very well

by obtaining a higher SR and higher returns that are significantly better than bench-

marks. The use of borrowed capital did cause the MD to rise as was explained in

the return characteristics section. Although the current financial climate allows for

negative interest rates, borrowing capital is usually linked to a positive interest rate,

just like households that acquire a house using the bank must pay mortgage inter-

est. We have argued earlier in the section 3 that a turnover ratio of 5 years would

be considered normal. For this reason, we assume that a 5-year bond yield is an ap-

propriate cost for the use of leverage. The asset is the "Euro area 5-year Government

Benchmark bond yield". The data stretches from January 1995 to June 2017. For

comparison, the 3-month LIBOR rate is also used as a proxy for leverage. If a fund is

able to refinance it debts with short term bonds, the short-term LIBOR rate serves as

a fine proxy. The 3-month rate is chosen for the similar maturity as the risk-free rate.

The difference between the risk-free asset and the 3-month LIBOR rate reflects the

perceived riskiness of the economy since its priced according to how market play-

ers view each others solvency/default risk. The spread is presented by figure B.10.

This makes the LIBOR rate suitable for cost of short term financing. We assume that

the cost of leverage, in this case the total return of the bond, is yearly imposed on

the return of the portfolio. The return of the asset is subtracted from the return of a

leveraged RP portfolio according the the level of leverage used. Table 5.4 shows the

characteristics of a levered RP portfolio with different levels of leverage.
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TABLE 5.4: Portfolio 1 Leveraged Portfolio

No lev.% 10% 25% 50% 100%

Excess annual Return (%) 1.47 1.81 2.31 3.16 4.84
SD (%) 4.50 4.95 5.62 6.75 9.00
SR(%) 32.66 36.51 41.13 46.77 53.82

MD Full (%) -50.57 -53.82 -58.29 -64.73 -74.58
MD 5-year (%) -34.88 -37.59 -41.45 -47.23 -57.34
MD 1-year (%) -19.42 -21.12 -23.61 -27.56 -34.81

Cost leverage - 5-year (%) 0.00 0.43 0.98 1.94 3.93
Cost leverage - LIBOR (%) 0.00 0.32 0.71 1.38 2.78

Net Excess Return 5-year(%) 1.47 1.38 1.33 1.22 0.93
Net Excess Return LIBOR(%) 1.47 1.49 1.60 1.78 2.06

We clearly see that the source of leverage is important for the outcome. The use of a

5-year bond as a proxy for leverage cost leads to lower return as the level of level of

leverage increases. In other words, the marginal cost of leverage is higher than the

marginal benefit of the use of leverage. When the real costs of leverage equal a 5-year

European bond, the use of leverage is not beneficial. The opposite holds when the 3-

month LIBOR rate is used as proxy for leverage costs. The net excess return increases

as the level of leverage increases. Furthermore, we see that the level of leverage

positively affects the SR. The leverage causes the return to disproportionally rise

relative to the rise in volatility. Furthermore, the MDs increase as leverage increase.

This makes sense since more capital invested in the similar proportions means that

the portfolio is more sensitive to (idiosyncratic) shocks. The MDs levels increase

a fair amount. To illustrate this, the 100% leveraged portfolio has an excess after

leverage cost return of 2.06% in the optimistic case. This is lower than benchmark

strategies such as the 60/40 and 1/N. Their MD is also lower. So, even though the

100% portfolio has the highest SR, it cannot beat its peers in terms of real excess

returns and downside risk.

5.1.2 Global portfolios - Portfolio 2

Portfolio Statistics

The assets that are included in portfolio 2 can be found in table 4.7, the asset

weights can be found in both B.2 and the asset weights over time can be found in

figure B.6. Similar to the previous section, we start the analysis by observing the

general portfolio characteristics presented in table 5.5. We see that the 60/40 port-

folio has the highest total return, followed by the RP portfolio, the 1/N portfolio,

and finally the GMV portfolio. As the allocation to high-beta assets increases, the

SRs decrease with this combination of assets. The GMV portfolio produces the high-

est volatility-return trade-off, this is also reflected by the M2, where the portfolio is
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treated as if it would have the same volatility as the RP strategy. The GMV stands

out with the highest value, followed by the RP strategy, and finally the 1/N portfo-

lio and the 60/40. In terms of volatility-return trade-off, the GMV performs the best,

however it has the lowest total return.

TABLE 5.5: Portfolio 2 Annualized Statistics

60/40 1/N GMV RP Lev. RP

Excess Return (%) 3.80 3.56 2.84 3.61 4.16
SD (%) 11.46 9.89 4.07 5.63 6.19
SR (%) 33.16 35.98 69.70 64.05 67.12

M2 1.87 2.03 3.92 3.61 3.78
MD Full (%) -66.88 -71.54 -62.06 -67.76 -71.12

MD 5 year (%) -58.82 -53.94 -37.43 -49.32 -52.60
MD 1 year (%) -34.90 -34.48 -17.18 -24.39 -26.45
GINI weights 0.300 1.000 0.209 0.629 0.629

GINI RC 0.001 0.377 0.221 1.000 1.000

If an investor would lever up a portfolio to achieve a higher return, the GMV portfo-

lio would be the best option in this setting. It has a higher reward for volatility than

its peers. Even a 50% levered RP strategy cannot achieve a higher SR than the GMV

portfolio, so levering up other portfolio’s makes little sense given the information up

to now. Figure 5.3 shows how 1000 euro invested according to each strategy devel-

ops over time. We see that the leveraged RP portfolio clearly outperforms the other

strategies. This is due to 50% extra capital invested, no leverage costs are imposed,

and the RP strategy relatively performs well. This is, however, not the optimal so-

lution. If the GMV portfolio would have been levered, the total return would be

higher. When considering volatility-return characteristics with these combination of

assets, the GMV has performed better than its peers.
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FIGURE 5.3: Wealth plot Portfolio 2

Table 5.5 shows the MDs and Gini coefficients of all strategies. Over the whole sam-

ple, we see that the 1/N strategy has lost the most value (71.54%). The 60/40 port-

folio performed the worst in the 5-year and 1-year rolling sample. Similar to the

volatility-return trade-off discussed in the previous paragraphs, a higher allocation

to high-beta assets results in worse characteristics. In the discussion op portfolio 1’s

results, we partly explained the high MDs by the concentrations of capital and risk.

The 60/40 strategy has a Gini coefficient of 0.300. The high concentrations leads to

higher idiosyncratic asset class risk because of the lower diversification. This means

that adverse shocks within or across asset classes can lead to high losses. The 1/N

portfolio has a Gini coefficient of 1.000 since capital is divided equally over all asset

classes, but the MD over the whole period is the highest of all. The 60/40 strategy

has similar drawdown statistics as the 1/N strategy, most likely because of the high

capital investment in high-beta assets in combination with a high concentration of

assets. The RP portfolio concentrates its assets seemingly well with a Gini coefficient

of 0.629. This is partly due to the strategy that RP always invest a positive weight

in the chosen asset classes. The MD statistics are the second-lowest of all strategies,

most likely because the strategy equalizes risk across asset classes, thereby minimiz-

ing the potential downfall of value. The levered portfolio does equally well in terms

of the Gini coefficients, but has higher MD statistics since more capital is invested,

so there is more sensitivity to individual and overall asset class risk when no other

assets are included. The GMV strategy has lower drawdowns over all MD measures

than the RP strategy and the other strategies. This leads to believe that the included

low-beta asset classes outperform the high-beta asset classes. GMV allocates most

capital to these asset classes, therefore it has presumably performed the best. In this

asset mix, the results show that the RP strategy does not always outperform with

better Gini statistics, stressing that the choice of assets in the portfolio is important.
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The Gini coefficients of the RCs is the last metric discussed in this section. By defi-

nition, the (levered) RP strategies have a RC Gini coefficient of 1 since the strategy

equalizes RCs. The 60/40 portfolio performs the worst of all strategies with a RC

Gini coefficient of 0.001, meaning that the source of risk is not diversified and the

source is equity. Although the GMV minimizes risk, its RC Gini coefficient is 0.221

since it invests most capital in bonds, which is the source of the risk. The 1/N port-

folio has a RC Gini coefficient of 0.377 which is relatively diversified compared to

others. This is likely due to the equal allocation to each asset class, meaning that

is has exposure to every asset class. Not every asset class has the same risk char-

acteristics, the 1/N portfolio simply takes the average of every asset class’ RC. The

higher Gini coefficient for RC doesn’t necessarily mean better results, since the GMV

portfolio outperformed the other portfolios.

Return Origin

Where do the returns come from and why do some outperform others? To find

an answer to that question, we will have to look how the portfolio is correlated with

the asset classes’ return and how asset classes performed in the sample period. Table

5.6 presents the correlations of the four strategies with their asset class components.

In general, a high correlation tells us where return comes from and how sensitive

a change in the return of an asset classes is to the return of a strategy. Preferably,

a portfolio’s return should not have extreme high correlations with asset classes to

protect itself from adverse shocks in asset class returns.

For the 60/40 portfolio, we clearly see that the return is highly, nearly perfectly

(98.94%), correlated with equity returns. This means that the returns are mostly ex-

plained by equity returns. Bond returns have a much lower correlation, so the 60/40

strategy relies more equity than bonds for returns. This strategy included bonds

to diversify in order to protect against shocks. We see that most of the riskiness is

incorporated by the equity, suggesting that this is poor diversification.

TABLE 5.6: Correlation Portfolio 2 with Asset Classes

Equity(%) Bonds(%) Comm.(%) RE(%) PE(%) Infl.(%)

60/40 98.94 18.25

1/N 70.81 13.87 59.44 81.86 49.31 -0.47

GMV 24.50 95.69 19.79 24.20 4.67

RP 59.42 44.84 44.13 67.70 47.47 6.28

The 1/N strategy’s return has less extreme correlations with equity, but they re-

main on the high side (70.81%). Bonds have a lower correlation (13.87% on average)

than the 60/40 portfolio. The lower correlation is explained by the relative lower

weights to the asset classes, 1/N allocates 16.67% while the 60/40 strategy allocates
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40%. Furthermore, real estate and private equity both have high correlations (81.86

and 49.31% ) with the 1/N strategy’s return. These are both high-beta asset classes.

Commodities follow with a correlation of 59.44% and finally inflation-linked bonds

with a correlation lower than zero (-0.47%). By dividing capital equally across asset

classes, we see that the correlations are higher for the high-beta classes, and lower

for the low-beta classes. Dividing capital equally over classes might not be the ideal

strategy when an investor wants to diversify from shocks regardless of the asset

class.

The GMV strategy strongly overweights low-beta classes with respect to the high-

beta classes. We see that equity, commodities and real estate all have much lower

correlations with the returns of the GMV portfolio relative to previously discussed

strategies. The correlations of private equity with GMV returns is not discussed

since there is no capital allocation to this asset class. The weights of the asset classes

can be found in table 3.1. The inflation-linked bonds have a small correlation with

the strategy’s returns. The capital allocation is very small, so no significance is given

to this correlations. Bonds have a high capital allocation, which is why the bond as-

set class is highly correlated with the strategy’s return. The strategy is minimizes the

variance, however, it concentrates risk and dependency in one asset class, making it

sensitive to idiosyncratic shocks.

Lastly, the RP strategy. This results in seemingly equal correlations for all strategies,

which are very similar to the results found in asset mix 1. Of course, when equal-

izing RCs using volatilities, it results in more equal correlations since correlations

are a product of volatilities, but these correlations show that there are no extreme

dependencies on certain asset classes. It is interesting to see that the high-beta asset

classes still have a higher correlation with returns than the low-beta asset classes.

Most likely, this is due to the higher volatility of these assets and positive correla-

tions between asset classes. The main takeaway is that the RP strategy has more

balanced correlations with asset classes. Therefore, the portfolio is more diversified

than its benchmarks in this portfolio.

We have identified how the asset classes were correlated with the strategies. This,

however, does not tell us why the strategy has the return it has. We use figure 5.4,

which presents the position of asset classes and strategies in a mean-variance frame-

work; and table 5.7 which shows the statistics of the asset classes in portfolio 1. Ac-

cording to the CAPM theory, markets are efficient and all asset classes should have

the same risk-return trade-off. The mean-variance diagram shows that this does not

hold. Inflation-linked bonds, equity and private equity have performed better than

bonds, commodities and real estate.
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TABLE 5.7: Asset Class Statistics Portfolio 2

Equity(%) Bonds(%) Comm.(%) RE(%) PE(%) Infl.(%)

Excess Annual Return 4.15 2.28 0.42 3.15 15.59 1.45

Volatility 18.02 3.99 21.77 19.66 26.99 4.54

SR 23.03 57.27 1.91 16.02 57.77 31.95

Bonds and private equity outperform in terms of SR. Throughout the analysis of

asset mix 2, we saw strategies which invest much capital in low-beta assets tend

to outperform peer strategies. Figure 5.4 shows the position of asset classes and

strategies in a mean-variance framework. That the GMV outperformed all the other

strategies is the result of 92.45% allocation on average in the bond asset class. The

reason it performed better than a 100% allocation in the bond asset class is because

it is diversified with equity, commodities and real estate. Although the capital al-

location is small, the correlations1 between these classes is close to zero, meaning

that it provides diversification benefits. RP realized a high SR of 64.05% due to high

allocations to bonds and inflation linked bonds. It probably performed worse than

the GMV portfolio since it has a 8.31% allocation to commodities and exposure to

all of the other relatively worse performing asset classes. We see that the 1/N and

60/40 strategies roughly perform equal. The 60/40 thanks its return from the 40%

bonds and small diversification benefit between equity and bonds. By having expo-

sure to both high-yielding and low-yielding asset classes, the 1/N strategy has an

average SR. All in all, we observe that the low-beta strategies outperformed high-

beta strategies due to the high allocation to the high-yielding bond asset class. All

strategies didn’t take much advantage of the high-yielding private equity class since

no strategy allocated much capital to it. Note that this analysis only holds for this

asset mix, this is not a reflection of all asset classes in the world, since those have

other (cor)relations with each other.

1Table B.1 shows the correlations between all assets.
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FIGURE 5.4: Mean-Variance Diagram Portfolio 2
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The excess return-volatility characteristics of the strategies and asset classes are plotted in this mean-
variance graph. The dotted lines depict the different levels of SR.

Leverage

Until now, we have assumed that the use of leverage has no cost. Levering up a

portfolio only makes sense if the used strategy has the highest award for volatility.

However, in this mix of assets, the GMV strategy has the best reward for volatility.

Therefore, it makes no sense to lever a RP portfolio since extra costs and concerns

will be imposed. The general effects of levering up the portfolio will be higher MDs,

more risk, but not necessarily higher returns since this is dependent on the costs.

5.1.3 European portfolios - Portfolio 3

Portfolio Statistics

The assets that are included in portfolio 3 can be found in table 4.7, the asset

weights can be found in both B.2 and the asset weights over time can be found in

figure B.7. Similar to the previous section, we start the analysis by observing the

general portfolio characteristics presented in table 5.8. We see that the 1/N strategy

resulted in the highest total return, followed by the 60/40 strategy, the RP strategy,

and finally the GMV strategy. As the allocation to high-beta assets increases, the

SRs of strategies decrease. The RP portfolio produced the highest SR over the whole

sample. This is also reflected by the M2, where strategies are treated as if it would

have the same volatility as the RP strategy. We see that the RP strategy stands out

with an at least 0.5% outperformance of the second-best strategy. In terms of reward-

for-volatility, the RP strategy offers the best statistics relative to its peers.
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TABLE 5.8: Portfolio 3 Annualized Statistics

60/40 1/N GMV RP Lev. RP

Excess Return (%) 2.73 2.87 0.83 1.64 3.41
SD (%) 12.34 9.98 3.28 3.94 5.91
SR (%) 22.13 28.81 25.26 41.57 57.69
M2 (%) 0.87 1.13 0.99 1.64 2.27

MD Full -59.64 -58.99 -75.24 -50.86 -65.20
MD 5 year (%) -57.60 -50.27 -60.57 -34.50 -46.89
MD 1 year (%) -33.72 -36.25 -34.29 -13.87 -20.01
GINI weights 0.300 1.000 0.217 0.579 0.580

GINI RC 0.008 0.531 0.219 1.000 1.000

Table 5.8 shows us the return characteristics of a leveraged RP strategy with a lever-

age ratio of 1.5. This ratio is chosen for illustration purposes and will be varied in

a later section. We see that with ’only’ 50% extra capital invested, we can obtain a

superior return with lower volatility than the 60/40 and 1/N strategy. Figure 5.5

shows how 1000 euro invested according to each strategy develops over time. It is

interesting to see that the SR of a leveraged RP increases as leverage increases. This

has a simple reason: the full benefits of return are absorbed while the volatility of

the strategy’s portfolio didn’t grow at the same rate. We see that the M2 measure

is higher than the RP strategy since it has a higher SR, meaning it outperforms un-

levered RP as well. The consequences of leverage have not been taken into account,

meaning that the return characteristics or leveraged RP have not been taken into ac-

count yet. Overall in these portfolio of assets, the RP and levered RP have performed

better than their peers.

Table 5.8 shows the MDs and Gini coefficients of all strategies. We see that the GMV

strategy has lost the most value (75.24%) in the whole sample period and the 5-year

rolling period. In the short run (1-year), the MD is lower than the 1/N, but com-

parable. For the GMV strategy, this is probably due to the concentration of asset

weights, as shown by its Gini coefficient of 0.217. The high concentrations leads to

higher idiosyncratic asset class risk because of the lower diversification. This means

that adverse shocks within or across asset classes can lead to high losses. A well

diversified portfolio in capital terms doesn’t mean it doesn’t face this risk. The 1/N

portfolio has a Gini coefficient of 1 since capital is divided equally over all asset

classes, but the MD over the whole period is still quite high: -58.99%. The 60/40

strategy has similar drawdown statistics as the 1/N strategy, most likely because

of the 60% investment in high-beta assets in combination with a high concentration

of assets (Gini coefficient of 0.300). The RP portfolio concentrates its assets seem-

ingly well with a Gini coefficient of 0.579. This is partly due to the strategy that

RP always invests something in the chosen asset classes. The MD statistics are the
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FIGURE 5.5: Wealth plot Portfolio 3

lowest of all strategies, most likely because the strategy equalizes risk across asset

classes, thereby minimizing the potential downfall of value. The levered portfolio

does equally well in terms of the Gini coefficients, but has higher MD statistics since

more capital is invested, so there is more sensitivity to individual and overall asset

class risk when no other assets are included. The MD statistics are quite high for

the entire sample, but decrease rapidly when the time period is shortened. In this

portfolio, the RP portfolios perform promising in terms of asset concentration and

drawdown of capital in at leas the short run, dependent on the level of leverage.

The Gini coefficients of the RCs is the last metric discussed in this paragraph. The

(levered) RP strategies have a RC Gini coefficient of 1 since the strategy equalizes

RCs. The 60/40 portfolio performs the worst of all strategies with a RC Gini coeffi-

cient of 0.008, meaning that the source of risk is not diversified and most of it comes

from equity. Although the GMV minimizes risk, its RC Gini coefficient is 0.219 since

it invests most capital in bonds, which is the source of the risk. The 1/N portfolio

has a RC Gini coefficient of 0.531 which is pretty diversified when compared to the

other strategies. This is likely due to the equal allocation to each asset class, mean-

ing that is has exposure to every asset class. Not every asset class has the same risk

characteristics, the 1/N portfolio simply takes the average of every asset class’ RC.

This is, however, not reflected in the characteristics as it has rather high MDs and

performs worse than the RP strategy.
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Return Origin

The previous findings seem to suggest that the RP strategy has performed bet-

ter than the 60/40, 1/N and GMV strategy, but it does not explain the origin of RP’s

outperformance. Therefore, the question remains: where do the returns come from

and why do some outperform others? To find an answer to that question, we will

have to look how the portfolio is correlated with the asset classes’ return and how

asset classes performed in the sample period. Table 5.9 presents the correlations of

the four strategies with their asset class components. In general, a high correlation

tells us where return comes from and how sensitive a change in the return of an asset

classes is to the return of a strategy. Preferably, a portfolio’s return should not have

extreme high correlations with asset classes to protect itself from adverse shocks in

asset class returns.

For the 60/40 portfolio, we clearly see that the return is highly, nearly perfectly

(99.36%), correlated with equity returns. This means that the returns are mostly ex-

plained by equity returns. Bond returns have a much lower correlation, so the 60/40

strategy relies more equity than bonds for returns. This strategy included bonds

to diversify in order to protect against shocks. We see that most of the riskiness is

caused by the equity, suggesting that this is poor diversification.

TABLE 5.9: Correlation Portfolio 3 with Asset Classes

Equity(%) Bonds(%) Comm.(%) RE(%) PE(%) Infl.(%)

60/40 99.36 16.16

1/N 72.98 8.76 55.28 82.09 74.68 15.30

GMV 23.17 91.82 23.47 28.15

RP 58.72 42.38 50.43 67.13 58.15 39.05

The 1/N strategy’s return has less extreme correlations with equity, but they re-

main on the high side (72.98%). Bonds have a lower correlation (8.76% on average)

than the 60/40 portfolio. The lower correlation is explained by the relative lower

weights to the asset classes, 1/N allocates 16.67% while the 60/40 strategy allocates

40%. Furthermore, real estate and private equity both have high correlations (82.09

and 74.68%) with the 1/N strategy. These are both high-beta asset classes. This is

followed by commodities with a correlation of 55.28%. The 1/N strategy has a cor-

relation of 15.30% with inflation linked bonds due to the 16.67% allocation to this

class. It is interesting to see that this number is higher than that of bonds, apparently

inflation-linked bonds’ returns had a higher or similar impact/effect on the return

of the 1/N strategy. By dividing capital equally across asset classes, we see that the

correlations are higher for the high-beta classes, and lower for the low-beta classes.
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Dividing capital equally over classes might not be the ideal strategy when an in-

vestor wants to diversify himself from shocks regardless of the asset class.

The GMV strategy strongly overweights low-beta classes with respect to the high-

beta classes. We see that equity, commodities and real estate all have much lower

correlations with the returns of the GMV portfolio relative to previously discussed

strategies. The correlations of inflation linked bonds and private equity with GMV

returns are not discussed since the weights are zero or close to zero. The weights

of the asset classes can be found in table 3.1. Bonds have a high capital allocation,

which is why the bond asset class is highly correlated with the strategy’s return. The

strategy is minimizes the variance, but it concentrates risk and dependency in one

asset class, making it sensitive to idiosyncratic shocks.

Lastly, the RP strategy. It is interesting to see that the high-beta asset classes still

have a higher correlation with returns than the low-beta asset classes. Most likely, it

is due to the higher volatility of these assets and positive correlations between asset

classes. The main takeaway is that the RP strategy has more balanced correlations

with asset classes, therefore the portfolio is more diversified than its benchmarks in

this portfolio.

We have identified how the asset classes were correlated with the strategies. This,

however, does not tell us why the strategy has the return it has. We use figure 5.6

which shows the position of asset classes in a mean-variance framework and table

5.10 which shows the statistics of the asset classes in portfolio 3. According to the

CAPM theory, markets are efficient and all asset classes should have the same risk-

return trade-off. The mean-variance diagram shows that this does not hold. Each

asset class has a different volatility-return trade-off.

TABLE 5.10: Asset Class Statistics Portfolio 3

Equity(%) Bonds(%) Comm.(%) RE(%) PE(%) Infl.(%)

Excess Annual Return 4.13 0.61 1.24 6.55 5.48 0.12

Volatility 19.35 3.27 12.84 20.29 22.42 4.69

SR 21.33 18.77 9.92 32.29 24.45 2.47

In this mix of assets, the high-beta assets outperform the low-beta assets, although

the bond asset class perform quite good. This leads to believe that strategies that in-

vest more capital in these classes are prone outperform those who don’t. The 60/40

strategy has a better SR than the bond and equity asset classes due to diversification.

We see that the volatility of the strategy is reduced by the 40% allocation to bonds.

The 1/N strategy outperforms the 60/40 strategy since it has a larger exposure to
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higher yielding asset classes. Again, the SR is much higher than the weighted aver-

age of the six asset classes combined2. The correlation between assets are not equal

to one, therefore there exists a diversification benefit which propels the SR. The GMV

strategy has performed somewhat similar to the 60/40 and 1/N strategy despite the

large dollar allocation to the lower yielding bond and commodity asset class. The

correlations between the commodities and bonds are negative (as can be seen in ta-

ble B.1, which likely caused diversification benefits, leading to a higher SR. The RP

portfolio outperformed in terms of SR when compared to its peers. Although it has a

large capital allocation to bonds and commodities, the higher SR is likely caused by a

positive exposure to every asset class, meaning that the benefits from high-yielding

equity, private equity and real estate are reaped. Note that this analysis only holds

for this portfolio, this is not a reflection of all asset classes in the world, since those

have other (cor)relations with each other.

FIGURE 5.6: Mean-Variance Diagram Portfolio 3
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The excess return-volatility characteristics of the strategies and asset classes are plotted in this mean-
variance graph. The dotted lines depict the different levels of SR.

Leverage

Table 5.11 shows the characteristics of a levered RP portfolio with different lev-

els of leverage. Similar to the results using asset mix 1, We observe that the source

of leverage is important for the outcome. The use of a 5-year bond as a proxy for

leverage cost leads to lower return as the level of level of leverage increases. In other

words, the marginal cost of leverage higher than the marginal benefit of the use of

leverage. When the real costs of leverage equal a 5-year European bond, the use of

leverage is not beneficial. The opposite holds when the 3-month LIBOR rate is used

as proxy for leverage costs. The net excess return increases as the level of leverage
2(21.33 + 18.77 + 9.92 + 32.29 + 24.45 + 2.47)/6 = 18.21% which is unequal to the SR 28.81% of

the 1/N strategy
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increases. We further see that the level of leverage positively affects the SR. The

leverage causes the return to disproportionally rise relative to the rise in volatility.

Furthermore, the MDs increase as leverage increase. This makes sense since more

capital invested in the similar proportions means that the portfolio is more sensi-

tive to (idiosyncratic) shocks. The MDs levels increase quite much. To illustrate, the

100% leveraged portfolio has an excess after leverage cost return of 2.52% in the op-

timistic case. This is lower than the 60/40 strategy. Their MD is also lower. So, even

though the 100% portfolio has the highest SR, it cannot beat its peers in terms of real

excess returns and downside risk.

TABLE 5.11: Portfolio 3 Leveraged Portfolio

No lev.% 10% 25% 50% 100%

Excess annual Return (%) 1.64 1.99 2.52 3.41 5.18
SD (%) 3.94 4.33 4.92 5.91 7.88
SR(%) 41.57 45.97 51.24 57.69 65.75

MD Full (%) -50.85 -54.16 -58.68 -65.20 -75.19
MD 5-year (%) -34.50 -37.20 -41.03 -46.89 -56.88
MD 1-year (%) -13.87 -15.14 -17.00 -20.01 -25.68

Cost leverage - 5-year (%) 0.00 0.39 0.94 1.87 3.79
Cost leverage - LIBOR (%) 0.00 0.28 0.66 1.31 2.66

Net Excess Return 5-year(%) 1.64 1.60 1.58 1.54 1.39
Net Excess Return LIBOR(%) 1.64 1.71 1.86 2.10 2.52

5.1.4 European portfolios - Portfolio 4

Portfolio Statistics

The assets that are included in portfolio 4 can be found in table 4.7, the asset

weights can be found in both B.2 and the asset weights over time can be found in

figure B.8. We start with observing the general portfolio characteristics presented

in table 5.12. We see that the equal capital allocation strategy, 1/N, has the highest

return. It has a lower volatility than the 60/40 strategy, resulting in a higher SR.

The GMV strategy performs poorly by generating a SR of 12.63% and having a low

(0.45%) total return. The RP strategy performs the best of all strategies. It has a

total return of 1.97% excess of the risk-free rate while having a volatility of 4.01%,

resulting in a SR of 49.17%. The result is also reflected by theM2 measure introduced

in section 2.1. The M2 shows the return of a benchmark strategy as if it would have

the same volatility as the RP strategy but with its own SR. Now it is easier to see

what the higher SR of the RP strategy means and how it compares: the benchmark

strategies all have lower returns and the RP strategy seems superior based on the

previously discussed statistics.
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TABLE 5.12: Portfolio 4 Annualized Statistics

60/40 1/N GMV RP Lev. RP

Excess Return (%) 2.73 3.18 0.45 1.97 3.91
SD (%) 11.72 9.76 3.48 4.01 6.02
SR (%) 23.33 32.55 12.63 49.17 64.98

M2 0.94 1.31 0.52 1.97 2.61
MD Full (%) -60.85 -68.59 -40.37 -54.70 -69.21

MD 5 year (%) -54.51 -52.09 -21.46 -31.53 -43.21
MD 1 year (%) -30.95 -33.15 -10.36 -15.84 -22.72
GINI weights 0.300 1.000 0.206 0.580 0.580

GINI RC 0.009 0.598 0.177 1.000 1.000

Table 5.1 shows us the return characteristics of a leveraged RP strategy with a lever-

age ratio of 1.5. We see that with 50% extra capital invested, we can obtain a superior

return with lower volatility than the 60/40 and 1/N strategy. Figure 5.7 shows how

1000 euro invested according to each strategy develops over time. We see that the

M2 measure is higher than the RP strategy since it has a higher SR than other strate-

gies, meaning it outperforms unlevered RP as well. The consequences of leverage

have not been taken into account, meaning that the return characteristics or lever-

aged RP have not been punished yet. Overall in these portfolio of assets, the RP and

levered RP have performed better than their peers.

FIGURE 5.7: Wealth plot Portfolio 4

Table 5.12 shows the MDs and Gini coefficients of all strategies. The MD statistics

is the cumulative loss of a specified period. We observe that strategies which in-

vest more in high-beta assets tend to have higher MD statistics. The 1/N strategy

has the highest whole sample and 1-year MD statistics. While the 60/40 strategy

has a lower full sample MD statistic, its 5-year figure is the lowest and overall it is
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quite similar to the 1/N strategy. The Gini coefficients of these strategies seem to

be counter-intuitive: when capital is more equally invested, the potential downfall

of capital is larger. Apparently, diversification doesn’t pay off in this situation. As

was the case with the result of the previous asset mixes, a well diversified portfolio

in capital terms does not mean it doesn’t face this risk. Therefore, it seems that eq-

uity and bonds together were more stable, or covered for each other’s idiosyncratic

shocks, than the six asset classes combined. This again stresses the point that as-

set selection for portfolios is very important. Also, as pointed out in the previous

sections, the correlations between asset classes rose in the time of crisis3. Therefore

a capital-diversified portfolio might still face severe downside risk. The low-beta

strategies have a downside risk which is much lower than those of the high-beta

strategies. Especially the GMV strategy has very low drawdowns, even though the

Gini coefficient of the RP strategy is much higher (0.580 vs 0.206). Equally weighting

the marginal contribution of risk of each asset class didn’t result in the lowest draw-

downs. The cause of this is the stable performance of bonds. Usually safer assets

such as bonds are less volatile, which caused the bond-dominated GMV strategy to

have stable returns relative to its peers. The bond asset class has performed very

stable, this combined with the high capital-allocation of the GMV and RP strategies

to bonds it results in these lower drawdowns. The 50% levered RP portfolio has a

high MD over the whole period, but it drops rapidly as the period shortens. The

MD statistics are worse since more capital is invested, so there is more sensitivity

to individual and overall asset class risk when no other assets are included. In this

portfolio, the RP portfolios perform promising in terms of asset concentration and

drawdown of capital, in at least the short run, dependent on the level of leverage.

The Gini coefficients of the RCs is the last metric discussed in this paragraph. The

(levered) RP strategies have a RC Gini coefficient of 1 since the strategy equalizes

RCs. The 60/40 portfolio performs underperforms all strategies with a RC Gini co-

efficient of 0.008, meaning that the source of risk is not diversified and most of it

comes from equity. Although the GMV minimizes risk, its RC Gini coefficient is

0.177 since it invests most capital in bonds, which is the source of the risk. The 1/N

portfolio has a RC Gini coefficient of 0.598 which is rather diversified. This is likely

due to the equal allocation to each asset class, meaning that is has exposure to every

asset class. Not every asset class has the same risk characteristics, the 1/N portfolio

simply takes the average of every asset class’ RC. This is, however, has resulted in

high drawdown statistics which are not desirable.

Return Origin

Where do the returns of strategies come from and why do some outperform

others? To find an answer to that question, we will look how the portfolio is corre-

lated with the asset classes’ return and how asset classes performed in the sample

3See (Koestrich, 2015) and B.2
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period. Table 5.13 presents the correlations of the four strategies with their asset

class components. In general, a high correlation tells us where return comes from

and how sensitive a change in the return of an asset classes is to the return of a strat-

egy. Preferably, a portfolio’s return should not have extreme high correlations with

asset classes to protect itself from adverse shocks in asset class returns.

For the 60/40 portfolio, we clearly see that the return is highly, nearly perfectly

(99.23%), correlated with equity returns. This means that the returns are mostly

explained by equity returns. Bond returns have a much lower correlation of 16.73%,

so the 60/40 strategy relies more equity than bonds for returns. This strategy in-

cluded bonds to diversify in order to protect against shocks. We see that most of the

riskiness is incorporated by the equity, suggesting that this is poor diversification.

TABLE 5.13: Correlation Portfolio 4 with Asset Classes

Equity(%) Bonds(%) Comm.(%) RE(%) PE(%) Infl.(%)

60/40 99.23 16.73

1/N 69.35 1.72 58.53 81.26 49.54 -1.30

GMV 23.38 92.56 16.80 24.20

RP 54.22 45.03 47.79 61.67 35.39 39.45

The 1/N strategy’s return has less extreme correlations with equity, but they remain

on the high side (around 69.35%). Bonds have a lower correlation (1.72%) than the

60/40 portfolio. The lower correlation is explained by the relative lower weights to

the asset classes, 1/N allocates 16.67% while the 60/40 strategy allocates 40%. Fur-

thermore, real estate returns are very highly correlated with the return of the 1/N

strategy. Commodities and private equity both tend to move together with the 1/N

strategy (58.53% and 49.54% respectively). These are both high-beta asset classes. Fi-

nally, inflation linked bonds have a negative correlation (-1.30%). By dividing capital

equally across asset classes, we see that the correlations are higher for the high-beta

classes, and lower for the low-beta classes. Dividing capital equally over classes

might not be the ideal strategy when an investor wants to diversify himself from

shocks regardless of the asset class.

The GMV strategy strongly overweights low-beta classes with respect to the high-

beta classes. We see that equity, commodities and real estate all have much lower

correlations with the returns of the GMV portfolio relative to previously discussed

strategies. The correlations of inflation linked bonds and private equity with GMV

returns are not discussed since the weights are zero or close to zero. The weights

of the asset classes can be found in table 3.1. Bonds have a high capital allocation,

which is why the bond asset class is highly correlated with the strategy’s return. The

strategy is minimizes the variance, yet it concentrates risk and dependency in one
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asset class, making it sensitive to idiosyncratic shocks.

Lastly, the RP strategy. Asset weights are determined by the volatility of an asset

class and the main objective is to equalize RCs among them. This results in seem-

ingly equal correlations for all strategies. Of course, when equalizing RCs using

volatilities, this results in more equal correlations since correlations are a product of

volatilities, but these correlations show that there are no extreme dependencies on

certain asset classes. It is interesting to see that the high-beta asset classes still have

a higher correlation with returns than the low-beta asset classes. Most likely, this is

due to the higher volatility of these assets and positive correlations between asset

classes. The main takeaway is that the RP strategy has more balanced correlations

with asset classes, therefore the portfolio is more diversified than its benchmarks in

this portfolio.

We’ve identified how the asset classes were correlated with the strategies. This, how-

ever, does not tell us why the strategy has the return it has. We use figure 5.8 which

shows the position of asset classes in a mean-variance framework and table 5.14

which shows the statistics of the asset classes in portfolio 4. According to the CAPM

theory, markets are efficient and all asset classes should have the same risk-return

trade-off. The mean-variance diagram shows that this does not hold. Private equity

has a very large SR followed by inflation linked bonds. Asset classes equity bonds

and real estate have performed somewhat similar. Commodities the worst of all

asset classes.

TABLE 5.14: Asset Class Statistics Portfolio 4

Equity(%) Bonds(%) Comm.(%) RE(%) PE(%) Infl.(%)

Excess Annual Return 4.23 0.67 0.42 3.15 15.59 1.45

Volatility 18.50 3.41 21.77 19.66 26.99 4.54

SR 22.88 19.69 1.91 16.02 57.77 31.95

The 1/N strategy outperformed the 60/40 strategy while lower-yielding classes such

as commodities and real estate were included in this portfolio. The 1/N strategy

reaped the returns of the higher-yielding private equity and real estate. Combined

with diversification benefits4, it could achieve a high SR. When looking at the Mean-

variance diagram 5.8, we see that the 60/40 strategy lies between the equity class

and bond class, thereby having a roughly similar SR. The actual SR is higher than ei-

ther asset class because of imperfect correlations between the two assets. The GMV

strategy performed relatively poorly due to a high allocation to bonds and an alloca-

tion to commodities. The RP strategy outperformed in terms of SR when compared

to its peers. Although it has a large capital allocation to bonds and commodities,

4table B.1 shows that the correlation between assets is not equal to 1 over the whole sample.
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the higher SR is likely caused by a large allocation to bonds and the high yield-

ing inflation-linked bonds, while having an exposure to equity and private equity.

Again, diversification plays a role since the correlations between assets is not equal

to one. Note that this analysis only holds for this portfolio, this is not a reflection of

all asset classes in the world, since those have other (cor)relations with each other.

FIGURE 5.8: Mean-Variance Diagram Portfolio 4

E(R)

SD

17%

15%

5%

30%

10%

20%30%40%50%

60%70%

Equity

Bond Commodities

RealEstate

PrivateEquity

InflationBonds

60/40

1/N

GMV

RP

Lev.RP

The excess return-volatility characteristics of the strategies and asset classes are plotted in this mean-
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Leverage

Table 5.15 shows the characteristics of a levered RP portfolio with different lev-

els of leverage. We see that the source of leverage is important for the outcome. The

use of a 5-year bond as a proxy for leverage cost increases the return as the level of

level of leverage increases. In other words, the marginal cost of leverage is lower

than the marginal benefit of the use of leverage. When the real costs of leverage

equal a 5-year European bond, the use of leverage is beneficial. The same holds

when the 3-month LIBOR rate is used as proxy for leverage costs. The net excess

return increases as the level of leverage increases. We further see that the level of

leverage positively affects the SR. The leverage causes the return to disproportion-

ally rise relative to the rise in volatility. Furthermore, the MDs increase as leverage

increase. This makes sense since more capital invested in the similar proportions

means that the portfolio is more sensitive to (idiosyncratic) shocks. The MDs lev-

els increase quite much. To illustrate, the 100% leveraged portfolio has an excess

after leverage cost return of 3.21% in the optimistic case. This is the first level of

leverage at which the leveraged RP strategy outperform all strategies. However, the

MDs of peer strategies is much lower in the long run. It is interesting to see that the

50% levered RP portfolio has a lower 1-year MD than the 25% leveraged portfolio.
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The increase in less-than-one-correlated assets caused them to cover-up losses in the

short run. So, even though the lowest costing 100% leveraged strategy has the high-

est SR and highest return, the potential downside risk increases much. Since many

pitfalls of leverage have not been discussed, this stresses that the use of leverage is

not ideal.

TABLE 5.15: Portfolio 4 Leveraged Portfolio

No lev.% 10% 25% 50% 100%

Excess annual Return (%) 1.97 2.36 2.94 3.91 5.85
SD (%) 4.01 4.42 5.02 6.02 8.03
SR(%) 49.17 53.48 58.66 64.98 72.89

MD Full (%) -54.70 -58.09 -62.68 -69.21 -78.93
MD 5-year (%) -31.53 -34.05 -37.65 -43.21 -52.83
MD 1-year (%) -15.84 -17.26 -23.61 -19.36 -28.99

Cost leverage - 5-year (%) 0.00 0.38 0.92 1.85 3.78
Cost leverage - LIBOR (%) 0.00 0.27 0.64 1.29 2.64

Net Excess Return 5-year(%) 1.97 1.98 2.02 2.06 2.07
Net Excess Return LIBOR(%) 1.97 2.09 2.30 2.62 3.21

5.1.5 Aggregate results

The aggregate results of all strategies and asset mixes is discussed above, this

section discusses a few observations on aggregate level. How does the RC affect

the returns? If we regress the RC Gini coefficient with the SR using the data of all

asset mixes, we see that higher value for the RC Gini coefficient results in a higher

SR at a 1-percent significance. This can be found in Appendix B.9. The RC Gini

coefficients are also regressed with the total returns and volatilities to examine how

the positive relation between RC Gini coefficients and SR came to be. Only the re-

gression between volatility and the RC Gini coefficients was significant; the SD and

RC Gini coefficients have a negative relationship at a 5-percent significance level. It

suggests that more equal RCs leads to a lower volatility rather than a higher return.

This makes a case for the RP strategy, since it seems that a higher RC Gini coefficient

lowers volatility and therefore increases the volatility-return trade-off.

The MD of each strategy with each combination of assets is generally high. As dis-

cussed before, the correlation of assets in the period 2006-2010 is statistically closer

together than over the whole sample5. The study by (Koestrich, 2015) also suggests

this. The high MD can be explained by the financial crisis of 2007-2009 which ad-

versely affected financial markets and led to a large drop in value for all portfolios.

The wealth plots of every asset mix show a large drawdown in this period. The

drawdown data shows that most of the MDs indeed occurred in this period.

5These results are found in B.2
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5.2 Part II - Robustness

Empirical analysis performed in financial literature are often subject to many

assumptions and restrictions. For example, this thesis analyzes a set of four asset

mixes to assess the performance of RP. Obviously, this number is not enough to

have a concrete answer to questions about the theory. The goal of this thesis is not

to give a concrete answer as to which portfolio is the best. Nor is it to give exact an-

swers what the characteristics of RP are. It does, however, shed light on the subject

and attempts to add to the current literature about RP. To do this in the best manner,

the robustness of the backtests will be tested in this part. Backtesting portfolios

has several pitfalls. The first pitfall of backtesting that is discussed is the choice of

estimation period which could affect the outcome. Before assessing other robust-

ness measures, we need to know whether the choice of estimation period affects

the outcome. The only variable that needs to be estimated over a specified period

is the variance-covariance matrix. In the initial setup, a period of three years was

used. However, we want to determine the effect of changing estimation windows.

Therefore table B.4 presents the results of all strategies when the estimation period

of the VCV varies between 1, 3 and 5 years. Only asset mix 1 will be used to re-

view the effects, it is assumed that the effect of changing periods will be linear. The

only strategies that change due to the new estimation period are the GMV and RP

strategy since these need the VCV as an input. We see that both the 1-year VCV and

the 5-year VCV lead to the same result as the 3-year VCV. The alternative estimation

periods do not lead to a change in relationships among portfolios. For this reason,

the 3-year estimation period used is considered robust.

The second pitfall is that the obtained result is hugely dependent on the choice of as-

sets. This thesis has incorporated a part of this pitfall by constructing four portfolios

with each consisting of different assets. In the empirical setup, portfolios consisting

of six asset classes have been chosen to be a proxy for a real-life portfolios. However,

real-life portfolios are not limited to six asset classes. They can vary in number or the

sorts of asset classes. The number and choice of assets/asset classes is arbitrary and

should be taken into account when assessing performance. Would RP still perform

the way it did in the previous analysis if we would use four asset classes instead of

six? Table B.5 shows the performance statistics of asset mix 1 when private equity

and inflation-linked bonds are omitted. We see some changes in the outcomes. The

1/N strategy’s statistics differ somewhat but remain relatively equal. GMV statistics

do not change since they allocate no capital to inflation-linked bonds and private eq-

uity. RP, however, produces significantly lower returns and higher SD. This leads to

a portfolio that cannot outperform the others in volatility-return trade-off. It contin-

ues to have the best drawdown statistics, but these are irrelevant when the investor

is not rewarded for the risk he takes. Table B.6 shows the performance statistics of

asset mix 1 when commodities and real estate are omitted. Similar to the previous

test, the RP strategy does not provide superior statistics. The GMV outperforms the
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RP strategy and both strategies have similar SR’s to the 1/N strategy, which has the

highest total return. The last robustness check regarding asset classes is presented

in table B.7. Only bonds and equities are included in this backtest. We see that RP

produces a higher SR, has one of the most balanced weights and moderate draw-

downs. All in all, we have seen that not only does the choice of assets matter for the

outcome, but also the included asset classes strongly affect outcomes.

One of the major assumptions in the empirical analysis framework is the rebalancing

frequency of the portfolios. The asset allocation is the result asset’s characteristics in

the past. As time passes, these characteristics change, therefore the optimal weights

of these assets change as well. The frequency of rebalancing is therefore very impor-

tant. Ideally, portfolio weights are altered instantaneously as time passes. However,

this imposes several issues. First of all, there has to be a market for assets. We have

assumed so far that we could buy/sell any assets every rebalancing period. How-

ever, this is not always the case. If an asset is not liquid, it means that the owner of

the asset cannot get rid of it easily or that a potential buyer cannot obtain it easily.

This means that the portfolio is suboptimal since the ideal weight of the (illiquid)

asset cannot be achieved. Illiquidity poses a second problem, namely that the owner

cannot get rid of it and bears full losses of the asset when it cannot be sold. Another

problem with a market for assets is when getting rid of a portion of assets, this may

adversely affect markets when the size is large enough, thereby harming future re-

turns. The empirical framework could have been supplemented by imposing a cost

for large market orders. Second, a concern is heightened when a proposed portfolio

strategy is backtested by using historical data. Consider an investment strategy that

can be adopted today with readily available securities. If those securities were un-

available in the past, then the strategy has no true antecedent. Backtesting must be

conducted with proxies for the securities, and the choice of proxies can have a direct

effect on measured returns. As described in the methodology, the rebalancing pe-

riod will be varied to observe whether this has any effect on the outcomes. The new

frequencies of rebalancing will be quarterly and yearly since these are reasonable

frequencies. Any frequency lower than a month can be considered more speculating

and trading rather than investing. Trading costs would erode profits if rebalancing

happens too frequently. This thesis does not take trading costs into account, as the

choice is arbitrary and it is beyond its scope. It remains an interesting idea for future

research to impose trading costs for assets as a function of their liquidity. Table B.8

presents the results. We see that there are no major changes for the RP portfolios.

The strategy produces similar volatility-return statistics and remains to outperform

its peers. The yearly strategy yields a much higher SR due to a low SD, most likely

caused by favorable holding positions. But there are two sides to this story, since it

could have backfired when assets performed worse during the holding period. The

GMV strategy’s drawdowns increase in magnitude as the rebalancing period length-

ens, indicating that long holding periods can lead to suboptimal results.
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The last pitfall of portfolio backtesting is the choice of constraints. There were two

constraints in this thesis: the sum of portfolio assets had to be equal to 16, and asset

weights cannot be negative. In real life, individuals who invest could use upper-

/lower-bounds for their asset classes. It restricts portfolio weights so that they can-

not become too extreme and makes sure that there is a certain allocation to a specific

asset. Asset weight restrictions allow for trimming a portfolio to one’s preferences.

Furthermore, allowing for negative weights could lead to better diversification ben-

efits and higher returns. The general message is that a portfolio can be trimmed to

the preferences of the investor. This thesis evaluates the general case. So, other con-

straints will not be tested, but the reader should keep in mind that other constraints

lead to other outcomes.

6The levered RP portfolio is, by definition, an exception for this constraint.
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Chapter 6

Discussion

Until now, four portfolios have been assessed which two different geographical

constraints. The results have also been subject to robustness checks. This chapter

combines the findings of chapter 5 and relates previous literature to the findings.

This chapter first discusses the performance of RP, followed by a discussion of the

asset choices and the use of leverage. Finally, it presents the contributions to the

current literature, limitations of this thesis and presents some suggestions for future

research.

6.1 Performance

To summarize the results of the four portfolios: unlevered RP outperformed in

asset mixes 1, 3 and 4 in terms of SR. In the asset mix 2 setup, the bond asset class

strongly outperformed other strategies, causing the GMV strategy to be superior. RP

reaped its return mostly from low-beta asset classes, which is due to the propensity

to invest in these assets. The positive investments in the other classes contributed

to returns and diversification benefits. We saw that RP has much more balanced

correlation with included asset classes’ return and high-beta assets have higher cor-

relations than low-beta assets. In all setups, RP could not obtain the highest total

return. The strategy diversifies the RC of its assets, by definition, perfectly. The Gini

coefficient varies between 0.547-0.629, similar to the findings of Maillard, Roncalli,

and Teïletche (2010) where only the 1/N by definition had the least asset concentra-

tion. This is partly because RP always invests a positive amount of capital in each

asset class. Volatility and risk are two concepts that are frequently used in this thesis.

Although they may mean the same in some situations, they often are not identical.

The risk of a RP strategy, represented as the MD in this thesis, was among the lowest

of all strategies. Especially the 1-year MD was quite low when compared to other

strategies. Since RP’s weights are dominated by low-beta assets, it makes sense that

the MD statistics are lower. Having a high Gini coefficient also helped in terms of di-

versification benefits. The latter existed since correlations weren’t equal to 1 among

asset classes. It has a low volatility compared to its peers, and the MDs are among

the lowest of all tests, indicating that the strategy performs more smoothly over

time. These findings are in line with the work of Maillard, Roncalli, and Teïletche
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(2010). They also find lower tail risk for a RP strategy due to low asset concentra-

tion. In most of their backtests, RP produces better volatility-return statistics. Only

the GMV strategy had a higher SR in their global sample, as was the case with one

of the backtests of this thesis. The 60/40 and 1/N strategy were consistently outper-

formed by RP, similar to the findings of Chaves et al. (2011).

The benchmark strategies were chosen for a reason. To refresh: the 1/N strategy

was chosen to test the RP strategy against a strategy that diversifies perfectly in

terms of capital, the 60/40 strategy was chosen to compare a high-beta strategy with

RP, and the GMV portfolio was chosen to compare RP with a portfolio that has the

least volatility. A condition for all strategies was that they have to be constructed

ex ante. The RP strategy had a higher SR than the 1/N strategy in every asset mix.

This leads to the belief that a risk-diversified portfolio performs better than a cap-

ital diversified portfolio. A potential reason for this is given by Asness, Frazzini,

and Pedersen (2012), namely that low-beta assets have a higher risk-return trade-off

than high-beta assets. High-beta assets have lower risk/return characteristics since

investors chase higher total returns and/or are leverage averse, meaning they will

not invest in strategies they must lever to reap benefits. If most investors act in

this way, low-beta assets will have a higher future earnings potential. This would

explain why the low-beta strategies (RP and GMV) have outperformed in this em-

pirical framework. Another reason could be the assets included as the papers of

Chaves et al. (2011), Kunz (2011) and Inker (2011) suggest. The choice of assets in

this thesis is arbitrary, other choices could have led to other outcomes. Similar to

the 1/N strategy, the RP strategy also outperformed the high-beta 60/40 strategy in

terms of volatility-return trade-off. It is not strange that the the GMV strategy gener-

ally underperforms the RP strategy in terms of volatility-return trade-off. The GMV

strategy has the least volatility, it is on the extreme left side of Markowitz’ bullet in

a mean-variance framework. We know that the strategy that has the highest slope

(tangency portfolio) is the portfolio with the highest risk-return trade-off. The GMV

doesn’t come close to that point since by definition it is on the extreme left side. That

RP outperforms the GMV strategy is no surprise. Summing up the result of all back-

tests, RP outperformed its peer strategies, but its attractiveness is mostly valuable to

an investor who looks for superior risk-return statistics.

In the analysis, the performance was assessed by looking at the build-up of capi-

tal, concentration risks and downside risks. There are, however, many more factors

which can be incorporated to assess performance. Key to the choice is the focus

of the authors. Having a strategy that generates a high total return performs very

badly if the CPI’s growth rate is higher. For example, a defined contribution pen-

sion fund that opts for a strategy that is not in line with the consumption pattern of

its participants could potentially be wealth destroying (Merton, 1975). The choice

of performance measure differs among studies, it is therefore important to see the

results in relative terms instead of absolutes.
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6.2 Asset Choice

The thesis used European portfolios due to the lack of focus on these in the lit-

erature. This choice comes with consequences. First of all, Europe is a combination

of countries with their own fiscal policies. It is a big player in the world economy,

comparable to the USA, but the decision making is not as centralized, the liberty of

countries to make own decisions, diverse cultures and demographic characteristics

complicates the process of finding the right causality in problems. That studies have

chosen the USA as main ’research area’ makes sense in many ways. The choice to

investigate Europe is historically motivated, specifically by the lack of interest in this

area in the financial literature. It might have affected the quality of the conclusions

due to the higher economic complexity of the European Union. This should be taken

into account. Besides the focus on Europe, global portfolios were also constructed,

since this is more representative of the current age of broad global information ac-

cess. For each region, two different asset mixes were used to construct the portfolios.

The reason was that the literature suggests that the choice of assets in portfolio anal-

ysis is essential (Chaves et al., 2011).

The main difference between the global asset mixes is that unlevered RP has a higher

SR in asset mix 1, but the GMV has the highest in asset mix 2. The included assets

in each mix are considered to be comparable, so this means that the choice of assets

matters, otherwise the results should have been similar. Other statistics, such as the

drawdowns and the Gini coefficients. That GMV outperformed in asset mix 2 was

due to high yield of bonds in that portfolio. In the European asset mixes, we see

that unlevered RP has higher SRs. There does not seem to be much variance in the

results, perhaps due to the high Gini coefficient making it less susceptible to indi-

vidual asset changes. The GMV clearly suffers from this since asset mix 4 causes it

to generate low volatility-return statistics. In both regions and all mixes, the 1/N

strategy performs similarly, most likely due to equal weights making it robust. The

60/40 strategy has a large dependency on equity and bonds. This is highlighted by

the low return in asset mix 4 where bonds and equity perform badly, and the high re-

turn in asset mix 2 where bonds outperform other asset classes. High-concentration

strategies are prone to perform inconsistently when asset mixes change given their

dependency on specific assets. The variability is seen in the Gini coefficients of the

strategies: the lower the coefficient, the more susceptible it is to shocks. RP and 1/N

have the highest Gini coefficients, which lead to the most stable characteristics across

all asset mixes.

6.3 Leverage

Leverage does not propel performance. Asness, Frazzini, and Pedersen (2012)

suggests that investors can benefit from using leverage. Their argument is that low-

beta strategies tend to outperform because high-beta asset are bought too much,
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due to the fact that investors are leverage averse and thus chase high total returns.

The results of the empirical backtests performed in this thesis show that leverage

can boost performance and outperform high-beta strategies, but the cost of leverage

needs to be low or non-existent. When a reasonable leverage cost is used, the benefit

of using leverage washes away as the return only marginally increases or decreases.

In this setup, RP cannot beat peer strategies that have high total returns. For some of

the portfolios, the marginal benefit of leverage is higher than the marginal cost, but

as pointed out by Kazemi (2012), a lot of leverage is necessary to make a competitive

portfolio. Also, high leverage causes different issues. For example, if an individual

acquires leverage to boost their portfolio, the timing is important since the economic

environment is a factor that affects borrowing costs. If the investor acquired the

leverage in a good economic regime, it could adversely affect the costs when the

regime worsens. Another pitfall is the risk of a sudden drop in economic markets.

When a shock hits the economy, assets are more correlated (Koestrich, 2015). If the

loss of value causes a liquidity/solvency issue for the individual, the losses of lever-

age are much larger than the gains. The RP strategy did generate higher risk-return

statistics than strategies that invest more in high-beta assets. However, the empiri-

cal evidence of this thesis does not support the theoretical justification (Frazzini and

Pedersen (2014), Asness, Frazzini, and Pedersen (2012), Chaves et al. (2012), Qian

(2011) and Kunz (2011)) of using leverage. As stated before, the choices for proxies

of leverage costs are arbitrary, different choices for leverage could affect the results

of this thesis.

6.4 Contributions and Limitations

This study contributes to the current body of literature on RP by providing back-

tests in a time period which has not previously been covered. As Thiagarajan and

Schachter (2011) suggested in their study, more research had to be done regarding

the sensitivity or RP performance regarding asset inclusion. This thesis has done so

by varying assets and asset classes. Furthermore, it is the first study in RP litera-

ture that addresses European portfolios, where usually USA based or globally based

portfolios are used. All in all, this thesis presents an overview of the RP method and

literature and adds to the research on RP performance by investigating total return,

reward-for-volatility, risk and weight concentrations, wealth drawdowns and asset

choice sensitivity using four multi-regional backtests.

Four asset mixes is not enough to draw solid conclusions about the robustness of

strategy’s performances. Ideally, one would select a wide variety of assets and asset

classes to make portfolios that consist of randomly selected assets. One could then

simulate the performances of all the possible portfolios. The aggregate return of each

portfolio method could then be compared to benchmarks strategies. In this way, the

robustness could be verified in a correct manner. This is, however, outside, the scope
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of this portfolio and subject to computational complexity, therefore it remains a topic

that deserve further investigation.

Furthermore, this thesis uses the volatility as a measure to equalize RCs and to cal-

culate to total variances. As explained before, return data suffers from statistical mo-

ments, which makes the use of volatility undesirable. The volatility doesn’t capture

the total risk of a portfolio, merely the deviations from the mean. For this reason, the

MD statistics were incorporated in this thesis. However, it remains an interesting

subject to combine RP strategies with several, more complete, measures of risk.

The results should be interpreted with caution. The used method relies on the histor-

ical relationship of asset. Thereby we assume that these events are likely to happen

in the future. This way of ’average’ thinking is extremely dangerous when extreme

events happen. Indeed, performance is highly dependent on results during these

extreme events, particularly in the finance industry. One should be wise and thor-

oughly analyze possibilities of extreme events. The cost of average thinking is high

for portfolio managers.
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Chapter 7

Conclusion

The analysis and comparison of portfolios cannot result in a definitive answer

or absolute superior suggestion. We can only observe the outcomes in this setting

and draw conclusions based on the results. The suggestion for the ’best’ portfolio is

dependent on the preferences of the individual who decides which portfolio is cho-

sen for implementation. Given the information about the different portfolios, they

will make a choice depending on their risk tolerance, a preset specified set of goals

and beliefs that they have. This thesis does not aim to serve as investment advice,

nor will it provide that. Instead, its single purpose is investigating and supplement-

ing the theory of RP.

This thesis investigated the attractiveness of RP in several performance dimensions.

Four backtests in the period 1997 - 2017 were performed, varying the regional focus

equally between Europe and the World. RP was compared with several benchmark

strategies: 60/40, 1/N and GMV. First, this thesis finds that unlevered RP’s total re-

turns are lower than the high-beta strategies 1/N and 60/40. In terms of reward-for-

volatility, RP achieved the highest SR and M2 measure in 3 of the 4 backtests. This

was complemented by relatively low MDs, stable and high Gini coefficients. The ro-

bustness tests of the empirical backtests showed that the parameter estimation and

rebalancing frequencies didn’t influence the outcomes. Furthermore, the choice of

assets and asset classes changed the results of the backtests, therefore tactical asset

allocation is of great importance. Changing the portfolio’s scope from European to

global does not impose major changes to the outcomes. Overall, an unlevered RP

portfolio is attractive when low total returns are sufficient for the investor.

When leverage is applied, the results of RP worsen. Using several proxies for bor-

rowing costs, the strategy is not able to produce total returns with respect to high-

beta benchmark strategies. This makes it unattractive to invest in when high returns

are desired, especially considering that disadvantages of leverage such as timing and

solvency were discussed but not included in the analysis. Previous work suggests

(Asness, Frazzini, and Pedersen (2012), Chaves et al. (2011) and Qian (2011) that the

use of leverage can boost the return of a RP portfolio. This thesis finds that this is

very challenging due to profit-eroding borrowing costs.
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To conclude, the choice to invest capital in a RP style should come forth out from be-

liefs about the the market conditions. Investing RP-style thinking - that equalizing

RCs makes sense - does not justify the choice enough. One should have beliefs about

the risk-return trade-off of all assets and asset classes in the market. If an investor

were to adopt a RP strategy, he should consider the following points: 1) given that

RP overweights low-volatile assets, will low-beta assets have better volatility-return

characteristics in the future?, 2) The choice of assets is of great importance, poorly

performing individual assets can erode performance, 3) the use of leverage comes

with a cost that is prone to dilute profits, and 4) RP is not a magical superior strategy,

it is just a heuristic asset allocation method with interesting dynamics that are worth

delving into.
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Appendix A

Calculations

A.1 Table 2.1

A.1.1 60/40 Portfolio

RiskContributionAssetA =
W 2

A × σ2A + 2×WA ×WB × CovA,B

W 2
A × σ2A +W 2

B × σ2B + 2×WA ×WB × CovA,B

=
0.62 × (20%)2 + 0.6× 0.4× 0.2× 20%× 8%

0.62 × (20%)2 + 0.42 × (8%) + 2× 0.6× 0.4× 0.2× 20%× 8%

= 90.32%

RiskContributionAssetB =
W 2

B × σ2B + 2×WA ×WB × CovA,B

W 2
A × σ2A +W 2

B × σ2B + 2×WA ×WB × CovA,B

=
0.42 × (20%)2 + 0.6× 0.4× 0.2× 20%× 8%

0.42 × (20%)2 + 0.62 × (8%) + 2× 0.6× 0.4× 0.2× 20%× 8%

= 9.38%

StandardDeviation = W 2
A × σ2A +W 2

B × σ2B + 2×WA ×WB × CovA,B

= 0.62 × (20%)2 + 0.42 × (8%) + 2× 0.6× 0.4× 0.2× 20%× 8%

= 12.94%

A.1.2 Risk Parity Portfolio

RiskContributionAssetA =
W 2

A × σ2A + 2×WA ×WB × CovA,B

W 2
A × σ2A +W 2

B × σ2B + 2×WA ×WB × CovA,B

=
0.72732 × (20%)2 + 0.7273× 0.2727× 0.2× 20%× 8%

0.72732 × (20%)2 + 0.27272 × (8%) + 2× 0.7273× 0.2727× 0.2× 20%× 8%

= 50%
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RiskContributionAssetB =
W 2

B × σ2B + 2×WA ×WB × CovA,B

W 2
A × σ2A +W 2

B × σ2B + 2×WA ×WB × CovA,B

=
0.27272 × (20%)2 + 0.7273× 0.2727× 0.2× 20%× 8%

0.27272 × (20%)2 + 0.72732 × (8%) + 2× 0.7273× 0.2727× 0.2× 20%× 8%

= 50%

StandardDeviation = W 2
A × σ2A +W 2

B × σ2B + 2×WA ×WB × CovA,B

= 0.72732 × (20%)2 + 0.27272 × (8%) + 2× 0.7273× 0.2727× 0.2× 20%× 8%

= 12.94%
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Appendix B

Data

FIGURE B.1: Correlations with equity over time

(A) Correlations with Equity over time

(B) Correlations with Bonds over time
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TABLE B.2: Asset weights Portfolios

Equity(%) Bonds(%) Comm.(%) RE(%) PE(%) Inflation(%)

60/40

Portfolio 1 60.00 40.00 0 0 0 0
Portfolio 2 60.00 40.00 0 0 0 0
Portfolio 3 60.00 40.00 0 0 0 0
Portfolio 4 60.00 40.00 0 0 0 0

1/N

Portfolio 1 16.67 16.67 16.67 16.67 16.67 16.67
Portfolio 2 16.67 16.67 16.67 16.67 16.67 16.67
Portfolio 3 16.67 16.67 16.67 16.67 16.67 16.67
Portfolio 4 16.67 16.67 16.67 16.67 16.67 16.67

GMV

Portfolio 1 2.12 88.85 8.17 0.87 0 0
Portfolio 2 3.95 92.45 2.35 1.01 0 0.55
Portfolio 3 1.23 89.05 7.96 1.77 0 0
Portfolio 4 1.77 93.09 3.72 1.43 0 0

RP

Portfolio 1 6.97 51.38 11.28 5.59 5.97 18.82
Portfolio 2 8.92 50.90 8.31 7.41 9.53 14.93
Portfolio 3 5.75 46.20 10.47 5.56 5.30 26.72
Portfolio 4 6.47 44.17 6.58 5.41 5.32 32.05

FIGURE B.2: T-test Result of difference two correlation tables

The left diagonal values of the correlation matrix in the period 2006 - 2010 were subtracted by the
left diagonal values of the correlation matrix of the full sample. The result was tested if it was
higher than zero.
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FIGURE B.3: Distribution Returns Asset Classes

(A) Distribution Equity (B) Distribution Bonds

(C) Distribution Commodities (D) Distribution Private Equity

(E) Distribution Real Estate (F) Distribution Inflation-Linked
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FIGURE B.4: Distribution Returns Asset Classes

(A) Skewness and Kurtosis test Equity in-
dices (B) Skewness and Kurtosis test Bonds indices

(C) Skewness and Kurtosis test Commodities
indices

(D) Skewness and Kurtosis test Private Eq-
uity indices

(E) Skewness and Kurtosis test Real Estate
indices

(F) Skewness and Kurtosis test Inflation-
Linked indices

B.1 Risk-free Rate and Borrowing Rate

Table B.3 presents the statistics of the risk free rate and the borrowing rates. The

first is used to calculate the excess returns. The 90-day European risk-free rate was

chosen due to the European focus, and the assumption that the rate faces no liquidity

or solvency issues due to the short-term. The latter are used as a proxy for the cost of

using leverage. Two rates were chosen to compare the results of a short-term paper

costs and the cost for borrowing money for a long term.

TABLE B.3: Summary statistics Risk-free Rate and Borrowing Rate

Ann. Return(%) SD(%) Start date

90-day EU risk-free rate 1.90 2.04 05-12-1997
90-day LIBOR rate 2.42 2.20 05-12-1997
EU 5-year Government Bond 3.46 6.43 05-12-1997
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FIGURE B.5: Asset Weights over Time Portfolio 1

(A) Asset Weights 60/40 Strategy (B) Asset Weights 1/N Strategy

(C) Asset Weights GMV Strategy (D) Asset Weights RP Strategy

FIGURE B.6: Asset Weights over Time Portfolio 2

(A) Asset Weights 60/40 Strategy (B) Asset Weights 1/N Strategy

(C) Asset Weights GMV Strategy (D) Asset Weights RP Strategy
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FIGURE B.7: Asset Weights over Time Portfolio 3

(A) Asset Weights 60/40 Strategy (B) Asset Weights 1/N Strategy

(C) Asset Weights GMV Strategy (D) Asset Weights RP Strategy

FIGURE B.8: Asset Weights over Time Portfolio 4

(A) Asset Weights 60/40 Strategy (B) Asset Weights 1/N Strategy

(C) Asset Weights GMV Strategy (D) Asset Weights RP Strategy



84 Appendix B. Data

FIGURE B.9: RC Gini coefficients regressions with SR, volatility and
total return
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FIGURE B.10: Spread 3-month LIBOR and 3-month risk-free EU rate

TABLE B.4: Robustness - Estimation Periods

1-Year VCV 3-Year VCV 5-Year VCV
60/40 1/N GMV RP 60/40 1/N GMV RP 60/40 1/N GMV RP

Return (%) 2.86 2.34 0.88 1.22 2.86 2.34 0.84 1.47 2.86 2.34 0.89 1.44
SD (%) 11.20 9.73 3.35 4.23 11.20 9.73 3.33 4.50 11.20 9.73 3.33 4.24
SR (%) 25.53 24.06 26.39 28.76 25.53 24.06 25.26 32.66 25.53 24.06 26.76 34.04

M2 1.08 1.02 1.12 1.22 1.15 1.09 1.14 1.47 1.08 1.02 1.14 1.44
MD Full (%) -61.21 -60.90 -71.28 -48.46 -61.21 -60.90 -72.05 -50.57 -61.21 -60.90 -72.18 -50.47

MD 5 year (%) -55.28 -49.90 -58.74 -35.15 -55.28 -49.90 -59.95 -34.88 -55.28 -49.90 -60.10 -34.04
MD 1 year (%) -32.27 -37.23 -33.17 -15.91 -32.27 -37.23 -34.09 -19.42 -32.27 -37.23 -34.01 -19.00
GINI weights 0.3000 1.000 0.227 0.566 0.3000 1.000 0.209 0.547 0.3000 1.000 0.213 0.547

GINI RC 0.0008 0.500 0.235 1.000 0.0008 0.500 0.221 1.000 0.0008 0.500 0.258 1.000

1) All returns are excess of the 90-days Risk-free Rate.
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TABLE B.5: Robustness - Four Asset Class Portfolio 1 Annualized Returns - Excluding
Private Equity and Infl.-Linked Bonds

Portfolio 1 - Original Portfolio 1 - Four Asset Class (1)
60/40 1/N GMV RP 60/40 1/N GMV RP

Return (%) 2.86 2.34 0.84 1.47 2.86 2.37 0.84 1.09
SD (%) 11.20 9.73 3.33 4.50 11.20 10.15 3.33 5.18
SR (%) 25.53 24.06 25.26 32.66 25.53 23.37 25.26 21.00

M2 1.15 1.08 1.14 1.47 1.32 1.21 1.31 1.09
MD Full (%) -61.21 -60.90 -72.05 -50.57 -61.21 -62.17 -72.05 -47.85

MD 5 year (%) -55.28 -49.90 -59.95 -34.88 -55.28 -54.40 -59.95 -38.74
MD 1 year (%) -32.27 -37.23 -34.09 -19.42 -32.27 -35.13 -34.09 -14.83
GINI weights 0.3000 1.000 0.209 0.547 0.3000 1.000 0.209 0.574

GINI RC 0.0008 0.500 0.221 1.000 0.0008 0.482 0.221 1.000

1) All returns are excess of the 90-days Risk-free Rate.

TABLE B.6: Robustness - Four Asset Class Portfolio 1 Annualized Returns - Excluding
Real Estate and Commodities

Portfolio 1 - Original Portfolio 1 - Four Asset Class (2)
60/40 1/N GMV RP 60/40 1/N GMV RP

Return (%) 2.86 2.34 0.84 1.47 2.86 3.38 1.24 1.24
SD (%) 11.20 9.73 3.33 4.50 11.20 8.87 3.12 3.54
SR (%) 25.53 24.06 25.26 32.66 25.53 38.11 39.75 39.35

M2 1.15 1.08 1.14 1.47 0.90 1.35 1.41 1.39
MD Full (%) -61.21 -60.90 -72.05 -50.57 -61.21 -63.83 -47.88 -48.65

MD 5 year (%) -55.28 -49.90 -59.95 -34.88 -55.28 -47.93 -25.72 -30.16
MD 1 year (%) -32.27 -37.23 -34.09 -19.42 -32.27 -35.15 -11.22 -12.88
GINI weights 0.3000 1.000 0.209 0.547 0.3000 1.000 0.493 0.706

GINI RC 0.0008 0.500 0.221 1.000 0.0008 0.476 0.285 1.000

1) All returns are excess of the 90-days Risk-free Rate.
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TABLE B.7: Robustness - Two Asset Class Portfolio 1 Annualized Returns

Portfolio 1 - Original Portfolio 1 - Two Asset Class
60/40 1/N GMV RP 60/40 1/N GMV RP

Return (%) 2.86 2.34 0.84 1.47 2.86 2.50 0.79 1.47
SD (%) 11.20 9.73 3.33 4.50 11.20 9.42 3.51 4.24
SR (%) 25.53 24.06 25.26 32.66 25.53 26.50 22.59 34.12

M2 1.15 1.08 1.14 1.47 1.08 1.12 0.96 1.47
MD Full (%) -61.21 -60.90 -72.05 -50.57 -61.21 -58.39 -43.49 -49.13

MD 5 year (%) -55.28 -49.90 -59.95 -34.88 -55.28 -50.03 -22.92 -32.10
MD 1 year (%) -32.27 -37.23 -34.09 -19.42 -32.27 -28.26 -11.00 -13.75
GINI weights 0.3000 1.000 0.209 0.547 0.3000 1.000 0.194 0.547

GINI RC 0.0008 0.500 0.221 1.000 0.0008 0.383 0.215 1.000

1) All returns are excess of the 90-days Risk-free Rate.

TABLE B.8: Robustness - Rebalancing Periods

Monthly Quarterly Yearly
60/40 1/N GMV RP 60/40 1/N GMV RP 60/40 1/N GMV RP

Return (%) 2.86 2.34 0.84 1.47 2.86 2.34 0.83 1.44 2.86 2.34 0.73 1.50
SD (%) 11.20 9.73 3.33 4.23 11.20 9.73 3.35 4.51 11.20 9.73 3.35 3.80
SR (%) 25.53 24.06 25.43 32.66 25.53 24.06 24.70 31.88 25.53 24.06 21.91 39.35

M2 1.15 1.08 1.14 1.47 1.15 1.08 1.11 1.44 0.97 0.92 0.83 1.50
MD Full (%) -61.21 -60.90 -72.05 -50.57 -61.21 -60.90 -73.11 -50.24 -61.21 -60.90 -82.76 -51.16

MD 5 year (%) -55.28 -49.90 -59.95 -34.88 -55.28 -49.90 -60.01 -34.70 -55.28 -49.90 -70.89 -33.81
MD 1 year (%) -32.27 -37.23 -34.09 -19.42 -32.27 -37.23 -34.10 -19.47 -32.27 -37.23 -43.56 -15.23
GINI weights 0.3000 1.000 0.209 0.547 0.3000 1.000 0.224 0.547 0.3000 1.000 0.218 0.572

GINI RC 0.0008 0.500 0.221 1.000 0.0008 0.500 0.213 1.000 0.0008 0.500 0.324 1.000

1) All returns are excess of the 90-days Risk-free Rate.
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Appendix C

Code

The scripts used to obtain the data are presented below. For the calculations, I

used the program Excel from Microsoft Office, I used an Excel Marco that iterated

over the data to obtain the weights of the RP and GMV portfolios. The script is the

general script used, for some of the data had to be adjusted, yet the general function

remained the same.

C.1 Risk Parity Script

Sub RP ( )

Dim covrange As S t r i n g
Dim solverange As S t r i n g
Dim solvevalue As S t r i n g
Dim s o l v e c o n s t r As S t r i n g
Dim SD As S t r i n g
Dim SD2 As S t r i n g
Dim SD3 As S t r i n g
Dim weights As S t r i n g
Dim weights2 As S t r i n g
Dim weights3 As S t r i n g
Dim weights4 As S t r i n g
Dim i As I n t e g e r

Startrow = 3
Secondstartrow = 156
Lastrow = 2
sv = 155
weightrow = 15
columnrow = 3
sv2 = 327
weightrow = 15
weightrow2 = 195
columnrow = 3
columnrow2 = 5
x = 0

Let covrange = "R" & Startrow & "C" & Lastrow & " : " & "R" & Secondstartrow & "C" & Lastrow
Let solverange = "AL" & sv & " : " & "AO" & sv
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Let s o l v e c o n s t r = "AS" & sv
Let s leep1 = "AL" & sv & " : " & "AO" & sv
Let s leep2 = "AL" & sv & " : " & "AO" & sv + 3
Let SD = "R [ " & weightrow & " ]C[ " & 6 & " ] "
Let SD2 = "R [ " & weightrow & " ]C[ " & 4 & " ] "
Let weights = "R [ " & weightrow & " ]C: R [ " & weightrow & " ]C[ " & columnrow & " ] "
Let weights2 = "R [ " & weightrow & " ]C[ −1] :R [ " & weightrow & " ]C[ " & columnrow − 1 & " ] "

For i = 1 To 43
Range ( " AL148 " ) . S e l e c t
Act iveCel l . FormulaR1C1 = "=COVAR( OFFSET ( " & covrange & " , 0 , R147C−1) ,OFFSET ( " & covrange & " , 0 , RC37−1))"
Range ( " AL148 " ) . S e l e c t
S e l e c t i o n . AutoF i l l Des t ina t ion := Range ( " AL148 : AO148 " ) , Type := x l F i l l D e f a u l t
Range ( " AL148 : AO148 " ) . S e l e c t
S e l e c t i o n . AutoF i l l Des t ina t ion := Range ( " AL148 : AO151 " ) , Type := x l F i l l D e f a u l t
Range ( " AL148 : AO151 " ) . S e l e c t

Range ( " AL140 " ) . S e l e c t
S e l e c t i o n . FormulaArray = "=MMULT(R[ 8 ]C: R[ 1 1 ]C[ 3 ] ,TRANSPOSE( " & weights & " ) / " & SD & " ) "
Range ( " AM140 " ) . S e l e c t
S e l e c t i o n . FormulaArray = "=RC[ −1] :R[ 3 ]C[−1]∗TRANSPOSE( " & weights2 & " ) "
Range ( " AN140 " ) . S e l e c t
S e l e c t i o n . FormulaArray = "=RC[ −1] :R[ 3 ]C[−1]/" & SD2
Range ( " AO140 " ) . S e l e c t

SolverReset
SolverOk S e t C e l l : = " $AN$140 " , MaxMinVal : = 3 , ValueOf : = 0 . 2 5 , ByChange := solverange , Engine : = 1 , EngineDesc : = "GRG Nonlinear "
SolverAdd Cel lRef := so lveconst r , Re la t ion : = 2 , FormulaText : = " 1 "
SolverAdd Cel lRef : = " $AN$141 " , Re la t ion : = 2 , FormulaText : = " $AN$140 "
SolverAdd Cel lRef : = " $AN$142 " , Re la t ion : = 2 , FormulaText : = " $AN$140 "
SolverAdd Cel lRef : = " $AN$143 " , Re la t ion : = 2 , FormulaText : = " $AN$140 "
SolverSolve userF in i sh := True

Range ( s leep1 ) . S e l e c t
S e l e c t i o n . AutoF i l l Des t ina t ion := Range ( s leep2 ) , Type := x l F i l l D e f a u l t
Range ( s leep2 ) . S e l e c t

Startrow = Startrow + 4
Secondstartrow = Secondstartrow + 4
sv = sv + 4
weightrow = weightrow + 4
x = x + 1

Let covrange = "R" & Startrow & "C" & Lastrow & " : " & "R" & Secondstartrow & "C" & Lastrow
Let solverange = "AL" & sv & " : " & "AO" & sv
Let s o l v e c o n s t r = "AS" & sv
Let s leep1 = "AL" & sv & " : " & "AO" & sv
Let s leep2 = "AL" & sv & " : " & "AO" & sv + 3
Let SD = "R [ " & weightrow & " ]C[ " & 6 & " ] "
Let SD2 = "R [ " & weightrow & " ]C[ " & 4 & " ] "
Let weights = "R [ " & weightrow & " ]C: R [ " & weightrow & " ]C[ " & columnrow & " ] "
Let weights2 = "R [ " & weightrow & " ]C[ −1] :R [ " & weightrow & " ]C[ " & columnrow − 1 & " ] "
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Range ( " AT148 " ) . Value = x
Next i

Let covrange = "R" & Startrow & "C" & Lastrow & " : " & "R" & Secondstartrow & "C" & Lastrow
Let s o l v e c o n s t r = "AS" & sv
Let SD = "R [ " & weightrow & " ]C[ " & 6 & " ] "
Let SD2 = "R [ " & weightrow & " ]C[ " & 4 & " ] "
Let SD3 = "R [ " & weightrow2 & " ]C[ " & 6 & " ] "
Let SD4 = "R [ " & weightrow2 & " ]C[ " & 4 & " ] "
Let weights = "R [ " & weightrow & " ]C: R [ " & weightrow & " ]C[ " & columnrow & " ] "
Let weights2 = "R [ " & weightrow & " ]C[ −1] :R [ " & weightrow & " ]C[ " & columnrow − 1 & " ] "
Let weights3 = "R [ " & weightrow2 & " ]C: R [ " & weightrow2 & " ]C[ " & columnrow2 & " ] "
Let weights4 = "R [ " & weightrow2 & " ]C[ −1] :R [ " & weightrow2 & " ]C[ " & columnrow2 − 1 & " ] "

Let s leep1 = "AL" & sv & " : " & "AQ" & sv
Let s leep2 = "AL" & sv & " : " & "AQ" & sv + 3
Let solverange = "AL" & sv & " : " & "AQ" & sv

For i = 1 To 213

Range ( " AL148 " ) . S e l e c t
Act iveCel l . FormulaR1C1 = "=COVAR( OFFSET ( " & covrange & " , 0 , R147C−1) ,OFFSET ( " & covrange & " , 0 , RC37−1))"
Range ( " AL148 " ) . S e l e c t
S e l e c t i o n . AutoF i l l Des t ina t ion := Range ( " AL148 : AQ148 " ) , Type := x l F i l l D e f a u l t
Range ( " AL148 : AQ148 " ) . S e l e c t
S e l e c t i o n . AutoF i l l Des t ina t ion := Range ( " AL148 : AQ153 " ) , Type := x l F i l l D e f a u l t
Range ( " AL148 : AQ153 " ) . S e l e c t

Range ( " AL132 " ) . S e l e c t
S e l e c t i o n . FormulaArray = "=MMULT( R148C38 : R153C43 ,TRANSPOSE( " & weights3 & " ) / " & SD3 & " ) "
Range ( " AM132 " ) . S e l e c t
S e l e c t i o n . FormulaArray = "=R132C38 : R137C38∗TRANSPOSE( " & weights4 & " ) "
Range ( " AN132 " ) . S e l e c t
S e l e c t i o n . FormulaArray = "=RC[ −1] :R[ 5 ]C[−1]/" & SD4
Range ( " AO132 " ) . S e l e c t

SolverReset
SolverOk S e t C e l l : = " $AN$132 " , MaxMinVal : = 3 , ValueOf :=0 .166666666666667 , ByChange := solverange , Engine : = 1 , EngineDesc : = "GRG Nonlinear "
SolverAdd Cel lRef := so lveconst r , Re la t ion : = 2 , FormulaText : = " 1 "
SolverAdd Cel lRef : = " $AN$133 " , Re la t ion : = 2 , FormulaText : = " $AN$132 "
SolverAdd Cel lRef : = " $AN$134 " , Re la t ion : = 2 , FormulaText : = " $AN$132 "
SolverAdd Cel lRef : = " $AN$135 " , Re la t ion : = 2 , FormulaText : = " $AN$132 "
SolverAdd Cel lRef : = " $AN$136 " , Re la t ion : = 2 , FormulaText : = " $AN$132 "
SolverAdd Cel lRef : = " $AN$137 " , Re la t ion : = 2 , FormulaText : = " $AN$132 "
SolverSolve userF in i sh := True

Range ( s leep1 ) . S e l e c t
S e l e c t i o n . AutoF i l l Des t ina t ion := Range ( s leep2 ) , Type := x l F i l l D e f a u l t
Range ( s leep2 ) . S e l e c t

Startrow = Startrow + 4
Secondstartrow = Secondstartrow + 4
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sv = sv + 4
sv2 = sv2 + 4
weightrow = weightrow + 4
weightrow2 = weightrow2 + 4
x = x + 1

Let solverange = "AL" & sv & " : " & "AQ" & sv
Let covrange = "R" & Startrow & "C" & Lastrow & " : " & "R" & Secondstartrow & "C" & Lastrow
Let s o l v e c o n s t r = "AS" & sv
Let SD = "R [ " & weightrow & " ]C[ " & 6 & " ] "
Let SD2 = "R [ " & weightrow & " ]C[ " & 4 & " ] "
Let SD3 = "R [ " & weightrow2 & " ]C[ " & 6 & " ] "
Let SD4 = "R [ " & weightrow2 & " ]C[ " & 4 & " ] "
Let s leep1 = "AL" & sv & " : " & "AQ" & sv
Let s leep2 = "AL" & sv & " : " & "AQ" & sv + 3
Let weights = "R [ " & weightrow & " ]C: R [ " & weightrow & " ]C[ " & columnrow & " ] "
Let weights2 = "R [ " & weightrow & " ]C[ −1] :R [ " & weightrow & " ]C[ " & columnrow − 1 & " ] "
Let weights3 = "R [ " & weightrow2 & " ]C: R [ " & weightrow2 & " ]C[ " & columnrow2 & " ] "
Let weights4 = "R [ " & weightrow2 & " ]C[ −1] :R [ " & weightrow2 & " ]C[ " & columnrow2 − 1 & " ] "
Range ( " AT148 " ) . Value = x

Next i

End Sub

C.2 Global Minimum Variance Script

Sub GMV( )

Dim covrange As S t r i n g
Dim solverange As S t r i n g
Dim solvevalue As S t r i n g
Dim s o l v e c o n s t r As S t r i n g
Dim s o l v e c o n s t r 2 As S t r i n g
Dim i As I n t e g e r

Startrow = 3
Secondstartrow = 156
Lastrow = 2
sv = 155
x = 0

Let covrange = "R" & Startrow & "C" & Lastrow & " : " & "R" & Secondstartrow & "C" & Lastrow
Let solvevalue = "$AG$" & sv
Let solverange = "AA" & sv & " : " & "AD" & sv
Let s o l v e c o n s t r = "AH" & sv
Let s o l v e c o n s t r 2 = "AB" & sv
Let s leep1 = "AA" & sv & " : " & "AG" & sv
Let s leep2 = "AA" & sv & " : " & "AG" & sv + 3

For i = 1 To 43
Range ( " AA148 " ) . S e l e c t
Act iveCel l . FormulaR1C1 = "=COVAR( OFFSET ( " & covrange & " , 0 , R147C−1) ,OFFSET ( " & covrange & " , 0 , RC26−1))"
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Range ( " AA148 " ) . S e l e c t
S e l e c t i o n . AutoF i l l Des t ina t ion := Range ( " AA148 : AD148 " ) , Type := x l F i l l D e f a u l t
Range ( " AA148 : AD148 " ) . S e l e c t
S e l e c t i o n . AutoF i l l Des t ina t ion := Range ( " AA148 : AD151 " ) , Type := x l F i l l D e f a u l t
Range ( " AA148 : AD151 " ) . S e l e c t

SolverReset
SolverOk S e t C e l l := solvevalue , MaxMinVal : = 2 , ValueOf : = 0 , ByChange := solverange , Engine : = 1 , EngineDesc : = "GRG Nonlinear "
SolverAdd Cel lRef := so lveconst r , Re la t ion : = 2 , FormulaText : = " 1 "
SolverSolve userF in i sh := True

Range ( s leep1 ) . S e l e c t
S e l e c t i o n . AutoF i l l Des t ina t ion := Range ( s leep2 ) , Type := x l F i l l D e f a u l t
Range ( s leep2 ) . S e l e c t

Startrow = Startrow + 4
Secondstartrow = Secondstartrow + 4
sv = sv + 4
x = x + 1
Let covrange = "R" & Startrow & "C" & Lastrow & " : " & "R" & Secondstartrow & "C" & Lastrow
Let solvevalue = "$AG$" & sv
Let solverange = "AA" & sv & " : " & "AD" & sv
Let s o l v e c o n s t r = "AH" & sv
Let s o l v e c o n s t r 2 = "AB" & sv
Let s leep1 = "AA" & sv & " : " & "AG" & sv
Let s leep2 = "AA" & sv & " : " & "AG" & sv + 3
Range ( " AH148 " ) . Value = x

Next i

Let solverange = "AA" & sv & " : " & "AF" & sv
Let s leep1 = "AA" & sv & " : " & "AF" & sv
Let s leep2 = "AA" & sv & " : " & "AF" & sv + 3

For i = 1 To 213
Range ( " AA148 " ) . S e l e c t
Act iveCel l . FormulaR1C1 = "=COVAR( OFFSET ( " & covrange & " , 0 , R147C−1) ,OFFSET ( " & covrange & " , 0 , RC26−1))"
Range ( " AA148 " ) . S e l e c t
S e l e c t i o n . AutoF i l l Des t ina t ion := Range ( " AA148 : AF148 " ) , Type := x l F i l l D e f a u l t
Range ( " AA148 : AF148 " ) . S e l e c t
S e l e c t i o n . AutoF i l l Des t ina t ion := Range ( " AA148 : AF153 " ) , Type := x l F i l l D e f a u l t
Range ( " AA148 : AF153 " ) . S e l e c t

SolverReset
SolverOk S e t C e l l := solvevalue , MaxMinVal : = 2 , ValueOf : = 0 , ByChange := solverange , Engine : = 1 , EngineDesc : = "GRG Nonlinear "
SolverAdd Cel lRef := so lveconst r , Re la t ion : = 2 , FormulaText : = " 1 "
SolverSolve userF in i sh := True

Range ( s leep1 ) . S e l e c t
S e l e c t i o n . AutoF i l l Des t ina t ion := Range ( s leep2 ) , Type := x l F i l l D e f a u l t
Range ( s leep2 ) . S e l e c t

Startrow = Startrow + 4
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Secondstartrow = Secondstartrow + 4
sv = sv + 4
x = x + 1
Let covrange = "R" & Startrow & "C" & Lastrow & " : " & "R" & Secondstartrow & "C" & Lastrow
Let solvevalue = "$AG$" & sv
Let solverange = "AA" & sv & " : " & "AD" & sv
Let s o l v e c o n s t r = "AH" & sv
Let s o l v e c o n s t r 2 = "AB" & sv
Let s leep1 = "AA" & sv & " : " & "AG" & sv
Let s leep2 = "AA" & sv & " : " & "AG" & sv + 3
Range ( " AH148 " ) . Value = x

Next i

End Sub
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